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Abstract

The existence of transaction taxes reduces transactions, and in the case of housing, reduces

household mobility and affects the costs of downsizing in dire times. We construct and

estimate an overlapping generation model in which households are heterogeneous in age and

earnings, and prudential regulation and the tax system are modeled in fine detail. These

housing and public policies are likely to affect markets globally, and clearing both rental and

property markets is important when evaluating them. We use the institutional and data

setting of France, where transactions taxes are some of the highest in Europe, and evaluate

the counterfactual impact of reducing transaction taxes from 14% to 6%, similar to US levels.

The impact on transactions is strong, but the impact on welfare remains limited.
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1 Introduction1

Although it has been known for some time (e.g., Diamond and Mirrlees 1971) that taxes on real

estate transactions can have a significant distorting effect on these transactions and homeownership

choices, these taxes have retained their appeal for decision makers with respect to, say, property

taxes. Real estate transaction prices are indeed much easier to observe accurately than are property

values when properties have not been on the market for a while (OECD, 2022). As transaction

taxes remain prevalent, increasing attention has been paid in the recent economic literature to

an analysis of the impacts of transaction taxes on the real estate market. Their main distortion

might be their adverse effect on residential mobility and, therefore, indirectly on the labor market,

making it more difficult for unemployed individuals to accept a job in other regions (Causa and

Pichelmann, 2020). Namely, one can expect such transaction taxes to induce mismatched housing

situations; for example, households might be discouraged from downsizing after a decrease in

income or household size (a “lock-in” effect; see Slemrod et al. 2017) while young households may

give up buying a home at an early stage. In turn, these effects distort the ratio of prices across

rental and owner markets by increasing the demand on the former and reducing it on the latter

(Han et al., 2022).

Economic evaluations of the effects of transaction taxes on transactions and tenure mostly

use natural experiments and provide short- and medium-term estimates of treatment effects (e.g.,

Dachis et al. 2012; Best and Kleven 2018; Slemrod et al. 2017). When policy changes remain at a

small scale, for instance, at the city level in Dachis et al. (2012), effects on the government budget

or general equilibrium aspects are negligible. However, most changes in housing tax and benefit

policies, such as an alteration to transaction taxes, are likely to involve equilibrium effects because

they cause housing prices and rents to adjust to changes in demand and supply in both housing

and rental markets. Moreover, their evaluation is likely to involve dynamic effects for agents.

Buying a house is an investment, and it is key to consider life-cycle effects in which households

move up and down the housing ladder—that is, they buy a larger or smaller house depending

1We thank Martial Dupaigne, Alex Gaillard, Sumudu Kamkanage, Alain Trannoy Tuuli Vanhapelto and Etienne

Wasmer and participants of the ECHOPPE-22 conference for helpful discussions and Fabio Giralt for excellent

research assistance. We acknowledge funding support from Ministère du Logement and institutional partners

(CSTB, FFB, FPI and USH), as well as the Agence Nationale de la Recherche - ECHOPPE grant ANR-17-CE41-

0008-01 and ANR-17-EURE-0010 (Investissements d’Avenir programs). The usual disclaimer applies.
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on the evolution of their income and the size of their family. Sommer and Sullivan (2018) is the

seminal paper that develops an overlapping generation dynamic model with heterogeneous agents

in which housing policies can be evaluated in a general equilibrium framework calibrated using

US data (see also Cho et al. 2021,that we review below).

In this paper, we extend this line of research that models household choices of consumption,

housing services, tenure, and housing transactions over their life cycle of overlapping generations

of households with heterogeneous earnings. Households can accumulate financial assets through

bank deposits and have access to mortgage financing. Housing and rental markets are balanced

by housing prices and rents, which are linear in size.

Our first original contribution is to derive the model’s solution in a heavily regulated eco-

nomic environment. Specifically, the heavy regulation refers to the household credit used to

finance housing investments. In our model, prudential regulations take three forms: loan-to-value,

or downpayment, constraint (fixed at 20%); maximal payment-to-income ratio (say, 30%); and

minimum repayment rule per period (say, 5%). These forms account for the prevalence of fixed-

duration loans. Dealing with these prudential regulations make this dynamic and heterogeneous

economic model quite intricate to solve.

The solution to this dynamic model is achieved by designing algorithms that find the fixed point

of the value functions first and balancing rental and owner markets second. Our next contribution

is that we address the nonconvexities arising because of discrete choices in this dynamic model

using the elegant solution proposed by Karaivanov and Townsend (2014). These authors argue

that households can have access to random lotteries by which they increase their welfare and allow

nonconvexities to be smoothened out. We also show how to adapt the technique of endogenous

grids proposed by Carroll (2006) to solve the model in the continuous state variable in the case

of many prudential regulations that constrain consumption choices, housing services and housing

investment behavior.

Our third contribution is to use data from a country in which transaction taxes are extremely

high. Housing transaction taxes that comprise transfer taxes, fees paid to brokers and recording

agencies can be as high as 14% of property prices in Belgium, France or Greece (Andrews et al.,

2011), a rate three times higher than what is observed in northern European countries. Conse-

quentially, France is a good setting in which to experiment with a general equilibrium evaluation of
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the impact of transaction taxes on a rich set of outcomes.2 Furthermore, we adapt to this specific

environment by accounting for not only the progressive tax schedule and inheritance taxes but

also other government housing policies, such as the generous housing allowances for low-income

households for both tenants and homeowners with a mortgage.

We estimate preference and cost parameters using the method of simulated moments. Prefer-

ence parameters include risk aversion, preferences for housing services and ownership, a mobility

cost for owners and a maintenance cost for landlords. Parameters are fitted using empirical mo-

ments describing ownership and landlordship rates, mobility between renting and ownership and

down or upsizing, as well as the share of rents in income for renters. Those empirical counterparts

are extracted from the French Housing Survey collected in 2006. The distributions of household

earnings and demographics are calibrated, as are other parameters that index taxes and prudential

regulations.

We can finally turn to the counterfactual evaluation of the impact of a decrease in transaction

taxes using the fitted model. More precisely, transaction costs are reduced from 8% when buying

and 6% when selling to 3% in both cases to match the usually retained values in northern European

countries (Andrews et al., 2011). We keep the government budget fixed by using several tax

schemes and compare the steady states before and after the change to evaluate the long-run

effects of such a change in taxes. It is very unlikely that our results could be obtained using

natural experiments. In our main scenario, we balance the budget by using a proportional tax

on properties, a quite popular proposal in the recent literature (Bonnet et al., 2021). Another

scenario adjusts budgets using a proportional tax on earnings, which is mostly nondistortive in

our setting. We also study the robustness of the results in changes in housing supply in a third

counterfactual in which we assume a low elasticity of supply equal to 0.4. This low elasticity of

supply is one of the main explanations of the movement of the rent-to-price ratio (beyond changes

in interest rates and irrational bubbles, cf. Glaeser et al. 2008) and an explanation particularly

attractive in the case of France, according to Caldera and Johansson (2013).

Quite expectedly, reducing transaction taxes increases access to ownership, from 53.1% to

54.9% in the main scenario, which balances the budget through the increase in property taxes.

2With a slight abuse of language, we refer to this as a “transaction tax” because most of its elements determined

by tax policies; however, it must be recognized that part of this figure covers costs (in particular, those linked to

a lack of competition in the services sector).
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This effect on the homeownership rate is much weaker than in a few similar studies (Ma and

Zubairy, 2021; Schmidt, 2022; Kaas et al., 2021). This can be explained by the fact that we

balance both the owning and rental markets, making prices and rents endogenous, whereas these

papers assume that the rental market is competitive—as a consequence, the relation between rents

and prices is linear. Indeed, in our estimations, reduced transaction taxes results in less demand

for rentals so that prices and rents undergo a change in opposite directions—an increase of 2.4% in

housing prices and a decrease in rents of 2.0% in our benchmark counterfactual. When balancing

the budget is based on a nondistorting tax, the increase in housing prices is more than twice

that observed in our benchmark counterfactual, while the ownership rate increases to 55.5%. The

orders of magnitude obtained regarding price changes are similar to those obtained by Cho et al.

(2021), who also considers that house prices and rents freely adjust. We obtain a lesser effect on

the homeownership rate than did the latter paper, which can be explained by the fact that we

model a greater set of credit constraints arising from prudential regulations.

The decrease in transaction taxes leads to a strong increase in trading volume. In particular,

the frequency at which a tenant (resp. an owner) accesses ownership (resp. goes back to renting)

increases by 40% (resp. is multiplied by three). This finding indicates that a reduction in trans-

action taxes allows households to better manage an adverse shock to their income by selling their

property and becoming a renter again. In other words, lower transaction taxes make houses more

liquid in the sense of Kaplan et al. (2014). By anticipation, this flexibility leads them to opt for

homeownership at a younger age. Thus, homeownership rates decline sharply among poor, young

households (from 11% to 6%) and increase sharply among wealthy, young households (from 59%

to 88%). This better match between housing demands and the needs and financial capacities of

young households has a positive effect on their well-being. Their average utility increases in all

three counterfactual scenarios, while the utility of older households decreases due to higher hous-

ing prices. When considering the expected utility of newborns, the former positive effect prevails

in counterfactual A with a positive impact of +0.2%. This welfare impact is twice as large when

we assume an elastic supply of housing and negative when the budget is balanced using a pro-

portional tax on earnings.3 The fact that balancing the budget using a supposedly less distortive

3Notably, in our study, we do not account for a potentially important effect of transaction costs, namely, a

reduction in mobility on the labor market—see Oswald (1996); Halket and Vasudev (2014); Oswald (2019).
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earning tax that makes the welfare impact negative is also observed in other studies (Cho et al.,

2021; Schmidt, 2022). This observation is due here to the sharp increase in prices in this scenario,

which penalizes homeowners and partly benefits institutional owners (e.g., banks). Quite surpris-

ingly, the impact on inequality of the three counterfactuals—measured by Gini indices relating to

consumption and wealth—is negligible. This reflects the fact that the effects observed are more

differentiated according to generations than according to income level. More specifically, young

households gain while older households lose, regardless of their income level.

The outline of the paper is as follows. We first complete this introduction with a brief review

of the literature. Next, Section 2 presents the primitives of the model, which are household pref-

erences, the tax and benefit system and prudential regulations. Section 3 presents the techniques

and algorithms used to solve the model. In Section 4, we detail the empirical strategy used to

estimate parameters using the simulated method of moments. Section 5 reports the results of the

counterfactual experiments analyzed. Section 6 concludes.

1.0.1 Literature review

Different methods have been employed in the literature to assess the effect of transaction costs on

real estate markets, from empirical approaches to dynamic general equilibrium life-cycle models.

We successively review recent works based on the three main approaches.

Natural experiments

The empirical literature has recently estimated the effects of real estate transaction taxes on

household behavior related to housing by exploiting natural experiments generated by policy

changes in those taxes. The outcomes of interest are not only transaction levels, house prices and

rents but also ownership and mobility rates.

These papers generally estimate short-term effects, among which the most salient are an antic-

ipation of transactions before an increase (say) in transaction taxes, followed by a decline in the

volume of transactions in the months that follow. The effects on prices are much more elusive. Re-

gression discontinuity or difference-in-differences designs have been used in Canada (Dachis et al.,

2012), France (Bérard and Trannoy, 2018), Germany (Fritzsche and Vandrei, 2019), the United

Kingdom (Besley et al., 2014; Best and Kleven, 2018) and the US (Slemrod et al., 2017). The

last paper is an exception in finding small or no effects on transaction levels. Dachis et al. (2012)
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stands out in that it considers an unanticipated evolution of transaction costs. More precisely, in

the paper, a natural experiment arises from the decision of Toronto’s local authorities to introduce

a land transfer tax equal to approximately 1.1% of the sale price and equivalent to an increase

of approximately 15% in mobility cost. According to this study, the transfer tax induced a 14%

decrease in mobility and a decline in housing prices approximately equal to the tax.

Among recent studies, Eerola et al. (2021) exploit a tax reform in Finland that raised the

transfer tax from 1.6% to 2% for apartments but not houses, a seemingly attractive framework

with treated and controls. They argue, however, that this reform also affected the control group

because of spillover effects at the market level between houses and apartments. Their main result

is that the transfer tax increases on apartments from 1.5% to 2% induced a 7.2% reduction in

mobility. The welfare loss is of the same order of magnitude as the additional tax revenue proxied

by the tax change times the average housing price. They also show that the spillover effects on

mobility rates are indeed significant and may explain that some quasiexperimental strategies may

underestimate the effects of transfer taxes on mobility.

In Dolls et al. (2021), the authors use a very large database from Germany on house transactions

between 2005 and 2019 and, as a quasiexperiment, a constitutional reform in 2006 that enables

states to set their transaction taxes. This allows the authors to capture the medium- and long-term

effects of reforms. They find a strong effect on prices—a one-point increase in taxes that implies

a 3% increase in prices or a semielasticity of 3 (an effect called overshifting). Price increases

are larger for apartments and in growing housing markets. The authors argue that sellers have

enough bargaining power to pass through the tax increase and provide a simple bargaining model

to rationalize these results. However, they do not examine the changes in ownership, which appear

to account for the contrasting effect observed in other empirical studies and our own work —a

decrease in transaction costs typically leading to an increase in house prices and ownership rates.

