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Abstract

Compositional Data (CoDa) is usually viewed as data on the simplex
and is studied via a log-ratio analysis, following the classical work of
J. Aitchison (1986). We propose an alternative view of CoDa as stick
breaking processes. The first stick-breaking approach gives rise to a view
of CoDa as ordered statistics, from which we can derive “stick-ordered”
distributions. The second approach is based on a rescaled stick-breaking
transformation, and give rises to a geometric view of CoDa as a free unit
cube. The latter allows to introduce copula and regression models, which
are useful for studying the internal or external dependence of CoDa. We
establish connections with other topics of statistics like i) spacings and
order statistics, ii) Bayesian nonparametrics and Dirichlet distributions,
iii) neutrality, iv) mixability.

1 Introduction and summary

Compositional Data (CoDa) analysis deals with statistical analysis of d-variate
data which are quantitative descriptions of the parts of some whole, conveying
only relative information. Composition of soil in geology, elements in a mixture
in chemistry, sources of calories in nutrition, or vote shares in an election are
examples of CoDa.

There are several competing ways to describe CoDa. The traditional ap-
proach (J. Aitchison (1986), Boogaart and Tolosana-Delgado (2013)) considers
that one of the key characteristics of CoDa is that the sum of the proportions
must always be equal to a constant (w.l.o.g. 1). This means that the differ-
ent components of a CoDa point are often expressed as percentages or fractions,
rather than absolute values. Hence, Aitchison’s approach normalizes a raw com-
position vector by its sum (an operation called closure in the CoDa literature):
let y = (y1, . . . , yd) ∈ Rd≥0 be a vector of non-negative absolute values of a
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composition, its closure is denoted as

C(y) :=
y

||y||1
=

y∑d
i=1 yi

.

This leads to the consideration of normalised (i.e. after rescaling to unit sum)
CoDa element as a vector p = (p1, . . . , pd), taking its values in the d− 1 dimen-
sional unit simplex1

∆d−1 := {p ∈ Rd : pi ≥ 0,

d∑
i=1

pi = 1}. (1)

CoDa points are then traditionally studied through a variety of log-ratio trans-
forms, an approach pioneered by Aitchison John Aitchison (1982), J. Aitchi-
son (1986). This gives rise to a special geometry, called Aitchison geometry,
which turns the positive simplex into an Euclidean vector space. For recent ac-
counts on the latter, see e.g., Greenacre (2018) or Pawlowsky-Glahn, Egozcue,
and Tolosana-Delgado (2015). For an intrinsic approach to CoDa analysis based
on projective geometry, see Faugeras (2023).

Inspired by Bayesian nonparametrics, we propose an alternative view of
CoDa points, as a stick-breaking process. This give rises to two interrelated
geometric views on CoDa points. The first is that of an ordered set on the unit
interval. This ordered view allows to define distributions on CoDa points via
order statistics and spacings of a latent vector on the unit interval.

The second view is based on a transformation which gives the relative po-
sitions of the breaks, yielding a parametrization of the CoDa point as an un-
constrained unit cube. These relative positions have an interpretation as con-
ditional probabilities and are related to the concept of neutrality, a natural
intra-independence notion for compositions. This second view also allows to
define distributions on the simplex, in particular copula distributions, for the
study of the intra-dependence of CoDa. In addition, it is useful to study inter-
nal (resp. external) regression models, i.e. when one wants to explain/predict a
(set of) components by other components acting as predictors (resp. by external
covariates).

The outline of the paper is as follows: in Section 2, we introduce our first
stick breaking transformation and define stick-breaking distributions for CoDa,
based on spacings and order statistics. Several examples are given and numer-
ically illustrated. Section 3 elaborates on the first construction by considering
a rescaled version of the stick-breaking process. It turns the constrained CoDa
point of the simplex into a free vector of the unit cube [0, 1]d−1, which can, for
positive CoDa, even be transformed to a free Euclidean vector of Rd−1. These
approaches yield a triple representation of CoDa. Section 4 and 5 deal with sta-
tistical applications of such rescaled stick-breaking transformation for the study

1Note that we allow CoDa points with some null components, contrary to Aitchison’s
geometry(J. Aitchison (1986)), which is only defined on the interior of the simplex, so that
log-coordinates (log pi), and the subsequent log-ratio transforms (alr,clr, ilr), are well-defined.
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of the intra-dependence of CoDa. Section 4 introduces CoDapulas as the ana-
logue of copulas for CoDa, opening the gates of the vast copula literature, tools
and methodologies for CoDa. Several examples illustrates how copula models
can easily be constructed for CoDa. In particular, completely monotone cop-
ulas give interesting complete dependence patterns for CoDa. Section 5 aims
at studying intra-dependence of CoDa from the regression viewpoint. A basic
example of a parametric regression model on real data set is given. Several
extensions and alternatives are discussed. Eventually, we conclude in Section
6, with additional remarks about the choice of ordering of the components,
mixability, and CoDa with zeroes.

2 The first stick-breaking view on CoDa: or-
dered points on the unit interval

2.1 The ordered stick-breaking view

Our approaches are based on the representation of CoDa as a normalised point
p in the simplex (1). Instead of considering the (pi), 1 ≤ i ≤ d, as primary
parameters for p, one can consider the accumulated sums s = (s0, s1, . . . , sd),
defined as

s0 = 0,

si = pi + si−1 =

i∑
j=1

pj , i = 1, . . . , d− 1 (2)

sd =

d∑
i=1

pi = 1,

as an alternative system of coordinates of (1). Dropping the fixed values s0 = 0
and sd = 1, this leads to a representation of (1) as

Σd−1 := {(s1, . . . , sd−1) ∈ Rd−1 : 0 ≤ s1 ≤ . . . ≤ sd−1 ≤ 1}. (3)

(3) can be interpreted as iteratively breaking the unit stick [0, 1]: first, one
picks some s1 ∈ [0, 1], then, for the second step, one picks some s2 in the
remaining interval [s1, 1], and so on for si to be picked in the interval [si−1, 1],
i = 1, . . . , d− 1. The process stops after d− 1 steps. See Figure 1.
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Figure 1: Stick-breaking of the unit interval

Remark 1. 1. A normalized CoDa point p ∈ ∆d−1 can be identified with a
discrete probability measure µp on R,

p ↪→ µp(.) :=

d∑
i=1

piδxi(.),

where x1 < . . . < xd ∈ R denotes (arbitrarily located) distinct components
and δx stands for the Dirac mass at x. The Coda p “forgets” about the
locations x1, . . . , xd of µp of the components, to only retains their proba-
bilities p1, . . . , pd. As such, parametrization (2) of the simplex by the (si)
interprets as characterizing the discrete distribution of a r.v. X ∼ µp by
its c.d.f. F (x) = P (X ≤ x) =

∑
y≤x P (X = x), while the parametriza-

tion by the (pi) interprets as characterizing the distribution of X by its
probability mass function P (X = x).

2. (3) only uses the order structure of the interval [0, 1], and not the addition
operation. This suggests that one can generalise the notion of simplex
to arbitrary ordered space, endowed with a top (= 1) and bottom (= 0)
element.

