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Abstract

We consider point estimation and inference based on modifications of the profile
likelihood in models for dyadic interactions between n agents featuring agent-specific
parameters. The maximum-likelihood estimator of such models has bias and standard
deviation of order n−1 and so is asymptotically biased. Estimation based on modified
likelihoods leads to estimators that are asymptotically unbiased and likelihood-ratio
tests that exhibit correct size.

JEL Classification: C23

Keywords: asymptotic bias, dyadic data, fixed effects, undirected random graph

1 Introduction

A growing literature has uncovered the importance of interactions between agents through

networks as drivers for economic and social outcomes. A leading approach to statistical

modelling of dyadic interaction is through the inclusion of agent-specific parameters (see,

e.g., Snijders 2011 for many references). A specific example that has received substantial

attention in the recent literature is the β-model for network formation. There, agent

fixed effects serve to capture degree heterogeneity in link formation and the inclusion of
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dyad-level covariates reflects homophily; see, e.g., Graham (2017), Jochmans (2018), and

Dzemski (2019).

Estimation of fixed-effect models for dyadic data is non-standard as the number of

parameters grows with the sample size in a similar manner as in the classic incidental-

parameter problem for one-way panel data discussed in Neyman and Scott (1948). Under

so-called dense-network asymptotics, common parameters in regular models can be con-

sistently estimated but inference is plagued by asymptotic bias; see Fernández-Val and

Weidner (2016, 2018) and Graham (2017), for examples, discussion, and approaches to

bias-correct the point estimator.

In this paper we look at generic estimation problems for undirected dyadic data and

consider inference based on modifying the likelihood function in the spirit of Pace and

Salvan (2006) and Arellano and Hahn (2006, 2007). In its most general form, the modified

likelihood is a bias-corrected version of the profile likelihood, that is, of the likelihood after

having profiled-out the nuisance parameters. The adjustment is both general and simple

in form, involving only the score and Hessian of the likelihood with respect to the nuisance

parameters. The adjustment term removes the leading bias from the profile likelihood

and leads to asymptotically-unbiased inference and likelihood ratio statistics that are χ2-

distributed under the null. The form of the adjustment can be specialized by using the

likelihood structure, as in DiCiccio, Martin, Stern and Young (1996).

We work out the modifications to the profile likelihood in a linear version of the β-model

and (in the appendix) in a linear version of the Bradley and Terry (1952) model for paired

comparisons. These simple illustrations give insight in how the adjustments work. We

next apply them to the β-model in the simulation designs of Graham (2017). We find that

both modifications dramatically improve on maximum likelihood in terms of bias and mean

squared error as well as reliability of statistical inference, and that they are considerably

more reliable than ex-post bias-correction of the maximum-likelihood estimator.
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2 Fixed-effect models for dyadic data

We consider data on dyadic interactions between n agents. For each of n(n−1)/2 distinct

agent pairs (i, j) with i < j we observe the random variable zij, which may be a vector.

The density of zij (relative to some dominating measure) takes the form f(zij;ϑ, βi, βj),

where ϑ and β1, . . . , βn are unknown Euclidean parameters. We may observe an outcome yij

generated by pair (i, j) together with a vector of dyad characteristics xij, in which case we

have zij = (yij, x
′
ij)
′, and we could consider the distribution of the outcome conditional on

the covariates. In what follows, we take the zij to be (conditionally) independent. Models

of this form are relevant in many areas. Examples include the analysis of network formation

as mentioned before, but also the study of strategic behavior among agents (Bajari, Hong

and Nekipelov 2010), and the construction of rankings (Bradley and Terry 1952). Our goal

is to perform inference on ϑ treating the βi as fixed effects.

The log-likelihood is

`(ϑ, β) =
n∑
i=1

∑
i<j

log f(zij;ϑ, βi, βj),

where we let β = (β1, . . . , βn)′. For simplicity of exposition we ignore any normalization that

may be needed on β to achieve identification. When a normalization of the form c(β) = 0 is

needed, everything to follow goes through on replacing `(ϑ, β) by the constrained likelihood

`(ϑ, β) − λ c(β), where λ denotes the Lagrange multiplier. We give a detailed example in

the appendix.

