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1 Introduction: Markov intertwining relations
Markov intertwinings are a kind of commutation or weak similarity relation from a dual Markov
process toward a primal Markov process, enabling us to transfer information between them. They
were introduced by Rogers and Pitman [13] to give an alternative proof of Pitman’s relation [12]
between the Brownian motion and the Bessel-3 process. Subsequently, they were used by Aldous
and Diaconis [1] in their analysis of the convergence to equilibrium of the top-to-random shuffle.
Nowadays they appeared in various domains in Probability Theory, see for instance the review by Pal
and Shkolnikov [11]. Our goal here is to investigate when it is possible, and how, to transform a given
Markov intertwining relation when the primal Markov chain is conditioned to stay in a proper subset
of its state space.

Our framework is that of a finite state V with discrete time. Our primary objects are thus Markov
kernels P B pP px, x1qqx,x1PV and corresponding Markov chains X B pXpnqqnPZ` taking values in V ,
standing for the primal Markov chains. The dual Markov chains Y B pY pnqqnPZ` take values in
another finite state space W and we denote Q B pQpy, y1qqy,y1PW their Markov kernels.

Let Λ be a Markov kernel fromW to V , we say that an algebraic Λ-intertwining relation holds
from Q to P , when

QΛ “ ΛP (1)

Such a relation from Q to P is always satisfied for some Λ, since it is sufficient to take

@ y PW, Λpy, ¨q B π

where π is an invariant probability measure for P (which exists in the finite setting).
So to be able to transfer informations between X and Y , some further assumptions are needed, we

are to give a general example below. Nevertheless for the general purpose of this paper, we will just
assume that an intertwining relation is given.

We will also be interested in a more precise kind of intertwining relation, enabling to couple
X and Y . As above, consider Markov kernels P , Q and Λ, respectively from V to V , from W
to W and from W to V . We furthermore assume that for any x, x1 P V such that P px, x1q ą 0,
we are given a Markov kernel on W , say Kx,x1 B pKx,x1py, y

1qqy,y1PW . We deduce a Markov kernel
K B pKppx, yq, px1, y1qqqpx,yq,px1,y1qPVˆW on V ˆW given by

@ px, yq, px1, y1q P V ˆW, Kppx, yq, px1, y1qq B P px, x1qKx,x1py, y
1q (2)

Note that whatever px, yq P V ˆW , the V -marginal of Kppx, yq, ¨q is P px, ¨q. Indeed we compute

@ x1 P V,
ÿ

y1PW

Kppx, yq, px1, y1qq “ P px, x1q
ÿ

y1PW

Kx,x1py, y
1q

“ P px, x1q

We would like that K is such that if pXp0q, Y p0qq is a V ˆ W -random variable satisfying that
the conditional law of Xp0q knowing Y p0q is given by ΛpY p0q, ¨q and if pXp1q, Y p1qq is obtained from
pXp0q, Y p0qq through the Markov kernel K, then:

• the conditional law of Y p1q knowing Y p0q is given by QpY p0q, ¨q,

• the conditional law of Xp1q knowing Y p1q is given by ΛpY p1q, ¨q.

This amounts to ask that

@ y, y1 PW, @ x1 P V,
ÿ

xPV

Λpy, xqKppx, yq, px1, y1qq “ Qpy, y1qΛpy1, x1q (3)
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It follows from these considerations that we are only interested in couples px, yq P V ˆW which
are such that Λpy, xq ą 0. Call V ˙W the set of such couples px, yq. Denote

@ x P V, Wx B ty PW : px, yq P V ˙W u (4)

For any x, x1 P V with P px, x1q ą 0, the kernel Kx,x1 has just to be defined from Wx to Wx1 .
Relation (3) is called a probabilistic Λ-intertwining relation from Q to P . By summing it

with respect to y1 PW , we get the algebraic Λ-intertwining relation from Q to P : ΛP “ QΛ.
Conversely Diaconis and Fill [4] show that it always possible to associate a probabilistic Λ-

intertwining relation to an algebraic Λ-intertwining relation.
The above coupling of pXp0q, Xp1qq and pY p0q, Y p1qq can be extended by iteration over time into

a whole coupling of X and Y , still under the assumption that the conditional law of Xp0q knowing
Y p0q is given by ΛpY p0q, ¨q. This coupling has the following properties for the conditional laws

@ n P Z`, LpY pJ0, nKq|Xq “ LpY pJ0, nKq|XpJ0, nKqq (5)
@ n P Z`, LpXpnq|Y pJ0, nKqq “ ΛpY pnq, ¨q (6)

where XpJ0, nKq stands for the truncated process pXpmqqmPJ0,nK and similarly for Y .
Relation (6) is a probabilistic counter-part of (1). Relation (5) admits the important consequence

that a stopping time for Y is also a stopping time for X, up to enriching its filtration with independent
randomness. It has also the practical advantage that Y can be constructed from X in an adapted
way. This is important since in the traditional uses of Markov intertwining relations, X is given and
we want to construct Y satisfying (5) and (6).

As a motivation, let us give such a classical application of intertwining relations coming from
Diaconis and Fill [4]. In addition to a probabilistic Λ-intertwining relation from Q to P , assume that
P admits a unique invariant measure π and that Q admits an absorbing point, say 8 P W , such
that t8u is the unique minimal recurrence class of Q (said otherwise, the Dirac mass δ8 is the unique
invariant measure of Q). From the algebraic intertwining relation, we deduce that Λp8, ¨q “ π. Finally
assume furthermore that the respective initial laws of X and Y satisfy LpXp0qq “ LpY p0qqΛ, then it
is possible to couple X and Y as above.

Denote τ the absorption time of Y :

τ B mintn P Z` : Y pnq “ 8u

which is a.s. finite due to the above assumptions on 8. Then τ is a strong stationary time for
X, namely a finite stopping time (relatively to a filtration generated by X and some independent
randomness), such that τ and Xτ are independent and Xτ is distributed according to π.

In particular, we get the following bound on the convergence to equilibrium for X in separation:

@ n P Z`, spLpXpnqq, πq ď Prτ ą ns (7)

where the separation discrepancy spµ, νq between two probability measures µ and ν defined on the
same measurable space is defined by

spµ, νq B ess sup
ν

ˆ

1´
dµ

dν

˙

(where dµ
dν stands for the Radon-Nikodym density of µ with respect to ν).

Thus given a primal ergodic Markov chain X, one is looking for dual absorbed Markov chains Y
as above and leading to relevant bounds (7).

As already mentioned, the purpose of this paper is to investigate the behavior of a Markov inter-
twining under the conditioning of the primal Markov X to stay in a proper subset A of V . When
X is ergodic (i.e. irreducible and aperiodic) and A is connected with respect to the underlying graph
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(whose edge set corresponds to positive probability transitions for P ), this question is related to the
comparison of the convergence to equilibrium of X with that of the conditioned Markov chain, but we
will not address this aspect here. The case of algebraic intertwining relations is treated in the next
section, while Section 3 deals with probabilistic intertwining relations.

Sections 4, 5 and 6 respectively consider three examples: the discrete version of the Pitman in-
tertwining between the Brownian motion and the Bessel-3 process (the usual random walk on Z is
conditioned to stay in a finite segment), the top-to-random shuffle (the card initially at the bottom
of the deck is conditioned to stay in the first half of the deck after reaching it) and absorbed birth-
and-death Markov chains conditioned not to be absorbed. Finally an appendix recalls the relations
between conditioning to stay in a proper subset and Doob transforms in the framework of finite state
space and discrete time.

2 Algebraic intertwinings
We start by dealing with the simpler case of algebraic intertwinings. The following arguments will serve
as a guide for the probabilistic intertwinings, even if a posteriori the algebraic case can be formally
deduced from the probabilistic one.

Recall that we are given a transition matrix P on a finite set V . Let A be a proper subset of V , not
reduced to a singleton, such that the restriction PA of P to AˆA is irreducible (i.e. A is P -connected).
By Perron-Frobenius theorem, we can find a function h : V Ñ R`, positive on A and vanishing on
V zA, and a number θ P p0, 1s, such that

@ x P A, P rhspxq “ θhpxq (8)

The number θ and the function h are called the largest Dirichlet eigenvalue and the Doob
function.

