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Abstract. We consider a procurement auction for the provision of a basic service to which

an add-on must later be appended. Potential providers are symmetric, have private informa-

tion on their cost for the basic service and the winning firm must also implement the add-on.

To finance cost-reducing activities related to the add-on, this firm may need extra funding by

outside financiers. Non-verifiable effort in reducing these costs creates a moral hazard problem

which makes the firm’s payoff function for the second period concave in returns over the rele-

vant range. This concavity has two effects: It makes it more attractive to backload payments

to facilitate information revelation and uncertainty on the cost of the add-on introduces a

background risk which requires a risk premium. In this context, we characterize the optimal

intertemporal structure of payments to the winning firm, equilibrium bidding behavior and

reserve prices in the first-price auction with bidders.

Keywords. Auctions, procurement, financial constraints, dynamic mechanism design, asym-

metric information, uncertainty, endogenous risk aversion.

1. INTRODUCTION

Motivation. In many countries throughout the world, service provision in the public

sector is decided by means of some sort of competitive bidding. To illustrate, in the

European Union, the core principles for public procurement aim to establish a playing

field for open competition.4 Yet, at the time of tendering for the provision of long-term

durable projects, bidders as well as the government agency in charge may not be aware of

all the specific needs and costs that future stages in the provision of services may require.

For instance, when the Norwegian Road Administration (Statens vegvesen) renovates

and upgrades an existing infrastructure, it oftentimes requires additional, technically

different and innovative work from its contractors.5 Ex ante, bidding is thus surrounded

1We thank Antonio Miralles, Javier Gonzalez-Morin and Laurent Linnemer as well as seminar partici-

pants at Ume̊a University, X-CREST, University of Konstanz, HEC Montréal and University of Barcelona

for valuable comments. The input from Andrea Galeotti, the Editor, and three referees was instrumental

in revising this paper. We also thank participants at various conferences and workshops for useful com-

ments. The second author also acknowledges financial support from the ERC (MARKLIN). The usual

disclaimer applies.
2NHH Norwegian School of Economics, malin.arve@nhh.no
3Toulouse School of Economics, david.martimort@tse-fr.eu
4In the EU, open procedures, and more specifically first-price or first-score auctions which are open to

any qualified bidder, constitute 73% of all tenders announced in the Official Journal (PWC, 2011).
5 Examples include road construction and maintenance that has led to necessary work on water and

sewage lines below the construction site being included in the initial contract (KOFA cases 2016/1 and
2016/148). Other relevant examples include unexpected additional work during renovation (KOFA case
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by significant uncertainty on what will be the future contours of the project. Ex post, the

public agency is stuck in a bilateral relationship with the firm having won the bidding

stage. This scenario comes with mixed blessings. On the one hand, that competitive

pressure is mute at later stages might be a source of extra rent for the winning firm; a

force that could a priori call for extra payments. On the other hand, if this procuring

agency has not committed enough funds to the project over its whole life cycle, for

instance because raising and committing public funds is increasingly more costly over

time, the winning firm might have to approach outside financiers for additional financing

of the investment needed at these stages. Thus, part of this extra rent might be dissipated

through agency frictions on financial markets.

Contract adjustments are commonly used by private parties when involved in long-term

contracts and are under no specific scrutiny in that case. In the public sector, examples

of such adjustments also abound even though they are indeed often viewed with an eye

of caution as they are expected to significantly deflate value for money, suspected to

reflect undue manipulations by contractors or expressing illegal procurement practices in

disguise. More rigid rules should certainly apply to govern how novel clauses are drafted

when public bodies are involved. The case of highways in France illustrates how this

cautious stance might have been implemented in practice. One of the key missions of the

French Autorité de Régulation des Transports (ART) is indeed to evaluate the relevance of

any extra clause that might be appended to concession contracts as soon as those changes

may have a significant impact on tariffs and concession length. It stands as a particularly

sensitive issue given that changes in traffic and other demand fluctuations often require

expanding existing infrastructure and such expansions might have non-trivial budgetary

costs. Yet, motivated by a surge in the scope and frequency of contract adjustments

in procurement contexts, the most recent EU directives on public procurement, utilities

procurement and concessions open the door to considering contract adjustments in future

public contracts with less reluctance than in the past. In particular, Art. 72 of the 2014

Directive on Public Procurement makes any contract adjustment below 10 % of the initial

contract value for service and supply contracts and below 15 % of the initial contract

value for works contracts admissible as long as it does not change the overall nature of

the contract. Art. 72 also sets out conditions under which larger contract adjustments

are admissible.

These pieces of casual evidence suggest that the debate on how the provision of add-ons

should be regulated remains by and large unsettled. This paper offers a theoretical frame-

work that informs what should be best practices in those environments. In a nutshell, our

analysis shows how firms’ incentives and bidding behavior respond to the intertemporal

2014/14) and the extension of service provision to additional market segments (KOFA cases 2020/193
and 2021/54).
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profile of payments for basic services, the magnitude of the possible agency costs that

pertain to the contractual relationship with outside financiers involved in an add-on and

the degree of competition surrounding the tender.

Model and Main Insights. A public agency wants to procure a basic service through a

competitive tender. In line with public procurement law and practices in many countries

(see for instance, Branzoli and Decarolis (2015), Decarolis (2018) and Hyytinen et al.

(2018)), a first-price auction is used.6 To this long-lasting basic service whose contours are

well known at the time of bidding, an add-on whose costs remain ex ante uncertain will be

added later on. At the time of bidding, potential contractors are privately informed about

their production costs for the well-defined long-term basic service. Later on, when the

exact specifications of the add-on are revealed, information regarding the corresponding

costs becomes available. To reflect existing practices, the task of completing the project

with the add-on only accrues to the winning bidder who is already in charge of the

basic service. Reasons behind such bilateral lock-in are that various transaction and

administrative costs may preclude opening further rounds of bidding, or that, because

there exist strong technological complementarities between this add-on and the basic

service, sourcing from other firms is de facto impossible or inefficient.

Importantly, returns on the basic service may not suffice to cover the investment needed

to implement the add-on efficiently. The firm may have to rely on outside financiers to

take a share of that investment. In return, those financiers take a share of the profit that

such an add-on generates. Because the firm is not fully paid for its effort in innovating

on the quality of the add-on, there is moral hazard in the contractual relationship with

financiers. The extent of this moral hazard problem depends on how much profit made

on the basic service can be used as collateral. Because agency frictions on the financial

market decrease with that profit and at an increasing rate, the firm in fine inherits an

endogenous utility function that is concave in its second-period payoff; at least over the

range where outside financiers are ready to contribute. Concavity of a contractor’s payoff

function thus endogenously follows from agency frictions that the firm faces when raising

outside finance to undertake the additional investment to increase the efficiency in the

provision of the add-on.

This concavity unveils a new Income Effect that is absent from more standard analysis of

dynamic procurement contracts which most often assume quasi-linear payoffs. This effect

has far-reaching consequences. Under complete information, the optimal split between

the public and private money needed to finance the add-on is completely determined

by a simple rule: The firm’s marginal utility of income must equal the cost of public

6In a more complex setting, the tender procedures might be multidimensional and also take into
account different quality dimensions, but a winning bidder would still be asked to provide the basic
service based on its proposal and at the price stipulated in the winning bid.
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funds. This optimal distribution between public and private funding of the add-on is an

important benchmark to assess the role of asymmetric information. Under asymmetric

information, each potential contractor indeed exaggerates its costs for the basic service

not only with a view on consequences for its intertemporal profits for this long-term

service but also with an eye on how such a manipulation might affect agency frictions

with outside financiers. Because of concavity in the second-period payoff, the marginal

utility of such a manipulation is higher at lower profit levels. The firm’s benefit from

exaggerating costs on the basic service also decreases as the firm obtains a greater return

for providing the basic service. This pushes the public agency to backload payments for

the basic service so that incentive compatibility constraints are relaxed. In turn, a public

commitment to grant more profit for the basic service also facilitates the firm’s access to

financial markets. The moral hazard problem with outside financiers is thus of a lower

magnitude and innovation related to the add-on becomes more likely. Finally, this Income

Effect and the associated backloading of payments lead firms to bid more aggressively in

the tender.

Consider now the case where the cost of the add-on remains the firm’s private informa-

tion. Now a Risk Effect is also at play. This effect raises the marginal utility of income in

the second period and exacerbates incentives to manipulate the cost of the basic service.

The argument for why it is so goes as follows: To ensure second-period incentive com-

patibility, the public agency offers the firm a constant price for the add-on independently

of its cost. The firm’s profit from the add-on then fluctuates with this cost realization

which amounts to having the firm bear an endogenous background risk. Because the

firm’s second-period payoff is concave, this extra risk increases agency frictions on the

financial markets. The direct consequence of such background risk is that an additional

risk premium must be paid to ensure the firm’s participation. A second, less obvious,

consequence is that the firm’s marginal utility of income might also increase with that

risk. The firm thus finds it more attractive to exaggerate its cost for the basic service.

Fighting this effect has two important consequences. First, it calls for backloading even

more of the payment for the basic service to the second period. Second, inducing par-

ticipation now being more costly, the public agency must raise the reserve price in the

auction in comparison with a scenario of complete information on the cost of the add-on.

This suggests that long-term projects with add-ons surrounded with much uncertainty

and asymmetric information should be under a hard budget constraint.

Literature Review. This paper follows and builds on an approach of dynamic pro-

curement developed in a companion paper, Arve and Martimort (2016). As in that former

paper, we are interested in the impact of a concave utility function defined over second-

period payoffs on intertemporal pricing. While in Arve and Martimort (2016), we take

this utility function as given and invoke existing financial constraints as a motivation,
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the analysis of the current paper derives those constraints from agency considerations on

financial markets; thereby endogenizing the utility function from first principles.7 Beyond

stressing the role of a proper design of the intertemporal profile of payments to reduce

the winning firm’s information rent, which, even with the introduction of competition, is

similar to that in Arve and Martimort (2016) and echoing similar well-established results

in the literature (Myerson (1981), Riley and Samuelson (1981), McAfee and McMillan

(1986), Riordan and Sappington (1987), Laffont and Tirole (1987), among others), the

current model allows for screening on the extensive margin by means of a reserve price.

Instead, Arve and Martimort (2016)’s focus is on screening on the intensive margin and,

more generally, discuss how risk aversion in a dynamic procurement environment with

uncertainty would affect output of a single firm. In sharp contrast, the current paper ana-

lyzes a scenario with competition for a fixed-size basic service and a fixed-size add-on. To

improve screening, the public agency can hereafter also use a reserve price in the bidding

process so as to reduce participation, an extreme form of rent extraction.

Our paper is also related to a much broader literature on single-unit static auctions

with risk-averse bidders (Holt (1980), Riley and Samuelson (1981), Maskin and Riley

(1984), Matthews (1984)). These papers compare standard auction formats under risk

aversion and show that the Revenue Equivalence Theorem (Myerson (1981), Riley and

Samuelson (1981)) fails. We depart from this literature by embedding risk considerations

in a dynamic context and by endogenizing the concave utility function from agency con-

siderations on financial markets. More recently, the literature on risk aversion in auctions

has analyzed the choice of an optimal reserve price (Hu et al. (2010), Hu (2011)) and

various asymmetries between bidders (asymmetric valuations in Menicucci (2003) and

risk attitudes in Maréchal and Morand (2011)). Finally, Esö and White (2004) focus on

how an ex post background risk impacts bidding behavior. They show how bidders who

exhibit decreasing absolute risk aversion engage in precautionary bidding and, in a com-

mon value environment, shade their bids by more than the corresponding risk premium.

A similar bid reduction is present in our independent private value setting, but is not

always dominating. Another important modeling difference comes from the fact that the

background risk that pertains to the add-on is endogenously derived from our assumption

that bidders have private information on their cost of providing this add-on.

By focusing on an environment with an uncertain component, our model bears some

similarity to McAfee and McMillan (1986) who look at the optimal contract in an en-

vironment where part of the cost is unknown ex ante. However, these authors limit the

analysis to linear contracts and, more importantly, their focus is on the trade-off between

ex post screening and moral hazard in a static environment, not on the dynamic payment

7There is also a small literature on contract design in static contexts with adverse selection and risk
aversion (Salanié (1990), Laffont and Rochet (1998) and Arve and Martimort (2016)).
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structure and bidding behavior in a dynamic setting. A similar trade-off between ex ante

competition and ex post moral hazard is also analyzed in Chakraborty et al. (2021).

