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Abstract
This paper presents a novel algorithm that leverages Stochastic Gradient Descent strategies in con-

junction with Random Features to augment the scalability of Conic Particle Gradient Descent (CPGD)
specifically tailored for solving sparse optimisation problems on measures. By formulating the CPGD
steps within a variational framework, we provide rigorous mathematical proofs demonstrating the fol-
lowing key findings: (i) The total variation norms of the solution measures along the descent trajectory
remain bounded, ensuring stability and preventing undesirable divergence; (ii) We establish a global
convergence guarantee with a convergence rate of O(log(K)/

√
K) over K iterations, showcasing the

efficiency and effectiveness of our algorithm, (iii) Additionally, we analyze and establish local control
over the first-order condition discrepancy, contributing to a deeper understanding of the algorithm’s
behavior and reliability in practical applications.

1 Introduction

1.1 Convex programming for sparse optimisation on measures

Convex optimisation on the space of measures has gained attention during the past decade, e.g., Bach
and Chizat [2021], Chizat and Bach [2018], Chizat [2022], De Castro et al. [2021], Poon et al. [2021],
De Castro and Gamboa [2012], Candès and Fernandez-Granda [2014] and references therein. It is also a
popular field of investigation to derive global optimisation methods (a.k.a. simulated annealing) through
the embedding of Rd into the space of measures [Bolte et al., 2023, Miclo, 2023].

At his core, it can be viewed as a fruitful way of expressing many non-convex signal processing and
machine learning tasks into a convex one, where one searches for an element of a Hilbert space H that can
be described as a linear combination of a few, say s̄, elements:

ȳ =

s̄∑
j=1

ω̄jϕt̄j , (1.1)

from a given parameterized set
{
ϕt : t ∈ X

}
where ω̄j ∈ R \ {0} and X a compact set of Rd .

Given an empirical observation y , we would like to find a sparse representation, akin to (1.1), that
explains y and for which the learnt parameters (ωj , tj)sj=1 encode an output solution for which generalization
properties can be proven. A common practice is to minimize:

(ωj , tj)
s
j=1 7→

∥∥∥y − s∑
j=1

ωjϕtj

∥∥∥2
H
, (1.2)

which is a non-convex program. In the expression (1.2) above, s ≥ 1 is a tuning parameter quantifying the
so called sparsity of the solution.
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A substantial body of literature pertains to the minimization of Mean Squared Error (MSE) and aligns
with the framework outlined herein. In this paper, we will expound upon our methodology in a generalized
format that can effectively encompass a majority of fields. Notably, certain specific instances will be
elaborated upon within this paper, including but not limited to sparse deconvolution [De Castro and Gamboa,
2012, Candès and Fernandez-Granda, 2014], infinitely wide neural networks [Bach and Chizat, 2021, Chizat
and Bach, 2018], or Mixture Models [De Castro et al., 2021]. Our approach is deployed according to the
following steps.

Lifting on the space of signed measures First, we lift Program (1.2) onto the space M(X ) of Radon
measures with finite total variation norm on X . Consider the positive definite kernel K defined as the dot
product K(t, t ′) := ⟨ϕt , ϕt ′⟩H for all t, t ′ ∈ X , and assume that:

the function t ∈ X 7→ ϕt ∈ H is continuous . (A0)

Consider the kernel measure embedding (we refer to Appendix A.2 for further details),

Φ : ν ∈M(X ) 7→
∫
X
ϕtdν(t) ∈ H . (1.3)

It is proven in the appendix (see Lemma A.2) that Φ is a bounded linear map under (A0). We deduce that:

ν ∈M(X ) 7→
∥∥y −Φ(ν)∥∥2

H
, (1.4)

is a convex function on M(X ). Taking the set of discrete measures given by ν =
∑s

j=1 ωjδtj , where δt
is the Dirac mass at point t, we uncover the parametrisation (1.2). Hence, we have lifted a non-convex
program on (ωj , tj)sj=1 onto a convex program over a much larger space, the space of signed measures.

Total variation norm regularization The second step is regularization. One key parameter is s, the
number of learnt parameters, that should be considered to estimate (an approximation of) the true func-
tion (1.1). In practice, it can be cumbersome to tune this parameter and it might be better to resort to
regularization. One benefit of the lifting on the space of measures is that this can be simply done by the
TV-norm. Inspired by L1-regularization in (high-dimensional) inverse problems, we study the so-called Beurl-
ing LASSO [De Castro and Gamboa, 2012, Candès and Fernandez-Granda, 2014] referred to as BLASSO
below, whose convex objective function is given by:

J(ν) :=
1

2

∥∥y −Φ(ν)∥∥2
H
+ λ∥ν∥TV , (1.5)

where λ > 0 is a tuning parameter. We denote by µ⋆ ∈M(X ) a solution to BLASSO

J(µ⋆) = min
µ∈M(X )

J(µ) . (B)

The existence of a solution to the problem at hand is not manifestly evident. Seminal contributions in
the field, as articulated in [Bredies and Pikkarainen, 2013, Proposition 3.1] and [Hofmann et al., 2007,
Theorem 3.1], have shown the existence of solutions upon continuity prerequisites imposed on the operator
Φ or its pre-dual counterpart. Nevertheless, the arduousness associated with ascertaining the continuity
and well-defined attributes of the operator Φ as expounded in Equation (1.3), within a given framework,
underscores the complexity involved. In contrast, Condition (A0) affords a more tractable means of val-
idation. Remarkably, our contribution lies in presenting a - to the best of our knowledge - novel result
displayed in Theorem 1.1 below (established in Appendix A.3) that demonstrates the existence of solutions
for any convex optimisation problem formulated in the manner of Equation (1.6), subject to the condition
of continuity stipulated in Equation (A0).
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Theorem 1.1. Let H be separable Hilbert space and let X be compact metric space. Consider the problem

inf
µ∈M(X )

{
L(Φµ) + λ∥µ∥TV

}
(1.6)

where L : h ∈ H→ L(h) ∈ [0,∞] is convex and lower semi-continuous. If (A0) holds then there exists a
measure µ⋆ ∈ M(X ) solution to (1.6). Furthermore, if L is strictly convex, then the vector Φ(µ⋆) ∈ H is
unique (it does not depend on the choice of the solution µ⋆).

Remark 1.1. By choosing L(h) = (1/2)∥y−h∥2H in Theorem 1.1, it is established that there exists a signed
measure µ⋆ ∈M(X ) solution to BLASSO (B).

Over the last decade, several investigations on the performances of the estimator associated to the
solution of (1.6) have been proposed in several specific situations. This solution can be proven to be
close, for some partial Wasserstein 2 distance [Poon et al., 2021], to the target measure µ̄ =

∑s̄
j=1 ω̄jδt̄j

involved in Equation (1.1) in some cases of interest (e.g., Mixture Models [De Castro et al., 2021] or sparse
deconvolution [Poon et al., 2021, De Castro and Gamboa, 2012] ) as soon as the support points t̄j of the
target µ̄ are sufficiently separated. Moreover, if the bounded linear map Φ has finite rank m ≥ 1, then there
exists a solution to (B) with at most m atoms, as proven by [Boyer et al., 2019, Section 4].

In this contribution, we focus our attention on the practical implementation of the optimisation prob-
lem (B). In particular, our aim is to provide a runable and efficient algorithm, and to display associated
theoretical guarantees.

1.2 Learning with over-parametrised non-convex objective functions

Solving (B) from a practical point of view is not an immediate task, due to the infinite dimensional nature of
the target. In this context, the Sliding Franck-Wolfe algorithm (see, e.g., Denoyelle et al. [2019]) provides
an answer to this question. In this paper, we focus instead on the convergence of a Stochastic and Random
Feature version of the Conic Particle Gradient Descent (CPGD) [Chizat, 2022] towards a minimum of
Program (B).

Writing the weights W := (ω1, . . . , ωp) and the positions T := (t1, . . . , tp) ∈ X p, we consider a generic
measure with p weighted particles by:

ν(W,T) :=

p∑
j=1

εjωjδtj , (1.7)

where ωj > 0 (resp. εj = ±1) refers to the weight (resp. the sign) of the particle j . The signs are fixed
along the descent while the positions T and weightsW are updated each gradient step. By a symmetrization
argument, see for instance [Chizat, 2022, Appendix A], we consider, without loss of generality, that ε = 1.
It holds that minimizing (B) or minimizing J defined by:

J(µ⋆) = min
µ∈M(X )+

J(µ) . (B+)

are equivalent, in a sense made precise by [Chizat, 2022, Proposition A.1] for instance; where M(X )+ is
the set of nonnegative measures with finite TV-norm. The attentive reader can uncover the next results
on M(X ) by replacing ωj by εjωj . The gradient descent dynamics are the same and our results also holds
in this latter case.

Our algorithm makes use of particles measures as a proxy for solving the problem (B). To this end, we
adapt the notation of objective functions and related quantities accordingly. Denoting λ := (λ, . . . , λ), the
definition of ν(W,T) in (1.7) then yields

J(ν(W,T)) =
1

2

∥∥∥y − p∑
j=1

ωjϕtj

∥∥∥2
H
+ λ

p∑
j=1

ωj := F (W,T) +
1

2
∥y∥2H ,

where kT := (⟨y , ϕt1⟩H, . . . , ⟨y , ϕtp ⟩H) ∈ Rp, KT is a (p × p) matrix with entries K(ti , tj) defined by:

K(ti , tj) = ⟨ϕti , ϕtj ⟩H, (1.8)
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and
F (W,T) := ⟨λ− kT,W⟩+

1

2
WTKTW , (1.9)

is equal to J(ν(W,T)) up to the additive constant term (1/2)∥y∥2H (that only depends on the observations
and not on the parameters of the measure we are optimising on).

In contrast to the original problem presented in (B), the optimisation process now operates within a
different domain. Instead of working within the space of measures M(X ) (or M(X )+), it focuses on
particle measures with a set of fixed size p. This shift in perspective involves optimising over both the
positions T and weights W. Although this adjustment serves to simplify the model’s complexity to some
extent, it introduces certain computational challenges. Firstly, for each pair of parameters (W,T), the
computation of F (W,T) necessitates the evaluation of kt and KT. Depending on the structure of the
Hilbert space H and the associated scalar products, this computation can be time-consuming. The need
to calculate these quantities at each iteration of a gradient descent algorithm can become problematic,
especially when dealing with high-dimensional spaces (d being significant). Furthermore, considering a large
number of particles during the optimisation process, which is often essential, can substantially escalate the
computational burden. This computational overhead needs to be carefully managed and optimised to ensure
the efficiency of the optimisation procedure. In this paper, we address these issues by presenting a novel
algorithm that incorporates Stochastic Gradient Descent (SGD) iterations. To the best of our knowledge,
this approach has not been previously explored in the context of sparse optimisation within the domain of
measures. We rigorously examine the properties of this algorithm, conducting a comprehensive investigation
from both theoretical and practical perspectives.

The paper is organised as follows. First, we describe in Section 2 the construction of the algorithm
and related necessary assumptions. Section 3 is illustrated by the example of deconvolution for mixture
models, an important topic in unsupervised learning. Some theoretical results describing the behaviour of
the algorithm in terms of the number of iterations are presented in Section 4, while a numerical illustration
on some toy examples are discussed in Section 5. Proofs and related technical results are gathered in
Section 6 and in Appendices A, B and C.

2 Construction of a Stochastic Gradient Descent algorithm.

The primary objective of this contribution is to introduce a stochastic algorithm designed for tackling
the optimisation Program (B), followed by an exploration of its underlying theoretical properties. Our
approach initially stems from a deterministic algorithm, which is subsequently adapted into a stochastic
variant to enhance computational efficiency. Considering Program (B) as an optimisation challenge, it can
be effectively addressed through the application of gradient descent (GD) techniques within the domain
of measures. A straightforward algorithm would entail performing a discretized gradient descent on the
space of non-negative measuresM(X )+. However, in the absence of a significant conceptual breakthrough
pertaining to an efficient parameterization of the preceding iteration within M(X )+ (or its dual spaces
and Hilbert basis), we resort to emulating this gradient descent process through a collection of measures
encoded with particles. This method of approximating optimisation over measures through particles finds
its conceptual foundation in swarm optimisation approaches, as exemplified in recent works such as those
of Bolte et al. [2023], Miclo [2023].

2.1 Mirror principled conic gradient descent

2.1.1 The Mirror descent principle

We first introduce a basic ingredient related to optimisation problems on geometric spaces, that permits to
adapt the evolution of an algorithm to some constrained sets where the problem is embedded, without using
some non-smooth additional projection steps. Mirror Descent (MD below) originates from the pioneering
work of Nemirovskij and Yudin [1983] and permits to naturally handle optimisation problems especially
when the mirror/proximal mapping is explicit, which is indeed the case for a convex problem constrained on
measures asM(X )+ (see e.g. Lan et al. [2012], Bubeck et al. [2015]).
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The MD approach has the nice feature to define a smooth evolution that lives inside the constrained
set without adding some supplementary projection step and “pushes” the frontiers ofM(X )+ at an infinite
distance from any point that lies strictly inside.

Consider a strongly convex function h on Rp+ ×X p, we define the Bregman divergence associated to h
as follows: for two pairs (W1,T1) and (W2,T2) in Rp+ ×X p, we denote:

Dh((W1,T1), (W2,T2)) = h(W1,T1)− h(W2,T2)− ⟨∇h(W2,T2), (W1,T1)− (W2,T2)⟩ . (2.1)

The Bregman divergence Dh is then used to define the MD with the following variational characterisation

(Wk+1,Tk+1) = arg min
(W,T)

{〈
∇F (Wk ,Tk), (W,T)−(Wk ,Tk)

〉
+
1

κ
Dh
(
(W,T), (Wk+1,Tk+1)

)}
, (2.2)

where κ > 0 is the gradient step size.

2.1.2 A conic descent

In this contribution, we will consider the entropy function Ent on {R+}p as:

Ent(W) :=

p∑
j=1

ωj log(ωj) (2.3)

It induces the Bregman divergence defined on the set of positive weights as

DEnt(W
1,W2) =

p∑
j=1

ω1j

(
ω2j
ω1j
− 1− log

ω2j
ω1j

)
. (2.4)

We then define the global divergence on the set Rp+ ×X p, as

∆α,η((W
1,T1), (W2,T2)) :=

1

α
DEnt(W

1,W2) +
1

η
DConic((W

1,T1), (W2,T2)) , (2.5)

where DConic((W1,T1), (W2,T2)) :=

p∑
j=1

ω1j ∥t1j − t2j ∥2 . (2.6)

In Equation (2.5) above, the parameter α > 0 is the gradient step size for the weights update and η > 0
for the positions updates. This global divergence ∆α,η is used to compute the gradient descent updates
thanks to the variational formulation (2.2). We incorporate the term DConic with the specific intention of
aligning it with the gradient updates associated with Conic Particle Gradient Descent (CPGD), as presented
for instance by [Chizat, 2022, Section 2.2].