In our work, we also find a significant increase in mobility following a sharp decline in trans-

action taxes. More precisely, the rate of access to ownership increases by approximately 40%,

whereas moving back to renting is increased by a multiple of three. In total, the number of

transactions increases by approximately 20%, which is lower than what is observed in the natural

experiments previously mentioned. This is likely due to the delayed adjustments in prices upward

and rents downward, which natural experiments cannot completely account for.
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Search and assignment models

Another strand of the literature models households’ decisions to rent, own, move in and out in

an assignment or search-and-matching setup whose parameters are calibrated or estimated. Such

works point out a significant welfare loss induced by increasing transaction taxes. Määttänen and

Terviö (2022) build an assignment model in which households are matched one-to-one with houses,

and all households agree on the ranking of house values. Households may wish to change houses

after an income shock, although they are refrained from doing so because of transaction taxes. As a

result, some houses are misallocated, and welfare is degraded. These studies calibrate their models

using data from the Helsinki metropolitan region. They consider a reform whereby the transaction

tax whose value is 2% is replaced with a revenue-equivalent property tax. They observe a very

significant impact on transaction volume, nearly twice what we obtain, which induces a Laffer

effect—with the Laffer curve peaking at a transaction tax of approximately 10%. Welfare gains

are moderate—approximately 13% of the tax revenue—although these gains quickly increase with

transaction taxes. We do not find such an effect on welfare in our model because our measure

of welfare impact considers the comparison between steady states. Thus, we observe a positive

impact on newborns’ expected utility and a negative effect on elderly and wealthy households’

utility, resulting in an overall negative effect on the average utility of the whole population. In

contrast, Määttänen and Terviö (2022) find a positive effect on rich and elderly households in

particular because they benefit from rising prices during the transition phase.

Han et al. (2022) revisits the impact of natural experiment in Toronto in 2008 explored by

Dachis et al. (2012) and reviewed above, in which transaction taxes are increased. However,

the authors use a much longer time-span of 12 years. They show that transactions by owner

occupiers decrease, that house prices decrease while rents increase and that buy-to-rent becomes

more prevalent. To explain this evidence, they propose a search-and-matching model in which

households are renters or owner occupiers, and investors rent homes. Owner and rental markets

are both balanced by house prices and rents. Transaction taxes make renting more attractive,

resulting in higher rents, lower house transactions and a lower ownership rate. We obtain the

same results, although we accommodate intensive margins for housing services as consumption

and prudential regulations. Specifically, their search-and-matching framework implicitly presumes

that consumption cannot be smoothed over time. This absence might explain why our welfare
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evaluations are much less sizeable than theirs.

General equilibrium models]

Last but not least, a strand of the literature modeling household life-cycle decisions in general

equilibrium is closer to our paper. A vein of papers in partial equilibrium before 2014 has been

summarized in Davis and Van Nieuwerburgh (2015). Furthermore, Floetotto et al. (2016) and

Sommer and Sullivan (2018) embed household life-cycle models into overlapping general equilib-

rium frameworks calibrated using US data and analyze the impact of changes in housing policies,

such as the tax deductibility of mortgage repayments.

A few recent papers continue in this direction. In particular, Ma and Zubairy (2021) calibrate a

dynamic general equilibrium life-cycle model using the US Current Population Survey over a long

period (1995–2015). Their model imposes prudential regulations in the form of loan-to-value and

payment-to-income ratios. They predict the counterfactual impact of a decrease in transaction

costs of 20% when buying and selling. The ownership rate increases and the housing size decreases

when buying costs decrease, and the reverse occurs when selling costs decrease. Kaas et al. (2021)

investigates the impact of tax changes on ownership in Germany, a country with a low ownership

rate and large social housing. They are the first to model social housing, although its rents are

pegged to rents in the private market and to prices because of a competitive private rental market.

A strong decrease in transaction taxes is one counterfactual experiment that the authors analyze—

from 5% to 0.33%. They predict very significant effects—and stronger than ours—in particular on

the rate of ownership, which moves up by 6–14 percentage points across all working-age groups.

Next, Schmidt (2022) build the same type of model calibrated on Dutch data and compare the

effect of removing transfer duties depending on whether tax neutrality is achieved by an increase

in income or property taxes. They obtain a result similar to ours on the welfare of newborns—a

negative effect in the first case and a positive effect in the latter case. However, they obtain very

different price movements from what we observe in our work—a strong increase in both housing

prices and rents when the reform is financed by an increase in income taxes and the opposite of

weak fluctuations when the reform is financed by an increase in property taxes.

These differences can be explained by the fact that we balance both owning and rental markets

and make prices and rents endogenous, as in Sommer and Sullivan (2018). Those three papers

above assume that the rental market is competitive and that real estate firms can freely enter. As
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a consequence, the relation between rents and prices is linear, in contrast to the approach in this

paper. The fact that we find significantly smaller effects on mobility and homeownership shows

that general equilibrium effects on both house prices and rents play a considerable role and should

not be neglected.

In this regard, the closest work to ours is Cho et al. (2021). They consider a life-cycle model but

only with a loan-to-value prudential regulation. In contrast, they are the first to introduce random

preference shocks in addition to income shocks that allow them to argue that the model better

fits the mobility rates of households. They embed the life-cycle model within an overlapping

generation model and balance both rental and owner markets, as we do. They calibrate the

model using Australian data. They obtain similar results to ours regarding the effect on well-

being as measured from the expected utility of newborns—a positive effect when the budget is

balanced through an increase in property taxes and a negative effect when it is balanced through

a general income tax. Kaplan et al. (2014) found indeed that Australia and France were close in

terms of illiquid asset holding. What distinguishes our paper from theirs is that we account for

a more diverse set of prudential constraints, including a minimal payment-to-income ratio and

the minimum repayment constraint that prevents households from using mortgages to finance

consumption. This may explain why we obtain the same order of magnitude regarding price

movements (house prices and rents) but half the size of the effects on homeownership rates.

The second difference with Cho et al. (2021) is how we address the numerous technical is-

sues in these nonconvex dynamic models. We argue that adding preference shocks only partly

addresses the issue of nonconvexities. A few methods are proposed in the literature. Fella (2014)

addresses this issue by checking whether the first-order condition is necessary and sufficient using

the discretized value function and provides a more efficient algorithm than the original version

that Carroll proposed. Iskhakov et al. (2017) show that sufficiently large preference shocks can

help smooth out nonconvexities, as in Cho et al. (2021), although these conditions are difficult to

check. We do not follow these routes and use the solution proposed by Karaivanov and Townsend

(2014), in which the authors allow households to randomize across nonconvexities. This increases

household welfare and makes value functions, concave.
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2 A heterogenous-agent housing model

Our structural model is built on different blocks that we detail in this section. All model variables

and parameters are listed and defined in Appendix A.1.

2.1 Demography and labor earnings

The population is composed of overlapping generations of households that age stochastically.

Households are grouped into 4 age groups. For working households, the first three age groups

range from 20 to 35 years, from 35 to 50, and from 50 to 65, while retired households form a group

above 65. The probability of moving from one age category to the next, or aging, is equal to χ1,

χ2 and χ3, respectively, for the first three age categories, whereas the probability of dying (only

for the fourth category) is equal to χ4. These parameters are calibrated by setting, for instance,

life expectancy to 80 years (i.e., 60 periods in the model). When a household dies, it is replaced by

a household in the first age category, and bequests are accidental but taxed, as described below.

Household earnings vary randomly between and within age groups. Within each age cate-

gory, we consider three earnings groups— L(ower), M(edium) and U(pper)—that are defined with

respect to thresholds of means-tested housing policies and whose values capture increasing and

concave labor earnings (see Appendix A.2). Moving across earnings groups (for instance, L to

M or U) within each age category is stochastic. In contrast, no moves are allowed across earn-

ing groups within the last age category (retirement) since pensions are fixed. Moreover, earning

groups remain the same when a household ages, that is, moves to the next age category. Earnings

of the young household that replaces a deceased household are randomly drawn in {L,M,U} given

the group of the latter. Both households thus form a “dynasty” in the particular sense of having

accidental bequests and a human capital level, or earnings, passed on stochastically to the heir.

Stochastic transitions between age and earnings groups ensure that the population is stable

and that the model is stationary. More precisely, the population size is set to unity, and each

household belongs to an age and an earnings group. There are twelve such groups (J = 4×3), and

stochastic aging and earnings mobility are translated into a transition matrix of dimension 12. The

values of the transition matrix are calibrated to match the stationary probabilities within each

state as measured from the 2006 French Housing Survey and the transition matrix is derived from

a single cohort of French workers in the private sector (Magnac et al., 2013). The details of this
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procedure are provided in Appendix A.4. Household earnings levels are denoted as {wk}k=1,.,J .

2.2 Housing and preferences

We adopt the setup of Sommer and Sullivan (2018) with some minor variations in the structure.

House size and tenure House size, denoted h, takes K ordered discrete values, {h1, ..., hK},

where h1 > 0. Housing services, denoted s, are also discrete and belong to the set of values

{h1, ..., hK−1}. The exclusion of the last value is adopted to ensure that some owners are landlords

since the last value of h, hK > s for all s.

Housing tenure takes three values: Renters are households who rent and do not own a house.

We denote the size of the house that they own as h = 0, which is less than s, the housing services

that they consume. Owner-occupiers own their home and no more (h = s ≥ h1). Landlords are

households that invest in additional real estate (h > s). We suppose that landlords live in a house

that they own such that owner-occupiers and landlords satisfy the restriction:

h ≥ s if h > 0. (1)

Landlords receive a rent equal to ρ(h− s), and the yearly rent that renters pay per square meter,

ρ, is constant over s. House prices per square meter, denoted as q, are also constant for different

areas, h. Buyers and sellers of a house whose size is h pay or receive qh before taxes.

We also include two additional parameters related to housing: parameter cm enters the budget

constraint and describes mobility costs for owners. Second, landlords pay a fixed cost ϕ for

maintenance and management.

Preferences In each period, every household decides on its consumption level, c, the quantity

of housing services, s, and the level of next period housing ownership, h′. The current period

utility function of a household is given by:

U(c, s;h) = e
(c/e)1−σ

1− σ
(s/e)α + ξmin(h, s) (2)

in which parameter e > 0 is an equivalence scale for each age category. Specification (2) imposes

that utility is homogenous of degree one in current period expenditures, c+ πs, in which π is the

shadow or actual price of housing services. Parameter α
1+α−σ

measures the housing service share

of expenditures, (σ − α) is the risk aversion parameter. Furthermore, parameter ξ captures the
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preference for ownership—because when s ≤ h ̸= 0, homeowners do not obtain the same utility

as that of renters (h = 0) for the same housing services. As owner-occupier housing maintenance

costs are hardly identified from the ownership preference, parameter ξ stands for the ownership

preference net of maintenance costs for owner-occupiers.

Equivalence scales, e, are hump-shaped over the lifecycle, and their calibrated values are dis-

played in Appendix A.2. The three other parameters are estimated. We impose the following

constraints on these parameters to obtain a properly defined increasing and concave utility func-

tion:

ξ > 0, (α, σ) ∈ (0, 1)2 or σ > 1, α < 0.

2.3 Financial assets and mortgages

Households can accumulate financial assets through bank deposits at a fixed interest rate. The

only borrowing channel is a mortgage for buying a house. The mortgage rate is rm, while the

deposit rate for financial assets is r. The ranking between these rates, rm > r, rationally prevents

a household that has a mortgage from having any financial deposit and conversely. Consequently,

decisions can be cast in terms of net financial wealth denoted as b, which can be positive or

negative. We impose b ≥ 0 if h = 0 such that no borrowing for consumption motives is allowed.

This implies that negative values for b are interpreted as the opposite of mortgage levels.

As one of our original contributions, we impose three types of restrictions on mortgages that

make the resolution of the economic model slightly involved. The first two are macroprudential

regulations on the loan-to-value (LTV) ratio or the payment-to-income (PTI) ratio (Kuttner and

Shim, 2016). The third specifies that mortgages should be repaid within a fixed time frame (typi-

cally 15 or 20 years in Europe) and imposes minimal reimbursement in each period. Remortgaging

is always nonetheless possible if a new house is bought. We also adopt the prevalent rule that

retired households cannot have access to a new mortgage, although existing mortgages continue

to be paid off.

We now detail these constraints and their consequences.

Loan-to-value ratio Let h′ denote the next-period ownership level. Buying a house (i.e.,

h′ ̸= h) might be a first-time purchase (h = 0, h′ ̸= 0) or moving between houses. Because of loan-

to-value ratio regulations, the household should have enough financial assets to cover a minimum
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fraction, θ, of the total value qh′ before contracting a mortgage. Consequently, the financial

position after buying a house, b′, denotes that the next-period financial wealth should satisfy the

constraint:

b′ ≥ −(1− θ)qh′, if h′ ̸= h. (3)

since next-period net wealth, b′ + qh′, should be greater than the downpayment, θqh′. This

constraint also encompasses the borrowing constraint when h′ = 0.

Minimum repayment When the owner remains in the same house in the next period and has

a mortgage (b < 0), we assume that a fixed fraction, δ, of the mortgage, or of the value of the

house, qh, should be paid back, whichever is the largest.

b′ − (1 + rm)b ≥ δmax(−b, qh) if b′ < 0, h′ = h. (4)

Note that we did not condition on b < 0 since doing so is redundant with the condition that b′ < 0

because max(−b, qh) ≥ 0 and as a consequence of equation (4):

0 > b′ ≥ (1 + rm)b.

This minimum repayment constraint (4) prevents paybacks from becoming smaller and smaller

when the mortgage level is close to zero. It also has the advantage of avoiding maintaining high

mortgages for pure consumption motives. In other words, home equity is not used to finance

higher consumption paths. To have some bite in this dimension, we impose a large enough ratio

of repayment, δ:

Condition S: rm(1− θ) < δ.

which means that at least a fraction of the mortgage capital is paid back every period.

Payment to income (PTI) ratio The last constraint refers to the maximal mortgage repay-

ment that should not exceed a certain threshold:

δqh

w
≤ τe, (5)

which effectively forbids large housing investments relative to permanent income.

We can now derive the consequences of these different constraints and Condition S. In par-

ticular, we show that the minimal repayment when the mortgage is positive is δqh and that the
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downpayment condition (3) is always verified even if h′ = h, as in Sommer and Sullivan (2018).

It is here a consequence of constraints (3), (4) and condition S.

Proposition 1 Under Conditions (3), (4) and S, then

(i) b′ − (1 + rm)b ≥ δqh if b′ < 0, h′ = h. (6)

(ii) b ≥ −(1− θ)qh for all h. (7)

Proof. See Appendix A.5

The full set of “prudential” constraints is therefore described by the downpayment equation

(7), the minimal repayment equation (6) and the payment-to-income ratio (5).

