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Abstract
Fueled by the ever-increasing need for statistics
that guarantee the privacy of their training sets,
this article studies the centrally-private estimation
of Sobolev-smooth densities of probability over
the hypercube in dimension d. The contributions
of this article are two-fold : Firstly, it general-
izes the one-dimensional results of (Lalanne et al.,
2023b) to non-integer levels of smoothness and to
a high-dimensional setting, which is important for
two reasons : it is more suited for modern learn-
ing tasks, and it allows understanding the relations
between privacy, dimensionality and smoothness,
which is a central question with differential pri-
vacy. Secondly, this article presents a private
strategy of estimation that is data-driven (usually
referred to as adaptive in Statistics) in order to
privately choose an estimator that achieves a good
bias-variance trade-off among a finite family of
private projection estimators without prior knowl-
edge of the ground-truth smoothness β. This is
achieved by adapting the Lepskii method for pri-
vate selection, by adding a new penalization term
that makes the estimation privacy-aware.

1. Introduction
Multiple experimental pieces of work have demonstrated
that the unrestricted use of data for various learning tasks
may cause privacy concerns (Narayanan & Shmatikov,
2006; Backstrom et al., 2007; Fredrikson et al., 2015; Dinur
& Nissim, 2003; Homer et al., 2008; Loukides et al., 2010;
Narayanan & Shmatikov, 2008; Sweeney, 2000; Gonon
et al., 2023; Wagner & Eckhoff, 2018; Sweeney, 2002;
Carlini et al., 2022). As a result, formal guarantees have
been developed through differential privacy (Dwork et al.,
2006) in order to guarantee that a quantity built on users’
data does not leak more information than a given threshold.
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It is now considered as the gold standard in terms of pri-
vacy protection, and it is notably used by Apple (Thakurta
et al., 2017), Google (Erlingsson et al., 2014; Bittau et al.,
2017), Microsoft (Ding et al., 2017) and the US Census
Bureau (Machanavajjhala et al., 2008; Haney et al., 2017;
Abowd, 2018) among many others.

Let f be a density of probability on [0, 1]d w.r.t. Lebesgue’s
measure, and let X1, . . . , Xn be n i.i.d. random variables
with a distribution of probability that admits f as density
on [0, 1]d. In this article, we will study the estimation of f
with a quantity f̂ that privately builds on X1, . . . , Xn. The
notion of privacy that is adopted in this article is the notion
of central zero-concentrated differential privacy (Dwork &
Rothblum, 2016; Bun & Steinke, 2016) (see Section 2).

This problem is statistically difficult (in the sense that it
requires a lot of data) and suffers from the curse of dimen-
sionality, which means that even without privacy consid-
erations, one must expect an exponential number (in the
dimensionality) of data points in order to solve it. Yet, its
interest lies in its generality, and in its expressivity. Ex-
ploring the effects of privacy on this statistical problem is
interesting on a theoretical standpoint, in order to better
understand differential privacy, and for the practitioner in
order to better decide between this general approach and a
different one that incorporates more prior information about
the distribution to estimate.

The privacy constraint naturally has a cost on the utility of
estimators for this task, as with other forms of communica-
tion constraints (Barnes et al., 2019; 2020; Acharya et al.,
2021a;c;d;b). An important question with differential pri-
vacy is to precisely characterize this cost, and to compare
it to the incompressible error due to the estimation from
samples. In this article, we quantify this trade-off when
the density f has a certain level of smoothness β. Further-
more, we also explain how to privately estimate f when
this smoothness level is not accessible to the practitioner, a
property of the estimator referred-to as adaptivity.

1.1. Related work

Statistics and differential privacy. Estimating various
quantities under differential privacy has received an in-
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Table 1. Comparison with concurrent work.

WORK PRIVACY DIMENSIONALITY SMOOTHNESS ADAPTIVITY ESTIMATION RATE

(WASSERMAN & ZHOU, 2010) FIXED d = 1 β ∈
(
1
2
,+∞

)
× Θ

(
n
− 2β

2β+1

)
(BARBER & DUCHI, 2014) VARIABLE d ∈ N \ {0} β = 1 × Θ

(
n− 2

2+d + (n
√
ρ)−

2
1+d )

)
(LALANNE ET AL., 2023B) VARIABLE d = 1 β ∈ N \ {0} × Θ

(
n
− 2β

2β+1 + (n
√
ρ)

− 2β
β+1 )

)
THIS WORK VARIABLE d ∈ N \ {0} β ∈ (0,+∞)

√
Θ
(
n
− 2β

2β+d + (n
√
ρ)

− 2β
β+d )

)
In (Wasserman & Zhou, 2010), the smoothness is defined in terms of Sobolev ellipsoids. The results are presented under
pure differential privacy, which implies concentrated differential privacy. In (Barber & Duchi, 2014), the smoothness is
expressed in therms of Lipschitz continuity, which is usually assimilated heuristically to β = 1 in terms of Sobolev spaces.
Again, the authors worked under ϵ pure differential privacy, but we took the liberty to express the results with ρ = ϵ2 in
order to simplify comparisons.

creasing amount of attention during the last decade. A
non-exhaustive list of references include (Wasserman &
Zhou, 2010; Barber & Duchi, 2014; Diakonikolas et al.,
2015; Karwa & Vadhan, 2018; Bun et al., 2019; 2021; Ka-
math et al., 2019; Biswas et al., 2020; Kamath et al., 2020;
Acharya et al., 2021e; Lalanne, 2023; Aden-Ali et al., 2021;
Cai et al., 2019; Brown et al., 2021; Cai et al., 2019; Ka-
math et al., 2022a; Lalanne et al., 2023c;d; Singhal, 2023;
Kamath et al., 2023; 2022b). Most of those references study
parametric estimation problems (i.e. estimating a quantity
living in a finite-dimensional space), and observe (at a meta
level) that the error of estimation can usually be expressed
as a function of the sample size (n), the dimensionality (d),
the level of privacy (ρ), and various quantities that charac-
terize the regularity of the distribution class (sub-Gaussian,
moments, smoothness, ...). Besides, the interesting effects
of the privacy can be observed when the level of privacy
(ρ) is considered as a free variable of the problem. Con-
versely, fixing the level of privacy usually results in rates of
estimation that are the same as in the non-private case. In
this article, we will consider the privacy budget as free, thus
allowing to investigate some interesting trade-offs between
the sample size n and the level of privacy ρ.

Unconstrained density estimation. The problem of esti-
mating the density f is known as a nonparametric statistical
problem. It differs from some more usual problems in the
sense that the quantity to estimate (f ) lives in an infinite-
dimensional vector space. Specific techniques thus have to
be used to estimate it. One of those techniques consists in
approximating f by learning its projections on subspaces
of growing dimension, and it is being used in this article.
Without privacy concerns, this problem has been extensively
studied for multiple decades. Without trying to be exhaus-
tive, some important monographs include (Conover, 1999;
Györfi et al., 2002; Tsybakov, 2009; Wasserman, 2006).

Density estimation with differential privacy. With dif-
ferential privacy, the problem of nonparametric density esti-
mation has been studied in a few articles. Before continuing,
it is important to note that there are two main privacy attack
models in the literature (depending on whether an aggrega-
tor can be trusted or not), leading to two distinct definitions
of privacy : central differential privacy or local differential
privacy (Evfimievski et al., 2003; Kasiviswanathan et al.,
2008). This article studies the central model, and local dif-
ferential privacy is outside its scope. This paragraph only
covers the literature in the central model. An important early
piece of work (Wasserman & Zhou, 2010) has paved the way
for private non-parametric density estimation, presenting
general private projection and histogram estimators. How-
ever, it only studied the case where the level of privacy ρ is
kept constant, leading to the rather anticlimactic conclusion
that privacy had no effect on the optimal rate of estimation
for the problem at hand. In (Barber & Duchi, 2014), the
authors were the first to consider ρ as a variable, and to
study rates of convergence that are not privacy-agnostic. A
shortcoming of their study is that they only study the esti-
mation of Lipschitz-continuous densities, which imposes a
fixed level of smoothness. More recently, (Lalanne et al.,
2023b) studied the estimation of one-dimensional densities
of general integer-valued Sobolev-smoothness β in a non
privacy-agnostic way. This is the piece of work that is the
closest to our article. However, three problems are that the
authors only tackle the case of one-dimensional data, that
the smoothness parameter only takes discrete values, and
that their optimal estimation procedure needs to know the
ground-truth smoothness β beforehand. This article solves
all of these issues. A comparison between our article and
this body of literature is summarized in Table 1.

Adaptive estimation. Classical frameworks for adaptive
estimators build estimators of the bias of each model and
select the model with the lowest estimated squared bias
penalized by the variance (Akaike, 1998; Mallows, 1973;
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Birgé & Massart, 1993; Barron et al., 1999; Laurent & Mas-
sart, 2000; Massart, 2007). The Lepskii method (Lepskii,
1991; 1992; 1993; Goldenhsluger & Lepski, 2007; Gold-
enshluger & Lepski, 2008; 2011; 2013) is similar, except
that the bias is replaced by a comparative bias (within the
model class), which is in itself defined as the extremum of a
penalized expression. For instance, it has been studied in the
context of non-private projection estimators in (Comte & Jo-
hannes, 2012; Chagny, 2013; Bertin et al., 2016). However,
to the best of our knowledge, it has never been used as a
privacy-aware selection mechanism in the context of central
differential privacy before. A nice overview of non-private
adaptive methods is presented in (Chagny, 2016).

In the literature of differential privacy, there are clever ways
to perform model selection (which is here used as a synonym
of adaptivity) without having to split the privacy budget
(with composition theorems like Lemma 2.3) between all
the models to choose from (e.g. the Exponential Mechanism
(McSherry & Talwar, 2007), Report Noisy Max (Dwork &
Roth, 2014) or the Permute-And-Flip mechanism (McKenna
& Sheldon, 2020; Ding et al., 2021)). Such methods have
found their way in multiple applications (Hardt et al., 2012;
Blocki et al., 2016; Smith, 2011; Bhaskar et al., 2010; Liu
& Talwar, 2019). Unfortunately, the adaptive estimation
procedure that we adopt here does not adequately fit in
any of those frameworks, and we will thus resort to using
composition theorems for the model selection. A blessing
of the procedure that is presented here, however, is that it
only needs to select between very few models (typically of
the order of a polynomial of log(n)), and the degradation of
utility will hence be small.

Under local privacy. For completeness, we include ref-
erences for related problems in the local model of privacy
(that we recall is different to the model of this article). In
this setup, nonparametric density estimation was studied
in (Duchi et al., 2013; 2016; Butucea et al., 2019; Kroll,
2021; Schluttenhofer & Johannes, 2022; Györfi & Kroll,
2023). In (Butucea et al., 2019), adaptivity is obtained by
leveraging the properties of the wavelet basis that is used for
the estimation. (Kroll, 2021) uses a variant of the Lepskii
method for adaptivity, with the twist that the level of privacy
is fixed beforehand. In (Schluttenhofer & Johannes, 2022),
the authors modify the latter to be adaptive to the level of
privacy as well. Our results differ from theirs by the model
of privacy, and by the fact that they look at the estimation of
the density at a single point whereas we look at the estima-
tion of the density on the whole support. In particular, the
rates of estimation are different. Finally, nonparametric re-
gression was studied in (Berrett et al., 2021; Györfi & Kroll,
2022), nonparametric tests were studied in (Lam-Weil et al.,
2022), and recently, nonparametric locally-private Bayesian
modeling was proposed in (Beraha et al., 2023).

1.2. Contributions

The main contributions of this article could be summarized
as follows :

Non-integer levels of smoothness. While the results of
(Lalanne et al., 2023b) coincide with the ones presented
in this article in the case of integer-valued β’s (in dimen-
sion 1), the authors did not mention the eventuality of more
fine-grained levels of smoothness. A usual trick for general-
izing consists in defining the class of densities of interest in
terms of their Fourier coefficient instead of their derivatives
(which was the reason for the integer-valued smoothness
in the first place). However, such definition does not lead
to provably good lower-bounds under differential privacy.
Instead, we circumvent that difficulty by considering an
extended definition of Sobolev spaces via Höderian remain-
ders (see Appendix E). This definition is a bit harder to work
with, yet it has the advantage of leading to tight lower and
upper-bounds for any non-negative β.

Arbitrary dimension. Concurrent work (Lalanne et al.,
2023b) focuses on the estimation of the density of univariate
data. In this article, we focus on the more general setup
of arbitrary dimension d. In particular, the effects of di-
mensionality on the estimation and on the privacy-utility
tradeoff are discussed in Section 5.2.

Adaptivity. The last main contribution of this article is to
propose an adaptive estimator based on the Lepskii method
that almost matches the performance of the optimal esti-
mator, without prior knowledge of the smoothness of the
density of interest. Adaptivity is an important property in
statistics and in particular with density estimation, and to
the best of our knowledge, no concurrent work for density
estimation in the context of central differential privacy has
presented such adaptive procedure before.

1.3. Notations

N, Z, R and C are respectively used to refer to the sets
of natural numbers (including 0), relative numbers, real
numbers, and complex numbers. In order to avoid confusion
with indexes, we note iC the canonical complex square root
of −1. If x ∈ C, x̄ is used to refer to its conjugate complex
number, |z| to its modulus, R(z) to its real part and I(z) to
its imaginary part. We equip Cd with its standard Hermitian
product ⟨·, ·⟩, and its associated norm is noted ∥ · ∥. We note
B(x, r) the open ball or radius r centered in x for ∥ · ∥. For
p ∈ N \ {0} ∪ {+∞}, ∥ · ∥p refers to the usual lp norm
for complex-valued vectors (in particular ∥ · ∥ = ∥ · ∥2),
and to the usual Lp norm for complex-valued measurable
functions. For any k ∈ N, Ck(S) is used to refer to the set of
functions from a space S to C that are k times continuously
differentiable. C∞(S) is used to refer to ∩k∈NCk(S). For a
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multi-index a = (a1, . . . , ad) ∈ Nd, |a| is used to refer to
the length of a, which is

∑d
i=1 a

i.