On A, consider the transition matrix rP defined by

@ x, y P A, rP px, yq B
P px, yqhpyq

θhpxq
(9)

It corresponds to the Markov chain conditioned to stay in A, see Appendix A.
Let be given another transition matrix Q on a finite set W , as well as a transition matrix Λ from

W to V such that the algebraic Λ-intertwining (1) from Q to P holds.
Our goal here is to present some conditions enabling to deduce an intertwining for rP .
Define

B B ty PW : ΛrAspyq “ 1u

assume that B ‰ H and consider the transition kernel rΛ from B to A given by

@ y P B, @ x P A, rΛpy, xq B
Λpy, xqhpxq

Λrhspyq

Denote

B̄ B ty PW : D z P B with Qpz, yq ą 0u

and furthermore assume that there exists a non-negative kernel G from B̄ to B such that

@ y P B̄, @ x P A, Λpy, xq “
ÿ

y1PB

Gpy, y1qΛpy1, xq (10)
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Remark 1 For y P B, we can take Gpy, ¨q “ δy, the Dirac mass at y, so the above assumption can be
restricted to the elements y P B̄zB, namely the outside boundary of B (relatively to Q). ˝

Summing (10) over x P A, and taking into account that Λpy1, Aq “ 1 for y1 P B, we get

@ y P B̄,
ÿ

y1PB

Gpy, y1q “ Λpy,Aq (11)

Example 2 A particular case of the above situation is when there exist two mappings ϕ : B̄ Ñ B
and g : B̄ Ñ R` such that

@ y P B̄, @ y1 P B, Gpy, y1q “ gpyqδϕpyqpy
1q

The mapping g is necessarily given by

@ y P B̄, gpyq “ Λpy,Aq

due to (11).
The subset-valued situation provides such an example. Assume P irreducible and let π be its

invariant probability measure, it gives a positive weight to all points of V . Then we take W to be the
set of non-empty subsets of V and Λ is given by

@ y PW, @ x P V, Λpy, xq “

#

πpxq
πpyq , if x P y

0 , otherwise
(12)

In this situation we can even define ϕ and g on the whole set W :

B “ ty PW : y Ă Au

@ y PW, ϕpyq “

#

y XA , if y XA ‰ H

A , otherwise

@ y PW, gpyq “

#

πpϕpyqq
πpyq , if y XA ‰ H

0 , otherwise

(the definition of ϕpyq when y XA “ H is arbitrary, since then gpyq “ 0).
In Section 6, we will encounter a measure-valued instead of a subset-valued case where the kernel

Λ is not of the form (12).
˝

We construct the Markov kernel rQ on B given by

@ y, y1 P B, rQpy, y1q B
1

Zpyq

ÿ

zPB̄

Qpy, zqGpz, y1qΛrhspy1q (13)

with the normalizing constant

@ y P B, Zpyq B
ÿ

zPB̄,y1PB

Qpy, zqGpz, y1qΛrhspy1q
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Note that rQ is well-defined, namely that Zpyq ą 0. Indeed, we have for y P B,

Zpyq “
ÿ

zPB̄, y1PB, xPA

Qpy, zqGpz, y1qΛpy1, xqhpxq

“
ÿ

zPB̄, xPA

Qpy, zqΛpz, xqhpxq

“ QrΛrhsspyq

“ ΛrP rhsspyq

“ Λr1AP rhsspyq

“ Λr1Aθhspyq

“ θΛrhspyq (14)
ą 0

Example 2 continued In the set-valued situation of Example 2 we get

@ y, y1 P B, rQpy, y1q “
Λrhspy1qπpy1q

θΛrhspyq

ÿ

z1ĂV zA

Qpy, y1 Y z1q

πpy1q ` πpz1q
(15)

and

@ y1, y2 P B, z1 Ă V zA, Gpy1 Y z1, y2q “
πpy1q

πpy1q ` πpz1q
δy1py

2q. (16)

Theorem 3 The algebraic rΛ-intertwining from rQ to rP holds.

Proof
Consider a test function f on A. We have to check that

@ y P B, rQrΛrf spyq “ rΛ rP rf spyq

Let us start with the r.h.s., we have

rΛ rP rf spyq “
1

Λrhspyq
Λr1Ah rP rf sspyq

“
1

θΛrhspyq
Λr1AP rhf sspyq

“
1

θΛrhspyq
ΛrP rhf sspyq

“
1

θΛrhspyq
QrΛrhf sspyq

Let us compute the last factor. For any y P B, we have

QrΛrhf sspyq “
ÿ

zPB̄, xPA

Qpy, zqΛpz, xqhpxqfpxq

“
ÿ

zPB̄, y1PB, xPA

Qpy, zqGpz, y1qΛpy1, xqhpxqfpxq

“
ÿ

y1PB, zPB̄

Qpy, zqGpz, y1qΛrhf spy1q

“ Zpyq
ÿ

y1PB

rQpy, y1q
Λrhf spy1q

Λrhspy1q

“ Zpyq rQrrΛrf sspyq
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We have thus proven that

rΛ rP rf spyq “
Zpyq

θΛrhspyq
rQrrΛrf sspyq

and the desired result follows from (14). �

Denote pQ the kernel on B given by

@ y, y1 P B, pQpy, y1q B
ÿ

zPB̄

Qpy, zqGpz, y1q

This kernel is sub-Markovian, since we compute that for any y P B, taking (11) into account,
ÿ

y1PB

pQpy, y1q “
ÿ

y1PB, zPB̄

Qpy, zqGpz, y1q

“
ÿ

zPB̄

Qpy, zqΛpz,Aq

ď
ÿ

zPB̄

Qpy, zq

“ 1

To transform pQ into a Markov kernel, consider a point p8 not belonging to B and denote pB B
B \ tp8u. Extend pQ into a Markov kernel on pB by taking

@ y P B, pQpy, p8q “ 1´ pQpy,Bq

pQpp8, p8q “ 1

Consider the mapping H : pB Ñ R` given by

@ y P pB, Hpyq B

"

Λrhspyq , if y P B
0 , if y “ p8

From (13) and (14), we have

@ y, y1 P B, rQpy, y1q “
1

Zpyq
pQpy, y1qHpy1q

“
pQpy, y1qHpy1q

θHpyq

which is similar to (9). Thus if pQB is irreducible, according to Appendix A, rQ is the conditioning
of pQ to stay in B. But in situations such as the motivation presented in the introduction, pQB will
not be irreducible, because Q is typically absorbed at a unique point 8 P B satisfying Λp8, ¨q “ π,
the unique invariant probability measure of the kernel P . Instead we are in the case mentioned in
Remark 14 of the appendix.

3 Probabilistic intertwinings
We extend here the conditioned algebraic intertwining relation of Theorem 3 into a conditioned prob-
abilistic intertwining relation.