3. Instead of breaking the stick from the left to the right, i.e. putting si ∈
[si−1, 1], for increasing i = 1, . . . , d − 1, one can also consider a stick-
breaking process from the right to the left, i.e. putting si ∈ [0, si+1] for
decreasing i = d − 1, . . . , 1. This corresponds to characterizing µp by its
survival function instead of its cumulative distribution function.
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2.2 CoDa distributions via order statistics

2.2.1 Stick-Ordered distributions

This geometric view of CoDa as a set of ordered points on the unit interval
suggests a natural connection with order statistics on the unit interval. This
gives an easy way to build distributions on the simplex by taking as si the order
statistics of some ui distributed on the unit interval. More precisely, one can
define a “Stick-Ordered” (SO) distribution on the simplex as follows:

Definition 2.1 (Stick-Ordered distribution for CoDa). Let ui ∼ Fi, i = 1, . . . d−
1 be independent r.v. with (F1, . . . , Fd−1) a set of univariate c.d.f.s on the unit
interval. Set

u(1) ≤ . . . ≤ u(d−1)
the corresponding order statistics. Eventually, define

s0 = 0, si = u(i), i = 1, . . . d− 1, sd = 1.

Then, the CoDa point p ∈ ∆d−1 corresponding to s in (3) is said to be (F1, . . . , Fd−1)-
Stick-Ordered distributed, which is denoted by

p ∼ SO(F1, . . . , Fd−1).

In case Fi = F , p is said to be F -Stick-Ordered distributed, which is denoted by
p ∼ SO(F ).

In other words, the Stick-Ordered distribution of p is the distribution of the
spacings corresponding to the order statistics s. The latter has to be computed
as the distribution of (possibly non-identically distributed) order statistics.

p ∼ SO(F1, . . . , Fd−1)⇐⇒


ui ∼ Fi, (u1, . . . , ud−1) independent,

s0 = 0, si = u(i), sd = 1, i = 1, . . . , d− 1,

pi = si − si−1, i = 1, . . . , d

Figure 2: Stick-Ordered distribution SO, obtained from the order statistics u(i)

2.2.2 Examples

Example 1. In particular, for F = U[0,1] the uniform distribution, (i.e. F (x) =
x, 0 < x < 1), p ∼ SO(U[0,1]) gives a uniform distribution on the simplex, as
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shown in Pyke (1965) equation (2.1). (See also S. S. Wilks (1948) equation
(6)). More precisely, (p1, . . . , pd−1) has a density w.r.t. the d − 1 dimensional
Lebesgue measure given by

f(p1,...,pd−1)(x1, . . . , xd−1) =

{
(d− 1)! if xi ≥ 0, and

∑d−1
i=1 xi ≤ 1

0 otherwise
.

On the other hand, p has a singular distribution since pd = 1 −
∑d−1
i=1 pi, but

its restriction to the hyperplane
∑d
i=1 pi = 1 admits a density w.r.t. the d − 1

dimensional Lebesgue measure given by

fp(x) =

{
(d− 1)! if xi ≥ 0, and

∑d
i=1 xi = 1

0 otherwise
,

which is symmetric in (x1, . . . , xd) (i.e. the (pi) are exchangeable). One recog-
nizes the Dirichlet Dir(1, . . . , 1; 1) distribution, see e.g. Rao and Sobel (1980)
or Samuel S. Wilks (1962).

These stick-ordered distributions are useful for modeling purposes. They
allow to construct CoDa models from classical distributions on [0, 1]. One can
consider more examples with other distributions on the unit interval, like the
Beta, the Kumaraswamy, (which is similar to the Beta distribution but leads
to tractable formulas for the distribution of order statistics, see Jones (2009)),
or those of Kotz and Dorp (2004). (More generally, any distribution on R
can be mapped to a distribution with support included on the unit interval by
applying a c.d.f to it). In some cases, analytical formulas can be obtained for
the distribution of p, using known results on spacings (Pyke (1965)).

Example 2 (Kumaraswamy). The Kumaraswamy distribution (Jones (2009))
U ∼ Kumaraswamy(α, β) has density

f(u) = αβuα−1(1− uα)β−1, 0 < u < 1, (4)

and cdf
F (u) = 1− (1− xα)β , 1 < u < 1. (5)

Moreover, for i.i.d. ui ∼ F , i = 1, . . . , d − 1, with density f , the marginal
distribution of the spacings writes (see e.g. Pyke (1965) p. 399)

fpi(x) =
(d− 1)!

(i− 2)!(d− 1− i)!

∫
(F (t))i−2(1−F (x+ t))d−1−if(t)f(x+ t)dt, (6)

for 2 ≤ i ≤ d− 1, and

fp1(x) = fu(1)
(x) = (d− 1)f(x)(1− F (x))d−2. (7)

Applying formulas (6) and (7) to (4) and (5) leads to computable formulas. For
example,

fp1(x) = (d− 1)αβxα−1(1− xα)β(d−1)−1, 0 < x < 1,

The Markov property of the order statistics can then be used to derive the joint
distribution of p.
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2.2.3 Generalised Stick-Ordered Distributions

One can also generalise the former definition (2.1) by taking dependent r.v. ui
instead of independent ones.

Definition 2.2 (Generalized stick-ordered distribution for CoDa). For u =
(u1, . . . , ud−1) ∈ [0, 1]d−1 with joint distribution function Fu, the CoDa point
p ∈ ∆d−1 corresponding to s in (3) is said to be generalized-stick-ordered dis-
tributed with generator Fu, which is denoted by p ∼ GSO(Fu), viz.

p ∼ GSO(Fu)⇐⇒


(u1, . . . , ud−1) ∼ Fu

s0 = 0, si = u(i), sd = 1, i = 1, . . . , d− 1,

pi = si − si−1, i = 1, . . . , d

For non-identically distributed or dependent variables, one can compute
them e.g. using results of David and Nagaraja (2003) Chap. 5. Jaworski
and Rychlik (2008), Rychlik (1994) (See also Balakrishnan N. (1998)). How-
ever, this often leads to intractable formulas. Nonetheless, it is easy to simulate
samples from such distributions.

Example 3 (GSO with Gaussian copula generator). Consider, for d = 3, p ∼
GSO(Fu) with FU a bivariate Gaussian copula (hence with uniform marginals),
with correlation ρ. Figure 3 shows ternary diagrams of scatterplots of samples
of 1000 realisations of p = (p1, p2, p3), with varying level of the dependence
coefficient ρ. The value of ρ determines the behavior of the distribution of the
CoDa element p and generates interesting patterns of dependence between the
components. For ρ = 0, one generates a uniform distribution on the simplex
(upper right panel). When ρ becomes negative (upper middle panel) and close
to −1 (upper left panel), one obtains empirically a CoDa point s.t. p2 ≈ 1−2p1
and p1 ≈ p3. For ρ close to one (ρ = 0.99, lower right panel), the p2 component
is nearly zero and the CoDa point is nearly on the line p1 = p3.
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Figure 3: Ternary plots of Generalized-Stick-Ordered distribution for d = 3,
with Gaussian copula generator, with varying correlation coefficient ρ. From
left to right and up to down: ρ = −0.99, ρ = −0.8, ρ = 0, ρ = 0.8, ρ = 0.99.