Remark 2.1 (The conic metric...). We recall that in the CPGD framework [Chizat, 2022, Section 2.2], the
set of particles (ω, t) ∈ R+×X is equipped with the Riemannian metric defined by (1/2)∇2ω+(ω/2)∥∇t∥2
where (∇ω,∇t) ∈ R × T(ω,t)(X ) is a tangent vector at point (ω, t). As displayed below, we recognize a
“conic” metric where two given fixed points t1, t2 of X gets linearly closer as

√
ω goes to zero.

√
ω

t1

t2

Then a mirror retraction is applied to ω (see Chizat [2022][Definition 2.3]), corresponding to the Bregman
divergence term DEnt in our variational formulation. We notice that the term DConic comes from the latter
conic metric.
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Remark 2.2 (...is not a Bregman divergence). It is noteworthy thatDConic does not conform to the definition
of a Bregman divergence, as outlined in Definition (2.1). Specifically, there exists no global function h such
that DConic can be expressed in the form of Dh. This is evident, for instance, by considering the boundedness
of Bregman balls, a property that is conspicuously absent in the case of DConic. Furthermore, a direct proof
of this assertion can be established through a contradiction argument. If such a function h were to exist
for p = 1, it would imply the following relationship

h(ω1, t1)− h(ω2, t2)− ⟨∇h(ω2, t2), (ω1 − ω2, t1 − t2)) = ω1∥t1 − t2∥2 .

Then, consider t2 = 0 and observe that necessarily h(ω1, t1) = h(0, 0) + ω1∥t1∥2, by removing the linear
part that is necessarily vanishing. Subsequent straightforward calculations would lead to a contradiction,
thereby confirming the incompatibility of DConic with the Bregman divergence framework.

According to the above remark, our descent algorithm should rather be understood as a Riemannian
(stochastic) gradient descent instead of a purely mirror descent. We will keep the MD abuse of terms in
what follows as it refers essentially to the evolution of the weights and since it is the commonly used term in
machine learning with exponentially parameterized weights. Nevertheless, the difference between ∆α,η and
a Bregman divergence prevents the use of standard arguments of convergence for mirror descent algorithm.

2.2 Evaluation of the gradient and construction of a stochastic approximation

2.2.1 Algorithmic issues

Iterative algorithms based on (2.2) and (2.5) have already been at the core of theoretical investigations.
We refer for instance to Chizat [2022] among others. The latter investigates an algorithm that requires
some frequent calls to the gradient ∇F of the objective F defined in (1.9). This gradient can be related
to the Fréchet differential function t 7→ J ′ν(t) of J(.) at point ν ∈ M(X )+ and its gradient ∇tJ ′ν . The
Fréchet differential J ′ν is defined through the following first order Taylor expansion:

∀ν ∈M(X )+, ν + σ ∈M(X )+ J(ν + σ)− J(ν) = ⟨J ′ν , σ⟩M(X )⋆,M(X ) + q(σ) , (2.7)

where J ′ν is the Fréchet gradient and q is a second order term. We refer to Proposition B.1 for details.
According to Proposition B.3, for any t ∈ X , we have by Equation (B.3) that, given ν =

∑p
j=1 ωjδtj ,

J ′ν(t) =

p∑
j=1

ωj⟨ϕt , ϕtj ⟩H − ⟨ϕt , y⟩H + λ . (2.8)

The computation of these functions is time-consuming for the three reasons listed below. For each of these
challenges, we outline our strategy to address them, and we introduce three notation—namely, the three
random variables U, V , and T—which will be elaborated upon in the subsequent section. In Section 3.1,
we will provide a concrete example illustrating this phenomenon.

Kernel evaluation: random variable U for Random Fourier feature strategy Firstly, it is important
to note that these functions may necessitate integral approximations due to their lack of closed-form
expressions. For instance, the computation of J ′ν(t) within each iteration of a gradient descent algorithm
involves multiple evaluations of the kernel K(t, t ′), where K(t, t ′) is defined in Equation (1.8). In many
cases, these evaluations rely on non-explicit integrals, posing computational challenges.

To circumvent this issue, we will employ a Random Fourier feature strategy. This strategy aims to
approximate the kernel K by using a low-rank random kernel, achieved by evaluating the integral defining
the kernel through independent Monte Carlo sampling.

Large samples: random variable V for picking a data sample at random A second strategy is to
employ stochastic gradient computation with batch sub-sampling, which entails selecting a single data point
at random - a fundamental component of various stochastic algorithms. Within our framework, this can
be realized by utilizing the observation vector y . It is worth emphasizing that in specific scenarios, the
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observed signal y can itself be a random variable. For instance, consider the case where y := ΨN(X), with
ΨN : R

N → H representing a bounded linear mapping and X = (x1, . . . , xN) consisting of N i.i.d. samples
drawn from a probability measure ρ.

In such cases, it becomes feasible to generate an unbiased stochastic version of y by randomly selecting
a single or a mini-batch data sample. Moreover, even if y is deterministic or does not match the aforemen-
tioned identity y := ΨN(X), it is always possible to employ a similar strategy as described above (Random
Fourier feature) to approximate ⟨ϕt , y⟩H itself. Certainly, note that the unbiased stochastic version of y
and the low-rank random kernel approximation of ⟨ϕt , y⟩H should be jointly considered whenever possible.

Many particles: random variable T for picking a particle at random The necessity for a large number of
particles to attain convergence guarantees increases exponentially with the dimension d of X . Consequently,
it may become impractical to update all particles during each gradient step.

As a final ingredient, we opt to update the weight and position of a particle or a mini-batch of particles,
selected randomly, as a mean to mitigate this challenge.

2.2.2 Stochastic approximation of the gradient

We provide in this paragraph a general framework allowing the construction of the stochastic conic gradient
particle algorithm we are studying. Specific examples are discussed in Section 3 below.

The formulation of a stochastic approximation for the gradient ∇F necessitates certain general as-
sumptions, which are outlined below. Of particular significance is the introduction of a random variable
Z = (T, U, V ), which serves as a way to alleviate the computational complexity associated with evaluating
the variational formulation of the gradient descent step (2.2).

Assumption (A1). There exists a pair of random variables (U, V ) (not necessarily independent) such
that, for any t, t ′ ∈ X ,

⟨ϕt , ϕt ′⟩H = EUgt,t ′(U) and ⟨ϕt , y⟩H = EV ht(V ) , (A1)

for some explicit bounded functions g and h.

The latter assumption allows for a stochastic approximation of the functional J ′ν . It exactly corresponds
to what happens in Equation (3.11) below for the mixture model. Indeed, if we define a random variable T
with distribution ν/ν(X ) (assumed non-negative w.l.o.g as discussed in (1.7)), sampled independently from
(U, V ), we then introduce:

J ′ν(t, Z) := ∥ν∥TV gt,T (U)− ht(V ) + λ where Z := (T, U, V ) . (2.9)

According to (A1), we can write that

J ′ν(t, Z) := J
′
ν(t) + ξν(t, Z) with EZξν(t, Z) = 0 ∀t ∈ X . (2.10)

We can construct a similar stochastic approximation for the gradient (w.r.t. the position parameter) of the
functional J ′ν . First remark that

∇tJ ′ν(t) =
p∑
j=1

ωj∇t⟨ϕt , ϕtj ⟩H −∇t⟨ϕt , y⟩H .

The following assumption allows the commutativity between derivation and expectation and is satisfied in
many situations, including batch or mini-batch strategies and smooth integral computations. The associated
term in the mixture model is (3.12) and its stochastic counterpart is (3.15).

Assumption (A2). The couple (U, V ) and the functions g, h introduced in Assumption (A1) satisfy

∇tEUgt,t ′(U) = EU∇tgt,t ′(U) and ∇tEV ht(V ) = EV∇tht(V ) , (A2)

for any t, t ′ ∈ X and g and h have bounded derivatives.
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Algorithm 1 Stochastic & Random Feature Conic Particle Gradient Descent (FastPart)

Require: Constant learning rates (α, η), Initialization (W0,T0); ▷ Weights: Wk and Positions: Tk

1: for k = 1, . . . , K do ▷ K gradient steps
2: Set νk ←− ν(Wk ,Tk); ▷ Particles
3: Sample Zk+1 ←− (T k+1, Uk+1, V k+1); ▷ Stochastic variables
4: Compute J ′νk (T

k , Zk+1) as defined by (2.9); ▷ Stochastic weights gradient
5: Compute Dνk (T

k , Zk+1) as defined by (2.11); ▷ Stochastic positions gradient
6: Compute

dk+1 ←− (J ′νk (T
k , Zk+1),Wk ⊙Dνk (Tk , Zk+1))

where u ⊙ v denotes the vector (uivi)i ; ▷ Stochastic Conic Particle Gradient (see Proposition B.3)
7: Update the weights and positions with

(Wk+1,Tk+1) := arg min
(W,T)

⟨dk+1, (W,T)− (Wk ,Tk)⟩+ ∆α,η
(
(W,T), (Wk ,Tk)

)
, (2.13)

with ∆α,η given by (2.5). ▷ Mirror descent
8: end for

Then, introduce
Dν(t, Z) := ∥ν∥TV∇tgt,T (U)−∇tht(V ) , (2.11)

where Z = (T, U, V ) still denotes the same variable as above. We can then observe that

Dν(t, Z) := ∇tJ ′ν(t) + ζν(t, Z) with EZζν(t, Z) = 0 ∀t ∈ X , (2.12)

where we have used Assumptions (A1) and (A2).

Lemma B.1 provides a concrete and uniform upper bound on J ′ν for any ν ∈M(X )+. From this remark,
the boundedness of the functions g and f is indeed a reasonable assumption within this context.

Furthermore, in addition to the conclusions presented in Equations (2.10) and (2.12), that establish
unbiased estimations of J ′ν and ∇tJ ′ν , it is imperative to highlight that our assumptions (A1) and (A2) also
result in almost sure upper bounds on |J ′ν(., Z)| and ∥Dν(., Z)∥ (for more comprehensive details, we refer
to Lemma B.1 and Proposition C.1 ).

2.2.3 Stochastic conic particle gradient descent (FastPart)

With all these essential components in place, we are now prepared to construct our algorithm. The fun-
damental concept behind this approach is to substitute the deterministic gradient ∇F of F in the mirror
descent (2.2) with its stochastic counterpart, as derived from the stochastic gradients on weights (2.9)
and positions (2.11) under Assumptions (A1) and (A2). In Algorithm 1, we introduce our stochastic opti-
misation method. This algorithm is defined through the utilization of stochastic, unbiased realizations, as
outlined in the preceding assumptions.

Mirror descent updates An important remark for the tractability of the Stochastic CPGD is that Equa-
tion (2.13) may be made explicit and simply corresponds to the following updates of the weights:

∀j ∈ {1, . . . , p} , ωk+1j = ωkj e
−αJ ′νk (t

k
j ,Z

k+1) . (2.14)

In a similar way, it may be verified that the positions are updated as follows:

Tk+1 = Tk − ηDνk (Tk , Zk+1) (2.15)

Properties In what follows, we will study the properties of Algorithm 1 when the number K of iterations
becomes large, and will establish some convergence and reconstruction properties when the several param-
eters involved in the method are correctly tuned (learning rates α and η, number of particles p, and number
of iterations K).
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3 Some examples from Unsupervised learning and Signal processing

3.1 Mixture Models (M.M.)

3.1.1 Introduction

For the sake of clarity, we discuss briefly in this section the specific case of statistical mixture models.
They are a class of statistical models that can be used for various purposes such as inference, testing, and
modeling, have garnered significant attention in recent years due to their versatility and simplicity. However,
the estimation of mixture models remains a complex task, with many aspects of the process not yet fully
understood. The Expectation-Maximization (E.M.) algorithm, introduced by Dempster et al. [1977], and
its subsequent generalization to stochastic variants in Delyon et al. [1999], have played a crucial role in
the development of M.M.. Notably, the E.M. algorithm has been reinterpreted on exponential families as
a descent algorithm with a surrogate in Kunstner et al. [2021], which has led to a renewed interest in
M.M. within the machine learning and optimisation communities. Our work is also related to preliminary
experiments conducted in De Castro et al. [2021], which employed a deterministic version of particle gradient
descent. These experiments demonstrated the potential of using such methods in the context of M.M.,
and have inspired further research in this area. While M.M. may appear straightforward at first glance, their
estimation poses significant challenges. However, recent advances in the field, including the reinterpretation
of the EM algorithm and the use of descent algorithms with surrogates, have reignited interest in these
models and their potential applications.

In this setting, the data X = (x1, . . . , xN) are i.i.d. random variables having a density ρ in Rd (w.r.t.
the Lebesgue measure) verifying:

ρ = θ ⋆ µ̄ =

s̄∑
j=1

ω̄jθt̄j with µ̄ :=
s̄∑
j=1

ω̄jδt̄j ,

where µ̄ is an unknown mixing distribution, θ is a known even density on Rd and θt(·) = θ(t − ·). In the
expression above, the symbol ⋆ denotes the convolution product. The goal in this context is to recover the
target µ̄ and/or the corresponding weights W := (ω̄1, . . . , ω̄s̄) and positions T := (t̄1, . . . , t̄s̄).

3.1.2 Model specification

Following De Castro et al. [2021], we consider the Hilbert space H defined as the RKHS associated to the
sincm kernel, denoted by γm, for some bandwidth parameter m and leading to

H :=
{
f : Rd → R : ∥f ∥2H =

∫
Rd

|F [f ](t)|2

F [γm](t)
dt < +∞

}
with F [γm] = 1[−m;m]d ,

where F is the Fourier transform defined as

∀s ∈ Rd , ∀f ∈ H , F [f ](s) :=
∫
Rd
f (t)e−i⟨s,t⟩dt,

and i refers to the complex number. The inner product associated to the space H hence verifies

∀f , g ∈ H , ⟨f , g⟩H = R
(∫
[−m;m]d

F [f ](t)×F [g](t)dt
)
, (3.1)

where R(z) denotes the real part of a complex number z . As in De Castro et al. [2021], we embed the
sample X and the density ρ in the same Hilbert space H taking a convolution by the sincm kernel. It yields

y = ΨN(X) :=
1

N

N∑
i=1

γm(xi − ·) and ȳ := EX [y ] = (γm ⋆ θ) ⋆ µ̄ =
s̄∑
j=1

ω̄j(γm ⋆ θ)(t̄j − ·) .

We uncover that the feature map (1.1) and the measure embedding (1.3) are given by

ϕt(·) := (γm ⋆ θ)(t − ·) and Φ(µ) := (γm ⋆ θ) ⋆ µ .
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Note that the observation y ∈ H corresponds to the non-parametric kernel estimator of ȳ = Φ(µ̄) based
of the sample X. For the sake of simplicity we omit the dependency with the bandwidth m as we are only
interested in the optimisation problem.

