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Abstract High resolution climate models are necessary to capture local pre-7

cipitation but are too expensive to explore the uncertainties associated with8

future projections. To solve this resolution-uncertainty dilemma, Doury et al9

(2022) proposed a neural network based RCM-emulator for the near-surface10

temperature, at a daily and 12km-resolution. It uses existing RCM simula-11

tions to learn the relationship between low-resolution predictors and high12

resolution surface variables. When trained the emulator can be applied to13

any GCM simulation to produce ensembles of high resolution emulated sim-14

ulations. This study assess the suitability of applying the RCM-emulator for15

precipitation thanks to a novel asymmetric loss function targeting to repro-16

duce the entire precipitation distribution over any grid point.17

In perfect model evaluation, the resulting emulator shows striking abil-18

ity to reproduce the RCM original series with an excellent spatio-temporal19

correlation. In particular, a very good behaviour is obtained for the two tails20

of the distribution, measured by the number of dry days and the 99th quan-21

tile. Moreover, it creates consistent precipitation objects with a slight lack of22

precision. The emulator quality holds for all simulations of the same RCM,23

with any driving GCM, ensuring transferability of the tool to GCMs never24

downscaled by the RCM.25

A first showcase of downscaling GCM simulations showed that the RCM-26

emulator brings significant added-value with respect to the GCM as it pro-27

duces adequate high resolution spatial structure and extremes’ intensity. Nev-28

ertheless, further work is needed to understand the differences that occur with29

the RCM and establish a relevant evaluation framework for GCM applica-30

tions.31
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1 Introduction59

Precipitation is the primary source of accessible freshwater on Earth. It60

plays a pivotal role in maintaining Earth’s system equilibrium, supporting61

ecosystems, and crucially, sustaining human survival and activities (Masson-62

Delmotte et al, 2021). However, it also harbors the potential for catastrophic63

events. Intense rainfall can lead to devastating floods and adversely impact64

agricultural yields. Severe droughts inflict significant damage on ecosystems,65

agriculture, and access to potable water. Given the contemporary backdrop66

of global climate change, it is crucial to study potential changes in precipi-67

tation patterns and extremes.68

69

The study of precipitation is inherently complex. It is a non-continuous70

variable, neither in temporal nor spatial terms. Precipitation occurrences are71

characterized by their frequency and intensity. Investigating precipitation72

series across diverse temporal and spatial scales is imperative for a compre-73

hensive grasp of their inherent nature. While rainfall or snowfall may be74

influenced by extensive atmospheric circulations, they can also manifest as75

highly localized events due to small-scale physical processes (e.g., convective76

instability, cold pool.. Ducrocq et al (2008)), influenced by local topography77

or surface heterogeneity, among other factors. Fine spatial and temporal res-78

olution is, therefore, imperative when modeling precipitation and studying79

its local changes in the context of global climate change.80

81

Undeniably, Regional Climate Models (RCMs) stand out as one of the82

most widely employed modeling tools today, to fulfill the imperative for pre-83

cise spatial and temporal resolution in projecting the future dynamics of84

precipitation. RCMs are a specific kind of climate models used to downscale85

at high-resolution and over a limited domain the low resolution simulations86

produced with Global Climate Models. Their high computational costs render87

unfeasible the production of large ensembles of high resolution simulations88

necessary to address the different sources of uncertainty associated with the89

local impacts of climate change (Hawkins and Sutton, 2009; Evin et al, 2019).90

To try to address this high-resolution versus large-ensemble dilemma, recent91

papers (Walton et al, 2015; Berg et al, 2015; Maraun and Widmann, 2018;92

Doury et al, 2022) introduced the concept of emulator for Regional Climate93

Model (RCM) as a solution to create large ensembles of high resolution cli-94

mate projections blending the RCM approach with modern machine-learning95

techniques.96

97

In this study, we propose testing whether the RCM-emulator introduced98

in Doury et al (2022) for near-surface temperature, is suitable for emulating99

daily precipitation for a RCM at its full resolution (12km) over Europe. The100

concept of the RCM-emulator involves using machine learning tools to learn101
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the relationship between low-resolution altitude variables describing the at-102

mospheric circulation on a specific day and a high-resolution local surface103

variable, such as daily precipitation. This downscaling function is learnt in-104

side existing RCM simulations. The aim is to tackle the cost limitation of105

RCM by mimicking its downscaling function for a specific variable at a low106

computational cost and then by applying it to any global and low resolution107

simulation. RCM-emulators are categorized as hybrid downscaling methods108

because they incorporate both statistical and dynamical downscaling. Util-109

ising historical and future RCM simulations in the training set enables the110

RCM-emulator to learn how this relationship may evolve under changing cli-111

mate conditions. Moreover, it can also be applied over regions with no long112

series of good quality precipitation records.113

114

Numerous studies have proposed statistical downscaling methods to esti-115

mate the relationship between large-scale and local-scale variables in obser-116

vational records. Maraun et al (2010) or Gutiérrez et al (2019) provide an117

overview of available approaches for precipitations. Some very recent stud-118

ies (Baño-Medina et al, 2020, 2021; Vandal et al, 2019; Wang et al, 2021)119

have successfully implemented convolutional neural networks for this pur-120

pose. The RCM-emulator employed in Doury et al (2022) and here is based on121

a fully convolutional neural network architecture called UNet (Ronneberger122

et al, 2015). It has exhibited an excellent ability to emulate the temperature,123

notably in reproducing the complex spatial structure and daily variability124

brought by the RCM. However, since precipitation is more challenging to125

model than temperature, this study proposes to explore the use of the loss126

function to help the neural network focusing on a specific task. Here the127

challenge will be the reproduce the entire distribution of precipitations. To128

address this, we devised a novel asymmetric loss function tailored for daily129

precipitation, which we will compare to two classical choices for regression130

problems.131

132

After assessing the suitability of the RCM-Emulator for precipitation,133

we propose in this study to profit from the EURO-CORDEX simulations to134

evaluate the transferability of the tool. Indeed the emulator is trained us-135

ing a given set of availabe RCM simulations (driven by a given GCM and136

RCP scenario) and it is crucial to study its behavior when downscaling other137

socio-economic scenarios or GCMs. Then, in a first step, we evaluate the138

emulator in a perfect model framework regarding all available simulations139

with the emulated RCM. Then in a final step, we propose a first showcase of140

application by downscaling GCM simulations.141

142

This paper is organised into four main sections. In Section 2, we recall the143

concept of the RCM-emulator introduced in Doury et al (2022), define the144

technical aspects related to the neural network and the loss functions, and145



Title Suppressed Due to Excessive Length 7

present the framework of the study, including the data, the target domain,146

and the associated predictors. Section 3 presents the detailed evaluation and147

comparison of the emulators within a perfect model framework, while Section148

4 shows the results of applying the asymmetric emulator to GCM simulations.149

The concluding section summarizes the paper and initiates the discussion.150

2 Methodology151

In this section, we define the framework used to build and evaluate the152

RCM emulator for precipitation. Firstly, we recall the emulator concept and153

present the simulations and the chosen target domain and predictors for this154

study. We present the neural network architecture and the three loss functions155

used to train the three emulators for the inter-comparison. The perfect model156

framework approach used to train and evaluate the emulator is also recalled.157

Finally, we detail the metrics used to evaluate the emulator under different158

aspects.159

2.1 RCM-Emulator concept and calibration process160

Regional climate models (RCMs) are driven by global climate models161

(GCMs) as they continuously receive incoming data at their domain’s bor-162

ders from a specific GCM simulation at regular intervals. The resulting RCM163

simulation essentially represents a downscaling of the data from the driving164

GCM. Nevertheless, within the boundaries of its domain, the RCM develops165

its own narrative and may consequently deviate from the driving GCM. This166

can lead to significant differences, both on a daily scale and on a climatologi-167

cal scale, as discussed by Laprise et al (2008). This large scale transformation168

primarily arises from the chaotic nature of weather (Lucas-Picher et al, 2008),169

but it is also influenced by differences in how the models represent physical170

processes or their inherent complexity, as explored by Boé et al (2020) and171

Taranu et al (2022). Thanks to a lower computational cost, GCMs include172

generally more components than RCM such as ocean coupling or evolving173

aerosols. Consequently, Doury et al (2022) decided to develop an RCM emu-174

lator specifically to learn the downscaling process inside the RCM simulation175

while excluding the impact of large-scale transformations.176

177

To isolate the downscaling function, the emulator is trained within a “per-178

fect model” framework, where both the inputs and target data are sourced179

from the same RCM simulation. The methodology is detailed in Figure 1.180

The chosen predictors (described in Section 2.3) are upscaled to match the181

resolution of the GCM, typically around 150km, through a conservative in-182

terpolation method, which involves a straightforward average of all points183

encompassed within the low-resolution grid. A spatial moving average filter184

is then applied to eliminate any high-resolution features that might persist185
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RCM SIMULATION  (0.11°)
ALADIN 63, forced by CNRM-CM5, 1950-2100, RCP85