For a multi-index a = (a1, . . . , ad) ∈ Nd and b ∈ C,
we define ba := (ba1, . . . , bad), ba := b|a|, and ab :=
((a1)b, . . . , (ad)b). Furthermore, if b = (b1, . . . , bd) ∈ Cd,
b×a := (b1)a

1 × · · · × (bd)a
d

. Given a k ∈ N, f ∈ Ck(Rd),
and a multi-index a = (a1, . . . , ad) ∈ Nd such that |a| ≤ k,
we use the notation

∂af :=
∂|a|f

∂a
1

1 ∂a
2

2 . . . ∂a
d

d

,

where ∂/∂i is used to refer to the derivation w.r.t. the ith

component in the canonical basis of Rd. Alternatively, we
may also note f (a) as a short for ∂af . N (µ,Σ) refers to
the multivariate normal distribution of mean vector µ and of
covariance matrix Σ. When a distribution is used in vector
calculus (e.g. a+N (µ,Σ)), the distribution has to be un-
derstood as a random variable with the desired distribution.
Without further specification, it is taken independent of the
rest of the stochastic quantities of the article. For a density
of probability f , we may simply refer by f the probability
distribution associated with it. The rest of the notations are
introduced within the article directly.

2. Differential privacy
This section presents some basic background on differential
privacy that will be needed for the rest of the article.

Given two datasets X = (X1, . . . , Xn) ∈ Xn and Y =
(Y1, . . . , Yn) ∈ Xn where X is the feature space ([0, 1]d in
this article), the Hamming distance between X and Y is
defined as

dham (X,Y) :=

n∑
i=1

1Xi ̸=Yi
.

Definition 2.1 (ρ-zCDP (Dwork & Rothblum, 2016; Bun &
Steinke, 2016)). Given an output space O and ρ ∈ (0,+∞),
a randomized mechanism (i.e. a conditional kernel of proba-
bilities) M : Xn → O is ρ-zero concentrated differentially
private (ρ-zCDP) if ∀X,Y ∈ Xn, dham (X,Y) ≤ 1 =⇒

∀1 < α < +∞ : Dα (M(X)∥M(Y)) ≤ ρα,

where Dα ( ·∥ ·) denotes the Renyi divergence of level α,
defined when α > 1 as:

Dα (P∥Q) :=
1

α− 1
log

∫ (
dP
dQ

)α−1

dQ .

For more details on this measure of divergence, please refer
to (van Erven & Harremoës, 2014).

Lemma 2.2 (Privacy of the Gaussian mechanism (Proposi-
tion 6 with Lemma 7 in (Bun & Steinke, 2016))). Given a

deterministic function h mapping a dataset to a quantity in
Rd′ , one can define the l2-sensitivity of h as

∆2h := sup
X,Y∈Xn:dham(X,Y)≤1

∥∥h(X)− h(Y)
∥∥
2
.

When this quantity is finite, for any ρ > 0, the Gaussian
mechanism defined as

X 7→ h(X) +
∆2h√
2ρ

N (0, Id′) ,

is ρ-zCDP.

Lemma 2.3 (Adaptive composition of private mechanisms
(Lemma 7 in (Bun & Steinke, 2016))). If the private
mechanisms M1(·),M2(·, z) are respectively ρ1-zCDP and
ρ2-zCDP for any context z, then the private mechanism
M2(·,M1(·)) is (ρ1 + ρ2)-zCDP.

The last result can easily be generalized to a finite family of
mechanisms by induction.

Finally, the last property of private mechanisms that we will
use implicitly throughout this article is the data-processing
inequality (or post-processing lemma in the language of
differential privacy (Lemma 8 in (Bun & Steinke, 2016))),
which states that if M satisfies ρ-zCDP, then for any condi-
tional kernel of probabilities g, g ◦M also satisfies ρ-zCDP.

3. (Private) projection estimators
In Statistics, when the quantity to estimate f belongs to
some Hilbert space that admits a countable Hilbert basis
(ϕk)k, projection estimators (Tsybakov, 2009) usually refer
to estimators of the form

f̂ =
∑
k

θ̂kϕk ,

where the sum is usually truncated with a spectral cut-off
of frequencies, and where (θ̂k)k is a sequence of estimators
of the true coefficients of the decomposition in the Hilbert
basis. The name comes from the fact that such estima-
tor mimics the orthogonal projection of f onto the space
spanned by the first vectors of this Hilbert basis. To the best
of our knowledge, their first appearance in the context of
differential privacy is in (Wasserman & Zhou, 2010).

3.1. Explicit construction

We detail in Section 4 the exact functional spaces in which
we assume the unknown density f to be. For now, we
only need to know that f is in L2([0, 1]d) equipped with
Lebesgue’s measure and its standard Hermitian product

⟨f, g⟩ :=
∫
[0,1]d

fḡ ,
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and its standard inherited norm ∥ · ∥. We further fix the
Hilbert basis (ϕk)k of L2([0, 1]d) as the one associated to
the following Fourier basis :

∀k ∈ Zd, ϕk(x) := eiC2π⟨k,x⟩

= eiC2π(k1x
1+···+kdx

d) .
(1)

We also define Sk := Span (ϕk)k∈{−M,...,M}d the finite-
dimensional vector space spanned by the ϕk’s with every
index in k lower than M , and we define fM as the orthogo-
nal projection of f onto SM .

From this, we define the natural estimators of the coeffi-
cients in the Fourier basis

θ̃k :=
1

n

n∑
j=1

ϕ̄k(Xj) =
1

n

n∑
j=1

e−iC2π(k1X
d
j +···+kdX

d
j ) ,

(2)
and their noisy estimates

θ̂k := θ̃k + σMξk , (3)

where σM will be a variance factor that will be tuned later
on to obtain the desired level of privacy, and (ξk)k∈Zd is an
i.i.d. complex Gaussian noise

ξk ∼ (N (0, 1) + iCN (0, 1)) . (4)

Finally, we define the projection estimator at rank M as

f̃M :=
∑

k∈{−M,...,M}d
θ̃kϕk , (5)

and its private counterpart as

f̂M :=
∑

k∈{−M,...,M}d
θ̂kϕk . (6)

3.2. General utility

The general utility of the previous estimator is given by the
following result :

Lemma 3.1 (General bias-variance decomposition of f̂M ).
For any M , the estimator f̂M satisfies

E
(
∥f − f̂M∥2

)
≤∥f − fM∥2︸ ︷︷ ︸

Squared Bias

+
(2M + 1)d

n︸ ︷︷ ︸
Sampling Variance UB

+ 2(2M + 1)dσ2
M︸ ︷︷ ︸

Privacy Noise Variance

.

Proof. See Appendix A.1.

The bias term ∥f − fM∥ simply characterizes how well
f is approximated in SM . Controlling this term requires
regularity assumptions on f , which is done in Section 4.

3.3. Privacy guarantees

The privacy of this estimation procedure is given by the
following theorem :

Theorem 3.2 (Privacy of f̂M ). For any M , the mechanism
(X1, . . . , Xn) 7→ f̂M (or equivalently the mechanism that
releases the computed θ̂k’s for k ∈ {−M, . . . ,M}d) is

ρ-zCDP if σM =
2
√

(2M+1)d

n
√
ρ .

Proof. See Appendix A.2.

If follows from the application of the classical privacy guar-
antees of the Gaussian mechanism.

4. Upper-Bounds for different smoothness
levels

As explained in the last section, controlling the bias term
∥f−fM∥ requires regularity assumptions on f . This section
solves this issue by imposing Sobolev-smoothness.

4.1. Sobolev spaces in high dimension

In order to simplify the reading flow of the article, its main
body only presents spaces of integer smoothness β ∈ N \
{0}. All the results can be generalized to spaces of real
smoothness β > 0. With every result that we present for an
integer β in the main body of the article, we will talk about
its counterpart in the case of real β, and we will link to the
technical details in the appendix.

For β ∈ N \ {0} and L > 0, the isotropic Sobolev space
SL(β) is defined as the subset of Ck([0, 1]d) of functions
of which the energy of the βth derivative is bounded by L2.
Namely, f ∈ SL(β) if f ∈ Ck([0, 1]d) and if∑

α∈Nd:|α|=β

∫
[0,1]d

|∂αf |2 ≤ L2 .

β is referred to as the smoothness parameter of the func-
tional space SL(β). For real β’s, Sobolev spaces are defined
similarly, except that non-integer derivatives are handled via
Hölderian remainders (see Appendix E).

As it is often the case when dealing with Fourier coef-
ficients, it is convenient to define the periodic Sobolev
space Sp

L(β) by making sure that the functions and their
derivatives are compatible with the typical periodicity of
the Fourier basis. A function f ∈ SL(β) is in Sp

L(β) if for
any multi-index α ∈ Nd of length at most β (strict) and any
x = (x1, . . . , xd) ∈ [0, 1]d, xi ∈ {0, 1} =⇒

∂αf(x) = ∂αf(x1, xi−1, 1− xi, xi+1, . . . , xd) . (7)

The definition of periodic spaces is identical in the case of
real-valued β’s.
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4.2. Implications on the bias

The Sobolev-smoothness of f imposes that its Fourier coef-
ficient have a polynomial decrease (see Lemma B.1). This
property may in turn be used to control the bias of with the
following lemma :

Lemma 4.1 (Bias of f̂M with Sobolev assumption). For
any M , if f ∈ Sp

L(β), then the bias of fM satisfies

∥f − fM∥2 ≤ L2

(2π)2β
1

(M + 1)2β
.

Proof. See Appendix B.1.

In the case of real-valued β’s, a similar control on the bias
is given in Proposition E.1. Its main conceptual difference
with Lemma 4.1 is that it adds a linear dependence in the
dimension.

4.3. Estimation upper-bound in Sobolev spaces

Combining Lemma 4.1 and Lemma 3.1, and then optimizing
over M yields the following upper-bound for the private
statistical estimation in Sp

L(β) :

Theorem 4.2 (Upper-bound in Sp
L(β)). There exists a posi-

tiveC that depends on β and L only such that, if f ∈ Sp
L(β),

and if the values M and σM are tuned as

M + 1 = min
{⌊(

n/2d
) 1

2β+d

⌋
,
⌊(
n
√
ρ/2d

) 1
β+d

⌋}
,

and σM =
2
√

(2M+1)d

n
√
ρ , then the mechanism that returns

f̂M is ρ-zCDP and its error is bounded as

E
(
∥f − f̂M∥2

)
≤ C(M + 1)−2β .

Proof. See Appendix B.2.

Lemma 4.1 and Proposition E.1 are similar enough that the
only adaptation to Theorem 4.2 needed to make it work for
integer-valued β’s is to add that C also depends linearly on
d. In particular, the scaling in n and ρ remains the same.

5. Lower-bounds and minimax optimality
This section presents lower-bounds on the private estima-
tion in Sp

L(β), and discusses on the role of the different
parameters on the difficulty of estimation.

5.1. Quantitative lower-bound

We have the following lower-bound, which generalizes the
results of (Lalanne et al., 2023b) in general dimension d :

Theorem 5.1 (Lower-bound in Sp
L(β)). There exist two

positive constants C1 and C2 depending on L, β and d only
such that, for any n and ρ, if f̂ satisfies ρ-zCDP, then there
exists f ∈ Sp

L(β) such that

Ef

(
∥f − f̂∥2

)
≥ C1 max

{
n−

2β
2β+d , (n

√
ρ)−

2β
β+d )

}
as soon as min

{
n, n

√
ρ
}
≥ C2.

Proof. See Appendix C.1.

For real-valued β’s, this result also holds. Appendix E.3
discusses the adaptation of the proof of Theorem 5.1 to this
more general case.

Theorem 5.1, when compared to the upper-bound given
in Theorem 4.2 allows concluding that private projection
estimators converge at the minimax-optimal rate

rn,ρ(β) := max
{
n−

2β
2β+d , (n

√
ρ)−

2β
β+d )

}
, ∀β > 0 ,

(8)
up to a multiplicative constant depending on L, β and d only.
While the dependence in those quantities is easily explained
in the upper-bounds, a caveat of the proof of Theorem 5.1 is
that the dependence is implicit by construction, and that no
closed-form formula may easily be obtained.

5.2. Qualitative implications

From this optimal rate of estimation, we may describe the
effects of the different parameters of the privacy-utility trade-
off.

• The privacy parameter ρ : The two important regimes
of estimation are ρ ≳ n−

2β
2β+d where ≳ should be un-

derstood as ”greater up to a multiplicative constant”
and its complement ρ ≪ n−

2β
2β+d . In the first regime,

when the level of privacy is not too high compared to
the amount of data, privacy comes at a negligible cost
on the estimation. On the other hand, in the comple-
mentary regime, the utility can be arbitrarily degraded
by making ρ arbitrarily small.

• The smoothness β : The higher β, the smaller the
cut-off rate n−

2β
2β+d . In other words, the smoother the

density to estimate, the more private the estimation can
be with no significant degradation of utility.

• The dimensionality d : Dimensionality has the con-
verse effect on the cut-off rate. The higher the dimen-
sion, the more data will be needed to make the effects
of privacy negligible. Furthermore, the cut-off itself is
affected by the curse of dimensionality.
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6. Adaptivity
As seen previously, it is possible to design a private mecha-
nism via projection estimators that is minimax optimal for
the class of densities in Sp

L(β) in dimension d.

However, to do so, the optimal cut-off frequency:

Mn,ρ(β) := min
{⌊
n

1
2β+d

⌋
,
⌊
(n
√
ρ)

1
β+d

⌋}
is chosen based on the knowledge on n, ρ, d and β (see
Theorem 4.2). For the practitioner, the knowledge of n,
ρ and d is not difficult. The knowledge of β on the other
hand is a much stronger hypothesis, and it already implies a
strong prior knowledge on f . This section presents a private
estimation strategy that is adaptive in the sense that it does
not require the prior knowledge of β, while almost achieving
the utility of Theorem 4.2 (up to polylogarithmic factors
and negligible terms).

6.1. A first candidate for private selection

At first, an idea for private adaptive estimation could be to :

(i) Compute a non-private adaptive estimator of the den-
sity with classical methods (like for instance the non-
private Lepskii method (Lepskii, 1991)).

(ii) Then add noise to its Fourier coefficients in order to
make it private.