3.1.3 Gradients

For any µ ∈ M(Rd), the observation y is compared to Φ(µ) = (γ ⋆ θ) ⋆ µ inside the criterion J(µ). A
direct application of Proposition B.1 leads to

J ′ν = Φ
⋆(Φ(ν)− y) + λ = (γ ⋆ θ) ⋆ ((γ ⋆ θ) ⋆ ν − y) + λ ,

One can check that, for any t ∈ Rd ,

J ′ν(t) =

∫
Rd
θt(s)(Φ(ν)− y)(s)ds + λ = ⟨ϕt ,Φ(ν)− y⟩H + λ .

The latter formula can be re-written as

J ′ν(t) = ⟨ϕt ,Φ(ν)⟩H − ⟨ϕt , y⟩H + λ =
p∑
j=1

ωj⟨ϕt , ϕtj ⟩H − ⟨ϕt , y⟩H + λ, (3.2)

In particular, if we denote σ = F [θ], using (3.1) and the definition of θt as a convolution, we obtain that

∀t, s ∈ Rd , F [θt ](s) = F [θ](s)e−i⟨s,t⟩ = σ(s)e−i⟨s,t⟩ ,

where σ(·) is a real valued function since θ is even. A consequence is therefore that

⟨ϕt , y⟩H =
1

N

N∑
i=1

∫
[−m,m]d
cos(⟨u, t − xi ⟩)σ(u)du and ⟨ϕt , ϕtj ⟩H =

∫
[−m;m]d
cos(⟨u, t − tj⟩)σ2(u)du .

The previous computation then shows that:

J ′ν(t) =

p∑
j=1

ωj

∫
[−m;m]d
cos(⟨u, t − tj⟩)σ2(u)du −

1

N

N∑
i=1

∫
[−m,m]d
cos(⟨u, t − xi ⟩)σ(u)du + λ . (3.3)

3.1.4 Assumptions (A0), (A1) and (A2)

We can identify the g and h functions appearing in Assumptions (A1) and (A2). It holds

gt,t ′(u) := cos(⟨u, t − t ′⟩)σ(u)1{u∈[−m;m]d} (3.4)

ht(u, v
′) := cos(⟨u, t − v ′⟩)1{u∈[−m;m]d} . (3.5)

Now, observe that ∥σ∥∞ ≤ ∥θ∥1 = 1, hence both functions are bounded and Assumption (A1) is satisfied.
Using the dominated convergence theorem for the bounded gradients

∇tgt,t ′(u) = u sin(⟨u, t − t ′⟩)σ(u)1{u∈[−m;m]d} (3.6)

∇tht(u, v ′) = u sin(⟨u, t − v ′⟩)1{u∈[−m;m]d} , (3.7)

one can check that Assumption (A2) is satisfied.
Using the dominated convergence theorem and ∥ϕt − ϕs∥2H =

∫
[−m;m]d |e

−i⟨u,t⟩ − e−i⟨u,s⟩|2σ(u)du, one
can prove that Assumption (A0) is satisfied.
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3.1.5 Stochastic counterpart

Remark from (3.3) that J ′ν is obtained through some integral computations. Given ν = ν(W,T), we
introduce a random variable Z = (T, U, V ) built as follows. Consider three independent random variables
given by

T ∼
ν

∥ν∥TV
, V ′ ∼

1

N

N∑
i=1

δXi , and U ∼ σ , (3.8)

where ν is assumed nonnegative wlog as discussed in (1.7), hence ν/∥ν∥TV is a discrete probability measure.
We then define V := (U, V ′) and

J ′ν,t(Z) = ∥ν∥TV cos(⟨U, t − T ⟩)σ(U)1{U∈[−m;m]d} − cos(⟨U, t − V ′⟩)1{U∈[−m;m]d} + λ , (3.9)

= ∥ν∥TVgt,T (U)− ht(V ) + λ . (3.10)

and we uncover (2.9). According to (3.2) and (3.8), we can verify that once ν is fixed, J ′ν,t(Z) is an
unbiased estimation of J ′ν and we can observe that that there exists a random variable ξν(t, Z) such that

J ′ν,t(Z) = J
′
ν(t) + ξν(t, Z) with EZ [ξν(t, Z)] = 0 . (3.11)

A same remark occurs for the gradient of J ′ν since for any t ∈ Rd ,

∇tJ ′ν(t) =
p∑
j=1

ωj

∫
[−m;m]d
u sin(⟨u, t − tj⟩)σ2(u)du −

1

N

N∑
i=1

∫
[−m,m]d
u sin(⟨u, t − xi ⟩)σ(u)du . (3.12)

We shall then define

Dν,t(Z) = ∥ν∥TVU sin(⟨U, t − T ⟩)σ(U)1{U∈[−m;m]d} − U sin(⟨U, t − V ′⟩)1{U∈[−m;m]d} , (3.13)

= ∥ν∥TV∇tgt,T (U)−∇tht(V ) . (3.14)

and we uncover (2.11). We get that

Dν,t(Z) = ∇tJ ′ν(t) + ζν(t, Z) with EZ [ζν(t, Z)] = 0, (3.15)

for some centered random vector ζν(t, Z).
Therefore, in this example of mixture deconvolution, our situation perfectly fits the stochastic gradient

setting where we can easily access some unbiased random realization of the true gradient of F for any
position of a current algorithm ν = ν(W,T).

3.2 Interlude, a comparison with sketching

In the field of machine learning, replacing the computation of the complex integrals present in Equation (3.3)
is commonly referred to as sketching [Keriven et al., 2018]. The key distinction between our approach and
sketching-type methods lies in how the frequencies (Uk) are sampled. In the sketching approach, the fre-
quencies are initially sampled only once at the beginning of the algorithm. Consequently, the gradients J ′ν(t)
and ∇tJ ′ν(t) are approximated using a Monte-Carlo version of (3.3) that employs the same Monte-Carlo
sample (Uk) along the descent and the size of Uk needs to be large to guarantee a good Monte-Carlo
approximation of the several integrals involved in the iterations of the method. Therefore, the sketching
strategy of [Keriven et al., 2018] leads to costly iterations as the size of (Uk) is not negligible. In contrast,
our method involves sampling a unique Monte-Carlo sample Uk at each step k , and we replace the integrals
of (3.3) with an evaluation at sample Uk (or we could also adopt a mini-batch strategy). It is important to
note that in our case, the number of frequencies (Uk) is equal to the number of steps K (or times the size
of mini-batch), whereas in sketching approaches, the number of frequencies is directly proportional to the
number of parameters to be estimated, up to logarithmic factors. For more information on this topic, refer
to Keriven et al. [2018].
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3.3 Sparse deconvolution with positive definite kernel

3.3.1 Introduction

The statistical analysis of the ℓ1-regularization in the space of measures was initiated by Donoho [Donoho,
1992] and then investigated by Gamboa and Gassiat [1996]. Recently, this problem has attracted a lot of
attention in the “Super-Resolution” community and its companion formulation in “Line spectral estimation”.
In the Super-Resolution frame, one aims at recovering fine scale details of an image from few low frequency
measurements, ideally the observation is given by a low-pass filter. The novelty of this body of work lies in
new theoretical guarantees of the ℓ1-minimization over the space of discrete measures in a gridless manner,
referred to as “off-the-grid” methods. Some recent work on this topic can be found in Bredies and Pikkarainen
[2013], Tang et al. [2013], Candès and Fernandez-Granda [2014, 2013], Fernandez-Granda [2013], Duval
and Peyré [2015], De Castro and Gamboa [2012], Azais et al. [2015]. More precisely, pioneering work can be
found in Bredies and Pikkarainen [2013], which treats of inverse problems on the space of Radon measures
and Candès and Fernandez-Granda [2014], which investigates the Super-Resolution problem via Semi-
Definite Programming and the ground breaking construction of a “dual certificate”. Exact Reconstruction
property (in the noiseless case), minimax prediction and localization (in the noisy case) have been performed
using the “Beurling Lasso” estimator (B) introduced in Azais et al. [2015] and also studied in Tang et al.
[2013], Fernandez-Granda [2013], Tang et al. [2015] which minimizes the total variation norm over complex
Borel measures. Noise robustness (as the noise level tends to zero) has been investigated in the captivating
paper Duval and Peyré [2015]. A sketching formulation and a construction of dual certificates with respect
to the Fisher metric has been pioneering studied in Poon et al. [2021].

3.3.2 Model specification

In sparse deconvolution, the convolution ȳ of some measure µ̄ with a C1-continuous positive definite
function ϕ is given by

∀t ∈ X , ȳ(t) =

s̄∑
j=1

ω̄jϕ(t − t̄j) ,

and we observe y , a noisy version of ȳ , given by y = ȳ + e, where e : X → R is some function. The
feature map (1.1) is the convolution kernel and the measure embedding (1.3) are given by

ϕt(·) := ϕ(t − ·) and Φ(µ) := ϕ ⋆ µ .

Recall that ϕ is a positive definite function. We assume that ϕ is defined on the d-Torus Td or on Rd , and
we further assume that ϕ(0) = 1, without log of generality on this latter point. By Bochner’s theorem,
there exists a probability measure σ, referred to as the spectral measure of ϕ, such that

∀t, s ∈ X , F [ϕt ](s) = σ(s)e−i⟨s,t⟩ . (3.16)

We consider the following assumption.

Assumption (Aconv). The spectral measure of ϕ has compact support.

Super Resolution In this case, X = Td and σ =
∑
u∈Zd σuδu is a probability measure on Zd . When σ is

the uniform measure on [−fc , fc ]d , with fc ≥ 1, we uncover the Super-Resolution framework and ϕ is the
Dirichlet kernel. For latter use, we denote∫

e−i⟨u,t−s⟩dσ(u) :=
∑
u∈Zd

σue
−i⟨u,t−s⟩ .

Continuous sampling Fourier transform In this case, X is a compact set of Rd and σ is a probability
measure on Rd . For latter use, we denote∫

e−i⟨u,t−s⟩dσ(u) :=

∫
Rd
e−i⟨u,t−s⟩dσ(u) .
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By Lemma A.1, we can assume thatH is the RKHS associated with the kernel defined by ϕ. In particular,

∀t ∈ X , ⟨ϕt , ϕtj ⟩H = ϕtj (t) and ⟨ϕt , y⟩H = y(t). (3.17)

About the noise term and the regularity of the observation Using the projection Π and the isometry ℶ
of Lemma A.1, we can assume without loss of generality that the noise term e belongs to H, the RKHS
associated with ϕ. By Assumption (Aconv), it can shown that ϕ is smooth, hence all the elements of H are
smooth and so is e. Since X is compact, we deduce that y and its gradient are bounded.

3.3.3 Gradients

For any µ ∈ M(Rd), the observation y is compared to Φ(µ) = ϕ ⋆ µ inside the criterion J(µ). A direct
application of Proposition B.1 leads to J ′ν = Φ

⋆(Φ(ν)− y) + λ, and one can check that, for any t ∈ Rd ,

J ′ν(t) = ⟨ϕt ,Φ(ν)− y⟩H + λ .

The latter formula can be re-written as

J ′ν(t) = ⟨ϕt ,Φ(ν)⟩H − ⟨ϕt , y⟩H + λ =
p∑
j=1

ωj⟨ϕt , ϕtj ⟩H − ⟨ϕt , y⟩H + λ . (3.18)

By (3.16) and (3.17), it yields that

J ′ν(t) =

p∑
j=1

ωj

∫
e−i⟨u,t−tj ⟩dσ(u)− y(t) + λ . (3.19)

3.3.4 Assumptions

We can identify the g and h functions appearing in Assumptions (A1) and (A2). It holds

gt,t ′(u) := e
−i⟨u,t−t ′⟩ (3.20)

ht := y(t) , (3.21)

which are bounded functions and Assumption (A1) is satisfied. Using the dominated convergence theorem
for the bounded gradients

∇tgt,t ′(u) := −iue−i⟨u,t−t
′⟩1{u∈Supp(σ)} (3.22)

∇tht := ∇y(t) , (3.23)

where Supp(σ) denotes the support of the spectral measure σ. One can check that Assumption (A2) is
satisfied under Assumption (Aconv).

3.3.5 Stochastic counterpart

Given ν = ν(W,T), we introduce a random variable Z = (T, U) built as follows (there is no V random
variable in this case). Consider two independent random variables given by

T ∼
ν

∥ν∥TV
and U ∼ σ , (3.24)

where ν assumed nonnegative wlog as discussed in (1.7), hence ν/∥ν∥TV is a discrete probability measure.
We then define

J ′ν,t(Z) = ∥ν∥TVe−i⟨U,t−T ⟩ − y(t) + λ , (3.25)

= ∥ν∥TVgt,T (U)− ht(V ) + λ , (3.26)
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writing, with a slight abuse of notation, ht(V ) = y(t). We hence uncover (2.9). According to (3.18) and
(3.24), we can verify that once ν is fixed, J ′ν,t(Z) is an unbiased estimation of J ′ν and we can observe that
that there exists a random variable ξν(t, Z) such that

J ′ν,t(Z) = J
′
ν(t) + ξν(t, Z) with EZ [ξν(t, Z)] = 0 . (3.27)

A same remark occurs for the gradient of J ′ν since for any t ∈ Rd ,

∇tJ ′ν(t) = −i
p∑
j=1

ωj

∫
ue−i⟨u,t−tj ⟩dσ(u)−∇y(t) . (3.28)

We shall then define

Dν,t(Z) = −i∥ν∥TVUe−i⟨u,t−T ⟩ −∇y(t) , (3.29)

= ∥ν∥TV∇tgt,T (U)−∇tht(V ) . (3.30)

and we uncover (2.11). We get that

Dν,t(Z) = ∇tJ ′ν(t) + ζν(t, Z) with EZ [ζν(t, Z)] = 0, (3.31)

for some centered random vector ζν(t, Z).

4 Main results

In this section, we state our main results related to the behaviour of Algorithm 1 when the number of
iterations become large. The starting point of our analysis is Proposition B.1. Below, we denote by νk the
measure of particles produced at step k by Algorithm 1. Our main contributions are threefold:

• A control on the total-variation norm of the measures νk along the different iterations.

• A global minimisation result.

• A local investigation on the evolution of J ′νk and its gradient.

We emphasize that these results are stated in a finite horizon setting and are therefore non-asymptotic in
terms of K.

Here and below, we will require additional notation. We introduce

∥ϕ∥H = inf
s,t∈X

⟨ϕt , ϕs⟩H, ∥ϕ∥∞,H = sup
t∈X
∥ϕt∥H, ∥g∥Inf = inf

s,t,u
gt,s(u),

∥g∥∞ := sup
t,s,u
|gt,s(u)| and ∥h∥∞ := sup

t,v
|ht(v)|,

where the functions g and h have been introduced in Section 2.2.2.

4.1 Boundedness of the sequence

The next result establishes a preliminary upper bound of the total variation norm of (νk)k≥1 that holds
uniformly over the iterations. It will be the key to obtain the convergence towards minimizers.