It is useful to recall that the maximum-likelihood estimator of ϑ can be expressed as

ϑ̂ = arg max
ϑ

ˆ̀(ϑ),

where ˆ̀(ϑ) = `(ϑ, β̂(ϑ)), with

β̂(ϑ) = arg max
β

`(ϑ, β),

is the profile likelihood.
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Inference based on the profile likelihood performs poorly because the estimation noise

in β̂(ϑ) introduces non-negligible bias. Moreover, in regular settings,

E(ϑ̂− ϑ) = O(n−1), E((ϑ̂− E(ϑ̂))2) = O(n−2),

so that bias and standard deviation are of the same order of magnitude. Consequently, the

maximum-likelihood estimator is asymptotically biased.

2.1 Modified profile likelihood

In its simplest form, modified likelihoods can be understood as yielding a superior approx-

imation to the target likelihood

`(ϑ) = `(ϑ, β(ϑ)), β(ϑ) = arg max
β

E(`(ϑ, β)).

Moreover, the profile likelihood is the sample counterpart to this infeasible likelihood.

Replacing β(ϑ) with β̂(ϑ) introduces bias that leads to invalid inference. To see this

suppose that

β̂(ϑ)− β(ϑ) = Σ(ϑ)−1V (ϑ) +Op(n
−1), (2.1)

where we introduce

V (ϑ) =
∂`(ϑ, β)

∂β

∣∣∣∣
β=β(ϑ)

, Σ(ϑ) = − E
(
∂2`(ϑ, β)

∂β∂β′

)∣∣∣∣
β=β(ϑ)

.

An expansion of the profile likelihood around β(ϑ) yields

ˆ̀(ϑ)− `(ϑ) = (β̂(ϑ)− β(ϑ))′V (ϑ)

− 1

2
(β̂(ϑ)− β(ϑ))′Σ(ϑ)(β̂(ϑ)− β(ϑ)) +Op(n

−1/2).

Combining the two expansions and taking expectations then shows that the bias of the

profile likelihood is of the form

E(ˆ̀(ϑ)− `(ϑ)) =
1

2
trace(Σ(ϑ)−1Ω(ϑ)) +O(n−1/2) (2.2)

for

Ω(ϑ) = E[V (ϑ)V (ϑ)′],
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the variance of V (ϑ).

Equation (2.1) is a conventional asymptotically-linear representation of the estimator

of the fixed effects; see, e.g., Rilstone, Srivastava and Ullah (1996). Low-level conditions

for it to go through in specific models are provided in Fernández-Val and Weidner (2016,

2018). The difficulty in the current case, as opposed to say the one-way panel data model

(as dealt with in Hahn and Newey 2004), is to handle the non-sparse nature of the Hessian

matrix.

With (2.2) in hand, a modified likelihood is

˙̀(ϑ) = ˆ̀(ϑ)− 1

2
trace(Σ̂(ϑ)−1Ω̂(ϑ)),

where we define the plug-in estimators

Σ̂(ϑ) = Σ̂(ϑ, β̂(ϑ)), Ω̂(ϑ) = Ω̂(ϑ, β̂(ϑ)),

for matrices

−(Σ̂(ϑ, β))i,j =



∑
k>i

∂2 log f(zik;ϑ,βi,βk)

∂β2
i

+
∑

k<i
∂2 log f(zki;ϑ,βk,βi)

∂β2
i

if i = j

∂2 log f(zij ;ϑ,βi,βj)

∂βi∂βj
if i < j

∂2 log f(zji;ϑ,βj ,βi)

∂βi∂βj
if i > j

and

(Ω̂(ϑ, β))i,j =



∑
k>i

(
∂ log f(zik;ϑ,βi,βk)

∂βi

)2
+
∑

k<i

(
∂ log f(zki;ϑ,βk,βi)

∂βi

)2
if i = j

∂ log f(zij ;ϑ,βi,βj)

∂βi

∂ log f(zij ;ϑ,βi,βj)

∂βj
if i < j

∂ log f(zji;ϑ,βj ,βi)

∂βi

∂ log f(zji;ϑ,βj ,βi)

∂βj
if i > j

In large samples, this modification removes the leading bias from the profile likelihood.

Consequently, in large samples, the likelihood-ratio statistic has correct size and

ϑ̇ = arg max
ϑ

˙̀(ϑ),
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will have bias o(n−1). Furthermore, under usual regularity conditions, we have the limit

result

(ϑ̇− ϑ)
a∼ N

(
0,

I(ϑ)−1

n(n− 1)/2

)
as n→∞, where we let

I(ϑ) = lim
n→∞

E
(
−∂

2`(ϑ)

∂ϑ∂ϑ′

)/(
n(n− 1)

2

)
be the Fisher information for ϑ.

