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Abstract

The Euler discretisation of Langevin diffusion, also known as Unadjusted Langevin
Algorithm, is commonly used in machine learning for sampling from a given distribution
µ ∝ e−U . In this paper we investigate a potential U : Rd −→ R which is a weakly convex
function and has Lipschitz gradient. We parameterize the weak convexity with the help
of the Kurdyka- Lojasiewicz (KL) inequality, that permits to handle a vanishing curvature
settings, which is far less restrictive when compared to the simple strongly convex case.
We prove that the final horizon of simulation to obtain an ε approximation (in terms

of entropy) is of the order ε−1d1+2(1+r)2Poly(log(d), log(ε−1)), where the parameter r is
involved in the KL inequality and varies between 0 (strongly convex case) and 1 (limiting
Laplace situation).

Keywords: Unadjusted Langevin Algorithm, Entropy, Weak convexity, Rate of
convergence

1 Introduction

Motivation: This paper is devoted to the study of the Langevin Monte Carlo method
for sampling a probability distribution over Rd, that is absolutely continuous with respect
to the Lebesgue measure and that may be written as a Gibbs field, for which the density
µ is written as

µ(θ) =
e−U(θ)

Z
, with Z =

∫
Rd

e−U(θ)dθ, (1)

where U : Rd −→ R is a C2 convex function and ∇U is L−Lipschitz. Sampling a measure µ
that may be written in the form (1) is a fundamental problem of applied mathematics, as
it is involved in Bayesian estimation, Gelman et al. (2004), in high dimensional statistics,
Dalalyan and Tsybakov (2012), in machine learning, Andrieu et al. (2003) or in partial
differential equations, Lelièvre and Stoltz (2016), among others.

State of the art: To solve the sampling problem raised by (1), many methods use
Markov kernels either in discrete or continuous settings as introduced by the physics
community in the seminal contributions Metropolis et al. (1953); Hastings (1970) on the
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Hastings-Metropolis method, and in Parisi (1981) on the over-damped Langevin diffusion
associated to U

dϑt = −∇U(ϑt)dt+
√

2dBt, t ≥ 0, (2)

where (Bt)t≥0 is a d−dimensional standard Brownian Motion.
Standard results on Markov processes guarantee the strong existence and ergodicity of

the continuous time process (ϑt)t≥0 that converges in many senses (Wasserstein, L2(µ),
entropy, total variation, . . . ) towards its invariant distribution µ (see Pavliotis, 2016). In
what follows, we will use the standard generator L defined for any f ∈ C2(Rd,R) by

Lf(θ) = −⟨∇U(θ),∇f(θ)⟩ + ∆f(θ), (3)

which is associated to the diffusion (2).
Some probabilistic works are using coupling to obtain exponential mixing with

Wasserstein or total variation metrics and we refer, among others, to Meyn and Tweedie
(2012); Roberts and Tweedie (1996). Some other approaches are using the functional
analysis point of view: they differentiate either the entropy or the L2 distance between
the law of (ϑt)t≥0 and µ, which involves the Fisher information, and then exploits spectral
gaps or Log-Sobolev type inequalities to link this Fisher information with the energy itself.
A huge literature exists and it is far impossible to be exhaustive, we simply refer to Bakry
et al. (2007) for a link between dynamical repelling properties (Lyapunov) and functional
inequalities (Poincaré and Sobolev ones), to Bolley et al. (2012) for a Wasserstein approach
instead, and more generally to the book Bakry et al. (2014) and the references therein.

Even though of fundamental interest for the deep understanding of the mixing
properties of (ϑt)t≥0, the previous works leave open the question of deriving some concrete
algorithm to approximate µ, while being of major interest in the statistics and machine
learning community. In the past ten years, a myriad of papers have studied some
discretisation strategies of (2) and among them the most popular approach is certainly the
first order Euler-Maruyama scheme, also referred to as the Unadjusted Langevin Algorithm
(ULA for short). With a fixed step size h > 0, ULA is defined as

θ(k+1)h = θkh − h∇U(θkh) +
√

2hξk+1, k ≥ 0, (4)

where (ξk)k≥1 are standard Gaussian random variables in Rd, mutually independent and
independent of θ0. One of the first studies Dalalyan (2016) decomposes the distance
between the distribution of θkh and µ into two terms, an approximation one that induces a
mandatory choice of a small h, and then a mixing one that involves the ergodicity behaviour
of the continuous time diffusion. Regarding this latter term, the strong convexity assumed
in Dalalyan (2016) plays a crucial role for the understanding of ULA. To extend its study to
the non-strongly log-concave situation, Dalalyan (2016) introduces then a penalized ULA
and derives some trade-off to balance all the effects (bias, approximation and ergodicity).

Thereafter, a striking literature appeared, with the aim to understand the effect of the
dimension d, to improve the obtained computational costs Durmus and Moulines (2017);
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Durmus et al. (2019), to relax some structural hypotheses, and in particular the strongly
convex one Dalalyan et al. (2022); Vempala and Wibisono (2019); Chewi et al. (2022);
Erdogdu and Hosseinzadeh (2021), which is problematic for machine learning applications,
or to finally extend ULA to other frameworks like noisy or online ones Welling and Teh
(2011); Dalalyan and Karagulyan (2019); Crespo et al. (2023); Wibisono and Yang (2022).
Again, sampling has gained a lot of popularity and it appears to be rather difficult to be
exhaustive with this huge literature.

Our framework: In this paper, we will be interested in the ULA while trying to relax
the strong convexity assumption. In this view, we introduce a weakly log-concave situation
described by the family of Kurdyka- Lojasiewicz inequalities Kurdyka (1998); Lojasiewicz
(1963). These inequalities have been intensively used in optimization theory Bolte et al.
(2010) and have shown to be efficient for stochastic optimization Gadat and Panloup (2022)
or for sampling Gadat et al. (2022). We will assess our convergence results with the help of
the relative entropy (or Kullback-Leibler divergence) between the sampled measure and the
target one µ. Our framework is therefore close to some extent to the recent contributions
Chewi et al. (2022); Erdogdu and Hosseinzadeh (2021).

We consider the probability distribution of θkh, thanks to the Euler explicit scheme (4)
that involves an elliptic Gaussian convolution, for any initial distribution m0, the law of
θkh is absolutely continuous with respect to the Lebesgue measure and we denote by mk

the associated density, which is indeed infinitely differentiable as soon as k ≥ 1. We then
define the relative entropy of mk with respect to the target measure µ as follows

Jk =

∫
Rd

log

(
mk(θ)

µ(θ)

)
dmk(θ). (5)

At each iteration k, Jk measures the divergence between the instantaneous law of the
process at time kh and the (presumably) invariant distribution µ: a small value of Jk
induces the closeness of mk to µ. Of course, since we are studying the Unadjusted Langevin
Algorithm, for a fixed value of h, mk corresponds to the distribution of a Markov chain
with an invariant measure µh and µh ̸= µ. Consequently, and oppositely to the MALA
modification (see, for example Roberts and Rosenthal, 1998), we cannot expect that Jk −→
0 when k −→ ∞ without any fine tuning of the parameter h, that must be chosen carefully
to balance the bias and the ergodicity of the chain.

In what follows, for a given small ε, we will carefully address the choice of the step
size hε, and of the horizon of simulation Kε to guarantee an ε smallness of Jk within our
framework of weak KL convexity. In particular, we will focus on the impact of d to the
computational cost, as well as the one of r involved in Hr

KL(c, L) (see below).

Our contribution: In this work we prove that for any weakly log-concave measure
whose potential has a Lipschitz gradient, the final horizon of simulation to obtain an ε
approximation (in terms of entropy) is of order ε−1d1+2(1+r)2 where the parameter r is
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involved in the Kurdyka- Lojasiewicz inequality. In most situations this is the state of the
art result.

Structure of the paper: In Section 2, the hypotheses and main convergence results are
presented and compared with those previously used in the literature. Section 3 is dedicated
to proving Theorem 3, where Proposition 5 plays an important role. Section 4 has a more
probabilistic approach. In this section, we modify the Weak Log-Sobolev inequality: we
extend its validity to a general context and obtain quantitative upper bounds (in terms of
the dimension d and the convexity parameter r). Numerical experiments are presented in
Section 5 to support our theoretical findings.

2 Assumptions and main result

2.1 Main assumptions on U

We are interested in studying the convergence of the ULA in a weakly convex framework,
that is, when U is a convex function but not necessarily strongly convex. In Vempala
and Wibisono (2019), the order of convergence of the entropy in the strongly convex
case is obtained using the Log-Sobolev and Talagrand inequalities, which are equivalent
in this context. However, the Log-Sobolev inequality (LSI for short) generally requires
the convexity (see, for example Bobkov, 1999; Bakry et al., 2014) to be reasonably
dimension-dependent, and even the strong convexity to be dimension-free. As we said
previously, we have chosen to parameterize this lack of strong convexity with the help of
the Kurdyka- Lojasiewicz inequality. This hypothesis allows us to understand the influence
of the lack of strong convexity and not simply assume a LSI.

For any twice differentiable function V , we denote the spectrum of the Hessian matrix
of V as Sp(∇2V (θ)). Furthermore, if V is convex, we denote

λ∇2V (θ) = inf Sp(∇2V (θ)), ∀θ ∈ Rd.

Hypothesis Hr
KL(c, L): We say that a function V : Rd → R satisfies a Hr

KL(c, L)-condition
if:

a) V is a C2-function.

b) V is a convex function and minθ∈Rd V (θ) = V (θ∗) > 0.

c) ∇V is L-Lipschitz.

d) There exist two constants 0 ≤ r < 1 and c > 0 such that

cV −r(θ) ≤ λ∇2V (θ), ∀θ ∈ Rd.

In almost all the results of this study we assume that U satisfies a Hr
KL(c, L)-condition,

so, let us comment this assumption.
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• The hypothesis assumes a lower bound for the smallest eigenvalue of ∇2V (θ),
similarly we could consider the same type of upper bound for the the highest
eigenvalue of ∇2V (θ): λ∇2V (θ) = supSp(∇2V (θ)), θ ∈ Rd, where λ∇2V (θ) ≤
c̃V −q(θ), c̃ > 0 and 0 ≤ q ≤ r. This parameterization is considered in Gadat
et al. (2022). When q = r, a global standard KL inequality is recovered (see Gadat
and Panloup, 2022; Bolte et al., 2010). In our study, we chose to keep a simpler case,
note that the L-Lipschitz continuity of ∇V implies that particularly c̃ = L and q = 0.

• A value r = 1 would correspond to the limiting Laplace case, while r = 0 represents
the strongly convex situation where the curvature of the function is uniformly
bounded by c.

• The function V (θ) = (1 + ∥θ∥2)p, for θ ∈ Rd and p ∈ (1/2, 1] satisfies a
Hr

KL(c, L)-condition with r = 1−p
p , c = 2p(1− 2(1− p)) and L = 2p (see Remark 7 of

Gadat et al., 2022).