3 The rescaled stick-breaking view: unit cube
geometry of CoDa points

3.1 Unit cube geometry for CoDa points by rescaling

The second approach we propose is based on a rescaled version of the iterative
stick-breaking process of Figure 1: first, one picks some s1 ∈ [0, 1], as previ-
ously. Then, one has to pick s2 in the remaining interval [s1, 1]: in terms of
spacings/lengths, the length of s2 − s1 = p2 of the second stick [s1, s2] has
to be chosen relatively to the length 1 − s2 of the remaining stick [s2, 1], see
Figure 2. Similarly, the relative length si − si−1 = pi of the interval corre-
sponding to the ith pick si has to be chosen relatively to the length 1− si−1 of
the remaining stick [si−1, 1]. Following the footsteps of Halmos (1944), Connor
and Mosimann (1969) among others, it is therefore natural to introduce the
transformation,

z1 = s1 = p1,

zi = pi/(1− si−1), i = 1, . . . , d− 1, (8)

zd = 1,
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with inverse transformation,

p1 = z1,

pi = zi

i−1∏
j=1

(1− zj), i = 2, . . . , d− 1,

pd =

d−1∏
i=1

(1− zi). (9)

By construction, the zi in (8) are in the unit cube, 0 ≤ zi ≤ 1 for i =
1, . . . , d − 1, with degenerate zd = 1. Thus the transformation (8) turns the
“akward” simplex ∆d−1 into the unit cube [0, 1]d−1 (we drop zd = 1 as it is
equal to 1). This leads to a free unit cube view of CoDa points.

Figure 4: Rescaled stick-breaking

Remark 2. Historically, the transformation (8) was introduced by Halmos (1944)
for d = ∞, as a way to distribute gold dust to a countably infinite sequence of
beggars, where each beggar receives in turn a fraction zi of the remaining gold.
More generally, an infinite sequence (p1, p2, . . .) defined by (8) from a sequence
of independent (zi) ∈ [0, 1] is called a residual allocation model (RAM), see
Feng (2021) for a review. The case when zi ∼ β(1, θ), θ > 0 is called a GEM
distribution and was notably studied in population genetics by Griffiths (1979),
Engen (1975), McCloskey (1965), see e.g. Ewens (1990). RAM also appears in
Bayesian statistics in connection with the Dirichlet distribution, as the weights
of random measures P(.) =

∑∞
k=1 pkδξk(.), where (ξk) are i.i.d. and indepen-

dent of (pk), see Samuel S. Wilks (1962) p. 178, Ferguson (1973), Ishwaran
and James (2001). See also Section 3.3 below.

3.2 Neutrality and complete neutrality

This interpretation of CoDa points as a relative/proportional iterative stick-
breaking process leads to the concept of neutrality, introduced by Connor and
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Mosimann (1969), which is relevant for the analysis of CoDa. In short, it is a
sort of intra-independence concept for a random composition p.

More precisely, neutrality is motivated by the following: if one wants to
check whether the first proportion p1 has an influence on the remaining sub-
composition (p2, . . . , pd), the latter has to be rescaled by the remaining mass
1− p1, in order to be a proper normalized CoDa point. One thus has to check
for the stochastic influence of p1 on(

p2
1− p1

, . . . ,
pd

1− p1

)
, (10)

and if p1 is independent of the latter rescaled subcomposition, one can eliminate
p1 from the analysis of p. Therefore, Connor and Mosimann (1969) defines
neutrality as follows: p1 is said to be neutral if p1 is independent of (10): p1
does not influence the manner in which the remaining proportions (p2, . . . , pd)
relatively divide the remainder of the unit interval.

A generalisation of neutrality to a vector pk := (p1, . . . , pk), k < d is:
(p1, . . . , pk) is a neutral vector if it is independent of

(
pk+1

1− sk
, . . . ,

pd
1− sk

).

Thus, if pj is neutral for j = 1, . . . k, then zk := (z1, . . . , zk) is mutually inde-
pendent (Theorem 1 in Connor and Mosimann (1969)). A further generalization
of neutrality is complete neutrality: if the z = (z1, . . . , zd−1) of (8) are mutu-
ally independent, then the corresponding p is said to be completely neutral, or
equivalently (Theorem 2 in Connor and Mosimann (1969)) if pj is neutral for
all 1 ≤ j ≤ d− 1.

These concepts of neutrality are helpful for constructing completely neutral
distributions on the simplex: start with mutually independent zi’s each having a
specified distribution on [0, 1], and invert (8) to obtain a completely neutral dis-
tribution on the simplex. In particular, Connor and Mosimann (1969) construct
a generalisation of the Dirichlet distribution from independent zi ∼ β(ai, bi).
Ng, Tian, and Tang (2011) Theorem 2.2 use the transformations (8) and (9) to
obtain stochastic representations of the Dirichlet distribution D(a) from inde-

pendent zi ∼ β(ai,
∑d
k=i+1 ak), i = 1, . . . , d− 1.

3.3 Conditional probability interpretation of the rescaled
stick-breaking approach and connection with Bayesian
priors

The rescaled weights zi interpret as conditional probabilities. The stick-breaking
construction appears in the construction of the (finite-dimensional) Dirichlet
distribution of Ferguson (1973), see e.g. Ghosal and Vaart (2017) p. 30. The
latter is used for constructing a prior on a discrete distribution in Bayesian
statistics. It is defined as follows: in order to randomly distribute a total mass
1, identified with the unit interval, to the first d integers 1, 2, . . . , d, the stick
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is first randomly broken by a r.v. 0 ≤ Z1 ≤ 1, and mass Z1 is assigned to 1.
The remaining mass is 1−Z1 and the stick [Z1, 1] is broken into two new pieces
of relative length Z2 and 1 − Z2, for some 0 ≤ Z2 ≤ 1. Mass (1 − Z1)Z2 is
assigned to the point 2, and the remaining stick has remaining mass (or length)
(1−Z1)(1−Z2). Iterating, one has defined a random distribution (i.e. a Markov
kernel), with values j = 1, . . . , d and (random) probabilities given by (9).

Each pi is the probability assigned to i, conditionally on the previous prob-
abilities assigned to the j < i. Indeed, if one denotes by ζ the r.v. with values
in 1, . . . , d and (random) probabilities given by (9), i.e. s.t.

P (ζ = i) = pi = Zi

i−1∏
j=1

(1− Zj), i = 1, . . . , d,

Then, Zi = P (ζ = i|ζ ≥ i).
On the other hand, the complete neutrality property expresses the idea that

these Zi (or equivalently these conditional probabilities) are chosen indepen-
dent. In particular, if (Z1, . . . , Zd) are independent with Zi ∼ β(αi,

∑
j>i αj),

then p is Dirichlet Dir(k;α1, . . . , αd) distributed, see Ghosal and Vaart (2017)
Corollary G.5.

3.4 A triple representation of CoDa

One thus has a triple representation of the simplex / of normalized CoDa points:
the simplex can be represented as ∆d−1 with its sum constraint, as the ordered
set of points Σd−1 on the unit interval, or a free cube [0, 1]d−1 via its rescaled
representation in z coordinates. Figure 5 shows the different representations
as well as the transformations between them (where the arrows between the
free unit cube [0, 1]d−1 and Σd−1 are obtained by composition of the previous
transformations). Note that the ordered and rescaled representations are not
canonical, as they depend on the order of enumeration of the components of p.
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Relative/conditional

representation
z ∈ [0, 1]d−1

Sum representation
p ∈ ∆d−1 ⊂ [0, 1]d

Ordered representation
s ∈ Σd−1 ⊂ [0, 1]d−1

y ∈ Rd≥0 u ∈ [0, 1]d−1

summing

rescaled stick-breaking

spacings/differencing

normalisation y
||y||1 ordering

Figure 5: Representations of the simplex

In addition, Figure 5 shows how one can obtain the stick-ordered distribu-
tion of Definition 2.1, via ordering of some ui ∈ [0, 1] r.v. (lower-right), for
i = 1, . . . , d − 1. Another way to produce a CoDa point is through closure
C, i.e. normalisation by the sum of nonnegative random variables, for some
y = (y1, . . . , yd) ∈ Rd≥0. This is also illustrated in Figure 5, (lower-left).

