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Abstract

We extend nonparametric regression smoothing splines to a context where there
is endogeneity and instrumental variables are available. Unlike popular existing es-
timators, the resulting estimator is one-step and relies on a unique regularization
parameter. We derive uniform rates of the convergence for the estimator and its first
derivative. We also address the issue of imposing monotonicity in estimation. Sim-
ulations confirm the good performances of our estimator compared to some popular
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1 Introduction

The estimation of causal effects on outcomes is often complicated by omitted confound-

ing variables or nonrandom selection. The problem is well known to affect observational

studies, but it can also affect randomized controlled trials with issues like participant non-

compliance. In economics, the problem is commonly framed in terms of a regression model

from which important regressors have been omitted and so become part of the model’s

error. In this context, a variable is termed “exogenous” if it is not associated with the

error term after conditioning on confounding variables, and “endogenous” otherwise. In-

strumental variables (IVs) are widely used to solve the problems posed by endogeneity.

An IV is associated with the outcome only through its association with the endogenous

variable. Examples of IV models include estimation of Engel curves linking expenditures

to the consumption share of a particular good, or estimation of the effects of class size on

students’ performances (Horowitz, 2011).

We consider the prototypical model

Y = g0(Z) + ε E (ε|W ) = 0 , (1)

where Y ∈ R is the dependent variable, Z ∈ R is the endogenous continuous independent

variable, and W ∈ Rp are the IVs. The goal is to estimate nonparametrically g0(·), the
causal effect of the variable Z on Y , using W to account for endogeneity. If we assumed

linear relationships, we could use the two-stage least squares estimator: in a first stage, one

obtains the linear projection of Z on W , then in a second stage one linearly regresses Y

on the previously estimated linear projection. Considering a nonparametric function g0(·)
allows estimating the causal relationship of Y and Z in a more flexible manner. As detailed

below, most existing nonparametric methods are also two-stage.

We here develop a nonparametric instrumental regression estimator for g0 that bypasses

first stage nonparametric estimation, is easy to implement, and leverages the excellent

approximation properties of splines. To do so, we exhibit a global quantity that accounts for

all the information contained in Model (1) and that is minimized by the true function g0(·).
We then consider an empirical equivalent, and we set up a minimization problem penalized

by a roughness measure of the function to regularize the solution. Our estimator can be seen

as a generalization to the instrumental variable regression of regression smoothing splines

(Wahba, 1990; Green and Silverman, 1993). As a leading case, we consider the integral of

the squared second derivative as a roughness measure, and we show that the solution is a

natural cubic spline. We derive a closed-form expression of the solution. A characteristic

feature of our estimator is that it depends upon a single regularization parameter, which
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can then be selected by some usual methods such as cross-validation. As an additional

advantage of the smoothing spline nature of our estimator, straightforward estimators of

derivatives of the function g0(·) obtain. We further show how to impose monotonicity

constraints by relying on a method proposed by Hall and Huang (2001). The constrained

estimator is simple to implement in practice.

We derive uniform rates of convergences for the function itself and its derivative, with

or without monotonicity constraints. Our estimator exhibits excellent finite sample per-

formance in simulations compared to some existing two-step methods. We applied our

method to the estimation of Engel curves. Our smoothing splines estimator and its con-

strained version yield comparable results and are reasonable from an economic viewpoint.

Existing procedures for estimating g0 are typically two-step and do not make use

of smoothing splines. Newey and Powell (2003) develop a nonparametric equivalent to

the two-stage least squares estimator: they use linear-in-parameter series expansions of

E (Y |W ) and E {g(Z)|W} in a generalized method of moments framework, see also Ai

and Chen (2003); Hall and Horowitz (2005); Blundell et al. (2007); Johannes et al. (2011);

Horowitz (2014) for alternative series-based methods. Alternatively, Hall and Horowitz

(2005), Darolles et al. (2011), and Gagliardini and Scaillet (2012) rely on kernel methods

to estimate the unknown conditional expectations. In both cases, backing up a nonpara-

metric estimate of g0(·) is an ill-posed inverse problem. Hence, one needs some kind of reg-

ularization, such as hard thresholding (Horowitz, 2011; Chen and Pouzo, 2012), Tikhonov

or ridge-type regularization (Newey and Powell, 2003; Darolles et al., 2011; Florens et al.,

2011; Gagliardini and Scaillet, 2012; Singh et al., 2019), or a Landweber-type iterative

method (Dunker et al., 2014). A general exposition of some of these methods is given

by Carrasco et al. (2007). A recent machine learning literature considers solving a saddle

point problem that is dual to a generalized method of moments criterion. Here one first

maximizes an objective function with respect to a function of the instruments W , then one

minimizes with respect to a function of Z to obtain g0(·) (Bennett et al., 2019; Dikkala

et al., 2020; Liao et al., 2020). Muandet et al. (2020) consider a related but different saddle

point problem. If the set of functions upon which one optimizes is large, then one has in

addition to introduce some penalization in the optimization problem (Dikkala et al., 2020;

Liao et al., 2020).

By contrast to previous estimators based on series or kernel estimation, ours is a nat-

ural generalization of the popular regression smoothing splines estimator. The appeal

of smoothing splines lies in their simplicity together with their excellent approximation

properties of smooth functions and their derivatives, which have been extensively studied
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(Schumaker, 2007). Our estimator cannot be obtained as a generalization or a special case

of existing estimators. Our approach is also attractive because it is one-step. Two-stage

procedures typically lead to theoretical and practical difficulties. First, one may need to

estimate in a first-stage an object that may be more complex than the final object of in-

terest, while imposing smoothness assumptions on this first-stage object. Second, from a

statistical perspective, first-stage estimation typically affects the second-stage small sample

and asymptotic properties. Third, each stage relies on a particular choice of a smoothing

or regularization parameter, whose fine tuning may be difficult in practice while affecting

the final results.

The paper is organized as follows. In Section 2, we detail the main steps that lead

to the formulation of our estimator, and we show that it extends regression smoothing

splines to the instrumental regression context. The asymptotic properties of our estimator

are analyzed in Section 3. Section 4 deals with estimation under monotonicity constraints.

Section 5 reports simulation results and an empirical application to Engel curves estimation.