The only point at which the likelihood setting has been used so far is in the statement

of the limit distribution of ϑ̇−ϑ, where the expression for the asymptotic variance exploits

the information equality. Bias-corrected estimation—using the same formula for the bias

as before—thus carries over to more general extremum-type estimation problems; the only

change being that, now, the asymptotic variance is I(ϑ)−1Ω(ϑ) I(ϑ)−1.

Alternatively, following the arguments in Arellano and Hahn (2007) we can exploit the

likelihood structure to get

1

2
trace(Σ̂(ϑ)−1Ω̂(ϑ)) = −1

2
log(det Σ̂(ϑ)) +

1

2
log(det Ω̂(ϑ)) +O(n−1),

which validates the alternative modified likelihood

῭(ϑ) = ˆ̀(ϑ) +
1

2
log(det Σ̂(ϑ))− 1

2
log(det Ω̂(ϑ));

see DiCiccio, Martin, Stern and Young (1996). Its maximizer, say ϑ̈, satisfies the same

asymptotic properties as ϑ̇.

2.2 Illustration: A linear β-model

Consider the following extension of the classic many normal means problem of Neyman

and Scott (1948). Data are generated as

zij ∼ N(βi + βj, ϑ),
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and are independent across dyads. The likelihood function for all parameters (ignoring

additive constants) is

`(ϑ, β) = −1

2

n(n− 1)

2
log ϑ− 1

2

n∑
i=1

∑
i<j

(zij − βi − βj)2

ϑ
.

Its first two derivatives with respect to the βi are

∂`(ϑ, β)

∂βi
=
∑
j>i

zij − βi − βj
ϑ

+
∑
j<i

zji − βj − βi
ϑ

and

∂2`(ϑ, β)

∂βi∂βj
=

 −
(n−1)
ϑ

if i = j

− 1
ϑ

if i 6= j
.

Let z̃i = (n − 2)−1
∑

j>i zij + (n − 2)−1
∑

j<i zji and z = (2(n − 1)−1
∑n

i=1 z̃i. Solving for

the maximum-likelihood estimator of βi gives β̂i = z̃i − z for any ϑ. The profile likelihood

is therefore

ˆ̀(ϑ) = −1

2

n(n− 1)

2
log ϑ− 1

2

n∑
i=1

∑
i<j

(zij − (z̃i − z)− (z̃j − z))2

ϑ
,

and its maximizer is

ϑ̂ =
2

n(n− 1)

n∑
i=1

∑
i<j

(zij − (z̃i − z)− (z̃j − z))2.

Some tedious but straightforward calculations yield

E(ϑ̂− ϑ) = − 2

n− 1
ϑ, var(ϑ̂) =

n− 3

n− 1

2ϑ2

n(n− 1)/2
,

which confirms that the maximum-likelihood estimator of ϑ suffers from asymptotic bias.

Moreover, √
n(n− 1)

2
(ϑ̂− ϑ)

d→ N
(
−
√

2ϑ, (
√

2ϑ)2
)
,

as n→∞.

To set up the modified likelihood, first note that

(Σ̂(ϑ))i,j =


n−1
ϑ

if i = j

1
ϑ

if i 6= j
, (Σ̂(ϑ)−1)i,j =


ϑ
2

2n−3
(n−1)(n−2) if i = j

−ϑ
2

1
(n−1)(n−2) if i 6= j

,
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and that

(Ω̂(ϑ))i,j =



∑
i<k

(zik−(z̃i−z)−(z̃k−z))2
ϑ2

+
∑

i>k
(zki−(z̃k−z)−(z̃i−z))2

ϑ2
if i = j

(zij−(z̃i−z)−(z̃j−z))2
ϑ2

if i < j

(zji−(z̃j−z)−(z̃i−z))2
ϑ2

if i > j

.

It is then easily seen that

1

2
trace(Σ̂(ϑ)−1Ω̂(ϑ)) =

1

2

2

n− 1

n∑
i=1

∑
i<j

(zij − (z̃i − z)− (z̃j − z))2

ϑ
.