• Our work is tightly related to Erdogdu and Hosseinzadeh (2021): in its Assumption 1,
it is considered that the potential function U is degenerately convex at infinity, which
means that there exists a function Ũ such that for a constant ϵ ≥ 0, ∥U − Ũ∥∞ ≤ ϵ
where λ∇2Ũ

(θ) ≥ κ(1 + 1
4∥θ∥

2)−τ/2 for some κ > 0 and τ ≥ 0. This parameterization
have a close relation with that presented in hypothesis Hr

KL(c, L). The previous
example which satisfies a Hr

KL(c, L)-condition with r = 1−p
p is also degenerated at

infinity since Ũ(θ) = U(θ) = (1 + ∥θ∥2)p and τ = 2(1 − p) = 2r
1+r .

However, in the general case, the hypothesis Hr
KL(c, L) states a lower bound of the

eigenvalues of ∇2U(θ) by the function U r(θ), while in Erdogdu and Hosseinzadeh
(2021) it is compared to ∥θ∥τ . Below, we will compare our results with Hr

KL(c, L) with
those of Erdogdu and Hosseinzadeh (2021) even though their quantitative hypothesis
is not strictly equivalent to ours (see details in Section 2.2).

Assumption on minU and arg minU : One of the advantages of assuming Hr
KL(c, L) is

that it is possible to obtain upper and lower bounds of U(θ) through minU and powers of
∥θ − arg minU∥, see Appendix A. Therefore, we need to specify the dependence of minU
and arg minU with respect to the dimension d in order to later understand the dimension
dependence of the convergence result.

Similarly to Crespo et al. (2023), we will assume that the minimizer of the function U is
contained in a ball of radius that only depends on d. Furthermore, we consider that minU
is at most of the order d. For this purpose, we introduce a ≲uc b (a ≳uc b), which means
a ≤ cb (respectively a ≥ cb) where c is a universal constant that is a positive constant
independent of d.
Hypothesis Hmin:

∥ arg minU∥ ≲uc

√
d and min

θ∈Rd
U(θ) ≲uc d.
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Assumption Hmin is not restrictive and includes translations as simple as for example

U(θ) = (1 + ∥θ − 1d∥2)
1

1+r where 1d = (1, . . . , 1) ∈ Rd.

2.2 Entropic convergence result

We specify the initial distribution m0, which is chosen by the user. We decided to use
a Gaussian distribution which is a standard option and has the advantage of providing
simpler computations. Implicitly, to fix m0, we assume that L, c and r are known. We
denote by 0d = (0, . . . , 0) ∈ Rd and Id ∈ Rd × Rd the identity matrix.
Hypothesis Hr

m0
(c, L): A positive constant σ2 exists such that m0 = N (0d, σ

2Id).
Moreover,

σ2 ≤ min
{

1/(2L), 4/c
1

1+r

}
.

Conditions σ2 ≤ 1/(2L) and σ2 ≤ 4/c
1

1+r will be used in the proof of Proposition 1 and
Lemma 15, respectively, to upper bound initial terms determined by m0. A consequence
of Hr

m0
(c, L) is an upper bound of the initial entropy J0 as shown below.

Upper bound on the initial entropy:

Proposition 1 We assume Hr
m0

(c, L) and that U satisfies Hr
KL(c, L) and Hmin. Then

J0 =

∫
Rd

log

(
m0(θ)

µ(θ)

)
dm0(θ) ≲uc d(1 + r log d).

The proof of Proposition 1 may be found in Appendix B.1. Although the term J0 is
commonly ignored to describe the order of convergence of Jk, even with a simple choice
such as an initial Gaussian distribution, J0 depends on the dimension d in the strongly
convex situation, and also depends on d and r in our settings.

Density of the discrete explicit Euler-Maruyama scheme under Hr
KL(c, L): The

discrete Euler-Maruyama scheme (4) involves a Gaussian convolution kernel at each
iteration, of variance 2h. Then, as said before, the distribution of θkh has an infinitely
differentiable density mk with respect to the Lebesgue measure for any k ≥ 1. The next
result states a uniform (over the iterations) upper bound of the density mk and will be
of primary importance for our analysis. Up to our knowledge, such a result is new in
numerical probability, and has never been investigated.

Proposition 2 We assume Hr
m0

(c, L) and that U satisfies Hr
KL(c, L) and Hmin. If h ≲uc

min{1/L, 1/d}, a positive constant Ad exists (that could depend on d) such that

∀θ ∈ Rd, ∀k ≥ 0, mk(θ) ≤ Ade
− 1

10
U(θ).

Moreover log(Ad) ≲uc d
1

1−r .

For the sake of readability, the proof of Proposition 2 is deferred to Appendix B.2.
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Entropic convergence: Let us present the principal result of our work, which proves
a decrease in the relative entropy of mk towards the correct measure µ, as the number of
iterations increases and the step-size h of the scheme decreases.

Theorem 3 We assume Hr
m0

(c, L) and that U satisfies Hr
KL(c, L) and Hmin. Then

i) If r = 0, we reach Jk ≤ ε after

k ≳uc ε
−1d log(d/ε) and h ≲uc min

{
1

L
,

ε

dL2CLSI

}
,

where CLSI = CLSI(µ) is the Log-Sobolev constant of µ.

ii) If r > 0, we reach Jk ≤ ε after

k ≳uc ε
−1d1+2(1+r)2 log2(Ad/ε) log(d/ε) and h ≲uc min

{
1

L
,

ε

d1+(1+r)2 log(Ad/ε)

}
.

Let us briefly comment this result. First, our bound obtained in Proposition 2 yields

log(Ad) ≲uc d
1

1−r . Even if this result is worthwhile and new, one could expect a polynomial
dependency with d of Ad, even in the limiting case r = 1, that is logAd ≲uc log(d). We
have chosen to leave this important axis of research and of improvement open as it is not
the main subject of this paper. Second, when compared to the result stated in Crespo et al.
(2023) in the same setting (Hr

KL(c, L) and entropic convergence) but that only studies the
continuous time stochastic Langevin diffusion, we observe that the computational time
becomes Poly(d) ε−1, while it was Poly(d) log2(ε−1) in Crespo et al. (2023). Again, this
exemplifies the price to pay to turn the continuous time diffusion into a tractable numerical
discrete algorithm. Thanks to Theorem 3 it follows that Jk ≤ ε after approximately

k ≳uc ε
−1d1+2(1+r)2Poly(log(d), log(ε−1))

iterations, where Ad is considered proportional to a polynomial of d.

State of the art comparison: Below we start by comparing our main result (part ii)
of Theorem 3) with those of Cheng and Bartlett (2018), Durmus et al. (2019) and Erdogdu
and Hosseinzadeh (2021) that establishes some results for the ULA in a similar framework.
The hypothesis of the previous papers were adapted to the our Hr

KL(c, L) context where
r ∈ (0, 1) and assuming Hmin and Hr

m0
(c, L). In particular, we pay special attention to

the dependency with ε, the dimension d and the parameter r. Table 1 shows a summary
of these results while omitting the log-terms log(d) and log(ε−1).

• When compared with the bounds obtained in Durmus et al. (2019) (and in Cheng
and Bartlett, 2018), we obtain a far better dependency with ε and a slight degradation
with the dimension d. When paying a specific attention to the approach of Durmus et al.

7



Discretisation of Langevin diffusion in the weak log-concave case

Iteration cost for Entropy Jk ≤ ε

Cheng and Bartlett (2018) ε−3d1+2(1+r)

Durmus et al. (2019) ε−2d1+2(1+r)

Erdogdu and Hosseinzadeh (2021) ε−1d3.5+
2r(2+r)

1+r

This paper ε−1d1+2(1+r)2

Table 1: Comparison of iteration complexity when U satisfies Hr
KL(c, L) and Hmin and the

initial distribution is defined as in Hr
m0

(c, L), admitting that log(Ad) ≲uc log(d), of the
Unadjusted Langevin Algorithm, in the weakly log-concave situation.

(2019, Corollary 7), the improvement from ε−2 to ε−1 comes from a direct study of the
Entropy in our paper, and not from a general catch-all inequality between entropy and
the Wasserstein distance. We refer to Villani et al. (2009) for a complete presentation
of Wasserstein distance. That being said, the coupling strategy of Durmus et al. (2019)
generates a better dependency with respect to d than ours and an obvious computation
shows that the bound stated in Durmus et al. (2019) is better than the one of this paper
for some very high dimensional settings: log(d) ≥ (2r(1+ r))−1 log(ε−1). Oppositely, when
ε is chosen smaller than d−2r(1+r), our bound is tighter.

Furthermore, the result of Durmus et al. (2019) does not involve the distribution of
ULA at iteration n, but a Césaro average over all iterations of ULA, which is an additional
numerical difficulty when compared to simply construct one trajectory and take the value
of the procedure attained at the final iteration.

• In order to compare our result with the one that would be obtained in Erdogdu and

Hosseinzadeh (2021), let us consider for example U(θ) = (1+∥θ−1d∥2)
1

1+r , where r ∈ (0, 1)
and adjust their α-dissipativity and ζ-growth of gradient assumption. They establish that
there exist two constants a > 0 and b > 0 such that ⟨∇U(θ), θ⟩ ≥ a∥θ∥α− b, for all θ ∈ Rd.

If we take θ = arg minU , then ∥ arg minU∥ ≤ (b/a)
1
α , so the dependence on d is not explicit

or doesn’t exist. Then, we consider that a is a universal constant and b = d
α
2 = d

1
1+r in

the particular case been studied. Furthermore, they assume that there exist two positive
constant ζ and M such that ∥∇U(θ)∥ ≤ M(1 + ∥θ∥ζ), for all θ ∈ Rd. Using the specific
function U , we get that M ∝

√
d.

After specifying the dependence on d of the constants b and M , Corollary 4 of Erdogdu
and Hosseinzadeh (2021) shows that an ε-error is reached after

k ≳uc ε
−1d3.5+

2r(2+r)
1+r Poly(log(d), log(ε−1))
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iterations. Comparing both results, we can notice that for small values of r, our lower
bound of k is better than the previously known one, while the bounds of Erdogdu and
Hosseinzadeh (2021) are better for values of r close to 1 (the limiting case being r ≃ 0.38).

3 Proof of the main result

In a similar way to Vempala and Wibisono (2019) and with the objective of studying the
order of convergence of Jk, for any k ≥ 0 we define a continuous time process (θkh+t)0≤t≤h

in the time interval [kh, (k + 1)h], such that the distributions at the ends of the interval
coincide with mk and mk+1 respectively. The entropy of the density of said continuous
process with respect to the law µ will allow us to obtain the order of convergence of Jk.

We consider one fixed step k of (4), then the output θ(k+1)h is in fact the output at
time h of the stochastic differential equation

dθkh+t = −∇U(θkh)dt+
√

2dWt, t ∈ [0, h], (6)

where (Wt)0≤t≤h is a standard Brownian Motion in Rd. Indeed, at time t ∈ [0, h], the
solution of (6) is

θkh+t = θkh − t∇U(θkh) +
√

2Wt, (7)

so if t = h, then θkh − h∇U(θkh) +
√

2Wh
d
= θ(k+1)h.