2 Our estimator

2.1 General formulation

We assume that g0(·) belong to some space of functions G on which identification holds,

that is,

E {Y − g(Z)|W} = 0 a.s. ⇒ g(·) = g0(·) a.s. (2)

For a discussion of this condition called completeness, see e.g. D’Haultfoeuille (2011) and

Freyberger (2017). When Z is continuous, as we assume here, W should typically have

at least one continuous component for completeness to hold. Some of the instruments,

however, could be discrete, and this will not affect further our exposition and reasoning.

Instead of dealing directly with (2), as done by most previous work, we consider an

equivalent formulation that does not require estimating a conditional expectation given

the instruments W . By the results of Bierens (1982),

E {Y − g(Z)|W} = 0 ⇔ E
{
(Y − g(Z)) exp(iW⊤t)

}
= 0 ∀t ∈ Rp , (3)

where i is the unit imaginary number. Consider now

g0 = argmin
g∈G

M(g), M(g) =

∫ ∣∣E{(Y − g(Z)) exp(iW⊤t)
}∣∣2 dµ(t) , (4)

4



where µ is a symmetric probability measure with support Rp. Then it is straightforward

to see that M(g) ≥ 0 for all g ∈ G, and that under (2)

M(g) = 0 ⇔ g = g0 .

With a random i.i.d. sample {(Yi, Zi,Wi) , i = 1, . . . n} at hand, a natural estimator of

M(g) is

Mn(g) =

∫ ∣∣∣∣∣ 1n
n∑

i=1

(Yi − g(Zi)) exp(iW
⊤
i t)

∣∣∣∣∣
2

dµ(t)

=
1

n2

∑
1≤i,j≤n

(Yi − g(Zi)) (Yj − g(Zj))ω(Wi −Wj) , (5)

where

ω(z) =

∫
Rp

exp(it′w) dµ(t) =

∫
Rp

cos(t′w) dµ(t) ,

due to the symmetry of µ. The function ω(·) is (up to a constant) the Fourier transform of

the density of µ. The above V-statistic formulation is used in practice for computational

purposes. This statistic accounts for an infinity of moment conditions as stated in (3). It

is different in nature from generalized method of moments criteria used in previous work,

that account for an increasing but finite number of moment conditions.

The condition for µ to have support Rp translates into the restriction that ω(·) should
have a strictly positive Fourier transform almost everywhere. Examples include products

of triangular, normal, logistic, see Johnson et al. (1995, Section 23.3), Student, including

Cauchy, see Dreier and Kotz (2002), or Laplace densities. To achieve scale invariance,

we recommend, as in Bierens (1982), to scale the exogenous instruments by a measure of

dispersion, such as their empirical standard deviation. If W has bounded support, results

from Bierens (1982) yield that the equivalence (3) holds when restricted to any t in a

(arbitrary) neighborhood of 0 in Rp. Hence, µ can be taken as any symmetric probability

measure that contains 0 in the interior of its support. As noted by Bierens (1982), there is

no loss of generality assuming a bounded support, as the equivalence result equally applies

to a one-to-one transformation of W , which can be chosen with bounded image.

Minimizing Mn(g) would lead to interpolation. We regularize the problem by assuming

some smoothness for the function g. We assume that Z has compact support, say [0, 1]

without loss of generality, and that G is the space of twice differentiable functions on [0, 1]

defined as

G =

{
g : [0, 1] → R,

∫ 1

0

|g′′(t)|2 dt <∞
}
.
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We then estimate g0 as a minimizer of a penalized version of Mn(g) on G. Specifically,

ĝ ∈ argmin
g∈G

Mn(g) + λ

∫ 1

0

|g′′(z)|2 dz , (6)

where λ > 0 is a regularization parameter. Our estimator ĝ is a natural cubic spline with

knots at points Zi. This is implied by the following result of Green and Silverman (1993,

Th. 2.3).

Theorem 2.1. Suppose n ≥ 2 and 0 ≤ Z1 < · · · < Zn ≤ 1. Let g̃ be any function in G
for which g̃(Zi) = gi, i = 1, . . . , n, and g a natural cubic spline such that g(Zi) = gi, i =

1, . . . , n. Then ∫ 1

0

|g̃′′(t)|2 dt ≥
∫ 1

0

|g′′(t)|2 dt .

with equality only if g̃ = g.

It thus follows that if ĝ is a solution to (6), it should be a natural cubic spline. The

uniqueness of the above natural cubic spline interpolant is proven in Green and Silverman

(1993, Th. 2.2).

A recent approach we became aware of when preparing this paper is the “kernel maxi-

mum moment loss” approach proposed by Zhang et al. (2023). While it does not smooth on

the instruments, it assumes that the regression of interest belongs to a Reproducing Kernel

Hilbert Space (RKHS) and solves a minimization problem by penalizing by the norm on

such a space. The estimator thus depends on the chosen reproducing kernel. Differently,

we assume that the regression of interest belongs to a space of smooth functions, and we

penalize by the integral of the squared second derivative of the regression, which is a very

intuitive measure of roughness, but not a RKHS norm.

2.2 Closed-form solution

We now show the existence and uniqueness of the solution to (6) and we characterize it. A

natural cubic spline can be written as

g(z) = a0 + a1z +
1

12

n∑
i=1

δi|z − Zi|3 ,
n∑

i=1

δi =
n∑

i=1

δiZi = 0 . (7)

The function g is thus uniquely defined by the coefficients a0, a1, and δi, i = 1, . . . n, or

equivalently by its value at the knots (Green and Silverman, 1993, Section 7.3). It will be

useful for what follows to use matrix notations. Let

Z =


1 Z1

...
...

1 Zn

 ,
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E =
[

1
12
|Zi − Zj|3, i, j = 1, . . . n

]
, and g = (g(Z1), . . . g(Zn))

T . Then g = Za + Eδ with

constraints ZTδ = 0. Also, one can check that∫
g′′(z)2 dz = δTEδ ,

see Green and Silverman (1993, Section 7.3). Let Y be the vector (Y1, . . . Yn)
T , then

Mn(g) + λ

∫
(g′′(z))

2
dz = (Y −Za−Eδ)T Ω (Y −Za−Eδ) + λδTEδ , (8)

where Ω is the matrix with generic element n−2ω(Wi −Wj). Hence, we want to minimize

a quadratic function in parameters under the constraints ZTδ = 0. This yields a unique

solution under the usual requirements. The following proposition gives a more convenient

formula that characterizes our estimator.