From this we obtain

˙̀(ϑ) = −1

2

n(n− 1)

2
log ϑ−

(
1 +

2

n− 1

)
1

2

n∑
i=1

∑
i<j

(zij − (z̃i − z)− (z̃j − z))2

ϑ
,

and its maximizer

ϑ̇ =
n+ 1

n− 1
ϑ̂ = ϑ̂+

2

n− 1
ϑ̂.

Clearly, this estimator removes the leading bias from the maximum-likelihood estimator.

Moreover,

E(ϑ̇− ϑ) = −
(

2

n− 1

)2

ϑ, var(ϑ̇) =
n(n(n− 1)− 5)

(n− 1)3
2ϑ2

n(n− 1)/2
,

which shows that the remaining bias in the point estimator is small relative to its standard

deviation.

As an alternative correction, we may exploit the likelihood structure to adjust the profile

likelihood by the term

−1

2
log(det Σ̂(ϑ)) +

1

2
log(det Ω̂(ϑ)) =

n

2
log ϑ+ c,

where c is a constant that does not depend on ϑ. This yields the modification

῭(ϑ) = −1

2

n(n− 3)

2
log ϑ− 1

2

n∑
i=1

∑
i<j

(zij − (z̃i − z)− (z̃j − z))2

ϑ
,
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whose maximizer satisfies

E(ϑ̈− ϑ) = 0, var(ϑ̈) =
2ϑ2

n(n− 3)/2
.

This estimator is exactly unbiased.

To give an idea of the magnitude of the bias in this problem, Table 1 contains the bias

and standard deviation of the estimators ϑ̂, ϑ̇, and ϑ̈ for various sample sizes n and variance

parameter fixed to ϑ = 1. These results are invariant to the value of the βi and can be

interpreted as relative bias for general values of ϑ.

Table 1: Many normal means

n ϑ̂ ϑ̇ ϑ̈ ϑ̂ ϑ̇ ϑ̈

bias standard deviation

5 -0.5000 -0.2500 0.0000 0.3162 0.4743 0.6325

10 -0.2222 -0.0494 0.0000 0.1859 0.2272 0.2390

15 -0.1429 -0.0204 0.0000 0.1278 0.1460 0.1491

20 -0.1053 -0.0111 0.0000 0.0970 0.1073 0.1085

25 -0.0833 -0.0069 0.0000 0.0782 0.0847 0.0853

50 -0.0408 -0.0017 0.0000 0.0396 0.0412 0.0413

75 -0.0270 -0.0007 0.0000 0.0265 0.0272 0.0272

100 -0.0202 -0.0004 0.0000 0.0199 0.0203 0.0203

Simulation results for the maximum-likelihood estimator (ϑ̂), the modified profile-likelihood

estimator (ϑ̇), and the modified profile-likelihood estimator exploiting the likelihood structure

(ϑ̈)

3 Application to the β-model

The β-model of network formation models Bernoulli outcome variables as having success

probability

P(yij = 1|xij;ϑ, βi, βj) = F (βi + βj + x′ijϑ),
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where F (a) = (1 + e−a)−1 is the logit link function. We now present the results from a

Monte Carlo experiment. The designs are borrowed from Graham (2017). All designs are

of the following form. Let ui ∈ {−1, 1} so that P(ui = 1) = 1
2
. We generate the dyad

covariate as

xij = ui uj,

and the fixed effects as

βi = µ+ γ1
1 + ui

2
+ γ2

1− ui
2

+ vi,

where vi ∼ Beta(λ1, λ2). We set µ = −λ1(λ1 + λ2)
−1, so that µ + vi has mean zero,

and will consider several choices for the parameters (γ1, γ2) and (λ1, λ2). The parameter

choices are summarized in Table 2. In the first four designs (A1–A4), the βi are drawn

independently of xij from symmetric Beta distributions. In the next four designs (B1–B4)

the βi are generated from skewed distributions that depend on ui (and thus correlate with

the regressor xij). For both the designs labelled A and B, the average number of observed

links per agent goes down as we move from the first design (A1 and B1) to the fourth design

(A4 and B4). The average number of links decreases from about 50% to 12%. This is clear

from the second block of Table 2, which contains the average, minimum, and maximum

number of links per agent (in percentages).

We simulate 10, 000 data sets for each design for n ∈ {25, 50, 75, 100} and ϑ = 1.