TRAINING

Conservative interp. 
to 1.4° grid

Selection of 2D inputs 
( X ) 

Moving average filter

Extraction 
of 1D inputs (Z)

( X, Z ) Emulator Y

RCM SIMULATION  (0.11°)
ALADIN 63, forced by CNRM-CM5, 2006-2100, RCP45

CNRM Hist, RCP 26 and RCP85 
+ MPI, NCC & HGM Hist and RCP85, 

EVALUATION  
Perfect model world

( X, Z ) Emulator

Y

Y

Comparison

GCM SIMULATION  (1.4°)
CNRM-CM5, MPI, NCC & HGM 

2006-2100, RCP85

( X, Z ) Emulator

Y

Y

Comparison

RCM 
SIMULATION  

(0.11°)
ALADIN63

Moving average filter

Extraction 
of 1D inputs (Z)

APPLICATION
GCM world

Conservative interp. 
to 1.4° grid

Selection of 2D inputs 
( X ) 

Moving average filter

Extraction 
of 1D inputs (Z)

Interp. to CNRM-CM5
 grid (1.4°) 

Selection of 2D inputs 
( X ) 

Daily cumulative
precipitation

Fig. 1. Scheme of the training (left), perfect model evaluation (middle) and
GCM world application (right) protocols. Redrawn from (Doury et al, 2022).

through the interpolation. Subsequently, the emulator is trained to accu-186

rately replicate the relationship between these “upscaled” inputs and the187

target variable, such as precipitation, at the resolution of the RCM.188

189

This perfect model framework also facilitates a rigorous evaluation of the190

emulator, with the RCM series serving as an ideal reference that it should191

be capable of faithfully reproducing. In practical application, the emulator192

is directly applied to a GCM simulation, and the smoothing step is retained193

to consider the GCM at its effective resolution, as discussed by Klaver et al194

(2020).195

2.2 Data: the RCM matrix196

The emulator proposed in this study relies on the regional climate model197

ALADIN63 (Nabat et al, 2020). A total of ten simulations have been pub-198

lished with this RCM over the whole Europe in the EURO-CORDEX frame-199

work (Coppola et al, 2021). They downscale four different GCMs and three200

different scenarios of greenhouse gas emissions (cf Table 1). The CNRM-CM5201

global climate model is developed in the same institute as ALADIN63, so they202

belong to the same family of models. CNRM-CM5 drove 4 ALADIN63 simu-203

lations, the historical (1951-2005) and three RCP scenarios (2.6, 4.5 and 8.5,204

on the period 2006-2100). MPI-ESM-LR, NorESM1-M and HadGEM2-ES205

are the three other GCMs used to drive ALADIN63 following the historical206

and RCP8.5 scenarios of greenhouses gases emissions. From now, CNRM-207

CM5 will be referred to as CNRM, MPI-ESM-LR as MPI, NorESM1-M as208

NCC and HadGEM2-ES as HGM.209
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Table 1: RCM x GCM x Scenario matrix

Driving

Scenarios

Driving GCMs

CNRM-CM5

(CNRM)

MPI-ESM-LR

(MPI)

NorESM1-M

(NCC)

HadGEM-ES2

(HGM)

Historical x x x x

RCP26 x

RCP45 x

RCP85 x x x x

2.3 Predictands, predictors and neural network architecture.210

This study focuses on the challenging task of emulating of daily pre-211

cipitation from ALADIN63 at 0.11◦ horizontal resolution (about 12km). We212

selected a sub-domain of the EURO-CORDEX domain centred over the Alps,213

consisting of 128×128 grid points. The target domain is visible on the left side214

of Figure 2. It includes the entire Alps and goes from Sardinia until the north215

of France and from the Pyrenees until Croatia. This domain is of particu-216

lar interest due to its diverse areas with distinct precipitation regimes. For217

example, the Cevennes (South-East of France) region is known for its very218

extreme events in autumn, similarly to other coastal areas of the Mediter-219

ranean region. The reliefs receive more precipitation than plane regions. They220

are known to be spots of RCM added value, especially regarding extremes221

(Torma et al, 2015). The flat regions of the north of the domain receive a lot222

of precipitation throughout the year but have less strong daily extremes than223

the southern regions. The Alps have also a specific precipitation regime with224

intense summer storms.The emulator is trained to replicate both land and225

ocean precipitations, although at times, we will concentrate our evaluation226

solely on land. Additionally, this domain is four time larger than the one in227

Doury et al (2022).228

229

The emulator used in this paper for precipitation downscaling follows the

principles developed in Doury et al (2022). It can be viewed as a conventional

machine learning problem

Yt = F (Xt, Zt)

where (Xt, Zt) are the low resolution predictors, Yt the high resolution tar-230

get variable (in this case daily amount of precipitation) at day t and F the231

downscaling function we aim to estimate using a neural network. The list of232

predictors and the standardization procedure remain consistent, encompass-233

ing both sets of 1D and 2D inputs, as detailed in Table 2. As we considered234

the daily precipitation we also provide daily inputs. For each day, we perform235

spatial normalization on each 2D input. The daily spatial mean and standard236

deviation are subsequently provided to the emulator through the set of 1D237

inputs, which also includes external forcings (yearly greenhouse gas concen-238
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trations, solar and ozone forcings) and the seasonal indicator (sinus-cosinus239

vector). More details can be found in Doury et al (2022). The input domain240

is adjusted to align with the new target domain. It is a 22*16 grid points on241

the CNRM-CM5 grid (1.4◦) centred over the target domain, (the whole map242

on Figure 2, left).243

244

Fig. 2. Illustration of the input (left) and target (right) domains through
the climatology of the daily rainfall over the 1980-2000 period. The black
line on the left panel shows the target domain while the input domain is the
entire map. On the target domain: the red points are the three illustrating
points on Figure 6 and 10. From North to South, there is Paris, a high
point (2247 meters) in the Swiss Alps and Roma. The three blue boxes are
the three regions used for the SAL evaluation in section 3.2.1: The north
region, centred over Belgium, the Cevennes region (south-east France) and
the Dinaric Alps.

The neural network architecture is adapted from the UNet architecture245

(Ronneberger et al, 2015). The small differences with the one presented in246

Doury et al (2022) are due to the size of the input and target domains. As247

shown in Figure 3, the first layer of the network reshapes the 2D inputs from248

[16, 22, 32] to [16, 16, 64] in order to obtain squared images before the encod-249

ing path. On the other side, the expanding path is extended to reach the250

target domain size. This leads to a network of about 28 millions of param-251

eters. The emulator presented in this paper is trained over the 150 years of252

the ALADIN63 simulations driven by the CNRM-CM5 historical and RCP85253

runs. It takes about two hours and an half and 60 epochs to train the network254

on a GPU (Tesla V100 PCIe 16GB) using the keras environment (Chollet255

and others, 2015).256

257
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2D Variables

Altitude
(850, 700, 500 hPa)

Geopotential height, Humidity,
Temperature, Northern &
Eastern wind components

Daily

550hPa
Total Aerosols

optical depth (ood550)
Monthly mean

Near-Surface
Sea level pressure,

Northern & Eastern wind components
Daily

1D Variables
Mean & Standard deviation

for each 2D variables
Daily

Total anthropogenic
greenhouses gases

Yearly

Solar and Ozone
forcings

Yearly

Cosinus and Sinus
seasonal indicators

Daily

Table 2: List of predictors, identical to Doury et al (2022)

...

2D Inputs

[t,16,22,19]

1
6

²

64

8²

128

8²

64

2²

256

4² 4²

256128

2²

512

1²

512 1²

1024

1D Inputs

[t,1,1,43]

512

2²

1024

2²

512

4²

512

4²

256

8²

256

8²

128

1
6

²

128

1
6

²

64

3
2

²

64

3
2

²

64

6
4

²

64

6
4

²

64
64

1
2

8
²

64

1
2

8
²

 1

1
2

8
²

UNET (Ronnenberg et al. 2015)  

Conv 2*2,
Relu 

MaxPool 2*2
Conv Transp
2D
Conv 1*1

Concat

x2

Fully Dense NN
4 Layers

4

1
6

²

32

Fig. 3. Illustration of the neural network architecture, adapted from Doury
et al (2022).

2.4 Loss function for the neural network training258

Over this study, we propose a deeper look on the impact of the loss259

function on the emulator’s performance. The loss function is an essential260

part of the neural network training. In the training phase, the network sees261

examples of inputs and target pairs. For each day of the training set, it makes262

a prediction and compares it with the truth. The loss function evaluates the263

network prediction against the expected outcome. The network parameters264
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are then updated according to the loss function results. This operation is265

repeated until the cost (i.e. the loss mean on the training set) stabilises. The266

best combination of parameters has the lowest cost over a validation set,267

different from the training set. This is then a minimisation problem to find268

the best estimate F̂ such that :269

F̂ = argmin
θ∈Θ

L(V , θ) (1)

270

Where Θ is the ensemble of possible parameters, V the validation set and L271

the loss function.272

273

0 50 100 150 200 250
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

D
e
n
si

ty

Cevennes daily rainfall distribution 

mm/day

Fig. 4. Illustration of daily precipitation distribution (in mm/day), in the
Cevennes box (cf Fig 2) all points and days are pooled.