Proposition 2.1. For any λ > 0, if Z is full rank and all Wi’s are different, the solution

to (6) exists, is unique, and is a natural cubic spline ĝ characterized by[
Ẽ Z

ZT 0

](
δ̂

â

)
=

(
Y

0

)
, Ẽ = E + λΩ−1 , (9)

and ĝ =
[
P +EẼ−1 (I − P )

]
Y , where P = Z

(
ZT Ẽ−1Z

)−1

ZT Ẽ−1.

Our estimator is obtained directly by solving the linear system of equations (9). It

does not necessitate estimation of other nonparametric quantities, and relies on only one

regularization parameter λ. It also directly provides an estimator of the first derivative of

g(·) as

ĝ′(z) = â1 +
1

4

n∑
i=1

δ̂i sign(z − Zi)(z − Zi)
2 , sign(u) = 1(u ≥ 0)− 1(u < 0) . (10)

There are alternative ways to (7) for expressing a natural cubic spline. We focus on

this formulation as it does not rely on a particular support of Z, nor on the fact that

the knots Zi are arranged in increasing order. In particular, the closed-form expression in

Proposition 2.1 is valid regardless of the support of Z and therefore it can be used without

first transforming Z into [0, 1]. We also found this formulation to be convenient for practical

implementation. For large samples, where the above formula may not be computationally

efficient, one can adapt to our context the Reinsch algorithm (Green and Silverman, 1993).
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3 Asymptotic analysis

The formal study of our estimator is based on a reformulation of M(g) in (4). Consider

H = {h ∈ G : h(0) = h′(0) = 0} ,

and the inner product ⟨h1, h2⟩H =
∫ 1

0
h′′1(z)h

′′
2(z) dz onH. Then each g ∈ G can be uniquely

written as g(z) = (1, z)β+h(z), where β = (g(0), g′(0))T ∈ R2, h(z) = g(z)−g(0)−g′(0)z,
h ∈ H. Denote by L2

µ the space of complex functions l(·) from Rp into C such that

∥l∥2µ =

∫
|l(t)|2 dµ(t) <∞ .

Consider the operators A : H 7→ L2
µ and B : R2 7→ L2

µ such that

Ah = E{h(Z) exp(iW T ·)} and B β = E{(1, Z)β exp(iW T ·)} . (11)

The minimization problem (4) identifying g0 can be expressed as

min
(β,h)∈R2×H

∥E{Y exp(iW T ·)} − B β − Ah∥2µ . (12)

The above quantity reaches its minimum zero at (β0, h0), with g0(z) = (1, z)β0 + h0(z). A

key advantage of this formulation for theoretical analysis is that using orthogonal projec-

tion, we can profile (12) to first determine h0, then β0 as a function of h0. In our proofs,

we will also consider the penalized empirical counterpart of (12) and use a similar profiling

method to obtain (β̂, ĥ), and then ĝ(z) = (1, z)β̂ + ĥ(z).

We now detail our formal assumptions.

Assumption 3.1. (i) E{Y 2} <∞; (ii) Z has a density fZ on [0, 1]; (iii) µ is a symmetric

probability measure with support Rp. (iv)
∫ ∫

E{exp(iW⊤t)fZ(z)}2µ(t)dz dt < ∞; (v) W

has at least one continuous component.

This assumption ensures that E{Y exp(iW T ·)} ∈ L2
µ, and that A and B are into L2

µ. Our

assumption on the support of Z is without much loss of generality, since we can always use

a one-to-one transformation that maps Z into [0, 1]. We then formalize the completeness

assumption, under which the problem (12) admits a unique solution (β0, h0).

Assumption 3.2. g0 belongs to G and the mapping g ∈ G 7→ E{g(Z)|W = ·} is injective.

We introduce now a source condition, which is common in the literature on inverse

problems (Carrasco et al., 2007). While it is not needed to establish the consistency of ĝ

and its first derivative, it is necessary to obtain their uniform convergence rates.
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Assumption 3.3. LetM be the orthogonal projection onto the orthogonal of the span of B,

and let T = MA. Let (σj, φj, ψj)j be the singular system of T, where (φj)j is a sequence of

orthonormal elements in H, (ψj)j is a sequence of orthonormal elements in L2
µ, and (σj)j

is a sequence of strictly positive values in R. Then there exists γ > 0 such that∑
j

σ−2γ
j | ⟨h0, φj⟩H |2 <∞ .

Theorem 3.1. Under Assumptions 3.1, 3.2, if λ→ 0 and nλ→ ∞, then

sup
z∈[0,1]

|ĝ(z)− g0(z)| = oP (1) and sup
z∈[0,1]

|ĝ′(z)− g′0(z)| = oP (1) .

If moreover Assumption 3.3 holds, then

sup
z∈[0,1]

|ĝ(z)− g0(z)| = OP

(
1√
nλ

+ λ
γ∧2
2

)
and sup

z∈[0,1]
|ĝ′(z)− g′0(z)| = OP

(
1√
nλ

+ λ
γ∧2
2

)
.

We obtain consistency of our estimator and its derivative under mild assumptions,

that only involve a standard condition on the regularization parameter λ. By contrast, in

two-step estimation methods that smooth over the instruments, obtaining consistency of

the first and second steps estimators typically necessitates smoothness assumptions on the

distribution of Z givenW and conditions that relate the different smoothing parameters, see

e.g. Ai and Chen (2003); Chen and Pouzo (2012). One partial solution adopted by Horowitz

(2011) is to choose the latter parameters equal, but this does not change the two-step

nature of the underlying estimator. In some instances, consistency may further necessitate

regularization parameters (Chen and Pouzo, 2012) and a source condition (Gagliardini and

Scaillet, 2012). A general discussion can be found in Carrasco et al. (2007).

Turning now to our consistency rates, we do not claim that these are sharp or optimal.