2.4 The tax and benefit system

Household income includes earnings and landlord revenues and is taxed using a progressive sched-

ule. There are also taxes on housing services and ownership, as well as transaction taxes on

purchases and sales of houses. The tax system can be described by general and housing-specific

taxes. The first category includes the following:

� The income of a household is the sum of labor earnings (w) and rental income for landlords

(ρ(h − s)). The tax schedule is discrete, t(.), and includes payroll and progressive income

taxes.

� Deceased household assets (financial assets and housing) are taxed at 20% by the govern-

ment. The remaining 80% are stochastically allocated to the young household starting its

life as a replacement for the deceased household.

Second, some taxes are specific to housing and ownership:

� A residence tax, τ r, is paid on the capitalized value of the occupied dwelling, qs.

� A property tax τh is a tax based on the value of the housing stock qh.

� Transaction taxes are paid on the value of the purchase, qh′, or sale qh, and are equal to τ b

for the buyer and τ s for the seller.
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Furthermore, the main government policy regarding housing affordability is to provide housing

allowances to low-income households. The values that we retain are described in Appendix A.3.

We show there how we adapt the groupings of households according to the receipt of housing

allowances, which is means-tested and depends on geographical location.4 A slight complication

arises from the fact that housing allowances are also given to owner-occupiers (h = s, h > 0) with

a mortgage (b < 0). This makes housing allowances, denoted as η(w, h, h′, s, b), depend on the

existence or nonexistence of a mortgage and, more importantly, a discontinuous function in b at

0. This discontinuity breaks the result that the value function is continuous at b = 0 and, as a

consequence, the contraction property in the Bellman equation is unlikely to hold. Since housing

allowances are likely to be fuzzy around 0, we smooth out this discontinuity in a way that is

explained in Appendix A.6.

In summary, the tax function is written as:

T (w, h, h′, s, b) = t(w+ρ(h− s))︸ ︷︷ ︸
Income and payroll taxes

+ η(w, h, h′, s, b)︸ ︷︷ ︸
Housing allowances

(8)

+ τ rqs︸︷︷︸
Residential tax

+ τhqh︸︷︷︸
Property tax

+1{h′ ̸= h, h > 0}τ sqh︸ ︷︷ ︸+
Housing sale tax

1{h′ ̸= h, h′ > 0}τ bqh′︸ ︷︷ ︸
Housing purchase tax

.

Overall, we assume that these taxes are collected by the government and consolidated with

any other agent, such as real estate agents or the institutional owners of other housing property.

Government money is spent on a public good that is not modeled here and whose distribution

across generations does not change in the counterfactuals. Any reform is evaluated by imposing a

change in other taxes in such a way that the government’s budget (i.e., including any agent other

than households) remains constant.

3 Dynamic optimization and optimal value functions

Given the economic primitives presented in the previous section, we set up the dynamic program-

ming problem and explain how we solve for stationary value functions by iterating a two-step,

4Another financial incentive for first-time house buyers is a zero-interest loan that may cover

20% of the total financing costs up to a specific ceiling. Because of its complicated consequences

on the dynamics of the model, we leave the analysis of this loan for further research.
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fixed-point procedure that handles in turn policy functions concerning continuous choices, i.e.,

consumption and discrete choices, i.e., housing services and future housing stocks. Consumption

functions are obtained using an endogenous grid method adapted to the intricacy of the decision

problem considered with many prudential constraints. Next, as discrete choices make the resulting

value function non concave, we introduce lotteries that agents can play and that enhance their

utilities and make the resulting value functions concave. We finish this section by providing the

fixed-point algorithm that solves the dynamic problem and by setting up the general equilibrium

problem that solves for rental and house prices.

3.1 The dynamic programming problem

State variables: The dynamics in the model are derived from three transitional processes:

(1) age and earnings; (2) financial assets and the intertemporal budget constraint; (3) housing.

Consequently, it is enough for each household to be identified with three state variables that

govern their current and future decisions about consumption, savings, housing services, tenure

and housing stocks, as well as mortgages. Those state variables are as follows:

� w : age and discrete earnings level (J groups).

� b : net financial wealth (a continuous variable).

� h : house size in K + 1 groups (from which tenure is derived, e.g., h = 0 for renters).

The Bellman equation: Denote β as the discount factor, and let V (w, b, h) be the value

function that satisfies the following Bellman equation:

V (w, b, h) = max
s,c,h′

(
U(c, s;h) + β

∑
w′

Π(w′|w)V (w′, b′, h′)

)
, (9)

in which w′, b′, h′ are the next period state variables, and Π(w′|w) denotes the transition matrix

of earnings and age over time.

The optimization program is implemented under the following constraints. The first ones are

restrictions for owner-occupiers and landlords given by equation (1), minimum repayment given

by equation (6), downpayment given by equation (7) and payment-to-income given by equation
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(5). Second, the intertemporal budget constraint is given by:

c+ b′ = ζ(h′, s;w, h, b) = (1 + r(b))b+ w (10)

+ρ(h− s)︸ ︷︷ ︸
Net rent

− ϕ1{h > s}︸ ︷︷ ︸
Landlord fixed cost

−q(h′ − h)︸ ︷︷ ︸
Net price of new house

−T (w, h, h′, s, b)− cm1{h ̸= h′},

in which we denote:

r(b) = r1{b ≥ 0}+ rm1{b < 0},

and T (w, h, h′, s, b) is defined in equation (8). Function ζ in this expression is a piecewise linear

function, and its left derivative with respect to b is:

∂ζ

∂b
= 1 + r(b)− ∂T

∂b
> 0.

This dynamic program is stationary in the state variables w, h and b because no parameter is

time dependent and new generations replace old ones. We thus iterate over the dynamic program

and obtain a time-independent value function V (w, b, h), as the fixed point of Bellman equation

(9) can be written in abstract form as:

V (w, b, h) = L(V (w′, b′, h′))

in which L is an operator on functions of state variables (w, b, h) for any discrete value of w, h and

of the continuous variable, b. The range of the continuous variable, b, is slightly restricted below

by considering piecewise linear functions.

A two-step procedure: We split the maximization program with respect to the discrete (s, h′)

and continuous variables, c, as doing so facilitates computation. The Bellman equation is rewritten

as a discrete choice across housing services and housing size and tenure:

V (w, b, h) = max
s,h′

(
V I(h′, s;w, b, h)

)
, (11)

subject to constraint (1) and in which the interim value function, V I(.), is given by continuous

consumption choices:

V I(h′, s;w, b, h) = max
c

(
U(c, s;h) + β

∑
w′

Π(w′|w)V (w′, b′, h′)

)
(12)

under constraints (6) and (7), and under the binding budget constraint (10).
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In other words, we solve the dynamic program by looking for a fixed point of the composition of

two functional operators denoted LD and LI and are given by equations (11) and (12), respectively,

under their associated constraints. We start by describing how we operationalize the second

operator LI using an endogenous grid method (Carroll, 2006). We then turn to the issue that

the first operator LD given by equation (11) delivers non convex functions and explain how we

convexify it using an economic argument. In turn, this justifies why we can use the endogenous

grid method in the first step.

3.2 Consumption choices

We briefly explain how we numerically solve equation (12) under constraints, although the intricacy

of constraints (5), (6) and (7) makes us move the complete set of derivations to Appendix B.

We now sketch out how to construct the operator in the simple case in which constraints (5)

and (6) are absent. The remaining constraints are the budget constraint (10) and the downpay-

ment equation (7). Moreover, we assume that the term on the right-hand side of equation (12),∑
w′ Π(w′|w)V (w′, b′, h′), is concave, which is the result of the convexification argument that we

use in the next subsection. We also fix the other arguments (h, h′, s, w) to their values in this

subsection.

First, we choose to restrict the space of consumption functions to piecewise linear functions

defined on grids of values, b ∈ G(h) that are held constant over the whole fixed point procedure.

The grid for b is specific to each h because of the downpayment constraint (7). The evaluation of

the value function, V (w, b, h), is exact for points on the grid, b ∈ G(h), and intra or extrapolated

otherwise. We allow the value functions to be equal to −∞ or, more exactly, a large negative

number.

Second, we use the endogenous grid method of Carroll (2006). Instead of solving the problem

forward, it is solved backward by using the grid for the end-of-period asset b′, e.g., G(h′). Indeed,

solving forward requires solving for b′, the nonlinear Euler equation for every grid point in b, and

this is too costly in terms of computing time. The grid is denoted G(h′)= {b′1, ., b′g, ., b′G} in which

points are ordered, and the first point of this grid, as follows

b′1 = −(1− θ)qh′,

is chosen such that the downpayment constraint (7) is satisfied by any b′g in the grid. Grid G(h′)
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should also contain point b = 0 since it could be a kink point for the value function. The remaining

points are arbitrary. We varied their construction and chose to have as many negative as positive

values except when h = 0.

The consumption value, say cg, that solves equation (12) under the budget constraint is given by

the standard Euler equation ((B.2) in the Appendix) equating the marginal utility of consumption

to the future discounted expected marginal value of assets. The resulting current value of b, say

bg, is then derived from cg and b′g using the budget constraint. However, it could be that bg does

not satisfy downpayment constraint (7). In that case, consumption cg is constrained at the value

given by the downpayment constraint (7).

The rather tedious complete algorithm when we account for all prudential constraints (5), (6)

and (7) is developed in Appendix B, in which we show that it is important to distinguish three

cases: (1) households selling or buying a house in the next period, i.e., h ̸= h′, (2) households who

remain renters next period, i.e., h = h′ = 0, and (3) the immobile homeowners, i.e., h = h′, h ̸= 0.

The endogenous grid method is shown to apply to these different cases.

3.3 Housing services and housing buying and selling

We start by showing that households can improve their welfare obtained in equation (11) using

lotteries, which makes the resulting value function concave in its arguments. We next show how

to solve for the optimal value function.

3.3.1 Convexifying the discrete choice decision program

In a well-behaved stochastic dynamic optimization problem, the first-order condition with respect

to consumption is necessary and sufficient because the utility function is strictly increasing and

concave and because the future value function is increasing and concave.

In our case, households make discrete choices for their housing services, s, and their housing

stock, h′, by taking the supremum of functions V I(.). This causes nonconcavities in the resulting

value function and, thus, does not warrant that the first-order condition is sufficient for describing

an interior optimum (Iskhakov et al., 2017). Our model is, however, highly nonconcave due to

discrete choices and because tax and benefit schedules are not convex such that the solutions in

Fella (2014) and Iskhakov et al. (2017) are costly to implement.

19



We use the approach of Karaivanov and Townsend (2014) by assuming that households ran-

domize their decisions using lotteries over all possible choices. This has two consequences. First,

households improve their welfare by using these lotteries. Second, the resulting value function is

concave. In other words, the discrete maximization operator in equation (11) is replaced by the

following function:

V (w, b, h) = max
π(h′,s|w,b,h)

∑
h′,s

π(h′, s, s;w, b, h)V I(h′, s;w, b, h), (13)

in which π(·) is the probability of choosing h′, s for a household. Now, if we assume that V I is an

increasing and concave function of b, the resulting V (w, b, h) is concave with respect to b since it

is the upper envelope of concave functions. In practice, it is coded by computing the increasing

and concave envelope of functions V I(h′, s;w, b, h) over the values of b for any w and h.

3.3.2 The optimal value function

To approximate the optimal value function, the interim value functions V I(.) need to be written

on a common grid for b as a function of (h,w), and a new grid depending only on h needs to be

chosen for backward induction. The grid for each (h′, s), GI(h′, s;h,w), computed in the previous

section, has G points, and the number of pairs (h′, s) is less than K2 = (K + 1)2. The algorithm

is decomposed into the following steps.

The encompassing grid It is formed by intermingling all grids, i.e., by sorting:

G∗
0(h,w) = (b∗1 = min

(s,h′)∈Dh,w

GI(h′, s;h,w), ..., b∗M = max
(s,h′)∈Dh,w

GI(h′, s;h,w)).

By construction, this grid is adapted to constraints (5), (6) and (7). In particular, the value

function might take value −∞ or a very large negative number if at any point in this grid, the

constraints are not satisfied.

We construct, by linear optimization, the value function V (b, h, w), for any (h,w) defined in

equation (13). For any b ∈ [b∗1, b
∗
G∗ ], we denote v∗g = V I(h′, s;w, b∗g, h), which can be computed by

inter or extrapolation, and we define V (b, h, w) as:

V (b, h, w) = max

λg ∈ [0, 1]∑
g λg = 1

b =
∑

g λgb
∗
g

∑
g

λgv
∗
g . (14)
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We can compute V (b, w, h) for any point on the original grid bg that lies between b∗1 and b∗G∗ .

It amounts to computing the convex hull of all values v∗g . The range of variations in b is bounded

from below. For all points above b∗G∗ , we extrapolate all functions linearly using the last two points

b∗G∗−1 and b∗G∗ .

Furthermore, the derivative of V (·) is given by

Vb(bg, h, w) =
∑
g

λ∗
gdvg,

where dvg is the collection of derivatives calculated in equation (B.5) in the Appendix, λ∗
g is the

solution for program (14) for any point bg in the interval [b∗1, b
∗
G∗ ]. For any point outside this range,

the value function is extrapolated by a line, and the derivative Vb(·) at these points is the slope

of this line.

The reduction and update of the grid There are two important points to address when

updating the grid over iterations. First, because the value function is obtained by a fixed point

routine, it is impossible to let the number of points in the grid multiply as the iterations progress.

Second, the grid should be written only as a function of h since we used a common grid for all w

because w is unknown in the previous period. If the grid is G(h′) = {b1(h′), ., bG(h
′)}, the one-step

backward revision delivers a set of extreme points, say b̃g(h,w) of the concave function V (h,w, b̃g).

By interpolation using this set of extreme points, we derive the values V (h,w, bg) for each element

of the original grid (up to a change from h′ to h) G(h) = {b1(h), ., bG(h)}.