Precipitations are particularly complicated to emulate with neural net-274

works because of their distribution. Indeed, as illustrated in Figure 4, the275

distribution of precipitation looks like a highly left-skewed gamma distribu-276

tion. There are many days with no precipitation and few ones with very high277

precipitation, which induces heavy tail distributions. These different events278

contribute non equally to the mean, with a few days having more impact279

than the other ones. It is of fundamental interest that the emulator repro-280

duces well the entire distribution. The good reproduction of the frequency281

and intensity of rare extreme events constitutes a substantial added value of282

RCM, so the emulator should reproduce them accurately. The loss function283

is therefore a possible way to rebalance the data and to force the emulator to284

look more specifically into some specific part of the distribution (Ayzel et al,285

2020).286

287

We compare here three emulators, constructed with different loss func-288

tions:289
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– Emul-MSE uses the classical mean squared error for the loss function,

as stated in Doury et al (2022). It corresponds to the L2 distance.

L(y, ŷ) =
1

N × T

T∑
t=0

∑
i∈D

(yi,t − ŷi,t)
2 (2)

With D the ensemble of grid points, N the number of grid points and T290

the number of days.291

– Emul-MAE uses the mean absolute error. It corresponds to the L1 dis-

tance.

L(y, ŷ) =
1

N × T

T∑
t=0

∑
i∈D

|yi,t − ŷi,t| (3)

292

– Emul-ASYM uses a specific loss function designed for the precipitation

problem. It is based on the MAE loss function plus an asymmetric term

which penalizes the emulator when it underestimates the true value while

it was a raining day. The stronger the rain the stronger the penalty.

L(y, ŷ) =
1

N × T

T∑
t=0

∑
i∈D

|yi,t − ŷi,t|+ γ2
i,t ×max(0, yi,t − ŷi,t) (4)

With γi,t = Gi(yi,t) and Gi the cumulative distribution function of a ran-

dom variable Yi following a gamma distribution

Yi ∼ Γi : Γ (αi, βi)

where the αi and βi parameters are fitted on the historical precipitation293

series at each grid point i.294

The MAE and MSE losses are the most commonly used loss functions for295

regression problems. The MAE loss sums the absolute distance between an296

observation and its prediction. It gives the same weight to each observation.297

Knowing that daily rainfalls are strongly left-skewed, with a vast number of298

observations with a small amount of precipitation, the EMUL-MAE should299

be able to fit these days well. However, the rare cases with large precipita-300

tions could be less well reproduced.301

302

The MSE loss function gives more weight to the significant errors than303

the small ones. The MSE generally shows the best results in regression prob-304

lems and is equivalent to the maximum likelihood estimation in a Gaussian305

setting. It leads theoretically to the best estimate for normally distributed306

data knowing the inputs. In the case of precipitations, it is not likely to be307

the case because of their highly intermittent nature. So the MSE loss func-308

tion might not be well suited. Note that Emul-MSE is the same emulator as309
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Difference 

0
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20

30
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Losses illustration

MSE

MAE

ASYM-Rome

ASYM-Alp

Fig. 5. Illustration of the three loss functions according to the error (y− ŷ).
For the ASYM loss, as it depends on the true prediction and the location, we
illustrate it with y = 20mm/day and 2 locations: Roma and the Alps point
already mentioned (Fig 2).

the one introduced in Doury et al (2022).310

311

The choice of the asymmetric loss function comes from the results of312

both EMUL-MAE and EMUL-MSE presented in section 3. The idea is to313

add a penalty when the emulator underestimates strong precipitations. This314

is done by the asymmetric term: max(0, yi,t − ŷi,t). Moreover it needs to de-315

pend on the rain intensity. The more extreme the precipitation, the rarest316

it is and so the higher the penalty should be. The γi,t parameter determines317

how extreme is a given observation and defines the weight accordingly. At318

each grid point, we estimated the parameters of a gamma distribution on the319

rainy days (over 1mm) of the training set (using the scipy python package,320

Virtanen et al (2020)). The Gamma distribution has been widely used to321

described precipitation data (Katz, 1977; Vrac and Naveau, 2007) but other322

distribution could be considered. In order to make this parameter estimation323

more robust, we fit them yearly and then average these parameters over the324

years. It gives a map of the shape and scale parameters. The γi,t parameter325

is then the evaluation of yi,t (the target value at point i and time t) by the326

Cumulative Distribution Function (CDF) associated to the gamma distribu-327

tion Γi fitted for this point. It is an objective way to indicate the relative328

intensity of the precipitation for a given location.329

330
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2.5 Evaluation Metrics331

In order to evaluate and compare the performances of the emulators we332

will evaluate their predictions with respect to the daily precipitation series333

from the corresponding RCM simulation (cf Fig.1). The evaluation relies on334

various metrics to compare the targeted (Y ) and the predicted (Ŷ ) series335

to have the most complete evaluation possible and understand the strengths336

and weaknesses of each emulators. The different metrics are detailed below.337

2.5.1 Time series comparison338

First of all we will evaluate in each grid point if the emulated time series339

matches the original RCM series through two metrics:340

– Temporal Anomalies Correlation. This is the Pearson correlation co-341

efficient after removing the seasonal cycle:342

ACC(Y, Ŷ ) = ρ(Ya, Ŷa) , (5)

with ρ the Pearson correlation coefficient and Ya and Ŷa are the anomaly343

series after removing a seasonal cycle computed on the whole series.344

– Ratio of Variance. It indicates the performance of the emulator in repro-345

ducing the local daily variability. We provide this score as a percentage:346

RoV (Y, Ŷ ) =
V ar(Ŷ )

V ar(Y )
∗ 100 (6)

Both metrics are computed at each grid point. Each map is summarised347

with its spatial mean and 5th and 95th super-quantiles. The super-quantile348

α is defined as the mean of all the values larger (resp. smaller) than the349

quantile of order α, when α is larger (resp. smaller) than 0.5.350

2.5.2 Climatological scale metrics351

It is necessary to evaluate the emulators at the climatological scale. We352

use three statistics over at least 20 years: the daily precipitation mean, the353

99th quantile and the percentage of dry days (precipitations lower than 1354

mm/day). These three metrics, often used in the climate community, are355

snapshots of the variable distribution from the mean and extreme sides. The356

biases maps are presented in percentage. When the biases are too strong, no-357

tably because of comparing very small values, we use the simple bias (Ŷ −Y ),358

expressed in mm/days. Again, the statistics are computed point-wise, and359

each map is summarised by its spatial mean and super-quantiles.360

361

Relative bias =
(Ŷ − Y )

Y
× 100 (7)
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These three statistics will be looked at in present climate but also in362

climate change context. Each statistic will be computed in a future period363

and the climate change statistic is the relative difference with the past pe-364

riod. Then the simple bias is computed between RCM and emulator climate365

change statistics.366

367

2.5.3 PDF normalisation368

Since the pdf for the rainfall are very heavy-tailed, it is difficult to compare369

them. We propose here to have a deeper look into the distributions thanks to370

the ASoP method introduced in Klingaman et al (2017) and used in multiple371

studies as Berthou et al (2020) or Vergara-Temprado et al (2020). It consists372

in computing the precipitation frequency following some well-chosen bins bn373

defined in Eq 8. The bins are such that they contain a similar number of374

events for bins over 1mm and as long as the number of events is sufficient.375

bn = e

(
log(0.005) +

[
n
(log(120)− log(0.005))2

59

] 1
2

)
with n ∈ J0, 100K (8)

Then we can look at each bin’s contribution Cn to the mean by multiply-376

ing each frequency by the corresponding bin’s mean as described in Eq. 9.377

Both frequency and contribution are interesting in comparing the emulated378

series with the true RCM.379

380

Cn = fnmn

where fn and mn are the frequency and the mean of bin bn
(9)

We use the skill score proposed in Berthou et al (2020) to evaluate the381

difference between the emulators and the RCM truth contributions curves.382

The fractional contributions are the actual contributions divided by the total383

mean precipitation of the series. They give information on the shape of the384

distribution independently from the mean. The Fractional Contribution Skill385

Score (FCSS) sums the absolute difference in each bin between the fractional386

contributions of an emulator and the targeted true series. The area under the387

FC curve is equal to 1, so the FCSS is equal to 0 when the two distributions388

are identical and to 2 when there is no overlap between them. It measures389

the differences between the two distribution shapes independently from the390

series mean. This score is illustrated on Figure 10 and further commented in391

the results section 3.1.3.392
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FCSS(Emul,RCM) =
∑

n∈J0,100K

|FCEmul
n − FCRCM

n |

where FCn =
Cn∑
nCn

=
Cn

mean

(10)