However, by contrast to previous results in this literature, they depend upon only one

regularization parameter. If λ is optimally chosen, then we obtain convergence rates that

are n− γ∧2
2(1+γ∧2) . For γ = 2 or 1, this respectively yields n−1/3 and n−1/4. It is unclear

how to compare the above rates to existing results on optimal convergence rates (Hall and

Horowitz, 2005; Chen and Christensen, 2018) because these authors make assumptions on

conditional expectation operators such as E {g(Z)|W}, while Assumption 3.3 concerns an

unconditional expectation operator. Our assumption, however, assumes that the problem

is mildly ill-posed, while some previous work also considers the case of a severely ill-posed

inverse problem.
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4 Estimation under monotonicity

In many applications, we may expect the function of interest g0 to be monotonic. For

instance, if g0 is the demand for a good as a function of price, we expect it to be decreasing.

If g0 is the Engel curve, that relates the proportion of consumer expenditure on a good

to total expenditure, we typically expect this function to be increasing for a “normal”

good and decreasing for an “inferior” good. Accounting for monotonicity in estimation is

expected to improve accuracy in small and moderate samples (Chetverikov and Wilhelm,

2017).

First, note that since our spline smoothing estimator is linear in parameters, the deriva-

tive estimator(10) is linear as well. Let us express it in matrix form. Since g = Za+Eδ,

we can write g′ = Oa+Dδ, where g′ = (g′(Z1), . . . g
′(Zn))

T ,

D =

[
1

4
sign(Zi − Zj)|Zi − Zj|2

]
i,j=1,...n

, O =


0 1
...

...

0 1

 .

From Proposition 2.1,(
δ̂

â

)
= S

(
Y

0

)
, S =

[
Ẽ Z

ZT 0

]−1

⇒ g′ = (D,O)S

(
Y

0

)
. (13)

To obtain a monotone estimator, we rely on a method proposed by Hall and Huang

(2001), that is based on the same linear estimator but reweights the observations Yi to

impose monotonicity at observations points. It adjusts the unconstrained estimator by

tilting the empirical distribution to make the least possible change, in the sense of a dis-

tance measure, subject to imposing the constraint of monotonicity at observation points.

Specifically, if g0 is assumed to be monotonically increasing, we consider the constrained

optimization program

min
p1,...,pn

n−
n∑

i=1

(npi)
1/2 (14)

subject to
n∑

i=1

pi = 1 , pi ≥ 0 for all i = 1, . . . , n , (D,O)S

(
p ◦ Y
0

)
≥ 0 ,

where p ◦ Y = (p1Y1, . . . , pnYn)
T is the Hadamard product between vectors. If g0 was

assumed to be monotonically decreasing, we would modify the last inequalities. Hall and

Huang (2001) considered more general optimization problems based on a family of Cressie-

Read divergences, but we focus on the above program for convenience. It is strictly convex,
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so it admits a unique solution p∗, and it is computationally fast to solve. The final estimator

is ĝ∗, defined as a smoothing splines estimator where â∗ and δ̂∗ are as in (13) where p∗ ◦Y
replaces Y .

We now state the asymptotic properties of our constrained smoothing splines estimator.

Assumption 4.1. There exists η > 0 such that g′0(z) ≥ η for all z ∈ [0, 1].

Theorem 4.1. Under Assumptions 3.1, 3.2, and 4.1 if λ→ 0 and nλ→ ∞, then

sup
z∈[0,1]

|ĝ∗(z)− g0(z)| = oP (1) and sup
z∈[0,1]

|ĝ∗′(z)− g′0(z)| = oP (1) .

If moreover Assumption 3.3 holds, then

sup
z∈[0,1]

|ĝ∗(z)−g0(z)| = OP

(
1√
nλ

+ λ
γ∧2
2

)
and sup

z∈[0,1]
|ĝ∗′(z)−g′0(z)| = OP

(
1√
nλ

+ λ
γ∧2
2

)
.

The above result directly follows from Theorem 3.1. Indeed, as ĝ′ is uniformly consistent,

the constraint in the optimization problem (14) becomes asymptotically irrelevant under

Assumption 4.1. Accordingly, ĝ∗ = ĝ with probability approaching one, and our results

readily follow. While the monotonicity constraints become asymptotically irrelevant, they

can matter in finite samples as shown by Chetverikov and Wilhelm (2017) and illustrated

by our numerical results below.

5 Empirical results

5.1 Simulations

We used a DGP in line with Equation (1), where

ε =
aV + η√
1 + a2

, a =

√
ρ2εV

1− ρ2εV
,

Z =
βW + V√
1 + β2

, β =

√
ρ2WZ

1− ρ2WZ

,

and (W,V, η) are independent standard Gaussian. This yields standard Gaussian marginal

distributions for ε and Z whatever the values of the parameters. We chose this setup so

as to be able to simply tune the level of endogeneity of Z, which is here controlled by

the correlation parameter ρεV , and the strength of the instrument W , controlled by the

correlation parameter ρWZ .

We implemented our smoothing splines estimator with ω(·) equal to the density of a

Laplace distribution with mean zero and variance 1. The choice of the penalty parameter
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λ was based on 2-fold cross-validation. Namely, we split the data at random into two

equally sized folds, we computed ĝk,λ for each fold k = 1, 2, and we created the cross-

validated vector g̃λ, with typical element ĝk,λ(Zi), where k is the fold that does not include

Zi. We then chose the value of λ that minimizes Mn(g̃λ) within the grid {p/(1 − p), p =

10−5 + k ∗ (0.7− 10−5)/399, k = 0, . . . , 399}.
We compared our estimator to two existing methods, for which a data-driven procedure

has been proposed for the choices of smoothing and regularization parameters. We consid-

ered first the kernel-based Tikhonov estimator of Darolles et al. (2011), hereafter referred

as Tikhonov. We used Gaussian kernels of order 2, while the bandwidths were set using

Silverman’s rule of thumb, i.e., equal to n−1/5 times the empirical standard deviation of

the variable on which smoothing is performed (either Z or W ). To select the regulariza-

tion parameter, we used the pseudo-cross-validation procedure of Centorrino et al. (2017)

searching for the minimum of the criterion on a grid between 0.0001 and 0.999. We also

considered a series estimator based on a basis of Legendre polynomials. The number of

polynomials in first and second stage estimation are chosen to be equal, and this number

is selected using the adaptive procedure of Horowitz (2014). As the method is designed for

variables belonging to [0, 1], we transformed observations of Z and W by their respective

empirical cumulative distribution functions (cdf). This implies in particular that even if

the relation between Z and W is linear, the first-stage equation is not linear anymore in

the transformed variables.