Let the kernels P , Q and Λ and the sets A Ă V , B, B̄ ĂW be as in Section 2.
Our main assumption there was the existence of non-negative kernel G from B̄ to B such that

@ y P B̄, @ x P A, Λpy, xq “
ÿ

y1PB

Gpy, y1qΛpy1, xq (17)
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enabling us to define the Markov kernel rQ via

@ y, y1 P B, rQpy, y1q B
1

θΛrhspyq

ÿ

zPB̄

Qpy, zqGpz, y1qΛrhspy1q (18)

The two other important definitions were:

@ x, x1 P A, rP px, x1q B
P px, x1qhpx1q

θhpxq

@ y P B, @ x P A, rΛpy, xq B
Λpy, xqhpxq

Λrhspyq

We would like to construct a probabilistic intertwining relation from rQ to rP . Namely, for any x, x1 P
A with rP px, x1q ą 0 we want to find a Markov kernel from Bx to Bx1 rKx,x1 B p rKx,x1py, y

1qqyPBx, y1PBx1 ,
such that defining

@ px, yq, px1, y1q P AˆB, rKppx, yq, px1, y1qq B rP px, x1q rKx,x1py, y
1q (19)

we have

@ y, y1 P B, @ x1 P A,
ÿ

xPA

rΛpy, xq rKppx, yq, px1, y1qq “ rQpy, y1qrΛpy1, x1q (20)

Following (4), we used the notation

@ x P A, Bx B ty P B : px, yq P A˙Bu

where

A˙B B tpx, yq P AˆB : rΛpy, xq ą 0u

“ tpx, yq P AˆB : Λpy, xq ą 0u

since h is positive on A.
Here is our main result:

Theorem 4 The probabilistic rΛ intertwining relation from rQ to rP is satisfied if we take for any
x, x1 P A with rP px, x1q ą 0,

@ y P Bx, y
1 P Bx1 , rKx,x1py, y

1q B
ÿ

zPB̄XWx1

Kx,x1py, zqHpz, y
1, x1q

with

@ x1 P A, @ y1 P Bx1 , @ z P B̄ XWx1 , Hpz, y1, x1q B
Gpz, y1qΛpy1, x1q

Λpz, x1q

(note that Λpz, x1q ą 0 for z P B̄ XWx1).
We do have that p rKx,x1py, y

1qqy,y1PB is a Markov kernel from Bx to Bx1 .

Proof
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To check (20), we start with its r.h.s., fixing y, y1 P B and x1 P A. We compute

ÿ

xPA

rΛpy, xq rKppx, yq, px1, y1qq “
ÿ

xPA

Λpy, xq

Λrhspyq
P px, x1q

hpx1q

θ

ÿ

zPB̄XWx1

Kx,x1py, zqHpz, y
1, x1q

“
ÿ

zPB̄XWx1

hpx1qHpz, y1, x1q

θΛrhspyq

ÿ

xPA

Λpy, xqP px, x1qKx,x1py, zq

“
ÿ

zPB̄XWx1

hpx1qHpz, y1, x1q

θΛrhspyq
Qpy, zqΛpz, x1q

“
ÿ

zPB̄

hpx1q

θΛrhspyq
Qpy, zqGpz, y1qΛpy1, x1q

“
hpx1q

Λrhspy1q
rQpy, y1qΛpy1, x1q

“ rQpy, y1qrΛpy1, x1q

where for the third equality we were able to replace x P A by x P V , since y P B, for the fourth
equality we used that the relation Hpz, y1, x1qΛpz, x1q “ Gpz, y1qΛpy1, x1q is always satisfied, for the
fifth equality we took (18) into account, and for the last equality used the definition of rΛ.

To check the last assertion of the above theorem, we have to show that for any x, x1 P A with
rP px, x1q ą 0,

@ y P Bx,
ÿ

y1PBx1

rKx,x1py, y
1q “ 1

By definition, the above l.h.s. is equal to
ÿ

zPB̄XWx1

Kx,x1py, zq
ÿ

y1PBx1

Hpz, y1, x1q “
ÿ

zPB̄XWx1

Kx,x1py, zq (21)

due to (17).
From (3), we get that for y P Bx, we have Kx,x1py, zq “ 0 when Qpy, zq “ 0, in particular if z R B̄.

It follows that in the r.h.s. of (21), we can remove the restriction z P B̄ and we get
ÿ

zPWx1

Kx,x1py, zq “ 1

since Kx,x1 is a Markov kernel from Wx to Wx1 . �

4 Discrete Pitman intertwining
We consider here the example of the discrete (probabilistic) intertwining of Pitman [12], which served
as a preliminary version of his famous (probabilistic) intertwining from the Bessel-3 process to the
Brownian motion (see also Rogers and Pitman [13]).

The primal Markov chain is the simple random walk X B pXpnqqnPZ` on Z, jumping with probabil-
ity 1/2 to the two nearest neighbors and starting from 0. Introduce the dual process Y B pY pnqqnPZ`
taking values in Z` and defined by

@ n P Z`, Y pnq B 2 max
mPJ0,nK

Xpmq ´Xpnq (22)

Consider the Markov kernel Λ from Z` to Z associating to any y P Z` the uniform distribution on
t´y,´y ` 2, ..., y ´ 2, yu.
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Pitman [12] proved the probabilistic Λ-intertwining from Y to X:

@ n P Z`, LpXpnq|Y pJ0, nKqq “ ΛpY pnq, ¨q

which is an instance of (6).
Extending the considerations and notations of the previous sections to countable state spaces, it

amounts to take V B Z endowed with the Markov kernel P given by

@ x, x1 P V, P px, x1q B

#

1{2 , if |x1 ´ x| “ 1

0 , otherwise

We condition the associated Markov chain X starting from 0 to stay in A B J1´N,N´1K, for any
given N ě 4. It is well-known and easy to check that θ “ cos

`

π
2N

˘

and that a corresponding function
h is given by

h : V Q x ÞÑ cos
´ πx

2N

¯

1J1´N,N´1Kpxq (23)

Consider on W B Z` the Markov kernel given by

@ y, y1 PW, Qpy, y1q B

$

’

’

&

’

’

%

y`2
2py`1q , if y ě 1 and y1 “ y ` 1

y
2py`1q , if y1 “ y ´ 1

0 , otherwise

as well as the Markov kernel Λ from W to V given by

@ y PW, x P V Λpy, xq B

#

1
y`1 , if x P t´y,´y ` 2, ..., y ´ 2, yu

0 , otherwise

The probabilistic Λ-intertwining of Pitman [12] from Q to P recalled above corresponds to the
Markov kernels Kx,x1 B pKx,x1py, y

1qqy,y1PW , for x, x1 P V with |x´ x1| “ 1, given by

@ y, y1 PW, Kx,x1py, y
1q B

$

’

’

&

’

’

%

1 , if x “ y and y1 “ y ` 1

1 , if x P t´y,´y ` 2, ..., y ´ 2u and y1 “ y ´ px1 ´ xq

0 , otherwise

As a consequence, we also get an algebraic Λ-intertwining from Q to P .
Let us specify in this situation, the objects previously introduced to get algebraic as well as prob-

abilistic rΛ-intertwinings from rQ to rP .
The conditioned Markov kernel rP is given, for any x, x1 P J1´N,N ´ 1K, by

rP px, x1q B

#

cospπx1{p2Nqq

2 cosp π2N q cospπx{p2Nqq
, if |x1 ´ x| “ 1

0 , otherwise

By identifying an element y PW with the subset Sy B t´y,´y` 2, ..., y´ 2, yu Ă V , we are in the
situation of Example 2 of Section 2 (with π the counting measure on Z), so B, B̄, ϕ and g are given
by

B “ J0, N ´ 1K

B̄ “ J0, NK

@ y P B̄, ϕpyq “

#

y , if y P J0, N ´ 1K

N ´ 2 , if y “ N

@ y P B̄, gpyq “

#

1 , if y P J0, N ´ 1K
N´1
N`1 , if y “ N
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We compute

@ y P B, Λrhspyq “
1

y ` 1

ÿ

xPSy

cos
´ πx

2N

¯

“
1

y ` 1

ÿ

zPJ0,yK

cos

ˆ

πp2z ´ yq

2N

˙

“
1

2py ` 1q

ÿ

zPJ0,yK

exp

ˆ

i
πp2z ´ yq

2N

˙

` exp

ˆ

´i
πp2z ´ yq

2N

˙

.

The transformation z ÞÑ y ´ z shows that the two sums in the right are equal. So

Λrhspyq “
exp

`

´i πy2N

˘

py ` 1q

ÿ

zPJ0,yK

exp
´

i
πz

N

¯

“
exp

`

´i πy2N

˘

py ` 1q

exp
´

iπpy`1q
N

¯

´ 1

exp
`

i πN
˘

´ 1

“
exp

`

´i πy2N

˘

py ` 1q

exp
´

iπpy`1q
2N

¯´

exp
´

iπpy`1q
2N

¯

´ exp
´

´iπpy`1q
2N

¯¯

exp
`

i π2N
˘ `

exp
`

i π2N
˘

´ exp
`

´i π2N
˘˘

“
1

y ` 1

sin
´

πpy`1q
2N

¯

sin
`

π
2N

˘ ą 0.