2.5.4 SAL score393

In order to further evaluate the performances of the emulator, we use394

an object-oriented score introduced in Wernli et al (2008). The SAL score395

aims to evaluate the spatial structure of precipitation objects from a pre-396

dicted map versus a reference. It compares two maps of precipitation at a397

given time step. It accounts for the objects’ structure (S-component), loca-398

tion (L-component) and the total amplitude of precipitation (A-component).399

In perfect model evaluation, the emulator should be able to reproduce the400

precipitation events accurately. This score indicates if the emulator recreates401

objects with the same characteristics than the RCM. Note that the days are402

dealt independently meaning that the life time of the objects is not consid-403

ered.404

405

The first step is to identify the precipitation objects. To do so, we used406

the pysteps (Pulkkinen et al, 2019) python library, which integrates a SAL407

implementation. On each daily map, the objects are define as the groups of408

at least 5 consecutive points with precipitation higher than a threshold equal409

to R∗ = 1
15
R(95), R(95) being the 95th quantile on the map. Multiple objects410

can be detected every day. Then, the three components are computed aim-411

ing to differentiate objectively different precipitation objects. The A- and S-412

components take values between -2 and 2 while the L-component takes values413

between 0 and 2. If all objects are similar on the maps the three components414

will be close to 0. A more detailed presentation of the score behavior can be415

find in Wernli et al (2008, 2009).416

417

The results are then presented in a diagram where each day is represented418

by a point with the S and A components on the x and y axis respectively, and419

the L component given by the color of the point. SAL diagram are visible in420

Figure 12 and commented in Section 3.2.1. Following the recommendation421

of Wernli et al (2009), we apply this score on sub-domains of a maximum of422

500km by side represented with blue squares on Figure 2.423

3 Perfect model Evaluation424

This section is divided in two parts. In a first evaluation step we evaluate425

and compare the three emulators in perfect model framework. We use the426

CNRM-ALADIN RCP45 simulation, from 2006 to 2100, which has not been427

seen during the training of the neural network (see Figure 1). After a first428
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impression on the emulators’ abilities through some examples, we extend the429

analysis with climatological and daily scores. This section also aims to under-430

stand the impact of the loss function on the trained emulator. A second step431

focuses the evaluation on the Emul-ASYM and comment the SAL results432

helping to objectively determine if the emulator is able to create precipi-433

tation objects. Finally the analysis is extended to all available ALADIN63434

simulations (cf. Table 1) and study the emulator ability to reproduce their435

climate change projections.436

3.1 Comparison of the three emulators437

3.1.1 First look into the emulators’ prediction438

Before evaluating the emulators’ performances with metrics, it seemed439

worthwhile to look into the raw series they produce. Figure 6 shows the440

times series at four grid points for the year 2022 in the evaluation simula-441

tion for the RCM truth and the three emulators. The three grid points show442

very different series. The Alps point series shows the strongest variability443

and intensities, with many days over 50 mm and almost no dry spell. The444

Paris series has minimal variability with numerous small precipitation days445

and low extremes compared with the other points. The Roma series shows446

dry spells during spring and summer 2022 in this simulation and has a very447

strong rainfall event in fall.448

449

The emulators series are very encouraging. They reproduce the original450

series accurately, respecting each point’s characteristics. They look like pre-451

cipitation series as they appear to be able to produce periods with no pre-452

cipitation and days with heavy rainfall. All emulators capture the extreme453

autumn rainfall in Roma and the dry spell between May and June. The very454

high variability over the Alpine point also appears to be well reproduced by455

the three emulators. On all points, the three emulators seem to miss some456

extremes simulated by the RCM, as it occurs several times that the red line457

comes higher than the others. However, it does not seem that Emul-MSE or458

Emul-MAE ever make stronger extremes than the RCM. At this point, it is459

impossible to decide if an emulator performs better than the others.460

461

Figure 7 shows the precipitation field over the target for three days ran-462

domly picked along the simulation. It shows the RCM truth, the three em-463

ulators and the UPscaled precipitation field (UPRCM). The UPRCM helps464

to have an insight into the input resolution and shows how the RCM and the465

emulators refine it, even if precipitation is not part of the predictors. Several466

exciting points appear in this figure. First of all, the emulators’ prediction467

on each panel is very coherent with the RCM. The precipitations are always468

well located with coherent intensity. It seems, however, that the emulators469
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Fig. 6. Daily precipitation time series for four grid points. The RCM truth
(in red) and the three emulators are plotted on each panel.

are producing too smooth objects. On the RCM maps, there are some very470

sharp and precise structures that the emulators fail to reproduce with the471

same precision. For example, on the lower panel, there is a hole with no472

rain over the southwest of France, which is missed by all emulators, even if473

Emul-MAE and Emul-ASYM make less intense precipitation over this area.474

The middle panel RCM map also shows very sharp structures that appear475

smoother in the emulators’ maps. Nevertheless, the extreme points are well476

located for the three days.477

478

In terms of intensities, the three emulators have mostly the correct spatial479

mean. Emul-ASYM reproduces better the spatial extremes as it has closer480

95th superquantiles than Emul-MSE and Emul-MAE, which are both under-481

estimating the spatial extremes on these three days. Emul-ASYM is overes-482

timating the spatial SQ95 on the first panel, as it creates a more significant483

local extreme over the Alps than in the RCM map. It is, however, remarkable484

that this extreme is not inconsistent with the UPRCM map. Indeed it is in-485

teresting to notice the differences between the RCM and the UPRCM maps,486

which attest to the resolution’s impact. The RCM is able to create sharp and487

well defined objects, with locally strong intensities. Regarding this aspect,488

the emulators seem to have an adequate capacity to refine the low-resolution489

maps and always recreate consistent high-resolution maps. Nevertheless, it490
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Fig. 7. 3 randomly chosen days illustrating the precipitation field of AL-
ADIN63 at the Upscaled resolution (UPRCM), its native resolution (RCM
truth). The three right-most plots show the precipitation field for each of the
three emulators. The values corresponds to the spatial mean and 5th and
95th super-quantiles.

seems that the objects created by the emulator are smoother than the original491

RCM maps.492

3.1.2 Daily scale analysis493

In a second step, and to extend the first observations from the previous494

section, we can look at some scores over the time series. Firstly, the up-495

per panel on figure 8 shows the Pearson correlation coefficients calculated496

between the RCM and the emulators’ series in each grid point. The three497

emulators appear to have similar performances regarding this aspect, with a498

reasonable correlation (de-seasonalised and de-trended) with the true series499

over the whole domain. The best correlations are over the reliefs with Pear-500

son coefficients larger 0.9. The lowest correlation appears over the driest area501

(cf Fig. 9), like the south of the Pyrenees or the North-East corner of the502

domain, but the correlations are still around 0.75.503

504
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Fig. 8. Temporal Anomalies Correlation (up) and Ratio of variance (bot-
tom) computed on the entire evaluation simulation (2006-2100) for the three
emulators.

The lower panel on Figure 8 shows the variance ratio for the three em-505

ulators against the RCM truth. Emul-ASYM manages to reproduce in each506

point the RCM variance much better than the two others. Its variance ra-507

tio ranges from 80 to 120 percent, with a big part of the map being very508

light, showing about 100% variance reproduction. It slightly overestimates509

the relief’s variance and slightly underestimates it over the regions with low510

rain average (cf Fig. 9). On the other hand, both Emul-MSE and Emul-MAE511

vastly underestimate the variance over the whole domain, even if Emul-MSE512

is slightly better.513

514

It seems that the three emulators follow the large scale the same way, as515

they can recreate the chronology of the original RCM series very accurately.516

They can identify where and when the precipitations occur at the grid point517

scale, as shown by the good correlation maps. However, the loss choice seems518

to substantially impact the reproduction of the events’ intensity as the emu-519

lators have different variance ratio maps. Let us see if this is confirmed when520

we look at aggregated statistics.521

3.1.3 Climatological scale analysis522

In this section, we look at some aggregated statistics to evaluate if the523

series produced by the emulator are statistically similar to the RCM one and524

how they differ. Figure 9 shows three climatological metrics over 20 years in525

the present period for the RCP4.5 simulation which is not in the training526
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set. The upper panel shows the average daily precipitation over 2006-2025,527

the middle one is the 99th quantile, and the lower one shows the proportion528

of dry days. This figure illustrates well the impact of each loss function on529

the emulator.530

531

The Emul-MSE mean is very similar to the RCM map. The spatial mean532

and superquantiles are the same. The bias map shows that it slightly under-533

estimates the RCM values, but at maximum by 15% and over regions with534

low precipitations. However, it presents much poorer results on the other535

part of the distribution: it largely underestimates the 99th quantile (-15%536

on average) and the number of dry days (-10% on average). It is due to the537

nature of the mean squared error loss, mainly concentrating around the mean.538

539

The Emul-MAE is, meanwhile, very accurate for the representation of dry540

days, very slightly overestimating them. However, it fails to reproduce the541

mean and the 99th quantile maps, broadly underestimating them. The MAE542

loss gives the same weight to all errors. Since the number of dry days is the543

most represented (between 35 and 85% of the days are between 0 and 1 mm)544

they weigh much more in the emulator training, so it mainly focuses on them.545

546

The Emul-ASYM aims to correct the EMUL-MAE by giving more weight547

to the rainy days, proportionally to the amount of rain. It has similar perfor-548