The process (θkh+t|θkh)0≤t≤h that evolves following equation (6) is a continuous time
Markov process associated to the generator Lk of the Markov semigroup, where

Lkf(θ) = −⟨∇U(θkh),∇f(θ)⟩ + ∆f(θ),

for all f ∈ C2(Rd) and θ ∈ Rd.
We denote as nk,t and nt|k the probability distribution with respect to the Lebesgue

measure of θkh+t and θkh+t|θkh respectively. Using (7), we have that nt|k(θ|η) = N (η −
t∇U(η), 2t) for all θ, η ∈ Rd, then nt|k is C∞(Rd), nk,t is also C∞(Rd) and ∂tnt|k exists.

We recall that if Lk∗ denotes the adjoint operator of Lk, the forward Kolmogorov
equation yields

∂tnt|k(θ|η) = Lk∗nt|k(θ|η), (θ, η) ∈ Rd × Rd.

This equality is used in the proof of Lemma 4.
Similarly to (5), for any k ≥ 0 and t ∈ [0, h], the relative entropy of nk,t with respect

to the target measure µ is denoted as

Jk,t =

∫
Rd

log

(
nk,t(θ)

µ(θ)

)
dnk,t(θ).

Observe that, in particular nk,0 = mk and nk,h = mk+1, then Jk,0 = Jk and Jk,h = Jk+1.
We also define the Dirichlet form (or relative Fisher information) of nk,t with respect to µ
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as

Ek,t =

∫
Rd

∥∥∥∥∇ log

(
nk,t(θ)

µ(θ)

)∥∥∥∥2
2

dnk,t(θ) = 4

∫
Rd

∥∥∥∥∥∇
(√

nk,t(θ)

µ(θ)

)∥∥∥∥∥
2

2

dµ(θ),

for any k ≥ 0 and t ∈ [0, h]. We recall that in the proof of Lemma 3 of Vempala and
Wibisono (2019) it was obtained the following link between ∂tJk,t and Ek,t

∂tJk,t ≤ −3

4
Ek,t + Emknt|k [∥∇U(θkh+t) −∇U(θkh)∥2],

where the second term is the discretisation error which in the strongly log-concave context
was controlled using Talagrand (or equivalently Log-Sobolev) inequality. Since we are
generally not in the strongly log-concave context, we control differently the error term
in Lemma 4, the proof may be found in Appendix A. Furthermore, we remark that the
procedure used to prove Lemma 4 is equivalent to that of Vempala and Wibisono (2019)
but is based on the infinitesimal generator Lk and Kolmogorov’s forward equation.

Lemma 4 We assume that ∇U is L-Lipschitz and h ≤ 1/4L, then for any k ≥ 0 and
t ∈ [0, h]

∂tJk,t ≤ −1

2
Ek,t + 5dL2t.

To construct a differential inequality from the previous result, we have to use a
functional inequality that lower bounds the Dirichlet form Ek,t by the entropy Jk,t. In
the strongly log-concave situation (r = 0) it is possible to directly apply LSI. While in the
weakly log-concave situation (r > 0) it is not possible for functions like U(θ) = (1+∥θ∥2)p,
when 1/2 < p < 1, θ ∈ Rd. An alternative is to consider the Weak Log-Sobolev inequality
(WLSI) but one of its terms depends on nk,t/µ being bounded and, in general we do not
have such a result. So, we modify the WLSI proof in Section 4 to obtain an inequality that
can be applied in our Hr

KL(c, L) context.
From now on we study the cases r = 0 and r > 0 separately.

• Case r = 0.

Since µ is a strongly log-concave measure, we follow the strategy used in Vempala
and Wibisono (2019), which is based on applying LSI to f2k,t = nk,t/µ, see details
about functional inequalities in Section 4. Then, there exists a constant CLSI > 0
independent on d such that

Jk,t ≤ CLSIEk,t, (8)

We combine Lemma 4 and inequality (8) to get that for any k ≥ 0,

∂tJk,t ≤ − 1

2CLSI
Jk,t + 5dL2h, t ∈ (0, h),
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where we used t ≤ h in the second term of the right hand side. We recall that
Jk,0 = Jk and Jk,h = Jk+1, for any k, then if we apply Gronwall’s lemma to the
differential inequality it results that for all k ≥ 0,

Jk+1 ≤ Jke
− h

2CLSI + CdL2hCLSI

[
1 − e

− h
2CLSI

]
,

where C is a universal constant. Using a recursive argument and Proposition 1 to
upper bound J0, we get

Jk ≤ J0e
− kh

2CLSI + CdL2hCLSI

[
1 − e

− kh
2CLSI

]
≤ Cd

[
e
− kh

2CLSI + L2hCLSI

]
.

Given ε > 0 small, a sufficient condition for Jk ≤ ε is

h ≲uc ε(dL
2CLSI)−1 and k ≳uc ε

−1d log(d/ε).

• Case r > 0.

In the weak log-concave case we need to modify WLSI as is shown in the following
proposition. Further details and the proof of this functional inequality under a
Hr

KL(c, L)-condition may be found in Section 4.

Proposition 5 We assume Hr
m0

(c, L) and that the function U satisfies Hr
KL(c, L)

and Hmin. If h ≲uc min{1/L, 1/d} then there exist a non-increasing and positive
function β and two positive constants C and q > 1 such that for any k ≥ 0 and
t ∈ [0, h],

Jk,t ≤ 16β(s)Ek,t + C
[
s+Ads

1
1+2q

]
, s > 0.

Moreover, the function β could be defined as

β(s) =

 ad(1+r)2 log
(
1
s

)
, 0 < s ≤ e2

2e2+1

bd(1+r)2 , s > e2

2e2+1

,

where a and b are two positive constants.

We are now ready to derive a good differential inequality for Jk,t by combining Lemma
4 and Proposition 5, then for all s > 0,

∂tJk,t ≤ −
Jk,t

32β(s)
+

C

β(s)

[
s+Ads

1
1+2q

]
+ 5dL2h.

11
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where we used t ≤ h. If we consider that s is constant with respect to t, then we
apply Gronwall’s lemma and for any k ≥ 0 we have

Jk+1 ≤ Jke
− h

32β(s) + C
[
s+Ads

1
1+2q + dhβ(s)

] [
1 − e

− h
32β(s)

]
.

We recall one more time that Jk,0 = Jk and Jk,h = Jk+1, for any k. Using a recursive
argument and the result J0 ≲uc d(1 + r log d) proved in Proposition 1, we get

Jk ≤ J0e
− kh

32β(s) + C
[
s+Ads

1
1+2q + dhβ(s)

] [
1 − e

− kh
32β(s)

]
≤ C

[
d (1 + r log d) e

− kh
32β(s) + s+Ads

1
1+2q + dhβ(s)

]
.

Given ε > 0 small, a sufficient condition for Jk ≤ ε is

s =
(
εA−1

d

)1+2q
, h ≲uc

ε

d1+(1+r)2 log(Ad/ε)
,

and

k ≳uc ε
−1d1+2(1+r)2 log2(Ad/ε) log((1 + r log(d))d/ε),

which concludes the proof.

4 Modified Weak Log-Sobolev Inequality under Hr
KL(c, L)

This section is devoted to the study of some functional inequalities starting by Poincaré,
Log-Sobolev and Weak Log-Sobolev inequalities, which were previously used. It is
precisely in the previous context of a non-strongly log-concave measure where we needed
to apply Weak Log-Sobolev inequality to upper bound the relative entropy of a presumable
unbounded function. Therefore, we present in Proposition 9 a modification of WLSI that
is suitable for a family of unbounded functions. Furthermore, in the Hr

KL(c, L) setting
we obtain a particular result paying special attention to the dependence of the constants
involved in the inequality in terms of the parameter r and the dimension d.

4.1 Functional inequalities

Functional inequalities as Poincaré, Log-Sobolev and Weak Log-Sobolev inequalities are
defined in a Sobolev space and link the norm of a function or a related quantity to the
norm of its derivative. This family of inequalities have a wide range of applications such as
in partial differential equations, functional analysis, theory of Sobolev spaces, probability
theory and statistics, etc. Particularly in these last two areas, they are powerful tools used
to derive concentration inequalities and the convergence of Markov processes, see Ledoux
(2001) and Bakry et al. (2014) for a more in-depth study.

12
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In order to understand the behavior of these inequalities in a setting described by an
Hr

KL(c, L) hypothesis, we have to present some definitions and recall some well-known
facts.

Let m be a probability measure defined on Rd and p ≥ 1, we define as[∫
Rd ∥f∥pdm

]1/p
the p-norm of a real-valued function f when this quantity is finite.

The space of functions with finite p-norm is denoted as Lp(Rd). Moreover, H1(Rd) ={
f : Rd → R; f ∈ L2(Rd),∇f ∈ L2(Rd)

}
and C1

b (Rd) is the set of bounded and derivable
functions on Rd.

For any function f such that f ∈ L1(Rd), we define the variance of f as

V arm(f) =

∫
Rd

(f −m[f ])2dm

where m[f ] =
∫
Rd fdm and when f ∈ H1(Rd), the Dirichlet form of f is defined as

Em(f) =

∫
Rd

∥∇f∥2dm.

We briefly introduce the Poincaré (or spectral gap) inequality which links the variance of
f to its Dirichlet form as follows

Definition 6 (Poincaré inequality) The measure m satisfies a Poincaré inequality if
there exists a positive constant CP (m) such that for any f ∈ H1(Rd),

CP (m)V arm(f) ≤ Em(f).

An important property of log-concave measures is that they satisfy a Poincaré inequality
and in this situation a bound on the Poincaré constant may be found in Theorem 1.2 of
Bobkov (1999).

Another powerful tool is the Log-Sobolev Inequality (LSI for short) which played
an important role in the previous section. This inequality is commonly used to prove
the convergence to equilibrium in Markov chain Monte Carlo methods and the study of
log-concave distributions.

For any function f : Rd → R such that
∫
Rd f

2| log(f)|dm < ∞, we define the entropy
of f2 as

Entm(f2) =

∫
Rd

f2 log(f2)dm−
∫
Rd

f2dm log

∫
Rd

f2dm

 ,

in this definition 0 log 0 is interpreted as 0. We are now able to introduce LSI and we refer
to Bakry et al. (2014) for further details.

13
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Definition 7 (Log-Sobolev Inequality) The measure m satisfies a LSI if there exists
a positive constant CLSI(m) such that for any f ∈ H1(Rd),

Entm(f2) ≤ CLSI(m)Em(f).

In the particular case when m is a strongly log-concave measure, a LSI is verified, see Bakry
and Émery (1985), and the Log-Sobolev constant CLSI(m) is independent of the dimension
d. Using this result and Lemma 4 a convergence rate bound is obtained in Section 3 under
the hypothesis Hr

KL(c, L) when r = 0.
However, when 0 < r < 1, we are in a weakly log-concave setting and a Weak

Log-Sobolev Inequality (WLSI for short) would seem to be suitable to derive a convergence
rate bound under a Hr

KL(c, L) assumption.