As a consequence, we get

@ y P B, @ x P A, rΛpy, xq B
Λpy, xqhpxq

Λrhspyq

“
sin

`

π
2N

˘

cos
`

πx
2N

˘

sin
´

πpy`1q
2N

¯ 1Sypxq

We also deduce that

@ y, y1 P B, rQpy, y1q “
1

θΛrhspyq

ÿ

zPB̄ :ϕpzq“y1

Qpy, zqgpzqΛrhspy1q

“
1

cos
`

π
2N

˘

ÿ

zPB̄ :ϕpzq“y1

Qpy, zqgpzq
py ` 1q sin

´

πpy1`1q
2N

¯

py1 ` 1q sin
´

πpy`1q
2N

¯

It leads us to consider two cases:
‚ When y1 ă N ´ 2, then tz P B̄ : ϕpzq “ y1u “ ty1u and thus

rQpy, y1q “
1

cos
`

π
2N

˘

py ` 1q sin
´

πpy1`1q
2N

¯

py1 ` 1q sin
´

πpy`1q
2N

¯Qpy, y1q

‚ When y1 “ N ´ 2, we have tz P B̄ : ϕpzq “ N ´ 2u “ tN ´ 2, Nu. Thus we get for y P B,
rQpy,N ´ 2q

“
1

cos
`

π
2N

˘

py ` 1q sin
´

πpN´1q
2N

¯

pN ´ 1q sin
´

πpy`1q
2N

¯Qpy,N ´ 2q `
1

cos
`

π
2N

˘

py ` 1q sin
´

πpN´1q
2N

¯

pN ´ 1q sin
´

πpy`1q
2N

¯

N ´ 1

N ` 1
Qpy,Nq

“
y ` 1

sin
´

πpy`1q
2N

¯

ˆ

1

N ´ 1
Qpy,N ´ 2q `

1

N ` 1
Qpy,Nq

˙

11



and this expression vanishes, except, first when y “ N ´ 3, in which case we get

rQpN ´ 3, N ´ 2q “
N ´ 2

pN ´ 1q sin
´

πpN´2q
2N

¯QpN ´ 3, N ´ 2q

“
1

2 cos
`

π
N

˘

(where we took into account that N ě 4), and second when y “ N ´ 1, in which case we get

rQpN ´ 1, N ´ 2q “
N

sin
`

πN
2N

˘

ˆ

1

N ´ 1
QpN ´ 1, N ´ 2q `

1

N ` 1
QpN ´ 1, Nq

˙

“ N

ˆ

1

N ´ 1

N ´ 1

2N
`

1

N ` 1

N ` 1

2N

˙

“ 1

‚ When y1 “ N ´ 1, we have tz P B̄ : ϕpzq “ N ´ 1u “ tN ´ 1u. Thus we get for y P B,

rQpy,N ´ 1q “
1

cos
`

π
2N

˘

py ` 1q sin
`

πN
2N

˘

N sin
´

πpy`1q
2N

¯ Qpy,N ´ 1q

“
y ` 1

N cos
`

π
2N

˘

sin
´

πpy`1q
2N

¯Qpy,N ´ 1q

and this expression vanishes, except when y “ N ´ 2, in which case we get

rQpN ´ 2, N ´ 1q “
N ´ 1

N cos
`

π
2N

˘

sin
´

πpN´1q
2N

¯QpN ´ 2, N ´ 1q

“
1

2 cos2
`

π
2N

˘

It appears that a Markov chain rY B prY pnqqnPZ` with transition kernel rQ is not absorbed at N ´ 1

(this is related to the fact that the conditioned process rX does not converge in law for large times,
due to periodicity). In fact the set J1, N ´ 1K is a recurrence class for rY , which in particular always
returns to the point 1. As we are to see below, this leads to a strange phenomenon. For a better
understanding, let us consider the probabilistic rΛ-intertwining.

By definition, we have, for any x, x1 P A with |x1 ´ x| “ 1,

@ y, y1 P B, rKx,x1py, y
1q B

ÿ

zPB̄ :ϕpzq“y1

Kx,x1py, zq

thus again we are led to consider two cases.
‚ When y1 ă N ´ 2 or y1 “ N ´ 2, we get

@ y P B, rKx,x1py, y
1q “ Kx,x1py, y

1q

“ 1y“x, y1“y`1 ` 1yąx, y1“y´px1´xq

‚ When y1 “ N ´ 2, we get

@ y P B, rKx,x1py,N ´ 2q “ Kx,x1py,N ´ 2q `Kx,x1py,Nq

expression which vanishes, except, first for y “ N ´ 3,

rKx,x1pN ´ 3, N ´ 2q “ Kx,x1pN ´ 3, N ´ 2q

“ 1x“N´3 ` 1xăN´3, x1“x´1

12



and second for y “ N ´ 1,

rKx,x1pN ´ 1, N ´ 2q “ Kx,x1pN ´ 1, N ´ 2q `Kx,x1pN ´ 1, Nq

“ 1xăN´1, x1“x`1 ` 1x“N´1 ` 1xăN´1, x1“x´1

“ 1

Thus given a transition from x to x1 for rX, rY changes similarly to Y when X is making a transition
from x to x1, except when rY is equal to N´1, then the next position is necessary N´2. Of course this
last fact is sufficient to prevent (22) to hold for rX and rY , but it does hold until rY hits N ´ 1 for the
first time. In the traditional theory of Diaconis and Fill [4], the dual chain indicates how the primal
chain is progressing towards equilibrium, until the dual chain is absorbed, then the primal chain is
at equilibrium in the sense of strong stationary times. Here the situation is different: at some times
as large as we want, we can deduce concentration for the primal chain rX from the observation of the
trajectory of the dual chain rY , since at the stopping times τ satisfying rY pτq “ 1, we know from the
probabilistic intertwining relation that rXpτq “ 1 or rXpτq “ ´1, each event occurring with probability
1/2.

Remark 5 The periodicity can be removed by considering P 2, which can be decomposed into its
two irreducible parts, one on 2Z and the other one on 1 ` 2Z. The Markov kernel P 2 is intertwined
with Q2 with the same link Λ. The irreducible parts of Q2 are 2 ` 2Z` and 1 ` 2Z`, the remaining
singleton t0u being transient (it is left in one transition). Consider for instance pP the restriction of
P 2 to pV B 2Z, pQ the restriction of Q2 to xW B 2Z and pΛ the restriction of Λ from xW to pV . We have
the algebraic pΛ-intertwining relation

pQpΛ “ pΛ pP

and the probabilistic intertwining is given with the restriction to pV ˆxW of pK “ K2. In particular we
have for any x, x1 P pV with pP px, x1q ą 0,

@ y, y1 P xW, pKx,x1py, y
1q “

ÿ

x2PpV

P px, x2qP px2, x1q

P px, x1q
pKx,x2Kx2,x1qpy, y

1q

Assume we want to condition the underlying Markov chain to stay in pA B J2 ´ N,N ´ 2K with
N ě 6 and even. We have pPph “ pθph, with ph the restriction to pA of the function h given in (23), and
with pθ “ θ2. Denote P̆ the obtained conditioned transition kernel. It appears that P̆ “ rP 2. It is
Λ̆-intertwined with Q̆ “ rQ2 restricted to pB “ J0, 2, ..., N ´ 2K and with Λ̆ the restriction of rΛ from
B̆ to Ă. The Markov kernel Q̆ is irreducible and aperiodic on J2, 4, ..., N ´ 2K and thus it is no more
absorbed there than rQ, so it is not helpful to construct a strong stationary time for P̆ , in the spirit
of Diaconis and Fill [4]. It is nevertheless possible to construct a probabilistic Λ̆-intertwining from
Q̆ to P̆ , described as above through a family of kernels K̆x,x1 from B̆ to B̆, for any x, x1 P Ă with
|x1 ´ x| ď 2. ˝

5 Top-to-random shuffle intertwining
We consider here the classical top-to-random shuffle (probabilistic) intertwining of Aldous and Diaconis
[1]. We condition it so that the last initial card ends up staying in the first half of the deck. Our
interest is more on an illustration of the main assumption (10) than on this particular conditioning in
itself.