3.4 The fixed-point algorithm

The value function needs to be calculated as the fixed point of the general operator defined by the

Bellman equation (9) in which we allowed, in the previous subsection, the use of random lotteries

as a convexification device.

We initialize the fixed point iteration process by using a specific value function for retired

households. We show in Appendix F that a reasonable approximation for consumption and housing

services for retired households, neglecting taxes, is to assume that they all sell out their housing

property at retirement. For all h and b ≥ −(1− θ)qh, this yields:

c∗ = w + r(b+ (1− τ s)qh)− ρs∗,

s∗ = argmax
s

(u(w + r(b+ (1− τ s)qh)− ρs, s),
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and therefore:

V (1)(w, b, h) =
u(c∗, s∗)

1− β
.

We use this initial condition for the values of (w, b, h) regarding retired households and then

solve by backward induction the dynamic program (9) for other generations and by iterating

over the Bellman operator L. The complete algorithm used to find the functional fixed point is

described in Section C in the Appendix.

3.5 Steady state distribution function

Given this optimal value function, we next turn to the computation of the steady state of the

economy given these value and policy functions. We initialize the distribution of age and earnings

groups at their steady state values and iterate over the set of policy functions obtained above until

reaching a minimal tolerable level of convergence to the ergodic distribution function dP (w, b, h) of

state variables (w,h, b) on the discrete set of values consisting of {wj}j=1,.,J ×{(hk,G(hk))}k=0,.,K .

The algorithm used is detailed in Section D in the Appendix.

4 Empirical strategy

Our empirical strategy consists of two nested loops. In the inner loop, we compute the values

of housing prices, q, and rental price, ρ, that balance supply and demand in the housing and

rental markets, given parameter values θ. In the outer loop, we estimate the main parameters

by fitting theoretical moments to empirical moments derived from the housing survey using a

simulated method of moments. Other parameters are calibrated. We describe both procedures in

the following.

4.1 Market clearing

We compute rental price ρ and housing price q by equating excess supply to zero in two markets:

private housing and the rental market. We explain in this section how we use the results developed

above in Sections 3.4 and 3.5 and how we calibrate the unknowns in housing and rental supply

from the housing survey.

22



4.1.1 Clearing housing markets

First, the supply of private housing is fixed and equal to h̄PV . The expression equating ownership

to housing supply is:

E(hi) =

∫
h(w, b, h; q, ρ)dP (w, b, h; q, ρ) = h̄PV , (15)

in which the demand for housing h(w, b, h; q, ρ) is derived using what is developed in Section 3.4,

and the discrete probability measure of households at values of the state variables, i.e., wage w,

net financial assets, b and housing level, h, dP (w, b, h; q, ρ) is derived as in Section 3.5.

Second, the equilibrium on the rental market is given by:∫
(s(w, b, h; q, ρ)− h(w, b, h; q, ρ))dP (w, b, h; q, ρ) = E(si − hi) = h̄PUB, (16)

in which the average demand for housing services, si, in excess of private supply, hi, is equal to

h̄PUB, the average area supplied by public institutions.

Clearing markets by solving equations (15) and (16) depends on the average housing volumes

available in the market, h̄PUB and h̄PV that we calibrate as presented next.

4.1.2 Calibrating housing supply

We distinguish four subpopulations: renters in the public housing sector (Public), renters in the

private market (Private), Owner-occupiers and Landlords. We consider that Public also includes

the fraction of the private market owned by institutions (banks, insurance companies, etc.), as

well as social housing. Also key is that we assume that rents are the same in the public and private

markets. The actual difference in the data is assumed to reflect an adjustment in the quality of

housing services.

We assess the proportion of each subpopulation from the housing survey and calibrate average

housing services, s, expressed in square meters per household in the population, as follows:5

This calibration strikes a balance between the distance between volumes and prices predicted

by the model, on the one hand, and those observed from the housing survey, on the other hand.

The former volumes and prices are underestimates of the latter by a 10 to 15% margin.

5The housing survey does not provide robust information on areas rented out by landlords. We assume that

they are as large as that for renters.
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Sector Current Proportion Average house size (s, square meters)

Public 0.17 55

Private 0.26 55

Owner-occupiers 0.49 80

Landlords 0.08 80+55=135

Table 1: Frequencies and average size by housing tenure.

In what refers to h̄PV and h̄PUB, the volume of privately owned properties, h̄PV , is consequently

calibrated as:

h̄PV = 0.08 ∗ 135︸ ︷︷ ︸
Landlords

+ 0.49 ∗ 80︸ ︷︷ ︸
Owner-occupiers

≃ 50.

Second, the volume of housing properties that are either publicly owned or owned by institu-

tions, h̄PUB, is derived by first assessing the volume of properties rented out by institutions in the

private market:

0.26 ∗ 55︸ ︷︷ ︸
Private market

− 0.08 ∗ 55︸ ︷︷ ︸
Fraction owned by landlords

≃ 10,

and using:

h̄PUB = 0.17 ∗ 55︸ ︷︷ ︸
Public housing

+ 10︸︷︷︸
Fraction rented out by institutions

≃ 20.

The total housing volume is thus h̄PV+ h̄PUB = 70 square meters per household in the popu-

lation.

When we evaluate counterfactuals in Section 5, we assess the robustness of our conclusions to

relaxing the condition that the housing supply is fixed. The elasticity of supply in France, εs, is

in the low range, and it is reasonable to fix it at a value of 0.4 (OECD, 2022). We also assume

that this elasticity does not depend on whether properties are private or public. In other words,

h̄PV = 50 ∗ (q/q∗)0.4 and h̄PV = 20 ∗ (q/q∗)0.4 in which q∗ is the initial equilibrium price.

4.1.3 Solving for market clearing prices

Given these empirical counterparts, let the vector of excess demands on the rental and housing

markets be:

Ed =
[
E(si)− E(hi)− h̄PUB,E(hi)− h̄PV

]
and if Ω is a weighting matrix, the criterion function EdΩ

−1E ′
d is minimized over (ρ, q). For Ω, we

use either Ω = I or = V ar(Ed). After some experimentation, we decide to set Ω = I.
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A few technical notes are in order. First, because we discretize the dynamic problem and ran-

domize to smooth out non convexities of the value function, the demand for housing in the owner

market, hi, and in the rental market, si, is discontinuous, and the equilibrium in this economy

might not exist. We decide to smooth out these discontinuities by first computing the demands

on finite grids for prices (ρ, q) and then estimate smooth demands using a nonparametric kernel or

nearest neighbors methods. The asymptotic framework that we entertain is that discontinuities

in demand disappear if the number of points of support of heterogeneity tends to infinity (see, for

instance, Han (2019) for such approximations used in a continuous context). We perform these

computations by using thinner and thinner grids.

4.2 Outer loop: Calibration and estimation of parameters

Our model has two sets of parameters listed in Section A.1 in the Appendix. The first set comprises

parameters that can be calibrated externally using the current environment or legislation. Their

calibrated values are reported in Section A.1. The second set is composed of parameters governing

the utility function (three parameters), the maintenance cost for landlords, ϕ, and the mobility

cost, cm, estimated using the simulated moments method.

To estimate their values, we chose the moment equations of interest that describe the most

important dimensions of our economic model in terms of housing tenure, mobility and share of

housing expenditures in household budgets. We consider five such empirical first-order moments,

as described in the following Table, estimated using the 2006 French housing survey.

Statistic Model Data Housing Survey 2006

Proportions

Owners E(1{h > 0}) 0.57 SOC4

Landlords E(1{h > s}) 0.082 MRFON or XLN

New homeownership E(1{h′ > 0}|h = 0) 0.0416 SOC4, VSOC and SAA

Net sellers each period E(1{h′ < h}) 0.019 VLR, SAA1 and VSOC

Shares of housing expenses

Renters E(ps
w
| h > 0) 0.215 LMLM and MRTOTA

Table 2: Empirical moments to be matched
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The simulated moments method that we use minimizes the weighted distance between the

vectors of empirical and theoretical moments in which the weights are the inverse of the squares of

these empirical moments. Theoretical moments at a certain value of parameter θ are obtained by

computing the value function V (w, b, h, ρ, q; θ)—as in Section 3.4 and the steady-state distribution

function dP (w, b, h; q, ρ) derived in Section 3.5—at the equilibrium prices ρ and q obtained in the

previous Section 4.1.

The final value of the criterion is equal to 0.0175, and estimates are reported in Table 3.

Estimates for risk aversion and housing preferences fall in the range of macroeconomic estimates.

First, as σ > 1, we necessarily have α < 0. From Section 2, they translate into a risk aversion

parameter equal to 1.76+0.18 ≃ 2, and the instantaneous budget share of housing expenditures is

equal to −0.18
−0.95

≃ 19%. Furthermore, ownership preferences are quite small. For an owner-occupier

of a 90-square meter house, the money metric utility value is an additional 300 euros (or 1.5%) in

consumption (evaluated at the mean). Landlords’ maintenance costs are also quite small, while

owners’ mobility costs are much higher and equal to approximately three-quarters of the yearly

rent paid for an average-size house.

Parameters Estimated Value

σ Consumption risk aversion 1.76

α Housing preferences -0.18

ξ Preference for ownership 3.9 10−8

ϕ Landlord fixed cost 19 e/year

cm Mobility cost for owners 3850 e/year

Prices

ρ Rent 68 e/sq.meters*year

q Housing price 890e/sq.meters

Table 3: Estimated parameters and equilibrium prices

The goodness-of-fit of empirical moments with model predictions at the minimized value is

quite good. Errors in housing tenure are less than 10%. Even if new home ownership is less well

predicted, errors remain in a reasonable range. This is also true for the share of housing expenses

for renters.
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Moments Model Data Relative error

Proportions

Owners 0.53 0.57 -0.07

Landlords 0.074 0.082 -0.10

New homeownership 0.0262 0.0416 -0.46

Net sellers each period 0.019 0.019 -0.01

Shares of housing expenses

Renters 0.235 0.215 0.09

Table 4: Goodness of fit

4.3 Robustness: Nonfitted moments

We can also assess the accuracy of moments that are not fitted by the procedure. The two following

tables show the extent to which two of the moments used are correctly predicted by age groups

and earning levels. We can see that the model significantly overestimates the homeownership

rate, particularly those with high income. Similarly, the rate of high-income, middle-aged and

senior households moving into ownership is exaggerated by the model. In practice, moving from a

middle-income class to a high-income class usually does not happen overnight. When that happens,

becoming a homeowner still takes time. These progressive steps are naturally not accounted for

by the model, in which the transitions from one group to another are modeled from evolutions

observed over 15-year periods. Thus, the very high rate in both tables for high-income groups

simply reflects the fact that a middle-aged household reaching such income usually becomes a

homeowner after a few years.

Table 7 shows housing size (variable s) by tenants’ age group and income level. Again, we see

some differences, particularly lower house size for low- and middle-income households, which is

very significant for senior or retired households. This can be partly explained by the fact that, in

the model, flats and houses are assumed to be of the same quality with a single price per square

meter. We indeed observe in the French housing survey that a gap of approximately 40% exists

between the prices per square meter of houses of low- and high-income households and that this

gap is greater for senior and retired households and nearly absent for middle-aged households.
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Junior Middle-aged Senior Retired

Low income 8.00% / 11.28% 19.85% / 17.98% 15.87% / 19.53% 3.89% / 5.78%

Middle income 23.10% / 45.50% 54.77% / 50.34% 67.90% / 54.51% 70.98% / 54.52%

High income 55.89% / 58.85% 79.50% / 96.25% 82.69% / 98.17% 87.78% / 98.63%

Table 5: Homeownership rate (data/model)

Junior Middle-aged Senior Retired

Low income 0.86% / 0.04% 1.01% / 0.44% 0.22% / 0.04% 0.02% / 0.00%

Middle income 4.03% / 4.95% 5.79% / 0.02% 3.78% / 0.04% 1.10% / 0.00%

High income 12.63% / 16.04% 12.73% / 100.00% 7.44% / 38.99% 2.16% / 0.00%

Table 6: Moving-into-ownership rate (data/model)

Junior Middle-aged Senior Retired

Low income 58 / 49 78 / 62 70 / 38 59 / 35

Middle income 64 / 51 90 / 69 97 / 54 82 / 50

High income 85 / 86 111 / 106 114 / 123 107 / 106

Table 7: Average housing size (data/model)

5 Counterfactuals

Given these calibrated parameters, we now evaluate the impact of counterfactual policies that aim

to increase mobility by reducing transaction taxes. More precisely, over the period considered,

when buying (resp. selling) a house, current taxes are 8% (resp. 6%) of the value of the house. We

decrease these amounts to 3% and 3% to match the usually retained values in the US (Sommer

and Sullivan, 2018). The following analysis compares the corresponding steady states of the

economy when we hold constant across steady states, the budget of the government and all other

housing institutions (i.e., real estate institutions and public investors in public housing). In the

main counterfactual (denoted “counterfactual A”), budget equivalence is achieved by increasing

the property tax on homeowners (based on the value of their property), a quite popular policy

proposal at the moment (Bonnet et al., 2021).

We also consider two other counterfactuals that depart slightly from the previous one. In

counterfactual B, we achieve budget equivalence by using a presumably weakly distortive instru-

ment, that is, a proportional tax on income, which we denote by its French acronym, CSG (i.e.,
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“Generalized social contribution”).6 In counterfactual C, denoted as “elastic supply”, we relax

the assumption that the supply of housing is fixed and retains an elasticity of supply ϵs = 0.4.

For the latter counterfactual, we still achieve budget equivalence by increasing the property tax

on homeowners.

5.1 Impact on house prices and homeownership

We start by describing the main equilibrium effects on prices and housing ownership. The first

row of Table 8 displays the homeownership rate for each scenario. Quite expectedly, reducing

transaction taxes increases access to ownership, from 53.11% to 54.95% in counterfactual A. As

explained earlier and in further detail in the next subsection, the reduction in transaction taxes

makes it easier for households to sell their property to buy a new one of a different size or to

become a tenant again. Therefore, a reduction in transaction taxes makes it less risky to become

an owner or to buy a larger house—the risk involved is to incur at any point in the life cycle a

negative shock on income requiring the resale of the house.