We first considered two functional forms for g0, each normalized to have unit vari-

ance: a quadratic function g0,1(z) = z2/
√
2, and a non-polynomial function g0,2(z) =√

3
√
3 z exp(−z2/2). We ran 2000 Monte Carlo simulations with sample sizes n = 200

and 400. We considered three couples of values for (ρεV , ρWZ): (i) (0.5, 0.9), a setting with

low endogeneity and a strong instrument, (ii) (0.8, 0.9), corresponding to high endogeneity

and a strong instrument, (iii) (0.8, 0.7), a more complex setting with high endogeneity level

but a weaker instrument. Table 1 reports the squared bias, variance, and mean squared

error (MSE) of each estimator, averaged on a grid of 100 equidistant points on [−2, 2].

We note that the Tikhonov estimator is severely biased in all cases, while our estimator is

close to be unbiased. The series estimator mostly lies in between, but with large differences

depending on the setup. For instance, Figures 1a and 1b graph the pointwise average of

each estimator for n = 200 and (ρεV , ρWZ) = (0.8, 0.7). Here, the series estimator is much

steeper than the true quadratic curve g0,1, while it fails to fit the sign changes in the first

derivative for g0,2. In both cases, the Tikhonov estimator is much less rough than the true

curves, while the smoothing splines estimator is almost unbiased.
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g0,1 g0,2 g0,3

n Sm. Tikh. Ser. Sm. Tikh. Ser. Cons. Sm. Tikh. Ser.

ρZW = 0.9 , ρεV = 0.5

200 Bias2 0.000 0.148 0.092 0.001 0.065 0.005 0.000 0.000 0.088 0.104

200 Var 0.069 0.030 0.060 0.074 0.028 0.073 0.041 0.076 0.022 0.116

200 MSE 0.069 0.177 0.152 0.075 0.092 0.078 0.044 0.076 0.111 0.219

400 Bias2 0.000 0.098 0.094 0.001 0.044 0.005 0.000 0.000 0.054 0.140

400 Var 0.052 0.020 0.031 0.053 0.018 0.025 0.026 0.056 0.015 0.044

400 MSE 0.052 0.118 0.125 0.054 0.063 0.030 0.027 0.056 0.069 0.184

ρZW = 0.9 , ρεV = 0.8

200 Bias2 0.001 0.148 0.092 0.001 0.064 0.005 0.000 0.000 0.093 0.107

200 Var 0.066 0.028 0.060 0.072 0.026 0.074 0.039 0.072 0.019 0.107

200 MSE 0.067 0.176 0.152 0.072 0.090 0.079 0.042 0.073 0.112 0.214

400 Bias2 0.000 0.098 0.094 0.000 0.043 0.005 0.000 0.000 0.055 0.141

400 Var 0.049 0.019 0.030 0.051 0.018 0.026 0.025 0.054 0.013 0.042

400 MSE 0.050 0.117 0.125 0.052 0.061 0.030 0.026 0.054 0.068 0.183

ρZW = 0.7 , ρεV = 0.8

200 Bias2 0.009 0.307 0.133 0.004 0.158 0.158 0.012 0.012 0.184 0.189

200 Var 0.091 0.032 0.130 0.120 0.028 0.053 0.056 0.101 0.019 0.050

200 MSE 0.099 0.338 0.262 0.124 0.186 0.211 0.080 0.113 0.203 0.238

400 Bias2 0.003 0.218 0.139 0.004 0.110 0.157 0.002 0.002 0.123 0.190

400 Var 0.069 0.024 0.053 0.087 0.021 0.024 0.041 0.086 0.014 0.021

400 MSE 0.073 0.242 0.192 0.090 0.131 0.180 0.051 0.089 0.138 0.212

Table 1: Average over a grid of 100 equidistant points on [−2, 2] and 2000 Monte Carlo

replications of the squared bias (Bias2), the variance (Var), and the Mean Squared Error

(MSE) for the constrained smoothing splines estimator (Cons.), the smoothing splines

estimator (Sm.), the Tikhonov estimator (Tikh.), and the series estimator (Ser.).

In terms of variance, Tikhonov does better than smoothing splines, that itself does

better than series, in all but one instance. Smoothing splines performs best in terms of

MSE in almost all cases. Exceptions are cases corresponding to the second function with

n = 400 and strong instruments, where the series estimator is close to be unbiased. Overall,

the severity of endogeneity does not affect much the estimators’ performances. A decrease

in the strength of the instrument has important detrimental effects for all estimators, but

our smoothing splines estimator is affected to a much lesser degree than its competitors.
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Figure 1: True regression function (solid black line) and averages over all replications of

the constrained (long dashed brown line), smoothing splines (dashed-dotted grey line),

Tikhonov (dotted blue line) and series (dashed red line) estimators. The sample size is

n = 200, ρεV = 0.8, and ρZW = 0.7.

To evaluate the gains of imposing monotonicity, we then considered a third function

g0,3(z) = (
√

(10/3) log(|z−1|+1) sign(z−1)−0.6z+2z3)/8. We implemented the smoothing

splines estimator as above, in particular the regularization parameter λ is chosen before

14



the monotonizing step, and we used the the CVXR solver (Fu et al., 2020) to solve (14).

As can be seen from Figure 1c and our detailed results in Table 1, imposing monotonicity

does not affect much the average smoothing splines estimate, nor its average squared bias,

but yields a substantial decrease in variance. Depending on the particular setup, it can be

more than halved.

5.2 Application

We applied our smoothing splines estimator to the estimation of Engel curves, which relate

the proportion of spending on a given good to total expenditures. We used the “Engel95”

data from the R package np, which is a random sample from the 1995 British Family Ex-

penditure Survey and contains data for 1655 households of married couples for which the

head-of-household is employed and between 25 and 55 years old. We focused on the sub-

sample of 628 households with no kids. We report results for two Engel curves, pertaining

to the expenditure shares on leisure and fuel. Economic theory suggests that the Engel

curve for leisure is increasing and the one for fuel is decreasing. Following Blundell et al.