The figure shed lights on some results and representations of order statis-
tics and constructions of Dirichlet distribution. For example, it is well-known
(see Sukhatme (1937), Rényi (1953), Pyke (1965)) that the order statistics and
spacings of i.i.d (ui) r.v. uniformly distributed on [0, 1], have a representation
as a ratio of (sums of) exponential r.v.: Take yi ∼ Exp(1) i.i.d. in Figure 5,
then normalisation by the sum gives the pi which corresponds to spacings, and
summing this spacings give the order statistics si = u(i),

(u(i), i = 1, . . . , d− 1)
d
=

(∑
j≤i yj∑d
j=1 yj

, i = 1, . . . , d− 1

)
and

(pi, i = 1, . . . , d)
d
=

(
yi∑d
j=1 yj

, i = 1, . . . , d

)
Also, for yi ∼ γ(αi) Gamma distributed, Figure 5 allows to explain and vi-

sualize the difference between the Dirichlet distribution on ∆d−1 and its ordered
version on Σd−1, see Samuel S. Wilks (1962) p. 178, 182 and 238.

3.5 From the unit cube to the free Euclidean space Rd−1

If p has no zero components, viz. 0 < pi < 1 for all 1 ≤ i ≤ d, then p is sent
to the interior (0, 1)d−1 of the unit cube [0, 1]d−1 by the rescaled stick-breaking
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transformation (8). In turn, one can then map the open unit-cube representation
z ∈ (0, 1)d−1 of the Coda element p ∈ ∆d−1 to a point ξ = (ξ1, . . . , ξd−1) ∈ Rd−1
by applying an increasing2 continuous transformation q : (0, 1) → R to each
component zi of z, viz.

ξi = q(zi), 1 ≤ i ≤ d− 1.

See Figure 6. Examples of q which come to mind include the probit, logit
transform, or any quantile function of a distribution on R with positive density
(hence the notation q).

p ∈ ∆d−1,
p > 0

z ∈ (0, 1)d−1 ξ ∈ Rd−1

rescaled

stick-breaking
q

q−1

Figure 6: Free Euclidean representation ξ ∈ Rd−1 of positive CoDa.

This gives an interesting alternative to the vector space representation pro-
vided by Aichison’s log-ratio transforms. This variant of the z representation
allows to apply standard multivariate analysis techniques designed for Euclidean
vectors to CoDa. For example, one can apply classical Principal Component
Analysis to the transformed variables ξ for exploratory data analyses of CoDa.
Clustering algorithms (i.e. k−means) can be applied on the ξ-representation of
CoDa, without further ado. On the modeling side, any classical multivariate
distribution for ξ on Rd−1 gives, by back-transformation, a corresponding CoDa
distribution for p ∈ ∆d−1. Potential applications are numerous.

4 Application of unit cube geometry: Copulas
for CoDa

In the complete neutrality view of Connor and Mosimann (1969), each rescaled
component zi does not influence the remaining ones. If one moves out of inde-
pendence, one can generalize in several directions.

4.1 CoDapulas: copulas for CoDa

As first generalization, one can construct copula models (Nelsen (2006)) for
CoDa: instead of taking independent zi, one can specify a joint distribution
for z by a set of marginals (Fzi), i = 1, . . . , d − 1, (each with support the unit
interval) and a copula C, viz.

z ∼ C(Fz1 , . . . , Fzd−1
).

2or, more generally, a strictly monotone continuous function.
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By back transformation (9), this allows to define general distributions for CoDa
points from the specification of a copula and the marginal distributions of the
z.

A probabilistic construction of this specification is as follows: let v ∈ [0, 1]d−1

be distributed according to a copula function C, i.e. a multivariate distribution
with uniform marginals, and let Qzi = F−1zi : [0, 1] → [0, 1], i = 1, . . . , d −
1, be univariate quantile functions with range [0, 1]. Set zi = Qzi(vi), i =
1, . . . , d − 1. Then z = (z1, . . . , zd−1) ∈ [0, 1]d−1 has copula function C and
marginal distributions (Fzi). By back transformation, p ∈ ∆d−1 is a CoDa
point whose distribution is uniquely specified by C an the set (Fzi) of marginal
cdfs. Explicitly, (9) yields

p1 = Qz1(v1), (11)

pi = Qzi(vi)

i−1∏
j=1

(1−Qzj (vj)), i = 2, . . . , d− 1, (12)

pd =

d−1∏
i=1

(1−Qzi(vi)). (13)

Conversely, given a CoDa point p, one can estimate and study its intra-
dependence through the copula of its z-representation: one first transforms p
into z by transformation (8), and then standardize the marginals zi to the
uniform distribution. The latter operation is obtained, when z is continuous,
by the marginal probability integral transforms,

vi := Fzi(zi), i = 1, . . . , d− 1,

where Fzi is the c.d.f. of zi. Then, v = (v1, . . . , vd−1) has uniform marginals,
i.e. has a copula distribution. See Figure 7.

p ∈ ∆d−1 z ∈ [0, 1]d−1 v ∼ C

Fzi

Qzi

Figure 7: Probabilistic construction of a CoDapula

(In the non-continuous case, the standardization is obtained by using the
marginal distributional transforms instead. The latter is defined as

Fzi(x, η) := P (zi < x) + ηP (zi = x), η ∈ [0, 1]. (14)

Then, v is obtained by setting

vi := Fzi(zi, ηi), i = 1, . . . , d− 1,
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where (ηi) is a sequence of i.i.d. uniformly distributed on [0, 1] randomizers,
independent of z, see e.g. Ludger Rüschendorf (2009), Faugeras and Ludger
Rüschendorf (2017)).

Let us give a fancy name to the copula of a CoDa point.

Definition 4.1 (CoDapula). Let p ∈ ∆d−1 a random CoDa point, and z ∈
[0, 1]d−1 be it rescaled stick-breaking representation (8). Then, a CoDapula of
(the distribution of) p is a copula of (the distribution of) z. In other words, a
CoDapula C of p is the distribution of v in the construction of Figure 7.

Thanks to Sklar’s Theorem (Sklar (1959)), a CoDapula always exists. It is
unique if z is continuous (see e.g. Nelsen (2006)). Definition 4.1 depends on
the ordering of the components 1, . . . , d. Hence, a CoDapula of p depends on
a permutation π of {1, . . . , d}. Hence, in full rigor, one should have defined a
notion of π−CoDapula to stress the dependence on π. We have chosen not to
in order to simplify notations. The choice of the ordering, i.e. of π, may depend
on the application in view, and will be discussed in Section 6.2.

By (11), the first component p1 has the same distribution as z1, and thus
is completely specified by the first marginal distribution function Fz1 , (equiva-
lently, quantile function Qz1). Note that the marginal distributions of the re-
maining components p2, . . . , pd depend on both the CoDapula and the marginal
distributions: this is in contrast with the copula approach for classical Euclidean
vectors. Nonetheless, at the z level, one has the the classical copula separation
of a multivariate distribution into its marginal distributions Fz1 , . . . Fzd−1

and
the dependence structure embodied in the copula function C.