Because the results across designs are qualitatively very similar, we present the full set of

results only for Design A1 (Table 3). Tables 4 and 5 provide the results for n ∈ {50, 100} for

all designs. Each table contains the mean and median bias of ϑ, ϑ̇, and ϑ̈, along with their

standard deviation and their interquartile range (both across the Monte Carlo replications).

The tables also provide the empirical size of the likelihood ratio test for the null that ϑ = 1

for theoretical size α ∈ {.05, .10}. Inference results based on the Wald statistic, using a

plug-in estimator of I(ϑ), are very similar and not reported for brevity.

Because the results for n = 100 can be compared (up to Monte Carlo error) to the

numerical results collected in Graham (2017, Table 2), Table 5 contains two additional

columns in which we reproduce the results for his analytically bias-corrected maximum-
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Table 2: Simulation designs for the β-model

Design γ1 γ2 λ1 λ2 degree (%)

mean min max

A1 0 0 1 1 50 32 67

A2 -0.25 -0.25 1 1 40 24 57

A3 -0.75 -0.75 1 1 23 10 38

A4 -1.25 -1.25 1 1 12 3 22

B1 0 0.50 0.25 0.75 60 40 78

B2 -0.50 0 0.25 0.75 40 21 62

B3 -1.00 -0.50 0.25 0.75 24 8 44

B4 -1.50 -1.00 0.25 0.75 12 2 28

likelihood estimator (ϑ̂BC) and his ‘tetrad logit’ estimator (ϑ̂TETRAD). The latter is based

on moment conditions that are free of βi using a sufficiency argument. Bias correcting ϑ̂

does not salvage the likelihood-ratio statistic, and the conditional likelihood function of the

‘tetrad logit’ estimator is a quasi likelihood and, therefore, does not satisfy the information

equality. Hence, the results on size for these two estimators are based on the Wald statistic.

Table 3 clearly shows that both the bias and standard deviation of ϑ̂ are of order

n−1. Consequently, the likelihood ratio test is size distorted even in large samples. Point

estimation through the modified likelihoods gives estimators with small bias relative to

their standard error. Even for n = 25, the bias is only about 20% of the bias in maximum

likelihood estimator. In larger samples, the estimators are essentially unbiased. Both ϑ̇

and ϑ̈ are also less volatile than is ϑ̂. This phenomenon has been observed elsewhere; we

refer to Schumann, Severini and Tripathi (2022). Thus, here, bias correction does not come

at the cost of an increase in dispersion. Together with the substantial decrease in mean

squared error, inference, too, improves dramatically. The likelihood ratio statistics for ˙̀(ϑ)

and ῭(ϑ) have near-theoretical size for all n.

To give a more complete picture on inference via modifying the profile likelihood Figure
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Table 3: β-model. Design A1 for all n

n ϑ̂ ϑ̇ ϑ̈ ϑ̂ ϑ̇ ϑ̈

mean bias standard deviation

25 0.1098 0.0204 0.0304 0.1897 0.1560 0.1572

50 0.0492 0.0045 0.0071 0.0717 0.0679 0.0681

75 0.0320 0.0020 0.0032 0.0467 0.0450 0.0451

100 0.0237 0.0011 0.0017 0.0341 0.0332 0.0332

median bias interquartile range

25 0.1029 0.0154 0.0253 0.2069 0.1873 0.1889

50 0.0487 0.0042 0.0067 0.0961 0.0913 0.0914

75 0.0316 0.0017 0.0028 0.0630 0.0607 0.0608

100 0.0236 0.0010 0.0017 0.0464 0.0450 0.0451

empirical size (α = .10) empirical size (α = .05)

25 0.1937 0.1134 0.1147 0.1142 0.0627 0.0637

50 0.1896 0.1128 0.1125 0.1178 0.0558 0.0555

75 0.1866 0.1092 0.1081 0.1142 0.0575 0.0569

100 0.1890 0.1042 0.1025 0.1103 0.0520 0.0513

Simulation results for the maximum-likelihood estimator (ϑ̂), the modified profile-likelihood

estimator (ϑ̇), and the modified profile-likelihood estimator exploiting the likelihood structure

