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Abstract

Compositional Data (CoDa) is usually viewed as data on the simplex and is studied
via a log-ratio analysis, following the classical work of Aitchison (1986). We propose to
bring to the fore an alternative view of CoDa as a stick breaking process, an approach
which originates from Bayesian nonparametrics. The first stick-breaking approach gives
rise to a view of CoDa as ordered statistics, from which we can derive “stick-ordered”
distributions. The second approach is based on a rescaled stick-breaking transformation,
and give rises to a geometric view of CoDa as a free unit cube. The latter allows to
introduce copula and regression models, which are useful for studying the internal or
external dependence of CoDa. These stick-breaking representations allow to effectively
and simply deal with CoDa with zeroes. We establish connections with other topics of
probability and statistics like i) spacings and order statistics, ii) Bayesian nonparametrics
and Dirichlet distributions, iii) neutrality, iv) hazard rates and the product integral, v)
mixability.

Keywords: compositional data analysis, stick-breaking representation, copula, regression, dis-
tribution.

1. Introduction and outline

1.1. A primer on CoDa

Compositional Data (CoDa) analysis deals with statistical analysis of d-variate data which
are quantitative descriptions of the parts of some whole, conveying only relative information.
Composition of soil in geology, elements in a mixture in chemistry, sources of calories in
nutrition, vote shares in an election, microbiome data in biology, or a portfolio of financial
assets are examples of CoDa.
There are several competing ways to describe CoDa. The traditional approach (Aitchison
(1986), van den Boogaart and Tolosana-Delgado (2013)) considers that one of the key char-
acteristics of CoDa is that the sum of the proportions must always be equal to a constant
(w.l.o.g. 1). This means that the different components of a CoDa point are often expressed
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2 Stick-Breaking

as percentages or fractions, rather than absolute values. Hence, Aitchison’s approach normal-
izes a raw composition vector by its sum (an operation called closure in the CoDa literature):
let y = (y1, . . . , yd) ∈ Rd

≥0 be a vector of non-negative absolute values of a composition, its
closure is denoted as

C(y) := y
||y||1

= y∑d
i=1 yi

.

This leads to the consideration of normalised1 (i.e. after rescaling to unit sum) CoDa element
as a vector p = (p1, . . . , pd), taking its values in the d − 1 dimensional unit simplex2

∆d−1 := {p ∈ Rd : pi ≥ 0,
d∑

i=1
pi = 1}. (1)

Being in a compact space, CoDa elements of ∆d−1 can not all be mapped via homeomor-
phisms to Rd−1 and thus do not enjoy a global vector space structure. This, and the spurious
correlation effect (Pearson (1897)) induced by the closure operation, prevents the direct ap-
plication of classical multivariate statistical analysis techniques (e.g. Anderson (2003)) to the
simplex.
Aitchison’s (Aitchison (1982), Aitchison (1986)) seminal approach is to study CoDa through
a variety of log-ratio transforms: for example, the Additive Log-Ratio transformation (alr)

yi := log(pi/pd), i = 1, . . . , d − 1

and its variants clr and ilr (Greenacre (2018), Pawlowsky-Glahn, Egozcue, and Tolosana-
Delgado (2015)) turns a CoDa point p into a vector element of Rd−1. This gives rise to a
special geometry, called Aitchison geometry, which turns the positive simplex ∆̊d−1 into an
Euclidean vector space. For recent accounts, see e.g., the survey article Greenacre (2021),
and the books Greenacre (2018), Pawlowsky-Glahn et al. (2015), Filzmoser, Hron, and Templ
(2018), van den Boogaart and Tolosana-Delgado (2013).
However, due to the log, log-ratios are undefined if p has some zero components3. Thus,
the above-mentioned statistical literature based on log-ratio analysis usually enforces a strict
non-negativity assumption of the CoDa components, which limits its scope of application.
(Special treatments of the zero components are required: these range from ad-hoc methods
like amalgamation of the finer parts, replacement of the zeroes with small values, treatment of
the zero observations as outliers to more involved approaches based on the stratification of the
simplex according to the zeroes patterns.) This motivates the search of possible alternative
representations of CoDa on the full simplex ∆d−1.

1.2. Aims and scope

The purpose of this paper is to bring to the attention of the CoDa community a possible
simple alternative approach for the statistical analysis of CoDa. It is inspired and finds its
origin in Bayesian non-parametrics and consider CoDa as a stick-breaking process. This give
rises to two interrelated geometric views on CoDa points. The first is that of an ordered set
on the unit interval. This ordered view allows to define distributions on CoDa points via
order statistics and spacings of a latent vector on the unit interval.
The second view is based on a transformation which gives the relative positions of the breaks,
yielding a parametrization of the CoDa point as an unconstrained unit cube. These relative
positions have an interpretation as conditional probabilities and are related to the concept of
neutrality, a natural intra-independence notion for compositions. It can also be apprehended
in terms of hazard rate, via the product integral. This second view also allows to define

1For an intrinsic approach to CoDa analysis based on projective geometry, see Faugeras (2023).
2Note that we allow CoDa points with some null components.
3Ratios are also undefined if both numerator and denominator are zero. See the forthcoming Proposition 4

for a treatment of this case.
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distributions on the simplex, in particular copula distributions, for the study of the intra-
dependence of CoDa. In addition, it is useful to study internal (resp. external) regression
models, i.e. when one wants to explain/predict a (set of) components by other components
acting as predictors (resp. by external covariates).
As these stick-breaking approaches can be described from multiple viewpoints and have multi-
ple origins, our second aim is thus to survey these and show the connections that exist between
several topics of probability and statistics, like spacings and order statistics, Bayesian non-
parametrics and Dirichlet distributions, neutrality and subcompositions, hazard rates and the
product integral, and mixability.

1.3. Outline

The outline of the paper is as follows: in Section 2, we introduce the first stick breaking
transformation and define stick-breaking distributions for CoDa, based on spacings and order
statistics. Several examples are given and numerically illustrated. Section 3 elaborates on the
first construction by considering a rescaled version of the stick-breaking process. It turns the
constrained CoDa point of the simplex into a free vector of the unit cube [0, 1]d−1, which can,
for positive CoDa, even be transformed to a free Euclidean vector of Rd−1. These approaches
yield a triple representation of CoDa. We show the connections with neutrality, Dirichlet
distributions, hazard rate and iterative partitioning, and briefly discuss some possible variants.
Section 4 and 5 deal with statistical applications of such rescaled stick-breaking transfor-
mation for the study of the intra-dependence of CoDa. Section 4 introduces CoDapulas as
the analogue of copulas for CoDa, opening the gates of the vast copula literature, tools and
methodologies for CoDa. Several examples illustrates how copula models can easily be con-
structed for CoDa. In particular, completely monotone copulas give interesting complete
dependence patterns for CoDa. Section 5 aims at studying intra-dependence of CoDa from
the regression viewpoint. A basic example of a parametric regression model on real data set is
given. Several extensions and alternatives are discussed. Eventually, we conclude in Section
6, with additional remarks about the choice of ordering of the components, and mixability.

2. The first stick-breaking view on CoDa: ordered points on the unit interval

2.1. The ordered stick-breaking view

The first stick-breaking approach is based on the representation of CoDa as a normalised
point p in the simplex (1). Instead of considering the (pi), 1 ≤ i ≤ d, as primary parameters
for p, one can consider the accumulated sums s = (s0, s1, . . . , sd), defined as

s0 = 0,

si = pi + si−1 =
i∑

j=1
pj , i = 1, . . . , d − 1, (2)

sd =
d∑

i=1
pi = 1,

as an alternative system of coordinates of (1). Dropping the fixed values s0 = 0 and sd = 1,
this leads to a representation of (1) as

Σd−1 := {(s1, . . . , sd−1) ∈ Rd−1 : 0 ≤ s1 ≤ . . . ≤ sd−1 ≤ 1}. (3)

Equation (3) can be interpreted as iteratively breaking the unit stick [0, 1]: first, one picks
some s1 ∈ [0, 1], then, for the second step, one picks some s2 in the remaining interval [s1, 1],
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and so on for si to be picked in the interval [si−1, 1], i = 1, . . . , d − 1. The process stops after
d − 1 steps. See Figure 1.

0 1

1

1

s1

s1
s2

s2
s3

1s3

Figure 1: Stick-breaking of the unit interval: each remaining interval [si, 1] is broken at
si+1 ∈ [si, 1].

Conversely, d − 1 ordered values (s1, . . . , sd−1) ∈ Σd−1 determines uniquely a CoDa point p
in the simplex ∆d−1 by

p1 = s1,

pi = si − si−1, i = 2, . . . , d − 1, (4)
pd = 1 − sd−1.

For the record, let us formalize these elementary considerations in the following:

Proposition 1. The summing transformation S : p 7→ s defined by (2) is a bijection from
∆d−1 to Σd−1, with inverse transformation given by (4).