In this paper, we abstract from the question of pre-project planning (see for instance

Krähmer and Strausz (2011)) that could potentially reduce uncertainty on future add-

ons. One of our concerns is instead how a given level of uncertainty affects contracting

and bidding behavior. For the same reason, we also differ from the part of the literature

that studies the auctioneer’s incentives to disclose information in private value settings

(Ganuza (2004), Board (2009), Ganuza and Penalva (2010), Ganuza and Penalva (2019))

as well as papers showing how a simple initial design may be optimal even if it implies

cost overruns and contract modifications (Ganuza (2007), Herweg and Schwarz (2018)).

On the empirical front, a line of research has shown the impact of contract adjustments

and change orders on prices and bids. Bajari et al. (2014) estimate adaptation costs in

paving projects in California to be 8 to 14 percent of the winning bid. Jung et al. (2019)

show, using construction data from Vermont, that markups are higher in auctions that

entail renegotiated tasks. De Silva et al. (2017) look at how project modifications impact

bidders’ costs. In this paper, we consider contract adjustments in an optimal contracting

model, and ask how contract adjustments in the form of an additional risky task affects

bidding behavior and how public authorities should respond in designing auctions and

contracts.

At the source of the agency frictions with outside financiers that underlies our analysis

is a moral hazard problem. The firm in charge of developing the add-on may exert some

effort on process innovation. The analysis of innovation has been an active front in the

procurement literature over recent years. While Che et al. (2021) study a value-enhancing

innovation, Tan (1992), Piccione and Tan (1996), Bag (1997) and Arozamena and Can-

tillon (2004) have studied cost-reducing R&D in procurement. These papers differ from

ours in terms of the timing of the investment. Investment takes place before competition

in those papers, while it happens after in our analysis. Additionally, we derive an endoge-

nous utility function that determines strategic bidding behavior from this moral hazard

problem.

Organization. The rest of the paper is organized as follows. The model is presented in

Section 2. Section 3 provides micro-foundations for the firm’s utility function on second-

period payoffs. In that section, we model in detail the moral hazard problem vis-à-vis

outside financiers that allows us to derive the shape of this utility function. Equipped

with this specification, Section 4 presents the complete information benchmark for our

main model. We derive the optimal allocation of public and private funds to finance the

add-on. Moving to the scenario of asymmetric information, we characterize incentive-

feasibility conditions in Section 5. The optimal contract for the basic service, equilibrium
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bidding strategies and the optimal reserve price are presented in Section 6. Section 7

investigates how our results are modified when there is also asymmetric information on

the cost of the add-on. Section 8 proposes alleys for future research. Proofs are relegated

to the Appendix.

2. THE MODEL

We consider an environment where several firms compete for the provision of services

in a public procurement context. A public agency (henceforth the principal) organizes an

auction to select and contract with one of those n + 1 firms (n ≥ 0) for the provision of

a basic service. This basic service is durable and is to be provided over two periods. In

the second period, an add-on is also required from the winning bidder.

To simplify the modeling of the demand side, we assume that the size of these two

services is fixed and normalized to one unit.8 Uncertainty around the cost of the add-on

puts the selected firm’s future returns at risk. To reduce its cost, the firm may innovate

(process innovation). To this end, the firm must undertake a costly investment. To finance

this outlay, the firm might need to approach outside financiers if the basic service does

not provide enough returns. The contractual relationship with those outside financiers is

plagued with moral hazard and agency costs. We are interested in the impact of those

agency costs first, on the firms’ bidding behavior and, second, on the intertemporal struc-

ture of the contract awarded to the winning firm.

Technology, contracts and information. The basic service yields a gross surplus

S1 in each period. The winning firm provides this service at a cost equal to θ1. The gross

surplus from providing the add-on for the second period is S2 and the firm’s cost of doing

so, absent any innovation, is θ2.

The service provider is selected by means of a first-price auction with a reserve price.

The principal offers a contract, consisting of payment specifications for the basic service

over the two periods as a function of the winning firm’s cost (announcement) as well

as a menu of prices for the add-on. The payments for the basic service are denoted by

b(θ1) and b(θ1) + y(θ1) for periods 1 and 2 respectively. The second-period premium

y(θ1) – which may also be negative – allows for a possible non-stationarity of payments

for this service. The second-period payment for the add-on is denoted by p(θ1, θ2). The

exact specifications required for the add-on are not completely known ex ante by the

contracting parties and the principal therefore might a priori offer a menu of prices for

this component, one for each state of the world that might realize later on.

8In the examples mentioned in Footnote 5, this means that the scope of the upgrade or renovation work
is not up for discussion and the extension of the procurement contract to new segments or additional
work is also not of variable size.
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At the time of the tender, each firm i has private information on its cost θ1i of providing

the basic service.9 These cost parameters are independently drawn across firms from a

common knowledge and atomless cumulative distribution F with an everywhere positive

density f whose support is Θ1 = [θ1, θ1]. To ensure that the optimization problems below

are regular, we also adopt the standard Monotone Hazard Rate Property:10

(2.1)
d

dθ1

(
F (θ1)

f(θ1)

)
≥ 0 for all θ1 ∈ Θ1.

Firms are also symmetric in terms of the distribution of their innate cost of providing

the add-on. To capture the idea that the add-on is not completely defined at the time of

contracting, we assume that its cost is uncertain at this stage. Ex ante, there is symmetric

but incomplete information on the cost parameter θ2. Once this cost has realized, that

cost may be common knowledge (main scenario investigated in Sections 4-6) or the firm

may have private information on it (a scenario investigated in Section 7). To maintain a

tractable analysis, we suppose that θ2 is drawn from a common knowledge distribution

on a discrete support Θ2 =
{
θ2, θ2

}
with respective probabilities ν and 1 − ν, where

ν ∈ (0, 1). We denote ∆ = θ2 − θ2 > 0. There is no correlation across the costs θ1 and

θ2 and, more generally, there is no technological linkage across services.11 On the benefit

side, we also suppose that S2 is large enough to ensure that this add-on is always valuable,

even in the absence of any innovation.12

Preferences. Denoting by 1 − β and β the relative (accounting) weights on the first

and second period respectively, the principal’s expected gains from dealing with a firm

of type θ1 which wins the tender can be written as

(1− β) (S1 − b(θ1)) + β (S1 − (1 + τ)(b(θ1) + y(θ1)) + Eθ2 (S2 − (1 + τ)p(θ1, θ2)))

where τ > 0 is the cost of second-period public funds. This expression makes it clear that

second-period payments are more costly to the principal than payments in the first period.

The motivation for such a specification is that, although second-period compensations

9We will ignore the subscript i whenever possible.
10Bagnoli and Bergstrom (2005).
11This assumption stands in sharp contrast with the literature on public-private partnerships (PPPs).

PPP environments often include externalities across tasks, such as effort in a first stage that reduces costs
in the second stage. On this issue, see Hart et al. (1997), Hart (2003), Bennett and Iossa (2006), Schmitz
(2005), Martimort and Pouyet (2008) and Iossa and Martimort (2012, 2015) among others. Contrary
to our focus on two perfectly complementary tasks (basic service and add-on) that, by assumption, are
executed within the same contract, a core focus of that literature is on whether different tasks should be
bundled or not.

12A review by the Swedish National Audit Office (Riksrevisionen, 2021) shows that it is extremely
uncommon for a project to be cancelled at the add-on stage. This is perhaps best illustrated by a quote
from a municipality in Sweden where extensive additional work was required for the construction of a
bridge and where the attitude was “better with an expensive bridge than no bridge at all” (authors’ own
translation from Swedish of KPMG (2021)).
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may have been planned well in advance, the need to channel extra public funds towards

the project may require giving up other valuable projects or levy more funds elsewhere

in the economy at an increasingly higher marginal cost. As we will see below, the cost of

public funds, τ , plays a key role in assessing the extent to which outside financiers are

involved in the financing of the investment.

Denoting respectively by u1(θ1) = b(θ1)−θ1 and π(θ1) = b(θ1)+y(θ1)−θ1 the firm’s first-

period and second-period profit from the basic service, and by u2(θ1, θ2) = p(θ1, θ2)− θ2

its second-period profit from the add-on, the principal’s intertemporal payoff becomes

(2.2) S(θ1)− (1− β)u1(θ1)− β(1 + τ) (π(θ1) + Eθ2(u2(θ1, θ2))) ,

where the social value of the projects (without any innovation) is

S(θ1) = S1 − (1 + βτ)θ1 + β(S2 − (1 + τ)Eθ2(θ2)).

The expression of the principal’s objective in (2.2) highlights the rent-efficiency trade-

off that characterizes contracting under informational asymmetries. The principal cares

about the social value of the project but would also like to minimize the share of that

surplus that accrues to the firm. Of course, this maximization problem should still in-

duce the firm’s participation in the tender mechanism and be incentive compatible when

asymmetric information is a concern.13

Studying how second-period financial constraints impact incentives requires to move

away from more standard models of procurement and endogenize the firm’s risk prefer-

ences with respect to second-period uncertain returns. Still we shall maintain the more

standard assumption that firms are risk neutral with respect to their first-period returns.

Accordingly, we shall express the winning firm’s intertemporal payoff as

(1− β)u1(θ1) + βEθ2 (v (π(θ1) + u2(θ1, θ2))) ,

where the firm’s utility function v defined on second-period returns is increasing and

concave (v′ > 0, v′′ ≤ 0) over the relevant range. For the sake of this section, we shall view

v as being exogenous. Section 3 provides sound micro-foundations for those preferences.

That the firm’s second-period marginal utility is non-increasing captures the fact that,

even though the firm might face costly access to the capital market when raising outside

funds to finance the add-on, the marginal cost of such outside financing decreases when

the firm’s returns from the basic service are of greater magnitude. Intuitively, the firm can

use more of those returns as collateral which helps attract outside financiers. A contrario,

13We come back to those incentive-feasibility constraints in Section 5.
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that the firm remains risk neutral with respect to its first-period returns would capture

the idea that returns on the basic service are well known, stable enough and do not

require any major investment, or that any such investment has already been redeemed.

In any case, outside finance is not needed in the first period and only called for as far as

financing the add-on is concerned.

Auction and Contract Design. The principal runs a first-price auction and commits

to a long-term contract with the winning bidder. That contract regulates prices for the

basic service and the add-on over both periods. In such an auction, potential service

providers thus bid for a complex object; a long-term contract. By means of such a contract,

the principal may choose the intertemporal structure of payments so as to reduce the cost

of provision. In particular, the payment for the basic service may be spread over time; a

possibility which certainly has some appeal when the service provider is risk averse and

future profits from the add-on remain uncertain at the time of contracting.

From the Revelation Principle in a dynamic context (Baron and Besanko (1984), Pavan

et al. (2014), among others), a long-term contract awarded to the lowest-cost bidder can

be viewed as a direct revelation mechanism that stipulates payments in each period as a

function of the firm’s report of its cost for the basic service as well as a menu of prices for

the add-on. Notice that we should allow the price of the add-on to be a function not only

of the announced cost for the basic service but also of the second-period announcement

of the cost for the add-on if the firm has private information on it. Thus, a mechanism

is of the form
{
b(θ̂1), y(θ̂1), p(θ̂1, θ̂2)

}
θ̂1∈Θ1,θ̂2∈Θ2

where θ̂1 is the firm’s announcement of

its cost for the basic service and θ̂2 that of its cost for the add-on. These reports will of

course be truthful in equilibrium.

The winning bidder makes the lowest announcement θ̂1 for the basic service. Provided

the payment schedule b(·) is increasing, everything happens as if potential contractors

were bidding for the basic service with the winning bidder expressing the lowest cost

for the basic service. In turn, this bid determines the second-period additional payment

y(b−1(b(θ̂1))) and the menu of prices for the add-on {p(b−1(b(θ̂1)), θ̂2)}θ̂2∈Θ2
.

Timing. The auction cum contracting game unfolds as follows:

1. Firm i (for i = 1, ..., n + 1) privately learns its cost parameter θ1i for the basic

service.

2. The principal announces the rules of the first-price auction, i.e., a reserve price as

well as a long-term contract which includes the payments for the basic service in

both periods and for the add-on in the second period.
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3. Firm i decides whether to participate or not. If it does, it announces its cost θ̂1i.

The lowest-announcement firm, i0 = mini θ̂1i, is awarded the contract.14

4. The first payment for the basic service b(θ̂1i0) is made to the winning firm i0 upon

delivery of the basic service for the first period.

5. The second payment for the basic service b(θ̂1i0) + y(θ̂1i0) is made to the winning

firm i0 upon delivery of the basic service for the second period.