4.2 Examples and numerical illustrations

We illustrate in Figures 8 and 9 some CoDa distributions which can be obtained
using the specification by a CoDapula of Definition 4.1 and marginal quantile
functions for z. In Figure 8, the copula of z is an Ali-Mikhail-Haq copula
with parameter α = 0.91, and the marginal distributions are Beta and uniform,
Fz1 ∼ β(1/4, 2) and Fz2 ∼ U[0,1], while in Figure 9, the CoDapula is a Gumbel-
Hougaard copula with parameter θ = 7, and same marginals as in Figure 8.
The left panels show scatterplots in the z domains, and the right panels the
corresponding ternary plots in the simplex CoDa space for p. Figure 8 give
an example of mild dependence with CoDa points spreading above the p1 = 0
level. As the Gumbel copula approaches the comonotonicity copula as θ → ∞
(while θ = 1 yields the independence copula), the value θ = 7 in Figure 9 models
strong dependence at the z level, resulting in the pattern of points shown on
the right panel at the CoDa level. More examples could be considered.
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Figure 8: CoDa with AMH CoDapula (α = 0.91), and β(1/4, 2), U[0,1] marginal
distribution functions: scatter plot at the z level (left) and ternary scatter plot
for the resulting p (right), d = 3.
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Figure 9: CoDa with Gumbel CoDapula (ρ = 7) and β(1/4, 2), U[0,1] marginal
distribution functions; scatter plot at the z level (left) and ternary scatter plot
for the resulting p (right), d = 3.

4.3 Complete dependence of CoDa

The concept of CoDapula opens the gates of the vast copula literature and
modeling methodology to CoDa. This is useful to study the intra-dependence
of CoDa. The independence copula for z means that p is completely neutral.
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At another extreme, complete dependence at the z level induces a specific de-
pendence pattern at the p level, as is shown in the next two examples.

4.3.1 Comonotone CoDapula

Comonotonicity is an extreme form of dependence structure for Euclidean vec-
tors that describes the strongest positive dependence. A comonotone vector is
characterised by having as copula the comonotone copula M(x1, . . . , xd−1) =
min(x1, . . . , xd−1). The comonotone copula corresponds to the distribution of
the vector v = (v, . . . , v) ∈ [0, 1]d−1, with a single v ∼ U[0,1. In other words,

P (v ≤ x) = P (v ≤ x1, . . . , v ≤ xd−1) = min(x1, . . . , xd−1), x ∈ [0, 1]d−1.

Applied to CoDa, the corresponding z thus writes

z = (Qz1(v), . . . , Qzd−1
(v)),

where Qzi : [0, 1] → [0, 1] are given quantile functions. This gives, as corre-
sponding p, Coda with components

p1 = Qz1(v)

pi = Qzi(v)

i−1∏
j=1

(1−Qzj (v)), i = 2, . . . , d− 1.

Example 4 (Comonotone CoDapula, d = 3). For example, for d = 3, one gets

z =

(
z1
z2

)
=

(
Qz1(v)
Qz2(v)

)
which translates into

p1 = Qz1(v)

p2 = Qz2(v)(1−Qz1(v))

p3 = 1− p1 − p2 = (1−Qz1(v))(1−Qz2(v)) (15)

Thus, p1 is an increasing function of v, p3 is decreasing, while p2 switches
direction of variation w.r.t v.

Figure 10 shows, for d = 3, the CoDa p corresponding to the comonotone
copula, with uniform quantile functions at the z level, viz. Qz1(v) = Qz2(v) = v
in (15), so that p1 = v, p2 = v(1− v), p3 = (1− v)2.
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Figure 10: Ternary plot of a CoDa with comonotone CoDapula and uniform
quantile functions, d = 3, with barycentric axes p1 (red), p2 (green), p3 (blue).

The distribution of p is singular, as each component pi is a deterministic
function of v ∼ U[0,1]: p lies on the curve shown in the ternary plot. This implies
that each pair of components (pi, pj), 1 ≤ i 6= j ≤ 3 are totally dependent,
i.e. lie on a curve. Figure 11 shows the resulting complete dependence between
each pairs of components: (p1, p3) are counter-monotone (middle), while (p2, p3)
(right) is comonotone. (p1, p2) (left) switches its sense of variation, being first
comonotone, then countermonotone. Note that p2 also has a limited range of
variation p2 ∈ [0, 1/4].
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Figure 11: Complete dependence between pairs of components of a CoDa with
comonotone CoDapula and uniform quantile functions, d = 3: (p1, p2) (left),
counter-monotone (p1, p3) (middle), comonotone (p2, p3) (right)
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4.3.2 Counter-monotone CoDapula

Counter-monotonicity is the antithesis of comonotonicity. Note that this notion
is well-defined only in two dimensions. We thus restrict our discussion to the case
d = 3. The bivariate counter-monotone copula W (x1, x2) = max(x1 +x2− 1, 0)
is stochastically realized by the vector v = (v, 1 − v), where v ∼ U[0,1]. This
gives a corresponding Coda

p =

p1p2
p3

 =

 Qz1(v)
Qz2(1− v)(1−Qz1(v))

(1−Qz1(v))(1−Qz2(1− v))

 . (16)

The following example illustrates the case when the quantile functions are the
uniform ones.

Example 5 (Counter-monotone CoDapula). For Qz1(v) = Qz2(v) = v, (16)
gives p1 = v, p2 = (1− v)2, p3 = v(1− v). One thus gets the same parametriza-
tion at the CoDa level as in the comonotone case of Example 4, but with the
roles of p2 and p3 exchanged, see Figure 12.
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Figure 12: Ternary plot of a CoDa with countermonotone CoDapula and uni-
form quantile functions, d = 3, with barycentric axes p1 (red), p2 (green), p3
(blue).

This now translates at the CoDa level into complete dependence between pairs
of components, as shown in Figure 13. Notice, however, that the dependence pat-
tern is not the symmetric of the comonotone case of Figure 11: (p1, p2) are now
counter-monotone, whereas both (p1, p3 and (p2, p3) change their direction of
variation. Hence, with a counter-monotone CoDapula, only one pair is mono-
tone dependent (viz. (p1, p2) counter-monotone), whereas with a comonotone
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CoDapula, two pairs were monotone dependent (viz. (p1, p3) counter-monotone,
and (p2, p3) comonotone).
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Figure 13: Complete dependence between pairs of components of a CoDa with
countermonotone CoDapula and uniform quantile functions, d = 3: counter-
monotone (p1, p2) (left), (p1, p3) (middle), (p2, p3) (right)

5 Application of unit cube geometry: Regres-
sion models for CoDa

As a second possible generalization, the rescaled stick-breaking approach (8)
can be useful for the intra regression analysis of a CoDa component w.r.t the
others. The basic idea is to construct regression models in the z coordinates
to iteratively explain one zi component in terms of the other zj . Indeed, the
transformation (8) is reminiscent of Rosenblatt’s generalization of the quan-
tile transform by successive conditioning and the regression representation of a
random vector, which we recall now.