Remark 1. 1. A normalized CoDa point p ∈ ∆d−1 can be identified with a discrete
probability measure µp on R,

p ↪→ µp(.) :=
d∑

i=1
piδxi(.),

where x1 < . . . < xd ∈ R denotes (arbitrarily located) distinct components and δx stands
for the Dirac mass at x. The Coda p “forgets” about the locations x1, . . . , xd of µp of the
components, to only retain their probabilities p1, . . . , pd. As such, parametrization (2)
of the simplex by the (si) interprets as characterizing the discrete distribution of a r.v.
X ∼ µp by its c.d.f. F (x) = P (X ≤ x) = ∑

y≤x P (X = x), while the parametrization
by the (pi) interprets as characterizing the distribution of X by its probability mass
function P (X = x).

2. (3) only uses the order structure of the interval [0, 1], and not the addition operation.
This suggests that one can generalise the notion of simplex to arbitrary ordered space,
endowed with a top (= 1) and bottom (= 0) element.
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3. Instead of breaking the stick from the left to the right, i.e. putting si ∈ [si−1, 1], for
increasing i = 1, . . . , d − 1, one can also consider a stick-breaking process from the right
to the left, i.e. putting si ∈ [0, si+1] for decreasing i = d − 1, . . . , 1. This corresponds to
characterizing µp by its survival function instead of its cumulative distribution function.

2.2. CoDa distributions via order statistics

Stick-Ordered distributions
This geometric view of CoDa as a set of ordered points on the unit interval suggests a natural
connection with order statistics on the unit interval. This gives an easy way to build distri-
butions on the simplex by taking as si the order statistics of some ui distributed on the unit
interval. More precisely, one can define a “Stick-Ordered” (SO) distribution on the simplex
as follows:

Definition 2 (Stick-Ordered distribution for CoDa). Let ui ∼ Fi, i = 1, . . . d − 1 be indepen-
dent r.v. with (F1, . . . , Fd−1) a set of univariate c.d.f.s on the unit interval. Set

u(1) ≤ . . . ≤ u(d−1)

the corresponding order statistics. Eventually, define

s0 = 0, si = u(i), i = 1, . . . d − 1, sd = 1.

Then, the CoDa point p ∈ ∆d−1 corresponding to s in (3) is said to be (F1, . . . , Fd−1)-Stick-
Ordered distributed, which is denoted by

p ∼ SO(F1, . . . , Fd−1).

In case Fi = F , p is said to be F -Stick-Ordered distributed, which is denoted by p ∼ SO(F ).

In other words, the Stick-Ordered distribution of p is the distribution of the spacings cor-
responding to the order statistics s. The latter has to be computed as the distribution of
(possibly non-identically distributed) order statistics.

p ∼ SO(F1, . . . , Fd−1) ⇐⇒


ui ∼ Fi, (u1, . . . , ud−1) independent,
s0 = 0, si = u(i), sd = 1, i = 1, . . . , d − 1,

pi = si − si−1, i = 1, . . . , d

Figure 2: Stick-Ordered distribution SO, obtained from the order statistics u(i): each pi

corresponds to a spacing.

Examples

Example 1. In particular, for F = U[0,1] the uniform distribution, (i.e. F (x) = x, 0 <
x < 1), p ∼ SO(U[0,1]) gives a uniform distribution on the simplex, as shown in Pyke (1965)
equation (2.1). (See also Wilks (1948) equation (6)). More precisely, (p1, . . . , pd−1) has a
density w.r.t. the d − 1 dimensional Lebesgue measure given by

f(p1,...,pd−1)(x1, . . . , xd−1) =
{

(d − 1)! if xi ≥ 0, and
∑d−1

i=1 xi ≤ 1
0 otherwise

.
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On the other hand, p has a singular distribution since pd = 1 −
∑d−1

i=1 pi, but its restriction to
the hyperplane

∑d
i=1 pi = 1 admits a density w.r.t. the d − 1 dimensional Lebesgue measure

given by

fp(x) =
{

(d − 1)! if xi ≥ 0, and
∑d

i=1 xi = 1
0 otherwise

,

which is symmetric in (x1, . . . , xd) (i.e. the (pi) are exchangeable). One recognizes the Dirich-
let Dir(1, . . . , 1; 1) distribution, see e.g. Rao and Sobel (1980) or Wilks (1962).

These stick-ordered distributions are useful for modeling purposes. They allow to construct
CoDa models from classical distributions on [0, 1]. One can consider more examples with
other distributions on the unit interval, like the Beta, the Kumaraswamy, (which is similar to
the Beta distribution but leads to tractable formulas for the distribution of order statistics,
see Jones (2009), or those of Kotz and van Dorp (2004). (More generally, any distribution on
R can be mapped to a distribution with support included on the unit interval by applying a
c.d.f to it). In some cases, analytical formulas can be obtained for the distribution of p, using
known results on spacings (Pyke (1965)).

Example 2 (Kumaraswamy). Let U follow a Kumaraswamy distribution (Jones (2009)) with
parameters (α, β): it has density

f(u) = αβuα−1(1 − uα)β−1, 0 < u < 1, (5)

and cdf
F (u) = 1 − (1 − xα)β, 1 < u < 1. (6)

Moreover, for i.i.d. ui ∼ F , i = 1, . . . , d − 1, the marginal distribution of the spacings writes
(see e.g. Pyke (1965) p. 399)

fpi(x) = (d − 1)!
(i − 2)!(d − 1 − i)!

∫
(F (t))i−2(1 − F (x + t))d−1−if(t)f(x + t)dt, (7)

for 2 ≤ i ≤ d − 1, and

fp1(x) = fu(1)(x) = (d − 1)f(x)(1 − F (x))d−2. (8)

Applying formulas (7) and (8) to (5) and (6) leads to computable formulas. For example,

fp1(x) = (d − 1)αβxα−1(1 − xα)β(d−1)−1, 0 < x < 1,

The Markov property of the order statistics can then be used to derive the joint distribution
of p.

Generalised Stick-Ordered Distributions

One can also generalise the former definition (2) by taking dependent r.v. ui instead of
independent ones.

Definition 3 (Generalized stick-ordered distribution for CoDa). For u = (u1, . . . , ud−1) ∈
[0, 1]d−1 with joint distribution function Fu, the CoDa point p ∈ ∆d−1 corresponding to s in
(3) is said to be generalized-stick-ordered distributed with generator Fu, which is denoted by
p ∼ GSO(Fu), viz.

p ∼ GSO(Fu) ⇐⇒


(u1, . . . , ud−1) ∼ Fu

s0 = 0, si = u(i), sd = 1, i = 1, . . . , d − 1,

pi = si − si−1, i = 1, . . . , d
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For non-identically distributed or dependent variables, one can compute them e.g. using re-
sults of David and Nagaraja (2003) Chap. 5. Jaworski and Rychlik (2008), Rychlik (1994) (See
also Balakrishnan N. (1998)). However, this often leads to intractable formulas. Nonetheless,
it is easy to simulate samples from such distributions.

Example 3 (GSO with Gaussian copula generator). Consider, for d = 3, p ∼ GSO(Fu) with
FU a bivariate Gaussian copula (hence with uniform marginals), with correlation ρ. Figure 3
shows ternary diagrams of scatterplots of samples of 1000 realisations of p = (p1, p2, p3), with
varying level of the dependence coefficient ρ. The value of ρ determines the behavior of the
distribution of the CoDa element p and generates interesting patterns of dependence between
the components. For ρ = 0, one generates a uniform distribution on the simplex (upper right
panel). When ρ becomes negative (upper middle panel) and close to −1 (upper left panel), one
obtains empirically a CoDa point s.t. p2 ≈ 1 − 2p1 and p1 ≈ p3. For ρ close to one (ρ = 0.99,
lower right panel), the p2 component is nearly zero and the CoDa point is nearly on the line
p1 = p3.

p1 p2

p3

p1 p2

p3

p1 p2

p3

p1 p2

p3

p1 p2

p3

Figure 3: Ternary plots of Generalized-Stick-Ordered distribution for d = 3, with Gaussian
copula generator, with varying correlation coefficient ρ. From left to right and up to down:
ρ = −0.99, ρ = −0.8, ρ = 0, ρ = 0.8, ρ = 0.99.

3. The rescaled stick-breaking view: unit cube geometry of CoDa points

3.1. Unit cube geometry for CoDa points by rescaling

The second approach we promote is based on a rescaled version of the iterative stick-breaking
process of Figure 1: first, one picks some s1 ∈ [0, 1], as previously. Then, one has to pick s2
in the remaining interval [s1, 1]: in terms of spacings/lengths, the length of s2 − s1 = p2 of
the second stick [s1, s2] has to be chosen relatively to the length 1 − s2 of the remaining stick
[s2, 1], see Figure 2. Similarly, the relative length si − si−1 = pi of the interval corresponding
to the ith pick si has to be chosen relatively to the length 1 − si−1 of the remaining stick
[si−1, 1]. Following the footsteps of Halmos (1944), Connor and Mosimann (1969) among
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others, it is therefore natural to introduce the transformation,

z1 = s1 = p1,

zi = pi

1 − si−1
, i = 1, . . . , d − 1, (9)

zd = 1,

with the convention that 0/0 := 0.