However, there is a trap with this method that one must not
fall into : the adaptive truncation rank M̂ that is selected by
the non-private adaptive method is a quantity that is built
from the data, and it may leak user’s information. It is thus
not possible to simply add noise to the Fourier coefficients
of the non-private Fourier coefficients up to truncation rank
M̂ with magnitude σM̂ calibrated as is Theorem 3.2 and to
call the result differentially private. Instead, one must add
noise to the Fourier coefficients up to a truncation rank that
is either fixed in advance, or that builds on the data, in which
case the privacy budget of such will have to be accounted
for. The problem with such method is that classical adaptive
methods will only try to balance the bias and the sampling
variance, but won’t account for the privacy variance. In
particular, when ρ is small, it is unclear if this method may
have the optimal rate of convergence. In the next subsection,
we detail the alternative method that we chose, that balances
the bias, the sampling variance and the privacy variance at
the same time, leading to private and adaptive near-optimal
estimation.

6.2. Private and privacy-aware Lepskii method

Multiple flavors of the Lepskii method exist in the literature.
Here, we present our adaptations of the main two ones

to the context of private model selection. We discuss the
advantages and the drawbacks of each method.

6.2.1. RISK PENALIZATION

We introduce the penalized risk (up to a useful log term):

rn,ρ(β)
∗ := C(log n)arn,ρ(β), (9)

where C > 1 and a > 0 are some constants independent
from n and ρ that will be specified later on. We introduce
a grid B on the possible values of β that ranges between 0
and log n, defined by:

Bn :=

{
β0 =

knϵ

log(n)
, β1 = β0 −

ε

log(n)
,

β2 = β1 −
ε

log(n)
, . . . , βkn−1 ≥ 0

}
.

(10)
The number of possible values for β in Bn is then denoted
by kn and kn = ⌊ε−1 log2 n⌋.

Our Lepskii decision rule is built upon the estimation of the
smoothness parameter with the computation of a collection
of estimators for several values of β ∈ Bn and then with a
clever selection among theses values with the help of a trade-
off criterion. Thanks to Lemma 2.3, to ensure a desired level
of privacy of our final estimator, we introduce

ρ′n = ρε log−2 n. (11)

We are ready to define our adaptive selection rule as:

m̂n := inf

{
m ≥ 0 : ∀ℓ ≥ m,

∥f̂Mn,ρ′n
(βm) − f̂Mn,ρ′n

(βℓ)∥
2
2 ≤ rn,ρ′n(βℓ)

∗
}

(12)

For the sake of clarity, we will use the following shortcut of
notations to improve the readability of our paper:

f̂M̂ := f̂Mn,ρ′n
(βm̂n ) and M̂ :=Mn,ρ′n

(βm̂n) .

We establish the following result.

Theorem 6.1. Assume that a ≥ 1, C ≥ 8L2 ∨ 22d+9 and
n ≥ 3, if f̂M̂ is the adaptive estimator selected with the
Lepskii rule, then f̂M̂ is ρ-zCDP and it satisfies the risk
upper bound

E
(
∥f̂M̂ − f∥2

)
≤ 2
√
rn,ρ′n(β)

∗ exp

(
ε

β + d

)
+
√
8(2 + d)ε−3/2

(
1 + ρ′n

− 1
2(1+d)

)
log2 nn−2

Proof. See Appendix D.1
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Comments. This result shows that out of the box (i.e.
without additional assumptions on f ), f̂M̂ nearly matches
the optimal speed of estimation up to negligible terms, and
by excluding the fact that we did not take the error squared,
but simply the error in L2 distance.

6.2.2. PENALIZATION OF THE ESTIMATED BIAS

Let M be the collection of spectral cut-offs. The following
method describes how to choose M̂ , and the associated f̂M̂ .
We start by estimating f̃M and f̂M for any M ∈ M with

σM =

√
2(2M+1)d

n
√
ρ′

where ρ′ is tuned to obtain ρ-zCDP in
the end as ρ′ = ρ

|M| .

Then for any M , we define the following estimator of the
squared bias of f̂M :

B2(K) := max
M ′∈K

{
∥ProjSM′

(f̂M )− f̂M ′∥2 − Λ(1)(M ′)
}

(13)
where Λ(1)(·) is a penalization term that is fixed later. Then,
M̂ is chosen as the minimizer of the penalized estimated
squared bias.

M̂ := argminM∈M

{
B2(K) + Λ(2)(K)

}
. (14)

Again, Λ(2)(·) is a penalization term that is fixed later on.

f̂M̂ satisfies the following oracle inequality :

Theorem 6.2. When computed with σM =
2
√

(2M+1)d

n
√

ρ/|M|
for

any M ∈ M, the mechanism that releases f̂M̂ satisfies
ρ-zCDP. Furthermore, there exist two absolute constants
C1 > 0 and C3 > 0 and a quantity C2 > 0 depending only
on ∥f∥∞1 such that, if for any M ,

Λ(1)(M) =
96(2M + 1)d

n
+

96(2M + 1)2d

n2ρ/|M|

and

Λ(2)(M) = Λ(1)(M) +
16(2M + 1)2d

n2ρ/|M|
,

1This dependence arises because of a technical argument in the
proof.

and if (2maxM+ 1)d ≤ n, then f̂M̂ satisfies

E
(
∥f − f̂M̂∥2

)
≤

C1 min
M∈M

{
∥f − fM∥2 + (2M + 1)d

n

+2(2M + 1)dσ2
M

}
︸ ︷︷ ︸

Best bias-variance tradeoff inM with privacy budget ρ
|M|

+
C2

n︸︷︷︸
Sampling residual

+
C3|M|
n2ρ︸ ︷︷ ︸

Privacy residual

.

(15)

Proof. See Appendix D.2.

Since the bias is left uncontrolled in this result, it remains
true in the case of real-valued β’s.

When the collection of spectral cut-offs M is adequately
chosen, this oracle inequality may be used to prove near-
optimal convergence speed.

Theorem 6.3. There exist a C1 > 0 depending on β and
L, and a C2 > 0 depending on β, d and ∥f∥∞ such that, if
min{n, n

√
ρ/ log2 (n)} ≥ C2, then f̂M̂ computed with

M =

{
1, 2, 4, . . . , 2

⌊
log2

(
n1/d−1

2

)⌋}

and all the other hyperparameters set as in Theorem 6.2 is
ρ-zCDP and its utility satisfies

E

(
∥f−f̂M̂∥2

)
≤

C1 max

{
n−

2β
2β+d ,

(
n
√
ρ√

log2 (n)

)− 2β
β+d

}
.

(16)

Proof. See Appendix D.3.

Because of the extra dimensionality term in the control of
the bias in the case of real-valued β’s, this result remains
true in this case if one adds that C1 also depends on d.

Comments. Contrary tho the last procedure, this new one
is near-optimal in terms of squared error, at the cost of the
control of ∥f∥∞. As explained before, this requirement
comes from a technical detail in the proof, and it might
be an artifact of a suboptimal analysis from us. Also, the
polylogarithmic degradation only affects the privacy term.
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A. Proofs of Section 3
A.1. Proof of Lemma 3.1

Our starting point is the Parseval equality, that leads to:

E
(
∥f − f̂M∥2

)
Parseval
= E

 ∑
k∈Zd\{−M,...,M}d

|θk|2 +
∑

k∈{−M,...,M}d
|θk − θ̂k|2

 , (17)

where the family (θk)k refers to the Fourier coefficients of f in the basis defined in (1), and where the noisy Fourier
coefficient estimators

(
θ̂k

)
k∈{−M,...,M}d

are defined in (3). First, we may notice that :∑
k∈Zd\{−M,...,M}d

|θk|2 = ∥f − fM∥2 (18)

deterministically. This leads to the bias term in the error decomposition.

Then, for any k ∈ {−M, . . . ,M}d,

E
(
|θk − θ̂k|2

)
≤
∣∣∣E(θ̂k)− θk

∣∣∣2 + V
(
θ̂k

)
. (19)

Furthermore,

E
(
θ̂k

)
(3)
= E

(
θ̃k + σK (N (0, 1) + iCN (0, 1))

)
= E

(
θ̃k

)
(2)
= E

(
1

n

n∑
i=1

ϕ̄k(Xi)

)

=
1

n

n∑
i=1

E
(
ϕ̄k(Xi)

)
=

1

n

n∑
i=1

θk = θk .

(20)

Finally,

V
(
θ̂k

)
(3)
= V

(
θ̃k + σK (N (0, 1) + iCN (0, 1))

)
Indep.
= V

(
θ̃k

)
+ V (σK (N (0, 1) + iCN (0, 1)))

(2)
= V

(
1

n

n∑
i=1

ϕ̄k(Xi)

)
+ V (σM (N (0, 1) + iCN (0, 1)))

Indep.
=

1

n2

n∑
i=1

V
(
ϕ̄k(Xi)

)
+ 2σ2

M

|ϕk(·)|≤1 & Lemma F.1
≤ 1

n2

n∑
i=1

1 + 2σ2
M =

1

n
+ 2σ2

M

(21)

A.2. Proof of Theorem 3.2

The mechanism (X1, . . . , Xn) 7→ f̂M may equivalently be seen as the mechanism that releases the vector in C(2M+1)d

of the privatized Fourier coefficient estimates, or as the mechanism that releases the vector in R2(2M+1)d of the real and
imaginary parts (respectively noted R(·) and I(·)) of the privatized Fourier coefficient estimates.

We aim to apply Lemma 2.2: for this purpose, consider any multi-index k, and any (X1, . . . , Xn), (X
′
1, . . . , X

′
n) ∈ [0, 1]d,

∣∣∣θ̃k(X1, . . . , Xn)− θ̃k(X
′
1, . . . , X

′
n)
∣∣∣ =

∣∣∣∣∣∣ 1n
n∑

j=1

ϕ̄k(Xj)−
1

n

n∑
j=1

ϕ̄k(X
′
j)

∣∣∣∣∣∣
≤ 1

n

n∑
j=1

∣∣ϕ̄k(Xj)− ϕ̄k(X
′
j)
∣∣

|ϕk(·)|≤1
≤ 2dham ((X1, . . . , Xn), (X

′
1, . . . , X

′
n))

n
. ,

(22)

Hence, for any k, θ̃k is of l2 sensitivity 2
n . Hence, for any k, R(θ̃k) and I(θ̃k) are both of sensitivity at most 2

n (because
R(·) and I(·) are orthogonal projections and are hence contraction linear mappings).
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The l2 sensitivity of computing the 2(2M + 1)d approximate real and imaginary parts of the Fourier coefficients is thus
2
n

√
2(2M + 1)d. Then, the application of Lemma 2.2 guarantees that the mechanism that releases f̂M , when computed

with σM =
2
√

(2M+1)d

n
√
ρ satisfies ρ-zCDP.

B. Proofs of Section 4
B.1. Proof of Lemma 4.1

We will need the following lemma :

Lemma B.1 (Fourier tail in Sobolev spaces). If f ∈ Sp
L(β), then

∑
k∈Zd

 ∑
α∈Nd:|α|=β

(2πk)×2α

 |θk|2 ≤ L2 , (23)

where (θk)k∈Zd are the Fourier coefficients of f w.r.t. the basis (ϕk)k∈Zd .

Proof. Let α ∈ Nd such that |α| = β and let k ∈ Zd. Let us look θ(α)k at the kth Fourier coefficient of ∂αf . Since β ≥ 1,
there exists i0 ∈ N such that αi ≥ 1. We note α−i0 the multi-index with the same values as α except for its ith0 coordinate
which has been decremented by 1. Furthermore, for any x ∈ [0, 1]d, any i ∈ {1, . . . , d}, and any y ∈ [0, 1] we note x(i=y)

the vector with the same components as x but with y as its ith component.

We have that

θ
(α)
k =

∫
[0,1]d

∂αf(x1, . . . , xd)ϕ̄k(x1, . . . , xd)dx1 . . . dxd

Fubini
=

∫
[0,1]d−1

(∫
[0,1]

∂αf(x1, . . . , xd)ϕ̄k(x1, . . . , xd)dxi0

)
dx1 . . . dxi0−1dxi0+1 . . . dxd

=

∫
[0,1]d−1

(∫
[0,1]

∂αf(x1, . . . , xd)e
−iC2π(k1x1+···+kdxd)dxi0

)
dx1 . . . dxi0−1dxi0+1 . . . dxd

I.B.P.
=

∫
[0,1]d−1

(
∂α−i0 f(x(i0=1))e−iC2π⟨k,x

(i0=1)⟩ − ∂α−i0 f(x(i0=0))e−iC2π⟨k,x
(i0=0)⟩

+ iC2πki0

∫
[0,1]

∂α−i0 f(x1, . . . , xd)e
−iC2π(k1x1+···+kdxd)dxi0

)
dx1 . . . dxi0−1dxi0+1 . . . dxd

= iC2πki0θ
(α−i0

)

k .

(24)

Thus, by induction, we get that

θ
(α)
k = (iC2πk)

×αθk . (25)

Next, since it holds for any k, we may write∫
[0,1]d

|∂αf |2 Parseval
=

∑
k∈Zd

⟨θ(α)k , θ
(α)
k ⟩

(25)
=
∑
k∈Zd

(2πk)×2α⟨θk, θk⟩ .
(26)
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Finally, since this holds for any α, we may sum over α and use (4.1) to get that

L2 ≥
∑

α∈Nd:|α|=β

∫
[0,1]d

|∂αf |2

(26)
=

∑
α∈Nd:|α|=β

∑
k∈Zd

(2πk)×2α⟨θk, θk⟩

=
∑
k∈Zd

 ∑
α∈Nd:|α|=β

(2πk)×2α

 |θk|2 .

(27)

If k = (k1, . . . , kd) ∈ Zd \ {−M, . . . ,M}d, then there exists i0 such that

|ki0 | ≥M + 1 . (28)

By considering the multi-index α0 composed with only 0’s except at the index i0 to which we assign the value β, we thus get

(2π(M + 1))2β ≤ (2πk)×2α0 , (29)

which allows writing

(2π(M + 1))2β ≤
∑

α∈Nd:|α|=β

(2πk)×2α (30)

since α0 is part of the summation indexes of the right-hand side.

Combining the last inequality with Lemma B.1 yields

∑
k∈Zd\{−M,...,M}

(2π(M + 1))2β |θk|2
(30)
≤

∑
k∈Zd\{−M,...,M}

 ∑
α∈Nd:|α|=β

(2πk)×2α

 |θk|2

≤
∑
k∈Zd

 ∑
α∈Nd:|α|=β

(2πk)×2α

 |θk|2

Lemma B.1
≤ L2 .

(31)

Hence,

L2

(2π)2β
1

(M + 1)2β
≥

∑
k∈Zd\{−M,...,M}

|θk|2

Parseval
= ∥f − fM∥2 .