5.1 Regression representation of an Euclidean random vec-
tor

Let X = (X1, . . . Xk) ∈ Rk be a vector with joint c.d.f. F . If one can transform
X into a sequence ε1, . . . , εk of independent, identically distributed r.v., with a
prescribed distribution λ (say, uniform on [0, 1]), then, one can argue that the
distribution of X has been successfully modeled: the transformation

(X1, . . . , Xk)
φ→ (ε1, . . . , εk)

has stripped X of all its stochastic variability and dependence and turned it
into white noise. The function φ effectively models the distribution F of X.

Rosenblatt (1952)’s transform and its generalizations (see Ludger Rüschendorf (2009))
achieves such a reduction: Denote by Fi|i−1,...,1 the conditional c.d.f. of Xi
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given (Xi−1, . . . , X1), i = 2, . . . , k, with F1 the (marginal) cdf of X1. Rosen-
blatt (1952)’s transform is then defined by ε = (ε1, . . . εk) with

ε1 := F1(X1)

εi := Fi|i−1,...,1(Xi|Xi−1, . . . , X1), i = 2, . . . , k.

Under an assumption of continuity3 of the successive conditional c.d.f. Fi|i−1,...,1,
Rosenblatt’s transform turn the vector X into a vector ε of i.i.d. U[0,1] compo-
nents (see Ludger Rüschendorf (2009)).

Conversely, starting from a vector ε ∼ λk and applying the successive (con-
ditional) quantile functions F−1i|i−1,...,1, viz.

X1 := F−11 (ε1)

Xi := F−1i|i−1,...,1(εi|Xi−1, . . . , X1), i = 2, . . . , k, (17)

one obtains a vector X with the desired joint c.d.f. F . Each equation (17) inter-
prets as a nonlinear regression equation of Xi, given its past covariates Xj , j < i,
with error/noise/innovation εi. This gives a regression representation of X, ac-
cording to Ludger Rüschendorf (2009), where (17) is a (triangular) stochastic
representation of the successive predictive distributions PXi|Xi−1,...,X1 .

In (17), the distribution of (ε1, . . . , εd) is purely conventional, the only con-
straint is that it be absolutely continuous (so that any distribution of X can
be obtained from it by mapping and not by Markov kernels, see Faugeras and
Ludger Rüschendorf (2017)). In particular, one can choose the more familiar
Gaussian white noise framework by setting

εi = φ(ε′i),

where ε′1, . . . , ε
′
k are i.i.d. standard Gaussian N (0, 1), and φ is the c.d.f. of the

N (0, 1) distribution.
The regression representation (17) is the general, exact, nonlinear form of a

regression model. In particular, if the conditional quantile functions F−1i|i−1,...,1
are linear, one obtains the classical linear model (albeit with uniform noise),
viz.

Xi = ai,1X1 + . . .+ ai,i−1Xi−1 + εi,

where ai,1, . . . , ai,i−1 are parameters.

5.2 Parametric internal regression models for CoDa

This suggests to make use of this regression representation to construct tri-
angular regression models on the z representation of CoDa, by applying the
transformation (17) to the zi of (8) instead of the Xi: each zi is explained in
terms of the previous zj , j < i, and some extraneous randomness εi ∼ λ, for

3For discontinuous conditional cdf, one must use the conditional probability integral trans-
form (14) instead, see Ludger Rüschendorf (2009)
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i = 1, . . . , d − 1. Then, by back transformation (8), one obtains a (possibly
nonlinear) regression model for the original pi, which can be used for internal
prediction of a component in term of the others.

More precisely, let ε ∼ λd−1 be a vector of uniform noise on [0, 1]d−1. Then,
a general nonlinear triangular regression model for the z writes

z1 = φ1(ε1)

zi = φi(εi, zi−1, . . . , z1), i = 2, . . . , d− 1, (18)

where φi : [0, 1]i 7→ [0, 1] are s.t. εi → φi(εi, zi−1, . . . , z1) is non-decreasing,
left-continuous, with φi(0, zi−1, . . . , z1) = 0, φi(1, zi−1, . . . , z1) = 1. (i.e. the φi
satisfy the properties of univariate quantile functions).

For example, a Gausssian (partially )linear triangular model can be ob-
tained by specifying the error distribution as standard multivariate Gaussian
ε ∼ N (0, Id−1), and the zi as

z1 = Φ(ε1)

zi = Φ(ai,1z1 + . . .+ ai,i−1zi−1 + εi), i = 2, . . . , d− 1 (19)

where Φ, the cdf of the standard univariate Gaussian distribution, is applied to
ensure that zi ∈ [0, 1]. More generals models can be constructed via Generalized
Linear Models, see e.g. McCullagh and Nelder (1989), and more specifically,
Bonat, Ribeiro Jr, and Zeviani (2012) for data on the unit interval [0, 1].

5.3 Example: agriculture data.

We provide below a basic example of the construction of a parametric internal
regression model in the z space for CoDa, illustrated on a real dataset. The
data is taken from the example datasets accompanying Mathematica’s (Wolfram
Research, Inc. (n.d.)) “TernaryListPlot” command. It gives the raw amount of
fertilizers (Nitrogen-Potassium-Phosphate) in a time series from 1960 to 2015.
The scatter plots, both at the z level (left panel), and at the compositional
level in the ternary plot (right panel) in Figure 14 show a cyclic pattern in the
composition of fertilizers. The sinusoidal shape of the transformed data at the
z level (left panel) suggests the following model,

z2 = a0 + a1 cos(ωz1 + φ) + ε,

where a0, a1, ω, φ are parameters to be estimated and ε the random error.
Nonlinear least squares (command “NonLinearModelFit” in Wolfram Research,
Inc. (n.d.)) gives as fitted model,

z2 ≈ 0.5 + 0.047 cos(−21.86 z1 + 8.76),

with sums of squares of 13.43 for the model and 0.0075 for the error. In terms of
the original CoDa variables p, this yields a predictive model of the components
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in term of the first one p1,

p1 = p1

p2 ≈ (1− p1)(0.5 + 0.047 cos(−21.86 p1 + 8.76))

p3 ≈ 1− p1 − p2 ≈ (1− p1)(0.5− 0.047 cos(−21.86 p1 + 8.76)).

The resulting fitted curve is shown in orange in Figure 14, with extrapolated
values on the full range z1 = p1 ∈ [0, 1].
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Figure 14: Internal parametric regression model for agriculture data. Scatter
plots (blue points) and fitted sinusoidal model (orange line) in the z space (left)
and for the original data (right).

5.4 Extensions and alternatives

As shown in the previous example of Section 5.3, the rescaled stick-breaking
transformation (8) reduces internal regression analysis of CoDa to classical re-
gression analysis of vector data. Hence, all classical multivariate regression
analysis techniques apply to CoDa, in their transformed z representation of the
free unit cube. For space constraints, we limited ourselves in the example of
Section 5.3 to a very basic illustration with a parametric regression model. Let
us thus briefly mention some extensions and alternatives:

• A nonparametric alternative to the above intra-parametric models is to
directly start from (17) and estimate the conditional distributions of zi
given (zi−1, . . . , z1), or some functional thereof, via some nonparametric
estimate. For example, one can look for the mean of these conditional
distributions, and estimate the regression function of E[zi|zi−1, . . . , z1] by
a Nadara-Watson, spline, or local polynomial estimator.