6. The winning firm learns the value of the cost for the add-on, θ2i0 . So does the

principal in the case where this cost is common knowledge.

7. The winning firm invests I to innovate and save on the cost of the add-on. To do so,

this firm approaches outside financiers. This financing stage of the game is further

developed in Section 3 below.

8. If privately informed on the cost of the add-on, this firm then announces θ̂2i0 . The

winning firm provides the add-on at a price p(θ̂1i0 , θ̂2i0) stipulated by the contract.

This multi-stage Bayesian game is solved by backward induction. We normalize, without

loss of generality, reservation payoffs for all parties to zero.

3. MORAL HAZARD FRICTIONS, FINANCIAL CONSTRAINTS AND ENDOGENOUS
SECOND-PERIOD PREFERENCES

In this section, we provide micro-foundations for the second-period preferences, exhibit-

ing risk aversion over the relevant range, that were specified at the outset in Section 2.

This step is important not only to foster our understanding of how private and public

funds are jointly used to finance long-term projects but also to deepen the interpreta-

tion of our findings. To build those micro-foundations, we take a general perspective and

consider a firm which already enjoys some profit π from undertaking not only the basic

service but also a standard version of an add-on which is socially valuable. To fix ideas

and using our previous notations, we might think of this second-period overall profit as

being defined as π = b − θ1 + y provided that, because of complete information on the

cost of the add on, its price just covers its costs, i.e., p2 = θ2.

This firm is looking for a cost-reducing innovation in the provision of this add-on. The

second-period cost θ2 can be reduced by an amount γ > 0 when the firm undertakes a

costly investment I which is necessary for such an innovation to occur. Financing this

investment may require funding from outside financiers. The probability that such a cost-

reducing innovation is successful is e ∈ [0, 1], where e is a non-verifiable effort undertaken

14In case of a tie among several bidders (a zero-probability event given that the cost distribution has
no atoms), the winning firm is randomly selected with equal probabilities.
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by the firm. To ensure interior solutions under all circumstances below, we assume that

the firm’s disutility of effort ψ(e) satisfies ψ′(e) ≥ 0, ψ′′(e) > 0, ψ′′′(e) ≥ 0, and that the

Inada conditions ψ(0) = ψ′(0) = 0 and ψ′(1) = +∞ hold. The non-verifiability of effort

might imply agency costs with outside financiers. A key variable to assess those agency

costs is the firm’s liability rent15 R(e) = eψ′(e) − ψ(e) (where, from the assumptions

made on ψ, R′ ≥ 0, R′′ ≥ 0 and R(0) = R′(0) = 0). For future reference, we also define

the first-best level of effort as

γ = ψ′(efb).

Whether an innovation arises or not is observable by outside financiers. We also assume

that outside financiers have enough expertise to evaluate how much profit from the basic

service can be pledged by the firm beforehand.16 A financial contract stipulates reim-

bursements T and T depending on whether the innovation has been realized or not.

A contrario, we shall assume that the principal has no expertise in specifying what an

innovation should be upfront; which explains why regulatory contracts are not contin-

gent on this information.17 Financiers are competitive and must break even, i.e., loan

reimbursements must cover the investment outlay:

(3.1) eT + (1− e)T − I = 0.

The firm’s payoff when exerting effort e writes as

π + e(γ − T )− (1− e)T − ψ(e).

The firm thus accepts the financial contract when doing so yields a greater expected

payoff than its stable return π:

(3.2) π + e(γ − T )− (1− e)T − ψ(e) ≥ π.

15Laffont and Martimort (2002), Chapter 5.1.2.
16That outside financiers have expertise not found in the public administration is sometimes viewed as

a justification for bringing outside financiers into the development of major public-private partnerships.
See Iossa and Martimort (2012, 2015) for some modelling on those issues. Suppose a contrario that
outside financiers cannot observe those profits. They could still design a financial contract under the
pessimistic belief that the firm has the highest possible cost θ1 for the basic service, and thus the lowest
possible level of pledgeable collateral. (Alternatively, we could also assume that financiers cannot screen
this cost.) In other words, a firm with a low cost for the basic service could hide cash from its financiers.
The nature of the financial contract and the corresponding agency frictions that are stressed below would
to a large extent remain unchanged. Yet, those frictions would be exacerbated since less pledgeable profit
can be used as collateral. Nevertheless, the endogenous risk aversion that appears below thanks to those
agency frictions would still be present.

17This assumption simplifies the presentation. It could be relaxed at the cost of further complications
coming from the analysis of the free-riding problem that arises when both the principal and outside
financiers care about innovation but may not want to bear their due share of the cost of incentivizing it.
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Effort being non-verifiable, it is chosen by the firm to maximize its own payoff. For any

interior solution, the firm’s moral hazard constraint can thus be expressed by means of

the first-order approach:

(3.3) γ + T − T = ψ′(e).

Finally, the firm can use the profit π as collateral to secure its loan; which leads to the

following limited liability constraint:

(3.4) π − T ≥ 0.

Much in the spirit of Holmstrom and Tirole (1997), but allowing for effort being a contin-

uous variable, a firm endowed with profit π lets outside financiers compete in contracts

to maximize its expected profit subject to the break-even, the incentive and the limited

liability constraints above. Formally, this problem writes as

(3.5) max
e∈[0,1],T ,T

π + e(γ − T )− (1− e)T − ψ(e) subject to (3.1), (3.3) and (3.4).

Undertaking the investment is attractive for the firm whenever the solution to this prob-

lem also satisfies (3.2). For future reference, it is useful to define an effort level em as

solving

γ = ψ′(em) +R′(em).

A monopolistic lender that would maximize its expected profit subject to the firm’s

incentive compatibility (3.3) and limited liability (3.4) constraints would induce such

a level of effort if such financial contract is found acceptable by the firm.18 Define the

threshold π̂ so that the value of this maximization problem is zero, thus leaving a putative

18Formally, the monopolistic lender’s problem would write as

max
e∈[0,1],T ,T

eT + (1− e)T − I subject to (3.2), (3.3), and (3.4).

Suppose that the firm’s participation constraint (3.2) is slack at the optimum. The solution to the so-
called relaxed problem has both (3.3) and (3.4) being binding. Then, the monopolistic lender’s objective
boils down to maximizing

max
e∈[0,1]

π + eγ − ψ(e)−R(e)− I

whose solution is em > 0. Finally, observe that, for this solution, the firm’s participation constraint (3.2)
is slack if

π + em(γ − T )− (1− em)T − ψ(em) = R(em) > π.

This latter condition thus requires that the firm’s stable returns π are not too large so that the financial
contract remains attractive to the firm.
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monopolist lender, whose financial contract would be accepted by the firm, indifferent

between financing or not the innovation. The maximum amount, say I − π̂, that this

monopolistic lender would be ready to finance would just equal the overall surplus at

that effort level minus the liability rent R(em) that would be left to the firm in that

scenario. Formally, we have

I − π̂ = emγ − ψ(em)−R(em)⇔ π̂ = I − emR′(em) < I.

From now on, we shall also assume that

(3.6) π̂ ≥ 0.

This condition simply means that if the profit from the basic service, although positive,

remains below π̂, even a monopolistic lender, inducing effort em would refuse to provide

funding. On top, we shall also assume that the investment I is valuable when effort is

set at its first-best level; a scenario that prevails in the absence of agency frictions with

outside financiers:

(3.7) I < R(efb) = γefb − ψ(efb).

A slight strengthening of this condition is that investment I would remain valuable even

when agency considerations arise, and in particular when effort is set at a lower monopoly

level. This condition writes as

(3.8) I < γem − ψ(em).

Let v(π) be the value of the firm’s problem defined in (3.5). The characterization of

this payoff function and the corresponding effort level that ends up being implemented

are presented in the next proposition.

Proposition 1 The firm’s payoff function v(π) and the corresponding effort level esb(π)

chosen by the firm are defined as follows:

1. For π ∈ [0, π̂), the innovation cannot be financed:

(3.9) v(π) = π and esb(π) = 0.

2. For π ∈ [π̂, I), the innovation can be financed but the firm’s effort is suboptimal:

(3.10) v(π) = R(esb(π))
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where esb(π) solves

(3.11) R(esb(π)) = π − I + γesb(π)− ψ(esb(π)).

In particular, esb(π) is non-decreasing in π, esb(π) < efb and, provided condition

(3.8) holds,

(3.12) v(π) = R(esb(π)) > π.

3. For π ≥ I, the innovation can be self-financed by the firm and effort is set at its

first-best level:

(3.13) v(π) = π − I +R(efb).

As summarized in Proposition 1, limited liability combined with moral hazard is the

source of agency costs in the firm’s relationship with its outside financiers. Outside fi-

nanciers should indeed cover not only the investment outlay I but also the liability rent

R(e) required to induce an effort e from the firm.

When the firm’s profit π is too low, outside financiers cannot finance the difference

I−π and recoup those agency costs. The innovation is not financed and only the standard

version of the add-on is provided. A minimum amount of profit π̂ is necessary to attract

outside financiers. A contrario, if the firm’s profit is greater than I, the innovation can be

self-financed and effort is at the first-best level. For intermediate levels of profit, outside

finance is necessary but it remains feasible only if the agency cost is reduced. The effort

is distorted downward below the first-best level. Of course, effort increases as the firm

finances more of the investment out of its own profit π.

Corollary 1 The payoff function v is non-decreasing, linear on [0, π̂) ∪ [I,+∞),

strictly concave on (π̂, I) with a derivative v′(π) > 1 on that interval, and an upward

discontinuity at π̂ with v′(π̂+) = +∞ when (3.8) holds.

These results imply that agency costs on the financial market have two consequences.

First, a higher level of base profit facilitates access to outside finance by relaxing financial

constraints. Yet, it does so at a lower marginal rate. As the firm’s base profit increases,

the agency cost of outside finance decreases. It explains the concavity of the firm’s pay-

off function at higher profit levels and the decreasing marginal utility exhibited by the

endogenous preferences v. Second, access to outside finance requires a minimum profit

level. Thus, those preferences also exhibit an upward discontinuity at the profit level

where outside financiers are ready to jump in.
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The utility function v represents the firm’s endogenous preferences for second-period

payoffs. A firm which already benefits from an activity (the basic service) that generates

stable and sufficiently large returns and that can be used as collateral also faces less tight

financial constraints. For such a firm, v is close to linear and can even be so if returns

from the basic service allow to self-finance the investment.19 In contrast, a firm with a

tighter financial constraint faces increasingly large agency costs of outside finance at lower

returns; v being strictly concave over this range. Finally, a firm with a very low return

would fail to attract outside financiers. That firm can only offer the standard version of

the add-on and does not provide any innovation.20

To illustrate these results, we provide a parametric example. This example, along with a

second scenario of frictionless finance, also allows us to compare and contrast the results

in the remainder of the paper, thus highlighting the effect of costly access to outside

finance.

Costly Finance. Suppose that ψ(e) = λe2

2
with λ large enough to ensure that optimal

effort levels remain in (0, 1) under all circumstances. It is straightforward to show that

efb = γ
λ

and em = efb

2
. Suppose also that the innovation is valuable at this first-best effort

level, i.e., condition (3.7) holds. This condition can be written as I ≤ 2Î = where Î = γ2

4λ
.

We can compute

v(π) =


π − I +R(efb) for π ≥ I,

π − I + γesb(π)− λ(esb(π))2

2
for π ∈ [π̂, I),

π for π ∈ [0, π̂),

where π̂ = I − Î ≥ 0 so that Condition (3.6) holds.21 The effort level for intermediate

19Formally, it is worth noticing that v is continuously differentiable at I, with v′(I) = 1. This smooth-
pasting condition captures the fact that the Lagrange multiplier for the financial constraint is zero at I.
Yet, v′′(I) is not necessarily continuous as shown in our running example of Costly Finance below.
In the sequel, we will denote by v′′(I−) the negative left-hand side limit of v′′, knowing that, of course,
v′′(I+) = 0.

20Because v exhibits an upward discontinuity around π̂, the firm is actually risk loving in that neigh-
borhood. To illustrate, any profit level π ∈ [0, π̂) can be transformed into a risky claim returning 0 with
some probability ζ and π̂ with complementary probability so that π = (1 − ζ)π̂. Risk-neutral outsiders
could sell this risky claim to the firm’s owners at the sure price π. Buying such a claim would yield an

expected payoff worth (1 − ζ)v
(

π
1−ζ

)
> v(π) = π to the firm. Generalizing this approach, we observe

that, by buying risky claims, the firm can always concavify its payoff function so that its true utility
function becomes the concave hull of v, namely v∗ = co(v). By doing so, the firm “becomes” risk neu-
tral over a range of low profit levels. Firms with low levels of profit from the basic service then have a
stochastic access to financial markets.