For N P Nzt1u, let V be the symmetric group SN , seen as the set of decks of N cards, whose
values are the elements of JNK. The identity corresponds to the ordering where 1 is at the top, 2
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at the second place, etc., N being the card at the bottom of the deck. Introduce the Markov chain
X B pXpnqqnPZ` on SN starting from the identity and whose transitions are described by: the top
card is removed and put back uniformly at random in the deck (independently from the past).

Consider the Y B pY1pnq, Y2pnqqnPZ` where Y1pnq is the position of the card N in the deck Xpnq,
up to the time where this position reaches the top position 1, then the value of Y1pnq is 0 for all
subsequent times, and where Y2pnq is the Y1pnq-tuple of the values of the cards at positions 1, 2, ...,
Y1pnq, with Y2pnq “ H if Y1pnq “ 0. In particular the last value of Y2pnq is N at position Y1pnq, as
long as Y1pnq ě 1. The chain Y is Markovian and absorbed at p0,Hq. Denote by W its state space.
The corresponding Markov kernel Q is described by

@ y B py1, y2q ‰ p0,Hq, y
1 B py11, y

1
2q PW, Qpy, y1q “

$

’

’

&

’

’

%

1
N , if y11 “ y1 ą 1 and y12 P Ypy2q

1´ y1´1
N , if y11 “ y1 ´ 1 and y12 “ y22

0 , otherwise

where y22 is obtained from y2 by removing its first value (with the convention that y2 “ H if y1 “ 1)
and where Ypy2q is the set obtained from y2 by inserting the first value of y2 somewhere in y22 except
in last position. Furthermore, Qpp0,Hq, ¨q is the Dirac mass at p0,Hq.

There is an intertwining relation from Y to X with the link Λ given by the requirement that for
any y B py1, y2q P W , Λpy, ¨q is the uniform distribution over the x P SN such that the card N is
at position y1 and the values of x up to this position are given by y2. If y “ p0,Hq, Λpy, ¨q is just
the uniform distribution over SN . Thus Y can be seen as a subset-valued dual process, by identifying
y B py1, y2q P W , with the subset of x P SN such that the card N is at position y1 and the values of
x up to this position are given by y2. In particular p0,Hq is identified with SN .

For simplicity, assume furthermore that N is even and consider the set A Ă V consisting of
permutations x P SN such that the card N is in the first half of the deck, i.e. its position belongs to
JN{2K. Initially this condition is not satisfied, since the card N is at position N . So introduce the
stopping time

T B inftn P Z` : Xpnq P Au (24)

and let m0 be the law of XpT q. We shift the origin of times to T and thus rather consider the Markov
chain X starting with the initial distribution m0.

To compute a Doob function h corresponding to the subset A, let us remark that Z B pZpnqqnPZ`
is a Markov chain on JNK, where for any n P Z`, Zpnq stands for the position of card N in Xpnq
(in particular Z coincides with the Markov chain Y1 up to the hitting time of 1 by Y1. We have
Zp0q “ N{2 and the transition kernel R of Z is given by

@ z, z1 P JNK, Rpz, z1q “

$

’

’

&

’

’

%

pz ´ 1q{N , if z1 “ z and z ě 2
1´ pz ´ 1q{N , if z1 “ z ´ 1 and z ě 2
1{N , if z “ 1
0 , otherwise

Thus conditioning X to stay in A amounts to condition Z to stay in A B JN{2K, and denoting θ
and h corresponding largest Dirichlet eigenvalue and Doob function, we have

θ “ θ (25)
@ x P V, hpxq “ hpzpxqq (26)

where zpxq is the position of the card N in x.
Since the dual chain Y is subset-valued, we could think we are in situation of Example 2. This is

not completely true, because W is only a subset of the set of all non-empty subsets of SN .
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From our general definitions, it appears that

B “ ty B py1, y2q PW : y1 P JN{2Ku

@ y B py1, y2q P B, @ x P A, rΛpy, xq “
Λpy, xqhpxq

Λrhspyq

“ Λpy, xq

“
1

pN ´ y1q!
1xPy

where we used that h is constant on y, which is the support of Λpy, ¨q (with value hpy1q).
Since B̄ “ tp0,Hqu, our main assumption (10) consists in the existence of a family pgpyqqyPB of

non-negative numbers such that

@ x P A, Λpp0,Hq, xq “
ÿ

yPB

gpyqΛpy, xq (27)

Note that for any x P A, there is only one y P B such that Λpy, xq ą 0, call it ypxq. This
ypxq B py1pxq, y2pxqq is given by

y1pxq “ zpxq and y2pxq “ pxp1q, xp2q, ..., xpy1qq

It follows that (27) amounts to

@ x P A,
1

N !
“ gpypxqq

1

pN ´ y1pxqq!

relation which is satisfied by taking

@ y B py1, y2q P B, gpyq B
pN ´ y1q!

N !

“
1

NpN ´ 1q ¨ ¨ ¨ pN ´ y1 ` 1q

Taking Remark 1 into account, we get from (13), for any y B py1, y2q P B and y1 B py11, y12q P B,

rQpy, y1q “

$

&

%

Qpy, y1q , if y1 ě 2

Qpy, p0,Hqqgpy1q Λrhspy1q
θΛrhspyq , if y1 “ 1

The last term can be simplified: on one hand Qpy, p0,Hqq “ 1 when y1 “ 1, and on the other hand,
note that for any y B py1, y2q with y1 ě 1, the support of Λpy, ¨q is included into the set of x P SN
whose N card is at position y1, so that Λrhspyq “ hpy1q. It follows that for any y B py1, y2q P B and
y1 B py11, y

1
2q P B,

y1 “ 1 ñ rQpy, y1q “
1

NpN ´ 1q ¨ ¨ ¨ pN ´ y1 ` 1q

hpy11q

θhpy1q

As in the previous section the Markov kernel rQ is not absorbed but ergodic, so the associated dual
Markov chain rY cannot be used to construct a strong stopping time.

Nevertheless, to finish this section, let us go a little further in the simplification of the situation,
since it shows how it may sometimes be interesting to first extend the initial intertwining relation.
Coming back to the subset interpretation of W , we replace it by

W̄ B pW ztp0,Hquq Y t1̂, 2̂, ..., N̂u
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where for any l P JNK, l̂ stands for the set of permutations from SN which are such that the card N is
at position l. In particular we have 1̂ “ p1, Nq with the notations of the beginning of this section (and
this is the unique point belonging both to W ztp0,Hqu and t1̂, 2̂, ..., N̂u). Inspired by (12) (where π is
the uniform distribution on SN ), we get a Markov kernel Λ̄ from W̄ to SN . Replace Q by the Markov
kernel Q̄ on W̄ , defined by

@ y, y1 P W̄ , Q̄py, y1q B

$

’

’

’

’

’

&

’

’

’

’

’

%

Qpy, y1q , if y, y1 PW
1
N , if y “ 1̂ and y1 P t1̂, 2̂, ..., N̂u
l´1
N , if y “ y1 “ l̂ for some l P J2, NK
N´l`1
N , if y “ l̂ for some l P J2, NK and y1 “ zl ´ 1

0 , otherwise

The algebraic Λ-intertwining relation from Q to P can be extended into a algebraic Λ̄-intertwining
relation from Q̄ to P .