Definition 8 (Weak Log-Sobolev Inequality) The measure m satisfies a WLSI if a
non-increasing function β : (0,+∞) 7→ R+ exists such that for any f ∈ C1

b (Rd) and s > 0,

Entm(f2) ≤ β(s)Em(f) + sOsc2(f),

where Osc(f) = sup f − inf f .

This functional inequality was introduced in Cattiaux et al. (2007) and in said
study they showed that if a probability measure m verifies a particular measure-capacity
inequality (defined below) then m satisfies WLSI.

Modified WLSI: In the proof of Theorem 3, we needed to lower bound the Dirichlet
form by the entropy of a function f with respect to a probability measure which is weakly
log-concave. To apply WLSI the function f must be bounded which, in general, seems not
to be true. The following result modifies WLSI and is suitable for a family of unbounded
functions.

Proposition 9 (Modified Weak Log-Sobolev Inequality) We assume that m(θ) ∝
e−V (θ) where V is a convex function and there exists a positive constant R such that
V (θ) ≳uc ∥θ∥, for all ∥θ∥ ≥ R. Then, for any function f ∈ H1(Rd) such that
f2(θ) ≤ AebV (θ) where A > 0 and 0 < b < 1, there exist two positive constants C and
q > 1 and a non-increasing function β : (0,+∞) 7→ R+ such that for all s > 0,

Entm(f2) ≤ β(s)Em(f) + C
[
s+ s

1
1+2q

]
.

Moreover, the function β could be defined as

β(s) =

 a
CP (m) log

(
1
s

)
, 0 < s ≤ e2

2e2+1

b
CP (m) , s > e2

2e2+1

,

where a and b are two positive constants.

The proof is based in the proof of Proposition 2.2 in Cattiaux et al. (2007) and will be
postponed to Section 4.3.
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4.2 Preliminary results

A measure - capacity inequality: The measure - capacity inequalities are a class
of inequalities introduced by Barthe and Roberto (2003) and allow some functional
inequalities to be equivalently described, see Bakry et al. (2014) for a more detailed study.
In order to prove Proposition 9 we need to specify the role of a particular measure-capacity
inequality which is linked to WLSI. So, let us first define the capacity of a measurable set.

Definition 10 (Capacity) Let A and Ω be two measurable sets of Rd such that A ⊂ Ω,
the capacity Capm(A,Ω) is defined as

Capm(A,Ω) = inf
{
Em(f),1A ≤ f ≤ 1Ω

}
,

where f is a Lipschitz function on Rd. If m(A) ≤ 1
2 , then we denote

Capm(A) = inf

{
Capm(A,Ω),A ⊂ Ω,m(Ω) ≤ 1

2

}
.

The following lemma presents the capacity-measure inequality which is a sufficient
condition to prove WLSI.

Lemma 11 Assume that the measure m satisfies a Poincaré Inequality of constant CP (m),
then there exists a non-increasing and positive function β such that for any measurable
subset A with m(A) ≤ 1/2 and for any s > 0,

m(A) log
(

1 + e2

m(A)

)
− s

β(s)
≤ Capm(A). (9)

Moreover, the function β could be defined as

β(s) =

 a
CP (m) log

(
1
s

)
, 0 < s ≤ e2

2e2+1

b
CP (m) , s > e2

2e2+1

,

where a and b are two positive constants.

Although the existence of the β function in the previous inequality is known, we include
the proof in Appendix C.1 to explicitly find the function.

A technical result to avoid Osc(f) in WLSI: We were interested in establishing
an inequality similar to WLSI but for a function f not necessarily bounded, so we had to
replace the role of the term Osc(f) in the proof of Proposition 2.2 in Cattiaux et al. (2007).
Let’s show how they used that f is bounded.

15



Discretisation of Langevin diffusion in the weak log-concave case

For any f ∈ H1(Rd), let M be the median of f with respect to the measure m and Ω ⊂
{f > M}. For any non-negative function H : Rd → R such that

∫
Rd e

H(θ)dm(θ) ≤ e2 + 1,
the term

∫
Ω(f −M)2Hdm is conveniently upper bounded as follows∫

Ω

(f −M)2Hdm ≤ Osc2(f)

∫
Ω

Hdm,

since the function f is assumed bounded.

In order to replace the role of Osc(f), the following proposition shows an upper bound
of
∫
Ω(f −M)2Hdm by a power of

∫
ΩHdm in a particular setting.

Proposition 12 We assume that m(θ) ∝ e−V (θ) where V is a convex function and there
exists a positive constant R such that V (θ) ≳uc ∥θ∥, for all ∥θ∥ ≥ R. Then, for any
function f such that f2(θ) ≤ AebV (θ) where A > 0 and 0 < b < 1, there exist two positive
constants q > 1 and CA,b,q such that for any Ω ⊂ Rd and any function H ≥ 0 such that∫
Rd e

H(θ)dµ(θ) ≤ e2 + 1, we get

∫
Ω

(f −M)2Hdm ≤ CA,b,q

∫
Ω

Hdm

1/q

.

The previous result is a key point to prove Proposition 9 and its proof is postponed to
Appendix C.2.

4.3 Proof of the Modified Weak Log-Sobolev Inequality

The changes in the proof of Proposition 9 with respect to the one of the WLSI (Proposition
2.2 in Cattiaux et al., 2007) are based on Lemma 11 and Proposition 12. The rest of the
proof remains quite similar.

Proof [Proposition 9] Let M > 0 denotes the median of f with respect to m and let
Ω+ = {f > M}, Ω− = {f < M},

F+ = (f −M)1Ω+ and F− = (f −M)1Ω− .

Using the argument of Lemma 5 in Barthe and Roberto (2003), we obtain that

Entm(f2) ≤ sup

{∫
F 2
+Hdm,H ≥ 0,

∫
eHdm ≤ e2 + 1

}
+ sup

{∫
F 2
−Hdm,H ≥ 0,

∫
eHdm ≤ e2 + 1

}
. (10)

Let’s study each term separately.
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• First term of (10). Let be c > 0 and ρ ∈ (0, 1). We introduce for any i = 0, 1, 2, . . .,
the sequence of measurable subsets

Ωi =
{
F 2
+ ≥ cρi

}
,

which is increasing and
⋃

i≥0 Ωi = Ω+ so that, for every function H ≥ 0,∫
F 2
+Hdm =

∫
Ω0

F 2
+Hdm+

∑
k>0

∫
Ωi\Ωi−1

F 2
+Hdm. (11)

– First term of (11). Thanks to Proposition 12, there exists two constants CA,b,q >
0 (which could proportionally change from line to line) and q > 1 such that

∫
Ω0

F 2
+Hdm ≤ CA,b,q

∫
Ω0

Hdm

 1
q

.

Lemma 6 of Barthe and Roberto (2003) implies that

sup


∫
Ω0

Hdm,H ≥ 0,

∫
eHdm ≤ e2 + 1

 = m (Ω0) log

(
1 +

e2

m (Ω0)

)
.

Using that Ω0 ⊂
{
f2 ≥ c

}
⊂
{
AebV ≥ c

}
, we verify that

m(Ω0) =

∫
Ω0

dm ≤ A

∫
AebV ≥c

e−bV de−(1−b)V ≤ A′

c
,

where A′ is proportional to A2 and the normalizing constant of the measure
e−(1−b)V . Moreover, the inequality log(1 + x) ≤ x√

1+x
, for all x ≥ 0, guarantees

that

m (Ω0) log

(
1 +

e2

m (Ω0)

)
≤ e2√

ce2

A′ + 1
≤ e

√
A′

c
,

then

sup


∫
Ω0

F 2
+Hdm,H ≥ 0,

∫
eHdm ≤ e2 + 1

 = CA,b,qc
− 1

2q . (12)
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– Second term of (11). We have for all i > 0, due to the fact that cρi ≤ F 2
+ ≤ cρi−1

on Ωi \ Ωi−1, ∫
Ωi\Ωi−1

F 2
+Hdm ≤ cρi−1

∫
Ωi\Ωi−1

Hdm.

Then using again Lemma 6 of Barthe and Roberto (2003), for any i > 0, we
obtain that

sup


∫

Ωi\Ωi−1

F 2
+Hdm,H ≥ 0,

∫
eHdm ≤ e2 + 1


≤ cρi−1m (Ωi \ Ωi−1) log

(
1 +

e2

m (Ωi \ Ωi−1)

)
≤ scρi−1 + cρi−1β(s)Capm (Ωi \ Ωi−1) ,

where we used inequality (9) applied to µ in the second step.

Let set for any i > 0,

gi =


1 on Ωi

F+−
√

cρi+1√
cρi−

√
cρi+1

on Ωi+1 \ Ωi

0 on Ωc
i+1

,

so that we have 1Ωi ≤ gi ≤ 1Ω+ , recall that m(Ω+) = 1/2. This implies, using
the definition of Capm (Ωi \ Ωi−1), that

cρi−1Capm (Ωi \ Ωi−1) ≤
1

ρ(1 −√
ρ)2

∫
Ωi+1\Ωi

∥∇F+∥2dm,

then

sup


∫

Ωi\Ωi−1

F 2
+Hdm,H ≥ 0,

∫
eHdm ≤ e2 + 1


≤ scρi−1 +

β(s)

ρ(1 −√
ρ)2

∫
Ωi+1\Ωi

∥∇F+∥2dm. (13)
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We replace (12) and (13) in (11),

sup

{∫
F 2
+Hdm,H ≥ 0,

∫
eHdm ≤ e2 + 1

}

≤ sup


∫
Ω0

F 2
+Hdm,H ≥ 0,

∫
eHdm ≤ e2 + 1


+
∑
i>0

sup


∫

Ωi\Ωi−1

F 2
+Hdm,H ≥ 0,

∫
eHdm ≤ e2 + 1


≤ CA,b,qc

− 1
2q +

sc

1 − ρ
+

β(s)

ρ(1 −√
ρ)2

∫
∥∇F+∥2dm.

The optimal values of c and ρ are s
− 1+2q

2q and 1/4 respectively, so we get

sup

{∫
F 2
+Hdm,H ≥ 0,

∫
eHdm ≤ e2 + 1

}
≤

(
CA,b,q +

4

3

)
s

1
1+2q + 16β(s)

∫
Ω+

∥∇fk,t∥2dm.

• Since 0 ≤ f ≤ M on Ω−, the second term of (10) will be treated exactly as in
Cattiaux et al. (2007). Then

sup

{∫
F 2
−Hdm,H ≥ 0,

∫
eHdm ≤ e2 + 1

}
≤ 7M2

3
s+ 16β(s)

∫
∥∇F−∥2dm.

We obtain that

Entm(f2) ≤ CA,b,q

(
s+ s

1
1+2q

)
+ β(s)

∫
Rd

∥∇f∥2dm,

which concludes the proof.