Figure 4: Rescaled stick-breaking: each remaining stick is broken, relatively to its length, by
zi ∈ [0, 1].

By construction, since 1−si−1 = pi+. . .+pd ≥ pi, the zi in (9) are in the unit cube, 0 ≤ zi ≤ 1
for i = 1, . . . , d − 1, with degenerate zd = 1. Thus the transformation (9) turns the “akward”
simplex ∆d−1 into the unit cube [0, 1]d−1 (we drop zd as it is always equal to 1). This leads to
a free unit cube view of CoDa points as an unconstrained element of [0, 1]d−1. More precisely,
the transformation (9) realizes “almost” a bijection of the simplex, as formalized in the next
proposition:

Proposition 4. Let the rescaled stick-breaking transformation

R : ∆d−1 → [0, 1]d−1

p 7→ z

be defined by (9). Then,

i) R is a bijection from the interior of the simplex ∆̊d−1 to the open cube (0, 1)d−1, with
inverse transformation R−1 given by p = R−1(z) with

p1 = z1,

pi = zi

i−1∏
j=1

(1 − zj) , i = 2, . . . , d − 1,

pd =
d−1∏
i=1

(1 − zi) . (10)

ii) R−1 : [0, 1]d−1 → ∆d−1 is a retraction (left-inverse) of R on the full simplex ∆d−1, i.e.
R−1 ◦ R(p) = p, for all p ∈ ∆d−1.

Proof. R is ill-defined when the denominator in (9) is zero, that is to say when there exists
some 1 ≤ i ≤ d − 2 s.t. si = 1. Notice that if this so, then sj = 1 and pj = 0, for j > i.
This entails that zi = pi/pi = 1 and zj = 0 for j > i, with our convention that 0/0 := 0.
Conversely, if zi = 1 for some 1 ≤ i ≤ d − 2, then pi+1 + . . . + pd = 0 which entails pj = zj = 0
for j > i.
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So, let i0 the smallest i such that si = 1, 1 ≤ i ≤ d. If p ∈ ∆̊d−1 or z ∈ (0, 1)d−1, then,
in view of the preceding, i0 > d − 2, R is well-defined and simple algebraic manipulations
show that R and R−1 are inverse of each other. This settles case i). If 1 ≤ i0 ≤ d − 2,
p = (p1, . . . , pi0 , 0, . . . , 0), z = R(p) = (z1, . . . , zi0−1, 1, 0, . . . , 0) and R−1(z) = p. Thus, in
the general case ii), for p ∈ ∆d−1, R−1 ◦ R(p) = p.

In other words, z can only have one of its coordinates equal to 1 (with remaining coordinates
equal to zero, if so happens). This implies that the faces of the cube [0, 1]d−1 with more than
one 1 in their coordinates do not correspond to a CoDa point: some parts of the boundary of
the cube [0, 1]d−1 can not be mapped back to the simplex. Nonetheless, this is not a serious
restriction. Proposition 4 ii) means that the whole simplex can be injected into the unit
cube and mapped back to the simplex: all CoDa points (including CoDa with zeroes) can be
studied in their z coordinates, as points of (almost all) the unit cube.

Remark 2. Historically, the transformation (9) was introduced by Halmos (1944) for d = ∞,
as a way to distribute gold dust to a countably infinite sequence of beggars, where each beggar
receives in turn a fraction zi of the remaining gold. More generally, an infinite sequence
(p1, p2, . . .) defined by (9) from a sequence of independent (zi) ∈ [0, 1] is called a Residual
Allocation Model (RAM), see Feng (2021) for a review. The case when zi ∼ β(1, θ), θ > 0 is
called a GEM distribution and was notably studied in population genetics by Griffiths (1979),
Engen (1975), McCloskey (1965), see e.g. Ewens (1990). RAM also appears in Bayesian
statistics in connection with the Dirichlet distribution, as the weights of random measures
P(.) = ∑∞

k=1 pkδξk
(.), where (ξk) are i.i.d. and independent of (pk), see Wilks (1962) p. 178,

Ferguson (1973), Ishwaran and James (2001). See also Section 3.3 below.

3.2. Neutrality and complete neutrality

This interpretation of CoDa points as a relative/proportional iterative stick-breaking process
leads to the concept of neutrality, introduced by Connor and Mosimann (1969), which is
relevant for the analysis of CoDa. In short, it is a sort of intra-independence concept for a
random composition p.
More precisely, neutrality is motivated by the following: if one wants to check whether the
first proportion p1 has an influence on the remaining subcomposition (p2, . . . , pd), the latter
has to be rescaled by the remaining mass 1 − p1, in order to be a proper normalized CoDa
point. One thus has to check for the stochastic influence of p1 on(

p2
1 − p1

, . . . ,
pd

1 − p1

)
, (11)

and if p1 is independent of the latter rescaled subcomposition, one can eliminate p1 from the
analysis of p. Therefore, Connor and Mosimann (1969) defines neutrality as follows: p1 is
said to be neutral if p1 is independent of (11): p1 does not influence the manner in which the
remaining proportions (p2, . . . , pd) relatively divide the remainder of the unit interval.
A generalisation of neutrality to a vector pk := (p1, . . . , pk), k < d is: (p1, . . . , pk) is a neutral
vector if it is independent of (

pk+1
1 − sk

, . . . ,
pd

1 − sk

)
.

Thus, if pj is neutral for j = 1, . . . k, then zk := (z1, . . . , zk) is mutually independent (The-
orem 1 in Connor and Mosimann (1969)). A further generalization of neutrality is complete
neutrality: if the z = (z1, . . . , zd−1) of (9) are mutually independent, then the corresponding
p is said to be completely neutral, or equivalently (Theorem 2 in Connor and Mosimann
(1969)) if pj is neutral for all 1 ≤ j ≤ d − 1.
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These concepts of neutrality are helpful for constructing completely neutral distributions on
the simplex: start with mutually independent zi’s each having a specified distribution on
[0, 1], and invert (9) to obtain a completely neutral distribution on the simplex. In particular,
Connor and Mosimann (1969) construct a generalisation of the Dirichlet distribution from
independent zi ∼ β(ai, bi). Ng, Tian, and Tang (2011) Theorem 2.2 use the transformations
(9) and (10) to obtain stochastic representations of the Dirichlet distribution D(a) from
independent zi ∼ β(ai,

∑d
k=i+1 ak), i = 1, . . . , d − 1.

3.3. Conditional probability interpretation of the rescaled stick-breaking
approach and connection with Bayesian priors
The rescaled weights zi interpret as conditional probabilities. The stick-breaking construc-
tion appears in the construction of the (finite-dimensional) Dirichlet distribution of Ferguson
(1973), see e.g. Ghosal and van der Vaart (2017) p. 30. The latter is used for constructing
a prior on a discrete distribution in Bayesian statistics. It is defined as follows: in order to
randomly distribute a total mass 1, identified with the unit interval, to the first d integers
1, 2, . . . , d, the stick is first randomly broken by a r.v. 0 ≤ Z1 ≤ 1, and mass Z1 is assigned to
1. The remaining mass is 1 − Z1 and the stick [Z1, 1] is broken into two new pieces of relative
length Z2 and 1 − Z2, for some 0 ≤ Z2 ≤ 1. Mass (1 − Z1)Z2 is assigned to the point 2,
and the remaining stick has remaining mass (or length) (1 − Z1)(1 − Z2). Iterating, one has
defined a random distribution (i.e. a Markov kernel), with values j = 1, . . . , d and (random)
probabilities given by (10).
Each pi is the probability assigned to i, conditionally on the previous probabilities assigned
to the j < i. Indeed, if one denotes by ζ the r.v. with values in 1, . . . , d and (random)
probabilities given by (10), i.e. s.t.

P (ζ = i) = pi = Zi

i−1∏
j=1

(1 − Zj) , i = 1, . . . , d,

Then, Zi = P (ζ = i|ζ ≥ i).
On the other hand, the complete neutrality property expresses the idea that these Zi (or equiv-
alently these conditional probabilities) are chosen independent. In particular, if (Z1, . . . , Zd)
are independent with Zi ∼ β(αi,

∑
j>i αj), then p is Dirichlet Dir(k; α1, . . . , αd) distributed,

see Ghosal and van der Vaart (2017) Corollary G.5.