21Remember also that v has an upward jump-discontinuity at I − Î when Condition (3.8) holds, a
condition which here writes as 3

2 Î > I.
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profit levels is given by

esb(π) =

(
1 +

(
1− I − π

Î

) 1
2

)
em.

The second-best effort esb(π) that prevails for π ∈ [π̂, I) remains below the first-best effort

efb but above the monopoly solution em.22 We may check that v is only once continuously

differentiable at I with v′(I) = 1, with v′′(I−) = − 1

4Î
< v′′(I+) = 0. The value v′′(I−) can

be thought of as a measure of the agency problem with outside financiers. As Î increases,

the firm’s payoff becomes less sensitive to its financial constraint in the neighborhood of

I. The firm becomes locally more risk neutral.

Frictionless Finance. Suppose instead that there is no moral hazard problem with

outside financiers. For instance, financiers might have developed some expertise in ob-

serving and verifying the firm’s effort. Outside finance is then costless and the innovation

is always financed given that, from (3.7), it has a positive value. It is immediate to see

that, in this scenario, the firm becomes risk neutral with

(3.14) v(π) = π − I +R(efb) ∀π ≥ 0.

4. COMPLETE INFORMATION BENCHMARK

As a first pass, suppose that the costs θ1 and θ2 are both common knowledge, but

recall that, at the time of contracting, the cost θ2 is not yet realized. Following our micro-

foundations from the previous section, the firm evaluates second-period returns using a

utility function v.

The solution to the contracting problem is obvious. First, because costs for the basic

service are known and firms are ex ante identical with respect to the cost of the add-

on, the principal does not have to run an auction to select the most appropriate service

provider. She will simply contract with the firm whose cost θ1 of providing the basic

service is known to be the lowest. Second, because transferring risk to a risk-averse firm

22Tedious but straightforward computations also lead to

v′(π) =
1

2

(
1 +

(
1− I − π

Î

)− 1
2

)
, v′′(π) = − 1

4Î

(
1− I − π

Î

)− 3
2

< 0,

v′′′(π) =
3

8Î2

(
1− I − π

Î

)− 5
2

> 0 ∀π ∈ (π̂, I).
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is costly, the principal should keep all the risk associated with the add-on so as to provide

perfect insurance against second-period cost uncertainty.

In this complete information scenario, an optimal profile of intertemporal payments to

the winning firm should maximize the expression of intertemporal welfare (2.2) subject

to the winning firm’s participation constraint:

(4.1) (1− β)u1(θ1) + βEθ2 (v (π(θ1) + u2(θ1, θ2))) ≥ 0.

The next proposition summarizes the main features of an optimal contract under complete

information.

Proposition 2 Suppose that v′(π̂) > 1 + τ > v′(I). Under complete information, the

following intertemporal profile of payments to the winning firm is optimal23

(4.2) ufb1 (θ1) = − β

1− β
v(πfb) < 0, πfb(θ1) = πfb and u2(θ1, θ2) = 0

where πfb ∈ (π̂, I) is defined as

(4.3) v′
(
πfb
)

= 1 + τ.

To understand these findings, recall that second-period optimality requires that the

public cost of leaving one more euro to the firm equals the firm’s marginal utility of

income. This condition is pinned down in (4.3). This public cost accounts for the second-

period deadweight loss of public funds. The firm’s marginal utility of income captures

its financial constraints as shown in Section 3 and includes the extra cost that private

financiers incur when financing one more euro of the second-period investment. Equation

(4.3) defines a level of the firm’s second-period profit πfb at which the private cost of

outside finance and the public cost of funds are equal. The second element of equation

(4.2) shows that the overall second-period profit of the winning firm for the basic service

should precisely be equal to that threshold. Second-period payments for the basic service

are thus raised accordingly and backloaded.

Because, under complete information, the firm’s total profits can also be pushed to its

reservation payoff, first-period profits are instead negative. The firm should make losses on

the basic service in the first period and recoup those losses later with extra second-period

payments. Note finally that, because of complete information, the principal can cover

exactly the realized costs of providing the add-on and keep the extra second-period funds

23The superscript fb stands for first best and it indexes optimal variables in the complete information
benchmark.
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to reward the basic service only. In the sequel, we will be interested in how asymmetric

information might modify the intertemporal structure of those payments.

Costly Finance (continued). For future references, we also compute

πfb = I − Î
(
1− (1 + 2τ)−2

)
< I.

As public funds become more costly (τ increasing), more of the investment must be cov-

ered by outside financiers which hardens financial constraints.

Frictionless Finance (continued). Suppose that v is given by (3.14). The condi-

tion of Proposition 2 no longer holds. Using public funds is indeed always more costly

than relying on outside finance to pay for the investment. Provided that second-period

profits are bound to remain non-negative, we now have a corner solution πfb = 0 where

the entire investment is funded by outside finance.

These examples illustrate the consequences of relying on costly finance to get an inno-

vation. Even under complete information, payments are backloaded to facilitate funding

of costly R&D activities.

5. INCENTIVE FEASIBILITY

We now consider a more realistic scenario which entails asymmetric information on the

cost of the basic service. In this section, we maintain the assumption that the cost of the

add-on remains verifiable so that the principal directly covers those costs. The case of

asymmetric information on the cost of the add-on is dealt with in Section 7.

Assuming that the bidding strategy b(·) is increasing in the cost of the basic service and

symmetric across players, the probability that a firm which reports θ̂1 wins the auction

is (1− F (θ̂1))n. This allow us to rewrite the requirement of incentive compatibility for a

bidder with type θ1 in terms of its expected payoff as

(5.1) U(θ1) = max
θ̂1∈Θ1

(1− F (θ̂1))n
(

(1− β)(b(θ̂1)− θ1) + βv(b(θ̂1)− θ1 + y(θ̂1))
)
.

From the Revelation Principle, the above maximum is achieved at θ1, i.e.,

(5.2) U(θ1) = (1− F (θ1))n ((1− β)u1(θ1) + βv(π(θ1))) .

We will consider scenarios where π(θ1) remains above π̂ defining ϕ = v−1 as the inverse
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utility function over this range. Actually, π(θ1) can then also be expressed as

(5.3) π(θ1) = ϕ

( U(θ1)
(1−F (θ1))n

− (1− β)u1(θ1)

β

)
.

With this change of variables, any incentive-compatible allocation amounts to a pair

(U(θ1), u1(θ1)) that stipulates the winning firm’s intertemporal payoff and its first-period

profit. Equipped with this dual specification of incentive-compatible allocations, we present

a lemma which provides necessary but also sufficient conditions for implementability.

Lemma 1 Necessary condition. Any incentive-compatible allocation (U(θ1), u1(θ1))

such that π(θ1) as defined in (5.3) remains above π̂, is such that U(θ1) is absolutely

continuous in θ1 (and thus almost everywhere differentiable) with at any point of differ-

entiability:

(5.4) U̇(θ1) = −(1− F (θ1))n

(
1− β + βv′

(
ϕ

( U(θ1)
(1−F (θ1))n

− (1− β)u1(θ1)

β

)))
.

Sufficient condition. An allocation is incentive compatible if U(θ1) is absolutely con-

tinuous, satisfies (5.4) at any point of differentiability and is convex. A sufficient condition

for this convexity is π(θ1) non-decreasing.

To understand the envelope condition (5.4), it is useful to consider the benefits that a

firm with per-period cost θ1 for the basic service gets when pretending to have a marginally

higher cost θ̂1 = θ1 + dθ1. Doing so means that this firm can produce the requested basic

service at a slightly lower cost even though it reduces the probability of winning to

(1 − F (θ1 + dθ1))n. The expected cost that is saved with such a manipulation is thus

worth (1−F (θ1 +dθ1))n×dθ1 ≈ (1−F (θ1))ndθ1. Since the basic service is run over both

periods, this gain is evaluated at the margins 1− β for the first period and β multiplied

by the firm’s marginal utility of income in the second period. This marginal utility is

itself evaluated at the second-period profit for the basic service which roughly amounts

to u1(θ1+dθ1)+y(θ1+dθ1)−θ1 ≈ π(θ1). Putting these facts together, a firm with cost θ1 is

prevented from mimicking the behavior of a θ1+dθ1 type if it receives an extra information

rent worth U(θ1) − U(θ1 + dθ1) ≈ −U̇(θ1)dθ1 = (1 − F (θ1))n (1− β + βv′(π(θ1))) dθ1.

Simplifying yields (5.4).

The right-hand side of (5.4) shows the basic forces at play in the optimal contract.

As is familiar in screening environments, the winning firm must get an information rent

to reveal its cost for the basic service. By exaggerating its cost, the firm can get extra

payments in case it is selected. Yet, this marginal benefit of exaggerating costs must also

be weighted with the reduced probability of winning when costs are inflated.
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As in Arve and Martimort (2016), here there is also another less familiar Income Ef-

fect coming from the fact that the firm’s second-period marginal utility of income is

decreasing. Indeed, a firm with a low cost for the basic service finds it more attractive to

exaggerate this cost as its second-period profits are low. To relax incentive compatibility,

the principal thus offers a profile of second-period profits that is not only backloaded

but also increasing in the cost of the basic service so that any upward cost manipulation

becomes less attractive. The firm is then torn between its incentives to exaggerate costs

to get a higher rent and the fact that doing so reduces its marginal utility of income.

By backloading payments, the principal creates a sort of countervailing incentive that

reduces the cost of incentives; a phenomenon much in the spirit of findings in Lewis and

Sappington (1989) and Khalil and Lawarree (1995).

For a given bidding strategy b(θ1) (or alternatively a first-period profit u1(θ1) = b(θ1)−
θ1), the rent profile U(θ1) is entirely determined by the differential equation (5.4) for

participating types θ1 ≤ θ̃1 together with a boundary condition for the cutoff type θ̃1:

(5.5) U(θ̃1) = 0.

Of course, the cutoff type θ̃1, i.e., the highest cost that participates, is pinned down by the

reserve price that the principal may use to select admissible bidders. This optimal cutoff

is investigated in Section 6.2 below. For the time being, notice that integrating (5.4) and

taking into account (5.5) yield the following integral representation of the payoff profile:

(5.6) U(θ1) =

∫ θ̃1

θ1

(1− F (s))n (1− β + βv′(π(s))) ds, ∀θ ≤ θ̃1.

To illustrate the impact of costly outside finance, it is instructive to compare these

findings to the example of frictionless finance.

Frictionless Finance (continued). In this scenario, v is given by (3.14). The

Income Effect then disappears and the information rent takes the familiar right-hand

side expression:

(5.7)

U(θ1) = (1−F (θ1))n((1−β)u1(θ1)+β(π(θ1)+R(efb)−I)) =

∫ θ̃1

θ1

(1−F (s))nds, ∀θ ≤ θ̃1.



22 M. ARVE AND D. MARTIMORT

6. OPTIMAL CONTRACT

From the analysis in Section 5, we can conclude that under asymmetric information, two

different instruments can a priori be used to extract information rent from the winning

firm. First, the principal can play on the intertemporal profile of payments given to that

firm. Second, the principal can also decide whether to procure or not the services, i.e.,

select a cutoff type θ̃1 which is the highest admissible cost eligible for a contract.24 We

analyze each instrument in turn. We also characterize bidding behavior in the first-price

auction for this long-term contract.

6.1. Intertemporal Payments Profiles

Because the firm’s incentive compatibility constraint (5.4) depends on how much profit

on the basic service is guaranteed for the second period, the principal now chooses an

intertemporal distribution of payments so as to relax this constraint. This effect is formally

stated in the next proposition.

Proposition 3 Suppose that

(6.1) v′(I) < 1 + τ +
v′′(I−)

f(θ)
.

The winning firm’s second-period profit πie(θ1)25 for the basic service satisfies the following

necessary condition for optimality:

(6.2) v′(πie(θ1)) = 1 + τ +
F (θ1)

f(θ1)
v′′(πie(θ1)), ∀θ1 ≤ θ̃1.

πie(θ1) is non-decreasing in θ1 when Assumption (2.1) holds and v′′′ ≥ 0.

Even if πie(θ1) is now greater than the optimal level under complete information, outside

finance is still needed when (6.1) holds:

(6.3) πfb ≤ πie(θ1) ≤ I, ∀θ1 ≤ θ̃1.