• Many applications are interested in explaining/predicting a CoDa point p
w.r.t. some covariates X ∈ Rk, i.e. in studying the conditional distribution
of p|X = x. This can be done via the rescaled z representation (8) by
performing a regression of z w.r.t. the covariates X. As said before,
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one must ensure that the constraint 0 ≤ z ≤ 1 is fulfilled. This can be
achieved by a link function which entails the correct normalisation or by
mapping z ∈ [0, 1]d−1 into ξ ∈ Rd−1, by using the device explained in
Section 3.5. In parametric regression models, one can incorporate these
external covariates X by making the parameters of p in its rescaled z
representation (8), (i.e. the functions φi in (18) or the coefficients aj,i
in (19)) as functions of the covariates X. Once a regression model/ or
a nonparametric estimate for z given X has been computed, one back
transforms the predicted values ẑ into predicted values of p̂, via the inverse
transformation (9).

• Our focus in this paper is on internal dependence analysis of CoDa. How-
ever, one can also easily envision external regression analysis such as CoDa
to CoDa or CoDa to vector, by conducting a similar analysis in the cor-
responding z space for the CoDa input/output variables considered.

• In addition to explicit regression models, one can also assess quantitatively
neutrality of z1 by the strength of the regression dependence between z1
and the remaining zj components of p, for j > 1. This quantification
can be achieved through multivariate asymmetric correlation coefficients,
like the recent Griessenberger, Junker, and Trutschnig (2022)’s ζ1(X, Y )
or Azadkia and Chatterjee (2021)’s T (X, Y )4, the latter being a multi-
variate extension of the bivariate measure ξ of Chatterjee (2020). These
coefficients quantifies the extent of regression dependence of a univariate
random variable Y on a k-dimensional random vector X = (X1, . . . , Xk):
they are equal to 0 in case of independence, and equal to 1 if Y is mea-
surable function of X. Applied to our context, one can thus quantify
the amount of (non-)neutrality of p1 by computing ζ1((z2, . . . , zd), z1) or
T ((z2, . . . , zd), z1).

6 Conclusion and further remarks

6.1 Conclusion

We have proposed two related transformations for CoDa based on stick-breaking
processes. The first one represents a CoDa point as a set of ordered values on the
unit interval, whereas the second one, which originates from Halmos (1944) and
Connor and Mosimann (1969), removes the unit-sum constraint of the simplex
representation and turns a CoDa point into a free vector of the unit cube. Both
approaches are useful to construct distributions for CoDa from multivariate dis-
tributions of Euclidean vectors. The second approach appears most promising
as it allows for a reduction of CoDa points to classical multivariate vectors
and thus allows the use of well-established multivariate analysis techniques and
models to be directly transferred to CoDa. Such an approach is an interesting

4Note that Azadkia and Chatterjee (2021) introduce a more general regression dependence
coefficient which allows for covariates and the assessment of conditional independence.
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alternative to the classical log-ratio coordonatizations techniques of Aitchison
and his followers. In particular, we introduced the concept of a CoDapula, a
copula for CoDa, and showed how to study the intra-dependence of CoDa with
such copulas or via regression techniques.

For length reasons, we have barely scratched the surface of statistical appli-
cations based on these transformations. Much more needs to be done to explore
the potentialities of the proposed approaches. Being now reduced to vector data,
important statistical models and tools like generalised linear models, graphical
models, vines/factor copulas, clustering, Principal Component Analysis, non-
parametric and semi-parametric techniques, etc. are now at the disposal of the
Statistician and beg for their application to CoDa. Let us close the article with
some further remarks.

6.2 Choice of the ordering of the components

The only possible issue of the transformations (2) and (8) is the lack of symmetry
w.r.t. the components, as they depend on the ordering of the components
1, . . . , d of the composition. The question thus arises which ordering is most
adequate. Several possibilities can be envisioned.

• A first possibility is to let the Statistician decide for himself. This is sim-
ilar to the “working-in-coordinates” principle in classical log-ratio CoDa
analysis: the statistical model is extrinsic and built w.r.t. a given coor-
dinate frame (here, the ordering chosen), and is eventually mapped back
to the original simplex. This was the approach chosen in the example of
Section 5.3: the sinusoidal regression model in the z space is mapped to
the CoDa simplex space and then gives a model which explains/predicts
how the remaining components p2, p3 are driven by p1.

• The order of the components can be dictated by the type of application in
view. For example, in a general regression model Y = r(X, ε), there is a
natural asymmetry in the vector (X,Y ) between the dependent/predicted
variable Y and the independent/predictor variables X: one wants to ex-
plain/predict Y from X (with noise ε). There is also an asymmetry in the
rescaled stick-breaking transformation (9), between the first component
p1 and the remaining ones p2, . . . , pd: the first component is identical in
the simplex space p representation as in the unit cube z representation,
i.e. p1 = z1, whereas the remaining components p2, . . . , pd depend on sev-
eral of the zi. (pi is a function of zj , for 1 ≤ j ≤ i). Thus, z1 is directly
interpretable as one original component and a statistical analysis of z1
translates into a statistical analysis of the first component p1. So, if one
is interested in evaluating how a specific component is influenced by the
remaining parts, it is sensible to take this component as first one: a regres-
sion model z1 = r(z2, . . . , zd, ε) at the z level, following the methodology
explained in Section 5, with z1 = p1 as predicted variable, directly gives
a regression model of the first component p1 in terms of the remaining
(rescaled) components, viz. p1 = r(z2, . . . , zd, ε).
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• One can also envision a data-dependent choice of the ordering of the com-
ponents: the basic idea of the z transformation is to transform the study
of the non-neutrality of the constrained components pi of the composition
into a the study of the dependence of the free zi. Thus, it would make sense
to order the components by decreasing order of non-neutrality/dependence
with the remaining composition. If, w.l.o.g, the first component p1 is most
dependent with the remaining composition ( p2

1−p1 , . . . ,
pd

1−p1 ), it means that
p1 is the main factor explaining the remaining composition. Having iso-
lated such a component, one can then look within the closed remaining
composition ( p2

1−p1 , . . . ,
pd

1−p1 ) of size d − 1, which component is most de-
pendent with the closed subcompositions of size d−2. The process is then
iterated, yielding an ordering of the components. In practice, such evalua-
tion of the dependence between a component and a subcomposition can be
performed using the estimators of the asymmetric regression dependence
coefficients ζ1(X, Y ) of Griessenberger, Junker, and Trutschnig (2022) or
T (X, Y ) of Azadkia and Chatterjee (2021), mentioned in Section 5.4.

This gives the following algorithm: For a composition p of size d,

1. Select j s.t. T (Wj , pj) (or ζ1(Wj , pj)) is maximum, where Wj :=(
. . . , pk

1−pj , . . .
)
k 6=j

is the closed subcomposition of size d − 1 with

component j omitted.

2. Define a new composition p′ = (p′k) of size d′ = d − 1, with, for
1 ≤ k ≤ d, k 6= j, p′k = pk/(1 − pj), so that p′ has component j
removed.

3. If d′ > 1, return to step 1, with p′ in lieu of p, and d′ instead of d.

• One can also mix the above approaches, e.g. select as first component the
one the Statistician is interested in explaining/predicting, and select the
remaining ones in a data-dependent manner.