3.4. Hazard rate interpretation with the product integral
Going one step further in the interpretation of the rescaled stick-breaking transform (9) in
terms of conditional probabilities of Section 3.3, we now show that it is associated with the
expression of density functions in terms of hazard rate, a concept commonly used in reliability
and survival analysis. Indeed, for X a positive real-valued random variable with density f
and cdf F , recall that the hazard rate function is defined as minus the log derivative of the
survival function,

h(x) := f(x)
1 − F (x) = −d ln (1 − F (x))

dx
= lim

h↓0

P (X ≤ x + h|X > x)
h

. (12)

It interprets, when X stands for a survival time, as the conditional probability of the failure
of the device at age x, given that it did not fail before age x. By direct integration of (12),
the survival function (or cdf) expresses in terms of the hazard rate, as

1 − F (x) = exp
(

−
∫ x

0
h(y)dy

)
, x ≥ 0. (13)

Combining (12) and (13) yields a representation of the density function as

f(x) = h(x) exp
(

−
∫ x

0
h(y)dy

)
. (14)
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Equations (12), resp. (14), are the continuous analogue of the discrete p → z transform (9),
resp. the inverse z → p transform (10). For (9) and (12) this is clear, as, in the discrete
case, the density (Radon-Nikodym derivative w.r.t. the counting measure) f(x) = P (X = x)
identifies with the CoDa vector of probabilities p, and the cdf F (x) with the accumulated
sum vector s, in accordance with Remark 1. The z coordinates thus interpret as a discrete
hazard rate.
For the inverse transform z → p, the correspondence is less apparent as the continuous
density (14) and discrete inverse transforms (10) appear different at first sight. The analogy
is complete when one writes (14) in terms of Volterra’s product integral Volterra (1887). The
product integral is the continuous product analogue of the ordinary (Riemann, Lebesgue,
Denjoy, Perron etc. . .) integral and provide a compact functional way to express the solution to
the Cauchy problem for systems of ordinary differential equations (or of integral equations). It
finds applications in survival analysis (Kaplan-Meier and Nelson-Aalen estimators), nonlinear
systems theory (Péano-Wiener series), Markov processes and semi-martingales. See Dollard
and Friedman (1979), Slavík (2007), Gill and Johansen (1990) for more details.
Indeed, given a fixed x > 0, let 0 = x0 < x1 < . . . < xm = x be a partition of [0, x]. Then, by
successive conditioning,

P (X > x) = 1 − F (x) = P (X > x0)P (X > x1|X > x0) . . . P (X > xm|X > xm−1)

=
m∏

i=1
(1 − P (X ≤ xi|X > xi−1))

By (12), P (X ≤ xi|X > xi−1) ≈ h(xi)δxi, for δxi := xi−xi−1 small. Thus, when the partition
size goes to zero, viz. m → ∞, δ := max1≤i m δxi → 0, then

P (X > x) ≈
m∏

i=1
(1 − h(xi)δxi) →

x

R
0

(1 − h(y)dy)

where the r.h.s is the definition of the product integral, understood as the limit of the finite
products of the l.h.s. The final step in the analogy consists in the property that, since
e−x = 1 − x + o(x2), the product integral can also be written as an exponential product
integral, see e.g. Theorem 1.7.1 p. 52 in Dollard and Friedman (1979). In turn, it is equal to
the exponential of the classical Riemann sum integral:

x

R
0

(1 − h(y)dy) =
x

R
0

e−h(y)dy := lim
δ↓0

m∏
i=1

(
e−h(xi)δxi

)
= lim

δ↓0
e
∑m

i=1 −h(xi)δxi = e−
∫ x

0 h(y)dy.

In other words, the formula of the inverse z transform (10),

pi = zi

i−1∏
j=1

(1 − zj) , i = 2, . . . , d − 1,

interprets as the discrete analogue of the density formula (14) in terms of hazard rate, that is

f(x) = h(x)
x

R
0

(1 − h(y)dy). (15)

This analogy with the hazard rate and connection with survival and reliability analysis suggest
that statistical models (like Cox or frailty models) and techniques of the latter fields could be
used for CoDa.

Remark 3. Gill and Johansen (1990) develop a theory of product integration for matrix
measures µ on ]0, ∞] which allows to simultaneously handle the continuous and discrete case.
In particular, their Definition 4 of the product integral in the univariate commuting case gives

R
]0,x]

(1 + dµ) =
∏

y∈]0,x]
(1 + µ({y})) × exp (µc(]0, x])) ,
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where µc is the absolutely continuous part of the measure µ. This unifies the continuous (15)
and discrete (10) case in a single formula.

3.5. A triple representation of CoDa

One thus has a triple representation of the simplex / of normalized CoDa points: the simplex
can be represented as ∆d−1 with its sum constraint, as the ordered set of points Σd−1 on the
unit interval, or a free cube [0, 1]d−1 via its rescaled representation in z coordinates. Figure
5 shows the different representations as well as the transformations between them (where
the arrows between the free unit cube [0, 1]d−1 and Σd−1 are obtained by composition of
the previous transformations). Note that the ordered and rescaled representations are not
canonical, as they depend on the order of enumeration of the components of p.

Unit Cube:
Relative representation

z ∈ [0, 1]d−1

Simplex:
Unit-sum representation

p ∈ ∆d−1 ⊂ [0, 1]d

Interval:
Ordered representation

s ∈ Σd−1 ⊂ [0, 1]d−1

y ∈ Rd
≥0 u ∈ [0, 1]d−1

summing:

rescaled stick-breaking

spacings/differencing

normalisation y
||y||1 ordering

Figure 5: A triple representation of CoDa: as a simplex, as an ordered set and as a free unit
cube.

In addition, Figure 5 shows how one can obtain the stick-ordered distribution of Definition 2,
via ordering of some ui ∈ [0, 1] r.v. (lower-right), for i = 1, . . . , d−1. Another way to produce
a CoDa point is through closure C, i.e. normalisation by the sum of nonnegative random
variables, for some y = (y1, . . . , yd) ∈ Rd

≥0. This is also illustrated in Figure 5, (lower-left).
The figure sheds light on some results and representations of order statistics and constructions
of Dirichlet distribution. For example, it is well-known (see Sukhatme (1937), Rényi (1953),
Pyke (1965)) that the order statistics and spacings of i.i.d (ui) r.v. uniformly distributed on
[0, 1], have a representation as a ratio of (sums of) exponential r.v.: Take yi ∼ Exp(1) i.i.d.
in Figure 5, then normalisation by the sum gives the pi which corresponds to spacings, and
summing this spacings give the order statistics si = u(i),(

u(i)
)

i=1,...,d−1
d=
(∑

j≤i yj∑d
j=1 yj

)
i=1,...,d−1

and
(pi)i=1,...,d

d=
(

yi∑d
j=1 yj

)
i=1,...,d

Also, for yi ∼ γ(αi) Gamma distributed, Figure 5 allows to explain and visualize the difference
between the Dirichlet distribution on ∆d−1 and its ordered version on Σd−1, see Wilks (1962)
p. 178, 182 and 238.
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3.6. From the unit cube to the free Euclidean space

If p has no zero components, viz. 0 < pi < 1 for all 1 ≤ i ≤ d, then p is sent to the
interior (0, 1)d−1 of the unit cube [0, 1]d−1 by the rescaled stick-breaking transformation (9).
In turn, one can then map the open unit-cube representation z ∈ (0, 1)d−1 of the Coda
element p ∈ ∆d−1 to a point ξ = (ξ1, . . . , ξd−1) ∈ Rd−1 by applying an increasing4 continuous
transformation q : (0, 1) → R to each component zi of z, viz.

ξi = q(zi), 1 ≤ i ≤ d − 1.

See Figure 6. Examples of q which come to mind include the probit, logit transform, or any
quantile function of a distribution on R with positive density (hence the notation q).

p ∈ ∆d−1,
p > 0 z ∈ (0, 1)d−1 ξ ∈ Rd−1

rescaled
stick-breaking

q

q−1

Figure 6: Free Euclidean representation ξ ∈ Rd−1 of positive CoDa p by (quantile) mapping
of its rescaled stick-breaking representation z.

This gives an interesting alternative to the vector space representation provided by Aichison’s
log-ratio transforms. This variant of the z representation allows to apply standard multi-
variate analysis techniques designed for Euclidean vectors to CoDa. For example, one can
apply classical Principal Component Analysis to the transformed variables ξ for exploratory
data analyses of CoDa. Also, clustering algorithms (i.e. k−means) can be applied on the ξ-
representation of CoDa, without further ado. On the modeling side, any classical multivariate
distribution for ξ on Rd−1 gives, by back-transformation, a corresponding CoDa distribution
for p ∈ ∆d−1.