(ϑ̈)
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Figure 1: Power curves. Design A1 for all n
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Power curves for the likelihood-ratio statistic based on the profile likelihood ˆ̀(ϑ) (solid lines),

the modified profile likelihood ˙̀(ϑ) (dashed lines), and the modified profile likelihood that ex-

ploits the likelihood structure ῭(ϑ) (dashed-dotted lines) for different sample sizes (vertically;

n ∈ {25, 50, 75, 100}) and size (horizontally; left: α = .10, right: α = .05).
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1 presents power curves for the likelihood ratio statistic that go along with Table 3. The

curves for ˆ̀(ϑ) (solid lines) are symmetric but not correctly centered, reflecting the fact

that they are size distorted. This is so for all sample sizes and significance levels consid-

ered. Modifying the likelihood shifts the power curve so that the likelihood ratio test is

(approximately) size correct. This is done without significantly altering the shape of the

power curves. For the smallest sample size considered (n = 25; upper two plots) there is a

small difference in power between the likelihood ratio test for ˙̀(ϑ) (dashed lines) and ῭(ϑ)

(dashed-dotted lines); the former has slightly higher power than the latter for alternatives

ϑ > 1, and slightly less power for ϑ < 1. This difference vanished rapidly as n increases,

however, which is in line with the similar performance of both corrections observed in Table

3.

Tables 4 and 5 show that all conclusions from Design A1 carry over to the other designs.

Moreover, the introduction of correlation between regressors and heterogenous coefficients

or skewing the distribution from which the latter are drawn does not prevent the modified

likelihood to improve on maximum likelihood both in terms of point estimation and in-

ference. A comparison of the two tables clearly shows that both the bias and standard

deviation of ϑ̂ shrink by a factor of one half as n doubles, again illustrating that both are

of order n−1. The subsequent reduction in bias by considering ϑ̇ and ϑ̈ and improvement

in size are manifest for all designs.

Table 5 further shows that the modified-likelihood approach outperforms bias correction

of the maximum-likelihood estimator in Designs A3 and B3 and, in particular, in Designs

A4 and B4. There, bias correction of maximum likelihood introduces rather substantial

additionial bias relative to ϑ̂. The additional bias also leads to a large deterioration of

the empirical size of the Wald statistic associated with ϑ̂BC, with actual sizes ranging up

to seven times the nominal size. This type of sensitivity of analytical bias correction has

equally been observed in panel data applications; see Dhaene and Jochmans (2015) and

Higgins and Jochmans (2023). The performance of the modified likelihood is comparable

to Graham’s ‘tetrad logit’ estimator ϑ̂TETRAD in terms of bias, and it tends to be somewhat

more accurate in terms of the empirical size of the associated hypothesis tests. Moreover,
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Table 4: β-model. All designs for n = 50

Design ϑ̂ ϑ̇ ϑ̈ ϑ̂ ϑ̇ ϑ̈

mean bias standard deviation

A1 0.0492 0.0045 0.0071 0.0717 0.0679 0.0681

A2 0.0499 0.0054 0.0079 0.0742 0.0704 0.0705

A3 0.0467 0.0033 0.0047 0.0933 0.0890 0.0891

A4 0.0497 0.0049 0.0024 0.1391 0.1335 0.1335

B1 0.0526 0.0073 0.0096 0.0768 0.0728 0.0729

B2 0.0490 0.0035 0.0059 0.0747 0.0707 0.0708

B3 0.0493 0.0046 0.0060 0.0936 0.0891 0.0891

B4 0.0500 0.0043 0.0005 0.1380 0.1320 0.1316

median bias interquartile range

A1 0.0487 0.0042 0.0067 0.0961 0.0913 0.0914

A2 0.0482 0.0040 0.0064 0.0995 0.0943 0.0945

A3 0.0441 0.0008 0.0022 0.1247 0.1191 0.1191

A4 0.0412 -0.0032 -0.0059 0.1827 0.1748 0.1748

B1 0.0513 0.0061 0.0084 0.1034 0.0981 0.0982

B2 0.0479 0.0024 0.0049 0.0999 0.0948 0.0949

B3 0.0470 0.0024 0.0039 0.1252 0.1195 0.1196

B4 0.0438 -0.0018 -0.0052 0.1827 0.1740 0.1743

empirical size (α = .10) empirical size (α = .05)