(32)

B.2. Proof of Theorem 4.2

The privacy of this mechanism is a direct consequence of Theorem 3.2. Below, □ will refer to a constant that depends on β
and L, whose value may change from line to line, and that is independent from n and ρ.
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By combining Lemma 3.1 and Lemma 4.1 with the value of the variance factor σM =
2
√

(2M+1)d

n
√
ρ , we get that:

E
(
∥f − f̂M∥2

) Lemma 3.1
≤ ∥f − fM∥2 + (2M + 1)d

n
+ 2(2M + 1)d

(
2
√
(2M + 1)d

n
√
ρ

)2

Lemma 4.1
≤ L2

(2π)2β
1

(M + 1)2β
+

(2M + 1)d

n
+ 2(2M + 1)d

(
2
√

(2M + 1)d

n
√
ρ

)2

2K+1≤2(K+1)

≤ L2

(2π)2β
1

(M + 1)2β
+

2d(M + 1)d

n
+ 2d+1(M + 1)d

(
2
√
2d(M + 1)d

n
√
ρ

)2

≤ □

(
1

(M + 1)2β
+

2d(M + 1)d

n
+

22d(M + 1)2d

n2ρ

)
,

(33)

We then find the optimal trade-off for M by separating the regimes where the variance is dominated by the sampling noise
or by the privacy noise.

• Bias - Sampling variance equilibrium : We may first observe that

1

(M + 1)2β
≥ 2d(M + 1)d

n
⇐⇒M + 1 ≤

(
n/2d

) 1
2β+d . (34)

• Bias - Privacy variance equilibrium : In the meantime, we get:

1

(M + 1)2β
≥ 22d(M + 1)2d

n2ρ
⇐⇒M + 1 ≤

(
n
√
ρ/2d

) 1
β+d . (35)

Hence, by taking

M + 1 = min
{⌊(

n/2d
) 1

2β+d

⌋
,
⌊(
n
√
ρ/2d

) 1
β+d

⌋}
, (36)

we have that

max

{
2d(M + 1)d

n
,
22d(M + 1)2d

n2ρ

}
≤ 1

(M + 1)2β
, (37)

and Equation (33) yields

E
(
∥f − f̂M∥2

)
≤ C

1

(M + 1)2β
. (38)

C. Proofs of Section 5
C.1. Proof of Theorem 5.1

Let m be an integer that will be specified later on in the proof. We consider the grid{
1

m+ 1
,

2

m+ 1
, . . . ,

m

m+ 1

}
× · · · ×

{
1

m+ 1
,

2

m+ 1
, . . . ,

m

m+ 1

}
︸ ︷︷ ︸

d times

. (39)

It has md points, and is hence in bijection with {1, . . . ,md}. For any i ∈ {1, . . . ,md}, we identify pi with a unique point
on this grid. By construction, we have that

∀i, j ∈ {1, . . . ,md}, i ̸= j =⇒ ∥pi − pj∥ ≥ 1

m+ 1
. (40)

Now, let us consider the function Ψ given by Lemma F.2 in dimension d. We note ψ(·) = aΨ
( ·
2

)
where a > 0 is fixed to a

small enough value such that ∑
α∈Nd:|α|=β

∫
[0,1]d

|∂αψ|2 ≤ L2 . (41)
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We also define γ =
∫
ψ and δ =

∫
ψ2.

Let 1 ≥ h > 0. For any θ ∈ {0, 1}md

, we define

fθ(·) := 1 + hβ
md∑
i=1

θiψ

(
· − pi
h

)
− ∥θ∥1γhβ+d . (42)

Let us investigate the conditions under which fθ is a density of probability w.r.t. Lebesgue’s measure on [0, 1]d.

• For any θ, fθ is continuous and hence measurable.

• fθ has to be positive for any θ. This is for instance the case when for any θ, ∥θ∥1γhβ+d ≤ 1. Since ∥θ∥1 ≤ md for any
θ, fixing h = min

{
1

γ(m+1) ,
1

4(m+1)

}
is enough to ensure that condition. The reason why we added the term 1

4(m+1)

in the minimum and why we took m+ 1 instead of m is that we also have that for any i, ψ
( ·−pi

h

)
has its support in

(0, 1)d and that i ̸= j =⇒ ψ
( ·−pi

h

)
and ψ

(
·−pj

h

)
have disjoint supports.

• For any θ, we need
∫
fθ = 1, which is immediate by construction with a simple variable swap of inverse Jacobian hd :∫

[0,1]d
fθ =

∫
[0,1]d

1 + hβ
md∑
i=1

θiψ

(
x− pi
h

)
− ∥θ∥1γhβ+d

 dx

= 1 + hβ
md∑
i=1

θi

∫
[0,1]d

ψ

(
x− pi
h

)
dx− ∥θ∥1γhβ+d

ui=
x−pi

h= 1 + ∥θ∥1γhβ+d − ∥θ∥1γhβ+d

= 1

(43)

Furthermore, we may also check that for any θ, fθ ∈ Sp
L(β).

• For any θ, by construction, the support of ∂αfθ is included in (0, 1)d for any multi-index α such that |α| ≥ 1. Hence,
the periodicity argument holds trivially since ∂αfθ = 0 on the boundary of [0, 1]d. Furthermore, since fθ is constant
on the boundary of [0, 1]d, the periodicity argument also holds for fθ.

• Furthermore, let us fix θ and let α be a multi-index such that |α| = β. We have

∫
[0,1]d

(
f
(α)
θ

)2
=

∫
[0,1]d

hβ md∑
i=1

θi

(
x 7→ ψ

(
x− pi
h

))(α)
2

=

∫
[0,1]d

md∑
i=1

θiψ
(α)

(
· − pi
h

)2

disjoint supports
=

md∑
i=1

θi

∫
[0,1]d

(
ψ(α)

(
· − pi
h

))2

∥θ∥1≤md& variable swap
≤ mdhd

∫
[0,1]d

(
ψ(α)

)2
mdhd≤1

≤
∫
[0,1]d

(
ψ(α)

)2
,

(44)

Consequently, summing over α yields∑
α∈Nd:|α|=β

∫
[0,1]d

(
f
(α)
θ

)2
≤

∑
α∈Nd:|α|=β

∫
[0,1]d

(
ψ(α)

)2 (41)
≤ L2 . (45)
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Now we will used what is usually referred to as Assouad’s lemma, and that has been successfully used to prove lower-bounds
under differential privacy in (Duchi et al., 2013; 2014; 2016; Acharya et al., 2021e). The following result is a minor
reformulation to match the notations of the article of the version that can be found in (Acharya et al., 2021e).

Fact C.1 (Assouad’s Lemma). If (fθ) is a family of densities of probability that is parametrized by θ ∈ {0, 1}N , and if
there exists a τ > 0 such that

∀(θ1, θ2) : ∥fθ1 − fθ2∥2 ≥ Cτdham (θ1, θ2) , (46)

then there exists an absolute constant C > 0 such that for any estimator f̂ , by noting θ̂ the parameter of the closest fθ in the
family (fθ)θ∈{0,1}N for the norm ∥ · ∥, then

sup
θ∈{0,1}N

Efθ⊗n

(
∥fθ − f̂∥2

)
≥ Cτ

N∑
i=1

(
Pθ−i

(θ̂i ̸= 0) + Pθ+i
(θ̂i ̸= 1)

)
(47)

where Pθ+i
and Pθ−i

are the mixture distributions

Pθ+i
:=

1

2N−1

∑
θ:θi=1

f⊗nθ Pθ−i
:=

1

2N−1

∑
θ:θi=0

f⊗nθ . (48)

Notice that in (47) there is a second layer or randomness that is implicit, and that is w.r.t. the estimator itself (for privacy
for instance).

Proof. The proof can be found in (Acharya et al., 2021e).

We will apply this result with N = md. First, we will check that (46) holds.

Let θ1, θ2 be two parametrizations. We have that∫
[0,1]d

(fθ1 − fθ2)
2

≥
md∑
i=1

1θi
1 ̸=θi

2

∫
B(pi,h/2)

(
hβ+d (∥θ2∥1 − ∥θ1∥1) γ + (θi1 − θi2)h

βψ

(
t− pi
h

))2

dt

≥
md∑
i=1

1θi
1 ̸=θi

2

∫
B(pi,h/2)

{(
hβψ

(
t− pi
h

))2

−2γh2β+d |∥θ1∥1 − ∥θ2∥1|ψ
(
t− pi
h

)}
dt

variable swap
≥ dham (θ1, θ2)h

2β+d
(
δ − 2mdhdγ2

)
h=min{h, 1

m+1 (δ/(4γ
2)1/d)}

≥ dham (θ1, θ2)h
2β+dδ/2 ,

(49)

where we took the liberty to take a smaller h if needed, with still a scaling proportional to 1
m+1 .

Then, we need to control the term Pθ−i
(θ̂i ̸= 0) + Pθ+i

(θ̂i ̸= 1).

Privacy cost. First, we do so by exploiting the constraint of ρ-zCDP. Let us give the following lemma, which is borrowed
from (Lalanne et al., 2023b).

Lemma C.2. If f̂ satisfies ρ-zCDP, then for any i,

Pθ−i(θ̂
i ̸= 0) + Pθ+i(θ̂

i ̸= 1) ≥

1

2

1− n
√
ρ/2

1

2N−1

∑
θ1,...,θi−1,θi+1...,θN∈{0,1}

TV
(
f(θ1,...,θi−1,0,θi+1...,θN ), f(θ1,...,θi−1,1,θi+1...,θN )

) ,

20



Privately Learning Smooth Distributions on the Hypercube by Projections

where TV (·, ·) denotes the total variation distance between probability measures defined as

TV (P1,P2) := sup
S measurable

P1(S)− P2(S) .

Proof. Let us consider the coupling C that selects θ1, . . . , θi−1, θi+1 . . . , θN ∈ {0, 1} uniformly at random, and then returns
a random variable that follows a conditional distribution Q⊗n

θ1,...,θi−1,θi+1...,θN where Qθ1,...,θi−1,θi+1...,θN is a maximal
coupling between f(θ1,...,θi−1,0,θi+1...,θN ) and f(θ1,...,θi−1,1,θi+1...,θN ), in the sense that if X,Y ∼ Qθ1,...,θi−1,θi+1...,θN ,
then P(X = Y ) = 1−TV

(
f(θ1,...,θi−1,0,θi+1...,θN ), f(θ1,...,θi−1,1,θi+1...,θN )

)
. The existence of such coupling is well known

(see, e.g. (Kallenberg, 1993)).

Then, the similarity function given by Lemma 8 in (Lalanne et al., 2023a) leads to:

Pθ−i(θ̂
i ̸= 0) + Pθ+i(θ̂

i ̸= 1) ≥ 1

2

(
1−

√
ρ/2EX,Y∼C (dham (X,Y))

)
,

which reduces to the advertised result.

Let us fix θ1, . . . , θi−1, θi+1 . . . , θm
d ∈ {0, 1}, we have that, by the classical rewriting of the total variation distance

TV (f, g) = 1
2

∫
|f − g|,

TV
(
f
(θ1,...,θi−1,0,θi+1...,θmd )

, f
(θ1,...,θi−1,1,θi+1...,θmd )

)
=

1

2

∫
[0,1]d

∣∣∣f(θ1,...,θi−1,0,θi+1...,θmd ) − f(θ1,...,θi−1,1,θi+1...,θmd )

∣∣∣
≤ 1

2

∫
[0,1]d

(
γhβ+d + hβψ

(
· − pi
h

))
variable swap

= γhβ+d

(50)

All in all, by combining (50), Lemma C.2, (49) and Fact C.1, there exist two absolute constants C1 > 0 and C2 > 0 such
that, if f̂ satisfies ρ-zCDP, then:

sup
θ∈{0,1}N

Efθ⊗n

(
∥fθ − f̂∥2

)
≥ C1h

2β+dmdδ
(
1− C2γn

√
ρhβ+d

)
. (51)

Finally, choosing h of the order of
(
γn

√
ρ
)− 1

β+d , and m + 1 of the order of
min{1/γ,1/4,(δ/(4γ2)1/d)}

h complies with all
the requirements on h for the calculus to be valid, and allows writing that there are two quantities C1 > 0 and C2 > 0
depending on L, β and d such that, if n

√
ρ > C2, then

sup
θ∈{0,1}N

Efθ⊗n

(
∥fθ − f̂∥2

)
≥ C1 (n

√
ρ)
− 2β

β+d . (52)

Usual sampling cost. Without trying to exploit the private nature of the estimation, we may adopt more usual lower-
bounding inequalities.

Let us fix f̂ and i. Neyman-Pearson-Le Cam’s inequality (Of which the proof can be found in (Rigollet & Hütter, 2015))
allows writing

Pθ−i(θ̂
i ̸= 0) + Pθ+i(θ̂

i ̸= 1) ≥ 1− TV
(
Pθ+i ,Pθ−i

)
. (53)

Then, Pinsker’s inequality (see for instance (Tsybakov, 2009)) gives

Pθ−i
(θ̂i ̸= 0) + Pθ+i

(θ̂i ̸= 1) ≥ 1−
√
KL
(
Pθ+i

∥∥Pθ−i

)
, (54)

where KL ( ·∥ ·) is the Kullback-Leibler (KL) divergence which is defined for any two probability distributions P and Q
such that P ≪ Q (absolute continuity) as

KL (P∥Q) =

∫
log

(
dP
dQ

)
dP .
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Then, Theorem 11 in (van Erven & Harremoës, 2014) gives that

KL

(
1

2N−1

∑
θ:θi=1

f⊗nθ

∥∥∥∥∥ 1

2N−1

∑
θ:θi=0

f⊗nθ

)
≤ 1

2N−1

∑
θ:θi=0

KL
(
f⊗n
θ(i←1)

∥∥ f⊗n
θ(i←0)

)
,

where θ(i←j) means that we assign j as the value of the ith component in θ.