This results in less demand for rentals, and prices and rents move in the opposite direction,

with an increase of 2.36% in housing prices and a decrease in rents of 1.59% in counterfactual A,

while the budget is balanced by increasing the property tax from 0.3 to 0.5%.

The effects on housing prices and homeownership rates in counterfactuals B and C are also

expected, although with a weaker price increase of +2.0% when the supply of housing is slightly

elastic (Counterfactual C) and a strong increase of 5.53% when the budget balance is based on

an almost lump-sum tax (Counterfactual B). In the latter case, the increase in housing prices is

more than twice that observed in counterfactual A. The decline in rents is significantly greater in

counterfactual C with an elastic supply (−2.53%) and is slightly greater in the other (−1.75%). As

expected, the choice of the tax that balances the government’s budget has significant implications

for price levels.

In the three counterfactuals, the share of landlords in the population declines sharply. This

can be explained by the fact that, in the baseline scenario, a significant proportion of landlords are

middle-income households that have suffered a negative income shock and have opted to keep their

home and sublet part of it. As shown in Table 9, lower transaction costs in the counterfactuals

6As labor supply and retirement decisions are not modeled here, any tax on labor earnings is nondistortive and

acts as a lump-sum tax. There is, however, some distortion arising because this tax is also levied on landlords’

rental income, which is endogenous in the model, although its impact remains limited.
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Baseline Counterfactuals

A B C

Ownership 53.11% 54.95% 55.46% 54.17%

Price 890.3e 911.3e 939.6e 908.3e

Rent 67.94e 66.86e 66.75e 66.21e

Landlords 7.44% 3.44% 3.23% 3.13%

Table 8: Housing tenure rate, housing and rental prices, share of Landlords.

Note: The baseline designates the model calibrated on the French housing survey, whereas counterfactual A

designates the simulation of the new steady-state economy once transaction taxes have been lowered, with a fixed

housing supply and a budget balanced by increasing the property tax on homeowners. Counterfactual B is similar

but with a budget balanced by increasing the proportional tax on income. Counterfactual C differs from

counterfactual A in that housing supply is assumed to be elastic.

allow them to sell their properties more easily and to buy a smaller property. The evolution of

the landlord rate among high-income households is more complicated to explain because several

opposing factors come into play: given a decline in transaction costs, real estate becomes both

more liquid and less profitable (since housing prices increase and rents decrease).

Junior Middle-aged Senior Retired

Low income 0.58% / 1.18% 0.16% / 0.20% 0.26% / 0.36% 0.00% / 0.00%

Middle income 16.65% / 23.36% 4.94% / 15.04% 1.76% / 22.12% 0.19% / 2.33%

High income 9.38% / 4.86% 1.38% / 1.78% 1.75% / 3.64% 5.27% / 2.86%

Table 9: Share of landlords (main counterfactual/baseline)

5.2 Impact on housing tenure transitions over the life cycle

We now move on to an analysis of mobility between renting and ownership. As shown in the first

row of Table 10, the decrease in transaction taxes leads to a strong increase in trading volume:

the proportion of households carrying out a real estate transaction increases from 2.66% to 3.21%

in counterfactual A, an increase of approximately 21%. However, this is not enough to induce a

Laffer effect since the average transaction tax declines by more than 50%.

Reducing transaction taxes strongly increases mobility along the life cycle in both ways: moving

to ownership increases by approximately 40%, whereas moving back to renting is multiplied by

three. As mentioned in the introduction, this reflects the fact that smaller transaction taxes

allow an owner to better manage an adverse shock to household income by selling property and
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Baseline Counterfactuals

A B C

Housing transactions 2.66% 3.21% 3.23% 3.18%

Average transaction cost 4439e 2003e 2082e 1997e

Move to ownership 2.26% 3.12% 3.17% 3.04%

Move to rent 0.34% 0.96% 0.94% 0.95%

Change in property size 2.68% 2.33% 2.34% 2.35%

Table 10: Transactions, tenure change and changes in housing sizes

(cf. caption of Table 8 for a detailed definition of the baseline and of the counterfactuals).

becoming a renter again. In anticipation, this flexibility leads households to opt more often for

homeownership. However, there is very little change in the size of houses among owner-occupiers,

except for among those who are also landlords. The rate of change is close to zero (rows 5 and

6 of Table 10), whether due to moving to a larger or a smaller apartment. This finding seems

to indicate that the mobility costs (calibrated parameter cm = 3850e/year) combined with low

transaction costs are sufficient to deter such relocations. The decrease in the frequency at which

owners change the size of their housing properties is explained by the decline in the proportion of

landlords (who tend to change their real estate savings more often than do owner-occupiers).

Next, Table 11 provides more details of the various points mentioned in the previous para-

graphs. We focus on the comparison between the calibrated baseline and the main variant (Coun-

terfactual A). The first row shows a very sharp decline in the rate of ownership for low-income

households. This is primarily because reduced transaction costs make selling their houses easier

for households experiencing an unexpected decline in income. The second row shows a very strong

increase in the rate of ownership for high-income junior households because reduced transaction

costs allow rich households to move more quickly into homeownership. The third row highlights a

better match between housing needs and the house size of high-income homeowners when trans-

action costs are low. Indeed, we observe that house size varies more over the life cycle in the

counterfactual for high-income homeowners and is more closely aligned with household size—in

particular, given an average house size of seventeen square meters lower for junior households.

5.3 Impact on household welfare

A better match between the demand for housing and the needs and financial capacities of house-

holds, observed in the previous section, has potentially a positive impact on welfare. In the
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(main counterfactual/baseline) Junior Middle-aged Senior Retired

ownership of low-income group 6.31% / 11.28% 12.59% / 17.98% 6.74% / 19.53% 2.40% / 5.78%

ownership of high-income group 88.5% / 58.8% 97.4% / 96.2% 97.7% / 98.2% 98.3% / 98.6%

house size (high-income homeowner) 84 / 101 109 / 107 130 / 124 101 / 106

Table 11: Ownership and house size for different income groups by age.

following, we measure this effect by computing, as in Cho et al. (2021) and Schmidt (2022),

the impact of the counterfactual change in transaction taxes on the expected utility of newborn

households when they have no initial wealth. We also compute the monetary equivalent of such a

counterfactual, that is, the additional initial wealth that induces the same variation in expected

utility. More precisely, we calculate the lump-sum cash transfer necessary at the start of life to

equate the household’s expected discounted utility in the baseline economy to that in the coun-

terfactual economy. To achieve this, since the change in expected utility is marginal, we construct

the function that associates a given level of initial wealth (for a young household with no property

assets) with the expected utility over the entire life cycle. We then divide the impact of the reform

on expected utility by the slope of this curve near zero.

The results are presented in Table 12 and show a positive impact on welfare—but only when

the decrease in transaction taxes is balanced by an increase in property taxation in the government

budget (counterfactuals A and C). At first sight, it may seem surprising that financing using a

distortive tax on housing improves well-being relative to financing in counterfactual B using the

nondistortive CSG tax. However, it is well known, in particular since Samuelson (1958), that

overlapping-generations models with infinite time horizons are not dynamic efficient in the sense

that a competitive equilibrium is not always Pareto optimal and may involve an overaccumulation

of savings, which a tax on real estate wealth can help to reduce.

Furthermore, the impact on welfare is positive and nearly twice as great in the variant with an

elastic supply (counterfactual C), which can be explained by the fact that housing supply responds

to the increased demand, inducing lower rental and housing prices than those in counterfactual

A.

On the other hand, the penultimate row in Table 12 shows that the impact on the whole

population is always negative. This contrasts with the effect on newborns discussed in the previous

paragraph and results from the fact that younger households benefit from those reforms (as shown

in the last row of Table 12), whereas all of the other age categories are penalized. More precisely,

as mentioned in the previous section, reduced transaction costs allow young households to better
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adapt their status as owners or tenants according to the evolution of their income but penalize older

households due to the resulting increase in house prices. It should be noted that we are comparing

steady states here, and we do not take into account the effect of a reduction in transaction taxes on

existing households in the initial steady state. In particular, we found that it induces an increase

in real estate prices, and therefore generates added value gains for the homeowners. As mentioned

in the literature review above, studies that account for these capital gains find on the contrary

that the overall effect on the population of reducing transaction taxes is positive.

Counterfactuals

A B C

Newborns (poor) 0.25% / 1457e -0.10% / -591e 0.45% / 2580e

Newborns (middle class) 0.25% / 1593e -0.10% / -613e 0.40% / 2566e

Newborns (wealthy) 0.17% / 1306e -0.12% / -939e 0.25% / 1937e

Whole population -0.20% / -5.6e -0.42% / -6.3e -0.04% / -4e

Young households 0.34% / 0.78e 0.23% / 0.55e 0.48% / 1.3e

Table 12: Welfare impact

Note: The first term is the percentage change in expected utility, the second term is the

monetary equivalent. Regarding the impact on the whole population, the monetary equivalent is

the compensating variation

(cf. caption of table 8 for a detailed definition of the baseline and of the counterfactuals).

It is then natural to wonder about the impact on inequalities, which can be measured using Gini

indices. Since wages remain unchanged, the Gini index related to income is unaffected and is equal

to 0.29 in the baseline and counterfactuals, which is consistent with what was measured for France

in 2006 by the World Bank.7 We display in Table 13 the impact of counterfactuals on Gini indices

related to consumption and wealth (defined as the sum of the net financial wealth and the market

value of real estate properties of a household). The first row of Table 13 provides the Gini index

for consumption. The second row also provides the Gini index on current period expenditures—

consumption expenditures increased by housing expenditures (the rent paid directly or the imputed

rent in the case of a homeowner). The last row provides the Gini index on wealth. In all cases,

we find that the impact on the inequalities of the reforms that we consider remains marginal.

This is confirmed by Lorenz curves as shown in Figure 1 since baseline and counterfactuals are

7Cf. https://data.worldbank.org/indicator/SI.POV. GINI?locations=FR, which provides a Gini index for in-

come in France equal to 0.297 in 2006.
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undistinguishable.

Counterfactuals

Baseline A B C

Consumption 0.295 0.296 0.297 0.295

Expenditures 0.278 0.277 0.278 0.278

Wealth 0.707 0.705 0.704 0.707

Table 13: Gini indexes

(cf. caption of table 8 for detailed definition of the baseline and of the counterfactuals).

.

Figure 1: Lorenz curve in the baseline calibrated model for wage, consumption, wealth and

expenditures (Lorenz curves for the baseline and the counterfactuals are undistinguishable).

6 Conclusion

In this paper, we constructed a life-cycle model of housing decisions taken by heterogeneous house-

holds belonging to overlapping generations. Those households face strong prudential regulations

in terms of downpayment, payment-to-income ratios and mortgage repayment rates that corre-

spond to a highly regulated economy such as France. In addition, transaction taxes in France are

among the highest in Europe.
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We solved and calibrated the resulting general equilibrium rental and owner prices which clear

rental and owner markets. This type of constuction leads to many nonconvexities that we dealt

with by introducing random lotteries that households are given access to smooth their value

functions across their many discrete choices.

Using these estimates, we computed the impacts of reducing transaction taxes when different

instruments are used to balance the government’s budget through property or income taxes, and

in the case in which housing supply is fully or somewhat inelastic.

As expected, reducing transaction taxes have two main effects: first, consumption and housing

choices are less distorted over the life-cycle; second, housing prices increase, and the larger housing

supply elasticity, the less so. The former effect on distortions results from increased liquidity of

housing as put forward in the recent macroeconomic literature (Boar et al., 2022). Liquidity make

households more willing to downsize (or upsize) in case of negative (respectively positive) income

shocks. In equilibrium their willingness to home ownership also increases as a result, and rental

prices decrease.

The combination of these effects on homeownership, prices and rents lead to modest gains of

welfare when welfare is computed over the life cycle by comparing newborn households across

steady states. These gains are comparable to what is found in Australia (Cho et al., 2021). They

are slightly larger than in Germany where welfare effects are found to be negative in a somewhat

different model (Kaas et al., 2021). It is probably because homeownership is much lower and

social housing is more important in Germany than in France. A further cross-country comparison

would be interesting to pursue in future work.

These modest welfare gains, and the null impact on inequalities across income groups, do not

advance the agenda of the policy relevance of a reduction in transaction taxes since those taxes

are much easier to estimate and collect than property taxes. In the absence of transactions of a

property, the estimation of the property value would have to rely on hedonic price estimates of

properties sold in its neighboorhood with a large degree of uncertainty. This trade-off remains

unexplored to our knowledge in the literature.
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A Data Appendix and Proofs

A.1 Dictionnary

Variables and functions of the structural model

Variable or function Name Values

w Earnings or productivity J values

c Consumption R+

s Housing services {0, h1, ., hK}∗
h Housing stock {0, h1, ., hK}∗
h′ Next period housing stock {0, h1, ., hK}∗
r Deposit rate Calibrated

rm Mortgage rate Calibrated

b Net financial wealth R

b′ Next period net financial wealth R

ρ Rental rate R+

q Housing price R+

t Income tax R+

T Full taxes R+

ζ Next period net assets or liabilities: c+ b′ R

ε Preference shocks on value function R

Ψ Surplus function for discrete program R

V Value function R

V I Interim value function R

*We set K = 6 and h1 = 35, h2 = 65, h3 = 95, h4 = 125, h5 = 155, h6 = 185 (in square

meters).
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Parameters of the structural model

Parameter Name Values

J Age and earnings groups: number 12

NA Age groups: Number 4

χj Transition probability from age j to age j + 1 Estimated

and if j = 4 to death (see Appendix A.4)

pj Transition prob. between productivity groups Estimated

indexed by the number of scales upward (see Appendix A.4)

Π(w′ | w) Transition matrix between productivity groups

K Number of housing groups 5

γ Equivalence scale See Table 1

σ Consumption risk aversion Estimated

α Share of housing expenditures Estimated

ξ Preference for ownership R+; Estimated

ϕ Landlord fixed cost R+; Estimated

cm Mobility cost for owners R+; Estimated

θ Downpayment rate 20%

τe Maximal repayment to income ratio 30%

δ Minimum payoff rate 5%

τ r Residence tax including housing benefits Calibrated: 0.002

τh Property tax Calibrated: 0.003

τ b Housing purchase tax Calibrated: 0.08

τ s Housing sale tax Calibrated: 0.06

β Discount rate 97%

H Housing stock supply See Section 4.1

G, G Grid for b, b0, ., bG; Number of grid points 50

L Number of pairs (w, h) : J(K + 1) 72
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A.2 Earnings levels

The first earnings category within each age group comprises households benefiting from housing

subsidies (see below Appendix A.3). The second earnings category represents households eligible

for a capped zero-interest loan but not eligible for housing subsidies. The calibration is performed

using the 2006 Housing Survey and is summarized in the following table, which can be read as

follows: the subcategory of households from 35 to 50 years benefiting from housing subsidies

represents 9.5% of the population, have a median income equal to 13384 euros and an average

household size, or equivalent scale, e, of 3.3. We assume that the last age category (older than

65) is entitled to housing subsidies for tenants and homeowners with existing mortgages but not

to the zero-interest rate loan.