3.7. Description in terms of iterated partitions and some variants

The rescaled stick-breaking can also be described in terms of the amalgamation, subcompo-
sition and partition operations of Aitchison (1986). Recall that given a CoDa p ∈ ∆d−1, an
amalgamation of order 1 is a mapping

∆d−1 ∋ p 7→ t ∈ ∆1,

obtained when the parts of a d− composition are separated into 2 mutually exclusive and
exhaustive subsets, and the composition within each subset are added together. This results
in a 2−parts composition. For example, p = (p1, p2, p3, p4) ∈ ∆3 can be amalgamated into
t = (t1, t2) with t1 = p1 + p2, t2 = p3 + p4. A subcomposition

∆d−1 ∋ p 7→ c ∈ ∆k−1

is obtained by selecting k parts of a composition and closing the selected subvector to obtain
a subcomposition in ∆k−1. Finally, a partition of order 1 is the separation of a d−parts
composition into two disjoint and exhaustive subsets, and recording the amalgamation and
subcomposition of each subsets. For example, the order 1 partition

(p1, . . . , pk

∣∣pk+1, . . . , pd)

4or, more generally, a strictly monotone continuous function.
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cuts the d−parts at position 1 ≤ k ≤ d−1 and yields an amalgamation vector t = (t1, t2), with
t1 = (p1 + . . . , pk), t2 = (pk+1 + . . . + pd), together with the two vectors of subcompositions

c1 = C(p1, . . . , pk) = (p1, . . . , pk)
t1

, c2 = C(pk+1, . . . , pd) = (pk+1, . . . , pd)
t2

.

By Property 2.10 and 2.11 of Aitchison (1986), this results in a bijective transformation

∆d−1 ∋ p 7→ (t, c1, c2) ∈ ∆1 × ∆k−1 × ∆d−k−1.

The rescaled stick breaking transformation R of (9) can be described as iterated partitions
of order 1 with one subcomposition consisting of a singleton. Indeed, in the case of partition
of order one at position k = 1 where p is partitioned into (p1

∣∣p2, . . . , pd), this yields

t = (p1, 1 − p1), c1 = C(p1) = 1, c2 = C(p2, . . . , pd) =
(

p2
1 − p1

, . . . ,
pd

1 − p1

)
Since c1 is not informative and t ∈ ∆1, one can only record the first component t1 = p1 of t
and c2, i.e. consider the transformation

∆d−1 ∋ p 7→ (t1, c2) ∈ [0, 1] × ∆d−2.

In a second stage, one proceeds with another partition of order 1 at position k = 1 of the
subcomposition c2 into (

p2
1 − p1

∣∣∣∣ p3
1 − p1

, . . . ,
pd

1 − p1

)
.

This yields the amalgamation vector

t′ =
(

p2
1 − p1

, 1 − p2
1 − p1

)
=
(

p2
1 − p1

,
1 − s2
1 − p1

)
,

where s2 = p1 + p2, and the two subcompositions vectors

c′
1 = 1, c′

2 = C
(

p3
1 − p1

, . . . ,
pd

1 − p1

)
=
(

p3
1 − s2

, . . . ,
pd

1 − s2

)
.

Again, one records the first component of t′, viz. p2/(1 − p1), so that one obtains a transfor-
mation

∆d−1 ∋ p 7→
(

p1,
p2

1 − p1
, c′

2

)
∈ [0, 1]2 × ∆d−3.

The reader will readily see that after d−1 iterations one has obtained the z coordinates which
thus correspond to the record of the successive amalgamation vectors in the iterated order
one partitions. Note that this gives an alternative proof of Proposition 4 i).

Remark 4. This partition view suggests variants of the rescaled stick-breaking transforma-
tion: for example, instead of performing iterated nested partitions from the left to the right
at the same position k = 1, one can consider a sequence of partitions on the same original
CoDa point p ∈ ∆d−1, but with varying k from 1 to d. One then records the last component
of the first subcomposition of each partition. In other words, one records the closure w.r.t to
the left subcomposition of the boxed components p1, p2, . . ., pd−1 in the partitions below:(

p1

∣∣∣∣p2, . . . , pd

)
(p1, p2

∣∣∣∣p3, . . . , pd)

. . .(
p1, p2, . . . , pd−1

∣∣∣∣pd

)



Austrian Journal of Statistics 15

More explicitly, this amounts to considering the transformation

∆d−1 ∋ p 7→ z′ = (z′
1, . . . , z′

d−1) ∈ [0, 1]d−1

defined by

z′
1 = p1,

z′
i = pi

si
= pi

p1 + . . . + pi
, i = 2, . . . , d − 1.

Except for the first term z′
1, this amounts to a z transform (9), with reverse ordering of the

components.
More generally, any transformation whose ith component is a fraction with the numerator be-
ing pi and denominator a sum of pi and at least another component will lead to a transformed
CoDa in the unit cube. For example, one can take

z′′
i = pi

pi + pi+1
∈ [0, 1], i = 1, . . . , d − 1,

with the convention that 0/0 := 0. However, these variants usually lead to less tractable
formulas for the inverse transform and are less prone to interesting statistical interpretations.
Hence, we do not pursue further.

4. Application of unit cube geometry: Copulas for CoDa
In the complete neutrality view of Connor and Mosimann (1969), each rescaled component zi

does not influence the remaining ones. If one moves out of independence, one can generalize
in several directions.

4.1. CoDapulas: copulas for CoDa

As first generalization, one can construct copula models (Nelsen (2006)) for CoDa: instead of
taking independent zi, one can specify a joint distribution for z by a set of marginals (Fzi),
i = 1, . . . , d − 1, (each with support the unit interval) and a copula C, viz.

z ∼ C(Fz1 , . . . , Fzd−1).

By back transformation (10), this allows to define general distributions for CoDa points from
the specification of a copula and the marginal distributions of the z.
A probabilistic construction of this specification is as follows: let v ∈ [0, 1]d−1 be distributed
according to a copula function C, i.e. a multivariate distribution with uniform marginals,
and let Qzi = F −1

zi
: [0, 1] → [0, 1], i = 1, . . . , d − 1, be univariate quantile functions with

range [0, 1]. Set zi = Qzi(vi), i = 1, . . . , d − 1. Then z = (z1, . . . , zd−1) ∈ [0, 1]d−1 has
copula function C and marginal distributions (Fzi). By back transformation, p ∈ ∆d−1 is a
CoDa point whose distribution is uniquely specified by C an the set (Fzi) of marginal cdfs.
Explicitly, (10) yields

p1 = Qz1(v1), (16)

pi = Qzi(vi)
i−1∏
j=1

(1 − Qzj (vj)), i = 2, . . . , d − 1, (17)

pd =
d−1∏
i=1

(1 − Qzi(vi)). (18)

Conversely, given a CoDa point p, one can estimate and study its intra-dependence through
the copula of its z-representation: one first transforms p into z by transformation (9), and then
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standardize the marginals zi to the uniform distribution. The latter operation is obtained,
when z is continuous, by the marginal probability integral transforms,

vi := Fzi(zi), i = 1, . . . , d − 1,

where Fzi is the c.d.f. of zi. Then, v = (v1, . . . , vd−1) has uniform marginals, i.e. has a copula
distribution. See Figure 7.

p ∈ ∆d−1 z ∈ [0, 1]d−1 v ∼ C

Fzi

Qzi

Figure 7: Probabilistic construction of a CoDapula from its rescaled stick breaking represen-
tation.

(In the non-continuous case, the standardization is obtained by using the marginal distribu-
tional transforms instead. The latter is defined as

Fzi(x, η) := P (zi < x) + ηP (zi = x), η ∈ [0, 1]. (19)

Then, v is obtained by setting

vi := Fzi(zi, ηi), i = 1, . . . , d − 1,

where (ηi) is a sequence of i.i.d. uniformly distributed on [0, 1] randomizers, independent of
z (see e.g. Rüschendorf (2009), Faugeras and Rüschendorf (2017)).
Let us give a fancy name to the copula of a CoDa point.

Definition 5 (CoDapula). Let p ∈ ∆d−1 a random CoDa point, and z ∈ [0, 1]d−1 be it
rescaled stick-breaking representation (9). Then, a CoDapula of (the distribution of) p is a
copula of (the distribution of) z. In other words, a CoDapula C of p is the distribution of v
in the construction of Figure 7.

Thanks to Sklar’s Theorem (Sklar (1959)), a CoDapula always exists. It is unique if z is
continuous (see e.g. Nelsen (2006)). Definition 5 depends on the ordering of the components
1, . . . , d. Hence, a CoDapula of p depends on a permutation π of {1, . . . , d}. Hence, in full
rigor, one should have defined a notion of π−CoDapula to stress the dependence on π. We
have chosen not to in order to simplify notations. The choice of the ordering, i.e. of π, may
depend on the application in view, and will be discussed in Section 6.2.
By (16), the first component p1 has the same distribution as z1, and thus is completely
specified by the first marginal distribution function Fz1 , (equivalently, quantile function Qz1).
Note that the marginal distributions of the remaining components p2, . . . , pd depend on both
the CoDapula and the marginal distributions: this is in contrast with the copula approach
for classical Euclidean vectors. Nonetheless, at the z level, one has the the classical copula
separation of a multivariate distribution into its marginal distributions Fz1 , . . . Fzd−1 and the
dependence structure embodied in the copula function C.