Finally, by the tensorization property of the KL divergence (van Erven & Harremoës, 2014)

Pθ−i
(θ̂i ̸= 0) + Pθ+i

(θ̂i ̸= 1) ≥ 1−
√

1

2N−1

∑
θ:θi=0

nKL (fθ(i←1)∥ fθ(i←0)) . (55)

Let us fix a θ. We will upper-bound KL (fθ(i←1)∥ fθ(i←0)) uniformly in θ. By definition,

KL (fθ(i←1)∥ fθ(i←0)) =

∫
[0,1]d

log

(
fθ(i←1)

fθ(i←0)

)
fθ(i←1) , (56)

and a classical upper bound of the KL divergence by the χ2-divergence which follows from log(·) ≤ · − 1 gives

KL (fθ(i←1)∥ fθ(i←0)) =

∫
[0,1]d

(fθ(i←1) − fθ(i←0))2

fθ(i←0)

. (57)

Notice that we took the liberty to divide by various densities of probability without justifying why they were different from
0. We will solve this issue right now, and also control the denominator fθ(i←0) at the same time.

When we made sure that for any θ, fθ was always positive, we imposed that mdγhβ+d ≤ 1. We can be more aggressive and
impose that mdγhβ+d ≤ 1/2, for instance by taking h ≤ 1

2γ(m+1) . This way, we have that for any θ, fθ ≥ 1/2.

As a consequence,

KL (fθ(i←1)∥ fθ(i←0)) ≤ 2

∫
[0,1]d

(fθ(i←1) − fθ(i←0))2

≤ 2

∫
[0,1]d

(
γhβ+d + hβψ

(
x− pi
h

))2

= 2
(
γ2h2β+2d + 2γ2h2β+2d + δh2β+d

)
.

(58)

So, there exist C1 > 0 and C2 > 0 that depend on L, β and d such that when h < C2, then

KL (fθ(i←1)∥ fθ(i←0)) ≤ C1h
2β+d . (59)

Furthermore, we can note that C1 and C2 are uniform in θ.

Combining this last result with (55), Fact C.1 and (49), we obtain that there exists an absolute C3 > 0 such that, for any
estimator f̂ ,

sup
θ∈{0,1}N

Efθ⊗n

(
∥fθ − f̂∥2

)
≥ C3h

2β+dmdδ
(
1−

√
C1nh2β+d

)
, (60)

as soon as h < C2.

In the end, choosing h of the order of (n)−
1

2β+d , and m+ 1 of the order of
min{1/(2γ),1/4,(δ/(4γ2)1/d)}

h complies with all
the requirements on h for the calculus to be valid, and allows writing that there are two quantities C1 > 0 and C2 > 0
depending on L, β and d such that, if n > C2, then

sup
θ∈{0,1}N

Efθ⊗n

(
∥fθ − f̂∥2

)
≥ C1n

− 2β
2β+d . (61)

The two lower-bounds being valid for ρ-zCDP estimators, their maximum is also a lower-bound, yielding the result.
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D. Proofs of Section 6
D.1. Proof of Theorem 6.1

We also define m∗ the integer that is associated to the closest point (from below) of the grid Bn to the unknown smoothness
parameter β:

m∗ = min{m ≤ kn : βm ≤ β} and β∗ = βm∗ . (62)

We emphasize that m∗ is a theoretical object, which is purely deterministic and not used in our adaptative procedure. We
nevertheless need m∗ for our mathematical analysis of the Lepskii method. For the sake of clarity, we will use the following
shortcut of notations to improve the readability of our paper:

f̂Mn,ρ′n
(βm̂n ) = f̂M̂ and f̂Mn,ρ′n

(βm∗ ) = f̂M∗ and f̂Mn,ρ′n
(βℓ) = f̂M(ℓ),

and the associated shortcut indices as well:

M̂ =Mn,ρ′n
(βm̂n

) and M∗ =Mn,ρ′n
(βm∗) and M(ℓ) =Mn,ρ′n

(βℓ).

To establish our adaptive result stated in Theorem 6.1, we need the next cornerstone result.

Proposition D.1. Assume that f ∈ Sp
L(β) with n ≥ eβ , then f̂Mn,ρ′n

(βm̂n ) = f̂M̂ satisfies:

E[∥f̂M̂ − f∥2] ≤ 2
√
rn,ρ′n(β)

∗ exp

(
ε

β + d

)
(63)

+

√√√√ kn∑
ℓ=0

rn,ρ′n(βℓ)

√∑
ℓ>m∗

P
[
∥f̂M(ℓ) − f∥22 >

1

4
rn,ρ′n(βℓ)

∗
]

(64)

Proof. We observe that the elementary decomposition holds:

E[∥f̂M̂ − f∥2] = E[∥f̂M̂ − f∥21m̂n≤m∗ ] + E[∥f̂M̂ − f∥21m̂n>m∗ ]. (65)

We then consider the two terms separately.

On the event m̂n ≤ m∗: We apply the triangle inequality and obtain:

E[∥f̂M̂ − f∥21m̂n≤m∗ ] ≤ E
[(

∥f̂M̂ − f̂M∗∥2 + ∥f̂M∗ − f∥2
)
1m̂n≤m∗

]
Using the definition of m̂n and f̂M̂ , we observe that almost surely:

∥f̂M̂ − f̂M∗∥21m̂n≤m∗ ≤
√
rn,ρ′n(β

∗)∗

≤
√
C(log n)arn,ρ′n(β

∗)

≤
√
C(log n)arn,ρ′n(β) exp

((
β

2β + d
− β∗

2β∗ + d

)
log n

)
∨ exp

((
β

β + d
− β∗

β∗ + d

)
log(n

√
ρ′n)

2

)

≤
√
C(log n)arn,ρ′n(β)

(
exp

(
(β − β∗)d

(2β + d)(2β∗ + d)

)
log n

)
∨ exp

(
(β − β∗)d

(β + d)(β∗ + d)

log(n
√
ρ′n)

2

)

≤
√
C(log n)arn,ρ′n(β) exp

(
ε

2(2β + d)

)
∨ exp

(
ε

β + d

)
=
√
C(log n)arn,ρ′n(β) exp

(
ε

β + d

)
,

where we used above

(β − β∗)d

(β + d)(β∗ + d)

log(n
√
ρ′n)

2
≤ ε log−1 n

d

(β + d)(β∗ + d)

(
log n+

1

2
log ρ− 1

2
log log n

)
≤ ε

β + d
.
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Obviously, the same upper bound applies when considering the expectation and we deduce that

E
[
∥f̂M̂ − f̂M∗∥21m̂n≤m∗

]
≤
√
C(log n)arn,ρ′n(β) exp

(
ε

β + d

)
=
√
rn,ρ′n(β)

∗ exp

(
ε

β + d

)
. (66)

The second term is dealt easily using the non-adaptive rate of convergence of f̂M∗ , regardless the value of m∗ with respect
to m̂n, and the Cauchy-Schwarz inequality:

E
[
∥f̂M∗ − f∥21m̂n≤m∗

]
≤
√

E
[
∥f̂M∗ − f∥22

]
≤
√
rn,ρ′n(β

∗)

Using the same arguments as above, we obtain similarly:

E
[
∥f̂M∗ − f∥21m̂n≤m∗

]
≤
√
rn,ρ′n(β) exp

(
ε

β + d

)
. (67)

We now gather Equations (66) and (67) and obtain that:

E
[
∥f̂M̂ − f∥21m̂n≤m∗

]
≤ 2
√
rn,ρ′n(β)

∗ exp

(
ε

β + d

)
. (68)

On the event m̂n > m∗: We still apply the triangle inequality and observe that for any pair (M,M ′):

∥f̂M − f̂M ′∥2 ≤ ∥f̂M − f∥2 + ∥f̂M ′ − f∥2.

Consequently, we have

{m̂n > m∗} =
{
∃ℓ > m∗ : ∥f̂M(ℓ) − f̂M∗∥2 >

√
rn,ρ′n(βℓ)

∗
}

⊂
{
∃ℓ > m∗ : ∥f̂M(ℓ) − f∥2 + ∥f̂M∗ − f∥2 >

√
rn,ρ′n(βℓ)

∗
}

⊂
{
∃ℓ > m∗ : ∥f̂M(ℓ) − f∥2 >

1

2

√
rn,ρ′n(βℓ)

∗
}
∪
{
∃ℓ > m∗ : ∥f̂M∗ − f∥2 >

1

2

√
rn,ρ′n(βℓ)

∗
}

⊂
{
∃ℓ > m∗ : ∥f̂M(ℓ) − f∥2 >

1

2

√
rn,ρ′n(βℓ)

∗
}
∪
{
∥f̂M∗ − f∥2 >

1

2

√
rn,ρ′n(βm∗)

∗
}
,

where the last inequality comes from the monotonicity (decreasing function) of β 7−→ rn,ρ′n(β). We then deduce with a
union bound that:

E
[
1{m̂n>m∗}

]
≤
∑
ℓ>m∗

P
[
∥f̂M(ℓ) − f∥22 >

1

4
rn,ρ′n(βℓ)

∗
]

(69)

We then use the Cauchy-Schwarz inequality and (69) to obtain:

E[∥f̂M̂ − f∥21m̂n>m∗ ] ≤
√

E[∥f̂M̂ − f∥22]
√
E[1m̂n>m∗ ]

≤

√√√√E

[
kn∑
ℓ=0

∥f̂M(ℓ) − f∥22

]√∑
ℓ>m∗

P
[
∥f̂M(ℓ) − f∥22 >

1

4
rn,ρ′n(βℓ)

∗
]

≤

√√√√ kn∑
ℓ=0

rn,ρ′n(βℓ)

√∑
ℓ>m∗

P
[
∥f̂M(ℓ) − f∥22 >

1

4
rn,ρ′n(βℓ)

∗
]
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From Proposition D.1, we observe that the upper bound of the risk of our adaptive procedure depends on two terms. The first
one involves the risk rn,ρ(β), up to some multiplicative log n term, while the second term will be shown to be negligible
with respect to the first one as soon as a and C are suitably chosen (see Definition (9)).

The next proposition is purely technical and does not involve any statistical insight.

Proposition D.2. Assume that ε ≤ 1/2, then for any ρ > 0, n ≥ 1 and d ≥ 1:

kn∑
ℓ=0

rn,ρ′n(βℓ) ≤ 4(2 + d)ε−1 log n2
(
ρ′n
− 1

1+d + 2
)
.

Proof. We observe from our definition of rn,ρ′n(β) that:

kn∑
ℓ=0

rn,ρ′n(βℓ) =

kn∑
ℓ=0

(
n
− 2βℓ

2βℓ+d + (n
√
ρ′n)
− 2βℓ

βℓ+d )

)

=

⌊ε−1 log2 n⌋∑
ℓ=0

n−
ℓε/ log n

ℓε/ log n+d/2 + (n
√
ρ′n)
− ℓε/ log n

ℓε/2 log n+d/2

=
∑

ℓε<logn

n−
ℓε/ log n

ℓε/ log n+d/2 + (n
√
ρ′n)
− ℓε/ log n

ℓε/2 log n+d/2 +

⌊ε−1 log2 n⌋∑
ℓ≥⌊ε−1 logn⌋

n−
ℓε/ log n

ℓε/ log n+d/2 + (n
√
ρ′n)
− ℓε/ log n

ℓε/2 log n+d/2

We focus on the first sum and observe that when ℓε < log n:

n−
ℓε/ log n

ℓε/ log n+d/2 = e−
ℓε/ log n

ℓε/ log n+d/2
logn = e−

ℓε
ℓε/ log n+d/2 ≤ e−

ℓε
1+d/2 ,

and similarly:

(n
√
ρ′n)
− ℓε/ log n

ℓε/2 log n+d/2 = e−
ℓε/ log n

ℓε/2 log n+d/2
lognρ′n

− ℓε/ log n
ℓε/ log n+d ≤ e−

2ℓε
1+d ρ′n

− 1
1+d .

Hence, using a geometric series, we get:

∑
ℓε<logn

n−
ℓε/ log n

ℓε/ log n+d/2 + (n
√
ρ′n)
− ℓε/ log n

ℓε/2 log n+d/2 ≤
+∞∑
ℓ=0

e−
ℓε

1+d/2 + e−
2ℓε
1+d ρ′n

− 1
1+d

=
1

1− e−
ε

1+d/2
+

ρ′n
− 1

1+d

1− e−
2ε

1+d

≤ 4(2 + d)ε−1ρ′n
− 1

1+d . (70)

where the last line comes from the bound e−t ≤ 1− t/2 when t ∈ [0, 1/2).

Concerning now the second sum, when ℓ ≥ ε−1 log n, we verify that:

ℓ ≥ ε−1 log n =⇒ ℓε/ log n

ℓε/ log n+ d/2
>

2

2 + d
and

ℓε/ log n

ℓε/2 log n+ d/2
>

2

1 + d
,

which in turn implies that

kn∑
ℓ≥ε−1 logn

n−
ℓε/ log n

ℓε/ log n+d/2 + (n
√
ρ′n)
− ℓε/ log n

ℓε/2 log n+d/2 < ε−1 log2 n
(
n−

2
2+d + (n

√
ρ′n)
− 2

1+d

)
(71)

Gathering Equations (70) and (71) yields the bound independent from n and d as soon as ε < 1/2:

kn∑
ℓ=0

rn,ρ′n(βℓ) ≤ 4(2 + d)ε−1 log n2
(
ρ′n
− 1

1+d + 2
)
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We finally upper bound the second term of (63) that involves P
[
∥f̂M(ℓ) − f∥22 > 1

4rn,ρ(βℓ)
∗
]
, to be studied when ℓ > m∗.

We obtain the next result.

Proposition D.3. Assume that C > 8L2 ∨ 22d+10, that a ≥ 1 and n ≥ 3, then√∑
l>m∗

P
[
∥f̂M(ℓ) − f∥22 >

1

4
rn,ρ′n(βℓ)

∗
]
≤

√
2ε−1 log nn−2.

Proof. We first consider any integer ℓ > m∗ and our starting point is the Parseval equality: we decompose the loss between
f̂M(ℓ) and f as follows:

∥f̂M(ℓ) − f∥22 = ∥f̂M(ℓ) − fM(ℓ)∥22 + ∥fM(ℓ) − f∥22

≤ 2

 ∑
k∈{−M(ℓ),...,M(ℓ)}d}

|θk − θ̃k|2 + σ2
M(ℓ)

∑
k∈{−M(ℓ),...,M(ℓ)}d}

|ξk|2
+

L2

(2π)2β
(M(ℓ) + 1)−2β ,

where in the last line we used the tail upper bound of the Fourier series on Sobolev spaces stated in Lemma 4.1.