Age Earning j Median Household Population

Category Group Earnings Size Share

L 1 10248e 0.108

Junior M 2 16183e 2.50 0.072

U 3 36771e 0.06

L 4 13384e 0.095

Middle M 5 18406e 3.30 0.088

U 6 43529e 0.081

L 7 10341e 0.047

Senior M 8 15576e 2.40 0.104

U 9 41307e 0.104

L 10 10110e 0.031

Retired M 11 13587e 1.50 0.131

U 12 32056e 0.079

Table A-1: Median earnings, equivalent scales and frequencies by age and earning groups

A.3 Housing allowances

Since 2001, housing allowances have been based on the same system and denoted AL in this

appendix. The value of those subsidies is based on a complex formula (see Bozio et al. (2015))

that accounts for household characteristics (earnings and size), geographical location and housing

expenses. For a given household and a given location, it can be approximated by a piecewise-

affine function, i.e., the sum of a constant and a fraction of a capped housing repayment, that is,
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AL = c+ τ ×min(P, Pmax). Both tenants and homeowners with mortgages can benefit from this

policy: in the previous formula, payment P can be either the rent or the loan repayment. The

parameters c, τ and Pmax were obtained using a comprehensive database managed by the French

ministry of housing and calibrated to obtain the best fit. Regarding homeowners with mortgages,

the ceiling on loan repayment is quite low such that housing subsidies are nearly flat. This result

is consistent with what is observed using the 2006 French housing survey—a very low correlation

between subsidies and loan repayments. The data in the table below are monthly values.

age ∈ [20, 35] : AL = 71 + 0.5×min(R, 310) or AL = 92 + 0.11×min(L, 430)

age ∈ [35, 50] : AL = 100 + 0.42×min(R, 370) or AL = 116 + 0.06×min(L, 780)

age ∈ [50, 65] : AL = 105 + 0.33×min(R, 340) or AL = 105 + 0.086×min(L, 1290)

age > 65 : AL = 39 + 0.49×min(R, 230) or AL = 52 + 0.14×min(L, 710)

in which R is the rent, and L is the loan repayment.

A.4 Earnings transition matrix

The values are calibrated to match the stationary probabilities within each state measured from

the French Housing Survey (INSEE, 2006), as well as transition probabilities as described in

Magnac et al. (2013). The authors report estimates of a transition matrix using a very long panel

for a single cohort of male French wage earners working in the private sector and observed from

1977 to 2007. They provide transition matrices between quintiles and in two subperiods, the

first one being defined between the labor market entry (1977) and 15 years later (1992), and the

second one between 1993 and 2007. The approach does not fit perfectly with our age and revenue

breakdown, but we can approximate that by considering that our first age category corresponds to

the first two quintiles, the third to the fifth quintile, and the two different periods corresponding,

respectively, to our first- and second-age categories (hereafter called ’junior’ and ’middle-aged’).

The following Table shows the transition probabilities between the two first and the last quintile

for the first and the second period during 1997–2007.

L to L L to U U to U U to P (U to M)

Young 58, 6% 8, 83% 50, 9% 9, 2% (40%)

Older 74, 4% 1, 95% 72, 8% 3, 9% (23%)

(A.1)

The yearly transition matrix is fitted to match both the stationary probabilities within each

state and the 15-year transition probability described in the four first columns of the table. The
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last is used for the consistency check that we obtain a transition matrix that fits this last column

as well.

The estimated transition matrix is as follows:

i

j
1 2 3 4 5 6 7 8 9 10 11 12

1 0.890 0.043 0.000 0.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 0.869 0.064 0.000 0.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 0.017 0.078 0.839 0.000 0.000 0.067 0.000 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.916 0.023 0.000 0.061 0.000 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.927 0.013 0.000 0.061 0.000 0.000 0.000 0.000

6 0.000 0.000 0.000 0.003 0.017 0.920 0.000 0.000 0.061 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000 0.000 0.923 0.024 0.000 0.053 0.000 0.000

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.913 0.012 0.000 0.075 0.000

9 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.017 0.938 0.000 0.000 0.042

10 0.036 0.000 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.933 0.000 0.000

11 0.036 0.000 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.933 0.000

12 0.036 0.000 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.933

Element (i, j) represents Π(w′ = wj |w = wi) in which w and w′ are the earnings of two consecutive periods.

A.5 Proof of Proposition 1

• We first prove (i).

If h′ = h and b′ < 0, then necessarily, h ̸= 0. Indeed, renters can not have negative financial

wealth.

Assume now, that h = 0 and h′ > 0, i.e., the household bought a house h′ ̸= 0 in period t.

Because of the downpayment constraint (3) in period t, we have

b′ ≥ −(1− θ)qh′ ≥ −qh′.

Suppose that the household remained in this house in period t+1, h′′ = h′. Note that constraint

(4) is written for b′′ < 0:

b′′ − (1 + rm)b′ ≥ δmax(−b′, qh′).

Combining the last two inequalities leads to:

b′′ − (1 + rm)b′ ≥ δqh′.

which is Equation (6).
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This also implies that:

b′′ ≥ δqh′ + (1 + rm)b′

≥ δqh′ − (1 + rm)(1− θ)qh′ from (3)

≥ −((1 + rm)(1− θ)− δ)qh′

≥ −qh′ = −qh′′.

The last inequality is derived from Condition S, which implies (1 + rm)(1− θ)− δ < 1− θ < 1.

By repeating the same argument by forward induction if h′′′ = h′′, this further implies that

equation (6) applies to b′′′ and that b′′′ ≥ −qh′′′. This proves that for any sequence of periods in

which housing remains constant, condition (6) applies.

• We now prove (ii).

This is trivially true for h = 0.

Consider the following sequence of housing choices:

time

t t+ 1 t+ 2

h = 0 h′ > 0 h′′

b′ ≥ −(1− θ)qh′ because of the borrowing constraint (3).

If h′′ = h′ > 0, we know from above that Condition S implies

(1 + rm)(1− θ)− δ < 1− θ.

Equation (6) applied to b′′ and b′ leads to

b′′ ≥ δqh′ + (1 + rm)b′

≥ δqh′ − (1 + rm)(1− θ)qh′ from (3)

≥ −((1 + rm)(1− θ)− δ)qh′

≥ −(1− θ)qh′ = −(1− θ)qh′′.

If h′′ ̸= h′. Either h′′ = 0 and, therefore, b′′ ≥ 0 is trivially satisfied. Or, h′′ > 0. If h′ > h′′ > 0:

b′′ ≥ (1 + rm)b′ + δqh′ − (h′′ − h′)q

≥ −(1− θ)qh′ − (h′′ − h′)q

≥ −(1− θ)qh′′.
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If h′′ > h′ > 0, the borrowing constraint imposes to increase the mortgage by (1− θ)q(h′′ −h′)

at the maximum. Therefore,

b′′ ≥ (1 + rm)b′ + δqh′ − (1− θ)(h′′ − h′)q

≥ −(1− θ)qh′ − (1− θ)(h′′ − h′)q

≥ −(1− θ)qh′′.

Therefore Equation (7) is true at t+1 in any case, and we have shown that it implies it is true

in all configurations at t+ 2.

By forward induction, this proves (ii).

■

A.6 Smoothing out the discontinuity in housing allowances

As explained in the text, housing allowances η(w, h, h′, s, b) are also given to owner-occupiers

(h = s, h > 0) with a mortgage (b < 0). As η(w, h, h′, s, b) depends on the existence of a

mortgage, it is discontinuous, which may lead to a discontinuous value function at b = 0. Since

housing allowance rules are fuzzy, we make this dependence continuous by assuming that for

owner-occupiers (1), the absence of a mortgage makes η(h′, s;w, h, b) constant for b ≥ 0 and

equal to η+(h′, s;w, h); (2) η(h′, s;w, h, b) is constant, equal to η−(h′, s;w, h), for b < −∆qsδ

since mortgages are greater in absolute value than around ∆ < 2 annuities of reimbursement; (3)

η(h′, s;w, h, b) is linear and decreasing between −∆qsδ and 0 since η−(h′, s;w, h) >η+(h′, s;w, h)

because of housing benefits. We denote the slope in absolute value

σb =
η−(h′, s;w, h)− η+(h′, s;w, h)

∆qsδ
> 0.

Parameter ∆ is introduced so that the right-hand side of equation (B.3) remains increasing in bg.

This is achieved if σb(∆) < 1 + rm and can be achieved by manipulating ∆. In the code, we set

∆ = 1.5, which means that the decreasing section of function η0 is close to zero (within a 1.5-year

mortgage reimbursement).

A full description of the effect it has on the budget constraint is developed in the online

Appendix E. In particular, note that the derivative of the full income function ζ(h′, h, s, w, b)

defined in equation (10) is equal to 1 + r(b), which is obtained by:

r(b) = r1{b ≥ 0}+ rm1{b < −∆qsδ} − σb1{b ∈ [−∆qsδ, 0)}.
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B Consumption and endogenous grids

In this subsection, we explain how to map the operator LI from the future expected value function

to the current interim value function. This is why we fix the values of (h′, s) and (h,w).

B.1 Unconstrained problem

As in the text, we start by looking at the solutions that do not necessarily verify the downpayment

constraint (7) b ≥ −(1− θ)qh or the minimum repayment constraint (6) on payoffs:

b′ ≥ b(1 + rm) + δqh if h′ = h, b′ < 0.

B.1.1 The unconstrained solution

The unconstrained solution applies in particular to cases h′ ̸= h but is also used as a reference in

other cases. Absent any constraints other than the budget constraint, the first-order condition for

consumption in the interim decision program is given by:

Uc(c, s;h) = βEVb(w
′, b′, h′)

denoting the derivative of a function f(x, y) with respect to x by fx. For any point b′g in the grid,

consumption cg solves:

cg = U−1
c (βEVb(w

′, b′g, h
′), s;h) =

(
βEVb(w

′, b′g, h
′)

γ
s−α

)− 1
σ

, (B.2)

in which U−1
c is the inverse of Uc with respect to its first argument, and Vb(w

′, b′g, h
′) is the

derivative of the value function with respect to b′ evaluated at each point of the grid b′g ∈ G(h′).

Note that because the expected future value function is concave, consumption is a nondecreasing

function of b′g.

We obtain a point in the current grid, bg, by solving the budget constraint (10) in b:

cg + b′g = ζ(h′, h, s, w, bg) = ζ0(h
′, s;w, h) + (1 + r(bg))bg (B.3)

which exists and is unique:

(1 + r(bg))bg = cg + b′g − ζ0(h
′, s;w, h)

in which r(bg) is either r or rm depending on whether the right-hand side is positive or negative.
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B.1.2 Graphs of value and policy functions

Note that current period financial wealth bg is an increasing function of b′g either by construction

or because of the assumption σb(∆) < 1 + rm.

Points (bg, cg) describe the graph of the policy function

c = c(b, h′, s, h, w).

The interim value function at these points:

vg = V I(h′, s;w, bg, h) = u(cg, s;h) + βEV (w′, b′g, h
′) (B.4)

defines a point (bg, vg) on the graph of

V I(h′, s;w, b, h) = max
c

{u(c, s;h) + βEV (w′, b′, h′)}

subject to:

c+ b′ = ζ(h′, h, s, w, b),

b′ ≥ −(1− θ)qh′.

Moreover, we can also compute its derivative in bg:

dvg = V I
b (h

′, s;w, bg, h) = β(1 + r(b))EVb(w
′, b′g, h

′). (B.5)

However, this unconstrained grid (b1, ., bG) of solutions above neither imposes the downpayment

constraint (7) bg ≥ −(1 − θ)h nor the repayment constraint (6) on (b′g, bg). This is what we now

turn to.

B.2 Imposing constraints on financial assets

We can summarize when and how constraints bind in the following Table if H = {0, , hK}:

Case Housing variables Constraints on (b, b′)

(1) Selling or buying h ̸= h′;h, h′ ∈ H b′ ≥ −(1− θ)qh′, b ≥ −(1− θ)qh

(2) Renters h = h′ = 0 b ≥ 0, b′ ≥ 0

(3) Immobile owners h = h′, h ̸= 0

 b′ ≥ b(1 + rm) + δqh, b ≥ −(1− θ)qh if b′ < 0

b ≥ −(1− θ)qh if b′ ≥ 0

It is natural to impose that one point on the grid is such that b′g = 0 regardless of the values

of (h, h′).

We address these three cases one by one.

A.9



B.2.1 Changing housing status or level: h ̸= h′

Consider first the solution corresponding to b′1 = −(1− θ)qh′ derived from equation (B.3) that is:

(1 + r(b1))b1 = c1 − (1− θ)qh′ − ζ0(h
′, s;w, h, b1).