(2007), we instrumented the endogenous variable logarithm of total household’s expenditure

by the logarithm of total earnings before tax. We consider the four estimators used in our

simulations, and implementation details remain the same.

The resulting estimated nonparametric functions are reported in Figure 2. The Tikhonov

estimate exhibits a non-monotonic and quite irregular behavior, while the series estimate is

mainly monotonic and very regular. Since our smoothing splines estimates are monotonic,

but at the boundaries of the data, our constrained and unconstrained estimates are very

close. Both are in line with the findings of Blundell et al. (2007).

6 Conclusion

This paper generalizes regression smoothing splines to the context where there is endo-

geneity. We have considered the special case of cubic splines, but our approach easily

generalizes to other spline orders depending upon the roughness measure chosen in the

penalization. Though we have focused on a simple univariate nonparametric model, our

work opens the path for considering more general models. A first example is the partly

linear model (Heckman, 1986)

Y = XTβ + g0(Z) + ε E(ε|X,W ) = 0 .
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Figure 2: Engel curves estimated with our constrained smoothing splines estimator (solid

black line), our smoothing splines (dashed-dotted grey line), the Tikhonov (dotted blue

line) and the Series estimator (dashed red line).

Our method of proof based on profiling should easily extend to this model. A second

example is the multivariate model

Y = g0(X,Z) + ε E(ε|X,W ) = 0 .

Consider for instance univariate variables X and Z, and the roughness penalty

J(g) =

∫ {
∂2g

∂x2
+ 2

∂2g

∂x∂z
+
∂2g

∂z2

}
dx dz .

A function g(·) is a natural thin plate spline with knots (t1, . . . tn), ti = (Xi, Zi), if

g(t) = a0 + t′b+
n∑

i=1

δiη (∥t− ti∥) , η(r) =
1

16π
r2 log r2 ,

where
∑n

i=1 δi =
∑n

i=1Xiδi =
∑n

i=1 Ziδi = 0. It is known that the natural thin plate

spline uniquely minimizes J(g) among functions such that g(ti) = gi, i = 1, . . . n (Green

and Silverman, 1993).

Since multivariate nonparametric estimators are subject to the curse of dimensionality,

it may be wiser to consider an additive model such as

Y =
J∑

j=1

g0,j(Zj) + ε E(ε|W ) = 0 ,
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where W contain instruments, which may include some of the variables Zj if these are

deemed exogenous. All these extensions are left for further research.
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Appendix

A Proof of Proposition 2.1

We begin by studying E and Ω. First, for any natural cubic spline (Green and Silverman,

1993, Section 7.3), ∫
g′′(z)2 dz = δTEδ ≥ 0 ,

so E is positive semi-definite. Second, let b = (b1, . . . , bn)
T ∈ Rn, then

bTΩb =

∫ ∣∣∣∣∣ 1n
n∑

i=1

bi exp(iW
T
i t)

∣∣∣∣∣
2

µ(dt) ≥ 0 .

Hence bTΩb = 0 iff 1
n

∑n
i=1 bi exp(iW

T
i t) = 0 for all t ∈ Rq. Define the random vector

(̃b, W̃ ) that equals (bi,Wi) with probability 1/n, and Ẽ the corresponding expectation.

Then, Ẽ{b̃ exp(iW̃ T t)} = 0 for all t ∈ Rq. From Bierens (1982), this implies that Ẽ{b̃ | W̃ =

Wi} = 0. Since Ẽ{b̃ | W̃ = Wi} = bi if all Wis are different, bi = 0 for all i = 1, . . . , n.

Hence, Ω is positive definite.

Let us then write (8) as(
δ

a

)⊤ [
ETΩE + λE ETΩZ

ZTΩE ZTΩZ

](
δ

a

)
− 2

(
δ

a

)⊤(
ETΩY

ZTΩY

)
+ Y TΩY .

This is a convex problem in (δT ,aT )T . Differentiating with respect to
(
δT ,aT

)T
yields[

ETΩ 0

ZTΩ −λI

][
Ẽ Z

ZT 0

](
δ̂

â

)
=

[
ETΩ 0

ZTΩ −λI

](
Y

0

)
.

This yields (9), and the solution satisfies the constraint ZT δ̂ = 0. The matrix in (9) is full

rank if Z is full rank and λ > 0. Indeed, assume[
E + λΩ−1 Z

ZT 0

](
δ

a

)
=

(
0

0

)
,

this implies ZTδ = 0 and 0 = δT [(E + λΩ−1) δ +Za] = δT (E + λΩ−1) δ. Since E +

λΩ−1 is positive definite, this implies that δ = 0, and in turn that a = 0 as Z is full rank.

To obtain the values at the knots ĝ, note that the inverse of the matrix in (9) is Ẽ−1 (I − P ) Ẽ−1Z
(
ZT Ẽ−1Z

)−1(
ZT Ẽ−1Z

)−1

ZT Ẽ−1 −
(
ZT Ẽ−1Z

)−1

 , (A.15)
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where P = Z
(
ZT Ẽ−1Z

)−1

ZT Ẽ−1 is the oblique projection on the span of Z along the

direction spanned by vectors h such that ZT Ẽ−1h = 0. Hence,(
Eδ̂

Zâ

)
=

[
EẼ−1 (I − P )Y

PY

]
.

Use ĝ = Zâ+Eδ̂ to obtain the desired result.

B Proof of Theorem 3.1

We start by introducing some useful notations and results. Let X and Y be Hilbert spaces

with corresponding inner products ⟨·, ·⟩X and ⟨·, ·⟩Y , and consider a linear operator D :

X 7→ Y . The norm of D is ∥D ∥op = supf∈X ,∥f∥X=1 ∥D f∥Y . When ∥D ∥op < ∞, D is said

to be bounded (or continuous), see Kress (1999, Chapter 2). Let D∗ be the adjoint of D,

defined as D∗ : Y 7→ X such that ⟨D f, ψ⟩Y = ⟨f,D∗ ψ, ⟩X for any (f, ψ) ∈ X × Y . When

D is bounded, D∗ always exists and ∥D ∥op = ∥D∗ ∥op, see Kress (1999, Theorem 4.9). In

what follows, we will repeatedly use the following properties: (i) ∥D f∥Y ≤ ∥D ∥op∥f∥X
for any f ∈ X , and (ii) if C is another linear operator, then ∥CD ∥op ≤ ∥C ∥op∥D ∥op,
whenever the composition CD is well defined.