We observe with our alleviated notations, we obtain that:

1

4
rn,ρ′n(βℓ)

∗ =
C

4
(log n)aMn,ρ′n

(βℓ)
−2βℓ =

C

4
(log n)aM(ℓ)−2βℓ >

C

4
(log n)a(M(ℓ) + 1)−2βℓ .

Hence, when ℓ > m∗, we get βℓ < βm∗ < β, which implies (M(ℓ) + 1)−2βℓ > (M(ℓ) + 1)−2β . Therefore, as soon as
C
4 > 2L2, we have:

L2

(2π)2β
(M(ℓ) + 1)−2β <

1

8
rn,ρ′n(βℓ)

∗.

For a such choice of C, we then obtain that for any a > 0 and any n ≥ 3:

{
∥f̂M(ℓ) − f∥22 >

1

4
rn,ρ′n(βℓ)

∗
}

⊂

 ∑
k∈{−M(ℓ),...,M(ℓ)}d}

|θk − θ̃k|2 + σ2
M(ℓ)

∑
k∈{−M(ℓ),...,M(ℓ)}d}

|ξk|2 >
1

16
rn,ρ′n(βℓ)

∗


⊂

 ∑
k∈{−M(ℓ),...,M(ℓ)}d}

|θk − θ̃k|2 >
1

32
rn,ρ′n(βℓ)

∗

︸ ︷︷ ︸
:=E1

∪

σ2
M(ℓ)

∑
k∈{−M(ℓ),...,M(ℓ)}d}

|ξk|2 >
1

32
rn,ρ′n(βℓ)

∗

︸ ︷︷ ︸
:=E2

.

We now consider E1 and E2 separately.

Study of E1: concentration of the sequence (θ̃k)k∈Zd . We use a simple union bound:

E1 ⊂
⋃

k∈{−M(ℓ),...,M(ℓ)}d

{
|θk − θ̃k|2 ≥

rn,ρ′n(βℓ)
∗

32(2M(ℓ) + 1)d

}
.

The Hoeffding inequality applied to the (complex) bounded sequence (θ̃k)k∈Zd yields

∀t > 0 P(|θk − θ̃k|2 ≥ t) ≤ 4e−nt
2/4.
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Applying this previous inequality in the union bound above leads to

P(E1) ≤ 4(2M(ℓ) + 1)de
−n

r
n,ρ′n

(βℓ)
∗

128(2M(ℓ)+1)d

= 4(2M(ℓ) + 1)de
−nC(log n)aM(ℓ)−2βℓ

128(2M(ℓ)+1)d

≤ 4(2M(ℓ) + 1)de−n
C(log n)aM(ℓ)−(2βℓ+d)

2d128 .

Using Equation (??), we observe that nM(ℓ)2βℓ+d ≥ 1, which entails:

P(E1) ≤ 4(2M(ℓ) + 1)de−
C(log n)a

2d128 .

Then, using that a > 1 and remarking from Equation (??) that M(ℓ)d ≤ n, we deduce thanks to our choice of C that:

P(E1) ≤ 2d+2n1−
C

2d+6 ≤ 2d+2n−2
d−4 ≤ n−4. (72)

Study of E2: concentration of the χ2 noise of privacy. From the definition of (ξk)k∈Zd as a complex Gaussian random
variable, we now that ∑

k∈{−M(ℓ),...,M(ℓ)}d}

|ξk|2 ∼ χ2(2(2M(ℓ) + 1)d),

and centering the chi square distribution yields:

P(E2) = P
(
σ2
M(ℓ)χ

2(2(2M(ℓ) + 1)d) >
rn,ρ′n(βℓ)

∗

32

)
= P

(
χ2(2(2M(ℓ) + 1)d)− 2(2M(ℓ) + 1)d) >

rn,ρ′n(βℓ)
∗

32σ2
M(ℓ)

− 2(2M(ℓ) + 1)d)

)
.

Using that the variance factor needs to be tuned as σM(ℓ) =
2
√

(2M(ℓ)+1)d

n
√

ρ′n
to ensure a ρ − zCDP and the value of

rn,ρ′n(βℓ)
∗ stated in (9), we can expand the right hand side of the last inequality as:

rn,ρ′n(βℓ)
∗

32σ2
M(ℓ)

− 2(2M(ℓ) + 1)d) = 2(2M(ℓ) + 1)d)

(
C(log n)arn,ρ′n(βℓ)n

2ρ′n
256(2M(ℓ) + 1)2d)

− 1

)
= 2(2M(ℓ) + 1)d)

(
C

4d256
(log n)aM(ℓ)−2(β+d)n2ρ′n − 1

)
≥ 2(2M(ℓ) + 1)d)

(
C

4d256
(log n)a − 1

)
,

where the last line comes from the definition of M(ℓ) that guarantees

M(ℓ)2(βℓ+d) ≤ n2ρ′n.

We may choose C ≥ 4d512, define D = 2(2M(ℓ) + 1)d and we observe that the probability of E2 is upper bounded by:

P(E2) ≤ P
(
χ2(D)−D ≥ C

2
D(log n)a

)
.

We now use the χ2 concentration upper bound stated in Equation (F.4) with σ = 1 and δ = C
2 (log n)

a and obtain that:

P(E2) ≤ e−D
C2(log n)2a

16 ∨ e−D
C(log n)a

4 ≤ e−
C(log n)a

2 ≤ n−C/2 ≤ n−5, (73)

according to a ≥ 1, D ≥ 2 and our choice of C in the statement of the proposition.
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D.2. Proof of Theorem 6.2

First, we can notice that the claim about the privacy of the whole estimation procedure is a direct consequence of Lemma 2.3.
The rest of this proof only focuses on the utility claim.

Let us note ρ′ = ρ/|M| We start by writing Λ(1)(·) as a sum of two terms: a sampling one and a privacy one:

Λ(1)(M) := Λ(1)
samp(M) + Λ

(1)
priv(M) ∀M ∈ M , (74)

and Λ(2)(·) as the sum of Λ(1)(·) and of a privacy term

Λ(2)(M) := Λ(1)(M) + ∆priv(M) ∀M ∈ M . (75)

The values of Λ(1)
samp(·), Λ(1)

priv(·) and ∆priv(·) will be fixed later in the proof.

Then, for any M ,

∥f̂M̂ − f∥2 ≤ 3
(
∥f̂M̂ − ProjSM

(f̂M̂ )∥2 + ∥ProjSM
(f̂M̂ )− f̂M∥2 + ∥f̂M − f∥2

)
≤ 6

(
∥f̂M̂ − ProjSM̂

(f̂M )∥2 + ∥ProjSM
(f̂M̂ )− f̂M∥2 + ∥ProjSM

(f̂M̂ )− ProjSM̂
(f̂M )∥2 + ∥f̂M − f∥2

)
.

(76)
Because of the definition of B2(·), we may write that

∥f̂M̂ − f∥2 ≤ 6

(
B2(M) + Λ(1)(M̂) +B2(M̂) + Λ(1)(M) + ∥ProjSM

(f̂M̂ )− ProjSM̂
(f̂M )∥2 + ∥f̂M − f∥2

)
,

(77)
which gives, because of the relation linking Λ(1)(·) and Λ(2)(·),

∥f̂M̂ − f∥2 ≤ 6

(
B2(M) + Λ(2)(M̂) +B2(M̂) + Λ(2)(M)

+
(
∥ProjSM

(f̂M̂ )− ProjSM̂
(f̂M )∥2 − (∆priv(M) + ∆priv(M̂))

)
+ ∥f̂M − f∥2

)
.

(78)

Finally, because of the selection rule of M̂ ,

∥f̂M̂ − f∥2 ≤ 6

(
2(B2(M) + Λ(2)(M)) +

(
∥ProjSM

(f̂M̂ )− ProjSM̂
(f̂M )∥2 − (∆priv(M) + ∆priv(M̂))

)
+︸ ︷︷ ︸

Extra term 1

+∥f̂M − f∥2
)
.

(79)
We recall that this holds for any M ∈ M. Furthermore, in order to have control on B2(·), we may write that for any model
M′ ∈ M,

∥ProjSM′
(f̂M )− f̂M ′∥2 − Λ(1)(M ′)

≤ 2
(
∥ProjSM′

(f̃M )− f̃M ′∥2 + ∥ProjSM′
((f̂M − f̃M ))− (f̂M ′ − f̃M ′))∥2

)
− Λ(1)(M ′)

≤ 6

(
∥f̃M ′ − fM ′∥2 + ∥ProjSM′

(f̃M )− fM∧M ′∥2 + ∥fM ′ − fM∧M ′∥2

+ ∥ProjSM′
((f̂M − f̃M ))− (f̂M ′ − f̃M ′))∥2

)
− Λ(1)(M ′) .

(80)

Then using that ProjSM′
(f̃M ) = f̃M∧M ′ and that ∥fM ′ − fM∧M ′∥2 ≤ ∥f − fM∥2 (which is easily seen using the Parseval
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formula),

∥ProjSM′
(f̂M )− f̂M ′∥2 − Λ(1)(M ′)

≤ 6

(
∥f̃M ′ − fM ′∥2 + ∥f̃M∧M ′ − fM∧M ′∥2 + ∥f − fM∥2

+ ∥ProjSM′
((f̂M − f̃M ))− (f̂M ′ − f̃M ′))∥2

)
− Λ(1)(M ′)

≤ 6

(
2∥f̃M ′ − fM ′∥2 + ∥f − fK∥2 + 2∥ProjSM′

((f̂M − f̃M ))∥2 + 2∥(f̂M ′ − f̃M ′))∥2
)
− Λ(1)(M ′) .

(81)
Finally, the decomposition of Λ(1)(·) yields

∥ProjSM′
(f̂M )− f̂M ′∥2 − Λ(1)(M ′)

= 6

(
2

(
∥f̃M ′ − fM ′∥2 −

Λ
(1)
samp(M ′)

12

)
+ ∥f − fM∥2 + 2∥ProjSM′

((f̂M − f̃M ))∥2

+ 2

(
∥f̂M ′ − f̃M ′)∥2 −

Λ
(1)
priv(M

′)

12

))

≤ 6

(
2

(
∥f̃M ′ − fM ′∥2 −

Λ
(1)
samp(M ′)

12

)
+︸ ︷︷ ︸

Extra term 2

+∥f − fM∥2 + 2∥f̂M − f̃M∥2

+ 2

(
∥f̂M ′ − f̃M ′∥2 −

Λ
(1)
priv(M

′)

12

)
+︸ ︷︷ ︸

Extra term 3

)
.

(82)

We thus have decomposed the problem in quantities that we can perfectly control, and with two extra terms that we have to
control. This is where the penalization terms are useful in order to force the exponential convergence.

Control of the extra term 2. This term is handled with the help of the Talagrand inequality (Talagrand, 1996; Ledoux,
1997; Klein & Rio, 2005), using a strategy close to the one presented in (Comte, 2017).

Let M′ ∈ M, we have that
∥f̃M ′ − fM ′∥2 = sup

g:∥g∥≤1
|⟨f̃M ′ − fM ′ , g⟩|2 .

Furthermore, by separability of L2 and the fact that g 7→ |⟨f̃M ′ − fM ′ , g⟩|2 is continuous, we may consider this supremum
over a countable family of functions only (for applying Lemma F.5).

For any g such that ∥g∥ ≤ 1,

⟨f̃M ′ − fM ′ , g⟩ =

〈
1

n

n∑
i=1

 ∑
k∈{−M,...,M}d

ϕ̄k(Xi)ϕk − fK′

 , g

〉

=
1

n

n∑
i=1


∑

k∈{−M,...,M}d
⟨ϕk, g⟩ ϕ̄k(Xi)︸ ︷︷ ︸

=:T
(K′)
g (Xi)

− ⟨fK′ , g⟩︸ ︷︷ ︸
=E

(
T

(M′)
g (Xi)

)


= νn(T

(M ′)
g ) ,

(83)

where νn(T
(M ′)
g ) is defined in Lemma F.5.
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We may thus rewrite
∥f̃M ′ − fM ′∥2 = sup

g:∥g∥≤1
|νn(T (M ′)

g )|2 ,

where the sup may be restricted to a countable family. However, νn(T
(M ′)
g ) is not a real-valued quantity, and we cannot

apply Lemma F.5 directly. We will have to resort to decompose the quantities of interest and to add an extra factor 2 at the
end since

|νn(T (M ′)
g )|2 = R(νn(T

(M ′)
g ))2 + I(νn(T

(M ′)
g ))2 = νn(R(T

(M ′)
g ))2 + νn(I(T

(M ′)
g ))2 ,

and since taking the real part or the imaginary part are contractive projections, and hence reduce the quantities such as the
modulus and the variance.

We may first see that
∥T (M ′)

g ∥2 =
∑

k∈{−M ′,...,M ′}d
| ⟨ϕk, g⟩ |2

≤ ∥g∥2

≤ 1

(84)

because ∥g∥ ≤ 1.

Hence, we may write
T (M ′)
g =

∑
k∈{−M ′,...,M ′}d

αkϕk (85)

where ∑
k∈{−M ′,...,M ′}d

|αk|2 ≤ 1. (86)

Then,

|νn(T (M ′)
g )|2 ≤

∣∣∣∣∣∣
∑

k∈{−M ′,...,M ′}d
αkνn(ϕk)

∣∣∣∣∣∣
2

Cauchy-Schwarz
≤

 ∑
k∈{−M ′,...,M ′}d

|αk|2
 ∑

k∈{−M ′,...,M ′}d
|νn(ϕk)|2


=

∑
k∈{−M ′,...,M ′}d

|νn(ϕk)|2 ,

(87)

which in turn gives that

max
P (·)=R(·) or I(·)


E

 sup
T

(M′)
g :∥g∥≤1

|νn
(
P (T (M ′)

g )
)
|

2
 ≤

E

 sup
T

(M′)
g :∥g∥≤1

|νn
(
T (M ′)
g

)
|

2

Jensen
≤ E

 sup
T

(K′)
g :∥g∥≤1

(µn (t))
2


≤ E

 ∑
k∈{−M ′,...,M ′}d

|νn(ϕk)|2


=
1

n

∑
k∈{−M ′,...,M ′}d

V (ϕk(X1))

Lemma F.1
≤ (2M ′ + 1)d

n
.