If h ̸= 0, the condition b1 ≥ −(1− θ)qh is equivalent to:

c1 − (1− θ)qh′ − ζ−0 (h
′, s;w, h) ≥ −(1 + rm)(1− θ)qh

because ζ0(h
′, s;w, h, b1) is constant when b1 is close to the lower bound −(1− θ)qh. This is also

true when h = 0 since the RHS is equal to zero and ζ0(h
′, s;w, h, b1) is constant for h = 0.

This constraint is expressed as:

c1 ≥ (1− θ)qh′ + ζ0(h
′, s;w, h, b)− (1 + rm)(1− θ)qh ≡ c0. (B.6)

Therefore, there are two cases:

� if c1 satisfies constraint (B.6), then b1 ≥ −(1− θ)qh. We should then complete the grid of bs

between b = −(1−θ)qh and b = b1. In this range, because of the future borrowing constraint

in terms of b′, consumption is constrained and equal to the following linear function of b:

c(b) = (1− θ)qh′ + ζ0(h
′, s;w, h, b) + (1 + r(b))b.

However, because consumption c > 0, this case is further decomposed into:

– If c0 = (1 − θ)qh′ + ζ0(h
′, s;w, h, b) − (1 + rm)(1 − θ)qh > 0, we can thus add a point

(c0, b0 = −(1− θ)qh) to the graph. Furthermore,

v0 = u(c0, s, h) + βEV (−(1− θ)qh′, h′, w′),

dv0 = (1 + r(b0))u
′
c(c0, s, h).

– If c0 < 0, we associate to the point b0 = −(1 − θ)qh the value function v0 = −∞ and

dv0 = +∞. We can also complete the grid by choosing an arbitrary, small positive

value c+ and define b+ ∈ (−(1− θ)h, b1) as:

c+ = (1− θ)qh′ + ζ0(h
′, s;w, h, b) + (1 + r(b+))b+,

v+ = u(c+, s, h) + βEV (−(1− θ)qh′, h′, w′),

dv+ = (1 + r(b+))u
′
c(c+, s, h).
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� The second case is when c1 does not satisfy constraint (B.6) and b1 < −(1 − θ)qh. Being

outside the constraints, this cannot be a solution. This also applies to any point in the grid

such that bg < −(1− θ)qh as derived from equation (B.3).

We create a new intermediate value b0 = −(1 − θ)qh and compute by interpolation the

consumption value c0. We can thus derive from equation (B.3) the solution for the next

period’s wealth b′0:

(1 + r(b0))b0 = c0 + b′0 − ζ0(h
′, s;w, h, b0),

and value v0 :

v0 = u(c0, s, h) + βEV (b′0, h
′, w′),

in which EV (b′0, h
′, w′) is computed by interpolation. We also associate with the values

bg < −(1− θ)qh the solutions:

vg = −∞, dvg = +∞.

B.2.2 Renters: h′ = h = 0

This case is very similar to the previous one. Note that the income function ζ0(0, s;w, 0) is

constant.

Consider again the solution corresponding to b′1 = 0 derived from equation (B.3), that is:

(1 + r(b1))b1 = c1 − ζ0(0, s;w, 0).

There are two cases:

� if c1 > ζ0(0, s;w, 0), then b1 > 0. We should then complete the grid of bs between b = 0 and

b = b1. In this range, because of the borrowing constraint, consumption is constrained and

equal to the linear function of b:

c(b) = ζ0(0, s;w, 0) + (1 + r)b.

The formula (10) for ζ0(0, s;w, 0) simplifies into:

ζ0(0, s;w, 0) = w − ρs− T (w, 0, 0, s),

and can be either positive or negative. This again leads to two subcases according to the

sign of c0 = ζ0(0, s;w, 0):
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– If c0 > 0, we can add a point (c0, b0 = 0) to the graph. Furthermore,

v0 = u(c0, s, 0) + βEV (0, 0, w′),

dv0 = (1 + r)u′
c(c0, s, 0).

– If c0 < 0, we associate with the point b0 = 0 the value function v0 = −∞ and dv0 = +∞.

We can also complete the grid by choosing an arbitrary, small, positive value c+ and

define b+ ∈ (0, b1) as:

c+ = ζ0(0, s;w, 0) + (1 + r)b+,

v+ = u(c+, s, 0) + βEV (0, 0, w′),

dv+ = (1 + r)u′
c(c+, s, 0).

� The second case is when c1 < ζ0(0, s;w, 0) and b1 < 0. Being outside the constraints, this

cannot be a solution. This also applies to any point in the grid such that bg < 0, as derived

from equation (B.3).

We create a new, intermediate value b∗I = 0 and compute by interpolation the value for next

period financial wealth b
′∗
I . We can thus derive from equation (B.3) the solution for c∗I :

0 = c∗I + b
′∗
I − ζ0(0, s;w, 0),

and value v∗I and derivatives, dv∗I :

v∗I = u(c∗I , s, 0) + βEV (b
′∗
I , 0, w

′), dv∗I = β(1 + r)EVb(b
′∗
I , 0, w

′).

We also associate with the values bg < 0 the solutions:

vg = −∞, dvg = +∞

These boundary issues possibly lead to the rewriting of an augmented grid from b0 to bG.

B.2.3 Immobile owners: h′ = h ̸= 0

This is the more elaborate case, and the logic should take into account that the additional con-

straint (6)

b′ ≥ b(1 + rm) + δqh if h′ = h, b′ < 0.

is not necessarily satisfied for all (bg, b
′
g) if b′g < 0. Additionally, we need to ensure that the

consumption calculated in (B.2) is compatible with the state variable.
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Consider h = h′ ̸= 0 and note that if b′ < 0, then b < 0 by equation (6). By continuity, we

have that b′ = 0 implies that b ≤ 0 such that only negative bs matter. We use the expression of

the income function ζ0(h, h, s, w, b) that can be derived from Appendix E :

ζ0(h, h, s, w, b) = ζ−0 − (σb +∆δqh)1{b ∈ [−∆δqh, 0)} if b < 0.

Preliminaries First, denote the index g0 such that b′g0 = 0, and note that g0 > 1 because

h = h′ > 0. We associate with this value unconstrained consumption cg0 and the derived value

bg0 , given by the budget constraint:

cg0 = ζ0(h, s;w, h, bg0) + (1 + r(bg0))bg0 .

Note that necessarily bg0 > −(1 − θ)qh since it is impossible when h ̸= 0 to reimburse in one

period the whole mortgage taken in the previous period under reasonable values of parameters

and variables. Furthermore, if g ≥ g0, note that b
′
g ≥ 0 satisfies constraint (6); therefore, we follow

the standard grid from g = g0 onwards. We possibly modify the uncensored grid (cg, bg) if g < g0

or, equivalently, only when b′g < 0 only.

Second, in the positive domain for consumption, the budget constraint is written when b′ < 0

0 < c = ζ(h, h, s, w, b)− b′

= ζ−0 − σb(b+∆δqh)1{b ∈ [−∆δqh, 0)}+ (1 + rm)b− b′

≤ ζ−0 (h, h, s, w)− σb(b+∆δqh)1{b ∈ [−∆δqh, 0)} − δqh

in which we use equation (B.3) and Appendix E in the second line and constraint (6) in the third

line. This implies that:

c+ σb(b+∆δqh)1{b ∈ [−∆δqh, 0)} ≤ ζ−0 (h, h, s, w)− δqh if b′ < 0. (B.7)

Conversely, if constraint (B.7) is satisfied, then the reimbursement constraint (6) is satisfied.

In the following, we denote (c∗g, b
∗
g) the constrained solution for which the constrained financial

wealth is:

b∗g =
b′g − δqh

1 + rm
,

and the constrained consumption is:

c∗g = ζ−0 (h, h, s, w)− δqh− σb(b
∗
g +∆δqh)1{b∗g ∈ [−∆δqh, 0)},

which is nonconstant only in the neighborhood of 0 and for any g, c∗g ≤ c∗1.

A.13



The constraint (B.7) is binding whenever:

c = c∗g < cg and b = b∗g < bg. (B.8)

In the following, we repetitively use the fact that the uncensored solutions cg and bg are

increasing with b′ and, thus, with an increasing index g in the grid. We also use the fact that

(c1, b1) cannot be a solution because b1 < −(1 − θ)qh as b′1 = −(1 − θ)qh and by condition S,

δ > rm(1 − θ), (see the proof of Proposition 1). This implies that (c∗1, b
∗
1) cannot be a solution

because

b∗1 ≤ b1 < −(1− θ)qh.

We set the main classification variable below to:

c∗1 = ζ−0 (h, h, s, w)− δqh

since b∗1 < −∆δqh.

Algorithm The analysis can now proceed by decomposing the problem into four regimes:

1. If c∗1 ≤ 0 < c1, for all g < g0 (and therefore b′g < 0), the choice (h′ = h, s) (given w) is

impossible for a household because of the constraint (B.8) that makes consumption negative.

Necessary payoffs exceed the resource capacity of the household. We set vg = −∞ for all

g < g0.

2. Otherwise, if c∗1 ∈ (0, c1), for all g < g0, the constraint (B.8) is binding since:

c∗g ≤ c∗1 < c1 < cg.

We thus modify the grid as:

(a) For all g such that b∗g < −(1 − θ)qh (which is true for g = 1 by the above), the

constrained solution is unattainable, and we set vg = −∞.

(b) Create b0 = −(1 − θ)qh (∈ (b∗1, bg0) by the above) and set the constrained solution

c0 = c∗1 and the corresponding value function:

v0 = u(c0, s, h) + βEV I(b′0, h
′, w′),

in which b′0 = (1 + rm)b0 + δqh and EV I(b′0, h
′, w′) is interpolated.
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(c) For all other larger g < g0, b
∗
g > b0, (c

∗
g, b

∗
g) are the solutions. We change the value

function into:

v∗g = u(c∗g, s, h) + βEV I(b′g, h
′, w′).

3. Else if c∗1 ∈ [c1, cg0) :

(a) Suppose there exists 1 < g1 < g0 such that bg1 ≥ −(1− θ)qh and cg1 ≤ c∗g1 . If g1 is not

unique; take the minimum.

i. For all g < g1, bg < −(1 − θ)qh, the solution is unattainable and vg = −∞ (for

g = 1 this is always the case).

ii. Set b0 = −(1−θ)qh, interpolate c0 between cg1−1 and cg1 and compute b′0 using the

budget constraint such that:

v0 = u(c0, s, h) + βEV I(b′0, h
′, w′),

in which EV I(b′0, h
′, w′) is interpolated.

iii. Consider all g1 ≤ g < g0 such that cg ≤ c∗g. The solution is (cg, bg).

iv. As cg is an increasing sequence, consider all g1 < g < g0 such that cg > c∗g. Because

g > g1, b
∗
g > b∗g1 > bg1 > −(1− θ)qh since b∗g is an increasing sequence. We continue

with grid (c∗g, b
∗
g) until g = g0 − 1 and:

v∗g = u(c∗g, s, h) + βEV I(b′g, h
′, w′).

(b) In the alternative case in which g1 does not exist, we replace cg with the constrained

solution c∗g (and b∗g) because of constraint (B.8).

i. For all g < g0, such that b∗g < −(1−θ)qh, the solution is unattainable and vg = −∞
(for g = 1. This is always the case).

ii. We set b0 = −(1− θ)qh, c0 = c∗1 and the value function is:

v0 = u(c0, s, h) + βEV I((1 + rm)b0 + δqh, h′, w′),

in which EV I((1 + rm)b0 + δqh, h′, w′) is interpolated.

iii. We continue the grid with b∗g > −(1− θ)qh with grid (c∗g, b
∗
g) until g = g0 − 1 and:

v∗g = u(c∗g, s, h) + βEV I(b′g, h
′, w′).

4. Else if c∗1 ≥ cg0 :
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(a) Consider all g < g0, and set vg = −∞ when bg < −(1− θ)qh.

(b) Define b0 = −(1− θ)qh and interpolate c0 with the consumption defined by the bounds

in bs containing b0. The value function is given by:

v0 = u(c0, s, h) + βEV I(b′0, h
′, w′).

in which b′0 = (1 + rm)b0 + ζ−0 (h, h, s, w, b)− c0 and in which EV I(b′0, h
′, w′) is interpo-

lated.

(c) Continue with (cg, bg) until g = g0 − 1

C Fixed point resolution of value and policy functions

A pseudocode for the algorithm runs as follows:

1. Choose a set of grids G(h) according to the constraints on b, i.e., b ≥ −(1 − θ)qh and

containing 0 (see text). This grid is fixed over the fixed-point routine. Set the value function

to the initial condition V (1)(b′, h′, w′) seen in Section 3.4 and the counter of iterations, k = 1.

2. At iteration k : For all productivity and housing stocks (w, h) apply:

(a) For all (h′, s), apply the EGM algorithm detailed in Section B

i. Compute for every grid point on b′g the uncensored cg using equation (B.2).

ii. Use the different regimes developed in Section B and compute the final bg and final

consumption value.

iii. For each (h′, s) construct the interim value function V I(h,w, h′, s, bg(h,w, h
′, s))

using equation (B.4).

(b) For each (h,w), compute the convex hull of all values V I(h,w, h′, s, bg(h,w, h
′, s)). De-

fine extreme points of this convex hull as (b̃(h,w),max(h′,s) V
I(h,w, h′, s, b̃)). The fact

that b̃ depends on (h,w) and that many such points remain implicit in the following

keeps the notation simple. However, note that the first extreme point is necessar-

ily the first point in the grid b1(h). We also impose that the resulting value function

V (h,w, b̃) = max(h′,s) V
I(h,w, h′, s, b̃) is increasing over the set of extreme points. Note

also that a single (h′, s) is associated with each of those extreme points b̃ with proba-

bility one. This is the optimal discrete choice (h′, s) at b̃.
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(c) Interpolate on the flat segments between extreme points b̃ (and possibly above the

maximum of these values) the value function V (k+1)(bg, h, w) at any bg on the fixed grid

G(h).

3. Verify the convergence criterion: ∥V (k+1)(b, h, w)− V (k)(b, h, w)∥ < ϵ in which the norm is:

∥V (k+1)(b, h, w)− V (k)(b, h, w)∥ = max
w,h,bg∈G(h)

[(
V (k+1)(b, h, w)− V (k)(b, h, w)

)2]
.