6.3 Connection with mixability: existence of CoDa distri-
butions with given marginals

The proposed approaches were constructive and gave explicit representations of
distributions of CoDa points. In case of the ordered approach, the stick-ordered
distributions of Definition 2.1, were parametrized by d−1 univariate marginals.
Similarly, in the rescaled approach, the distributions are parametrized by either
a d − 1 dimensional copula and d − 1 marginals, or a set of d − 1 conditional
distributions. These approaches were helpful in constructing distributions for
d−dimensional CoDa points.

A converse issue is to enquire for the existence of a d-dimensional CoDa
distribution with a given set of d marginal distributions. This question is related
to the notion of joint mixability, which is a notion mainly investigated in the
risk theory literature (See the survey by R. Wang (2015)). This connection
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between mixability and distributions for CoDa does not seem to have been
made beforehand by the CoDa community.

The definition of joint mixability (B. Wang and R. Wang (2016)) is as follows:

Definition 6.1. An d-tuple of probability distributions on R, (F1, . . . , Fd) is
jointly mixable if there exist d random variables X1 ∼ F1, . . . , Xd ∼ Fd such
that X1 + . . .+Xd =: K is almost surely a constant.

Hence, the question of existence of a d-dimensional CoDa distribution with
given marginals is a special case of mixability with K = 1. Gaffke and L.
Rüschendorf (1981) Theorem 5 give a necessary and sufficient condition. Nec-
essary conditions are given in Theorem 2.1 in B. Wang and R. Wang (2016),
and sufficient conditions are given in Theorems 3.1, 3.2, and 3.4 for uniform,
monotone, and symmetric-unimodal densities, respectively.

6.4 CoDa with some zero components

The well-known additive log-ratio transformation (alr) of J. Aitchison (1986)

yi := log(pi/pd), i = 1, . . . , d− 1

and its variants clr and ilr (Greenacre (2018), Pawlowsky-Glahn, Egozcue, and
Tolosana-Delgado (2015)) turns a CoDa point p as a vector element of Rd−1.
However, it is undefined if p has some zero components and special treatments
of the zero components are required, like amalgamation of the finer parts, re-
placement of the zeroes with small values, or treatment of the zero observa-
tions as outliers. However, these treatments have an ad-hoc character and are
not completely satisfactory from a modeling perspective. Hence, the statistical
literature based on log-ratio analysis usually enforces an assumption of strict
non-negativity of the components, which limits its scope of application.

To the contrary, the stick-breaking representations do not require such an
assumption: in the ordered representation (3), zeroes translates into ties in s,
while in the rescaled z representation, zeroes of p translates into z being sent to
the boundary of [0, 1]d−1. Distributionally, this means that the (ui) in Defini-
tion 2.1 of the ordered representation (3) have common discrete components in
their distributions. For the rescaled z representation (8), zeroes of p translates
distributionally into z having a singular component on some faces of [0, 1]d−1 in
the Lebesgue decomposition of the probability measure of z. One can therefore
use mixed/general distributions to model such CoDa points with possibly zero
components.
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Publ. Inst. Statist. Univ. Paris 8, pp. 229–231.

30

https://doi.org/10.1142/5720
https://doi.org/10.1142/5720
https://doi.org/10.1007/978-1-4899-3242-6
https://doi.org/10.1007/978-1-4899-3242-6
https://doi.org/10.1007/978-1-4899-3242-6
https://doi.org/10.1007/s11229-005-3715-x
https://doi.org/10.1007/s11229-005-3715-x
https://doi.org/10.1007/s11229-005-3715-x
https://doi.org/10.1002/9781119995784
https://doi.org/10.1002/9781119995784
https://doi.org/10.1002/9781119995784
http://links.jstor.org/sici?sici=0035-9246(1965)27:3%3C395:S%3E2.0.CO;2-C&origin=MSN
http://links.jstor.org/sici?sici=0035-9246(1965)27:3%3C395:S%3E2.0.CO;2-C&origin=MSN
https://doi.org/10.1016/0047-259X(80)90073-1
https://doi.org/10.1016/0047-259X(80)90073-1
https://doi.org/10.1016/0047-259X(80)90073-1
https://doi.org/10.1007/BF02127580
https://doi.org/10.1007/BF02127580
https://doi.org/10.1214/aoms/1177729394
https://doi.org/10.1214/aoms/1177729394
https://doi.org/10.1214/aoms/1177729394
https://doi.org/10.1016/j.jspi.2009.05.030
https://doi.org/10.1016/j.jspi.2009.05.030
https://doi.org/10.1016/0047-259X(94)80003-E
https://doi.org/10.1016/0047-259X(94)80003-E


Sukhatme, Pandurang V (1937). “TESTS OF SIGNIFICANCE FOR SAM-
PLES OF THE x2-POPULATION WITH TWO DEGREES OF FREE-
DOM”. In: Annals of Eugenics 8(1), pp. 52–56.

Wang, Bin and Ruodu Wang (2016). “Joint mixability”. In: Math. Oper. Res.
41(3), pp. 808–826. issn: 0364-765X. doi: 10.1287/moor.2015.0755. url:
https://doi.org/10.1287/moor.2015.0755.

Wang, Ruodu (2015). “Current open questions in complete mixability”. In:
Probability Surveys 12(none), pp. 13–32. doi: 10.1214/14- PS250. url:
https://doi.org/10.1214/14-PS250.

Wilks, S. S. (1948). “Order statistics”. In: Bull. Amer. Math. Soc. 54, pp. 6–50.
issn: 0002-9904. doi: 10.1090/S0002-9904-1948-08936-4. url: https:
//doi.org/10.1090/S0002-9904-1948-08936-4.

Wilks, Samuel S. (1962). Mathematical statistics. A Wiley Publication in Mathe-
matical Statistics. John Wiley & Sons, Inc., New York-London, pp. xvi+644.

Wolfram Research, Inc. (n.d.). Mathematica, Version 14.0. Champaign, IL,
2024.

31

https://doi.org/10.1287/moor.2015.0755
https://doi.org/10.1287/moor.2015.0755
https://doi.org/10.1214/14-PS250
https://doi.org/10.1214/14-PS250
https://doi.org/10.1090/S0002-9904-1948-08936-4
https://doi.org/10.1090/S0002-9904-1948-08936-4
https://doi.org/10.1090/S0002-9904-1948-08936-4

	modele_tse_wp1500
	CoDa stick breaking faugeras jan24version2
	Introduction and summary
	The first stick-breaking view on CoDa: ordered points on the unit interval 
	The ordered stick-breaking view
	CoDa distributions via order statistics
	Stick-Ordered distributions
	Examples
	Generalised Stick-Ordered Distributions


	The rescaled stick-breaking view: unit cube geometry of CoDa points
	Unit cube geometry for CoDa points by rescaling
	Neutrality and complete neutrality
	Conditional probability interpretation of the rescaled stick-breaking approach and connection with Bayesian priors
	A triple representation of CoDa
	From the unit cube to the free Euclidean space Rd-1

	Application of unit cube geometry: Copulas for CoDa 
	CoDapulas: copulas for CoDa
	Examples and numerical illustrations
	Complete dependence of CoDa
	Comonotone CoDapula
	Counter-monotone CoDapula


	Application of unit cube geometry: Regression models for CoDa
	Regression representation of an Euclidean random vector
	Parametric internal regression models for CoDa
	Example: agriculture data.
	Extensions and alternatives

	Conclusion and further remarks
	Conclusion
	Choice of the ordering of the components
	Connection with mixability: existence of CoDa distributions with given marginals
	CoDa with some zero components