Proposition 4.1. Assume that ∥g∥Inf > 0. The algorithm is initialized with a measure ν0 such that
∥ν0∥TV ≤ R0 where

R0 =
∥h∥∞ + 2C1
∥g∥Inf

(1 + α(∥h∥∞ + 2C1)) and C1 = max(∥g∥∞, ∥h∥∞ + λ). (4.1)

Assume that α is chosen such that:
α ≤

1

2C1(R0 + 1)2
. (4.2)

Then, for any k ∈ N, we have
∥νk∥TV ≤ R0.
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Provided the mass of the measure ν0 at the initialization step is not too large, ∥νk∥TV remains bounded
along the iterations of the algorithm. We stress that the control is deterministic although we consider a
stochastic algorithm. The main ingredient of the proof is to show that J ′νk (together with its stochastic
counterpart) can be related, up to some constants, to ∥νk∥TV . The update displayed in Algorithm 1 then
allows to conclude. The complete proof is postponed to Section 6.1.

The assumption ∥g∥Inf > 0 appears to be quite reasonable as soon as ∥ϕ∥H>0. For any s, t ∈ X , the
variable gs,t(U) is indeed a stochastic approximation of ⟨ϕs , ϕt⟩H. We get that ∥g∥Inf > 0 with common
assumptions on the construction of this approximation.

Remark 4.1. The inequality displayed in (4.2) implicitely provides a condition on the parameter α. Indeed,
considering for instance the specific case of Gaussian mixtures, we can notice that, provided X = [0, 1]d ,

∥θ∥H =

[
1

2
√
π
e−1/4

]d
.

Assuming for instance that ∥g∥Inf ≥ C∥θ∥H for some constant C ∈]0, 1[, Inequality (4.2) hence holds as
soon as α ≤ η̄d for some positive η̄ ∈]0, 1[.

4.2 Global minimization with swarm stochastic optimisation

Consider µ⋆ a measure that globally minimizes J, obtained from Theorem 1.1. The aim of this section is
to show that our algorithm can produce a solution close to µ⋆ (in a sense made precise in Theorem 4.1
below), under some specific conditions. Given a fixed number K of iterations of Algorithm 1, we define the
Cesaro average of our sequence (νk)k≥0 by:

ν̄K =
1

K + 1

K∑
k=0

νk . (4.3)

We then obtain the following global minimization result whose proof is displayed in Section 6.2.

Theorem 4.1. Consider an integer K and assume that the learning rates are chosen as:

α =

√
d∥µ⋆∥TV
R30K

and η =

√
dR0

K3∥µ⋆∥TV
,

where R0 is introduced (4.1). Assume furthermore that K is picked large enough so that α satisfies (4.2),

and assume that the measure ν0 is uniformly distributed over a uniform grid of step-size δ = 2
√

d
∥µ⋆∥TVKM ,

then:

E [J(ν̄K)− J(µ⋆)] ≤ C

√
d∥µ⋆∥TVR30

K

[
log(d∥µ⋆∥TVR30K) +

log(|X |)
d

]
,

for some positive constant C depending only on ∥ϕ∥∞,H, ∥y∥H, ∥ð′∥H, ∥h′∥H.

A careful inspection of the previous upper bound shows that to obtain an ϵ approximation with our
Cesaro averaged measure ν̄K , (while removing the effect of the log term) we need to choose K as:

Kε = dR
3
0∥µ⋆∥TVε−2.

Then, the grid step-size is then of the order δε given by:

δε =
ε

∥µ⋆∥TV
.

We finally observe that the number of particles p needed to obtain an ε approximation is then of the order:

pε = |X |∥µ⋆∥dTVε−d .

Hence, if the number of iteration varies polynomially in terms of ε−2, we observe the degradation of the
number of particles needed to well approximate any distribution over X in terms of the dimension d .
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Figure 1: Three 1-D Gaussian mixture distributions to be learnt by Supermix and Stochastic Conic Particle
Gradient Descent.

4.3 Local minimization with swarm stochastic optimisation

To conclude this contribution, we state a complementary result that quantifies the behaviour of Algorithm 1
when the number of particles used is not “as large” as the one indicated in Theorem 4.1.

Theorem 4.2. Assume that α = η = 1/
√
K is chosen such that Proposition 4.1 holds. If τK refers to a

random variable uniformly distributed over {1, . . . , K}, independent from (νk)k≥1, then:

E
[
∥J ′ντK ∥

2
ντK
+ ∥∇J ′ντK ∥

2
ντK

]
≤
J(ν0) + C(1 + R40)√

K
,

for some constant C that depends on ∥ϕ∥Lip.

Even though weaker than Theorem 4.1, the previous “local” result deserves several comments as it raises
some meaningful and challenging questions.

The previous result is a strong indicator of the convergence of our swarm stochastic particle algorithms
towards a minimizer of J. Indeed, Proposition B.2 stated in Appendix B states that any minimizer µ⋆ of
J necessarily satisfies J ′µ⋆ = 0 on the support of µ⋆ and J ′µ⋆ ≥ 0 everywhere, which implicitely means that
∇J ′µ⋆ = 0 on the support of µ⋆ otherwise the previous positivity condition would not hold. In Theorem 4.2,
we obtain that ∥J ′νk∥

2
ντK

and ∥∇J ′νk∥
2
ντK

become arbitrarily small when k becomes larger and larger, which
is perfectly in accordance with the previous conditions. Nevertheless, the nature of our algorithm does not
permit to push further our conclusions, especially about the positivity of J ′νk everywhere (and not only on
the support of νk). In particular, to extend our conclusion towards a global minimization result, we need to
be able to address a kind of “density of the support”, which is absolutely unattainable in our present analysis
without multiplying the number of particles all over the state space, which is in some sense what is done in
Theorem 4.1.

5 Numerical experiments on FastPart

5.1 Experimental setup

In this short section, we develop a brief numerical study, that may be seen as a proof of concept, to assess
the efficiency of our stochastic gradient descent, when using some sketched randomized evaluations of J ′ν ,
with the help of sampling involved in Equations (3.3) and (3.8).1

For this purpose, we consider the Supermix problem introduced in De Castro et al. [2021], which is
described in Section 3.1, when considering a mixture of Gaussian densities. We consider three toy situations
in 1D. Figure 1 represents the mixture densities considered in this study, that contains for two of them 3
components, and for the last one 5 components.

1Our simulations greatly benefit from the previous work of Nicolas Jouvin https://nicolasjouvin.github.io/, while the
original numerical Python code is made available here https://forgemia.inra.fr/njouvin/particle_blasso.
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5.2 Benchmark

Our experimental setup is essentially built with the help of three versions of the Conic Particle Gradient
Descent.

• The first method we will use is the deterministic CPGD introduced in Chizat [2022], implemented by
N. Jouvin https://forgemia.inra.fr/njouvin/particle_blasso. This method depends on the
number of particles we use, the learning rate that encodes the gain of the algorithm at each iteration,
and the number of iterations.

• The second method is the Stochastic-CPGD introduced in this work. Our method depends on the
same previous set of parameters (number of particles, learning rate, number of iterations) and of the
batch size of the data we sample per iteration and the number of randomly sketched frequencies.

• The last method is simply the Cesaro averaged counterpart of our Stochastic-CPGD, but this method
raises some technical computational difficulties since averaging a sequence of measures seriously
complicates the final estimates ν̄K = 1

K+1

∑K
k=0 νk . To overcome this difficulty, we have chosen to

use instead the measures supported by the averaged means all along the trajectory of the S-CPGD,
and weighted by the averaged weights of the S-CPGD. For this purpose, we introduce

∀j ∈ {1, . . . , p} ∀K ≥ 0 t̄Kj =
1

K + 1

K∑
k=0

tkj and ω̄Kj =
1

K + 1

K∑
k=0

ωkj

and we approximate ν̄K with the help of the sequence ˆ̄νK , defined by:

ˆ̄νK =

p∑
j=1

ω̄Kj δt̄Kj
. (5.1)

Again, this sequence ˆ̄νK depends on several parameters, the learning rate, the number of particles and
iterations, and the size of batches and sketches as well.

5.3 Results

Loss function: Averaging vs no averaging We show in Figure 2 the evolution of the loss function Jν over
the iterations of the algorithm. We emphasize that the complexity of the S-CPGD and of the approximated
Cesaro average are almost the same, since the sequence ˆ̄νK introduced in (5.1) is a cheap approximation
of the true Cesaro averaged sequence ν̄K .

Figure 2: Evolution of the loss (log scale) with our S-CPGD algorithm (red) and its averaged counterpart
(in blue) when using our methods on the mixture problems illustrated in Figure 1.

First, as indicated in Figure 2, we shall observe that the sequence ˆ̄νK always produces the desired
smoothing effect all over the iterations of the algorithm, while slowing a bit the decrease of the loss
function Jν over the iterations. As a consequence, it seems more appropriate to use several long-range
parallelized S-CPGD instead of a unique average thread of S-CPGD. In the same time, it may be remarked
that our sequence (ˆ̄νK)K≥1 is a rough approximation of the true Cesaro averaging that is studied in our
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paper and the numerical approximation introduced in (5.1) may not be as good as the true Cesaro sequence
(ν̄K)K≥1.

Second, as a classical phenomenon in machine learning when using stochastic approximation algorithm,
or over-parameterized neural networks, our S-CPGD commonly generates some double-descent phenomena
(see the 3 sub-figures of Figure 2) that translates some local minimizer escape of the swarm of particles.

Loss function: Averaging vs no averaging vs Deterministic Figure 3 represents the evolution of the
cost function with respect to the numerical cost which is a far better indicator than the number of iterations
of the algorithm in our case since the S-CPGD algorithm is designed to be much more cheaper than the
deterministic CPGD. Figure 3 clearly illustrates the efficiency of our method with regards to the deterministic

Figure 3: Evolution of the loss (log scale of the computational time) with our S-CPGD algorithm (red),
its averaged counterpart (in green) and the deterministic CPGD (in blue) on the mixture problem of Figure
1 with 20 particles (top) and with 50 particles (bottom). As indicated in the text, and observed with the
shift to the right of the blue curve when compared to the red one, the cost of our S-CPGD is much cheaper
than the deterministic CPGD.

one as the red curve shows that the non-averaged S-CPGD produces comparable results as those obtained
by CPGD with a significantly lower needs of computational cost: the red curve is clearly shifted on the
left when compared to the blue one. It is furthermore possible to quantitatively assess the numerical gain
produced by the S-CPGD when compared to the deterministic one: on our toy example, the deterministic
CPGD requires approximately 4 more computations to attain the same decrease of the Jν , this effect being
even amplified when the number of particles is increasing.

Loss function: Effect of the number of particles In the meantime, we observe that the loss function
benefits from a large number of particles (see the comparison between top and bottom lines of Figure 3) but
this should be tempered by the increasing number of simulations, which varies linearly with the number of
particles. We should finally observe that using a large number of particles seems to be important especially
in difficult situations (as illustrated in the right column of Figure 3 where using 50 particles instead of 20
significantly improves the loss function, which is not the case on the right column of Figure 3.

The effect of the number of particles can also be illustrated while looking at the trajectories themselves
of the particles as shown in Figure 4. We observe that the number of particles is a clear key parameter
that strongly influences the success of the method. In our example of 5 components GMM, (last example
in Figure 1), we see that a too small number of particles completely miss some components of the mixture
while using a strongly over-parameterized set of particles permit to fully recover the support of the mixing
distribution, even in the situation where some components of the mixture overlap.
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Figure 4: Trajectories of the particles of our S-CPGD algorithm in the third example of the mixture problem
of Figure 1 with 5 modes. Left: trajectories using 10 particles. Right: Same with 50 particles. The l.h.s.
shows the behaviour of S-CPGD when a too small number of particles is used. Particles concentrate around
good positions but may miss some of the important locations of the mixture. The r.h.s. demonstrates that
a sufficiently large number of particles is necessary to guarantee an exhaustive reconstruction of the mixing
distribution.

From our brief numerical study, we can conclude that both sketching and batch subsampling with a
stochastic gradient strategy appears to strongly improve the numerical cost of the Conic Particle Gradient
Descent, which permits to increase the number of particles used in the mean field approximation. We also
have shown that in some difficult inverse problem examples, a large number of particles seems necessary to
perfectly recover the solution of the optimisation problem. It appears that the problem seriously benefits
from a strong over-parametrisation, that may be handled with our cheap stochastic computing approach,
which is not the case in a reasonnable time with the deterministic CPGD.

6 Proof of the main results

6.1 Proof of Proposition 4.1

Proof. The principle of this proof is as follows. We identify two radii R and R0 such that R < R0 for which
the two following properties hold:

• If ∥νk∥TV ≤ R < R0, then ∥νk+1∥TV ≤ R0

• If R ≤ ∥νk∥TV ≤ R0, then ∥νk+1∥TV ≤ ∥νk∥TV.

We will establish these properties with a suitable choice for R0 and a related condition on α as displayed in
Proposition 4.1. The proof is divided into two steps.

Step 1: total variation norm recursion. Let k ∈ N be fixed, using an appropriate Taylor expansion, we get

∥νk+1∥TV =

p∑
j=1

ωk+1j ,

=

p∑
j=1

ωkj e
−αJ ′νk (t

k
j ,Z

k+1),

= ∥νk∥TV +
p∑
j=1

ωkj

(
e−αJ

′
νk
(tkj ,Z

k+1) − 1
)
,

= ∥νk∥TV − α
p∑
j=1

ωkj J
′
νk
(tkj , Z

k+1) +R(α, νk , Zk+1),
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where R(α, νk , Zk+1) is a remaining term whose value will be made precise later on. The last equality can
be re-written as

∥νk+1∥TV
∥νk∥TV

− 1 = −α
p∑
j=1

ω̃kj J
′
νk
(tkj , Z

k+1)︸ ︷︷ ︸
:=A1

+ ∥νk∥−1TV R(α, νk , Z
k+1)︸ ︷︷ ︸

:=A2

, (6.1)

where for any k ∈ N, ν̃k := ∥νk∥−1TVνk =
∑p

j=1 ω̃
k
j δtkj

and ω̃kj = ω
k
j /∥νk∥TV for any j ∈ {1, . . . , p}. First,

we concentrate our attention on the term A1. Using (2.9),

A1 := −α
p∑
j=1

ω̃kj J
′
νk
(tkj , Z

k+1),

= −αλ− α∥νk∥TV
∫
gt,T k+1(U

k+1)dν̃k(t) + α

∫
ht(V

k+1)dν̃k(t).