Starting again X from the distribution m0 defined after (24) and conditioning it by its card N
staying in the first half of the deck, we are led to introduce the state space

pB B B Y

#

1̂, ...,
N̂

2

+

as well as the Markov kernel pQ defined on pB by

@ y, y1 P pB, pQpy, y1q B

$

’

’

’

’

’

&

’

’

’

’

’

%

rQpy, y1q , if y, y1 PW
hplq

Nθhp1q , if y “ 1̂ and y1 “ l̂ with l P JN{2K
l´1
Nθ , if y “ y1 “ l̂ for some l P J2, N{2K
1´ l´1

Nθ , if y “ l̂ for some l P J2, N{2K and y1 “ zl ´ 1
0 , otherwise

(taking into account Remark 1, we have Gpy, ¨q “ δyp¨q for any y P t1̂, 2̂, ..., yN{2u and Gpy, ¨q “ 0 for
y P t {N{2` 1, ..., N̂u).

From Theorem 3, we get an algebraic pΛ-intertwining from pQ to rP , where the Markov kernel pΛ
from pB to A is given by

@ y P pB, @ x P A, pΛpy, xq “

#

rΛpy, xq , if y PW
1

pN´1q! , if y “ l̂ with l P JN{2K

(as previously, we used that h is equal to hplq on pl for any l P JN{2K).
Consider the associated dual process pY B ppY pnqqnPZ` . It coincides (in law) with the previous

dual chain rY until the hitting time τ
p1 of p1 “ p1, Nq. After this time, pY is a Markov chain on

JyN{2K B t1̂, 2̂, ..., yN{2u whose transition kernel pR is given by

@ k̂, l̂ P JyN{2K, pRppk,plq B

$

’

’

’

&

’

’

’

%

hplq
Nθhp1q , if pk “ 1̂ and pl P JyN{2K
l´1
Nθ , if pk “ pl ‰ 1̂

1´ l´1
Nθ , if k̂ ‰ 1 and pl “ zk ´ 1

0 , otherwise

This Markov chain is relatively simple and if we find a corresponding strong stationary time pτ
(when pY starts from p1), then τ

p1 ` pτ (where τ
p1 and pτ are independent) has the same law as a strong

stationary time for rX (starting from the distribution m0). Furthermore, τ
p1 has the same law as the

hitting time of 1̂ when pY is starting from yN{2, thus to compute the law of τ
p1`pτ , we just need to work
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with the Markov chain pY restricted to JyN{2K, i.e. we just need to consider the Markov kernel pR. This
will not be done here, since this question is no longer related to conditioning of Markov chains. An
investigation of some features of Markov kernels such as pR is provided in [10], but it does not enable
to get an estimate on corresponding strong stationary times.

6 Birth-and-death intertwinings
Here we consider a situation where the primal Markov chain is absorbed and intertwined with a simpler
dual Markov chain, which enables to deduce the law of the absorption time. We will see that we get a
new intertwining relation by conditioning the primal Markov chain not to be absorbed. Nevertheless if
we condition the primal Markov chain to stay in a subset strictly smaller that the set of non-absorbing
points, our main assumption (10) may not be satisfied.

Let P be a birth-and-death Markov kernel on J0, NK, with N P N, N ě 2, whose transition
probabilities between two neighbors are positive, except that P pN,N ´ 1q “ 0, namely N is an
absorbing point. Let θ0 ă θ1 ă θ2 ă ¨ ¨ ¨ ă θN´1 be the eigenvalues of PJ0,N´1K, which is diagonizable
as a birth-and-death sub-Makrov kernel on J0, N´1K. A priori these eigenvalues belong to p´1, 1q and
are all distinct (as a consequence of irreducibility and of the birth-and-death feature). The Dirichlet
eigenvalue θ appearing in (8) is here equal to θN´1. Let us assume that θ0 ě 0, so that all the
eigenvalues of PJ0,N´1K are non-negative.

Consider X B pXpnqqnPZ` a corresponding Markov chain starting from 0. It ends up being
absorbed at N in finite time.

Fill [6] (see also Fill [7] and Diaconis and Miclo [5]) has shown how to construct a probabilistic
intertwining dual birth-and-death Markov chain Y B pY pnqqnPZ` on J0, NK, starting from 0, non-
decreasing, ending being absorbed at N and such that, denoting Λ the corresponding link, we have

• for any y P J0, N ´ 1K, the support of Λpy, ¨q is included in J0, yK and contains y,

• ΛpN ´ 1, ¨q is the quasi-stationary distribution associated to P ,

• ΛpN, ¨q is the Dirac mass at N .

This (algebraic) intertwining is not of form of the subset-valued duals presented in Example 2, it
rather corresponds to a measure-valued dual. Despite the primal random walk of Section 4 is also
birth-and-death (but not absorbed and on Z), the discrete Pitman intertwining is not of this type.

Let M P J0, N ´ 1K be given, we want to condition X to stay in A B J0,MK. Our purpose here
is to investigate whether or not the considerations of Section 2 and Section 3 can be applied to this
situation. To start with, note that the kernel PJ0,MK is irreducible. The set B is equal to J0,MK and
we have B̄ “ J0,M ` 1K. Taking into account Remark 1 of Section 2, we just have to check there
exists a family of non-negative numbers pGpM ` 1, yqqyPJ0,MK such that

@ x P J0,MK, ΛpM ` 1, xq “
ÿ

yPJ0,MK

GpM ` 1, yqΛpy, xq (28)

By backward iteration, taking into account that the support of the Λpy, ¨q are the J0, yK for y P
J0, N ´ 1K, (28) determines GpM ` 1,Mq, GpM ` 1,M ´ 1q, ..., GpM ` 1, 0q, so the family pGpM `

1, yqqyPJ0,MK exists and is unique. Our goal is to check that it consists of non-negative numbers.
The cases M “ N ´ 1 and M ă N ´ 1 lead to different results.

Proposition 6 When M “ N ´ 1, we have

@ y P J0,MK, GpN, yq “ 0

The Markov chain rY associated to the kernel rQ ends up being absorbed at N ´ 1 and thus can be
used to construct a strong stationary time for the conditioned chain rX.
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Remark 7 Recall from Fill [6] that Q is given by

Q “

¨

˚

˚

˚

˚

˚

˚

˚

˝

θ0 1´ θ0 0 ¨ ¨ ¨ 0

0 θ1 1´ θ1
. . .

...
...

. . . . . . . . .
...

0
. . . 0 θN´1 1´ θN´1

0 ¨ ¨ ¨
. . . 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

(29)

(the fact Q is bi-diagonal comes from the fact that Y is birth-and-death and non-decreasing).
Note that rQ has a similar bi-diagonal structure (but of size N ˆN instead of pN ` 1q ˆ pN ` 1q).

From Proposition 6, we have rQpN ´ 1, N ´ 1q “ 1 and from (13) applied with y1 “ y, we get

@ y P J0, N ´ 2K, rQpy, yq “
1

Zpyq
Qpy, yqΛrhspyq

“
1

θN´1Λrhspyq
θyΛrhspyq

“
θy
θN´1

(thus a posteriori it appears that this equality is also satisfied for y “ N ´ 1).
Due to the algebraic rΛ-intertwining from rQ to rP and to the fact that rΛ is invertible (since it

is triangular with a non-degenerate diagonal, similarly to Λ), we get that rQ and rP have the same
eigenvalues. Thus if we denote rθ0 ă rθ1 ă rθ2 ă ¨ ¨ ¨ ă rθN´1 “ 1 the eigenvalues of rP , we get

@ y P J0, N ´ 1K, rθy “
θy
θN´1

Of course, this result can also be obtained directly from (9), where rP appears to be similar to
PJ0,N´1K, up to the factor 1{θN´1. ˝

Let us now come to the second result of this section: Proposition 6 is no longer necessarily true
for M ď N ´ 2. Introduce the transition kernel P0 of the usual random walk on J0, NK, reflected at 0
and absorbed at N , given by

@ x, x1 P J0, NK, P0px, x
1q “

$

&

%

1{2 , if |x´ x1| “ 1, except if x “ 0 or x1 “ N
1 , if x “ 0 and x1 “ 1
0 , otherwise

Some of the eigenvalues of this kernel are negative, so rather consider

P1{2 B
I ` P0

2

(where I is the identity kernel on J0, NK), whose eigenvalues are non-negative.