4.4 Modified WLSI under Hr
KL(c, L)

Let us recall that the measure m is in fact denoted as µ(θ) = 1
Z e

−U(θ), where U satisfies a
Hr

KL(c, L)-condition. In Lemma 4 we obtained the inequality

∀k ≥ 0, ∀t ∈ [0, h], ∂tJk,t ≤ −1

2
Ek,t + 5dL2t,
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and we were interested in an inequality that linked the relative entropy Jk,t and the Dirichlet
form Ek,t of fk,t =

√
nk,t/µ when 0 < r < 1. Since the function fk,t is not necessarily

bounded we can’t apply WLSI so we are going to use Proposition 9.
To do this, we need first to lower bound the Poincaré constant CP (µ) to determine the

function β involved in the measure inequality (9) and obtain an upper bound of nk,t of the
type

nk,t(θ) ≤ Ae−(1−b)U(θ)

which would imply that f2k,t ≤ AZ exp {bU(θ)}.

4.4.1 Upper bound on the density of the ULA under Hr
KL(c, L)

Proposition 2 states an upper bound of the density mk which is proportional to e−
1
10

U(θ).
Using the same procedure but applied to the continuous process

θkh+t = θkh − t∇U(θkh) +
√

2Wt,

for any k ≥ and any fixed t ∈ (0, h) we prove the following result.

Proposition 13 We assume Hr
m0

(c, L) and that the function U satisfies Hr
KL(c, L) and

Hmin. If h ≲uc min{1/L, 1/d}, a positive constant Ad exists (that could depend on d) such
that

∀θ ∈ Rd, ∀k ≥ 0, ∀t ∈ [0, h], nk,t(θ) ≤ Ade
− 1

10
U(θ).

Moreover log(Ad) ≲uc d
1

1−r .

Performing a similar proof to that of Proposition 12 and using the bound of the nk,t,
we obtain the following corollary.

Corollary 14 We assume Hr
m0

(c, L) and that the function U satisfies Hr
KL(c, L) and

Hmin. If h ≲uc min{1/L, 1/d} then there exist two positive constants q > 1 and C ≥ 0 such
that for any Ω ⊂ Rd and any function H ≥ 0 such that

∫
Rd e

H(θ)dµ(θ) ≤ e2 + 1, we get

∫
Ω

Hdnk,t ≤ Ad

∫
Ω

Hdµ

1/q

.

The proof may be found in Appendix C.3.

4.4.2 Poincaré constant

Since µ is a log-concave measure, a Poincaré inequality is verified with constant CP (µ).
Using the Bobkov bound of the Poincaré constant in Bobkov (1999) and the procedure of
Proposition 3.5 in Crespo et al. (2023), we formulate the following lemma, which proof is
deferred to Appendix C.4.
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Lemma 15 We assume Hr
m0

(c, L) and that U satisfies hypothesis Hr
KL(c, L) and Hmin,

then
CP (µ) ≳uc d

−(1+r)2 .

As a consequence of the lemma above, we recall that the measure-capacity (9) applied
to µ is verified and the function β could be defined as

β(s) =

 ad(1+r)2 log
(
1
s

)
, 0 < s ≤ e2

2e2+1

bd(1+r)2 , s > e2

2e2+1

,

where a and b are two positive constants.

5 Numerical experiments

In this section, we study two numerical experiments: an application of the ULA to a
Bayesian logistic regression problem and a simulation study in a synthetic situation where
we can estimate numerically and verify the entropic convergence stated in Theorem 3.

5.1 Bayesian logistic regression

We are interested in applying ULA to the Bayesian logistic regression problem studied in
Durmus et al. (2019) (see also Held and Holmes, 2006; Gramacy and Polson, 2012; Park
and Hastie, 2007).

We consider N ≥ 1 i.i.d. observations (X1, Y1), . . . , (XN , YN ) where X1, . . . , XN

are d-dimensional input variables and Y1, . . . , YN are binary output responses. Logistic
regression framework amounts to assume the responses to be distributed as Bernoulli
random variables such that

Yn ∼ Ber
(
ϕ(θ⊤Xn)

)
, n ∈ {1, . . . , N},

where ϕ is the logit function defined by ϕ(x) = (1 + e−x)
−1

, x ∈ R and θ is the parameter
of interest. We consider a prior distribution given by the following density with respect to
Lebesgue measure on Rd,

pr(θ) ∝ exp

{
−a1

d∑
i=1

|θ(i)| − a2

d∑
i=1

|θ(i)|2/(1+r)

}
, θ = (θ(1), . . . , θ(d)) ∈ Rd,

where we particularly consider a1 = 0.1, a2 = 0.9 and r ∈ [0, 1). The variations of pr with
r enable to address situations from strongly log-concave posterior distributions (r = 0) to
weakly log-concave ones (0 < r < 1). This choice of prior leads to the log-concave posterior
distribution of θ which is given by the density

pr (θ|(X1, Y1), . . . , (XN , YN )) ∝ exp

{
−

N∑
n=1

ℓn(θ) − a1

d∑
i=1

|θ(i)| − a2

d∑
i=1

|θ(i)|2/(1+r)

}
,
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where the log-likelihoods are given by

ℓn(θ) = log
(

1 + exp
(

(1 − 2Yn)θ⊤Xn

))
.

We now introduce the potential

UN
r (θ) =

N∑
n=1

ℓn(θ) + a1

d∑
i=1

|θ(i)| + a2

d∑
i=1

|θ(i)|2/(1+r),

which verifies a Hr
KL(c, L)-condition. The associated gradient (sub-differential indeed)

defined by ∇UN
r (θ) = (∂1U

N
r (θ), . . . , ∂dU

N
r (θ))⊤ is given by

∂jU
N
r (θ) =

N∑
n=1

(1 − 2Yn)ϕ
(

(1 − 2Yn)θ⊤Xn

)
Xn,j + a1sign(θ(j))

+

 2a2θ
(j), if r = 0

2a2
1+r |θ

(j)|(1−r)/(1+r), if 0 < r < 1
,

for any j ∈ {1, . . . , d}.
Given a step size h > 0 and an initial standard deviation factor σ > 0, we introduce

the sequence (θk)k≥0 defined by the following recursion,

θ0 = σξ0 and θk+1 = θk − h∇UN
r (θk) +

√
2hξk+1, k ≥ 0,

where (ξk)k≥0 is a sequence of i.i.d. standard Gaussian random variables in Rd.
In order to verify the convergence of the ULA, we define the Césaro average of the j-th

component of a path of length K starting at K0 as

θ̂
(j)
K0,K

=
1

K −K0

K−1∑
k=K0

θ
(j)
k , j ∈ {1, . . . , d}.

When K0 = 0, we only write θ̂
(j)
K .

We consider two datasets from the UCI repository: the Heart disease dataset with
dimensions N = 214 and d = 13 (see Janosi et al., 1988) and the Musk dataset with
dimensions N = 6598 and d = 166 (see Chapman and Jain, 1994). In both cases, we
standardize the data and run 100 independent trajectories of ULA for different values of r
and initial standard deviation factor σ = 0.2. For each dataset and for each r, we compared
the results with a true value obtained by performing K = 106 steps with h = 10−4 for
Heart disease dataset (K = 105 and h = 10−5 for Musk dataset) and taking the Césaro
average over the last 105 (respectively 104) values. The results are presented on Figures 1
and 2.
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Figure 1: (a) Mean square error of the first component estimator at time k, θ̂
(1)
k , for

Heart disease dataset where we run 100 trajectories with step size h = 10−3 and initial
standard deviation factor σ = 0.2. (b) Boxplot of the absolute error of the estimator at
time K = 104.

We observe that in both cases the mean square error has a tendency to decrease when
the number of ULA steps increases. The convergence of the error for the Musk dataset
is slower also due to the large size of the dimension d. In the strongly convex situation
the convergence is faster and the curve is apparently different from the rest of the curves.
Likewise, the absolute error is much lower in the case r = 0. These numerical results show
the complexity of the study when dealing with a weakly log-concave distribution compared
to a strongly log-concave one.

5.2 Synthetic example and entropy convergence

We are interested in verifying the order of convergence of the entropy obtained in Theorem
3 through simulation. It is important to mention that so far we have not found a numerical
study in the related literature in which entropy is estimated.

We consider 0 ≤ r < 1 and we define the potential function Ur : Rd → R as

Ur(θ) = (1 + ∥θ∥2)
1

1+r ,

23



Discretisation of Langevin diffusion in the weak log-concave case

100 101 102 103 104

Number of steps

100

4 × 10 1

6 × 10 1

M
ea

n 
sq

ua
re

 e
rro

r

r = 0
r = 0.25
r = 0.5
r = 0.75
r = 0.9999

(a)

r = 0 r = 0.25 r = 0.5 r = 0.75 r = 0.9999

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 2: (a) Mean square error of the first component estimator at time k, θ̂
(1)
k , for Musk

dataset where we run 100 trajectories with step size h = 10−5 and initial standard deviation
factor σ = 0.2. (b) Boxplot of the absolute error of the estimator at time K = 104.

which verifies a Hr
KL(c, L)-condition. Then its associated gradient is given by ∇Ur(θ) =

2
1+rU

−r
r (θ)θ. This choice of potential leads to the log-concave density function

µr(θ) =
e−Ur(θ)

Z
,

where the normalizing constant could be computed using a change to d-dimensional
spherical coordinates and, in the case 0 < r < 1, we approximated the integral for the
radial coordinate x,

Z =

∫
Rd

e−Ur(θ)dθ =

 πd/2e−1, if r = 0,

dπd/2

Γ(d/2+1)

∫∞
0 xd−1e−(1+x2)

1
1+r

dx, if 0 < r < 1.

Once again, the value of r allows describing from strongly log-concave distributions (r = 0)
to weakly log-concave ones (0 < r < 1).

Given a step size h > 0 and an initial standard deviation factor σ > 0, we introduce
the sequence (θk)k≥0 defined by the following recursion,

θ0 = σξ0 and θk+1 = θk − h∇Ur(θk) +
√

2hξk+1, k ≥ 0,

where (ξk)k≥0 is a sequence of i.i.d. standard Gaussian random variables in Rd.

24



Discretisation of Langevin diffusion in the weak log-concave case

We recall that the entropy at any step k ≥ 0 is defined in (5) as

Jk =

∫
Rd

log

(
mk(θ)

µr(θ)

)
dmk(θ),

where mk is the density function of θk. Then, if we observe N ≥ 1 independent trajectories
(θ1k)k≥0, (θ

2
k)k≥0, . . . , (θ

N
k )k≥0, we are able to estimate at any step k, the density function

mk as follows

m̂N
k (θ) =

1

Nδ

N∑
i=1

γ1

(
θ − θik
δ

)
,

where γ1 is the standard normal density function and the bandwidth δ is chosen such that
it minimizes the mean integrated square error (for a more in-depth study see Scott, 2015;
Silverman, 2018).