mances to Emul-MAE over the dry days’ map, which is expected since both549

emulators have the same loss function on this part of the distribution. How-550

ever, the Emul-ASYM mean and 99th quantile maps are also very accurate.551

It shows in both cases less than 15% bias over the worst points and almost no552

bias on average over the maps. Regarding both climatologic maps, it seems553

to slightly overestimate the precipitation over the reliefs where it is raining554

the most and under-estimates at the driest points. Nevertheless, these errors555

are small, and the Emul-ASYM is clearly the best option if we aggregate the556

performances for the three metrics.557

558

On all maps in Figure 9, it is striking to see how well the emulators repro-559

duce the complex spatial structures. Emul-MAE and Emul-MSE have strong560

biases that are uniform over the domain. All three statistics present locally561

different patterns, and the emulators reproduce that. For instance, on the562

99th quantile maps, there is a strong pattern in the Cevennes, just south of563

the Massif Central (France), which is much less intense in the daily mean564

map. It is the same for the emulators’ maps. The spatial structure over Italy565

is also very complex; there is a thin line over the reliefs with more rainy566

days and higher extremes, which is also almost perfectly reproduced by the567

emulators. Similar examples exist for the entire domain.568

569
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Fig. 9. (Upper) the mean map of daily precipitation accumulations over the
2006-2025 period, (middle) the 99th quantile map over the same period and
(lower) the percentage of dry days. These three statistics are shown for the
RCM and the three emulators. For each emulator and each metric, the rela-
tive bias maps are shown. The spatial mean and 95th and 5th superquantiles
are given for each map.
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In order to extend this result, we can look at the entire distribution using570

the ASoP method described in section 2.5.3. In Figure 10, the pdf analysis571

is detailed for the three grid points previously used: Paris, Roma and a high572

point in the Swiss Alps. The first column shows the events frequencies for573

each bin defined in section 2.5.3. Most days fall in bins under 0.1mm/day as574

the red curve comes from high on the left part of the plots. The Emul-ASYM575

and the Emul-MAE reproduce this part well, while the Emul-MSE underes-576

timates the very low precipitations (≤ 0.1mm/day) and overestimates the577

ones between 0.01 and 10mm/day. It is less pronounced for the Alps point,578

where the event distribution is more uniform across the bins than the other579

three points. Emul-ASYM reproduces the frequency of these stronger events580

better than the two other emulators.581

582

Fig. 10. Illustration of the probability density function analysis following the
ASoP method (Klingaman et al, 2017) on three example grid points. Each
line is a point and each column is a different step of the method. The first
column shows the frequency of events in each bins, the second and the third
the actual and the fractional contribution and the last column illustrates
the skill score. The number in the last column plots are the scores for each
emulator at the corresponding point.

The second column shows the actual contributions to the mean, which are583

the frequencies multiplied by the bins’ mean. The first remark is that Emul-584

ASYM slightly overestimates the contribution of the precipitations around585

10mm, which probably led to the wet bias on the mean map of figure 9.586

Emul-MAE produces insufficient rainfall over ∼ 8mm as the right part of the587

distribution is shifted to the left. The same remark applies to the Emul-MSE588
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to a minor extent, which has a better reproduction of the mean, confirming589

what we saw in figure 9. Nevertheless, the Emul-ASYM matches better the590

right tail of the curve.591

592

The last column illustrates the fractional contributions skill score by plot-593

ting the difference between the emulators and the RCM distributions on the594

third column. The fractional contributions are the actual contributions nor-595

malized by the mean of the series, allowing us to compare only the shape of596

the distribution across the bins. It helps to see that the Emul-MSE and Emul-597

MAE distribution are generally left-shifted, with too many small precipita-598

tions and not enough strong events. The Emul-ASYM curve generally looks599

better even if it tends to produce slightly too many precipitations between600

the mean and the 75th quantile. The regularization term in the Emul-ASYM601

loss appears to play its role pretty well as the distribution of precipitation is602

closer to the real one but might sometimes be too strong.603

604

The skill score measures the area between the emulators’ fractional contri-605

bution and the RCM one, and we can see that the Emul-ASYM outperforms606

the others over these three points. It is interesting to notice that Emul-MSE607

and Emul-MAE perform better over the Alps point, where the precipitations608

are more uniformly distributed across the bins. Finally, Figure 11 shows that609

the Emul-ASYM skill score is better over the whole domain. It generalizes the610

distribution analysis and confirms that the specifically designed loss function611

is more adapted than the two others to reproduce the highly skewed distri-612

bution of precipitation.613

Fig. 11. Fractional Contribution Skill Score maps for the three emulators.

3.1.4 Conclusion on the comparison614

Until here, we have analysed the role the loss function can play in the615

calibration of the emulator. Table 3 summarise the results obtained on the616

three emulator. They all demonstrated an excellent capacity to reproduce617
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Table 3: Summary of the emulators’ comparison results

Emulators
Temporal
correlation

Average
precipitation

Low
precipitation

Heavy
precipitation

Variance
PDF
Shape

MSE ++ ++ – – – –
MAE ++ – ++ – – -
ASYM ++ ++ ++ ++ + +

the daily precipitation time series with a good temporal correlation with the618

original RCM series. Nevertheless the loss function impacts strongly the in-619

tensity of the events. The MSE loss function penalizes strongly the large error620

which centers the prediction around the mean because of the chaotic nature621

of precipitations. Thus, if the mean daily precipitations is well represented622

the extremes are underestimated. On the other hand the MAE reproduces623

well the low precipitations but underestimate the intensity of larger events.624

Finally, the Emul-ASYM, thanks to a regularization term added in the loss625

function, managed to reproduce better the entire rainfall distribution at each626

grid point of the domain with notably a better reproduction of the extremes.627

Therefore, the loss function plays here as a cursor to set the event intensities,628

while the chronology of the series is captured from the predictors. From now629

on, we will consider only the EMUL-ASYM.630

3.2 Deeper evaluation of Emul-ASYM631

3.2.1 Object oriented analysis632

Figure 7 seems to illustrate that the precipitation objects created by the633

emulator are smoother than in the RCM. The SAL method presented in634

section 2.5.4 is an objected-oriented evaluation approach which compares on635

two maps the object similarities.636

637

Following the recommendation of Wernli et al (2009), we limited the638

evaluation to three subdomains of about 500km by the side. The blue boxes639

represent them on figure 2. The first subdomain focuses on the Cevennes640

regions. This part of South France is well known for its extreme autumn pre-641

cipitation events. These events are the object of multiple studies (Ribes et al,642

2019; Caillaud et al, 2021) because of their strong socio-economic impacts.643

It is then important to assess whether the emulator is able or not to repro-644

duce such events. The second domain is another hotspot for Mediterranean645

extreme precipitation events (Ivušić et al, 2021) located in Croatia, over the646

Dinaric Alps and the North of the Adriatic Sea. The last subdomain is cen-647

tred around Belgium, including the South-East of England, the North-East648

of France and West of Germany. This region presents a different climatology649

with extreme events of smaller intensities occurring more in winter.650

651
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Figure 12 presents the SAL scores’ results. For each region, there are five652

SAL diagrams. The left most diagram represents the results for all rainy653

days. Then going to the right we consider only days where the spatial 99th654

percentile of the RCM truth series is above an increasing threshold. The655

threshold and the number of considered days are indicated on each diagram.656

Thus, from left to right we consider only more and more extreme events.657

The first general comment is that over all these diagrams, the emulator re-658

produces accurately the large majority of the events. Indeed the red boxes659

regroup 90% of the days and they are always centred around 0 with most660

points in deep blue, showing good Location score.661

662

On the first column representing all rainy days, the emulator underes-663

timates the global amount of precipitation over the domain, with the red664

box being pulled down left. As it gets more centered when we look only at665

stronger events we can conclude that the emulator misses some small precip-666

itation objects. Knowing the chaotic nature of rainfall, we assume that it is667

perfectly fine if the emulator misses or add some small events. Moreover, the668

SAL metrics are one-sided: they evaluate how the predicted map matches the669

reference one. As we fix the threshold according to the RCM true series, it670

is logical that events, especially small ones, are missed or underestimated by671