Using a rough bound, we get: ∫
ht(V

k+1)dν̃k(t) ≤ ∥h∥∞. (6.2)

where we have used ∥ν̃k∥TV = 1. Moreover,

∥νk∥TV
∫
gt,T k+1(U

k+1)dν̃k(t) = ∥νk∥TV
p∑
j=1

ω̃kj gtkj ,T k+1(U
k+1),

≥ ∥νk∥TV∥g∥Inf ,

the last term being strictly positive thanks to our assumption. We eventually get, gathering the previous
bounds

A1 ≤ −αλ− α∥g∥Inf ∥νk∥TV + α∥h∥∞
= −α [λ+ ∥g∥Inf ∥νk∥TV − ∥h∥∞] . (6.3)

Now, we turn our attention on the term A2. Recall that

A2 := ∥νk∥−1TV R(α, νk , Z
k+1),

=

p∑
j=1

ω̃kj

[
e−αJ

′
νk
(tkj ,Z

k+1) − 1 + αJ ′νk (t
k
j , Z

k+1)
]
.

Using the inequality

e−x ≤ 1− x +
x2

2
e |x | ∀x ∈ R,

we get

A2 ≤
p∑
j=1

ω̃kj
(
αJ ′νk (t

k
j , Z

k+1)
)2 × eα|J ′νk (tkj ,Zk+1)|.

According to Lemma B.1, for any l ∈ {1, . . . , p} and k ∈ N,

J ′νk (t
k
l , Z

k+1) ≤ C1(∥νk∥TV + 1) with C1 = max(∥g∥∞; ∥h∥∞ + λ).

Hence:

A2 ≤
p∑
j=1

ω̃kj (αC1(∥νk∥TV + 1))
2 × eα(C1(∥νk∥TV+1)),

≤ [αC1(∥νk∥TV + 1)]2 eαC1(∥νk∥TV+1). (6.4)
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Assume that ∥νk∥TV ≤ R0 for some R0. Gathering (6.1), (6.3) and (6.4), we obtain that:

∥νk+1∥TV
∥νk∥TV

− 1

≤ −α [λ+ ∥g∥Inf ∥νk∥TV − ∥h∥∞] + α2C21(∥νk∥TV + 1)2eαC1(∥νk∥TV+1),

= −α
[
λ+ ∥g∥Inf ∥νk∥TV −

(
∥h∥∞ + αC21(∥νk∥TV + 1)2eαC1(∥νk∥TV+1)

)]
,

≤ −α
[
λ+ ∥g∥Inf ∥νk∥TV −

(
∥h∥∞ + αC21(R0 + 1)2eαC1(R0+1)

)]
.

Step 2: calibration of R,R0 and α. We first make precise the value of the parameters involved in our bound
and then verify that the stability property holds. We define R0 and R as:

R =
∥h∥∞ + 2C1
∥g∥Inf

, R0 = R (1 + α(∥h∥∞ + 2C1)) , and α ≤
1

2C1(R0 + 1)2
,

where the constant C1 is introduced in (B.5). At this step, two different situations can occur.

• 1st case: We consider the case where ∥νk∥TV ≥ R. In such a situation, the choice of α induces that:

∥νk+1∥TV
∥νk∥TV

− 1 ≤ −α
[
λ+ ∥g∥Inf ∥νk∥TV −

(
∥h∥∞ + αC21(R0 + 1)2eαC1(R0+1)

)]
,

≤ −α
[
λ+ ∥g∥Inf ∥νk∥TV −

(
∥h∥∞ + C1e

1
2(R0+1)

)]
,

≤ −α [λ+ ∥g∥InfR − (∥h∥∞ + 2C1)] ,
≤ 0.

The last inequality induces
∥νk+1∥TV ≤ ∥νk∥TV ≤ R0.

• 2nd case: We consider the situation where ∥νk∥TV ≤ R. With the same condition on α, we use the
rough bound

∥νk+1∥TV
∥νk∥TV

− 1 ≤ −α
[
λ+ ∥g∥Inf ∥νk∥TV −

(
∥h∥∞ + αC21(R0 + 1)2eαC1(R0+1)

)]
,

≤ α(∥h∥∞ + 2C1).

This implies that

∥νk+1∥TV ≤ ∥νk∥TV (1 + α(∥h∥∞ + 2C1)),
≤ R(1 + α(∥h∥∞ + 2C1)) = R0.

Finally, we end the proof with an induction argument.

6.2 Proof of Theorem 4.1

6.2.1 The shadow sequence

Consider an integer k ≥ 0 and the map Tk+1 defined as:

∀t ∈ X Tk+1(t) = t − ηDνk (t, Zk+1), (6.5)

where (Zk+1)k≥0 is the sequence of random variables sampled in Algorithm 1 and used in Equations (2.14)
and (2.15). The sequence of maps (Tk+1)k≥0 only acts on the positions of X and is built with the random
sequence (νk)k≥1.

Using (Tk+1)k≥0, we then define the shadow sequence (νεk)k≥1 obtained through an iterative push-forward
from a given initialisation measure νϵ0 ∈M(X )+ with the sequence of maps (Tk)k≥1. More formally, we set
in a iterative way

νεk+1 = T
#
k+1(ν

ε
k) ∀k ∈ N⋆, (6.6)
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where, for any continuous function ψ,∫
X
ψdT #k+1(ν) =

∫
ψ(Tk+1(.))dν ∀ν ∈M(X ).

The measure νε0 will be defined carefully at the very end of our study. Roughly speaking, the shadow sequence
(νεk)k≥1 moves exactly like (νk)k≥1 and will share the same support, but the weights on the particles for the
sequence (νεk)k≥1 will be optimised to allow for a good approximation of µ⋆. In particular, if we decompose
the initial measure ν0 as

ν0 =

p∑
j=1

ωjδt0j ,

then we can write νε0 = ν(W
ε, t0), so that:

νε0 =

p∑
j=1

ωεj δt0j ,

for some weights (ωϵj )j=1..p that will be chosen in an appropriate way.

6.2.2 Excess risk decomposition

The starting point is Proposition B.1 that is used with ν = νk and σ = µ⋆ − νk . We write:

J(νk)− J(µ⋆) =
∫
X
J ′νkd[νk − µ

⋆]−
1

2
∥Φ(µ⋆ − νk)∥2H

=

∫
X
J ′νkd[νk − ν

ε
k ]︸ ︷︷ ︸

:= 1○

+

∫
X
J ′νkd[ν

ε
k − µ⋆]︸ ︷︷ ︸

:= 2○

−
1

2
∥Φ(µ⋆ − νk)∥2H (6.7)

where (νεk)k≥1 is the auxiliary shadow sequence of measures introduced in (6.6). First, we establish that
the mirror descent adapts the weights of (νk)k≥1 to those of the shadow sequence (νεk)k≥1. For any
µ1, µ2 ∈M(X )+, we introduce the following entropy:

H(µ1, µ2) = −
∫
X
log

(
dµ1
dµ2

)
dµ2 − ∥µ2∥TV + ∥µ1∥TV. (6.8)

The next proposition focuses on the first term of Equation (6.7).

Proposition 6.1. Term 1○ of Equation (6.7) may be decomposed as:

1○ =

∫
X
J ′νkd[νk − ν

ε
k ] =

1

α

[
H(νk , νεk)−H(νk+1, νεk+1)

]
+
1

α

p∑
j=1

ωkj

[
αJ ′νk (t

k
j ) + e

−αJ ′νk (t
k
j ,Z

k+1) − 1
]
+

p∑
j=1

ωεj ξνk (t
k
j , Z

k+1)

Proof. Since both measures νk and νεk share the same particle locations tk , we can remark that

1○ =

∫
X
J ′νkd[νk − ν

ε
k ] =

p∑
j=1

[ωkj − ωεj ]J ′νk (t
k
j ) (6.9)

We then observe from Equation (2.14) that:

ωk+1j = ωkj e
−αJ ′νk (t

k
j ,Z

k+1) ⇒ J ′νk (t
k
j , Z

k+1) = −
1

α
log

(
ωk+1j

ωkj

)
.
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Using now Equation (2.10), we observe that:

J ′νk (t
k
j ) = −

1

α
log

(
ωk+1j

ωkj

)
− ξνk (tkj , Zk+1).

We then use the previous equality in (6.9) and obtain that:

1○ =

p∑
j=1

(
ωkj J

′
νk
(tkj )− ωεj

[
−
1

α
log

(
ωk+1j

ωkj

)
− ξνk (tkj , Zk+1)

])
,

=

p∑
j=1

(
ωkj J

′
νk
(tkj ) + ω

ε
j

1

α
log

(
ωk+1j

ωkj

))
+

p∑
j=1

ωεj ξνk (t
k
j , Z

k+1)

=
1

α

p∑
j=1

(
αωkj J

′
νk
(tkj ) + ω

ε
j

[
log

(
ωk+1j

ωεj

)
− log

(
ωkj
ωεj

)])
+

p∑
j=1

ωεj ξνk (t
k
j , Z

k+1).

We use the entropy H introduced in Equation (6.8) and deduce that:

1○ =
1

α

p∑
j=1

[
αωkj J

′
νk
(tkj ) + ω

k+1
j − ωkj

]
+
H(νk , νεk)−H(νk+1, νεk+1)

α
+

p∑
j=1

ωεj ξνk (t
k
j , Z

k+1)

=
1

α

p∑
j=1

ωkj

[
αJ ′νk (t

k
j ) + e

−αJ ′νk (t
k
j ,Z

k+1) − 1
]
+
H(νk , νεk)−H(νk+1, νεk+1)

α
+

p∑
j=1

ωεj ξνk (t
k
j , Z

k+1).

We then obtain the conclusion of the proof.

Now, we study the second term of Equation (6.7), which is an “approximation” term. We essentially
follow the same methodology proposed in Chizat [2022] but we use the specificity of our model to properly
analyze this term. For this purpose, we use the BL norm (over functions) and dual norm (over measures)
introduced in Chizat [2022], defined as:

∀f : X → R ∥f ∥BL = ∥f ∥∞ + ∥f ∥Lip, (6.10)

where ∥.∥∞ refers to the supremum norm over X , ∥.∥Lip to the Lipschitz constant for f , and

∀ν ∈M(X )+ ∥ν∥∗BL = sup
∥f ∥BL≤1

∫
f dν. (6.11)

We also introduce the constant Lip(ϕ) defined as

Lip(ϕ) = sup
s,t∈X

∥ϕt − ϕs∥H
∥t − s∥X

.

Using these notation, we can propose a bound on the second term of Equation (6.7) as displayed in the
following proposition.

Proposition 6.2. The approximation term 2○ satisfies:

∀k ≥ 1 2○ =

∫
X
J ′νkd[ν

ε
k − µ⋆] ≤ Ak∥νεk − µ⋆∥∗BL a.s.

where Ak is given by:

Ak = C0(∥νk∥TV + 1) + Lip(ϕ) [∥νk∥TV ∥ϕ∥∞,H + ∥y∥H] , (6.12)

where
C0 = max(λ+ ∥ϕ∥∞,H∥y∥H; ∥ϕ∥2∞,H).
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Proof. We can immediately remark that

2○ =

∫
X
J ′νkd[ν

ε
k − µ⋆] ≤ ∥J ′νk∥BL∥ν

ε
k − µ⋆∥∗BL.

Then, according to Lemma B.1,

∥J ′νk∥BL = ∥J
′
νk
∥∞ + ∥J ′νk∥Lip ≤ C0(∥νk∥TV + 1) + ∥J

′
νk
∥Lip.

To conclude the proof, we have to propose an upper bound on ∥J ′νk∥Lip. For any s, t ∈ X we have

|J ′νk (s)− J
′
νk
(t)| =

∣∣∣∣∣∣
p∑
j=1

ωkj ⟨ϕt − ϕs , ϕtkj ⟩H − ⟨ϕt − ϕs , y⟩H

∣∣∣∣∣∣ ,
≤

p∑
j=1

ωkj ∥ϕt − ϕs∥H∥ϕtkj ∥H + ∥ϕt − ϕs∥H∥y∥H,

≤ Lip(ϕ) [∥νk∥TV ∥ϕ∥∞,H + ∥y∥H]× ∥t − s∥X .

The results is obtained by gathering the previous bounds.

We finally introduce a key term that quantifies the way where µ⋆ can be approximated by a discrete
measure. This term, denoted by Q, is defined as

Qµ⋆,ν0(τ) := inf
µ∈M(X )+

[
∥µ⋆ − µ∥∗BL +

1

τ
H(µ, ν0)

]
∀τ > 0. (6.13)

6.2.3 Proof of Theorem 4.1

Proof. Below, C will refer to a constant independent on K and p, whose value may change from line to
line. The proof is decomposed into three steps.

Step 1: Decomposition of the excess risk with the convexity of J.
We denote by (Fk)k≥0 the natural canonical filtration associated to the sequence of random variables (Zk)k≥0.
The next upper bound is a consequence of the relationship (6.7) and Propositions 6.1, 6.2. We have

J(νk)− J(µ⋆) ≤
H(νk , νεk)−H(νk+1, νεk+1)

α
+ Ak∥νεk − µ⋆∥∗BL

+
1

α

p∑
j=1

ωkj

[
αJ ′νk (t

k
j ) + e

−αJ ′νk (t
k
j ,Z

k+1) − 1
]
+

p∑
j=1

ωεj ξνk (t
k
j , Z

k+1).

We then use a telescopic sum argument and obtain that:

K∑
k=0

(J(νk)− J(µ⋆)) ≤
H(ν0, νε0)

α
+

K∑
k=0

Ak∥νεk − µ⋆∥∗BL

+
1

α

K∑
k=0

p∑
j=1

ωkj

[
αJ ′νk (t

k
j ) + e

−αJ ′νk (t
k
j ,Z

k+1) − 1
]
+

K∑
k=0

p∑
j=1

ωεj ξνk (t
k
j , Z

k+1).

Finally, using the convexity of J, the Cesaro average defined by:

ν̄K =
1

K + 1

K∑
k=0

νk , (6.14)
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satisfies:

J(ν̄K)− J(µ⋆) ≤
H(ν0, νε0)
α(K + 1)

+

∑K
k=0 Ak∥νεk − µ⋆∥∗BL

K + 1

+

∑K
k=0

∑p
j=1 ω

k
j

[
αJ ′νk (t

k
j ) + e

−αJ ′νk (t
k
j ,Z

k+1) − 1
]

α(K + 1)
+

∑K
k=0

∑p
j=1 ω

ε
j ξνk (t

k
j , Z

k+1)

K + 1

≤
H(ν0, νε0)
αK

+

∑K
k=0 Ak

[
∥νε0 − µ⋆∥∗BL +

∑k−1
ℓ=0 ∥νεℓ+1 − νεℓ ∥∗BL

]
K

+

∑K
k=0

∑p
j=1 ω

k
j

[
αJ ′νk (t

k
j ) + e

−αJ ′νk (t
k
j ,Z

k+1) − 1
]

αK
+

∑K
k=0

∑p
j=1 ω

ε
j ξνk (t

k
j , Z

k+1)

K

where we used the triangle inequality on the telescopic decomposition

νεk − µ⋆ = (νεk − νεk−1) + (νεk−1 − νεk−2) + . . .+ (νε0 − µ⋆).