4. If the condition is not true, start a new iteration k = k + 1 by updating V (k)(b, h, w) on the

grid G(h).

5. Exit if the condition is true and store V ∗(b̃, h, w) on the final set of extreme points b̃(h,w)

derived in step 2b.

Knowing V ∗(b̃, h, w), we can now compute the values of the optimal policy functions obtained

at the extreme points b̃: c̃, h̃′, s̃ as could be derived at step 2b. Those are necessarily unique. This

means that for any (h,w, b̃), we are able to compute the policy functions c̃, h̃′ and s̃, as well as

the probabilistic transition functions to w′ and the deterministic function b̃′ = b̃′(b̃, c̃, h̃′, s̃).

The extension of this computation procedure of the policy functions for any point (h,w, b) in

the feasible set is straightforward. The only difficulty is that b is generally between two extreme

points in the grid specific to (h,w). Suppose that b ∈ (b̃e, b̃e+1) in which b̃E+1 = +∞, and E is

the number of extreme points. Denote:

λe =
b− b̃e

b̃e+1 − b̃e
if e < E, λe =

b− b̃E

b̃E − b̃E−1

if e = E.

The policy functions are given by e < E:


c(b, h, w) = (1− λe)c(b̃e, h, w) + λec(b̃e+1, h, w)

h̃′(b, h, w) = h̃′
e = h̃′

e+1,

s̃′(b, h, w) = s̃e = s̃e+1,

if (h̃′
e, s̃e) = (h̃′

e+1, s̃e+1),




c(b, h, w) = c(b̃e, h, w)

h̃′(b, h, w) = h̃′
e

s̃′(b, h, w) = s̃e

with probability (1− λe)


c(b, h, w) = c(b̃e+1, h, w)

h̃′(b, h, w) = h̃′
e+1

s̃′(b, h, w) = s̃e+1

with probability λe

if (h̃′
e, s̃e) ̸= (h̃′

e+1, s̃e+1).
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in which the expression in the first bracket means that the interim functions are the same but are

different in the second brackets. In the case e = E, we extrapolate linearly above b̃E by using:

c(b, h, w) = c(b̃E, h, w) + λE(c(b̃E, h, w)− c(b̃E−1, h, w))

h̃′(b, h, w) = h̃′
E,

s̃′(b, h, w) = s̃E.

D Finding the steady state

Given prices p = (ρ, q) and parameters θ, we start:

� with a value function obtained using the fixed point algorithm and constructed on an en-

dogenous grid in which for any (h,w), the extreme grid points are

Ge(h,w)={b(h,w)
k }k=1,.,K(h,w) .

� a probability distribution function denoted µ0. Only extreme points, denoted l = (b
(h,w)
k , h, w),

are charged with a probability mass µ
(l)
0 . We denote b(l) = b

(h,w)
k .

Strategy: We establish the new value of µt+1 from the value µt in the following way.

� Start from l = (b
(h,w)
k , h, w) and find (b′k, h

′
k, sk) the policy functions associated with b

(h,w)
k .

� Denote w′ as the future wage and π(w′ | w) as its probability. Associate probability µ(l) ∗
π(w′ | w) with the point (b′k, h

′
k, w

′). This is not, however, an extreme point in the grid

(h′, w′).

� Find l′− and l′+ the adjacent points in grid Ge(h
′, w′) such that b(l′−) ≤ b′k ≤ b(l′+). If l

′
− is

the upper right point, then set l′+ = l′−. These are the closest extreme points.

� Associate a probability mass with each of them, proportional to the distance between them

and b′k. This means that a nonextreme point is a weighted combination of two extreme

points:

– l′+ gets a mass of µ(l) ∗ π(w′ | w) ∗ b′k−b(l′−)

b(l′+)−b(l′−)

– l′− gets a mass of µ(l) ∗ π(w′ | w) ∗ b(l′+)−b′k
b(l′+)−b(l′−)
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– Note that as l′+ and l′− are derived from the same interim function, the randomization

is not necessary but is equivalent to the solution.

� This is the transition matrix between µt and µt+1.

Algorithm:

Initialization:

� A list of elements (w, h) and two vectors: first, b containing extreme points of V (w, h, b),

their number varying with (w, h). Second, a vector of probabilities µ(0)(w, h, b) of the same

length than b.

� A list of elements (w, h), one vector b containing extreme points of V (w, h, b), and a list

of possible futures (w′, h′, b′+) and (w′, h′, b′−), b
′
+ and b′− being of the same length as b and

being the b−coordinates of points l′+ and l′− defined above. Associated with these vectors

are the vectors π(w′ | w) ∗ b′k−b(l′−)

b(l′+)−b(l′−)
and π(w′ | w) ∗ b(l′+)−b′k

b(l′+)−b(l′−)
defined above. This list of

lists defines the nonempty rows of the transition matrix between (w, h, b) and (w′, h′, b′) and

does not depend on the marginal distributions µ. We denote it as K((w′, h′, b′) | (w, h, b)).

Recursion:

� Starting from µ(k), we apply the operator K((w′, h′, b′) | (w, h, b)) to compute the marginal

probabilities of each future history after (w, h, b). This results in lists describing (w′, h′, b′)

and its associated probabilities

� Sum over (w, h, b) to recover the marginal probability of any (w′, h′, b′). Denote it as µ(k+1).

Given the fixed point values (V, µ), in which µ is the ergodic distribution, we are now able to

compute prices in this economy and calibrate their parameters.
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Appendix not for publication

E Piecewise linear income function

In Appendix A.6 we smoothed out the discontinuity using function η(.) for the housing allowances.

From this definition, we extend the same construction for any h > 0 and h = s to the income

function ζ0(h
′, s;w, h, b) defined in equation (B.3) in Appendix B.2, which is a linear function of

η(.). It is a piecewise linear income function at negative values of b near 0. It is described as, using

notations ζ+0 , ζ
−
0 and ∆,

ζ0(h
′, s;w, h, b) =


ζ+0 if b ≥ 0,

ζ+0 − b
∆δqh

(ζ−0 − ζ+0 ) if b ∈ (−∆δqh, 0),

ζ−0 if b ≤ −∆δqh.

For h = 0 or h ̸= s, we have ζ0(h
′, s;w, h, b) = ζ+0 = ζ−0 is independent of b.

The slope of ζ0, in absolute value as a function of b on the inner interval is denoted in the text

σb =
ζ−0 −ζ+0
∆δqh

and ∆ is chosen such that σ < 1 + rm. Rewrite ζ0 as:

ζ0(h
′, s;w, h, b) =


ζ+0 if b ≥ 0,

ζ+0 − σbb if b ∈ (−∆δqh, 0),

ζ−0 if b ≤ −∆δqh.

We now have to solve equation (B.3) in b:

(1 + r(b))b = b′ + c︸ ︷︷ ︸
Cash-in-hand

− ζ0(h
′, s;w, h, b)

in which r(b) = r1{b ≥ 0} + rm1{b < 0}. As ζ(b) is a decreasing function of slope sζ < 1 + rm,

the previous equation has a unique solution in b and is continuous in b′ + c.

First, note that if b ≥ 0, then (1 + r)b = b′ + c − ζ+0 . The condition b ≥ 0 is equivalent to

b′ + c ≥ ζ+0 and b =
b′+c−ζ+0

1+r
.

Second, note that if b < −∆δqh, then (1 + rm)b = b′ + c − ζ−0 . The condition b < −∆δqh is

equivalent to b′ + c < −∆δqh(1 + rm) + ζ−0 and b =
b′+c−ζ−0
1+rm

.

Finally, the last regime is given by b′ + c ∈ (−∆δqh(1 + rm) + ζ−0 , ζ
+
0 ) and b =

b′+c−ζ+0
1+rm−σb

.

Note that by the condition σb < 1 + rm, the interval in the last regime is well defined.

Reciprocally:

b′ + c = (1 + r(b))b+ ζ0(h
′, s;w, h, b)
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and therefore:

b′ + c =


(1 + r)b+ ζ0p if b ≥ 0,

(1 + rm − sζ)b+ ζ0p if b ∈ (−∆δqh, 0),

(1 + rm)b+ ζ0 if b ≤ −∆δqh.

F Initializing terminal value functions and parameters

F.1 The simple case

Consider the simplified program in which e is an equivalence scale that is constant over time:

V (bt) = max
ct

[
u(

ct
e
) + βV (bt+1)

]
s.t. bt+1 = (1 + r)bt + w − ct, bt ≥ 0.

in which we do not consider the probability of survival and w is pension income.

The first-order condition yields:

1

e
u′(

ct
e
) = βV ′(bt+1)

and the derivative of the state equation:

V ′(bt) = β(1 + r)V ′(bt+1).

This yields the Euler equation:

u′(
ct
e
) = β(1 + r)u′(

ct+1

e
).

F.1.1 Stationary case

Assume first:

β(1 + r) = 1

to avoid nonstationarities. This implies that:

ct = ct+1 = c∗.

Furthermore:

V (bt) = max
{ct,.,.}

∞∑
τ=0

βτu(
ct+τ

e
) =

u( c
∗

e
)

1− β
.

Financial wealth bt = b0 is therefore constant and:

c∗ = w + rb0.
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Note also that β = 1
1+r

, which yields:

βV ′(b) =
1

e

1

1 + r

ru′( c
∗

e
)

1− 1
1+r

=
1

e
u′(

c∗

e
).

F.1.2 Nonstationary case

Assume that:

β(1 + r) = λ < 1,

and note that it applies in particular to retired households in which β ≡ β(1− χ4). This implies

that:

u′(ct) = λu′(ct+1),

and if u′(ct) = c−σ
t that:

ct = λ−1/σct+1.

The value function becomes:

Vt(b) =
∞∑
τ=0

βτ (ct+τ )
1−σ

1− σ
=

∞∑
τ=0

βτ (λ
τ/σct)

1−σ

1− σ

=
(ct)

1−σ

1− σ

∞∑
τ=0

(βλ(1−σ)/σ)τ =
(ct)

1−σ

1− σ

1

1− βλ(1−σ)/σ
. (F.9)

Denote:

µ = βλ(1−σ)/σ =
βλ1/σ

λ

=
βλ1/σ

β(1 + r)
=

λ1/σ

(1 + r)
,

and note that µ < 1. Moreover, the budget constraint writes:

∞∑
τ=0

1

(1 + r)τ
ct+τ = (1 + r)b+

∞∑
τ=0

1

(1 + r)τ
w,

⇐⇒
∞∑
τ=0

1

(1 + r)τ
λτ/σct = (1 + r)b+

(1 + r)w

r
,

⇐⇒ 1

1− µ
ct =

1

1− λ1/σ

1+r

ct = (1 + r)b+
(1 + r)w

r
.

Replacing the above yields the value function:

Vt(b) =
((1− µ)1+r

r
(rb+ w))1−σ

(1− σ)(1− µ)
.
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This is what we obtained above when λ = 1.

Note that by equation (F.9), we have:

Vt(b) =
(ct)

1−σ

(1− σ)(1− µ)

such that:

ct = (1− µ)
1 + r

r
(rb+ w).

F.2 Housing services

In the stationary case, generalize the previous setting to allow renting housing services, st in the

case h = 0

V (bt) = max
ct,st

[u(ct, st) + β(1− χ)V (bt+1)]

s.t. bt+1 = (1 + r)bt + w − ct − ρst, bt ≥ 0.

If st is continuous, note that the first-order condition yields:

u′
s(ct, st)

u′
c(ct, st)

= ρ

such that if u′
c is constant, u

′
s is also. Given the strict concavity of u, which means that ct and st

are constant.

If st is discrete, the same argument applies, and st and ct are constant and because

V (bt) = max
{ct,st,.,.}

∞∑
τ=0

[β(1− χ)]τ u(ct+τ , st+τ ) =
u(c∗, s∗)

1− β(1− χ)
,

bt is constant and equal to b0. Thus

c∗ = w + rb0 − ρs∗,

s∗ = argmax
s

u(w + rb0 − ρs, s).

F.3 Housing stocks

In the stationary case, introduce now owners of h units of housing that is supposed to be constant

over time. We have:

V (bt) = max
ct,st

[u(ct, st) + ξmin(h, s) + β(1− χ)V (bt+1)]

s.t. bt+1 = (1 + r)bt + w − ct + ρ(h− st)− ϕ1{st < h}, bt ≥ 0.
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The only thing that changes is the way constant c∗ and s∗ are determined:

c∗ = w + rb0 + ρh− ρs∗,

s∗ = argmax
s

(u(w + rb0 + ρh− ρs− ϕ1{s < h}, s) + ξmin(h, s)).

An alternative strategy is to sell the stock of housing, which yields:

c∗ = w + r(b0 + (1− τ s)qh)− ρs∗,

s∗ = argmax
s

(u(w + r(b0 + (1− τ s)qh)− ρs, s).

The last solution also applies when b0 is negative.

In the nonstationary case, consumption decreases as housing services do. If those are as-

sumed continuous, this a balanced decreasing path for both consumption and housing services.

Considering that β ≡ β(1− χ4) we have:

µ = β(1− χ4) [β(1− χ4)(1 + r)](1−σ)/σ

=
[β(1− χ4)(1 + r)]1/σ

1 + r

and therefore as written in the text, the set of initial conditions for retirees is:

ct = (1− µ)
1 + r

r
(rb+ w)− ρst,

st = argmax
s

(u(w + r(bt + (1− τ s)qht)− ρst, st).

F.4 Initial parameter values

If the elasticity of intertemporal substitution is -0.7 (see Blundell, Browning and Meghir, 94),

σ = 1/0.7 ≃ 1.3. As
U ′
s

U ′
c

= ρ =
αc

(1− σ)s

we have:
ρs

c
=

α

(1− σ)
.

In the data, expenditures on housing are approximately 1/4 of total expenditures. so that ρs
c
= 1/3.

We thus obtain α = −0.1.

References
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