The profit on the basic service that accrues to the firm in the second period is always

beyond the first-best threshold πfb. By raising this profit, the principal eases the firm’s

access to financial markets. This decreases the firm’s marginal utility of income and makes

exaggerating the per-period cost for the basic service less attractive. As a by-product,

solving the first-period asymmetric information problem also reduces agency concerns

24This is the equivalent of a reserve price in the direct revelation mechanism.
25Where the superscript ie stands for Income Effect.
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on the financial market. The public principal takes a greater share of the second-period

investment under asymmetric information; which makes it easier for financiers to enter

and decreases the firm’s marginal utility of income for the second period.

The second-best optimality condition (6.2) that characterizes second-period profits un-

der asymmetric information can be readily explained. Second-period optimality still re-

quires that the principal’s cost of leaving one more euro to the firm equals the firm’s

marginal utility of income, duly deduced from its financial constraint. The principal’s

cost, although it still accounts for the second-period deadweight loss of public funds as

under complete information (the first term on the right-hand side: 1 + τ), is now low-

ered because providing more public funds eases incentive compatibility (the second term:
F (θ1)
f(θ1)

v′′(πie(θ1)) < 0). Shifting payments by increasing the second-period profit for high-

cost firms makes it less attractive for low-cost firms to mimic the high-cost firms. Of

course, there is no need to distort the second-period profit target for the most efficient

type θ1; a familiar no distortion at the top result.

Costly Finance (continued). Consider the case where θ1 is uniformly distributed so

that F (θ1)
f(θ1)

= θ1− θ1. For the purpose of deriving closed-form approximations for payment

profiles, we shall now suppose that τ is small enough. Simultaneously, we will also suppose

that asymmetric information on first-period costs is rather mild; a condition that we will

write as

(6.4) τ ≥ −v′′(I−)(θ1 − θ1).

First-order Taylor expansions for (4.3) and (6.2) then give us

(6.5) πfb = I +
τ

v′′(I−)
< I and πie(θ1) = I +

τ

v′′(I−)
+ θ1 − θ1.

26

This example illustrates condition (6.3) in Proposition 3. An extra payment θ1 − θ1 (at

most worth θ1 − θ1) must be given to the firm beyond the full information profit πfb to

facilitate incentive compatibility.

Frictionless Finance (continued). The expression of the information rent (5.7)

makes it clear that a whole range of profit pairs (u1(θ1), π(θ1)) leaves the firm’s rent

unchanged. The fact that there is a positive cost of public funds in the second period

implies that the principal optimally chooses πie(θ1) = 0 when profits must stay non-

negative. In other words and in sharp contrast to the case of costly finance, the firm is

26It is immediate to check that the monotonicity condition for second-period profits holds as required
by Lemma 1.
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paid for the second period solely by means of the net value of the innovation R(efb)−I.

6.2. Optimal Participation

Let us now turn to the characterization of which firms the principal would like to

participate in the tender.27 Setting a reserve price for the auction implicitly defines a

cutoff for the cost of the basic service above which even the least-cost bidder will not be

allowed to engage in the long-term project.

Proposition 4 The optimal cutoff θ̃ie1 , when interior, satisfies the necessary condition

(6.6) S(θ̃ie1 ) + β
(
v(π(θ̃ie1 ))− (1 + τ)π(θ̃ie1 )

)
=
F (θ̃ie1 )

f(θ̃ie1 )
(1− β + βv′(π(θ̃ie1 ))).

Condition (6.6) simply means that, for the cutoff θ̃ie1 , the net benefit of the project

including the net present value of the add-on and the net value of the innovation is equal

to its virtual costs. Of course, the expression of those virtual costs takes into account the

Income Effect. Because public funds are costly, all costs are also conveniently weighted

by the cost of public funds

The role of competition. We observe that the second-period profit πie(θ1) as defined

in (6.2) and the participation cutoff θ̃ie1 defined in (6.6) are both independent of the

number of bidders participating in the auction. The sole role of competition is thus to

reduce the probability that any single firm ends up being the lowest-cost one and is

awarded the project. Competition extracts the firms’ information rent by making it less

likely for an individual firm to become the provider of the service, but it does not affect

other features of the contractual relationship. The intuition is straightforward. Once

selected, the lowest-cost bidder remains in a bilateral relationship with the principal.

Given this selection, the screening devices available to further extract rent beyond the

selection rule, i.e., the intertemporal structure of profits and the participation cutoff,

remain the same and are distorted in the same way with or without competition. This

result thus echoes other standard results in the auction literature. As far as unit auctions

are concerned, Myerson (1981) and Riley and Samuelson (1981) have for instance shown

that the optimal reserve price is independent of the number of competing bidders. In

the case of auctions for incentive contracts, McAfee and McMillan (1986), Riordan and

Sappington (1987) and Laffont and Tirole (1987) have also demonstrated that competition

27In sharp contrast to Arve and Martimort (2016), the principal can no longer adjust quantities for
screening purposes since the sizes of the basic service and the add-ons are both fixed to one unit. However,
in this paper a new feature is that the principal may exclude firms from the tender.
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reduces payments to bidders but does not modify how much the winning firm would

produce conditionally on having been selected.

Frictionless Finance (continued). To understand Proposition 4, it is useful to

think of the case of frictionless access to the financial market, always leading to the

implementation of the innovation of value R(efb)−I. The following corollary characterizes

participation in that case.

Corollary 2 When finance is frictionless, the optimal cutoff θ̃rn1 , when interior, sat-

isfies the necessary condition:

(6.7) S(θ̃rn1 ) + β(1 + τ)(R(efb)− I) =
F (θ̃rn1 )

f(θ̃rn1 )
.

Provided this condition is also sufficient, participation is facilitated when finance is fric-

tionless:

(6.8) θ̃ie1 ≤ θ̃rn1 .

This corollary indicates that the cost of outside finance with moral hazard frictions

ends up being borne by society and the principal restricts participation accordingly.

6.3. Bidding Strategies

We now turn to the characterization of bidding strategies in the first-price auction.

This auction is made somewhat complex by the fact that the second-period profit is

also determined by the first-period bid. More specifically, in such an auction, firm i first

submits a bid bi and the firm i0 with the lowest such bid bi0 = mini bi is selected to provide

the basic service over the two periods for a per-period payment bi0 and also to provide

the add-on in the second period. We look for a symmetric increasing equilibrium bidding

strategy bie(θ1) of such a first-price auction for the basic service as a function of the firm’s

cost. In the second period, the principal offers an extra payment yie(θ1) for this service

and covers the cost of the add-on. Provided that the bidding strategy is increasing and

thus invertible, this extra payment can also be expressed in terms of the first-period bid

b as yie(bi−1(b)) (where the expression of yie(θ1) = πie(θ1)− uie1 (θ1) directly follows from

Proposition 3 above). Moreover, the auction stipulates a reserve price equal to bie(θ̃ie1 ).

The next proposition characterizes the equilibrium bidding strategy.

Proposition 5 For a given cutoff θ̃1, the equilibrium bidding strategy in the first-price
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auction satisfies

(6.9)

(1−β)(bie(θ1)−θ1)+βv(πie(θ1)) =
1

(1− F (θ1))n

∫ θ̃ie1

θ1

(1−F (s))n
(
1− β + βv′

(
πie(s)

))
ds.

To understand the nature of bidding strategies and some key comparative statics, our

two leading examples are again useful.

Frictionless Finance (continued). Recall that, in this scenario, v(π) = π − I +

R(efb) and, because of costly public funds, the principal finds it optimal to set πie(θ1) = 0.

The bidding strategy is thus given by

(6.10) (1− β)(bie(θ1)− θ1) + β(R(efb)− I) =
1

(1− F (θ1))n

∫ θ̃ie1

θ1

(1− F (s))nds.

The right-hand side is nothing else than the bid markup b0(θ1)− θ1 that would be chosen

if only the basic service was up for tender (which amounts to setting β = 0 in our analy-

sis). It is actually the familiar mark-up for a unit auction. With the add-on, the winning

firm is paid a fixed amount for the second period independently of its type. This fixed

amount is actually the value of the innovation R(efb)− I. All strategic considerations in

bidding thus come from the first period. In particular, when the second period matters

more (β being larger), bidding in the first period becomes less aggressive, with greater

markups bie(θ1)− θ1.

Costly Finance (continued). Consider the case where θ1 is uniformly distributed

and suppose again that τ and θ1 − θ1 are small enough so as to satisfy (6.4). Because

asymmetric information is small in magnitude, there is full participation and θ̃ie = θ1. A

first-order Taylor approximation gives us

v(πie(θ1)) = v(I) + v′(I)(πie(θ1)− I) = R(efb)− I + πie(θ1).

Using these two facts, the bidding strategy can then be approximated by

(6.11) (1− β)(bie(θ1)− θ1) + β

(
R(efb) +

τ

v′′(I−)
+ θ1 − θ1

)
=

1

n+ 1
(θ1 − θ1).

As public funds become more costly (τ increasing) and outside finance more difficult, the

firm becomes endogenously more risk averse and, accordingly, bids more aggressively.28

28This result is in line with results in the auction literature and especially Holt (1980), Hu et al. (2010),
Krishna (2002), Maskin and Riley (1984) Matthews (1983), Matthews (1984) and Milgrom and Weber
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Reserve Price. To implement the optimal cutoff for participation θ̃ie1 , the principal

imposes a reserve price on the auction which is given by

(6.12) bie(θ̃ie1 ) = θ̃ie1 −
β

1− β
v(πie(θ̃ie1 )).

It is worth noticing that this price is below the cost θ̃ie1 . This means that the principal

may induce a loss in the first period on some participating agents. This loss is then

compensated by the value of the innovation that the winning firm can get from the

second-period add-on.

7. ASYMMETRIC INFORMATION ON THE COST OF THE ADD-ON

We now extend the analysis in Section 6 to a scenario with asymmetric information on

the cost of the add-on. Under these circumstances, the firm, endowed with the endogenous

preferences v, must also absorb some endogenous risk induced by incentive compatibility

constraints related to the cost of the add-on.

7.1. Endogenous Utility Function

To characterize how the firm and the principal should react to the additional risk

induced by incentive compatibility constraints related to the cost of the add-on, we follow

an approach borrowed from Arve and Martimort (2016). Consider first a random variable

π̃ that takes the values π+(1−ν)∆ and π−ν∆ with respective probabilities ν and 1−ν.

We then define w(π,∆), a utility function over expected return π and risk level ∆ ≥ 0 as

w(π,∆) ≡ Eπ̃(v(π̃)). The function w clearly inherits some important properties from the

underlying utility function v as it is also increasing and concave in π. Because v is strictly

concave over the range [π̂, I) where raising outside finance is costly, w is also decreasing

in ∆ as long as the random variable π̃ is within this support. This monotonicity in ∆

captures the fact that more background risk, represented by a higher value of ∆, reduces

the firm’s expected payoff. At the other extreme, the case ∆ = 0 corresponds to the

certainty case with w(π,∆) ≡ v(π).

The next corollary informs us on how more risk (a higher value of ∆) modifies the

firm’s marginal utility of income. It provides a key step to understand how the addition

of asymmetric information on the cost of the add-on impacts first-period incentives.

(1984). These authors have shown that in a standard first-price auction for a single item, risk-averse
bidders bid more aggressively than if they were risk neutral. This is because, for a risk-averse bidder
compared with a risk-neutral bidder, the risk of losing the auction from a small increase in the bid has
a larger effect on expected utility than the loss of profits from a slightly lower bid. A risk-averse bidder
would thus be willing to lower his bid more than under risk neutrality to reduce the risk of loosing the
auction. The key difference with this literature is that, in our context, risk aversion is endogenous.
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Corollary 3 When v′′′ ≥ 0 and π̃ ∈ [π̂, I), w also satisfies wπ∆(π,∆) ≥ 0.

Costly Finance (continued). The payoff function v satisfies v′′′ ≥ 0 on [π̂, I) and

Corollary 3 applies. Observe that, when ∆ is small enough, the random variable π̃ also

has support on [π̂, I) if π belongs to that interval. The following approximation for the

expected payoff w(π,∆) then holds up to terms of order more than two:

(7.1)

w(π,∆) = v(π)−ν1(1− ν)∆2

8Î

(
1− I − π

Î

)− 3
2

and wπ∆(π,∆) =
3ν1(1− ν)∆

8Î2

(
1− I − π

Î

)− 5
2

> 0.

From this, we also get that wππ(π,∆) ≤ v′′(π). In other words, the addition of a back-

ground risk (that in the sequel will be due to second-period asymmetric information)

makes the firm less averse to risk.