We estimate the entropy using

ĴN
k =

1

N

N∑
i=1

log

[
m̂N

k (θik)

µr(θik)

]
=

1

N

N∑
i=1

[
log(m̂N

k (θik)) + Ur(θ
i
k)
]

+ log(Z).

Of course we expect ĴN
k to be biased, since for fixed (even if small) h, mk is the distribution

of a Markov chain with invariant measure µh ̸= µ. Therefore, in the simulations we will
focus on the order of convergence of ĴN

k when the number of iterations k increases, which

should be approximately proportional to k−1d1+2(1+r)2 when 0 < r < 1 and k−1d when
r = 0.

We consider three space dimension d = 3, d = 10 and d = 30 with step sizes h = 10−4

h = 10−5 and h = 10−7 respectively, initial standard deviation factor σ = 0.2 and fives
values of the r parameter. We simulate N = 100 trajectories of (θk)k≥0 and for each k we

estimate ĴN
k . The results are presented on Figure 3.

We observe that the entropy estimator decreases as the number of steps increases, with
the convergence of the curve apparently being faster for r = 0. The curves are arranged
according to the value of r, as expected while the increasing dimension d is reflected in the
need to use a decreasing value of h and in the slope of the curve.
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Figure 3: Convergence of ĴN
k where the initial standard deviation factor is σ = 0.2 and the

number of trajectories is N = 100.
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Appendix A. Some basic properties under a Hr
KL(c, L)-condition

We recall some important consequences of the Hr
KL(c, L) hypothesis that implies several

relations between the function and the norm of its gradient. These results appear in
Lemma 15 of Gadat et al. (2022) (a factor 2 appears in the statement that has already
been corrected by Crespo et al., 2023).

Proposition 16 Assume that a function V satisfies Hr
KL(c, L), then for all θ ∈ Rd,

2c

1 − r

[
V 1−r(θ) − minV 1−r

]
≤ ∥∇V (θ)∥2 ≤ 2L [V (θ) − minV ] .

Furthermore, it is possible to obtain lower and upper bounds of any function that
satisfies Hr

KL(c, L) by a positive power of the distance to its minimizer.

Proposition 17 Assume that a function V satisfies Hr
KL(c, L), then for all θ ∈ Rd,

V 1+r(θ) − min(V )1+r ≥ (1 + r)c

2
∥θ − arg minV ∥2

and

V (θ) − min(V ) ≤ L

2
∥θ − arg minV ∥2.

We state the following result which upper bounds the normalizing constant Z of µ by
using Proposition 17. We will use it several times.

Proposition 18 Assume that U satisfies a Hr
KL(c, L)-condition, then the normalizing

constant of µ verifies the following inequality

Z ≤ 2 (2π/c)
d
2 d

dr
2 .

Proof We compute an upper bound of Z using the lower bound of U induced by
Proposition 17,

U(θ) ≥ cr∥θ − θ∗∥
2

1+r , (14)

where cr =
(
(1+r)c

2

) 1
1+r

and θ∗ = arg minU . Then,

Z =

∫
Rd

e−U(θ)dθ ≤
∫
Rd

e−cr∥θ−θ∗∥
2

1+r
dθ.

Using the well known equality

∀a > 0, ∀ℓ > 0,

∫
Rd

e−a|θ|ℓdθ =
dπd/2Γ(d/ℓ)

ℓad/ℓΓ(d/2 + 1)
, (15)
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we then deduce that

Z ≤ d(1 + r)

2

(
2π

(1 + r)c

) d
2 Γ (d(1 + r)/2)

Γ (d/2 + 1)
≤ 2

(
2π

c

) d
2

d
dr
2 ,

where we used standard relations on the Gamma function.

Appendix B. Proofs of the results in Sections 2 and 3

B.1 Proof of Proposition 1

The initial relative entropy is defined as J0 =
∫
Rd log

(
m0(θ)
µ(θ)

)
dm0(θ). Replacing m0 =

N (0, σ2Id) and µ(θ) = 1
Z e

−U(θ), we observe that

J0 = log

(
Z

(2πσ2)
d
2

)
+

∫
Rd

(
U(θ) − 1

2σ2
∥θ∥2

)
dm0(θ).

Let’s study each term separately.

• From Proposition 18, we deduce that the first term is upper bounded as follows

log

(
Z

(2πσ2)
d
2

)
≤ log

(
2d

dr
2

(cσ2)
d
2

)
≲uc d(1 + r log d).

• Let be θ∗ = arg minU , applying Proposition 17, we have that

U(θ) − 1

2σ2
∥θ∥2 ≤ L

2
∥θ − θ∗∥2 − 1

2σ2
∥θ∥2 + minU.

If σ2 < 1
L , then the function θ 7→ L

2 ∥θ − θ∗∥2 − 1
2σ2 ∥θ∥2 + minU attains its global

maximum at σ2L
σ2L−1

θ∗ and

U(θ) − 1

2σ2
∥θ∥2 ≤ L

2(1 − σ2L)
∥θ∗∥2 + minU ≲uc d,

where we used hypothesis Hmin in the last step. Therefore∫
Rd

(
U(θ) − 1

2σ2
∥θ∥2

)
dm0(θ) ≲uc d.

Putting both parts together, the result is proven.
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B.2 Proof of Proposition 2

A key part in our analysis is the Proposition 2 which bounds the density mk proportional
to e−

1
10

U(θ), where the constant of proportionality is denoted as Ad and could depend on
d.
Proof The goal of the proof is to prove the following inequality

∃Ad > 0 ∃b > 0 : ∀k ≥ 0, ∀θ ∈ Rd mk(θ) ≤ Ade
−b[U(θ)∨1], (16)

where x ∨ y = max{x, y}. After obtaining this inequality with b = 1/10, the result in the
statement is immediate.

We recall the ULA defined in (4) as

θ(k+1)h = θkh − h∇U(θkh) +
√

2hξk+1, ∀k ≥ 0.

The structure of the proof is divided in three parts. During the first part, we establish
several preliminary considerations that will be used later. Secondly, we study the drift of
the ULA. Finally, we define two compact sets B1 and B2 and we upper bound the density
mk(θ) by using two different techniques: one for θ ∈ B1 ∪ B2 and another for θ /∈ B1 ∪ B2.

We assume, without loss of generality, that min U = U(0).
Preliminary considerations: We introduce the key application φh, defined by

φh : θ 7−→ θ − h∇U(θ)

We shall observe that φh is one to one for h small enough.
Injectivity: Consider (x1, x2) such that φh(x1) = φh(x2), we then get

x1 − x2 = h[∇U(x1) −∇U(x2)].

We then take the norm and use the L-smoothness condition on U to derive

∥x1 − x2∥ ≤ Lh∥x1 − x2∥.

We conclude that φh is injective when h < L−1.

Surjectivity: The proof use the Fenchel-Legendre associated to ψh : x 7−→ ∥x∥2
2 − hU(x).

When hL < 1, we verify that ψh is a strictly convex function and we shall define

{ψh}∗(y) = max
x∈Rd

{⟨y, x⟩ − ψh(x)} .

The maximum is attained at a x solution of

y = x− h∇U(x) ⇐⇒ φh(x) = y.

We then deduce that φh is a one to one mapping, and we define Zk = φh(θkh), so that

θ(k+1)h = Zk +
√

2hξk+1,
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which results into the convolution decomposition

mk+1(θ) = (ρk ⋆ γ2h)(θ),

where γ2h refers to the density function of a N (0d, 2hId) random variable and ρk is the
density function of Zk. Using the push-forward operator with φh, we observe that

ρk(z) =
mk(φ−1

h (z))

|∇φh(φ−1
h (z))|

,

where |B| denotes the determinant of the quadratic matrix B. An immediate computation
shows that |∇φh(φ−1

h (z))| is lower bounded when h < L−1 with

|∇φh(φ−1
h (z))| ≥ (1 − hL)d.

this inequality being sharp when U(θ) = L∥θ∥2
2 .

Drift analysis: Our starting point is the L-smoothness property of U

U(y) ≤ U(x) + ⟨y − x,∇U(x)⟩ +
L

2
∥y − x∥2, ∀x, y ∈ Rd.

We apply this inequality with y = φh(x) and obtain that

U(φh(x)) ≤ U(x) − h

(
1 − Lh

2

)
∥∇U(x)∥2.

Then, we deduce that

U(φ−1
h (z)) ≥ U(z) + h

(
1 − Lh

2

)
∥∇U(φ−1

h (z))∥2.

To lower bound ∥∇U(φ−1
h (z))∥2, we use the triangular inequality and the fact that ∥∇U∥

is L-Lipschitz as follows

∥∇U(φh(x))∥ ≤ ∥∇U(φh(x)) −∇U(x)∥ + ∥∇U(x)∥
≤ L∥φh(x) − x∥ + ∥∇U(x)∥
≤ (1 + hL)∥∇U(x)∥.

We rewrite this inequality with z = φh(x) and deduce that

∥∇U(φ−1
h (z))∥2 ≥ ∥∇U(z)∥2

(1 + Lh)2
.

We finally conclude the key inequality

∀z ∈ Rd, U(φ−1
h (z)) ≥ U(z) + ch∥∇U(z)∥2, (17)
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where ch =
h(1−Lh

2 )
(1+Lh)2

. We also state some inequalities that will be useful later on. First the

CL
1 inequality

∥∇U(θ − x)∥2 ≥ 1

2
∥∇U(θ)∥2 − L2∥x∥2, (18)

and second the convexity inequality

U(θ − x) ≥ U(θ) − ⟨x,∇U(θ)⟩. (19)

Upper bound: We will use all along our bound, a value of h small enough, and in
particular h ≤ 1/4L. In the meantime, we will also use

∀t ∈ [0, 1/2], log(1 − t) ≥ −2t,

which is a standard consequence of the first order Taylor formula for t 7−→ log(1 − t).
Below, we study two situations according to the size of ∥θ∥. For this purpose, we will

need to define a specific value for b, that should not be too large. Even though mysterious
at the first glance, we will need to choose

b =
1

10
,

and this choice will be made clearer in what follows.
We also introduce two compact sets. The first one is defined by

B1 = B

(
0d,

2
√

2√
c(1 + r)

)
.

We then observe that Proposition 17 yields

∀θ /∈ B1 ∥z∥ ≥ ∥θ∥
2

=⇒ U(z) ≥ 1.

The second compact set is defined through the constraint set

C =

{
θ :

e−
bh
8
∥∇U(θ)∥2

[(1 − hL)2(1 − h2L2/2)]d/2
≥ 1 − Lh

}
.

We shall observe that

θ ∈ C ⇐⇒ bh

8
∥∇U(θ)∥2 ≤ −(d+ 1) log(1 − hL) − d/2 log(1 − h2L2/2)

=⇒ bh

8
∥∇U(θ)∥2 ≤ 2(d+ 1)hL+ dh2L2/2

=⇒ ∥∇U(θ)∥2 ≤ 32Lb−1(1 + hL)d =⇒ ∥θ∥ ≤ Rd
1+r

2(1−r) ,
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where R is a constant independent of d and was obtained using the hypothesis Hmin and
Propositions 16 and 17. We are led to define

B2 = B
(

0d, Rd
1+r

2(1−r)

)
,

and we then observe from our construction that

∀θ /∈ B2,
e−

bh
8
∥∇U(θ)∥2

[(1 − hL)2(1 − h2L2/2)]d/2
≤ 1 − Lh.