4.2. Examples and numerical illustrations

We illustrate in the following figures some CoDa distributions which can be obtained using the
specification by a CoDapula of Definition 5 and marginal quantile functions for z. In Figure
8, the copula of z is an Ali-Mikhail-Haq copula with parameter α = 0.91, and the marginal
distributions are Beta and uniform, Fz1 ∼ β(1/4, 2) and Fz2 ∼ U[0,1], while in Figure 9,
the CoDapula is a Gumbel-Hougaard copula with parameter θ = 7, and same marginals as
in Figure 8. The left panels show scatterplots in the z domains, and the right panels the
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corresponding ternary plots in the simplex CoDa space for p. Figure 8 give an example
of mild dependence with CoDa points spreading above the p1 = 0 level. As the Gumbel
copula approaches the comonotonicity copula as θ → ∞ (while θ = 1 yields the independence
copula), the value θ = 7 in Figure 9 models strong dependence at the z level, resulting in the
pattern of points shown on the right panel at the CoDa level.

0.0 0.2 0.4 0.6 0.8 1.0
z10.0

0.2

0.4

0.6

0.8

1.0
z2

p3 p1

p2

Figure 8: CoDa with AMH CoDapula (α = 0.91), and β(1/4, 2), U[0,1] marginal distribution
functions: scatter plot at the z level (left) and ternary scatter plot for the resulting p (right),
d = 3.

0.0 0.2 0.4 0.6 0.8 1.0
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0.0

0.2

0.4

0.6

0.8

1.0
p3

0.0

0.2

0.6

0.8

1.0

p1
0.0

0.2

0.6

0.8

1.0
p2

Figure 9: CoDa with Gumbel CoDapula (ρ = 7) and β(1/4, 2), U[0,1] marginal distribution
functions; scatter plot at the z level (left) and ternary scatter plot for the resulting p (right),
d = 3.

Figure 10 illustrates the case of (complete) neutrality: the copula of z is chosen as the
independence copula, i.e. the product C(u1, u2) := u1u2. Thus, z1 and z2 are independent
and the resulting composition p is completely neutral. We chose, as marginal distributions
of z, z1 ∼ β(8, 8) and z2 ∼ U[0,1], so that z2 is evenly spread whereas z1 has a bell-shaped
distribution which concentrates (roughly) on the interval [0.2, 0.8]. The resulting configuration
of points at the compositional level is shown on the right panel.
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Figure 10: CoDa with independence CoDapula and β(8, 8), U[0,1] marginal distribution func-
tions; scatter plot at the z level (left) and ternary scatter plot for the resulting p (right),
d = 3.

Eventually, we close these section on numerical illustrations with an example showing how
the CoDapula approach can incorporate qualitative elements like symmetry in the distribu-
tional specification of a CoDa model. Figure 11 (left panel) show a scatterplot of z dis-
tributed along a mixture of uniform distributions on the five squares [1/4, 3/4]2, [0, 1/4]2,
[0, 1/4] × [3/4, 1], [3/4, 1]2, [3/4, 1] × [0, 1/4]. In other words, z has uniform marginals and
copula the checkerboard-type distribution numerated 1 in Figure 1, p. 100 by Nelsen (1993).
Such copula distribution exhibits all forms of symmetry (joint, radial, marginal, conditional,
exchangeability symmetry) listed in Nelsen (1993). When folded back at the compositional
level, it results in the fanciful pattern of points on the right panel of Figure 11.
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Figure 11: CoDa with symmetric CoDapula and U[0,1] marginal distribution functions; scatter
plot at the z level (left) and ternary scatter plot for the resulting p (right), d = 3.

4.3. Complete dependence of CoDa

The concept of CoDapula opens the gates of the vast copula literature and modeling method-
ology to CoDa. This is useful to study the intra-dependence of CoDa. The independence
copula for z means that p is completely neutral. At another extreme, complete dependence
at the z level induces a specific dependence pattern at the p level, as is shown in the next
two examples.
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Comonotone CoDapula

Comonotonicity is an extreme form of dependence structure for Euclidean vectors that de-
scribes the strongest positive dependence. A comonotone vector is characterised by having
as copula the comonotone copula M(x1, . . . , xd−1) = min(x1, . . . , xd−1). The comonotone
copula corresponds to the distribution of the vector v = (v, . . . , v) ∈ [0, 1]d−1, with a single
v ∼ U[0,1]. In other words,

P (v ≤ x) = P (v ≤ x1, . . . , v ≤ xd−1) = min(x1, . . . , xd−1), x ∈ [0, 1]d−1.

Applied to CoDa, the corresponding z thus writes

z = (Qz1(v), . . . , Qzd−1(v)),

where Qzi : [0, 1] → [0, 1] are given quantile functions. This gives, as corresponding p, Coda
with components

p1 = Qz1(v)

pi = Qzi(v)
i−1∏
j=1

(
1 − Qzj (v)

)
, i = 2, . . . , d − 1.

Example 4 (Comonotone CoDapula, d = 3). For example, for d = 3, one gets

z =
(

z1
z2

)
=
(

Qz1(v)
Qz2(v)

)

which translates into

p1 = Qz1(v)
p2 = Qz2(v) (1 − Qz1(v))
p3 = 1 − p1 − p2 = (1 − Qz1(v)) (1 − Qz2(v)) (20)

Thus, p1 is an increasing function of v, p3 is decreasing, while p2 switches direction of vari-
ation w.r.t v.

Figure 12 shows, for d = 3, the CoDa p corresponding to the comonotone copula, with uniform
quantile functions at the z level, viz. Qz1(v) = Qz2(v) = v in (20), so that p1 = v, p2 =
v(1 − v), p3 = (1 − v)2.
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Figure 12: Ternary plot of a CoDa with comonotone CoDapula and uniform quantile func-
tions, d = 3, with barycentric axes p1 (red), p2 (green), p3 (blue).

The distribution of p is singular, as each component pi is a deterministic function of v ∼ U[0,1]:
p lies on the curve shown in the ternary plot. This implies that each pair of components
(pi, pj), 1 ≤ i ̸= j ≤ 3 are totally dependent, i.e. lie on a curve. Figure 13 shows the resulting
complete dependence between each pairs of components: (p1, p3) are counter-monotone (mid-
dle), while (p2, p3) (right) is comonotone. (p1, p2) (left) switches its sense of variation, being
first comonotone, then countermonotone. Note that p2 also has a limited range of variation
p2 ∈ [0, 1/4].
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Figure 13: Complete dependence between pairs of components of a CoDa with comonotone
CoDapula and uniform quantile functions, d = 3: (p1, p2) (left), counter-monotone (p1, p3)
(middle), comonotone (p2, p3) (right).

Counter-monotone CoDapula

Counter-monotonicity is the antithesis of comonotonicity. Note that this notion is well-defined
only in two dimensions. We thus restrict our discussion to the case d = 3. The bivariate
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counter-monotone copula W (x1, x2) = max(x1 + x2 − 1, 0) is stochastically realized by the
vector v = (v, 1 − v), where v ∼ U[0,1]. This gives a corresponding Coda

p =

p1
p2
p3

 =

 Qz1(v)
Qz2(1 − v) (1 − Qz1(v))

(1 − Qz1(v)) (1 − Qz2(1 − v))

 . (21)

The following example illustrates the case when the quantile functions are the uniform ones.

Example 5 (Counter-monotone CoDapula). For Qz1(v) = Qz2(v) = v, (21) gives p1 = v,
p2 = (1 − v)2, p3 = v(1 − v). One thus gets the same parametrization at the CoDa level as in
the comonotone case of Example 4, but with the roles of p2 and p3 exchanged, see Figure 14.
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Figure 14: Ternary plot of a CoDa with countermonotone CoDapula and uniform quantile
functions, d = 3, with barycentric axes p1 (red), p2 (green), p3 (blue).

This now translates at the CoDa level into complete dependence between pairs of components,
as shown in Figure 15. Notice, however, that the dependence pattern is not the symmetric of
the comonotone case of Figure 13: (p1, p2) are now counter-monotone, whereas both (p1, p3
and (p2, p3) change their direction of variation. Hence, with a counter-monotone CoDa-
pula, only one pair is monotone dependent (viz. (p1, p2) counter-monotone), whereas with a
comonotone CoDapula, two pairs were monotone dependent (viz. (p1, p3) counter-monotone,
and (p2, p3) comonotone).
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Figure 15: Complete dependence between pairs of components of a CoDa with counter-
monotone CoDapula and uniform quantile functions, d = 3: counter-monotone (p1, p2) (left),
(p1, p3) (middle), (p2, p3) (right)

5. Application of unit cube geometry: Regression models for CoDa
As a second possible generalization, the rescaled stick-breaking approach (9) can be useful
for the intra regression analysis of a CoDa component w.r.t the others. The basic idea is to
construct regression models in the z coordinates to iteratively explain one zi component in
terms of the other zj . Indeed, the transformation (9) is reminiscent of Rosenblatt’s general-
ization of the quantile transform by successive conditioning and the regression representation
of a random vector, which we recall now.