7.2. The Risk Effect

Second-period incentive compatibility. Following Baron and Besanko (1984),

Battaglini (2005) and Pavan et al. (2014), the requirement of incentive compatibility

can be applied recursively. For any report θ̂1 of the per-period cost of the basic service

that a winning firm may have reported in the first period, the requirement of incentive

compatibility implies that the second-period report of the cost of the add-on, which is

truthful from the Revelation Principle, should maximize the firm’s continuation payoff

p(θ̂1, θ̂2) − θ2.29 Because the add-on is a fixed-size project that is always valuable (even

under its standard version without any innovation), no quantity screening can be used to

help rent extraction in the second period. The winning firm will thus be paid a fixed price

p(θ̂1, θ̂2) = p(θ̂1) for the provision of the add-on that may only depend on its announce-

ment of the cost of the basic service. The firm’s second-period profit from the add-on is

thus

(7.2) u2(θ̂1, θ2) = p(θ̂1)− θ2.

Because any non-zero expected profit from this add-on could, by a simple redefinition of

payments, be incorporated into the second-period premium for the basic service, y(θ̂1),

there is no loss of generality in assuming that the firm makes zero expected profit on the

standard version of the add-on. This means that the second-period price for the add-on

covers the expected cost of its standard version and is thus independent of the first-period

29We omit the index i0 of the winning firm for simplicity.
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announcement of the cost of the basic service:

(7.3) p(θ̂1) = Eθ2(θ2), ∀θ̂1 ∈ Θ1.

Second-period profits from the add-on can thus be expressed as a random variable with

zero mean:

(7.4) u2(θ2) = (1− ν)∆ and u2(θ2) = −ν∆.

Second-period incentive compatibility thus imposes an endogenous risk ∆ on the firm’s

second-period returns.

First-period incentive compatibility. Using our definition of w, we may now gen-

eralize our integral representation of the firm’s intertemporal payoff in (5.6)30 to take into

account this endogenous risk and get

(7.5) U(θ1) =

∫ θ̃1

θ1

(1− F (s))n (1− β + βwπ (π(s),∆)) ds, ∀θ ≤ θ̃1.

Optimal contract. Proposition 6 summarizes our findings for the optimal contract

with asymmetric information on θ2.

Proposition 6 Suppose that θ2 is private information and that

(7.6) wπ(I,∆) < 1 + τ +
wππ(I,∆)

f(θ)
.

The winning firm’s second-period expected profit πsb(θ1,∆) for the basic service satisfies

the following necessary condition for optimality:

(7.7) wπ(πsb(θ1,∆),∆) = 1 + τ +
F (θ1)

f(θ1)
wππ(πsb(θ1,∆),∆), ∀θ1 ≤ θ̃1.

πsb(θ1,∆) is non-decreasing in θ1 when Assumption (2.1) holds and v′′′ ≥ 0. It is also

greater than in the case where θ2 is verifiable when v′′′ ≥ 0 and v′′′′ ≤ 0:

(7.8) πie(θ1) ≤ πsb(θ1,∆), ∀θ1 ≤ θ̃1.

Moreover, outside finance is still needed when (7.6) holds:

(7.9) πsb(θ1,∆) ≤ I, ∀θ1 ≤ θ̃1.

30See proof in the Appendix (“Proof of Lemma 1 and the general case in Section 7”).
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To further illustrate this Risk Effect and stress the role of second-period asymmetric

information on the costs of the add-on, it is again useful to come back to our leading

examples.

Frictionless Finance (continued). Because v is linear with frictionless finance,

recall that we have

w(π,∆) ≡ v(π) = π − I +R(efb).

In other words, all second-period risk disappears when taking expectations. This means

that asymmetric information on second-period costs has no impact whatsoever on first-

period incentives and all the results of Section 6 obtained when outside finance is fric-

tionless carry over.

Costly Finance (continued). Assume that θ1 is uniformly distributed. On top of

assuming that τ and θ1 − θ1 are both small enough, let us also consider a scenario with

a small degree of asymmetric information on second-period costs of the add-on, i.e., ∆2

small enough. More specifically, we shall impose τ small together with a strengthening of

Condition (6.4), namely

(7.10) τ ≥ −v′′(I−)(θ1 − θ1) +
5ν1(1− ν)∆2

16Î2
.

Using the approximation (7.1) in (7.7), we then get the following closed-form expression

of second-period profits up to terms of higher order magnitude:

πsb(θ1,∆) = πie(θ1)− 5ν1(1− ν)∆2

16Î2v′′(I−)
∈ (πie(θ1), I) ∀θ1 ∈ Θ1

where the upper bound follows from (7.10). This expression shows that to cope with the

endogenous risk induced by asymmetric information on the cost of the add-on, profits

on the basic service have to include an extra risk premium −5ν1(1−ν)∆2

16Î2v′′(I−)
. This premium

increases with the magnitude of the asymmetric information problem on the add-on. It

also increases when agency frictions with financiers (captured by the quantity −v′′(I−))

are of lower magnitude.

Proposition 7 Suppose that the firm has private information on θ2. The optimal cutoff
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θ̃sb1 , when interior, satisfies the necessary condition

(7.11)

S(θ̃sb1 )+β
(
w(πsb(θ̃sb1 ,∆),∆)− (1 + τ)πsb(θ̃sb1 ,∆)

)
=
F (θ̃sb1 )

f(θ̃sb1 )
(1−β+βwπ(πsb(θ̃sb1 ,∆),∆)).

Provided that this necessary condition is also sufficient, and that Corollary 3 holds, par-

ticipation is always reduced in comparison with the case where θ2 is verifiable:

(7.12) θ̃sb1 < θ̃ie1 .

The second-period endogenous risk ∆ has to be borne by the firm when it has private

information on the add-on. This decreases utility levels. To induce participation, the

principal must pay the firm an extra risk premium which makes inducing participation

less attractive, thus lowering the threshold cost of participation compared to the case

with ∆ = 0.

Remark. It is straightforward to show that all results in this section also hold in an

alternative model where there is no add-on, but there is an additive shock to costs for the

basic service in the second period and the principal wants to offer an additional payment

that compensates for such a shock.

8. CONCLUDING REMARKS

In this paper, we consider a procurement auction for the provision of a long-term

service to which an add-on, whose costs are ex ante uncertain, must later be appended.

We assume that all of these provisions are of fixed size and refer to Arve and Martimort

(2016) for an analysis of distortions on the intensive margin in a similar setup.

Based on the possibility for the firm to reduce the cost of the add-on through its

R&D activities, we show that costly financing based on agency frictions of such R&D

investments makes the firm behave as if it was risk averse in the second period.

To facilitate outside funding of the R&D investment, it is optimal for the procurement

agency to backload payments even though there is a cost of public funds associated with

doing so. This is in sharp contrast to the case of frictionless finance, in which case all

payments are shifted to the initial period, thus avoiding additional costs of public funds.

This implies that the public procurement agency (and ultimately society) bears the cost

of easing the incentive problem and the financial constraint of the firm. To reduce this

cost, participation in the auction is restricted for high-cost firms. These results add to

and complement insights in Arve and Martimort (2016) who do not consider effects on
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the extensive margin (nor do they provide a micro-foundation for second-period risk

aversion).

In terms of bidding, risk aversion makes firms bid more aggressively and, in fact, for high

enough cost realizations, initial bids will be below cost. Upon winning, this is compensated

both by the agency rent from the R&D investment as well as backloaded payments in

the optimal contract. This suggests that small extra shocks to costs may easily lead to

bankruptcy if firms had to be protected by limited liability in the first period as well.

To obtain clear-cut results, we have deliberately kept the modelling environment as

simple as possible. For instance, we do not allow for asymmetric cost distributions (see

Myerson (1981) for a general result and Menicucci (2003) for a specific result with risk

averse bidders), asymmetric risk aversion (as in for instance Maréchal and Morand (2011)

and Menicucci (2003)) or technological linkage (in terms of correlation across costs for the

basic service and the add-on as in the vast literature on dynamic mechanism design31) as

we believe this would reduce the readability of our results regarding how second-period

uncertainty and risk aversion affects bidding, contracting and competition.

Our model could be extended along several dimensions. First, the mere possibility of

having to provide an add-on could be uncertain at the time of drafting a long-term

contract for the basic service.32 This additional layer of risk certainly increases the risk

premium that must be paid by the principal to induce firms to participate in the first

place. We expect that under those circumstances, both the Income and the Risk Effects

(when applied to another indirect utility function that would account for this extra risk)

will be exacerbated. As a result, backloading payments for the basic service might be

found even more attractive.

Second, and following in that respect existing practices,33 we have assumed that the

add-on was absolutely needed and of fixed size. The possibility of scaling down this

additional project, or even to completely shut it down, is of course attractive for incentive

compatibility reasons in the second period. Scaling down the project if reported costs for

the add-on are high reduces the risk borne by the firm at this date and eases second-period

incentive compatibility. Both the Income and the Risk Effects are of a lower magnitude.

In other words, scaling down the project goes in the direction of making backloading

payments less attractive.

31See Baron and Besanko (1984) for a seminal contribution and Pavan et al. (2014) for a more recent
venture. This literature stresses the value of history in long-term relationships, especially when types
are serially correlated (Battaglini (2005), Zhang (2009), Battaglini and Lamba (2019), Esö and Szentes
(2017), Kapicka (2013), Garrett and Pavan (2015)), and when current projects affect future technological
frontier (Lewis and Yildirim (2002), Gärtner (2010), Auray et al. (2011)).

32Another possibility is to combine insights and elements from our dynamic framework with a multi-
dimensional environment à la Che (1993) or Asker and Cantillon (2008, 2010).

33See Riksrevisionen (2021).
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In turn, the possibility of playing on the size of the add-on also has consequences on

first-period incentives. Echoing the intuition from optimal participation (reserve price)

which suggests that long-term projects with add-ons surrounded with much uncertainty

should be under a hard budget constraint, the principal might want to commit to an un-

dersized add-on to improve first-period incentives for revealing costs on the basic service

and increase participation. Yet, once the second period comes along and those costs are

known, this reason for distorting the size of the add-on has disappeared. Still, the princi-

pal may want to scale down this add-on to improve second-period incentive compatibility

but these motives yield distortions of a lower magnitude. In other words, the long-term

contract that was drafted ex ante should be renegotiated. The possibility of such renego-

tiation will of course be anticipated and may perturb first-period incentive compatibility.

It should be noted that, although similar in spirit to the phenomenon highlighted in

the earlier literature on renegotiation in adverse selection environments (Dewatripont

(1989), Hart and Tirole (1988), Laffont and Tirole (1990)), the effect that we uncover

here is novel. While the earlier literature focuses on persistent types, our setting has

costs which are independently distributed over time and tasks, and the interplay between

second- and first-period incentives only comes from the concavity of second-period payoff.

The characterization of optimal renegotiation-proof arrangements in such an environment

awaits further analysis.

Lastly, we have assumed that the add-on was necessarily performed by the firm winning

the first-price auction for the basic service. The implicit assumption, much in line with

existing practices, was that running a second-period auction for the provision of the

add-on was too costly, maybe because of administrative or other transaction costs. The

possibility of organizing such an auction would have various consequences. First, the

probability of being the provider would de facto decrease for the winning firm. This effect

is very similar to a downscaling of the add-on and would have the same consequences on

first- and second-period incentives and on the scope for renegotiation. Second, running a

second-period auction would allow the principal to improve second-period efficiency by

selecting a more efficient provider for the add-on; an issue that was touched upon by

the literature on repeated franchise contracts in a different context (Laffont and Tirole

(1987), Riordan and Sappington (1988)).

We hope to investigate some of these issues in future research.
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Gärtner, D. (2010), “Monopolistic Screening Under Learning By Doing,” The RAND Journal

of Economics, 41: 574-597.

Hart, O. (2003), “Incomplete Contracts and Public Ownership: Remarks, and an Application

to Public-Private Partnerships,” The Economic Journal, 113: 69-76.

Hart, O., A., Shleifer and R. Vishny (1997), “The Proper Scope of Government: Theory

and an Application to Prisons,” The Quarterly Journal of Economics, 112: 1127-1161.

Hart, O. and J. Tirole (1988), “Contract Renegotiation and Coasian Dynamics,” The

Review of Economic Studies, 55: 509-540.

Herweg, F. and M. Schwarz (2018), “Optimal Cost Overruns: Procurement Auctions with

Renegotiations,” International Economic Review, 59: 1995-2021.