B.1 Main proof

We divide the proof into several steps. In Step 1, we analyze the minimization problem at

the population level. In Step 2, we analyze the problem at the sample level. In Step 3, we

bound the norm of ĥ−h0. In Step 4 and 5, we combine the results to first establish uniform

consistency of ĝ and its first derivative, second to obtain uniform rates of convergence.

Step 1. From Assumption 3.2 and Bierens (1982),

g = 0 ⇔ E {g(Z)|W} = 0 ⇔ E
{
g(Z) exp(iW⊤t)

}
= 0 ∀t ∈ Rp .

Hence, the null space of the linear mapping g 7→ E{g(Z) exp(iW T ·)} only contains the

zero element, and such a mapping is injective (one-to-one). This implies that Ah =

E{h(Z) exp(iW T ·)} and B β = E{(1, Z)β exp(iW T ·)} are also injective.

Each g ∈ G can be uniquely written as g(z) = (1, z)β + h(z), where β = (g(0), g′(0)),

h(z) = g(z)−g(0)−g′(0)z, h(·) ∈ H. Hence, the intersection of the ranges of the operators

A and B is the null function, since Ah = B β iff (1, z)β − h(z) = 0.

Consider the problem

min
β,h

∥r − B β − Ah∥2µ , r = E{Y exp(iW T ·)} , (A.16)
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where ∥ · ∥µ is the L2
µ norm. If g0(z) = (1, z)β0+h0(z), then (β0, h0) is the unique solution.

We will obtain an explicit expression of (β0, h0) solving (A.16). Let P be the orthogonal

projection operator of functions in L2
µ onto R(B) the range of B. Since B is defined on

R2, its range R(B) is a linear finite dimensional space. As linear finite dimensional spaces

are complete, see Kreyszig (1978, Theorem 2.4-2 ), R(B) is also linear and complete. By

Kress (1999, Theorem 1.26), projection operators onto linear and complete spaces are well

defined, and so is P. Let us show that P writes as B(B∗ B)−1 B∗, where B∗ is the adjoint of

B. As previously noted, B is injective and its null space is N (B) = {0}. Then N (B∗ B) =

N (B) = {0}, B∗ B is injective, and (B∗ B)−1 exists. As linear operators mapping R2 into R2

are uniquely characterized by second order matrices, see Kreyszig (1978, Section 2.9), B∗ B

is a second order matrix, as well as its inverse. Hence, the operator B(B∗ B)−1 B∗ : L2
µ 7→ L2

µ

is well defined. For any f ∈ L2
µ and β ∈ R2,〈

f − B(B∗ B)−1 B∗ f,B β
〉
µ
= ⟨B∗ f − B∗ f, β⟩ = 0 .

Hence, f − B(B∗ B)−1 B∗ f ⊥ R(B), and B(B∗ B)−1 B∗ f indeed represents the projection

of f onto R(B), see Kress (1999). Therefore, P = B(B∗ B)−1 B∗.

Let M = I − P be the orthogonal projection onto the orthogonal complement of R(B).

Then

r = B β0 +Ah0 ⇒ M r = MAh0 = Th0 .

The operator T = MA is injective since the intersection of the ranges of A and B is the

null function and A is injective. This yields

h0 = T−1M r , β0 = (B∗ B)−1 B∗(r − Ah0) .

Consider now the penalized problem

min
(β,h)∈R2×H

∥r − Ah− Bβ∥2µ + λ∥h∥2H . (A.17)

Let us profile with respect to β. For any fixed h,

min
β∈R2

∥r − Ah− Bβ∥2µ = ∥r − Ah− P(r − Ah)∥2µ = ∥M r − Th∥2µ .

We thus need to solve first

min
h∈H

∥M r − Th∥2µ + λ∥h∥2H .

From Lemma B.2(i) below, T is compact, and thus bounded. A direct application of

Kress (1999, Theorem 16.1) ensures that the unique solution hλ to the above minimization

problem satisfies (T∗T + λI)hλ = T∗Mr. Now, for any h,

λ∥h∥2H ≤ λ∥h∥2H + ∥Th∥2µ = λ ⟨h, h⟩H + ⟨h,T∗Th⟩H = ⟨h, (T∗T + λI)h⟩ .
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Hence, (T∗T + λI) is strictly coercive and has a bounded inverse by the Lax-Milgram

Theorem, see Kress (1999, Theorem 13.26). Therefore,

hλ = (T∗T + λI)−1T∗Mr (A.18)

Step 2. We study the minimization problem at the sample level and we obtain sample

counterparts of the population objects of Step 1. Recall that ĝ solves

min
g∈G

∫ ∣∣∣∣∣ 1n
n∑

i=1

[Yi − g((Zi))] exp(iW
T
i t)

∣∣∣∣∣
2

µ(dt) + λ

∫ 1

0

|g′′(z)|2dz . (A.19)

By Proposition 2.1, under Assumption 3.1, the solution ĝ is unique with probability 1, and

since each g ∈ G writes uniquely as g(z) = (1, z)β+h(z), there is a unique (β̂, ĥ) such that

ĝ(z) = (1, z)β̂ + ĥ(z). Define

Â : H 7→ L2
µ , Âh =

1

n

n∑
i=1

h(Zi) exp(iW
T
i ·) , (A.20)

B̂ : R2 7→ L2
µ , B̂β =

1

n

n∑
i=1

(1, Zi)β exp(iW
T
i ·) , (A.21)

and r̂ = (1/n)
∑n

i=1 Yi exp(iW
T
i ·). The optimization problem (A.19) is equivalent to

min
(β,h)∈R2×H

∥r̂ − Âh− B̂β∥2µ + λ∥h∥2H . (A.22)

We will profile with respect to β, and to do so require dealing with the orthogonal projection

onto the range of B̂. Let us proceed as in Step 1. First,

∥B̂β∥2µ = 0 ⇔
∫ ∣∣∣∣∣ 1n

n∑
i=1

(1, Zi)β exp(iW
T
i t)

∣∣∣∣∣
2

µ(dt) = 0 ⇔ βTZTΩZβ = 0 .