A1 0.1896 0.1128 0.1125 0.1178 0.0558 0.0555

A2 0.1857 0.1135 0.1118 0.1139 0.0602 0.0603

A3 0.1565 0.1098 0.1082 0.0878 0.0581 0.0563

A4 0.1287 0.1095 0.1083 0.0664 0.0594 0.0592

B1 0.1902 0.1141 0.1112 0.1146 0.0582 0.0579

B2 0.1801 0.1081 0.1049 0.1040 0.0574 0.0564

B3 0.1498 0.1052 0.1030 0.0830 0.0554 0.0538

B4 0.1236 0.1064 0.1067 0.0634 0.0543 0.0551

Simulation results for the maximum-likelihood estimator (ϑ̂), the modified profile-likelihood

estimator (ϑ̇), and the modified profile-likelihood estimator exploiting the likelihood structure

(ϑ̈)
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inference based on the ‘tetrad logit’ estimator is conservative in all designs even though,

with n = 100 and therefore 4, 950 dyadic observations, the sample size is large. In addition,

the ‘tetrad logit’ estimator is computationally prohibitive in large networks.

Appendix: A linear Bradley-Terry model

As an alternative to the specification of the Neyman and Scott (1948) model with comple-

mentarities, now suppose that

zij ∼ N(βi − βj, ϑ)

independently across dyads. This model is overparametrized as, clearly, the mean of the

βi is not identified. A common normalization in this type of model is
∑n

i=1 βi = 0 (Simons

and Yao 1999), and we will maintain it here. The constrained likelihood is

−1

2

n(n− 1)

2
log ϑ− 1

2

n∑
i=1

∑
i<j

(zij − βi + βj)
2

ϑ
+ λ

n∑
i=1

βi,

where λ is the Lagrange multiplier for our normalization constraint. The first-order condi-

tion for the constrained problem for βi for a given ϑ equals∑
j>i zij −

∑
j<i zji

ϑ
− n

ϑ
βi = 0.

This gives

β̂i =

∑
j>i zij −

∑
j<i zji

n
= z̃i (say)

for all i and any ϑ. Observe that the sign of β̂i is driven by the comparison of the magnitudes

of
∑

i<j zij and
∑

i>j zji. Also note that
∑n

i=1 β̂i = 0 holds. We therefore have

ˆ̀(ϑ) = −1

2

n(n− 1)

2
log ϑ− 1

2

n∑
i=1

∑
i<j

(zij − z̃i + z̃j)
2

ϑ
,

and with it, the maximum-likelihood estimator

ϑ̂ =
2

n(n− 1)

n∑
i=1

∑
i<j

(zij − z̃i + z̃j)
2.
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A calculation shows that E(ϑ̂− ϑ) = −2n−1ϑ.

It is immediate that

Σ̂(ϑ) = diag
(n
ϑ

)
, Σ̂(ϑ)−1 = diag

(
ϑ

n

)
,

and that

(Ω̂(ϑ))i,j =



∑
k>i

(zik−z̃i+z̃k)2
ϑ2

+
∑

k<i
(zki−z̃k+z̃i)2

ϑ2
if i = j

(zij−z̃i+z̃j)2
ϑ2

if i < j

(zji−z̃j+z̃i)2
ϑ2

if i > j

.

Therefore,

˙̀(ϑ) = −1

2

n(n− 1)

2
log ϑ− 1

2

(
1 +

2

n

) n∑
i=1

∑
i<j

(zij − z̃i + z̃j)
2

ϑ
,

῭(ϑ) = −1

2

n(n− 3)

2
log ϑ− 1

2

n∑
i=1

∑
i<j

(zij − z̃i + z̃j)
2

ϑ
.

The corresponding estimators are

ϑ̇ =

(
1 +

2

n

)
ϑ̂, ϑ̈ =

n− 1

n− 3
ϑ̂ =

(
1 +

2

n− 3

)
ϑ̂.

Both remove the leading bias from the maximum-likelihood estimator, as

E(ϑ̇− ϑ) = − 4

n2
ϑ = O(n−2), E(ϑ̈− ϑ) =

2

n(n− 3)
ϑ = O(n−2),

but, in this case, neither is exactly unbiased. The first estimator has bias that is strictly

negative (for any finite n). The second estimator overcorrects and has strictly positive bias.

The second-order bias is monotone in n. We have

4

n2
ϑ >

2

n(n− 3)
ϑ

for all n > 7. As n→∞, √
n(n− 1)

2
(ϑ̇− ϑ)

d→ N(0, 2ϑ2),

and ‖ϑ̈−ϑ̇‖ = op(n
−1); that is, the two modifications to the likelihood yield asymptotically-

equivalent estimators.
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