We then take the expectation and use in particular a standard conditional expectation argument. Since
E[ξνk (tkj , Zk+1)|Fk ] = 0, we deduce that:

E [J(ν̄K)− J(µ⋆)] ≤
H(ν0, νε0)
α(K + 1)

+

:=A1︷ ︸︸ ︷
∥νε0 − µ⋆∥∗BL

∑K
k=0 E[Ak ]
K + 1

+

:=A2︷ ︸︸ ︷∑K
k=0 E

[
Ak
∑k−1

ℓ=0 ∥νεℓ+1 − νεℓ ∥∗BL
]

K + 1

+

∑K
k=0

∑p
j=1 E

[
ωkj

[
αJ ′νk (t

k
j ) + e

−αJ ′νk (t
k
j ,Z

k+1) − 1
]]

α(K + 1)︸ ︷︷ ︸
:=A3

. (6.15)

Step 2a: Study of A1. We use the definition of Ak in Equation (6.12) and observe that Ak ≤ C(1+∥νk∥TV).
We then use Proposition 4.1 and conclude that:

E[A1] = ∥νε0 − µ⋆∥∗BL
∑K

k=0 E[Ak ]
K + 1

≤ CR0∥νε0 − µ⋆∥∗BL. (6.16)

Step 2b: Study of A2. We focus on the shadow sequence that involves νεℓ+1 − νεℓ and observe that:

∥νεℓ+1 − νεℓ ∥∗BL = sup
∥ψ∥BL≤1

∫
X
ψ(t)d[νεℓ+1 − νεℓ ](t)

= sup
∥ψ∥BL≤1

p∑
j=1

ωεj [ψ(t
ℓ+1
j )− ψ(tℓj )]

≤
p∑
j=1

ωεj ∥tℓ+1j − tℓj ∥X

= η

p∑
j=1

ωεj ∥Dνℓ(Tℓ, Zℓ+1)j∥X

≤ Cη
p∑
j=1

ωεj (1 + ∥νℓ∥TV)

= Cη∥νε0∥TV(1 + ∥νℓ∥TV), (6.17)

where we used the almost sure upper bound in Proposition C.1. A simple sum yields:∑K
k=0 Ak

∑k−1
ℓ=0 ∥νεℓ+1 − νεℓ ∥∗BL
K + 1

≤ Cη∥νε0∥TV
∑K

k=0 Ak
∑k

ℓ=1 (1 + ∥νℓ∥TV)
K + 1

≤ Cη∥νε0∥TV
∑K

k=0(1 + ∥νk∥TV)
∑k

ℓ=1 (1 + ∥νℓ∥TV)
K + 1

,
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for C large enough. Again, we apply Proposition 4.1 and compute the expectation of the previous term.
We then observe that:

E[A2] =

∑K
k=0 E

[
Ak
∑k−1

ℓ=0 ∥νεℓ+1 − νεℓ ∥∗BL
]

K + 1
≤ CR20η∥νε0∥TVK. (6.18)

Step 2c: Study of A3. This last term deserves a specific study. We use a conditional expectation argument
and observe that, for any k ∈ {0, . . . , K}, j ∈ {1, . . . , p},

E
[
ωkj

[
αJ ′νk (t

k
j ) + e

−αJ ′νk (t
k
j ,Z

k+1) − 1
]∣∣∣Fk] = ωkj E [[αJ ′νk (tkj ) + e−αJ ′νk (tkj ,Zk+1) − 1]∣∣∣Fk] .

We then apply Proposition C.2 ang get:

E
[
ωkj

[
αJ ′νk (t

k
j ) + e

−αJ ′νk (t
k
j ,Z

k+1) − 1
]∣∣∣Fk] ≤ Cωkj α

2(1 + ∥νk∥2TV)

We then sum the previous upper bounds from 0 to K with a global expectation and Proposition 4.1. We
obtain that:

E[A3] =

∑K
k=0

∑p
j=1 E

[
ωkj

[
αJ ′νk (t

k
j ) + e

−αJ ′νk (t
k
j ,Z

k+1) − 1
]]

α(K + 1)
≤ CαR30. (6.19)

Step 3: End of the proof.
We gather Equations (6.16), (6.18), (6.19) and obtain that:

E [J(ν̄K)− J(µ⋆)] ≤
H(ν0, νε0)
αK

+ CR0∥νε0 − µ⋆∥∗BL + CR20 [η∥νε0∥TVK + αR0] .

We then use the definition of Q given in Equation (6.13) and observe that if νε0 is chosen in an optimal
way, as given in Proposition C.3, then:

E [J(ν̄K)− J(µ⋆)] ≤ R0Qµ⋆,ν0(αKR0) + CR20 [η∥µ⋆∥TVK + αR0]

≤ C∥µ⋆∥TV

d
(
1 + log αKR02d +

log |X |
d

)
αK

+
αR30
∥µ⋆∥TV

+ R20ηK

 ,
where we have used the relationship ∥νε0∥TV = ∥µ⋆∥TV . The choices

α =

√
d∥µ⋆∥TV
R30K

and η =

√
dR0

K3∥µ⋆∥TV

then leads to

E [J(ν̄K)− J(µ⋆)] ≤ C

√
d∥µ⋆∥TVR30

K

[
log(d∥µ⋆∥TVR30K) +

log(|X |)
d

]
.

6.3 Proof of Theorem 4.2

Proof. The proof is splitted into three parts, and relies on a contraction argument with conditional expec-
tation. In what follows, we will choose α such that αC1(R0 + 1) < 1 where C1 is involved in Lemma B.1,
and we shall use |eh − 1| ≤ 2|h| which is valid when |h| ≤ 1. We will frequently apply this inequality with
h = −αJ ′νk (t

k
j , Z

k+1).

Step 1: One-step evolution and second order term. Let k ∈ N⋆ be fixed. According to Proposition B.1:

J(νk+1)− J(νk) =
∫
X
J ′νkd(νk+1 − νk) +

1

2
∥Φ(νk+1 − νk)∥2H.
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Introducing the measure ν̃k+1 =
∑p

j=1 ω
k+1
j δtj,k , we deduce that:

∥Φ(νk+1 − νk)∥2H = ∥Φ(νk+1 − ν̃k+1 + ν̃k+1 − νk)∥2H,
≤ 2∥Φ(νk+1 − ν̃k+1)∥2H + 2∥Φ(ν̃k+1 − νk)∥2H

First remark that,

∥Φ(νk+1 − ν̃k+1)∥2H =

∥∥∥∥∥∥
p∑
j=1

ωk+1j (ϕtk+1j
− ϕtkj )

∥∥∥∥∥∥
2

H

,

≤
p∑
j=1

ωk+1j ×
p∑
j=1

ωk+1j ∥ϕtk+1j
− ϕtkj ∥

2
H,

≤ Lip(ϕ)∥νk+1∥TV
p∑
j=1

ωk+1j ∥tk+1j − tkj ∥2X .

We then use the update of Tk to Tk+1 that is given in (2.15) and obtain that:

∥Φ(νk+1 − ν̃k+1)∥2H ≤ Lip(ϕ)∥νk+1∥TVη2
p∑
j=1

ωkj ∥Dνk (tkj , Zk+1)∥2X . (6.20)

In the same time, using (2.14), we obtain that:

∥Φ(ν̃k+1 − νk)∥2H =

∥∥∥∥∥∥
p∑
j=1

(ωk+1j − ωkj )ϕtj,k

∥∥∥∥∥∥
2

H

,

=

∥∥∥∥∥∥
p∑
j=1

ωkj (e
−αJ ′νk (t

k
j ,Z

k+1) − 1)ϕtj,k

∥∥∥∥∥∥
2

H

,

≤
p∑
j=1

ωkj ×
p∑
j=1

ωkj (e
−αJ ′νk (t

k
j ,Z

k+1) − 1)2
∥∥ϕtj,k∥∥2H ,

where the last line comes from the Jensen inequality. We then observe from Lemma B.1 that J ′νk (t
k
j , Z

k+1)

is a bounded term so that if α is chosen such that αC1(R0+1) < 1, then a constant Cϕ large enough exists
such that:

∥Φ(ν̃k+1 − νk)∥2H ≤ Cϕ∥νk∥TVα2
p∑
j=1

ωkj |J ′νk (t
k
j , Z

k+1)|2 (6.21)

Gathering Equations (6.20) and (6.21), we then deduce that

∥Φ(νk+1 − νk)∥2H ≤ Cϕ

η2∥νk+1∥TV p∑
j=1

ωkj ∥Dνk (tkj , Zk+1)∥2 + α2∥νk∥TV
p∑
j=1

ωkj |J ′νk (t
k
j , Z

k+1)|2

(6.22)
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Step 2: Study of the drift first order term. We expand the first order term and observe that:∫
X
J ′νkd(νk+1 − νk) =

p∑
j=1

[
(ωk+1j − ωkj )J ′νk (t

k
j ) + ω

k
j (J

′
νk
(tk+1j )− J ′νk (t

k
j ))
]

+

p∑
j=1

(ωk+1j − ωkj )(J ′νk (t
k+1
j )− J ′νk (t

k
j ))

=

p∑
j=1

[
(ωk+1j − ωkj )J ′νk (t

k
j ) + ω

k
j ⟨tk+1j − tkj ,∇J ′νk (t

k
j )⟩
]

+

p∑
j=1

[
ωkj ⟨tk+1j − tkj ,∇2J ′νk (υ

k
j )(t

k+1
j − tkj )⟩+ (ωk+1j − ωkj )⟨∇J ′νk (υ̃

k
j ), t

k+1
j − tkj ⟩

]
,

where υkj and υ̃kj are some auxiliary points that belong to (tkj , t
k+1
j ) obtained with the help of first and

second order Taylor expansions. Using Proposition C.1, we deduce that:

∫
X
J ′νkd(νk+1 − νk) ≤

p∑
j=1

[
(ωk+1j − ωkj )J ′νk (t

k
j ) + ω

k
j ⟨tk+1j − tkj ,∇J ′νk (t

k
j )⟩
]

+

p∑
j=1

ωkj [Lip(∇ϕ)∥νk∥TV + Lip(∇y)] ∥tk+1j − tkj ∥2X

+

p∑
j=1

[Lip(∇ϕ)∥νk∥TV + Lip(∇y)] (ωk+1j − ωkj )∥tk+1j − tkj ∥X .

Using the total variation upper bound stated in Proposition 4.1 by R0, we then define for the sake of
readability the constant A as:

A = Lip(ϕ)R0 + Lip(y) ∨ Lip(∇ϕ)R0 + Lip(∇y).

We then derive: ∫
X
J ′νkd(νk+1 − νk) ≤

p∑
j=1

(ωk+1j − ωkj )J ′νk (t
k
j ) + ω

k
j ⟨tk+1j − tkj ,∇J ′νk (t

k
j )⟩

+ A

p∑
j=1

ωkj ∥tk+1j − tkj ∥2 + (ωk+1j − ωkj )∥tk+1j − tkj ∥.

We now use the surrogate update stated in Algorithm 1 into the previous inequality and obtain that:∫
X
J ′νkd(νk+1 − νk) ≤

p∑
j=1

ωkj (e
−αJ ′νk (t

k
j ,Z

k+1) − 1)J ′νk (t
k
j )− ηωkj ⟨Dνk (tkj , Zk+1),∇J ′νk (t

k
j )⟩

+ A

p∑
j=1

η2ωkj ∥Dνk (tkj , Zk+1)∥2X + ηωkj (e
−αJ ′νk (t

k
j ,Z

k+1) − 1)∥Dνk (tkj , Zk+1)∥X .

We then consider the conditional expectation at time k and apply Proposition C.1 (to upper bound some
rest terms) and Proposition C.2 (to control the drift at iteration k). We deduce that a large enough C such
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that:

E
[∫
X
J ′νkd(νk+1 − νk)

∣∣Fk] ≤ −α p∑
j=1

ωkj J
′
νk
(tkj )

2 + Cα2
p∑
j=1

ωkj (1 + ∥νk∥TV)3 − η
p∑
j=1

ωkj ∥∇J ′νk (t
k
j )∥2

+ Cη2
p∑
j=1

ωkj (1 + ∥νk∥TV)2 + Cηα

p∑
j=1

ωkj (1 + ∥νk∥TV)3

≤ −α
p∑
j=1

ωkj J
′
νk
(tkj )

2 − η
p∑
j=1

ωkj ∥∇J ′νk (t
k
j )∥2

+ C∥νk∥TV(1 + ∥νk∥TV)3(α2 + η2),

where in the last line we used the Young inequality 2ηα ≤ α2 + η2 and some rough upper bounds on the
rest terms. We now associate this last inequality with Equations (6.22) and obtain the descent property:

E
[
J(νk+1)

∣∣Fk] ≤ J(νk)− α∥J ′νk∥2νk − η∥∇J ′νk∥2νk + C(1 + R40)(α
2 + η2) (6.23)

Step 3: Conclusion of the proof. The rest of the proof proceeds with a standard argument. We use a
telescopic sum + conditional expectation strategy and observe that:

α

K∑
k=1

E[∥J ′νk∥
2
νk
] + η

K∑
k=1

E[∥∇J ′νk∥
2
νk
] ≤ J(ν0) + C(1 + R40)(Kα

2 +Kη2)

Choosing α = η, we deduce that:

1

K

K∑
k=1

(
E[∥J ′νk∥

2
νk
] + E[∥∇J ′νk∥

2
νk
]
)
≤
J(ν0)

αK
+ C(1 + R40)α.

Finally, if τK refers to a random variable uniformly distributed over {1, . . . , K}, independent from the
sequence (νk)k≥1, the tuning α = η = 1/

√
K yields:

E
[
∥J ′ντK ∥

2
ντK
+ ∥∇J ′ντK ∥

2
ντK

]
≤
J(ν0) + C(1 + R40)√

K
.
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Appendix of “FastPart: Over-Parameterized Stochastic Gradient
Descent for Sparse optimisation on Measures"

A Reformulations, proofs and technical lemmas

A.1 The non-separable case and the interesting reformulation of the objective

There is a little subtlety on the properties that one should require on H. At first glance, we need H separable
to prove Bochner integrability in Lemma A.2. But K is continuous on a compact space X , hence its RKHS is
separable [Steinwart and Christmann, 2008, Lemma 4.3.3]. This RKHS is isometric to a separable subspace
of H as proven by the next lemma.