the emulator. Besides, when we fix the threshold according to the emulated672

series, then the emulator overestimates the amplitude of some small RCM673

events and the red box is pushed up-right. It shows that the emulator some-674

times misses small objects and sometimes creates some.675

676

On the right of the figure, when we look at days with heavier precipitation,677

the amplitude gets centred around zero or slightly positive on the right-most678

column of the two Mediterranean regions. In addition, the emulator tends to679

produce larger objects with a positive S-component. However, the centre of680

the object is most of the time well located. It tends to generalize that the681

emulator produces smoother objects than the RCM, especially on significant682

intensities events.683

684

There is a correlation between the amplitude and the structure metrics. It685

can attest that the emulator always creates objects consistent with the RCM.686

They are either smaller or bigger in terms of both shape and amplitude. On687

all diagrams, we can see some days with lousy location and structure scores688

but the correct amplitude. They are typical of days where the emulator pro-689

duced too smooth objects and did not peak like the RCM. The emulator690

produces one large object with medium intensity, while the RCM produces691

multiple peaked objects with high intensities. It implies bad locations and692

structure scores but good amplitude.693

694
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Generally speaking, the emulator manages to reproduce the precipitation695

objects simulated by the RCM, even if they do not always have the perfect696

characteristics. The emulator captures most of the extreme events with the697

most suitable characteristics. The emulator seems nevertheless to produce698

smoother objects. A further analysis, with an application to a hydrological699

impact study, should be conducted to determine whether it is a fundamental700

limitation and how we could maybe adapt the emulator.701

Fig. 12. SAL diagram for the three regions: Cevennes (up), North of the
domain centred around Belgium (middle), and a region over Croatia and the
North of the Adriatic sea. From left to right, the panel show the SAL results
for days with maximum events intensities above an increasing threshold. Each
point on the diagram represents a day with the Amplitude component on the
y-axis, the Structure on the x-axis and the color give the Location score. The
red box includes 90% of the points, and the black cross indicates the A and S
median. The 5th, 50th and 95th quantiles are given in white on the colormap
for the Location component.
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3.2.2 ALADIN63 matrix extension702

In order to give more robustness to the good performances of the Emul-703

ASYM, we can extend the evaluation to all ALADIN63 simulations available704

for our target domain. Indeed, up to now we focused the evaluation on the705

ALADIN simulation driven by CNRM-CM5 RCP4.5, which share the same706

driving GCM. The EURO-CORDEX matrix gives us the opportunity to eval-707

uate the emulator on simulation driven a by different GCMs. This question708

of transferability to different GCMs, is an important challenge as it is a nec-709

essary condition for the application of the emulator for the downscaling of710

large ensemble of simulation.711

712

Figure 13 summarizes climatological maps as the ones shown on Figure713

9. The three panels (from left to right) correspond to the three statistics we714

looked at in Section 3.1.3: the mean amount of daily precipitation, the 99th715

quantile and the percentage of dry days over the 2006-2025 period. On each716

panel, the upper part shows the summary statistics for the raw maps of the717

RCM and the emulator, and the lower part summarises the relative bias maps718

of the emulator with respect to the RCM truth. On each panel, the columns719

correspond to a simulation. Each bar shows the spatial mean of the map,720

the upper bound shows the 95th super-quantile and the lower bound shows721

the 05th super-quantile. The first column shows the results for the CNRM722

RCP85 simulation, which has been used to train the emulator. The results723

on this simulation are given here as an indicator and cannot be taken alone724

to evaluate the emulator’s performances. On each panel, the second column725

is the summary of the evaluation on the CNRM-RCP45 simulation presented726

on Figure 9. The bars illustrate well the main conclusions with for example727

a slight over-estimation over the wettest point (as the green bar goes higher)728

or the low biases on the lower panel.729

730

The results are encouraging as the performances of the emulator are very731

similar across simulations, even if those are different in several aspects. For732

instance, the 3 CNRM simulations have higher daily means than the three733

others since the spatial mean and superquantiles are higher. It is less evident734

on the 99th quantile maps, where only the NCC simulation produces “eye-735

visible” less intense extremes. The emulator’s bars reproduce the diversity736

of behavior of the various GCM-RCM pairs in terms of spatial patterns on737

the statistics maps. As observed previously, the emulator overestimates the738

average daily precipitation on the wettest points and underestimates it over739

the driest points whatever the statistics, which stays valid for all simulations.740

The biases on land points are similar to the ones observed for the CNRM741

RCP45 simulation, showing that the emulator reproduces each simulation742

with the same accuracy. In all these simulations, the emulator reproduces743

the three parts of the distribution well over the whole domain.744
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Fig. 13. Summary plots of the three climatological statistics regrouping the
results on all ALADIN63 simulations. On each error bar, the lower (resp.
upper) bound is the spatial 5th (resp. 95th) superquantile and the spatial
mean is represented by the dot. The upper panels show the raw maps sum-
mary statistics for the RCM (in red) and the Emul-ASYM (in green), and
the lower panels show them for the relative bias maps.
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have not been shown yet (CNRM 26, MPI, NCC, HGM).
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The analysis is the same regarding the variance maps summarized in Fig-745

ure 14. The daily variance differs according to the simulation. For example,746

the RCM simulation driven by NCC has a smaller variance than the CNRM747

simulations or the HGM. The emulator reproduces in each case the variance748

maps quite accurately. However, in every simulation, it strengthens the vari-749

ance where it is the strongest. The variance ratio summary plot confirms750

that the analysis made for the CNRM RCP45 in section 3.1.2 extends to751

all other simulations. The emulator can reproduce the daily time series with752

globally acceptable variance at every grid point. The temporal correlations753

(not shown) are also similar to what we observed on the CNRM-RCP45 simu-754

lation across all simulations. In the worse cases, it misestimates the variance755

by about 20%. Figure 14 also shows the FC skill score maps for the four756

missing evaluation simulations (the RCP45 simulation in in 11). Here again,757

we can observe that the emulators reproduce the shape of the precipitation758

distribution correctly at each grid point in all simulations. It is impressive to759

see how similar are these four maps. The emulator has similar performances760

across all simulations at the grid point scale.761

3.2.3 Climate change reproduction762

In order to finalise the evaluation of the emulator in the perfect model763

framework, we can look at the climate change maps. To do so, we will look at764

the three statistics used in the previous sections: the mean daily precipitation,765

the 99th quantile and the percentage of dry days. In each simulation, we com-766

pute the relative changes in a future period (2070-2100) versus a past period767

(1950-1980). The changes in precipitation are likely to be different according768

to the seasons over western Europe so we will look at the seasonal climate769

change here. The different studies about changes in precipitation amount770

over the region project a decrease in summer precipitations, notably around771

the Mediterranean sea, and an increase of winter precipitation on the North.772

Besides, a possible increase in extreme precipitation, especially over northern773

Europe, is expected. The results for the four seasons and the three statistics774

on all simulations are summarised through summary plots in Figure 15 while775

the results for the MPI and HGM simulations are illustrated in Figure 16.776

We chose those two maps as they show very contrasted climate change signal.777

778
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Fig. 15. Same as Fig 13 for the seasonal climate change (2070-2100 vs 1950-
80) summary plots for the three statistics of interest: the daily precipitation
mean, the 99th quantile and the percentage of dry days. The changes are the
relative difference between the future period and the past one. The biases
are simple bias between the emulator and RCM relative change maps. On
each bias summary plot the number indicates the % of points where RCM
and emulator agree on the sign.
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The first remark is that on all plots summarising the raw maps, the green779

bar sticks very well to the red one, implying that the emulator correctly re-780

produces the maps and the intensity of the local changes. It is particularly781

notable on the summer plot, where the differences between the projections782

are the strongest. The MPI and NCC simulations show a substantial de-783

crease in the mean daily precipitation over the entire map, associated with a784

global increase in the percentage of dry days. On the other hand, the HGM785

simulation projects an increase in average daily rainfall over some regions786

in summer. The emulator reproduces each simulation specificity with mainly787

the right intensity. Figure 16 shows summer and winter changes for the MPI788

and HGM simulations. It illustrates well that the emulator correctly captures789

the big spatial pattern. Still, in summer, we can observe that the emulator790

precisely places the regions where the HGM simulation produces an increase791

in average rainfall. This increase matches an increase of the 99th quantile in792

the same regions, and the emulator produces the same relationship. Similar793

analysis can exist on the winter maps, concluding that the emulator repro-794

duces the ALADIN63 simulation with excellent accuracy.795

796

Nevertheless, the emulator’s maps are more continuous than the RCM797

maps, especially for the 99th quantile maps, which are patchy. It results in798

significant local biases between the emulator and the RCM maps. It partly799

explains the large biases on the bias maps summary plots in Figure 15. Gen-800

erally, the emulator tends to overestimate some changes as we can see that801

the green bar is often longer than the red one. The number given on top of802

the bias maps summary plots shows the percentage of sign agreement be-803

tween RCM and emulator over the grid points. It shows that the emulator804

identifies well the changes as these numbers are very high ( always above805

75%, very often above 90%). Moreover, on the bias maps of Figure 16, the806

hatching shows the points where RCM and emulator disagree on the signs.807

It is visible that they mostly correspond to points with minor changes.808

809

To conclude, the emulator can reproduce high-resolution climate change810

maps with the same strong spatial pattern and intensities. Another relevant811

remark, not shown here, is that Emul-MSE and Emul-MAE have the same812

ability as Emul-ASYM to reproduce the climate change maps. It means that813

each emulator keeps the same biases along the simulation, and the changes814

are mainly driven by the large scale, which the emulators captures well.815
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Fig. 16. Relative changes (in %) between 2070-2100 and 1950-1980 for the
MPI and HGM driven simulations regarding (up) the mean map of daily
precipitation accumulations, (middle) the 99th quantile map and (low) the
percentage of dry days. These three statistics are shown for the RCM and
the emulator, plus the simple bias map between the two. For each map,
the spatial mean and 95th and 5th superquantiles are given. The hatching
indicates the point where RCM and emulator disagree on the sign.