Holmstrom, B. and J. Tirole (1997), “Financial Intermediation, Loanable Funds, and the

Real Sector,” The Quarterly Journal of Economics, 112: 663-691.

Holt, C.A. (1980), “Competitive Bidding for Contracts under Alternative Auction Proce-

dures,” Journal of Political Economy, 88: 433-445.

Hu, A., S.A. Matthews and L. Zou (2010), “Risk-Aversion and Optimal Reserve Prices in

First- and Second-Price Auctions,” Journal of Economic Theory, 145: 1188-1202.

Hu, A. (2011), “How Bidder’s Number Affects Optimal Reserve Price in First-Price Auctions

Under Risk-Aversion,” Economics Letters, 113: 29-31.

Hyytinen, A., S. Lundberg and O. Toivanen (2011), “Design of Public Procurement

Auctions: Evidence from Cleaning Contracts,” The RAND Journal of Economics, 49: 398-

426.

Iossa, E. and D. Martimort (2012), “Risk Allocation and the Costs and Benefits of Public-

Private Partnerships,” The RAND Journal of Economics, 43, 442-474.

Iossa, E. and D. Martimort (2015), “The Simple Microeconomics of Public-Private Part-

nerships,” Journal of Public Economic Theory, 17: 4-48.

Jung, H., G. Kosmopoulou, C. Lamarche and R. Sicotte (2019), “Strategic Bidding

and Contract Renegotiation,” International Economic Review, 60: 801-820.

Kapicka, M. (2013), “Efficient Allocations in Dynamic Private Information Economies with

Persistent Shocks: A First-Order Approach,” The Review of Economic Studies, 80: 1027-1054.



36 M. ARVE AND D. MARTIMORT

Khalil, F. and J. Lawarree (1995), “Input versus Output Monitoring: Who is the Residual

Claimant?” Journal of Economic Theory, 66: 139-157.

Krähmer, D. and R. Strausz (2011), “Optimal Procurement Contracts with Pre-Project

Planning,” The Review of Economic Studies, 78: 1015-1041.

KPMG (2021), Granskning av upphandling, genomförande och uppföljning av Lundabron, Au-
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APPENDIX

Proof of Proposition 1: First, expressing T and T from (3.1) and (3.3), we may rewrite

(3.4) as a single incentive-feasibility condition, namely

(A.1) eγ − ψ(e)−R(e) ≥ I − π.

It is straightforward to check that, reciprocally, if (A.1) holds, there exists T and T such that

(3.1), (3.3) and (3.4) all hold.

Second, inserting (3.1) into the maximand (3.5) yields a new expression of the firm’s objective:

(A.2) π − I + eγ − ψ(e).

The firm’s problem, when expressed in terms of effort only, boils down to maximizing (A.2)

subject to (A.1).

Thanks to the assumptions made on ψ, the left-hand side of (A.1) is a strictly concave function

of e, say Γ(e). Γ is maximized at em and Γ(em) = emR′(em). Item 1 immediately follows. The
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constrained set defined by (A.1) is empty when π ∈ [0, π̂) where π̂ = I − emR′(em). The

innovation cannot be financed by competitive financiers.

A contrario, notice that efb maximizes (A.2). The first-best effort level is thus feasible when

π ≥ I (Item 3).

For intermediate levels of profit (Item 2), (A.1) is binding which determines the value of esb(π)

as in (3.10). When π ∈ [π̂, I), there are two solutions to the corresponding equation Γ(e) = I−π.

The solution that maximizes the firm’s expected payoff is the highest one, which is closer to the

first-best efb, and it is on the decreasing branch of Γ(e). The fact that esb(π) is non-decreasing

in π on this interval immediately follows. Because I ≥ π on this interval, the greatest solution

to Γ(e) = I − π is below the first-best efb.

Finally, it must be that v(π) = R(esb(π)) ≥ π for π ∈ [π̂, I) so that the firm prefers to accept

the financial contract and undertake the innovation rather than enjoying its stable returns only.

This condition thus writes as

γesb(π)− ψ(esb(π)) ≥ I ∀π ∈ [π̂, I) .

Because esb(π) is non-decreasing in π and below the first-best efb, this condition holds if it

already holds for π̂ and there esb(π) = em so that the corresponding condition writes as

I ≤ γem − ψ(em).

In particular, v has an upward discontinuity at π̂ when (3.8) holds. Q.E.D.

Proof of Corollary 1: That the payoff function v(π) is non-decreasing and linear on π ∈
[0, π̂)∪[I,+∞) immediately follows from Proposition 1. Because π̂ = I−emR′(em), (3.8) implies

v(π̂+) = R(em) = π̂ − I + emγ − ψ(em) > π̂ = v(π̂−).

To prove that v is strictly concave on (π̂, I), consider two profit levels π1 and π2 in that interval

with the associated second-best effort levels esb(π1) and esb(π2). Because (A.1) is binding at

those effort levels, we have

πi − I + esb(πi)γ − ψ(esb(πi))−R(esb(πi)) = 0, i = 1, 2.

Fix µ ∈ [0, 1] and consider π̄ = µπ1 + (1 − µ)π2 ∈ [I − emR′(em), I] and ē = µesb(π1) + (1 −
µ)esb(π2). Because Γ (as defined in the Proof of Proposition 1) is strictly concave and the

assumptions on ψ, we have π̄ − I + ēγ − ψ(ē)−R(ē) > 0 and ē is feasible at profit π̄. Because

the maximand (A.2) is also strictly concave, we have

π̄ − I + ēγ − ψ(ē) > µv(π1) + (1− µ)v(π2).

Hence, v(π̄) > µv(π1) + (1− µ)v(π2), which concludes the proof of strict concavity on (π̂, I).
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Differentiating the definition of v(π) found in (A.3) yields

(A.3) v′(π) = 1 + esb
′
(π)(γ − ψ′(esb(π))) = 1 +

esb
′
(π)(I − π)

esb(π)

where the second equality follows from (A.1) being binding on [π̂, I) and where

(A.4) esb
′
(π) = − 1

γ − ψ′(esb(π))−R′(esb(π))
> 0

since esb(π) ≥ em.

Finally, notice that v′(π+) = esb
′
(π+) = +∞. Q.E.D.

Proof of Proposition 2: We denote by ζ the non-negative Lagrange multiplier for (4.1)

and form the corresponding Lagrangean of the optimization problem in the text as

L(u1(θ1), π(θ1), u2(θ1, θ2), ζ) = S(θ1)− (1− β)u1(θ1)− β(1 + τ) (π(θ1) + Eθ2(u2(θ1, θ2)))

+ζ ((1− β)u1(θ1) + βEθ2 (v (π(θ1) + u2(θ1, θ2)))) .

The necessary (and sufficient, thanks to the concavity of this Lagrangean) conditions for opti-

mality with respect to u1(θ1), π(θ1) and u2(θ1, θ2) are respectively given by

− (1− β) + ζ(1− β) = 0,(A.5)

− β(1 + τ) + ζβEθ2
(
v′ (π(θ1) + u2(θ1, θ2))

)
= 0,(A.6)

− β(1 + τ) + ζβv′ (π(θ1) + u2(θ1, θ2)) = 0.(A.7)

Simplifying (A.5) yields

(A.8) ζ = 1.

Condition (A.7) holds for both realizations of θ2. It thus follows that ufb2 (θ1, θ2) is independent

of θ2 and, moreover, we have

(A.9) πfb(θ1) + ufb2 (θ1, θ2) = πfb, ∀θ2,

where πfb is defined in (4.3) and such a solution exists in (π̂, I) when v′(π̂) > 1 + τ > v′(I) as

assumed in the text. In fact, we can without loss of generality choose

(A.10) ufb2 (θ1, θ2) = 0 ∀(θ1, θ2).

From (A.8), the firm’s intertemporal participation constraint (4.1) is binding and thus

(A.11) ufb1 (θ1) = − β

1− β
v(πfb), ∀θ1.
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Because πfb > 0 and v(0) = 0, we have

(A.12) ufb1 (θ1) < 0, ∀θ1.

Q.E.D.

Proof of Lemma 1 and the general case in Section 7: The proof of Lemma 1 is a

special case of the analysis in Section 7 and follows from the general proof when ∆ is set

equal to 0. We therefore only provide the proof in the general case where ∆ ≥ 0.

The next lemma thus generalizes Lemma 1 to the case described in Section 7 where there is

asymmetric information on the cost of the add-on. Of course, the second-period background risk

induced by asymmetric information on the cost of the add-on also has an impact on first-period

incentive compatibility. Our definition of the utility function w in the text in Section 7 indeed

allows us to rewrite the requirement of incentive compatibility for a bidder with type θ1 in terms

of expected payoff as

(A.13) U(θ1) = max
θ̂1∈Θ1

(1− F (θ̂1))n
(

(1− β)(b(θ̂1)− θ1) + βw(b(θ̂1)− θ1 + y(θ̂1),∆)
)
.

The above maximum is achieved at θ1, i.e.,

(A.14) U(θ1) = (1− F (θ1))n ((1− β)u1(θ1) + βw(π(θ1),∆)) .

The second-period profit, π(θ1) = u1(θ1) + y(θ1) can now be expressed as

(A.15) π(θ1) = ϕ

 U(θ1)
(1−F (θ1))n − (1− β)u1(θ1)

β
,∆


where we define ϕ(ζ,∆) as the wealth level that guarantees ζ utils to the firm when the risk

level is ∆, i.e., ζ = w(ϕ(ζ,∆),∆).34

Lemma A.1 Necessary condition. Any incentive-compatible allocation (U(θ1), u1(θ1)) is

such that U(θ1) is absolutely continuous in θ1 (and thus almost everywhere differentiable) with

at any point of differentiability:

(A.16) U̇(θ1) = −(1− F (θ1))n

1− β + βwπ

ϕ
 U(θ1)

(1−F (θ1))n − (1− β)u1(θ1)

β
,∆

 ,∆

 .

Sufficient condition. An allocation is incentive compatible if U(θ1) is absolutely continuous,

satisfies (A.16) at any point of differentiability and is convex. A sufficient condition for this

convexity is that π(θ1) is non-decreasing.

Integrating (A.16) and taking into account (5.5) yields the integral representation of the rent

34The function ϕ is non-decreasing in both ζ and ∆. We have ϕζ(ζ,∆) = 1
wπ(ϕ(ζ,∆),∆) > 0, and

ϕ∆(ζ,∆) = −w∆(ϕ(ζ,∆),∆)
wπ(ϕ(ζ,∆),∆) > 0.
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profile (7.5) (which simplifies to (5.6) when ∆ = 0).

Proof of Lemma A.1: Necessity. From Theorem 2 and Corollary 1 in Milgrom and Segal

(2002), it immediately follows that U(θ1) is absolutely continuous and thus almost everywhere

differentiable with (A.16) holding at any point of differentiability.

Sufficiency. For all (θ1, θ̂1), we rewrite (A.13) as

U(θ1) ≥ U(θ̂1) + (1− F (θ̂1))n
[
(1− β)(θ̂1 − θ1)(A.17)

+β
(
w(π(θ̂1) + (θ̂1 − θ1),∆)− w(π(θ̂1),∆)

)]
.

Using (A.16) and absolute continuity, the rent profile U(θ1) satisfies the integral representation

U(θ1)− U(θ̂1) =

∫ θ̂1

θ1

(1− F (s))n (1− β + βwπ(π(s),∆)) ds, ∀(θ1, θ̂1) ∈ Θ2.

Condition (A.17) thus holds when

∫ θ̂1

θ1

(1− F (s))n (1− β + βwπ(π(s),∆)) ds ≥

(1− F (θ̂1))n
[
(1− β)(θ̂1 − θ1) + β

(
w(π(θ̂1) + (θ̂1 − θ1),∆)− w(π(θ̂1),∆)

)]
.

Because w is concave in its first argument, we have w(π(θ̂1) + (θ̂1 − θ1),∆) − w(π(θ̂1),∆) ≤
(θ̂1 − θ1)wπ(π(θ̂1),∆). A sufficient condition for (A.17) to hold is thus

∫ θ̂1

θ1

(1− F (s))n (1− β + βwπ(π(s),∆)) ds ≥ (θ̂1 − θ1)(1− F (θ̂1))n
(

1− β + βwπ(π(θ̂1),∆)
)
.(A.18)

Observe now that (1 − F (θ1))n(1 − β + βwπ(π(θ1),∆)) non-increasing, i.e., U convex, implies

(A.18) and thus (A.17). Finally, we compute

Ü(θ1) = (1− F (θ1))n
(

nf(θ1)

1− F (θ1)
(1− β + βwπ(π(θ1),∆))− βwππ(π(θ1),∆)π̇(θ1)

)
.