Lemma A.1. Let H be Hilbert space and let X be compact space. Under (A0), there exists a separable
cloded vector subspace (HF , ∥ · ∥H) of H which is isometric to (F , ∥ · ∥F), the RKHS defined by K. Denote
by Π the orthogonal projection onto HF then for any ν ∈M(X )

J(ν) =
1

2
∥y − Π(y)∥2H +

1

2
∥Π(y)−Φ(ν)∥2HF + λ∥ν∥TV . (A.1)

Proof. We denote by F the RKHS defined by K. By [Steinwart and Christmann, 2008, Theorem 4.21],
one has that

F :=
{
f : X → H : ∃h ∈ H , ∀t ∈ X , f (x) = ⟨h,Φ(t)⟩H

}
.

is the only RKHS defined by K and

||f ||F = inf
{
||h||H : h ∈ H s.t. f (·) = ⟨h,Φ(·)⟩H

}
,

Consider the functions

fh : x 7→ ⟨h, Φ(x)⟩H , h =

r∑
j=1

ωjΦ(tj)

defining the pre-dual of F . Observe that

⟨fh1 , fh2⟩F = ⟨h1, h2⟩H ,

where we denote by ⟨·, ·⟩F , the dot product of F . Define HF the vector subspace of H defined as the
closure (in H) of the span of Φ(X ). The aforementioned equality shows that h 7→ fh is an isometry from
(HF , ∥ · ∥H) onto (F , ∥ · ∥F). Since F is separable [Steinwart and Christmann, 2008, Lemma 4.3.3], we
deduce that HF is separable. The last statement is a consequence of the Pythagorean theorem.

Note that in (A.1), the term 1
2∥y − Π(y)∥

2
H is constant. Hence, up to a constant term, and without

loss of generality, one can assume that H is separable.

Remark A.1. The proof of Lemma A.1 is a consequence of [Steinwart and Christmann, 2008, Theorem 4.21]
and we choose to maintain it in this paper for sake of completeness. Moreover, it sheds light on an interesting
reformulation of the quadratic term in (1.5), the objective J. Indeed, it holds

J(ν) =
1

2

∥∥∥(ℶ ◦ Π)(y)− (ℶ ◦Φ)(ν)∥∥∥2
F
+ λ∥ν∥TV , (A.2)

up to a constant term and where ℶ denotes the isometry between (HF , ∥ · ∥H) and (F , ∥ · ∥F).
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A.2 Existence of the kernel measure embedding

Kernel mean embedding is a standard notion in Machine Learning, see for instance Muandet et al. [2017].
Extending this notion of measure with finite total variation norm is straightforward. We referred to this
notion as Kernel Measure Embedding as the two notions coincides on probability measures.

Lemma A.2. Let H be separable Hilbert space and let X be compact metric space. Under (A0), the
operator Φ defined by (1.3) is well defined and bounded linear as a function fromM(X ) to H. Furthermore,
the dual of Φ is given by

Φ⋆ : h ∈ H 7→
(
t 7→ ⟨h, ϕt⟩H

)
∈
(
C(X ), ∥ · ∥∞

)
, (A.3)

and for any (h, ν) ∈ H×M(X ),

⟨h,Φ(ν)⟩H =
∫
X
⟨h, ϕt⟩Hdν(t) = ⟨Φ⋆(h), ν⟩C(X ),M(X ) ≤ sup

t

√
K(t, t)∥h∥H∥ν∥TV . (A.4)

Remark A.2. A key result of Lemma A.2 is that Im(Φ⋆) ⊆
(
C(X ), ∥ · ∥∞

)
, this latter being a subset

ofM(X )⋆, the topological dual ofM(X ).

Proof. Let ν ∈M(X ). We say that t ∈ X 7→ f (x) ∈ H is simple if it is finitely valued, namely

f (t) =

n∑
i=1

hi1{t∈Bi} ,

for some n ≥ 1, hi ∈ H, and Bi Borel set of X . In this case, one has∫
X
f dν =

n∑
i=1

hiν(Bi) .

Note that ∥ϕt∥H =
√
K(t, t) and, it holds that∫

X
∥ϕt∥Hdν(t) ≤ sup

t

√
K(t, t)∥ν∥TV <∞ , (A.5)

using the fact that t ∈ X 7→
√
K(t, t) is a bounded continuous function by (A0). We emphasize that this

function not need to be vanishing at infinity.
From (A.5), we deduce that the map m : A 7→ m(A) :=

∫
X ∥ϕt∥H1{ϕt∈A}dν(t) is a finite measure on

the Borel sets of H and hence, by Oxtoby-Ulam theorem (see [Giné and Nickl, 2021, Proposition 2.1.4] for
instance), a tight Borel measure. Given 0 < εn → 0, let Kn be a compact set such that m(Kcn ) < εn/2,
let An,1, . . . , An,kn be a finite partition of Kn consisting of sets of diameter at most εn/2, pick up a point
hn,k ∈ An,k for each k and define the simple function

fn(t) =

kn∑
k=1

hn,k1{ϕt∈An,k} .

Then ∫
X
∥ϕt − fn(t)∥Hdν(t) ≤ εn/2 +m(Kcn ) < εn → 0 ,

showing that t ∈ X 7→ ϕt ∈ H is Bochner integrable, hence Petti’s integrable, and both integrals coincide
(see for instance [Giné and Nickl, 2021, Section 2.6.1]). We deduce that Φ is well defined, using Bochner
integration. Furthermore, one can deduce that∥∥∥∫

X
ϕtdν(t)

∥∥∥
H
≤
∫
X
∥ϕt∥Hdν(t) ≤ sup

t

√
K(t, t)∥ν∥TV ,

showing that Φ is bounded linear.
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Also, if h ∈ H then∣∣ ∫
X
⟨h, fn(t)⟩H − ⟨h, ϕt⟩Hdν(t)

∣∣ ≤ ∥h∥H ∫
X
∥ϕt − fn(t)∥Hdν(t)→ 0 .

Hence,
∫
X
⟨h, ϕt⟩Hdν(t) = lim

n

∫
X
⟨h, fn(t)⟩Hdν(t) exists and is finite. We deduce that

∫
X
⟨h, ϕt⟩Hdν(t) = ⟨h,Φ(ν)⟩H , (A.6)

using that
∫
X ⟨h, fn(t)⟩Hdν(t) = ⟨h,

∫
X fndν⟩H.

Using (A.6) and Cauchy-Schwarz inequality, one gets that

⟨h,Φ(ν)⟩H =
∫
X
⟨h, ϕt⟩Hdν(t) ≤ sup

t

√
K(t, t)∥h∥H∥ν∥TV , (A.7)

and hence, we can write
⟨h,Φ(ν)⟩H = ⟨⟨h, ϕt⟩H, ν⟩M(X )⋆,M(X )

whereM(X )⋆ is the topological dual ofM(X ). It shows that the dual Φ⋆ is given by Φ⋆(h)(t) = ⟨h, ϕt⟩H.
As a function of t, it is clear that it is continuous by (A0) and that ∥Φ⋆(h)∥∞ ≤ supt

√
K(t, t)∥h∥H <∞,

showing that it belongs to the space of bounded continuous functions.

A.3 Proof of Theorem 1.1

Let (νn) be a minimizing sequence of measures of Program (1.6). Up to an extraction we can consider that
L(Φ(νn)) + λ∥νn∥TV ≤ 1 + infν{L(Φ(ν)) + λ∥ν∥TV}. In particular, it holds that

λ∥νn∥TV ≤ 1 + inf
ν
{L(Φ(ν)) + λ∥ν∥TV} .

Up to an extraction, by Banach-Alaoglu theorem, we can consider that the sequence (νn) converges for the
weak-⋆ topology and, up to another extraction, we can consider that ∥νn∥TV converges.

We denote by µ⋆ ∈ M(X ) its limit. Using [Brézis, 2011, Proposition 3.13(iii)], the TV-norm is l.s.c.
for the weak-⋆ topology, and we get that

lim
n
∥νn∥TV ≥ ∥µ⋆∥TV .

Using Lemma A.2, it holds that for any h ∈ H and for any convergent sequence νn → µ⋆ for the weak-⋆
topology,

⟨h,Φ(νn)⟩H = ⟨Φ⋆(h), νn⟩C(X ),M(X ) → ⟨Φ⋆(h), µ⋆⟩C(X ),M(X ) ,

proving that Φ is continuous from M(X ) weak-⋆ to H weak (see Remark A.2). Since L is l.s.c for the
weak topology of H [Brézis, 2011, Corollary 3.9], we get that

lim
n
L(Φ(νn)) ≥ L(Φ(µ⋆)) .

Combining the aforementioned limits, we deduce that

(1.6) = lim
n

{
L(Φ(νn)) + λ∥νn∥TV

}
≥ L(Φ(µ⋆)) + λ∥µ⋆∥TV ≥ (1.6) ,

hence equality. The uniqueness of Φ(µ⋆) follows by strict convexity.

Remark A.3. In this paper, we assume that X is compact. Some of our bounds depend on the size of X
and do not hold for non-compact spaces. But, the existence of µ⋆ can be proven in the non-compact case.

The subtlety is in (A.3). To get the proof of Theorem 1.1 work when X is a Polish space (not necessarily
compact), one needs that Im(Φ⋆) ∈

(
C0(X ), ∥ · ∥∞

)
, the space of continuous functions vanishing at infinity.

We already know that Im(Φ⋆) ∈
(
C(X ), ∥ · ∥∞

)
by Condition (A0). We have the following result.
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Theorem A.3. Let H be Hilbert space and let X be Polish space. Assume that

• Assumption (A0) holds;

• the RKHS F (defined by K) is contained in C0(X );

• and supt
√
K(t, t) <∞;

then the there exists a measure µ⋆ ∈M(X ) such that

J(µ⋆) = min
µ∈M(X )

J(µ) .

Furthermore, the vector Φ(µ⋆) ∈ H is unique.

Remark A.4. The same argument can be used to prove that Program (1.6) restricted toM(X )+ admits
solutions. Indeed, take (νn) a sequence of nonnegative measures such that the objective converges towards
the infimum. We can use the above proof to show the existence of µ⋆. The only point left to prove
is that the measure µ⋆ is nonnegative, which is straight forward using weak-star convergence and Riesz
representation theorem [Rudin, 1974, Chapter 2] of nonnegative linear functional defined by nonnegative
continuous functions with compact support (which are included in C0(X )).

Remark A.5. A similar result can be found in [Chizat, 2022, Proposition 3.1] using Prokorov’s theorem.

B Gradients of the objective

B.1 In the space of (nonnegative) measures

We first consider the variation of J inM(X )+ in terms of its Fréchet differential.

Proposition B.1. If ν + σ ∈M(X )+ and ν ∈M(X )+ then

J(ν + σ)− J(ν) =
∫
X
J ′νdσ +

1

2
∥Φ(σ)∥2H , (B.1)

where J ′ν := Φ
⋆(Φ(ν)− y) + λ and Φ⋆ : (H, ∥ · ∥H)→ (C(X ), ∥ · ∥∞) is the dual of Φ.

Proof of B.1. The proof follows from the expansion of J(ν + σ):

J(ν + σ) =
1

2

∥∥y −Φ(ν + σ)∥∥2
H
+ λ∥µ+ σ∥TV

=
1

2

∥∥y −Φ(ν)−Φ(σ)∥∥2
H
+ λ∥ν + σ∥TV

=
1

2

∥∥y −Φ(ν)∥∥2
H
− ⟨y −Φ(ν),Φ(σ)⟩H +

1

2

∥∥Φ(σ)∥∥2
H
+ λ∥ν + σ∥TV

= J(ν)− ⟨Φ⋆(y −Φ(ν)), σ⟩H +
1

2

∥∥Φ(σ)∥∥2
H
+ λ [∥ν + σ∥TV − ∥ν∥TV] .

Using Sign(ν) as a subgradient of the TV-norm at point ν (ν-almost everywhere equal to the sign of ν and
with infinity norm less than one), we then observe that:

∥ν + σ∥TV − ∥ν∥TV = ⟨Sign(ν), σ⟩M(X )⋆,M(X ) +Dν(σ),

where Dν(σ) is the second order Bregman divergence of the TV-norm between ν and ν + σ using the
subgradient Sign(ν), given by:

Dν(σ) := ∥ν + σ∥TV − ∥ν∥TV − ⟨Sign(ν), σ⟩M(X )⋆,M(X ) ,

withM(X )⋆ ⊆ (L∞(X ), ∥ · ∥∞) the topological dual ofM(X ). Gathering all the pieces, we obtain that:

J(ν + σ)− J(ν) = ⟨J ′ν , σ⟩M(X )⋆,M(X ) + q(σ) , (B.2)
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where J ′ν is given in the statement of Proposition B.1 and q is a second order term given by:

q(σ) :=
1

2
∥Φ(σ)∥2H + λDν(σ).

Finally, we remark that when ν is nonnegative, one possible choice for the TV subgradient is Sign(ν) = 1.
In this case, the previous decomposition may be simplified as:

J ′ν = Φ
⋆(Φ(ν)− y) + λ

and Dν(σ) = 0 when ν + σ ∈M(X )+ and ν ∈M(X )+.

Remark B.1. The above proof shows that for any µ, ν ∈M(X ),

J(ν + σ)− J(ν) =
∫
X
J ′νdσ +

1

2
∥Φ(σ)∥2H + λDν(σ) ,

where Dν(σ) := ∥ν+σ∥TV−∥ν∥TV−⟨Sign(ν), σ⟩M(X )⋆,M(X ) andM(X )⋆ ⊆ (L∞(X ), ∥·∥∞) the topological
dual ofM(X ).

Besides the expression of the Fréchet differential of J on the spaceM(X )+, it is possible to explicit the
value of J ′ν at any point t ∈ X . Using Lemma A.2, it holds,

J ′ν(t) =
〈
ϕt ,Φ(ν)− y

〉
H
+ λ, ∀t ∈ X . (B.3)

Note that J ′ν depends on ν through Φ(ν). Recall that Φ(µ⋆) is constant across all solutions µ⋆ of Pro-
gram (B+), see Theorem 1.1. Hence, the function

J ′⋆(x) :=
〈
ϕx ,Φ(µ

⋆)− y
〉
H
+ λ , x ∈ X ,

is well defined and does not depend on the choice of the solution µ⋆ (it is the same function across all possible
choice of µ⋆ solution to (B+)). The next proposition gives the first order condition of Program (B+).

Proposition B.2. It holds that J ′⋆ ≥ 0 and, for any solution µ⋆ to Program (B+),

Supp(µ⋆) ⊆
{
x ∈ X : J ′⋆(x) = 0

}
.

Conversely, if a measure ν ∈M(X )+ is such that J ′ν ≥ 0 then ν is a solution to Program (B+) and J ′⋆ = J
′
ν .