3.2.4 Conclusions on Emul-ASYM816

Through sections 3.1 and 3.2 we have analysed the ability of the emulator817

trained with the asymetric loss function to reproduce the precipitation field818
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simulated by the RCM. The conclusion on the emulator performances are819

summarised here:820

– The emulator is able to produce realistic precipitation time series well821

correlated to the RCM ones and with the right spatio-temporal variability.822

– The grid-point regularization term in the asymetric loss function helps823

to respect and reproduce the entire complex distribution of precipitation824

everywhere on the target domain.825

– The emulator tend to underestimate the precipitation in generally dry826

regions and overestimate it in the wettest parts of the domain.827

– The emulator creates coherent objects of precipitation, with generally the828

right characteristics even if they tend to be too smooth (i.e. less sharp and829

precise than the RCM objects).830

– Those conclusions are the same for any RCM simulations available to eval-831

uate the emulator in perfect model, including the ones driven by different832

GCMs than the one used during the training. It notably showed good833

ability to reproduce the diversity across simulations which attests for the834

good transferability of the learnt function and so gives some confidence835

on its applicability to various GCMs simulations. This is a key results for836

future applications.837

– Finally the climate change maps obtained from the emulated series are838

almost identical to the RCM ones. It gives a lot of confidence to use the839

emulator in climate change context.840

The emulator present therefore satisfactory results in perfect model evalu-841

ation and, even is there is space for improvements. The proposed loss function842

allowed to reproduce correctly the entire precipitation distribution at the grid843

point scale validating so far the use of the RCM emulator for precipitation844

downscaling.845

4 GCM data application846

This section aims to assess the emulator’s applicability to GCM simula-847

tions. The ultimate objective of the emulator is to downscale large ensembles848

of GCM simulations to generate high-resolution simulations, allowing the849

study of local precipitation evolution and the associated uncertainty. Hence,850

it is crucial to evaluate if the emulator is indeed applicable to GCM simu-851

lations while maintaining similar performance levels than in perfect model.852

The application protocol is illustrated in the right panel of Figure 1, where853

the emulator processes GCM data after interpolating them onto a com-854

mon grid. In this evaluation, we utilized the emulator to downscale four855

RCP85 GCM simulations—CNRM-CM5, MPI-ESM-LR, HadGEM2-ES, and856
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NorESM1 (refer to Table 1), which were employed to drive ALADIN63. The857

corresponding RCM simulations serve as a comparison basis, yet they can-858

not be deemed as the reference truth for the emulated series. Indeed, as859

elucidated in Doury et al (2022) and in Section 2.1, differences between an860

RCM simulation and its driving GCM entail low day-to-day correlation and861

long-term statistical disparities. The challenge of this section therefore lies862

in evaluating whether the emulator generates a series that aligns with the863

large-scale characteristics of the GCM while incorporating high-resolution864

features from the RCM. Another way to frame the objective of this section865

is that we try to identify if the Emulator in GCM application mode is able866

to reproduce an added-value with respect to its driving GCM similar to the867

one proposed by the original RCM. Consequently, we will compare the emu-868

lator’s output with both the RCM and GCM series. Our expectation is that869

the emulator produces a series consistent with the GCM’s large scale while870

integrating high-resolution features akin to those introduced by the RCM.871

Fig. 17. Illustration of three consecutive days for the UPRCM, the emulator
downscaling the UPRCM, the RCM, the emulator downscaling the GCM, and
the GCM precipitation fields.

4.1 Illustration of the daily GCM/RCM differences872

Figure 17 showcases the precipitation field for three consecutive autumn873

days in the CNRM RCP85 simulation. Each day includes the RCM truth874

simulation alongside the emulated maps in perfect model (UPRCM) and ap-875

plication (GCM) mode, complemented the UPRCM and GCM precipitation876

maps for the respective days. It is important to remember here that the low-877

resolution precipitation field is not a predictor. The UPRCM precipitation878

is simply the RCM map interpolated on the GCM grid, and we use it to879
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compare with the GCM precipitation map.880

881

These three days vividly illustrate the daily low correlation between the882

RCM and its driving GCM. Comparing the low-resolution maps reveals dis-883

tinct chronologies. For instance, on day 1, the RCM depicts a significant884

Mediterranean event in southern France, later moving toward the Alps and885

Italy. In contrast, the GCM on day 1 exhibits a heavily localized precipita-886

tion event more eastward, over the southern Alps. These disparities result in887

very different extremes between the simulations at the daily scale.888

889

However, the three high-resolution maps offer assurance regarding the890

emulator’s ability to downscale GCM simulations. It generates a series con-891

sistent with the GCM, depicting precipitation objects that align with the892

story presented by the GCM. Moreover, the emulator refines the high reso-893

lution in a manner similar to the RCM. For instance, on day one, it precisely894

localizes extremes in the Alps and along the northern Italian coast. On day895

two, the GCM’s situation over Italy closely resembles the RCM’s depiction896

on day three, with the emulator producing similar events in mid-Italy in897

both cases. The emulator also adjusts the intensity of extremes, generating898

stronger extremes compared to the GCM as captured by the SQ95. How-899

ever, it exhibits similar limitations in both UPRCM and GCM applications,900

with objects appearing overly blurred and lacking sharpness, as discussed901

in section 3.2.1. This consistency underscores the emulator’s stability when902

downscaling GCM data. These three days exemplify the challenge of evalu-903

ating the emulator in application mode without a proper reference, given the904

day-to-day mismatches that hinder distinguishing potential emulator issues905

from large-scale-induced divergences.906

907

4.2 Present climate analysis908

In this section we analyse the series downscaled by the emulator in present909

climate. As in the perfect model evaluation, we compute the annual average910

daily rainfall, the 99th quantile and the percentage of dry days in the present911

climate (2006-2025) in the four simulations. We compare the emulator’s maps912

with the RCM ones and the GCM ones.913

914

The most striking observation lies in the added value brought by both the915

RCM and the emulator when compared to the GCM maps. CNRM, among916

the GCMs, exhibits some spatial structure across all three statistical mea-917

sures, while the remaining three show notably flat maps, especially concern-918

ing extremes. The emulator’s maps exhibit a high spatial correlation with the919

RCM ones, effectively replicating the fine-scale spatial structure across mean920

climate conditions and within dry or wet extremes. It successfully captures921
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topography-driven spatial patterns, portraying areas like the central Alps922

experiencing more precipitation compared to the rest of the range across all923

RCM and emulator simulations. Additionally, intricate structures over Italy924

and the Mediterranean coastline are faithfully reproduced by the emulator.925

Another point of validation is the spatial super-quantile that are comparable926

with the RCM, confirming the emulator’s high-resolution consistency with927

the RCM.928

929

Fig. 18. Present (2006-2025) climate statistics of 4 simulations (CNRM
RCP85, MPI, NCC and HGM) for (Upper) the mean map of daily pre-
cipitation accumulations, (middle) the 99th quantile map and (lower) the
percentage of dry days. For each simulation, we see the RCM, the emulated
one and the corresponding GCM map. The spatial mean and 95th and 5th
superquantiles are given for each map.
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In all four simulations and across the three statistical measures, signifi-930

cant disparities exist between the emulator and the RCM maps. As explained931

in sections 2.1, the daily inconsistencies between GCM and RCM large scales932

can lead to climatological differences. For instance, the emulator driven by933

CNRM generates more intense precipitation over the Alps than the RCM934

simulation, resulting in a higher 99th quantile and fewer dry days in the935

region. Conversely, the HGM-driven emulator simulation reflects a drier ten-936

dency, characterized by a lower 99th quantile and a larger number of dry937

days across the entire domain. The consistency between the three statistics938

and the fact that the differences vary accross simulations tend to support939

the hypothesis of real large scale differences rather than a problem in the940

emulator downscaling.941

942

However, some biases in the emulator’s outputs warrant attention. For943

instance, all emulated simulations underestimate the 99th quantile over the944

Cevennes in southern France. This region is recognized for its extreme events,945