Case θ ∈ B1∪B2: This situation is certainly the easiest to consider. Indeed, mk refers to
the density at iteration k of an homogeneous Markov chain. This Markov chain is recurrent
(we refer to the standard contributions of Meyn and Tweedie (2012) to verify the mean
reverting effect conditions). The Markov chain is also irreducible thanks to the Gaussian
noise at each iteration. Hence, the Markov chain is ergodic and converges towards its
invariant distribution, that possesses a density µh with respect to the Lebesgue measure.

We also know that µh −→ Z−1e−U when h −→ 0, which proves that for h small enough
µh is bounded on compact sets. Using that mk evolves through a smooth convolution
operator with Gaussian kernels, we then deduce that for any k, mk is a C∞ density function
over Rd.

Finally, for h small enough, a constant M exists such that

∀θ ∈ B1 ∪ B2, ∀k ≥ 0, mk(θ) ≤M.

U being upper bounded inside the compact as follows

Cd
1

1−r = max
θ∈B1∪B2

U(θ),

where C is a constant independent of d (and could change proportionally from line to line).
We finally deduce that ∀θ ∈ B1 ∪ B2, ∀k ≥ 0,

mk(θ) ≤ Ade
−b[U(θ)∨1] with Ad = Meb[Cd

1
1−r ∨1] = eCd

1
1−r

,

where we assumed logM ≲uc d
1

1−r .

Case θ /∈ B1 ∪ B2 : We assume that mk satisfies (16). We decompose mk+1 as follows

mk+1(θ) = (ρk ⋆ γ2h) (θ)

=

∫
Rd

γ2h(x)ρk(θ − x)dx

=

∫
∥x−θ∥≥ ∥θ∥

2

γ2h(x)ρk(θ − x)dx+

∫
∥x−θ∥≤ ∥θ∥

2

γ2h(x)ρk(θ − x)dx.
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• Let us first consider x such that ∥θ − x∥ ≥ ∥θ∥/2, we apply the recursive hypothesis to
mk ∫

∥x−θ∥≥ ∥θ∥
2

γ2h(x)ρk(θ − x)dx ≤
∫

∥x−θ∥≥ ∥θ∥
2

γ2h(x)
Ade

−b[U(φ−1
h (θ−x))∨1]

(1 − hL)d
dx.

Furthermore, we observe from (17) that U(φ−1
h (θ−x)) ≥ U(θ−x). Using that θ /∈ B1 and

∥θ − x∥ ≥ ∥θ∥/2, we deduce that U(φ−1
h (θ − x)) ≥ 1, which entails that the ∨1 may be

removed in this case, and leads to

∫
∥x−θ∥≥ ∥θ∥

2

γ2h(x)ρk(θ − x)dx ≤
∫

∥x−θ∥≥ ∥θ∥
2

γ2h(x)
Ade

−bU(φ−1
h (θ−x))

(1 − hL)d
dx.

We now use (17) and then (18) and (19) to obtain∫
∥x−θ∥≥ ∥θ∥

2

γ2h(x)ρk(θ − x)dx

≤ Ad

(1 − hL)d

∫
∥x−θ∥≥ ∥θ∥

2

γ2h(x)e−b[U(x−θ)+ch∥∇U(x−θ)∥2]dx

≤ Ad

(1 − hL)d

∫
∥x−θ∥≥ |θ|

2

γ2h(x)e−bU(θ)+b⟨x,∇U(θ)⟩− bch
2

∥∇U(θ)∥2+bchL
2∥x∥2dx

≤ Ade
−bU(θ)− bch

2
∥∇U(θ)∥2

(1 − hL)d

∫
∥x−θ∥≥ ∥θ∥

2

γ2h(x)eb⟨x,∇U(θ)⟩+bchL
2∥x∥2dx

≤ Ade
−bU(θ)− bch

2
∥∇U(θ)∥2

(1 − hL)d

∫
∥x−θ∥≥ ∥θ∥

2

e−∥x∥2(1/4h−bL2ch)+b⟨x,∇U(θ)⟩

(4πh)d/2
dx.

Some almost straightforward computations show that

∫
∥x−θ∥≥ ∥θ∥

2

γ2h(x)ρk(θ − x)dx ≤ Ade
−bU(θ)−

(
bch
2

− b2h
1−4hbchL2

)
∥∇U(θ)∥2

(1 − hL)d(1 − 4hbchL2)d/2
.
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Using now h ≤ 1
4L and b = 1

10 , we then get

∫
∥x−θ∥≥ ∥θ∥

2

γ2h(x)ρk(θ − x)dx ≤ Ade
−bU(θ)− bch

4
∥∇U(θ)∥2

[(1 − hL)2(1 − h2L2/2)]d/2
≤ Ade

−bU(θ)− bh
8
∥∇U(θ)∥2

[(1 − hL)2(1 − h2L2/2)]d/2
.

We are led to use that θ /∈ B2, which entails

Ade
−bU(θ)− bh

8
∥∇U(θ)∥2

[(1 − hL)2(1 − h2L2/2)]d/2
≤ (1 − Lh)Ade

−bU(θ).

Consequently, we have shown that when θ /∈ B1 ∪ B2∫
∥x−θ∥≥ ∥θ∥

2

γ2h(x)ρk(θ − x)dx ≤ (1 − Lh)Ade
−bU(θ). (20)

• We finally consider the complementary set of integration. For this purpose, we compute
a rough upper bound of the d dimensional integral and get in our setting∫

∥x−θ∥≤ ∥θ∥
2

γ2h(x)ρk(θ − x)dx ≤ Ad

(1 − hL)d

∫
∥x∥≥ ∥θ∥

2

γ2h(x)dx ≤ Ad

(1 − hL)d
2

d
2 e−

∥θ∥2
32h .

The growth property of U that is upper bounded as U(θ) ≤ minU + L∥θ∥2/2 shows that
for hL ≤ 1/4 and θ /∈ B2

Ad

(1 − hL)d
2

d
2 e−

∥θ∥2
32h ≤ LhAde

−bU(θ) (21)

• Gathering the two previous upper bounds (20) and (21) and taking into account that
U(θ) > 1 if θ /∈ B1 ∪ B2, we therefore deduce that

∀θ /∈ B1 ∪ B2 mk+1(θ) ≤ Ade
−b[U(θ)∨1].

B.3 Proof of Lemma 4

We begin by formulating the following lemma to control the expectation of ∥∇U∥2 under
a change of measure. This result will be useful to prove Lemma 4. Its proof is taken from
Chewi et al. (2022) and we include it for the sake of completeness.
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Lemma 19 Assume that ∇U is L-Lipschitz. For any probability measure m, it holds that

Em

[
∥∇U(θ)∥2

]
≤ 4Eµ

∥∥∥∥∥∇
(√

m(θ)

µ(θ)

)∥∥∥∥∥
2
+ 2dL.

Proof We recall that L is the infinitesimal generator of the Langevin diffusion in (2), then
applying (3) to U , we observe that LU = ∥∇U∥2−∆U . We use integration by parts then,

Em

[
∥∇U(θ)∥2

]
= Em[LU(θ)] + Em[∆U(θ)] ≤

∫
Rd

LU(θ)
m(θ)

µ(θ)
dµ(θ) + dL

=

∫
⟨∇U(θ),∇

(
m(θ)

µ(θ)

)
⟩dµ(θ) + dL

≤ 2

∫
⟨

√
m(θ)

µ(θ)
∇U(θ),∇

(√
m(θ)

µ(θ)

)
⟩dµ(θ) + dL

≤ 1

2
Em

[
∥∇U(θ)∥2

]
+ 2Eµ

∥∥∥∥∥∇
(√

m(θ)

µ(θ)

)∥∥∥∥∥
2
+ dL.

Rearrange this inequality to obtain the desired result.

Lemma 4 recalls the link obtained in Vempala and Wibisono (2019) between the
derivative of the relative entropy of nk,t with respect to µ and its Dirichlet form. However,
we use Lemma 19 to control the discretization error as it appears in Balasubramanian et al.
(2022).

Proof [Lemma 4] Let k be fixed, the existence of ∂tJk,t is due to Proposition 3 and
hypothesis 3 of Miclo (1992). Moreover

∂tJk,t =

∫
Rd

∂t

[
log

(
nk,t(θ)

µ(θ)

)
nk,t(θ)

]
dθ.

Now, we follow an argument equivalent to the one used in Lemma 3 of Vempala
and Wibisono (2019). This argument is based on the infinitesimal generator Lk and
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Kolmogorov’s forward equation. The time derivative of Jk,t satisfies that

∂tJk,t =

∫
Rd

∂t

[
log

(
nk,t(θ)

µ(θ)

)
nk,t(θ)

]
dθ

=

∫
Rd

∂tnk,t(θ)dθ +

∫
Rd

log

(
nk,t(θ)

µ(θ)

)
∂tnk,t(θ)dθ

=

∫
Rd

log

(
nk,t(θ)

µ(θ)

)
∂tnk,t(θ)dθ,

where it’s easy to check that the first term vanishes

∫
Rd

∂tnk,t(θ)dθ = ∂t

∫
Rd

nk,t(θ)dθ

 = ∂t[1] = 0.

We recall that nt|k and mk are the distributions of θkh+t conditional to θkh and θkh,
respectively, then we replace nk,t(θ) =

∫
Rd nt|k(θ|η)dmk(η) in the equation for ∂tJk,t

∂tJk,t =

∫
Rd

log

(
nk,t(θ)

µ(θ)

)
∂t

∫
Rd

nt|k(θ|η)dmk(η)

dθ

=

∫
Rd×Rd

log

(
nk,t(θ)

µ(θ)

)
∂tnt|k(θ|η)dmk(η)dθ

=

∫
Rd×Rd

log

(
nk,t(θ)

µ(θ)

)
∂tnt|k(θ|η)dθdmk(η)

=

∫
Rd×Rd

Lk log

(
nk,t(θ)

µ(θ)

)
dnt|k(θ|η)dmk(η),

where we used Fubini’s theorem and Kolmogorov’s forward equation in the last two steps,
respectively.
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We introduce the infinitesimal generator L given in (3), to obtain the Fisher information
Ek,t

∂tJk,t =

∫
Rd

L log

(
nk,t(θ)

µ(θ)

)
dnk,t(θ) +

∫
Rd×Rd

(
Lk − L

)
log

(
nk,t(θ)

µ(θ)

)
dnt|k(θ|η)dmk(η)

=

∫
Rd

L log

(
nk,t(θ)

µ(θ)

)
dnk,t(θ) +

∫
Rd×Rd

〈
∇U(θ) −∇U(η),∇ log

(
nk,t(θ)

µ(θ)

)〉
dnt|k(θ|η)dmk(η)

= −Ek,t +

∫
Rd×Rd

〈
∇U(θ) −∇U(η),∇ log

(
nk,t(θ)

µ(θ)

)〉
dnt|k(θ|η)dmk(η). (22)

Let’s study the second term. Using Young’s inequality ⟨a, b⟩ ≤ ϵ
2∥a∥

2 + 1
2ϵ∥b∥

2, where
ϵ > 0 and will be fixed later on, we observe that∫

Rd×Rd

〈
∇U(θ) −∇U(η),∇ log

(
nk,t(θ)

µ(θ)

)〉
dnt|k(θ|η)dmk(η)

≤ ϵ

2

∫
Rd×Rd

∥∇U(θ) −∇U(η)∥2 dnt|k(θ|η)dmk(η) +
1

2ϵ

∫
Rd

∥∥∥∥∇ log

(
nk,t(θ)

µ(θ)

)∥∥∥∥2 dnk,t(θ)

≤ L2ϵ

2

∫
Rd×Rd

∥θ − η∥2 dnt|k(θ|η)dmk(η) +
1

2ϵ
Ek,t, (23)

where we used that ∇U is L−Lipschitz at the end.
Note that the error term can be written as follows∫

Rd×Rd

∥θ − η∥2 dnt|k(θ|η)dmk(η) = Emknt|k

[
∥θkh+t − θkh∥2

]
.