Proposition 8 For N ě 2 and P “ P1{2, the family pGp2, yqqyPJ0,1K is non-negative if and only if
N “ 2. Thus the considerations of Sections 2 and 3 cannot be applied for N ě 3.

Both propositions will be consequences of a general computation of the coefficients pGpM `

1, yqqyPJ0,1K, based on the theory of divided differences see e.g. de Boor [3] or [14].
Denote pθ0 ă pθ1 ă pθ2 ă ¨ ¨ ¨ ă pθM the eigenvalues of PJ0,MK. Taking into account the variational

formulation of these eigenvalues, we get

@ k P J0,MK, θk ď pθk ď θN´1´M`k (30)
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(strict inequalities even hold as soon as M ă N ´ 1). In particular, the eigenvalues of PJ0,MK are all
non-negative.

Denote

pRM`1pXq B pX ´ pθ0qpX ´ pθ1q ¨ ¨ ¨ pX ´ pθM q

Lemma 9 With the bracket notation of divided difference, we have

@ y P J0,MK, GpM ` 1, yq “ ´

¨

˝

ź

kPJy,MK

p1´ θkq

˛

‚

´1

pRM`1rθ0, θ1, ..., θys

Proof
Recall that from Fill [6], we have

@ y P J0, NK, Λpy, ¨q “ δ0

y´1
ź

k“0

P ´ θkI

1´ θk
(31)

with the convention that the product is the identity operator I if y “ 0.
For l P J0, N ´ 1K, consider the polynomial of degree l,

RlpXq B pX ´ θ0qpX ´ θ1q ¨ ¨ ¨ pX ´ θl´1q

(again for l “ 0, the convention is that R0 “ 1).
From (28) and (31), we have

@ x P J0,MK, RM`1pP qp0, xq “
ÿ

yPJ0,MK

HpM ` 1, yqRypP qp0, xq (32)

with

@ y P J0,MK, HpM ` 1, yq B GpM ` 1, yq

ś

kPJ0,MKp1´ θkq
ś

k1PJ0,y´1Kp1´ θk1q

“ GpM ` 1, yq
ź

kPJy,MK

p1´ θkq

Thus to prove the above lemma, it is sufficient to show that

@ y P J0,MK, HpM ` 1, yq “ ´ pRM`1rθ0, θ1, ..., θys

Introduce the polynomial of degree M ,

SM pXq B
ÿ

yPJ0,MK

HpM ` 1, yqRypXq (33)

We deduce from the theory of divided difference that

@ y P J0,MK, HpM ` 1, yq “ SM rθ0, θ1, ..., θys (34)

Our next goal is to prove that SM pXq is the polynomial of degree M coinciding with RM`1 on
tpθ0, pθ1, ..., pθy´1u.

For k P J0,MK, let pψk be an eigenvector associated to the eigenvalue pθk of PJ0,MK. Extend pψk into
a function defined on J0, NK by imposing that pψk vanishes on JM ` 1, NK. We deduce from (32) that

RM`1pP qr pψksp0q “
ÿ

yPJ0,MK

HpM ` 1, yqRypP qr pψksp0q
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which is equivalent (since pψk vanishes on JM ` 1, NK) to

RM`1pPJ0,MKqr
pψksp0q “

ÿ

yPJ0,MK

HpM ` 1, yqRypPJ0,MKqr
pψksp0q

and thus to

RM`1p
pθkq pψkp0q “

¨

˝

ÿ

yPJ0,MK

HpM ` 1, yqRyppθkq

˛

‚
pψkp0q (35)

Note that pψkp0q ‰ 0, otherwise we would conclude by iteration over pψkpxq for x P J0,MK, from
PJ0,MK

pψk “ pθk pψk, that pψk “ 0.
It follows that for any k P J0,MK, we have RM`1p

pθkq “ SM ppθkq and we get the desired characteri-
zation of SM .

Denote F the linear mapping associating to any polynomial H of degree at mostM`1 the polyno-
mial of degree M coinciding with H on tpθ0, pθ1, ..., pθMu. In particular we have SM pXq “ FrRM`1spXq
by the above characterization. Note that Fr pRM`1spXq “ 0, so that we also get

SM pXq “ FrRM`1 ´ pRM`1spXq

“ RM`1pXq ´ pRM`1pXq (36)

since RM`1 ´ pRM`1 is of degree at most M . It follows from (34) that

@ y P J0,MK, HpM ` 1, yq “ RM`1rθ0, θ1, ..., θys ´ pRM`1rθ0, θ1, ..., θys

and the desired result follows from the fact that

@ y P J0,MK, RM`1rθ0, θ1, ..., θys “ 0

�

Remark 10 The above proof is valid even if the eigenvalues of PJ0,N´1K are not assumed to be non-
negative. In fact the l.h.s. of (31) is not modified if P is replaced by the affine combination aI`p1´aqP ,
with a P r0, 1q, since then θk has also to be replaced by a` p1´ aqθk, for all k P J0, y ´ 1K. Thus even
if we had only proven Lemma 9 under the assumption of non-negativity of the eigenvalues, we could
extend it to the general case. The only problem with negative eigenvalues comes from the matrix Q
from (29), which is non longer Markovian. ˝

We can now come to the

Proof of Proposition 6
When M “ N ´ 1, we have

@ k P J0, N ´ 1K, pθk “ θk

so that pRM`1 “ RM`1,

@ y P J0, N ´ 1K, pRM`1rθ0, θ1, ..., θys “ RM`1rθ0, θ1, ..., θys

“ 0

and we deduce from Lemma 9 that

@ y P J0, N ´ 1K, GpN, yq “ 0
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In particular the pGpN, yqqyPJ0,MK is non-negative and we can apply the considerations of Section
2 and Section 3. It follows from (11) of Section 2 with y “ N ´ 1, that

@ y1 P J0, N ´ 2K, rQpN ´ 1, y1q B
1

ZpN ´ 1q

ÿ

zPJN´1,NK

QpN ´ 1, zqGpz, y1qΛrhspy1q

“
1

Zpyq
QpN ´ 1, N ´ 1qGpN ´ 1, y1qΛrhspy1q

“ 0

where we used, for the second equality, that GpN, y1q “ 0 since pGpN, yqqyPJ0,N´1K “ 0, and for the
third equality that GpN ´ 1, y1q “ 0 for y1 ă N ´ 1, from Remark 3 of Section 2.

It follows rQpN ´ 1, N ´ 1q “ 1, namely rQ is absorbed at N ´ 1, as announced in Proposition 6. �

A more direct proof of Proposition 6 consists in noting that since ΛpN, ¨q “ δN , the coefficients
pGpN, yqqyPJ0,N´1K in the r.h.s. of (28) necessarily vanish.

Finally, we come to the

Proof of Proposition 8
Due to Remark 10, it is sufficient to prove Proposition 8 with P1{2 replaced by P0. With N ě 2,
M “ 1 and P “ P0, classical computations give us, on one hand,

@ k P J0, N ´ 1K, θk “ cos

ˆ

πp2N ´ 1´ kq

2N

˙

and in particular

θ0 “ cos

ˆ

2N ´ 1

2N
π

˙

and θ1 “ cos

ˆ

2N ´ 3

2N
π

˙

and on the other hand,

pθ0 “ cos

ˆ

3π

4

˙

and pθ1 “ cos
´π

4

¯

i.e.

pθ0 “ ´pθ1 “ ´
1
?