(88)

This last value may thus be used as H2 in the application of Lemma F.5.
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Furthermore, for any g such that ∥g∥ ≤ 1,

max{∥R(T (M ′)
g )∥∞, ∥I(T (M ′)

g )∥∞} ≤ ∥T (M ′)
g ∥∞

= sup
t

∣∣∣∣∣∣
∑

k∈{−M ′,...,M ′}d
⟨ϕk, g⟩ ϕ̄k(t)

∣∣∣∣∣∣
Cauchy-Schwarz

≤ sup
t

√ ∑
k∈{−M ′,...,M ′}d

| ⟨ϕk, g⟩ |2
√ ∑

k∈{−M ′,...,M ′}d
|ϕ̄k(t)|2

∥g∥≤1&|ϕ̄k(·)|≤1
≤

√
(2M ′ + 1)d

≤
√
n

(89)

where the last inequality comes from the fact that (2maxM+ 1)d ≤ n. This gives the value of M1 for Lemma F.5.

Finally, for any g such that ∥g∥ ≤ 1,

max{V(R(T (M ′)
g (X1))),V(I(T (M ′)

g (X1)))} ≤ V(T (M ′)
g (X1))

≤ E
(∣∣∣T (M ′)

g (X1)
∣∣∣2)

=

∫ ∣∣∣T (M ′)
g (x)

∣∣∣2 f(x)dx
|f(·)|∥≤f∥∞ a.s.

≤ ∥f∥∞
∫ ∣∣∣T (M ′)

g

∣∣∣2 dx
∥T (K′)

g ∥≤1
≤ ∥f∥∞

(90)

which gives the value of v for Lemma F.5.

So in the end, Lemma F.5 tells us that there exists absolute constants C1, C2, C3 > 0 such that, when tuned with
Λ
(1)
samp(K) ≥ 96 (2K+1)d

n ,

E

( ∑
K′∈K

(
∥f̃M ′ − fM ′∥2 −

Λ
(1)
samp(K ′)

12

)
+

)
≤
∑

M ′∈K

C1

n

(
∥f∥∞e−C2

(2M′+1)d

∥f∥∞ + e−C2

√
(2M ′+1)d

)
(91)

Hence, since the series
∑

n e
−n and

∑
n e
−
√
n converge, there exists a constant C depending only on ∥f∥∞ such that

E

( ∑
M ′∈M

(
∥f̃M ′ − fM ′∥2 −

Λ
(1)
samp(M ′)

12

)
+

)
≤ C

n
. (92)

Control of the extra term 3. For any M ∈ M,

E

(
max

M ′∈M

(
∥f̂M ′ − f̃M ′∥2 −

Λ
(1)
priv(M

′)

12

)
+

)
≤ E

( ∑
M ′∈M

(
∥f̂M ′ − f̃M ′∥2 −

Λ
(1)
priv(M

′)

12

)
+

)

=
∑

M ′∈M
E

((
∥f̂M ′ − f̃M ′∥2 −

Λ
(1)
priv(M

′)

12

)
+

) (93)

For any M ′, we may notice that ∥f̂M ′ − f̃M ′∥2 has a χ2 distribution scaled by σM ′ and with 2(2M ′ + 1)d degrees of
freedom. Lemma F.4 using δ = 1 thus yields:

E
((

∥f̂M ′ − f̃M ′∥2 − (1 + 1)σ2
M ′2(2M

′ + 1)d
)
+

)
≤ 2σ2

M ′

1
e−

2(2M′+1)d

4 + 2σ2
M ′e

− 2(2M′+1)d

2 (94)
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Furthermore, since σM ′ =
2
√

(2M ′+1)d

n
√
ρ′

, we have that

E

((
∥f̂M ′ − f̃M ′∥2 −

8(2M ′ + 1)2d

n2ρ′

)
+

)
≤ C

(2M ′ + 1)d

n2ρ′

(
e−

(2M′+1)d

2 + e−
(2M′+1)d

1

)
, (95)

where C is a non-negative absolute constant.

In the end, using that from our statement Λ(1)
priv(M

′) ≥ 96(2M ′+1)2d

n2ρ′ , we may write that

E

(
max

M ′∈M

(
∥f̂M ′ − f̃M ′∥2 −

Λ
(1)
priv(M

′)

12

)
+

)
≤

∑
M ′∈M

E

((
∥f̂M ′ − f̃M ′∥2 −

8(2M ′ + 1)2d

n2ρ′

)
+

)

≤
∑

M ′∈M
C
(2M ′ + 1)d

n2ρ′

(
e−

(2M′+1)d

2 + e−
(2M′+1)d

1

)
≤ C

n2ρ′

∑
j∈N

j
(
e−

j
2 + e−

j
1

)
≤ C ′

n2ρ′

(96)

where C ′ is a non-negative absolute constant since
∑

j∈N j
(
e−

j
2 + e−

j
1

)
is finite.

Control of the extra term 1. For a fixed M ∈ M,

E
((

∥ProjSM
(f̂M̂ )− ProjSM̂

(f̂M )∥2 − (∆priv(M) + ∆priv(M̂))
)
+

)
≤ E

((
2∥ProjSM

(f̂M̂ )− f̃M̂∧M∥2 + 2∥ProjSM̂
(f̂M )− f̃M̂∧M∥2 − (∆priv(M) + ∆priv(M̂))

)
+

)
≤ E

((
2∥f̂M̂ − f̃M̂∥2 + 2∥f̂M − f̃M∥2 − (∆priv(M) + ∆priv(M̂))

)
+

)
≤ E

((
2∥f̂M̂ − f̃M̂∥2 −∆priv(M̂)

)
+
+ 2∥f̂M − f̃M∥2

)
≤ E

( ∑
K′∈M

(
2∥f̂M ′ − f̃M ′∥2 −∆priv(M

′)
)
+
+ 2∥f̂M − f̃M∥2

)
(97)

Furthermore, following a roadmap similar as the one used in the control of the extra term 3 (see (96)), we observe that if
∆priv(M

′) ≥ 16(2M ′+1)2d

n2ρ′ , there exists an absolute constant C > 0 such that

E

( ∑
M ′∈M

(
2∥f̂M ′ − f̃M ′∥2 −∆priv(M

′)
)
+
+ 2∥f̂M − f̃M∥2

)
≤ C

(
1

n2ρ′
+ ∥f̂M − f̃M∥2

)
(98)

Putting the pieces together. All in all, by taking the expectation, we have proved that for any M ∈ M,

E
(
∥f̂M̂ − f∥2

)
/C ≤ ∥f − fM∥2 + E

(
∥f̂M − f̃M∥2

)
+ E

( ∑
M ′∈M

(
∥f̂M ′ − f̃M ′∥2 −

Λ
(1)
priv(M

′)

12

)
+

)

+ E

( ∑
M ′∈M

(
∥f̂M ′ − f̃M ′∥2 −

∆priv(M
′)

2

)
+

)
+ E

( ∑
M ′∈M

(
∥f̃M ′ − fM ′∥2 −

Λ
(1)
samp(M ′)

12

)
+

)
+ Λ(2)(M)

(99)
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where C > 0 is an absolute constant

Furthermore, E
(
∥f̂M − f̃M∥2

)
= 2(2M + 1)dσ2

M , and with the values of Λ(1)
samp(·), Λ(1)

priv(·) and ∆priv(·) that were taken
within the proof, the other expectations are controlled, yielding

E
(
∥f̂M̂ − f∥2

)
/C ′ ≤ ∥f − fM∥2 + 2(2M + 1)dσ2

M + E

( ∑
M ′∈M

(
∥f̂M ′ − f̃M ′∥2 −

Λ
(1)
priv(M

′)

12

)
+

)

+ E

( ∑
M ′∈M

(
∥f̂M ′ − f̃M ′∥2 −

∆priv(M
′)

2

)
+

)
+ E

( ∑
M ′∈M

(
∥f̃M ′ − fM ′∥2 −

Λ
(1)
samp(M ′)

12

)
+

)
+ Λ(2)(M)

(100)

D.3. Proof of Theorem 6.3

We recall that for any M ∈ M, the bias-variance tradeoff BV (M) in Theorem 6.2 reads

BV (M) ≤∥f − fM∥2 + (2M + 1)d

n
+ 2(2M + 1)dσ2

M , (101)

where σM =
2
√

(2M+1)d

n
√

ρ/|M|
.

As in the proof of Theorem 4.2, the dichotomy of having the variance dominated by sampling or privacy leads to the the
introduction of the optimal cut-off

M∗ + 1 := min

{
(n/2d)

1
2β+d ,

(
n
√
ρ/M/2d

) 1
β+d

}
.

If one could guarantee that M∗ + 1 belongs to M, then Theorem 6.2 would guarantee the advertised result. However, this is
not the case.

Even if one cannot guarantee that M∗ + 1 ∈ M, with the construction rule for M, we can always guarantee that for n big
enough (the ”big enough” depends on β and d), there will exist M ′ + 1 ∈ M such that (M∗ + 1)/2 ≤M ′ + 1 ≤M∗ + 1.

Since the variance terms are non-increasing with M , using M ′ instead of M∗ only decreases the variance.

The bias term on the other hand is non-decreasing with M . However, by looking at the expressions of the bias in Lemma 4.1
or Proposition E.1 shows that in the worst case, being off by a factor at most 1/2 degrades the estimation bias by a factor
22β .

Using that the minM∈MBV (M) in Theorem 6.2 is upper-bounded by BV (M ′) and that the residual terms are negligible
yields the result.

E. On non-integer multi-dimensional Sobolev spaces
This section presents all the technical details on how to handle Sobolev spaces of non-integer smoothness.

E.1. Definition

Below, we shall discuss on the multi-dimensional Sobolev spaces with a non-integer parameter β ≥ 0.

Our starting point is the space of Hölderian functions with a (fractional) order s ∈ (0, 1) and radius R:

HR(s) =

{
f : Rd −→ R | ∥f∥Hs

:= sup
(x,y)∈[0,1]d×[0,1]d

|f(x)− f(y)|
∥x− y∥s

≤ R

}
. (102)

Then, for any real value β, we shall use the decomposition β = ⌊β⌋+ ν where ν = β−⌊β⌋ ∈ [0, 1). In this decomposition,
⌊β⌋ is then the integer part of the order derivatives and ν the fractional one: ⌊β⌋ encodes for a number of integer derivatives
whereas ν refers to an Holderian smoothness of these derivatives.
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For a given L > 0, we will say that f ∈ SL(β) if:

SL(β) :=

f : Rd −→ R |
∑
|α|=⌊β⌋

∥∂αf∥22 + 1ν>0

∑
|α|=⌊β⌋

∥∂αf∥2Hν
≤ L2

 . (103)

We observe that when β is an integer, SL(β) synchronises with the standard definition.

E.2. Control of the bias

We establish below the important tail behaviour of the Fourier series in our generalized Holderian Sobolev spaces:
Proposition E.1. Assume that f ∈ Sp

L(β), then an explicit constant □(β) independent from d exists such that∑
k/∈{−M,...,M}d

|θk(f)|2 ≤ □(β)d(M + 1)−2βL2

We first state an important proposition on the relation between the fractional Holder exponent s ∈ (0, 1) of any function f
and the Fourier series associated to f .
Proposition E.2. Assume that f ∈ HR(s) for s ∈ (0, 1) and that f satisfies the periodicity condition (7) for α = (0, . . . , 0),
then the Fourier series associated to (θk(f))k∈Zd of f satisfies∑

k/∈{−M,...,M}d
|θk(f)|2 ≤ C(s)dR2(M + 1)−2s,

where C(s) = 22s3−s

1−2−2s .

Proof. Below, k refers to a d dimensional vector of integers, and max(|k|) is the maximal value of the vector that contains
the absolute values of the coordinates of k.

We consider f and a translation of f denoted by fh: fh(x) = f(x−h) where h is any vector of [0, 1]d. Using the periodicity
of f , we have:

∀k ∈ Zd θk(f) =

∫
[0,1]d

f(x)e−iC2π⟨k,x⟩dx and θk(fh) =

∫
[0,1]d

fh(x)e
−iC2π⟨k,x⟩dx = θk(f)e

−iC2π⟨k,h⟩,

which entails:
θk(f)

(
1− e−iC2π⟨k,h⟩

)
=

∫
[0,1]d

(f(x)− fh(x))e
−iC2π⟨k,x⟩dx

We get from the Parseval equality and the fractional Holder hypothesis on f , for any collection of vectors h(j) ∈ [0, 1]d:

∀j ∈ {1, . . . , d}
∑
k∈Zd

|θk(f)|2
∣∣∣1− e−iC2π⟨k,h

(j)⟩
∣∣∣2 = ∥f − fh(j)∥22 ≤ R2|h(j)|2s (104)

We now consider k = (k1, . . . , kd) ∈ Zd and assume that for j ∈ {1, . . . , d} : |kj | = K ∈ [2m, 2m+1). For this coordinate
j ∈ {1, . . . , d}, we consider the vector h(j) = 2−m

3 δj and we verify that:

|2π⟨k, h(j)⟩| = 2π

3
ki2
−m ∈

[
2π

3
,
4π

3

)
.

It implies that: ∣∣∣1− e−iC2π⟨k,h
(j)⟩
∣∣∣2 ≥ 1,

which in turn leads to ∑
k∈Zd:|kj |∈[2m,2m+1)

|θk(f)|2 ≤
∑

k∈Zd:|kj |∈[2m,2m+1)

|θk(f)|2
∣∣∣1− e−iC2π⟨k,h

(j)⟩
∣∣∣2

≤ R2|h(j)|2s
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where we applied Equation (104) in the last line. Using the value of h(j), we deduce that:

∀j ∈ {1, . . . , d}
∑

k∈Zd:|kj |∈[2m,2m+1)

|θk(f)|2 ≤ R23−2s2−2ms. (105)

We are now able to conclude the proof: we consider any integer M ≥ 1 and the dyadic scale, which associates m0 ≥ 0 such
that 2m0 ≤M < 2m0+1, we observe that∑

k∈Zd : k/∈{−M,...,M}d
|θk(f)|2 ≤

∑
k∈Zd : k/∈{−2m0 ,...,2m0}d

|θk(f)|2

≤
∑

k∈Zd ∃j :|kj |≥2m0

|θk(f)|2

≤
d∑

j=1

∑
k∈Zd :|kj |≥2m0

|θk(f)|2

≤
d∑

j=1

∑
m≥m0

∑
k∈Zd :2m≤|kj |<2m+1

|θk(f)|2

≤ R23−s
d∑

j=1

∑
m≥m0

2−2ms

≤ R23−s

1− 2−2s
d2−2m0s

≤ R222s3−s

1− 2−2s
d(M + 1)−2s.