5.1. Regression representation of a Euclidean random vector

Let X = (X1, . . . Xk) ∈ Rk be a vector with joint c.d.f. F . If one can transform X into a
sequence ϵ1, . . . , ϵk of independent, identically distributed r.v., with a prescribed distribution
λ (say, uniform on [0, 1]), then, one can argue that the distribution of X has been successfully
modeled: the transformation

(X1, . . . , Xk) ϕ→ (ϵ1, . . . , ϵk)

has stripped X of all its stochastic variability and dependence and turned it into white noise.
The function ϕ effectively models the distribution F of X.
Rosenblatt (1952)’s transform and its generalizations (see Rüschendorf (2009)) achieves such a
reduction: Denote by Fi|i−1,...,1 the conditional c.d.f. of Xi given (Xi−1, . . . , X1), i = 2, . . . , k,
with F1 the (marginal) cdf of X1. Rosenblatt (1952)’s transform is then defined by ϵ =
(ϵ1, . . . ϵk) with

ϵ1 := F1(X1)
ϵi := Fi|i−1,...,1(Xi|Xi−1, . . . , X1), i = 2, . . . , k.

Under an assumption of continuity5 of the successive conditional c.d.f. Fi|i−1,...,1, Rosenblatt’s
transform turn the vector X into a vector ϵ of i.i.d. U[0,1] components (see Rüschendorf
(2009)).
Conversely, starting from a vector ϵ ∼ λk and applying the successive (conditional) quantile
functions F −1

i|i−1,...,1, viz.

X1 := F −1
1 (ϵ1)

Xi := F −1
i|i−1,...,1(ϵi|Xi−1, . . . , X1), i = 2, . . . , k, (22)

5For discontinuous conditional cdf, one must use the conditional probability integral transform (19) instead,
see Rüschendorf (2009)
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one obtains a vector X with the desired joint c.d.f. F . Each equation (22) interprets
as a nonlinear regression equation of Xi, given its past covariates Xj , j < i, with er-
ror/noise/innovation ϵi. This gives a regression representation of X, according to Rüschendorf
(2009), where (22) is a (triangular) stochastic representation of the successive predictive dis-
tributions P Xi|Xi−1,...,X1 .
In (22), the distribution of (ϵ1, . . . , ϵd) is purely conventional, the only constraint is that it be
absolutely continuous (so that any distribution of X can be obtained from it by mapping and
not by Markov kernels, see Faugeras and Rüschendorf (2017)). In particular, one can choose
the more familiar Gaussian white noise framework by setting

ϵi = ϕ(ϵ′
i),

where ϵ′
1, . . . , ϵ′

k are i.i.d. standard Gaussian N (0, 1), and ϕ is the c.d.f. of the N (0, 1)
distribution.
The regression representation (22) is the general, exact, nonlinear form of a regression model.
In particular, if the conditional quantile functions F −1

i|i−1,...,1 are linear, one obtains the classical
linear model (albeit with uniform noise), viz.

Xi = ai,1X1 + . . . + ai,i−1Xi−1 + ϵi,

where ai,1, . . . , ai,i−1 are parameters.

5.2. Parametric internal regression models for CoDa

This suggests to make use of this regression representation to construct triangular regression
models on the z representation of CoDa, by applying the transformation (22) to the zi of (9)
instead of the Xi: each zi is explained in terms of the previous zj , j < i, and some extraneous
randomness ϵi ∼ λ, for i = 1, . . . , d − 1. Then, by back transformation (9), one obtains
a (possibly nonlinear) regression model for the original pi, which can be used for internal
prediction of a component in term of the others.
More precisely, let ϵ ∼ λd−1 be a vector of uniform noise on [0, 1]d−1. Then, a general
nonlinear triangular regression model for the z writes

z1 = ϕ1(ϵ1)
zi = ϕi(ϵi, zi−1, . . . , z1), i = 2, . . . , d − 1, (23)

where ϕi : [0, 1]i 7→ [0, 1] are s.t. ϵi → ϕi(ϵi, zi−1, . . . , z1) is non-decreasing, left-continuous,
with ϕi(0, zi−1, . . . , z1) = 0, ϕi(1, zi−1, . . . , z1) = 1. (i.e. the ϕi satisfy the properties of
univariate quantile functions).
For example, a Gausssian (partially )linear triangular model can be obtained by specifying
the error distribution as standard multivariate Gaussian ϵ ∼ N (0, Id−1), and the zi as

z1 = Φ(ϵ1)
zi = Φ(ai,1z1 + . . . + ai,i−1zi−1 + ϵi), i = 2, . . . , d − 1 (24)

where Φ, the cdf of the standard univariate Gaussian distribution, is applied to ensure that
zi ∈ [0, 1]. More generals models can be constructed via Generalized Linear Models, see e.g.
McCullagh and Nelder (1989), and more specifically, Bonat, Ribeiro Jr, and Zeviani (2012)
for data on the unit interval [0, 1].

5.3. Example: agriculture data.

We provide below a basic example of the construction of a parametric internal regression model
in the z space for CoDa, illustrated on a real dataset. The data is taken from the example
datasets accompanying Mathematica’s (Wolfram Research, Inc. (2024)) “TernaryListPlot”
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command. It gives the raw amount of fertilizers (Nitrogen-Potassium-Phosphate) in a time
series from 1960 to 2015. The scatter plots, both at the z level (left panel), and at the
compositional level in the ternary plot (right panel) in Figure 16 show a cyclic pattern in the
composition of fertilizers. The sinusoidal shape of the transformed data at the z level (left
panel) suggests the following model,

z2 = a0 + a1 cos(ωz1 + ϕ) + ϵ,

where a0, a1, ω, ϕ are parameters to be estimated and ϵ the random error. Nonlinear least
squares (command “NonLinearModelFit” in Wolfram Research, Inc. (2024)) gives as fitted
model,

z2 ≈ 0.5 + 0.047 cos(−21.86 z1 + 8.76),
with sums of squares of 13.43 for the model and 0.0075 for the error. In terms of the original
CoDa variables p, this yields a predictive model of the components in term of the first one
p1,

p1 = p1

p2 ≈ (1 − p1)(0.5 + 0.047 cos(−21.86 p1 + 8.76))
p3 ≈ 1 − p1 − p2 ≈ (1 − p1)(0.5 − 0.047 cos(−21.86 p1 + 8.76)).

The resulting fitted curve is shown in orange in Figure 16, with extrapolated values on the
full range z1 = p1 ∈ [0, 1].

Fitted Model
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Figure 16: Internal parametric regression model for agriculture data. Scatter plots (blue
points) and fitted sinusoidal model (orange line) in the z space (left) and for the original data
(right).

5.4. Extensions and alternatives

As shown in the previous example of Section 5.3, the rescaled stick-breaking transformation
(9) reduces internal regression analysis of CoDa to classical regression analysis of vector
data. Hence, all classical multivariate regression analysis techniques apply to CoDa, in their
transformed z representation of the free unit cube. For space constraints, we limited ourselves
in the example of Section 5.3 to a very basic illustration with a parametric regression model.
Let us thus briefly mention some extensions and alternatives:

• A nonparametric alternative to the above intra-parametric models is to directly start
from (22) and estimate the conditional distributions of zi given (zi−1, . . . , z1), or some
functional thereof, via some nonparametric estimate. For example, one can look for
the mean of these conditional distributions, and estimate the regression function of
E[zi|zi−1, . . . , z1] by a Nadara-Watson, spline, or local polynomial estimator.

• Many applications are interested in explaining/predicting a CoDa point p w.r.t. some
covariates X ∈ Rk, i.e. in studying the conditional distribution of p|X = x. This can
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be done via the rescaled z representation (9) by performing a regression of z w.r.t. the
covariates X. As said before, one must ensure that the constraint 0 ≤ z ≤ 1 is ful-
filled. This can be achieved by a link function which entails the correct normalisation
or by mapping z ∈ [0, 1]d−1 into ξ ∈ Rd−1, by using the device explained in Section 3.6.
In parametric regression models, one can incorporate these external covariates X by
making the parameters of p in its rescaled z representation (9), (i.e. the functions ϕi in
(23) or the coefficients aj,i in (24)) as functions of the covariates X. Once a regression
model/ or a nonparametric estimate for z given X has been computed, one back trans-
forms the predicted values ẑ into predicted values of p̂, via the inverse transformation
(10).

• Our focus in this paper is on internal dependence analysis of CoDa. However, one
can also easily envision external regression analysis such as CoDa to CoDa or CoDa
to vector, by conducting a similar analysis in the corresponding z space for the CoDa
input/output variables considered.