Moreover, the solution of (6) at time t is such that θkh+t− θkh
d
= −t∇U(θkh) +

√
2tξ where

ξ is a standard Gaussian in Rd independent of θkh. If γ1 denotes the standard Gaussian
density function, then the error term is

Emknt|k

[
∥θkh+t − θkh∥2

]
= Emk,γ1

[∥∥∥−t∇U(θkh) +
√

2tξ
∥∥∥2]

= t2Emk

[
∥∇U(θkh)∥2

]
+ 2dt. (24)

Next, since ∇U is L-Lipschitz,

∥∇U(θkh)∥ ≤ ∥∇U(θkh+t)∥ + L∥θkh+t − θkh∥
≤ ∥∇U(θkh+t)∥ + Lt∥∇U(θkh)∥ +

√
2tL∥ξ∥,
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for h < 1/L, we can rearrange this inequality to obtain an upper bound for ∥∇U(θkh)∥

∥∇U(θkh)∥ ≤ 1

1 − Lt
∥∇U(θkh+t)∥ +

√
2tL

1 − Lt
∥ξ∥.

Taking squares and expectations above, then using (a+ b)2 ≤ 2(a2 + b2), it results

Emk

[
∥∇U(θkh)∥2

]
≤ 2

(1 − Lt)2
Enk,t

[
∥∇U(θkh+t)∥2

]
+

4dL2t

(1 − Lt)2

≤ 2

(1 − Lt)2
Ek,t +

4dL(1 + Lt)

(1 − Lt)2
, (25)

where we used Lemma 19 with probability measure m = nk,t.
Plugging (23), (24) and (25) into (22), we observe that

∂tJk,t ≤ −
(

1 − 1

2ϵ
− ϵL2t2

(1 − Lt)2

)
Ek,t + ϵdL2t

(1 + 3L2t2)

(1 − Lt)2
.

If we assume h ≤ 1
4L and optimize ϵ such that 1 − 1

2ϵ −
ϵL2t2

(1−Lt)2
≥ 1

2 , we get ϵ =
√
18
9 and

finally conclude that

∂tJk,t ≤ −1

2
Ek,t + 5dL2t.

Appendix C. Proofs of the results in Section 4

C.1 Proof of Lemma 11

Poincaré inequality implies the capacity inequality

m(A)CP (m)

2
≤ Capm(A),

(see Proposition 8.3.1 of Bakry et al., 2014). Then, we obtain inequality (9) from the
previous result if we find a positive function β such that

2

CP (m)

[
log

(
1 +

e2

m(A)

)
− s

m(A)

]
≤ β(s),

where 0 < m(A) ≤ 1/2.

Let us fix s > 0 small and define the function gs(x) = log
(

1 + e2

x

)
− s

x , for x ∈ (0, 1/2].

Using that gs reaches its maximum at xmax = se2

e2−s
, then we have

gs(x) ≤ gs =

 log
(
1
s

)
+ s

e2
+ 1, 0 < s ≤ e2

2e2+1

log(1 + 2e2) − 2s, s > e2

2e2+1

.
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After some simplifications, we define β as in the statement.

C.2 Proof of Proposition 12

On Ω = {f > M}, we simply upper bound f −M by f , then∫
Ω

(f(θ) −M)2H(θ)dm(θ) ≤
∫
Ω

f2(θ)H(θ)dm(θ).

We apply Holder’s inequality where p, q > 1, 1/p+ 1/q = 1 and could be fixed later on

∫
Ω

f2(θ)H(θ)dm(θ) ≤

∫
Ω

H(θ)dm(θ)

 1
q
∫
Ω

f2p(θ)H(θ)dm(θ)

 1
p

.

Let’s study the second integral. Consider another constant q′ > 1 to fix later on. Since

θ ≤ q′e
1
q′ θ−1

( or equivalently 1 + x ≤ ex where x = 1
q′ θ − 1 ), then∫

Ω

f2p(θ)H(θ)dm(θ) ≤ q′

e

∫
Ω

f2p(θ)e
1
q′H(θ)

dm(θ)

≤ q′

e

∫
Ω

eH(θ)dm(θ)

 1
q′
∫
Ω

f2p
′p(θ)dm(θ)

 1
p′

≤ q′

e

(
e2 + 1

) 1
q′

∫
Ω

f2p
′p(θ)dm(θ)

 1
p′

,

where we used one more time Holder’s inequality with constants p′, q′ > 1 such that
1/p′ + 1/q′ = 1 and the hypothesis

∫
Rd e

H(θ)dµ(θ) ≤ e2 + 1.
We have proven that

∫
Ω

f2(θ)H(θ)dm(θ) ≤
(
q′

e

(
e2 + 1

) 1
q′

) 1
p

∫
Ω

H(θ)dm(θ)

 1
q
∫
Ω

f2p
′p(θ)dm(θ)

 1
p′p

. (26)

Let be m(θ) = Ce−V (θ) and f2(θ) ≤ AebV (θ), then the expression inside the second
integral in (26) is

f2p
′p(θ)m(θ) ≤ Ap′pCe−(1−bp′p)V (θ).

If we choose p > 1 and p′ > 1 such that p′p < 1
b then the exponent is negative and the

integral converges since V (θ) ≳uc ∥θ∥ when ∥θ∥ is large.
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C.3 Proof of Corollary 14

Let k and t be fixed. We change of measure and then we apply Holder’s inequality two
times as in the proof of Proposition 12, see Appendix C.2 where m = µ and f2 = nk,t/µ,
then∫
Ω

H(θ)dnk,t(θ) = Z
∫
Ω

H(θ)eU(θ)nk,t(θ)dµ(θ)

≤ Z1− 1
p′p

(
q′

e

(
e2 + 1

) 1
q′

) 1
p

∫
Ω

H(θ)dµ(θ)

 1
q
∫
Ω

e(p
′p−1)U(θ) np

′p
k,t (θ) dθ

 1
p′p

.

where p, q, p′, q′ > 1, 1/p+ 1/q = 1 and 1/p′ + 1/q′ = 1 and we used that
∫
Rd e

H(θ)dµ(θ) ≤
e2 + 1.

From Proposition 18, we get that

∫
Ω

H(θ)dnk,t(θ) ≤ Cd,r,p,p′

∫
Ω

H(θ)dµ(θ)

 1
q
∫
Ω

e(p
′p−1)U(θ) np

′p
k,t (θ) dθ

 1
p′p

.

where

Cd,r,p,p′ =

(
2

(
2π

c

) d
2

d
dr
2

)1− 1
p′p (

q′

e

(
e2 + 1

) 1
q′

) 1
p

.

Now we study the second integral. The expression inside the integral is upper bounded
using Proposition 13 as follows

e(p
′p−1)U(θ) np

′p
k,t (θ) ≤ Ap′p

d exp

{(
9p′p

10
− 1

)
U(θ)

}
,

If we choose p > 1 and p′ > 1 such that p′p < 10
9 then the exponent is negative. Let’s

consider particularly the midpoint of [1, 10/9], then p′p = 19/18 and

e(p
′p−1)U(θ) np

′p
k,t (θ) ≤ Ap′p

d e−
1
20

U(θ).

Using (14) and (15) one more time, we get∫
Ω

e(p
′p−1)U(θ) np

′p
k,t (θ) dθ ≤ Ap′p

d

∫
Rd

e−
1
20

U(θ)dθ ≤ Ap′p
d

∫
Rd

e−
cr
20

∥θ∥
2

1+r
dθ

≤ 2d
dr
2 Ap′p

d

(
201+r2π

c

) d
2

.
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The results above imply the inequality

∫
Ω

H(θ)dnk,t(θ) ≤ Ad

∫
Ω

H(θ)dµ(θ)

 1
q

,

where the constant Ad changes proportionally. If we choose p > 1 and p′ > 1 such that
p′p = 19/18, we would obtain the value of q.

C.4 Proof of Lemma 15

We recall that the Bobkov bound on the Poincaré constant CP (m) for the log-concave
probability measure m is, see Bobkov (1999)

CP (m) ≥ 1

4K2V arm(id)
, (27)

where K is a universal constant and id is the identity function on Rd, that is id(θ) = θ for
any θ ∈ Rd. From now on, we simply denote V arm(id) as V arm(θ), where θ ∼ m.

We prove Lemma 15 using the Bobkov bound applied to µ and following the same
procedure as in Proposition 3.5 of Crespo et al. (2023).
Proof Since U satisfies hypothesis Hr

KL(c, L), Proposition 17 implies that

∥θ − θ∗∥2 ≤ 2

(1 + r)c
U1+r(θ), ∀θ ∈ Rd,

where θ∗ = arg minU . We use the fact that for any distributionm, V arm(θ) ≤ Em[∥θ−a∥2],
for any a ∈ Rd, then

V arµ(θ) ≤
∫
Rd

∥θ − θ∗∥2dµ ≤ 2

(1 + r)c
Eµ[U1+r(θ)].

We formulate the following lemma to control the moments of U along the Langevin
dynamics (2). This lemma is taken from Crespo et al. (2023) but the proof will be omitted.

Lemma 20 Assume that U satisfies Hr
KL(c, L) and Hmin, then for any α ≥ 1 and any

t > 0
Ept [U

α(ϑt)] ≲uc d
α(1+r),

where ϑt ∼ pt is the Langevin dynamics in (2) with initial distribution N (0, σ2Id).

The ergodic behaviour of (ϑt)t≥0 yields

V arµ(θ) ≤ 2

(1 + r)c
lim sup

t≥0
Ept [U

1+r(ϑt)] ≤ Cd(1+r)2 .

We conclude by using the Bobkov bound in (27).
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