2

Coming back to (36), we get

S2pXq “ pX ´ θ0qpX ´ θ1q ´ pX ´ pθ0qpX ´ pθ1q

“ pX ´ θ0qpX ´ θ1q ´ pX
2 ´ pθ2

0q

“ θ0θ1 ` pθ2
0 ´ pθ0 ` θ1qX

“ pθ2
0 ´ θ

2
0 ´ pθ0 ` θ1qpX ´ θ0q

and thus

Gp2, 0q “ pθ2
0 ´ θ

2
0

Gp2, 1q “ ´pθ0 ` θ1q

So the desired non-negativity amounts to

θ2
0 ě pθ2

0 (37)
θ0 ` θ1 ď 0 (38)
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Condition (38) is satisfied, because the mapping

Nzt1u Q N ÞÑ cos

ˆ

2N ´ 1

2N
π

˙

` cos

ˆ

2N ´ 3

2N
π

˙

is decreasing and vanishes at N “ 2.
Condition (37) is trivially satisfied for N “ 2 but it is not satisfied for N ě 3, because the mapping

Nzt1u Q N ÞÑ cos

ˆ

2N ´ 1

2N
π

˙

is non-positive and decreasing. �

We conjecture that Proposition 8 is true more generally: whatever the birth-and-death kernel P as
above, we can apply the considerations of Section 2 and Section 3 if and only if M “ N ´ 1. Despite
(30) and interesting related results of Micchelli and Willoughby [8], in particular their Lemma 2.2, we
did not succeed in proving or disproving this generalization of Proposition 8.

Remark 11
a) Proposition 6 can be extended to (absorbed or irreducible) skip-free Markov kernels P , under

the assumptions that its eigenvalues are non-negative (they can now be complex) and that its spectral
polynomials are non-negative, see Fill [7]. The arguments are the same, since Λ satisfies the same
properties as those mentioned above.

b) It would be interesting to investigate the situation of more general absorbed Markov chains,
conditioned not to be absorbed. See the last section of Fill [7] and Miclo [9] for corresponding inter-
twinings. ˝

A Conditioning of finite Markov chains
Consider the setting described at the beginning of Section 2: P is a Markov kernel on the finite set
V , A is a proper subset of V not reduced to a singleton, PA is the restriction of P to AˆA and rP is
defined in (9) under the assumption that PA is irreducible. The goal of this appendix is to recall that
rP is the transition kernel of the Markov chain conditioned to stay in A. This result is classical and
the proof is given here for the convenience of the reader, since we did not find a suitable reference (for
the continuous-time setting, see Section 3.2 of Collet, Martínez and San Martín [2]).

More precisely, let X B pXpnqqnPZ` be a Markov chain whose transition probabilities are given by
P . Consider its exit time from A:

τA B inftn P Z` : Xpnq R Au

For any x P V , denote Px an underlying probability when Xp0q “ x a.s. For any n P Z`, let Bpnq
be the sigma-field generated by XpJ0, nKq B pXpmqqmPJ0,nK. Before treating the general situation, we
deal with the simpler case when PA is primitive, namely irreducible and aperiodic.

Lemma 12 Assume that PA is primitive. For any x P A and any B P Bpnq with fixed n P Z`, we
have

lim
NÑ`8

PxrB|τA ą N s “ rPxrBs

where rPx is the law of a Markov chain on A, starting from x and whose transition probabilities are
given by rP .
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Proof
It is sufficient to consider the case where

B “ tXp0q “ x0, Xp1q “ x1, ..., Xpnq “ xnu (39)

with pxlqlPJ0,nK a sequence of elements from A with x0 “ x.
Then we have for N ě n,

PxrB|τA ą N s “
PxrXp0q “ x0, Xp1q “ x1, ..., Xpnq “ xn, τA ą N s

PxrτA ą N s

“
PxnrτA ą N ´ ns

PxrτA ą N s

ź

lPJnK

P pxl´1, xlq

“
PxnrτA ą N ´ ns

PxrτA ą N s

hpxq

hpxnq
θn

ź

lPJnK

rP pxl´1, xlq

Similarly, we compute that for any x P A and N P Z`,

PxrτA ą N s “ θNhpxqrEx
„

1

h
p rXpNqq



where rX B p rXpnqqnPZ` be a Markov chain on A whose transition probabilities are given by PA and
which is starting from x P A.

It follows that

PxrB|τA ą N s “

rExn
”

1
hp

rXpN ´ nqq
ı

rEx
”

1
hp

rXpNqq
ı

rPxrBs (40)

Not that primitivity is a property only depending on the underlying graph (whose edge set corre-
sponds to positive probability transitions), so that rP is also primitive. As a consequence the Markov
chain rX is ergodic and the law of rXpnq converges for large n P Z` toward the invariant measure rπ of
rP , whatever the initial distribution of rXp0q. We deduce that

lim
NÑ`8

PxrB|τA ą N s “
rπr1{hs

rπr1{hs
rPxrBs

“ rPxrBs

as desired. �

Let us now come to the general situation, only assuming PA irreducible, and consider how the
previous proof should be modified. Denote d P N its period. The aperiodicity (and thus primitivity
of A) corresponds to the case d “ 1. Let Ck, for k P Zd B Z{pdZq, be the underlying periodic classes,
indexed so that

@ k P Zd, @ x P Ck, PAr1Ck`1
s “ 1 (41)

Note that rP has the same period and the same periodicity classes as PA and that (41) also holds
with PA replaced by rP . The ergodicity of rX has to be replaced by the following convergence, for any
test function f defined on A,

@ k, l P Zd, @ x P Ck, lim
NÑ8

rExrfp rXpl ` dNqqs “
rπrf1Cl`ks

rπr1Cl`ks
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where rπ is still the unique invariant probability of rP (and where elements of Zd have been identified
with their representative elements in J0, d´ 1K, as it will also be the case in the sequel).

Let us revisit the above proof in view of this change. First in (39), we can restrict ourselves to the
situation where x0 “ x P Ck, for some k P Zd, and xl P Ck`l, for l P JnK. Indeed, otherwise, we have

@ N P Z`, PxrB|τA ą N s “ 0

rPxrBs “ 0

so Lemma 12 holds for such events.
We can thus concentrate on events B of the form described above. From (40), which is also valid

in the periodic case, we get, for any l P Zd,

PxrB|τA ą l ` dN s “

rExn
”

1
hp

rXpl ` dN ´ nqq
ı

rEx
”

1
hp

rXpl ` dNqq
ı

rPxrBs

and for large N the r.h.s. is converging toward

rπr1Cl´n`n`k{hs

rπr1Cl´n`n`ks

rπr1Cl`ks

rπr1Cl`k{hs
rPxrBs “ rPxrBs

Since the limit rPxrBs for largeN of the quantity PxrB|τA ą l`dN s does not depend on l P J0, d´1K,
we deduce that Lemma 12 holds.

Remark 13 Even if it was not required by the above computations, let us mention that it is well-
known that rπ is the probability on A admitting a density proportional to h with respect to ν, the
quasi-invariant probability, i.e. the unique probability on A satisfying

νPA “ θν (42)

(as for h, only the irreducibility of PA is needed for the existence and uniqueness of ν).
Indeed, for any test function f defined on A, we have

νrh rP rf ss “
νrPArhf ss

θ

“
θνrhf s

θ
“ νrhf s

˝

Remark 14 The irreducibility of PA was convenient to deduce the existence of h and of the quasi-
stationary measure ν.

Nevertheless this irreducibility condition is not necessary for Lemma 12 to hold. In fact, looking
at the above arguments, it appears only the existence of h satisfying (8) (with h ą 0 on A and h “ 0
on V zA) and the uniqueness of the invariant probability rπ for rP are needed. The uniqueness of rπ is
equivalent to the uniqueness of a minimal recurrent class for PA, namely a subset H ‰ C Ă A such
that PCˆC is a Markov transition and such that PC1ˆC1 is not a Markov transition for any proper
subset C 1 Ă C.

This happens in the following situation: assume the existence of h as above and that P is absorbed
at a point 8 P A (i.e. P p8,8q “ 1). Furthermore suppose that for any x P A there is a P -path going
from x to 8 and staying in A. Then it is not difficult to check that δ8 is the unique invariant measure
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of rP . Note that in this case a Markov chain associated to rP ends up being absorbed at 8. Let us give
a very simple example of this situation. We take V “ t0, 1, 2u, A “ t0, 1u and P such that

PA “

ˆ

1 0
a b

˙

with a, b ą 0 such that a` b ă 1. Then 0 is absorbing for PA and (8) is satisfied with θ “ 1 and

h “

ˆ

1´ b
a

˙

We deduce that

rP “

ˆ

1 0
1´ b b

˙

˝
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