We obtain the conclusion of the proof with C(s) = 22s3−s

1−2−2s .

Proof of Proposition E.1. We are now ready to extend our estimate stated in Lemma 4.1 from integer Sobolev spaces to
fractional ones. Assume that β > 0: we observe that

• If β ∈ N, then Lemma 4.1 yields

∥f − fM∥ ≤ L2

(2π)2β
(M + 1)−2β .

• Oppositely, if β = ⌊β⌋+ s with s ∈ (0, 1) and assume that f ∈ Sp
L(β), we know from Proposition E.2 that:∑

|α|=⌊β⌋

∑
k/∈{−M,...,M}d

|θk(∂α(f))|2 ≤
∑
|α|=⌊β⌋

C(s)dM−2s∥∂αf∥2Hs
≤ C(s)d(M + 1)−2sL2.

We then conclude following the same guidelines as the ones of Lemma 4.1:

((2π)(M + 1))2⌊β⌋
∑

k/∈{−M,...,M}d
|θk(f)|2 ≤

∑
|α|=⌊β⌋

∑
k/∈{−M,...,M}d

(2πk)2α|θk(f)|2

≤ C(s)d(M + 1)−2sL2,

which implies with β = ⌊β⌋+ s the final bound:

∑
k/∈{−M,...,M}d

|θk(f)|2 ≤ C(s)L2

(2π)2⌊β⌋
d(M + 1)−2β .
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E.3. Lower-bounds : Adaptation of the proof of Theorem 5.1 in the case of real-valued β’s

The only adaptation needed to the proof is to handle the new Hölderian part in the definition. In fact, the only adaptation
needed is to slightly modify the function ψ(·) in Appendix C.1, and to verify that the subsequent family of functions defined
from it is a family of densities of probability in Sp

L(β). We use the decomposition β = ⌊β⌋+ ν where ν = β−⌊β⌋ ∈ [0, 1).

Let ϵ > 0 that will be fixed later. The old ψ of Appendix C.1 is replaced by a new ψ(·) = aΨ
( ·
2

)
where a > 0 is fixed to a

small enough value such that ∑
|α|=⌊β⌋

∥∂αψ∥22 + 1ν>0

∑
|α|=⌊β⌋

∥∂αψ∥2Hν
≤ ϵ . (106)

All the other quantities are defined from this new ψ as in Appendix C.1.

The entire proof of Theorem 5.1 remains unchanged except for one detail : we first to check that the new family of densities
(fθ) is in Sp

L(β) for non-integer β’s. We separate two cases :

• β ≥ 1 : Let θ ∈ {1, . . . ,md}, and let |α| = ⌊β⌋. With the same reasoning steps as in (44), we obtain that

∥∂αfθ∥22 =

∫
[0,1]d

hβ md∑
i=1

θi

(
x 7→ ψ

(
x− pi
h

))(α)
2

=

∫
[0,1]d

h2ν

md∑
i=1

θiψ
(α)

(
· − pi
h

)2

disjoint supports
= h2ν

md∑
i=1

θi

∫
[0,1]d

(
ψ(α)

(
· − pi
h

))2

∥θ∥1≤md& variable swap
≤ h2νmdhd

∫
[0,1]d

(
ψ(α)

)2
mdhd≤1

≤ h2ν∥∂αψ∥22
h≤1
≤ ∥∂αψ∥22 .

(107)

In order to control ∥∂αfθ∥2Hν
, we will need the following lemma :

Lemma E.3. If g1 and g2 are continuous with compact supports and if their supports are disjoint, then

∥g1 + g2∥Hν
≤ max {∥g1∥Hν

, ∥g2∥Hν
} .

Proof. Let x ̸= y ∈ [0, 1]d. We will upper-bound the Hölderian ratio |(g1+g2)(x)−(g1+g2)(y)|
|x−y|ν by a Hölderian ratio

depending only on g1 or g2. If x and y both live in the support of either g1 or g2, then we may rewrite, in the case
where it is in the support of g1,

|(g1 + g2)(x)− (g1 + g2)(y)|
|x− y|ν

≤ |g1(x)− g1(y)|
|x− y|ν

≤ ∥g1∥Hν
. (108)

Alternatively, the case when it is in the support of g2 gives the majoration by ∥g2∥Hν
.

Now let us look at the case where x and y do not both live in the support of either g1 or g2. Let us suppose that
g1(x) ≥ g2(y), the other case being treated in the same fashion. Since g1 and g2 have disjoint supports, there exists
t ∈ (0, 1) such that g1(tx+(1− t)y) = g2(tx+(1− t)y) = 0 (connexity argument). Now, by the intermediate values
theorem (g1 is continuous), there exists t′ ∈ [0, t] such that g1(t′x+ (1− t′)y) = g2(y). We thus obtain that

|(g1 + g2)(x)− (g1 + g2)(y)|
|x− y|ν

=
|g1(x)− g2(y)|

|x− y|ν

=
|g1(x)− g1(t

′x+ (1− t′)y)|
|x− y|ν

≤ |g1(x)− g1(t
′x+ (1− t′)y)|

|x− (t′x+ (1− t′)y)|ν

≤ ∥g1∥Hν
.

(109)
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The other case leads to a majoration by ∥g2∥Hν
. All in all, this proves that for any x ̸= y,

|(g1 + g2)(x)− (g1 + g2)(y)|
|x− y|ν

≤ max {∥g1∥Hν
, ∥g2∥Hν

} ,

and taking the supremum on the left-hand side yields the desired result.

Back to our problem, we may write that

∥∂αfθ∥Hν =

∥∥∥∥∥∥hβ
md∑
i=1

θi

(
x 7→ ψ

(
x− pi
h

))(α)
∥∥∥∥∥∥
Hν

= hν

∥∥∥∥∥∥
md∑
i=1

θiψ
(α)

(
· − pi
h

)∥∥∥∥∥∥
Hν

Lemma E.3
≤ hν max

i

{∥∥∥∥ψ(α)

(
· − pi
h

)∥∥∥∥
Hν

}

= hν max
i

{
sup
x ̸=y

ψ(α)
(
x−pi

h

)
− ψ(α)

(
y−pi

h

)
|x− y|ν

}

= hν max
i

{
h−ν sup

x ̸=y

ψ(α) (x)− ψ(α) (y)

|x− y|ν

}
= ∥∂αψ∥Hν

.

(110)

So all in all, fixing ϵ = L2 ensures that for any θ,∑
|α|=⌊β⌋

∥∂αfθ∥22 + 1ν>0

∑
|α|=⌊β⌋

∥∂αfθ∥2Hν
≤ L2 . (111)

• β ∈ (0, 1) : When β < 1, there is one extra technical detail to consider : Since no integer derivative is performed, the
constant parts in the densities (fθ) do not vanish. This is not a problem for the Hölderian part since the seminorm
∥ · ∥Hν is unchanged up to the addition or removal of a constant function. For the sobolev par on the other hand, we
may use that ∥g1 + g2∥2 ≤ (1 + η) ∥g1∥2 + (1 + 1/η) ∥g2∥2 for any g1, g2 ∈ L2 and any η > 0, which gives that

∥fθ∥22 + ∥fθ∥2Hν
≤ L2 . (112)

when applied with g1 the constant part of fθ, g2 the part with the kernels, η = L2−1
2 , and ϵ that satisfies (1 + 2/η) ϵ ≤

L2−1
2 . Obviously, this only holds if L > 1. However, since β ∈ (0, 1), Jensen’s inequality already implies that any

density of probability g satisfies ∥g∥22 + ∥g∥2Hν
≥ ∥g∥22 ≥ 1, with equality if and only if g is the density of the uniform

distribution. So L > 1 is not restrictive on non-trivial classes of distributions Sp
L(β).

Now that we have verified that the family of densities (fθ) is a subset of Sp
L(β), the rest of the proof follows line by

line the one of Theorem 5.1 in the case of integer-valued β.

F. Technical results
Lemma F.1 (Popoviciu’s inequality for multivariate random variables). Let X be a random variable in Rd′ . If there exist µ
and σ such that ∥X − µ∥ ≤ σ almost-surely, then one has

V(X) := E
(
∥X − E(X)∥2

)
≤ σ2 , (113)

thus allowing to gain a factor 4 compared to the natural majoration V(X) ≤ 4σ2. In particular, with the isometric
identification (C, | · |) ∼= (R2, ∥ · ∥), this allows bounding the variance of a complex random variable.
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Proof. V(X) minimizes the function t 7→ E
(
∥X − t∥2

)
. Thus, V(X) is upper-bounded by the value of the same function

in µ, yielding the result.

Lemma F.2 (Existence of C∞ function with support in unit ball of Rd). The function Ψ from Rd to [0,+∞) which is defined
by

Ψ(x) :=

{
e
− 1

1−∥x∥2 if ∥x∥ < 1

0 otherwise
(114)

is in C∞(Rd) and takes non-negative values.

Proof. By induction, we get that for any α ∈ Nd, ∂αϕ(x) = Pα(x)
Qα(x)e

− 1
1−∥x∥2 when ∥x∥ < 1 where Pα and Qα are

polynomial expressions (in the coefficients of their input vector) with Qα(x) ̸= 0, and immediately ∂αΨ(x) = 0 when
∥x∥ > 1. This proves that ∂αΨ is continuous on Rd with ∂αΨ(x) = 0 when ∥x∥ ≥ 1 because the exponential term is
dominant near the unit circle. Since this holds for any α ∈ Nd, the result follows.

Lemma F.3 (Hoeffding’s inequalities). If X1, . . . , Xn are independent real-valued random variables such that for any i,
ai ≤ Xi ≤ bi, then for any t > 0,

P

(∣∣∣∣∣∑
i

(Xi − E(Xi))

∣∣∣∣∣ > t

)
≤ 2 exp

(
− 2t2∑

i(bi − ai)2

)
.

As a consequence, if X1, . . . , Xn are independent complex-valued random variables such that for any i, Xi ∈ B(ci, ri),

P

(∣∣∣∣∣∑
i

(Xi − E(Xi))

∣∣∣∣∣ > t

)
≤ 4 exp

(
− t2

4
∑

i r
2
i

)
.

Proof. The first inequality for real-valued random variables is folklore, and its proof may for instance be found in (Tsybakov,
2009). For the claim about complex random variables, we have

P

(∣∣∣∣∣∑
i

(Xi − E(Xi))

∣∣∣∣∣ > t

)

= P

∣∣∣∣∣∑
i

(Xi − E(Xi))

∣∣∣∣∣
2

> t2


= P

R(∑
i

(Xi − E(Xi))

)2

+ I

(∑
i

(Xi − E(Xi))

)2

> t2


≤ P

R(∑
i

(Xi − E(Xi))

)2

> t2/2

+ P

I (∑
i

(Xi − E(Xi))

)2

> t2/2


= P

(∑
i

(R(Xi)− E(R(Xi)))

)2

> t2/2

+ P

(∑
i

(I(Xi)− E(I(Xi)))

)2

> t2/2


≤ 2 exp

(
−2(t/

√
2)2∑

i(2ri)
2

)
+ 2 exp

(
−2(t/

√
2)2∑

i(2ri)
2

)
,

where the last inequality comes from Hoeffding’s inequality for real-valued random variables.

Lemma F.4 (χ2 concentration). Let X1, . . . , Xd be i.i.d. random variables with distribution N (0, σ2). Let us define
Z = X2

1 + · · ·+X2
d . Then, for any δ > 0,

P
(
Z ≥ (1 + δ)dσ2

)
≤ max

{
e−

dδ2

4 , e−
dδ
2

}
. (115)
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Furthermore, the integrated version gives, for any δ > 0,

E
((
Z − (1 + δ)dσ2

)
+

)
≤ 2σ2

δ
e−

dδ2

4 + 2σ2e−
dδ
2 . (116)

Proof. According to Lemma 1 in (Laurent & Massart, 2000), for any x > 0,

P
(
Z ≥ dσ2 + 2σ2

√
dx+ 2σ2x

)
≤ e−x . (117)

Furthermore, we have δσ2d = 2σ2
√
dx1 iff x1 = dδ2

4 and δσ2d = 2σ2x2 iff x2 = dδ
2 . By noting f(x) = 2σ2

√
dx+2σ2x,

we have
P
(
Z ≥ (1 + δ)dσ2

)
≤ P

(
Z ≥ dσ2 + f(min{x1, x2})

)
≤ e−min{x1,x2}

= max
{
e−

dδ2

4 , e−
dδ
2

}
.

(118)

Furthermore,

E
((
Z − (1 + δ)dσ2

)
+

)
≤
∫ +∞

(1+δ)dσ2

P(Z ≥ t)dt

=

∫ +∞

δ

dσ2P(Z ≥ (1 + u)dσ2)du

≤
∫ +∞

δ

dσ2
(
e−

du2

4 + e−
du
2

)
du

≤
∫ +∞

δ

dσ2
(u
δ
e−

du2

4 + e−
du
2

)
du

≤ 2σ2

δ
e−

dδ2

4 + 2σ2e−
dδ
2 .

(119)

Lemma F.5 (Talagrand’s inequality (one of many) (From Appendix A in (Comte, 2017))). Let n ∈ N \ {0}, F be a
countable family of real-valued measurable functions and (Xi)i=1...,n be n independent random variables taking values in
a common Polish space. By noting, for any f ∈ F ,

νn(f) :=
1

n

n∑
i=1

(f(Xi)− E(f(Xi))) , (120)

if there exist three positive constants M1, H and v such that

sup
f∈F

∥f∥∞ ≤M1 , (121)

E

(
sup
f∈F

|νn(f)|

)
≤ H , (122)

sup
f∈F

1

n

n∑
i=1

V(f(Xi)) ≤ v , (123)

then for any δ > 0,

E

((
sup
f∈F

|νn(f)|2 − 2(1 + 2δ)H2

)
+

)
≤ 4

K1

(
v

n
e−K1δ

nH2

v +
49M2

1

K1K(δ)2n2
e−
√

2K1K(δ)
√

δ
7

nH
M1

)
, (124)

where (y)+ := max{y, 0}, K1 := 1
6 and K(δ) := min{

√
1 + δ − 1, 1}.
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