an area where the RCMs usually bring a proven added-value at daily scale.946

While the emulator generates significant extreme events here, they appear947

comparatively less intense than those over the Alps in contrast to the RCM948

maps, where they exhibit a similar intensity. Dedicated studies specifically949

investigating the added value of emulators compared to RCMs and GCMs950

by analyzing particular events could certainly be conducted. However, such951

studies are beyond the scope of our current investigation.952

4.3 Climate change analysis953

In order to complete the study of the emulator ability to downscale GCM954

simulations, we propose to look at climate change maps. Given the inherent955

challenges in assessing the emulator’s performance when downscaling GCMs,956

we will emphasize specific examples in this section. While the emulator is not957

expected to precisely replicate the changes simulated by the RCM, it should958

align with those produced by the GCM while integrating small-scale features959

consistent with the RCM. We compare the changes in autumn precipitation960

presented in Figures 19 and 20 produced by the emulator maps for the four961

simulations with the RCM and the driving GCM simulations.962

963

These figures affirm the emulator’s capability to incorporate high-resolution964

features into GCM simulations. In terms of both extremes and mean changes,965

the emulator generally aligns with the patterns observed in the GCM maps.966

For instance, the CNRM simulation exhibits an intensification of autumn967

precipitation over the northern domain, particularly noticeable in the 99th968

quantiles. The emulator echoes this trend, demonstrating a consistent signal969

with a more refined localization of pronounced changes, notably over north-970

ern and western France. The Emulator also clarifies the North-South contrast971
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Fig. 19. Autumn relative changes of average daily precipitation between
future (2080-2100) and present (2006-2025) period for the 4 GCM simula-
tions downscaled with the emulator: CNRM, MPI, NCC and HGM under
RCP85 scenario. From up to down, the rows show: the RCM, the emulator
downscaling GCM, and the GCM maps. The spatial mean and 95th and 5th
superquantiles are given for each map.

in precipitation change in the Alps with respect to the GCM low-resolution972

map, mimicing well the RCM pattern.973

974

Moreover, the emulator appears capable of modifying the signal produced975

by the GCM. For instance, both the MPI and HGM simulations indicate a976

decrease in average precipitation across the entire domain, despite showing977

an intensification in the 99th quantile. In contrast, the emulator portrays an978

increase in autumn precipitations over the eastern domain, propelled by a979

more substantial intensification of extreme events in those regions. If it is980

difficult to assess for the validity of the modification, it is in agreement with981

the two other emulated simulations and the four RCM maps.982

983

Even if some spatial structures are consistent between the RCM and the984

emulator maps, they remain fundamentally distinct. The emulator’s struc-985

tures are generally smoother than the RCM ones. However, the maps pro-986

duced by the emulator include realistic high resolution features influenced by987

topography or coastline for example. Setting aside the differences in smooth-988
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ness, distinguishing between the RCM and emulator maps becomes a chal-989

lenging task.990

4.4 Conclusion on GCM applications991

To conclude on the emulator suitability to downscale GCM simulations,992

we have seen across different time horizon that the emulator behaves as ex-993

pected. It applies the downscaling to the GCM large scale as it produces994

realistic high resolution fields. The consistency between the GCM patterns995

and the emulator ones plus the presence of high resolution features coherent996

with the RCM simulations give confidence in emulator downscaling. However,997

the emulator does not learn how to reproduce the large-scale transformations998

carried out by the RCM, resulting in differences between the precipitation999

simulations produced by the emulator and the RCM. In this context, it is1000

difficult to give full confidence to the emulator when downscaling GCM simu-1001

lations and further studies must be conducted in this purpose. In particular,1002

it seems important to look for a proper evaluation framework of the Emula-1003

tors in application mode.1004

Fig. 20. Same as Figure 19 for the 99th quantile changes

5 Conclusion1005

This study aims to propose a credible solution to the high computational1006

costs of Regional Climate Models to build large ensembles of high-resolution1007
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precipitation projections at daily scale. It extends the RCM-emulator in-1008

troduced in Doury et al (2022) for the case of temperature downscaling.1009

RCM-emulators belong to the family of hybrid downscaling methods. They1010

use RCM simulations to estimate the downscaling relationship between low-1011

resolution and large-scale variables and a high-resolution surface variable. It1012

is important to recall here that the present study propose an emulator of a1013

given RCM, CNRM-ALADIN63, in its EURO-CORDEX configuration. This1014

manuscript has three main objectives:1015

1. Addressing the suitability of the emulator for the complex variable of1016

precipitation, including the extreme parts of its distribution.1017

2. Studying the transferability of the trained emulator to different sources of1018

inputs.1019

3. Evaluating the emulator behavior when applied to GCM simulations.1020

To address these objectives we extended the Doury et al (2022)’s work1021

with some developments while keeping as most the same basis. Indeed a1022

strength of the RCM-emulator should be its universality across domain or1023

variables. Thus the emulator presented here relies on the same perfect model1024

framework as in Doury et al (2022), it takes the same list of predictors and1025

the neural network architecture is simply adapted to match the new input1026

and target domains. The target domain considered here is four times bigger1027

which also implied increasing the size of the input domain. Because of the1028

non-gaussian nature of precipitation we proposed an asymmetric loss function1029

and put those results in perspective with two classical functions for regression1030

problems (MSE and MAE). Finally we also extended the evaluation of the1031

emulator to a larger test set including simulations driven by various GCMs1032

allowing to study its transferability. A first result is the good stability of the1033

methodology set in Doury et al (2022) with a bigger domain even regarding1034

to computational efficiency.1035

1036

Regarding the first main objective we have shown that RCM-emulators1037

are a credible strategy to downscale precipitation fields. The perfect model1038

evaluation ensures a perfect reference against which we can precisely evalu-1039

ate and compared the three emulators. All of them managed to capture the1040

relationship between the daily large scale circulation and the associated high1041

resolution precipitation accumulation as they all showed very good tempo-1042

ral correlation. It validates the concept of the emulator as it is possible to1043

identify and learn the RCM downscaling function associated to precipita-1044

tion. Nevertheless, only the asymmetric loss function ensured the emulator1045

to reproduce the full high resolution daily variability that the RCM cre-1046

ates as well as the entire precipitation distribution including strong and rare1047

events. Indeed, we have seen that a dedicated loss function to re-balance the1048

data is necessary to deal with precipitation, and the one introduced here is1049
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a credible strategy. We also evaluated the accuracy of precipitation object1050

created by the emulator. We found that they are quite realistic and coherent1051

even if they tend too be smoother and less precise than the RCM ones. An1052

other defaults of the asymmetric loss function we designed is that it leads to1053

an over-estimation of the precipitation where it rains the most and under-1054

estimation where it rains the less. Therefore, the loss function is a critical1055

aspect to ensure that emulators suit well a given variable. The asymmetric1056

loss function is a proposition that showed some success, but other loss func-1057

tions or different strategy could be used in the same purpose in future studies.1058

1059

The EURO-CORDEX matrix allowed us to study the emulator’s be-1060

havior when we move out from the world corresponding to the Scenar-1061

ios/GCM/RCM triplet used for training. We highlighted the robustness of1062

the learnt function as it presents similar performances across all available1063

simulations. The emulator notably managed to reproduce the specificity of1064

each simulation in present climate but also in climate change signal. Indeed1065

each simulation showed different climate change signals with different spa-1066

tial patterns and variability over the domain and the emulator showed an1067

excellent ability to reproduce this diversity. This question of transferability1068

is essential for the potential applications it opens to the emulator. Our result1069

tends to show that the emulator can be used to downscale various GCMs1070

and various scenarios.1071

1072

A critical point in the emulator evaluation is to ensure its good appli-1073

cability to GCM simulations as it is its purpose. Because the emulator is1074

trained in perfect model framework (i.e. with both target and input coming1075

from the same RCM simulation), it learns only the downscaling function.1076

Thus in GCM application it applies this function to the large scale provided1077

by the GCM which is very likely to differ from the RCM one and so the1078

run produced by the emulator is expected to differ from the RCM simula-1079

tion driven by the same GCM. We expect the emulator to be coherent with1080

the GCM large scale but also to include high resolution features brought by1081

the RCM. We analysed the emulator performance over 4 GCMs and under1082

different time horizons: we looked at some daily maps and at climatological1083

statistics in present climate and in climate change. The conclusions are ro-1084

bust over all those aspects, the emulator brings a strong added-value with1085

respect to its driving GCM that is consistent with the original RCM added-1086

value. However, there are substantial differences between RCM and emulator1087

maps, and it is difficult to assess if they results from large scale discrepan-1088

cies between the RCM and its driving GCM, or from a misconception of the1089

emulator. Further studies focused on given phenomenon or including other,1090

specifically designed, simulations are probably necessary to assess if we can1091

have a complete trust in the current version of the emulator when it is used1092

to downscale GCM simulations.1093
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Decharme B, Drugé T, Roehrig R, Saint-Martin D (2020) Modulation1209

of radiative aerosols effects by atmospheric circulation over the Euro-1210

Mediterranean region. Atmospheric Chemistry and Physics 20(14):8315–1211

8349, DOI 10.5194/acp-20-8315-2020, URL https://doi.org/10.5194/acp-1212

20-8315-20201213
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