Because wππ ≤ 0 ≤ wπ, U is convex when π̇(θ1) ≥ 0. Q.E.D.

Q.E.D.

Proof of Propositions 3 and 6: The proof of Proposition 3 is a special case of the proof

of Proposition 6 where ∆ is set to zero. We therefore only provide the general proof where

∆ ≥ 0.

Due to the symmetry of bidders and the fact that the first-price auction always selects the

firm with the lowest cost of the basic service, everything happens as if the principal was actually

dealing with a single representative firm but this firm would have a cost for the basic service that

would be drawn from the distribution of the minimum of n+1 independent variables drawn from

the distribution F . The corresponding distribution function is thus G(θ1) = 1− (1−F (θ1))n+1
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(with density g(θ1) = (n + 1)f(θ1)(1 − F (θ1))n). The principal’s intertemporal payoff when

dealing with the winning firm can thus be written as

W(u1(θ1),U(θ1), θ1) = S(θ1)− (1−β)u1(θ1)−β(1+τ)ϕ

 U(θ1)
(1−F (θ1))n − (1− β)u1(θ1)

β
,∆

 .

Given the type distribution G of the winning firm’s cost as defined in the text, the problem

with this representative firm can now be written as follows:

(Pas) : max
(u1(θ1),U(θ1),θ̃1)

∫ θ̃1

θ1

W(u1(θ1),U(θ1), θ1)g(θ1)dθ1 subject to (A.16) and (5.5).

This is a relaxed optimization problem since incentive compatibility has been reduced to its

necessary condition (A.16) in Lemma A.1. The solution πsb(θ1,∆) to this relaxed problem is

actually the solution to the original problem when πsb(θ1,∆) is non-decreasing as proved in

Lemma A.1. We will check this monotonicity condition towards the end of this proof.

Equipped with the above expression of the principal’s problem (Pas), and denoting by λ the

co-state variable for (A.16), we can now write the Hamiltonian for this optimization problem

as

(A.19) H(u1,U , λ, θ1) = (n+ 1)f(θ1)(1− F (θ1))nW(u1,U , θ1)

−λ(1− F (θ1))n

(
1− β + βwπ

(
ϕ

( U
(1−F (θ1))n − (1− β)u1

β
,∆

)
,∆

))
.

We can use Pontryagyn Principle to get necessary conditions for optimality. (See Ch. 2, Th. 2 in

Seierstad and Sydsaeter (1987)). Provided that asymmetric information, the solution πsb(θ1,∆)

remains close to πfb and this optimum is obtained on the range where w and wπ are both

differentiable in π. The corresponding necessary conditions are listed below.

•Costate variable. There exists λ, continuous and piecewise differentiable, such that

λ̇(θ1) =

(1 + τ)(n+ 1)f(θ1) + λ(θ1)wππ

ϕ
 U(θ1)

(1−F (θ1))n − (1− β)u1(θ1)

β
,∆

 ,∆

×(A.20)

ϕζ

 U(θ1)
(1−F (θ1))n − (1− β)u1(θ1)

β
,∆

 .

•Transversality condition. Because there is no boundary condition on U at θ, the transversality

condition is given by

(A.21) λ(θ) = 0.

•Optimality condition with respect to u1. Using a first-order condition with respect to u1, we
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find

(A.22)

(n+ 1)f(θ1)

ϕζ

( U(θ1)
(1−F (θ1))

n−(1−β)u1(θ1)

β ,∆

) = (1+τ)(n+1)f(θ1)+λ(θ1)wππ

ϕ
 U(θ1)

(1−F (θ1))n − (1− β)u1(θ1)

β
,∆

 ,∆

 .

We now use those optimality conditions to derive more specific results.

• Propositions 3 and 6. Inserting (A.22) into (A.20) yields

(A.23) λ̇(θ1) = (n+ 1)f(θ1).

Taking into account (A.21) now gives

(A.24) λ(θ1) = (n+ 1)F (θ1).

Inserting this expression into (A.22), and simplifying yields (7.7). The condition (6.2) is obtained

when ∆ = 0 which is akin to the case where θ2 is verifiable.

•Monotonicity condition. Straightforward differentiation of (7.7) yields

(A.25) π̇sb(θ1) =

d
dθ1

(
F (θ1)
f(θ1)

)
wππ(πsb(θ1,∆),∆)

wππ(πsb(θ1,∆),∆)− F (θ1)
f(θ1)wπππ(πsb(θ1,∆),∆)

.

v concave implies that wππ ≤ 0, while Assumption (2.1) means that the derivative of the hazard

rate is non-negative. Finally, v′′′ ≥ 0 implies wπππ ≥ 0 and yields the required monotonicity

result that is used both in Proposition 3 and in Proposition 6. Hence, Usb(θ1) is convex and the

sufficiency condition for Lemma 1 holds when Assumption (2.1) holds and wπππ ≥ 0.

• Upper bound on πsb(θ1). We just saw above that v concave implies that wππ ≤ 0, while

v′′′ ≥ 0 implies wπππ ≥ 0. Hence wππ − F (θ1)
f(θ1)wπππ ≤ 0. Therefore πsb(θ1,∆) as defined from the

first-order condition (7.7) is thus less than I when wπ(I,∆) < 1 + τ + F (θ1)
f(θ1)wππ(I,∆), which,

thanks to Assumption (2.1), is implied by (7.6). Condition (6.1) plays the same role when θ2 is

verifiable (i.e., ∆ = 0).

•Comparison between the case θ2 verifiable and the case θ2 private information. Observe that

v′′′′ ≤ 0 implies wππ∆ ≤ 0. From (7.7), we thus deduce

(A.26)

wπ(πsb(θ1,∆), 0)−F (θ1)

f(θ1)
wππ(πsb(θ1,∆), 0) = v′(πsb(θ1,∆))−F (θ1)

f(θ1)
v′′(πsb(θ1,∆)) ≤ 1+τ, ∀θ1 ≤ θ̃1.

Comparing with (6.2) and using that v′(π) − F (θ1)
f(θ1) v

′′(π) is non-increasing in π when v′′′ ≥ 0

yields (7.8).

•Comparison with the case of full information. Consider first the case where θ2 is verifiable. It
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immediately follows from (6.2) that 1+τ ≥ v′(πie(θ1)),∀θ1 ≤ θ̃1 which amounts to the left-hand

side inequality in (6.3). Q.E.D.

Proof of Propositions 4 and 7: We start with the general case ∆ ≥ 0 (relevant for Propo-

sition 7) and specialize our analysis later to the case ∆ = 0 (Proposition 4). We first come back

to the expression of the Hamiltonian H as defined in (A.19). The necessary condition for op-

timality with respect to the free-end point θ̃1 (Theorem 11, p. 145, Seierstad and Sydsaeter

(1987)) when at an interior point writes as H(usb1 (θ̃sb1 ),Usb(θ̃sb1 ), λ(θ̃sb1 ), θ̃sb1 ) = 0. This necessary

condition can be rewritten as

W(usb1 (θ̃sb1 ),Usb(θ̃sb1 ), θ̃sb1 ) =
F (θ̃sb1 )

f(θ̃sb1 )
(1− β + βwπ(πsb(θ̃sb1 ),∆)).

Replacing W by its full expression and rearranging terms yield

(A.27)

S(θ̃sb1 ) = (1−β)usb1 (θ̃sb1 )+β(1+τ)ϕ

(
−1− β

β
usb1 (θ̃sb1 ),∆

)
+
F (θ̃sb1 )

f(θ̃sb1 )
(1−β+βwπ(πsb(θ̃sb1 ),∆)).

Using the definition of ϕ and (5.5), we have

βw

(
ϕ

(
−1− β

β
usb1 (θ̃sb1 ),∆

)
,∆

)
= −(1− β)usb1 (θ̃sb1 ).

Inserting into (A.27) and using the definition of π(θ̃sb1 ) from (A.15) yield (7.11) (and (6.6) in

the case ∆ = 0).

Conditions for an interior solution. Taking into account condition (7.11), an interior

solution θ̃sb1 exists when, first

S(θ) + β
(
w(πfb(∆),∆)− (1 + τ)πfb(∆)

)
> 0,

where πfb(∆) solves wπ(πfb(∆),∆) = 1 + τ and, second

S(θ) + β
(
w(πsb(θ),∆)− (1 + τ)πsb(θ)

)
<

1

f(θ)
(1− β + βwπ(πsb(θ),∆))

where πsb(θ) follows from (7.7).

The case where θ2 is verifiable. Replacing ∆ by 0 into (A.27) yields the expression for an

interior solution θ̃ie given in (6.6).

Comparison of the participation thresholds. Consider the function

Γ(θ1,∆) = w(πsb(θ1,∆),∆)− (1 + τ)πsb(θ1,∆)− F (θ1)

f(θ1)
wπ(πsb(θ1,∆),∆).

Because πsb(θ1,∆) satisfies (7.7), we compute the derivative w.r.t. ∆:

(A.28) Γ∆(θ1,∆) = w∆(πsb(θ1,∆),∆)− F (θ1)

f(θ1)
wπ∆(πsb(θ1,∆)),∆) < 0
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where the right-hand side inequality follows from Corollary 3 and w∆ < 0 concave (which

itself follows from v concave). Hence, Γ(θ1,∆) < Γ(θ1, 0) = v(πie(θ1)) − (1 + τ)πie(θ1) −
F (θ1)
f(θ1) v

′(πie(θ1)). From this it follows that S(θ̃sb1 ) + β
(
v(π(θ̃sb1 ))− (1 + τ)π(θ̃sb1 )

)
>

F (θ̃sb1 )

f(θ̃sb1 )
(1 −

β + βv′(π(θ̃sb1 ))). Provided that the necessary condition for optimality is also sufficient, this

latter inequality implies (7.12). Q.E.D.

Proof of Corollary 2: With frictionless finance, the expected efficiency gains from run-

ning both the basic service over two periods and an innovative add-on overall amounts to

∫ θ̃1

θ1

g(θ1)(S(θ1) + β(1 + τ)(R(efb)− I))dθ1.

Given the expression of the firm’s information rent U(θ1) given in (5.7), the optimal reserve

price θ̃rn1 maximizes

(A.29)

∫ θ̃1

θ1

g(θ1)

(
S(θ1) + β(1 + τ)(R(efb)− I)− 1

(1− F (θ1))n

∫ θ̃1

θ1

(1− F (s))nds

)
dθ1.

The first-order necessary condition for optimality immediately gives us the expression for an

interior cutoff θ̃rn1 as in (8).

Because v′ ≥ 1 over the range [π̂, I), we can provide a lower bound on the right-hand side of

(6.6) as

(A.30) S(θ̃ie1 ) + β
(
v(π(θ̃ie1 ))− (1 + τ)π(θ̃ie1 )

)
≥ F (θ̃ie1 )

f(θ̃ie1 )
.

Now, observe that v concave implies v(π(θ̃ie1 )) ≤ v(πfb) + v′(πfb)(π(θ̃ie1 ) − πfb) and, using

v′(πfb) = 1+τ , v(π(θ̃ie1 ))−(1+τ)π(θ̃ie1 ) ≤ v(πfb)−(1+τ)πfb. Because v(πfb) ≤ R(efb)−I+πfb,

we thus have v(π(θ̃ie1 )) − (1 + τ)π(θ̃ie1 ) ≤ R(efb) − I − τπfb ≤ (1 + τ)(R(efb) − I) where the

last inequality follows from R(efb)− I + πfb ≥ R(efb)− I ≥ 0. Hence, the social benefit on the

left-hand side of (6.6) is bounded above by

(A.31) S(θ̃ie1 ) + β(1 + τ)(R(efb)− I).

Gathering (A.30) and (A.31) yields

(A.32) S(θ̃ie1 ) + β(1 + τ)(R(efb)− I) ≥ F (θ̃ie1 )

f(θ̃ie1 )
.

Provided that the necessary condition for optimality in (A.29) is also sufficient, (8) and (A.32)

together imply (6.8). Q.E.D.

Proof of Proposition 5: Using the expressions in (5.2) and (5.6) yields (6.9). Q.E.D.

Proof of Corollary 3: We have wπ∆(π,∆) = ν(1−ν)(v′′(π+(1−ν)∆)−v′′(π−ν∆)) ≥ 0

when both π + (1− ν)∆ ∈ [π̂, I) and π − ν∆ ∈ [π̂, I) since v′′′ ≥ 0 on this range. Q.E.D.
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