Proof. Let x ∈ X and ε > 0. By Proposition B.1, one has

J ′⋆(x) =
J(µ⋆ + εδx)− J(µ⋆)

ε
−
ε

2
∥ϕx∥2H ,

hence

J ′⋆(x) ≥ lim inf
ε↓0

{
J(µ⋆ + εδx)− J(µ⋆)

ε

}
≥ 0 ,

since J(µ⋆ + εδx)− J(µ⋆) ≥ 0.
Assume now that there exists a point x ∈ X such that x ∈ Supp(µ⋆) and J ′⋆(x) > 0. Since J ′⋆ is

continuous and J ′⋆(x) > 0 there exists ε > 0 and a open neighborhood Ux of x such that

∀t ∈ Ux , J ′x(t) >
√
ε

By Jordan decomposition theorem, there exists two nonnegative measures µ⋆+ and µ⋆− with disjoints supports
such that µ⋆ = µ⋆+ − µ⋆− and Supp(µ⋆) = Supp(µ⋆+) ⊔ Supp(µ⋆−). Without loss of generality, we assume
that x ∈ Supp(µ⋆+). Taking ε > 0 and Ux sufficiently smalls, one has Ux ∩ Supp(µ⋆−) = ∅ and

µ⋆(Ux) >
√
ε .

36



Let B be a Borelian of X and define σ ∈M(X ) by σ(B) := −µ⋆+(B ∩ Ux). Remark that Dµ⋆(σ) = 0, this
latter being straightforward when µ⋆ ∈ M(X )+ (in this case µ⋆ + σ ∈ M(X )+). By Proposition B.1, one
has

0 ≤ J(µ⋆ + σ)− J(µ⋆) =
∫
X
J ′⋆dσ = −

∫
X∩Ux

J ′⋆dµ
⋆
+ ,

and also ∫
X∩Ux

J ′⋆dµ
⋆
+ ≥ ε ,

which is a contradiction.

The lemma displayed below provides some bounds on the Frechet differential of the objective function
and on its stochastic estimate.

Lemma B.1. There exists a positive constant C0 = C0(y , ϕ, λ) such that

∥J ′ν∥∞ := sup
t∈X
|J ′ν(t)| ≤ C0(∥ν∥TV + 1) ∀ν ∈M(X )+.

Moreover, provided Assumption (A1) is satisfied, we have almost surely for any ν ∈M(X )+

sup
t∈X
|J ′ν(t, Z)| ≤ C1(∥ν∥TV + 1) and sup

t∈X
|ξν(t, Z)| ≤ C2(∥ν∥TV + 1),

for some constants C1 and C2 depending only on y , ϕ and λ.

Proof. Let ν ∈ M(X )+ be fixed. We denote by ν̃ the normalized measure ν̃ = ν/∥ν∥TV ∈ M(X )+.
According to (B.3), we have

sup
t∈X
|J ′ν(t)| ≤ λ+ sup

t∈X
|⟨ϕt , y⟩H|+ ∥ν∥TV sup

t∈X
|⟨ϕt ,Φ(ν̃)⟩H|,

≤ λ+ sup
t∈X
|⟨ϕt , y⟩H|+ ∥ν∥TV sup

t,s∈X
|⟨ϕt , ϕs⟩H|,

≤ λ+ ∥ϕ∥∞,H∥y∥H + ∥ν∥TV ∥ϕ∥2∞,H,
≤ C0(∥ν∥TV + 1),

with
C0 = max

(
λ+ ∥ϕ∥∞,H∥y∥H; ∥ϕ∥2∞,H

)
. (B.4)

Concerning the second part of the lemma, we first remark that, provided Assumption (A1) is satisfied, we
have for any ν ∈M(X )+

sup
t∈X
|J ′ν(t, Z)| ≤ ∥ν∥TV sup

t∈X
|gt,T (U)|+ sup

t∈X
|ht(V )|+ λ ≤ C1(∥ν∥TV + 1),

with
C1 := max (∥g∥∞; ∥h∥∞ + λ) . (B.5)

The last results is obtained thanks to a basic triangle inequality

sup
t∈X
|ξν(t, Z)| ≤ sup

t∈X
|J ′ν(t)|+ sup

t∈X
|J ′ν(t, Z)| ≤ C2(∥ν∥TV + 1),

with
C2 = C0 + C1 = max

(
λ+ ∥ϕ∥∞,H∥y∥H; ∥ϕ∥2∞,H

)
+max (∥g∥∞; ∥h∥∞ + λ) . (B.6)

37



B.2 In the space of particles

We consider any set of positions T and their associate weights W. In order to compute the derivatives of F
w.r.t. W and T, our starting point is Equation (1.9) and we observe that the gradient with respect to W
is easily computed:

∇ωF (ω,T) = λ− kT +KTW.

Nevertheless, the interpretation in terms of Fréchet derivative and of J allows to obtain the next result.

Proposition B.3. For any W and T, denote ν = ν(W,T), one has:

(i) Gradient w.r.t. weights: for any j ∈ {1, . . . , p}, one has ∇ωjF (ω,T) = J ′ν(tj)

(i i) Gradient w.r.t. positions: for any j ∈ {1, . . . , p}, one has ∇tjF (ω,T) = ωj∇tjJ ′ν(tj)

Proof. The starting point is the Fréchet derivative that, if we consider σ ∈M(X )+ and ε > 0 small enough:

J(ν + εσ) = J(ν) + ε⟨J ′ν , σ⟩H + o(ε).

Proof of (i): Considering any particle j ∈ {1, . . . , p} and σ = δtj , we then obtain that:

lim
ε→0

J(ν + εσ)− J(ν)
ε

= ⟨J ′ν , δtj ⟩H = J ′ν(tj),

where the last equality comes from the reproducing kernel property. In the meantime, we observe that

lim
ε→0

J(ν + εσ)− J(ν)
ε

= lim
ε→0

F (W + ε111j ,T)− F (W,T)

ε
=
∂F (W,T)

∂ωj
.

We then conclude using the Fréchet derivative of J that:

J ′ν(tj) = ∇ωjF (ω,T).

Proof of (i i): Using the same consideration on the positions of the particles, we then consider any pertubed
set of positions T̃ε,j = T + ε111j where only the coordinate j of T is modified. We then write the partial
derivative of F :

lim
ε→0

F (W, T̃ε,j)− F (W,T)

ε
=
∂F (W,T)

∂tj
.

In the meantime, we observe that with the Fréchet derivative of J that:

lim
ε→0

F (W, T̃ε,j)− F (W,T)

ε
= lim

ε→0

J(ν(W, T̃ε,j))− J(ν(W,T))

ε

= lim
ε→0

J(ν(W,T) + ωj [δtj+ε − δtj ])− J(ν(W,T))

ε

= lim
ε→0

⟨J ′ν(W,T), ωjδtj+ε⟩H − ⟨J
′
ν(W,T), ωjδtj ⟩H

ε

= ωj∇tjJ ′ν(W,T)(tj).

Finally, it is possible to quantify the way F is modified when we change (W,T) to (W′,T′) thanks to
the next proposition. where ν =

∑p
k=1 ωkδtk .

Proposition B.4. Consider two pairs (W,T) and (W′,T′) of weights/positions and denote ν = ν(W,T)

defined in Equation (1.7), then:

F (ω′,T′)− F (ω,T) =
p∑
j=1

(ω′jJ
′
ν(t
′
j )− ωjJ ′ν(tj)) +

1

2
(ω′,−ω)⊤K(T′,T)(ω′,−ω) , (B.7)

where K(T′,T) is a (2p× 2p) symmetric matrix with (p× p) diagonal blocks ⟨ϕt ′i , ϕt ′j ⟩H and ⟨ϕti , ϕtj ⟩H, and
(p × p) off-diagonal block ⟨ϕt ′i , ϕtj ⟩H.

38



Proof. We denote ν ′ = ν(W′,T′) and apply Equation (B.1) with ν ′ = ν + σ with σ = ν ′ − ν, we obtain
that:

F (W′,T′)− F (W,T) = J(ν + σ)− J(ν) =
∫
X
J ′νdσ +

1

2
∥Φ(σ)∥2H =

∫
X
J ′νdσ +

1

2
∥Φ(ν ′)−Φ(ν)∥2H

Note that the last term rewrites

(ω′,−ω)⊤K(T′,T)(ω′,−ω) = ∥Φ(ν ′)−Φ(ν)∥2H ,

which is the squared Maximum Mean Discrepancy (MMD) between ν and ν ′ for the kernel K.

C Technical results for Theorem 4.1

Proposition C.1. Consider (t, t̃) ∈ X 2, the following technical inequalities hold:

i) |∇J ′ν(t)−∇J ′ν(t̃)| ≤ [Lip(∇ϕ)∥ν∥TV + Lip(∇∇∇y)] |t − t̃|,

i i) ∥∇tJ ′ν(t)∥X ≤ (∥ν∥TV ∥ϕ∥∞,H + ∥y∥H)∥ϕ′∥H with ∥ϕ′∥∞,H := supt supψ:∥ψ∥H≤1 ∥∇t⟨ϕt , ψ⟩∥X ,

i i i) ∥Dν(t, Z)∥X ≤ ∥ν∥TV ∥g ′∥∞,H + ∥h′∥H,

where Assumption (A2) is required for inequality i i i).

Proof of Proposition C.1. We consider any finite measure ν.
Proof of i) We provide an upper bound on the Lipschitz constant of ∇J ′ν : consider (t, t̃) ∈ X 2, we repeat
the same arguments as above and observe that:

|∇J ′ν(t)−∇J ′ν(t̃)| ≤ [Lip(∇ϕ)∥ν∥TV + Lip(∇∇∇y)] |t − t̃|.

Proof of i i) Using a rough bound, we get

∥∇tJ ′ν(t)∥X =

∥∥∥∥∥∥
p∑
j=1

ωj∇t⟨ϕt , ϕtj ⟩H −∇t⟨ϕt , y⟩H

∥∥∥∥∥∥ ,
≤

p∑
j=1

ωj∥∇t⟨ϕt , ϕtj ⟩H∥X + ∥∇t⟨ϕt , y⟩H∥X ,

≤ (∥ν∥TV ∥ϕ∥∞,H + ∥y∥H)× sup
ψ:∥ψ∥H≤1

∥∇t⟨ϕt , y⟩∥X ,

which provides the desired result.
Proof of i i i) Using Assumption (A2), and in particular the boundedness of the derivative of g and h, we get

∥Dν(t, Z)∥X = ∥∥ν∥TV∇tgt,T (U)−∇tht(V )∥X ,
≤ ∥ν∥TV sup

t,s,u
∥∇tgt,s(u)∥X + sup

t,v
∥∇tht(v)∥X .

Proposition C.2. A large enough constant C exists such that for any iteration k ∈ N and any particle
j ∈ {1, . . . , p}, : ∣∣∣E [αJ ′νk (tkj ) + e−αJ ′νk (tkj ,Zk+1) − 1∣∣Fk]∣∣∣ ≤ Cα2(1 + ∥νk∥TV)2.

Proof. This key technical argument relies on the Hoeffding inequality. We shall write:

E
[
αJ ′νk (t

k
j ) + e

−αJ ′νk (t
k
j ,Z

k+1) − 1
∣∣Fk] = αJ ′νk (tkj )− 1 + E [e−αJ ′νk (tkj ,Zk+1)∣∣Fk]

=
[
αJ ′νk (t

k
j )− 1 + e

−αJ ′νk (t
k
j )E

[
e−α[J

′
νk
(tkj ,Z

k+1)−J ′νk (t
k
j )]
∣∣Fk]]

=
[
αJ ′νk (t

k
j )− 1 + e

−αJ ′νk (t
k
j )
]

+ e−αJ
′
νk
(tkj )E

[
e−α[J

′
νk
(tkj ,Z

k+1)−J ′νk (t
k
j )] − 1

∣∣Fk]
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To derive an upper bound, we apply the Hoeffding Lemma to the random variable J ′νk (t
k
j , Z

k+1)− J ′νk (t
k
j )

that is centered and bounded by T = C(1 + ∥νk∥TV) from according to Lemma B.1. We obtain that:∣∣∣E [e−α[J ′νk (tkj ,Zk+1)−J ′νk (tkj )] − 1∣∣Fk]∣∣∣ ≤ e T2α2

8 − 1 ≤ Cα2(1 + ∥νk∥2TV).

Using that |ex − 1− x | ≤ c |x |2 for bounded x = αJ ′νk (t
k
j ) and c large enough, we finally obtain that:∣∣∣E [αJ ′νk (tkj ) + e−αJ ′νk (tkj ,Zk+1) − 1∣∣Fk]∣∣∣ ≤ Cα2(1 + ∥νk∥2TV).

We recall here the result essentially due to Chizat [2022], which is stated in a simplest way for our
purpose.

Proposition C.3. Assume that µ⋆ is discrete and that ν0 is a uniform distribution over a grid of size δ = 2d
τ

where d is the dimension of X , then:

Qτ (µ
⋆, ν0) ≤

∥µ⋆∥TVd
τ

(
1 + log

τ

2d
+
log |X |
d

)
Moreover, the measure νδ0 that meets this upper bound satisfies ∥νδ0∥TV = ∥µ⋆∥TV.

Proof. We define m as the size of the support of ν0 and

ν0 = m
−1

m∑
i=1

δxi ,

where (xi)1≤i≤m refers to the uniform grid of size δ on X . Since µ⋆ is discrete, it may be written as:

µ⋆ =

m⋆∑
j=1

µ⋆j δz⋆j .

For any support point z⋆j of µ⋆, we then consider ij ∈ {1, ots,m} such that ∥xij − zj∥ ≤ δ/2 and we define
νδ0 as:

νδ0 :=

m⋆∑
j=1

µ⋆j δxij

We observe that by construction, ∥νδ0∥TV = ∥µ⋆∥TV and

H(ν0, νδ0) =
m⋆∑
j=1

νδ0(xij ) log

(
νδ0(xij )

ν0(xij )

)

=

m⋆∑
j=1

µ⋆j log

(
µ⋆j

ν0(xij )

)

≤ −Ent(µ⋆) + ∥µ⋆∥TV
[
d log

(
1

δ

)
+ log |X |

]
, (C.1)

where we used the entropy of a discrete measure defined as

Ent(µ) = −
∑

x∈Supp(µ)

µ(x) log(µ(x))

and a lower bound of ν0(xij ), which is of the order δd |X |−1 where |X | refers to the Lebesgue measure of X .
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In the meantime, we also observe that the BL dual norm between νδ0 and µ⋆ can be easily upper bounded.
Indeed

∥νδ0 − µ⋆∥∗BL = sup
∥f ∥BL≤1

∫
X
f d[νδ0 − µ⋆]

= sup
∥f ∥BL≤1

m⋆∑
j=1

µ⋆j [f (xij )− f (zj)]

≤
∥µ⋆∥TVδ
2

(C.2)

We then add the two upper bounds (C.1) and (C.2) and minimize

δ 7−→
∥µ⋆∥TVδ
2

+
1

τ

(
−Ent(µ⋆) + ∥µ⋆∥TV

[
d log

(
1

δ

)
+ log |X |

])
.

We are led to choose δ = 2dτ−1 and we obtain the following upper bound:

1

τ
H(ν0, νδ0) + ∥νδ0 − µ⋆∥∗BL ≤

∥µ⋆∥TVd
τ

(
1 + log

τ

2d
+
log |X |
d

)
,

which ends the proof of the proposition.
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