• In addition to explicit regression models, one can also assess quantitatively neutral-
ity of z1 by the strength of the regression dependence between z1 and the remaining
zj components of p, for j > 1. This quantification can be achieved through multi-
variate asymmetric correlation coefficients, like the recent Griessenberger, Junker, and
Trutschnig (2022)’s ζ1(X, Y ) or Azadkia and Chatterjee (2021)’s T (X, Y )6, the latter
being a multivariate extension of the bivariate measure ξ of Chatterjee (2020). These
coefficients quantifies the extent of regression dependence of a univariate random vari-
able Y on a k-dimensional random vector X = (X1, . . . , Xk): they are equal to 0 in
case of independence, and equal to 1 if Y is measurable function of X. Applied to
our context, one can thus quantify the amount of (non-)neutrality of p1 by computing
ζ1((z2, . . . , zd), z1) or T ((z2, . . . , zd), z1).

6. Conclusion and further remarks

6.1. Conclusion
We have thus brought to the fore these two related transformations for CoDa based on stick-
breaking processes. The first one represents a CoDa point as a set of ordered values on the
unit interval, whereas the second one, which originates from Halmos (1944) and Connor and
Mosimann (1969), removes the unit-sum constraint of the simplex representation and turns
a CoDa point into a free vector of the unit cube. It is noticeable that these stick-breaking
representations are not mentioned in the reference books Aitchison (1986), Greenacre (2018),
Pawlowsky-Glahn et al. (2015), Filzmoser et al. (2018), van den Boogaart and Tolosana-
Delgado (2013) on CoDa and thus do not seem to be well-known inside the CoDa community.
We have thought it was thus commendable to publicize them and consolidate the various
connections they have with several topics of probability and statistics into a cohesive account.
Both approaches are useful to construct distributions for CoDa from multivariate distributions
of Euclidean vectors. The second approach appears most promising as it allows for a reduction
of CoDa points to classical multivariate vectors and thus allows the use of well-established mul-
tivariate analysis techniques and models to be directly transferred to CoDa. Important statis-
tical models and tools like generalised linear models, graphical models, vines/factor copulas,
clustering, Principal Component Analysis, non-parametric and semi-parametric techniques,
etc. are now at the disposal of the Statistician and beg for their application to CoDa. In
particular, we are confident that the concept of a CoDapula, a copula for CoDa, is promising
as it allows to study the intra-dependence of CoDa with such copulas.

6Note that Azadkia and Chatterjee (2021) introduce a more general regression dependence coefficient which
allows for covariates and the assessment of conditional independence.
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Let us stress that these stick-breaking representations allow to deal effectively and simply with
CoDa with zeroes: in the ordered representation (3), zeroes translates into ties in s, while
in the rescaled z representation, zeroes of p translates into z being sent to the boundary
of [0, 1]d−1. Distributionally, this means that the (ui) in Definition 2 of the ordered repre-
sentation (3) have common discrete components in their distributions. For the rescaled z
representation (9), zeroes of p translates distributionally into z having a singular component
on some faces of [0, 1]d−1 in the Lebesgue decomposition of the probability measure of z. One
can therefore use mixed/general distributions to model such CoDa points with possibly zero
components.
We thus believe these stick-breaking representations provide an interesting complementary
approach to the classical log-ratio coordinatizations techniques of Aitchison and his followers.
For length reasons, we have barely scratched the surface of statistical applications based
on these transformations. Much more needs to be done to explore its potentialities and
eventual limitations. The multi-faceted aspect of CoDa, which can be envisioned from so
many viewpoints, via the log-ratios, the stick-breaking, the projective geometry (Faugeras
(2023)), or the manifold and information geometric (Erb and Ay (2021)) approaches, is what
makes CoDa such a fascinating topic.
Let us close the article with some further remarks.

6.2. Choice of the ordering of the components
A possible issue of the transformations (2) and (9) is the lack of symmetry w.r.t. the com-
ponents, as they depend on the ordering of the components 1, . . . , d of the composition. The
question thus arises which ordering is most adequate. Several possibilities can be envisioned.

• A first possibility is to let the Statistician decide for himself. This is similar to the
“working-in-coordinates” principle in classical log-ratio CoDa analysis: the statistical
model is extrinsic and built w.r.t. a given coordinate frame (here, the ordering chosen),
and is eventually mapped back to the original simplex. This was the approach chosen
in the example of Section 5.3: the sinusoidal regression model in the z space is mapped
to the CoDa simplex space and then gives a model which explains/predicts how the
remaining components p2, p3 are driven by p1.

• The order of the components can be dictated by the type of application in view. For
example, in a general regression model Y = r(X, ϵ), there is a natural asymmetry
in the vector (X, Y ) between the dependent/predicted variable Y and the indepen-
dent/predictor variables X: one wants to explain/predict Y from X (with noise ϵ).
There is also an asymmetry in the rescaled stick-breaking transformation (10), between
the first component p1 and the remaining ones p2, . . . , pd: the first component is iden-
tical in the simplex space p representation as in the unit cube z representation, i.e.
p1 = z1, whereas the remaining components p2, . . . , pd depend on several of the zi. (pi

is a function of zj , for 1 ≤ j ≤ i). Thus, z1 is directly interpretable as one original
component and a statistical analysis of z1 translates into a statistical analysis of the
first component p1. So, if one is interested in evaluating how a specific component is
influenced by the remaining parts, it is sensible to take this component as first one:
a regression model z1 = r(z2, . . . , zd, ϵ) at the z level, following the methodology ex-
plained in Section 5, with z1 = p1 as predicted variable, directly gives a regression
model of the first component p1 in terms of the remaining (rescaled) components, viz.
p1 = r(z2, . . . , zd, ϵ).

• One can also envision a data-dependent choice of the ordering of the components: the
basic idea of the z transformation is to transform the study of the non-neutrality of the
constrained components pi of the composition into a the study of the dependence of the
free zi. Thus, it would make sense to order the components by decreasing order of non-
neutrality/dependence with the remaining composition. If, w.l.o.g, the first component
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p1 is most dependent with the remaining composition ( p2
1−p1

, . . . , pd
1−p1

), it means that
p1 is the main factor explaining the remaining composition. Having isolated such a
component, one can then look within the closed remaining composition ( p2

1−p1
, . . . , pd

1−p1
)

of size d−1, which component is most dependent with the closed subcompositions of size
d−2. The process is then iterated, yielding an ordering of the components. In practice,
such evaluation of the dependence between a component and a subcomposition can be
performed using the estimators of the asymmetric regression dependence coefficients
ζ1(X, Y ) of Griessenberger et al. (2022) or T (X, Y ) of Azadkia and Chatterjee (2021),
mentioned in Section 5.4.
This gives the following algorithm: For a composition p of size d,

1. Select j s.t. T (Wj , pj) (or ζ1(Wj , pj)) is maximum, where Wj :=
(
. . . , pk

1−pj
, . . .

)
k ̸=j

is the closed subcomposition of size d − 1 with component j omitted.
2. Define a new composition p′ = (p′

k) of size d′ = d − 1, with, for 1 ≤ k ≤ d, k ̸= j,
p′

k = pk/(1 − pj), so that p′ has component j removed.
3. If d′ > 1, return to step 1, with p′ in lieu of p, and d′ instead of d.

• One can also mix the above approaches, e.g. select as first component the one the
Statistician is interested in explaining/predicting, and select the remaining ones in a
data-dependent manner.

6.3. Connection with mixability: existence of CoDa distributions with given
marginals

The stick-breaking approaches were constructive and gave explicit representations of distri-
butions of CoDa points. In case of the ordered approach, the stick-ordered distributions of
Definition 2, were parametrized by d − 1 univariate marginals. Similarly, in the rescaled ap-
proach, the distributions are parametrized by either a d − 1 dimensional copula and d − 1
marginals, or a set of d − 1 conditional distributions. These approaches were helpful in
constructing distributions for d−dimensional CoDa points.
A converse issue is to enquire for the existence of a d-dimensional CoDa distribution with a
given set of d marginal distributions. This question is related to the notion of joint mixability,
which is a notion mainly investigated in the risk theory literature (See the survey by Wang
(2015)). This connection between mixability and distributions for CoDa does not seem to
have been made beforehand by the CoDa community.
Recall that the definition of joint mixability (Wang and Wang (2016)) is as follows:

Definition 6. An d-tuple of probability distributions on R, (F1, . . . , Fd) is jointly mixable if
there exist d random variables X1 ∼ F1, . . . , Xd ∼ Fd such that X1 + . . . + Xd =: K is almost
surely a constant.

Hence, the question of existence of a d-dimensional CoDa distribution with given marginals
is a special case of mixability with K = 1. Gaffke and Rüschendorf (1981) Theorem 5 give
a necessary and sufficient condition. Necessary conditions are given in Theorem 2.1 in Wang
and Wang (2016), and sufficient conditions are given in Theorems 3.1, 3.2, and 3.4 for uniform,
monotone, and symmetric-unimodal densities, respectively.
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