From Assumption 3.1(v), W has at least one continuous component, so that all Wi’s are

different with probability 1, and thusΩ > 0 with probability 1 from the proof of Proposition

2.1. Hence, ∥B̂β∥2µ = 0 iff Zβ = 0. As Z has full column rank with probability 1 from

Assumption 3.1, ∥B̂β∥2µ = 0 iff β = 0, and B is injective. Let P̂ be the orthogonal projection

onto the range of B̂, which is well defined and can be expressed as P̂ = B̂(B̂
∗
B̂)−1B̂

∗
. Then,

min
β∈R2

∥r̂ − Âh− B̂β∥2µ = ∥r̂ − Âh− P̂ (r̂ − Âh)∥µ = ∥M̂r̂ − T̂h∥2µ ,

where M̂ = I − P̂ and T̂ = M̂Â. We thus need to solve

min
h∈H

∥M̂r̂ − T̂h∥2µ + λ∥h∥2H . (A.23)

23



From Lemma B.2(v) below, T̂ is compact, and thus bounded. Thus, using a similar rea-

soning as in Step 1, the unique solution is

ĥ = (T̂
∗
T̂ + λI)−1T̂

∗
M̂r̂ , (A.24)

which in turn yields

β̂ = (B̂
∗
B̂)−1B̂

∗
(r̂ − Âĥ) . (A.25)

Step 3. We now prove that

∥ĥ− h0∥H = OP

(
1√
nλ

+ ∥hλ − h0∥H
)
. (A.26)

We will rely on the following results from Florens et al. (2011, Lemma A.1).

Lemma B.1. Consider two Hilbert spaces X and Y and a linear compact operator K :

X 7→ Y. Then there are universal constants c and c′ such that

(i) ||λ(λ I+K∗K)−1||op ≤ c,

(ii) ||(λ I+K∗K)−1K∗ ||op ≤ c′√
λ
.

We will also use the following results, whose proofs are postponed to the next section.

Lemma B.2. Under Assumptions 3.2 and 3.1, the following holds

(i) The operators A and T are compact;

(ii) ∥B̂− B ∥op = OP (n
−1/2);

(iii) ∥(B̂
∗
B̂)−1 − (B∗ B)−1∥op = OP (n

−1/2) and ∥M̂−M ∥op = OP (n
−1/2);

(iv) ∥Â− A ∥op = OP (n
−1/2);

(v) The operator T̂ is compact;

(vi) ∥T̂− T ∥op = OP (n
−1/2);

(vii) ∥r̂ − r∥µ = OP (n
−1/2);

(viii) ∥M̂r̂ − T̂h0∥µ = OP (n
−1/2).

We consider the decomposition ĥ− h0 = S1 + S2 + S3 + S4 + hλ − h0, where

S1 = (T∗T+λI)−1T∗(M̂r̂ − T̂h0) , S2 = (T∗T+λI)−1(T̂
∗
− T∗)(M̂r̂ − T̂h0) ,

S3 =
[
(T̂

∗
T̂ + λI)−1 − (T∗T+λI)−1

]
T̂

∗
(M̂r̂ − T̂h0) , S4 = (T̂

∗
T̂ + λI)−1T̂

∗
T̂h0 − hλ .
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We have

∥S1∥H ≤ ∥(T∗T+λI)−1T∗ ∥op ∥M̂r̂ − T̂h0∥µ = OP

(
1√
nλ

)
.

Indeed, T is a compact operator from Lemma B.2(i), ∥(T∗T+λI)−1T∗ ∥op ≤ c′/
√
λ from

Lemma B.1(ii), and ∥M̂r̂ − T̂h0∥µ = OP (1/
√
n) from Lemma B.2(viii). Next,

∥S2∥H ≤ ∥(T∗T+λI)−1∥op ∥T̂
∗
− T∗ ∥op ∥M̂r̂ − T̂h0∥µ = OP

(
1

nλ

)
,

as ∥(T∗T+λI)−1∥op ≤ c/λ from Lemma B.1(i), ∥T̂−T ∥op = OP (1/
√
n) and ∥M̂r̂−T̂h0∥µ =

OP (1/
√
n) from Lemma B.2(vi) and (viii). Next,

∥S3∥H ≤∥(T̂
∗
T̂ + λI)−1T̂

∗
− (T∗T+λI)−1T̂

∗
∥op ∥M̂r̂ − T̂h0∥µ

≤∥(T̂
∗
T̂ + λI)−1T̂

∗
− (T∗T+λI)−1T∗−(T∗T+λI)−1(T̂

∗
− T∗)∥op ∥M̂r̂ − T̂h0∥µ

≤∥(T̂
∗
T̂ + λI)−1T̂

∗
− (T∗T+λI)−1T∗ ∥op ∥M̂r̂ − T̂h0∥µ

+ ∥(T∗T+λI)−1∥op ∥T̂
∗
− T∗ ∥op ∥M̂r̂ − T̂h0∥µ = OP

(
1√
nλ

)
.

Indeed, T̂ and T are compact operators from Lemma B.2(i) and (v), so ∥(T̂
∗
T̂+λI)−1T̂

∗
−

(T∗T+λI)−1T∗ ∥op ≤ 2c′/
√
λ and ∥(T∗T+λI)−1∥op ≤ c/λ by Lemma B.1. Moreover,

∥T̂
∗
− T∗ ∥op = OP (1/

√
n) from Lemma B.2(vi). Finally,

∥S4∥H =∥(T̂
∗
T̂ + λI)−1T̂

∗
T̂h0 − (T∗T+λI)−1T∗Th0∥H

=∥(T̂
∗
T̂ + λI)−1(T̂

∗
T̂ + λI − λI)h0 − (T∗T+λI)−1(T∗T+λI − λI)h0∥H

=∥λ[(T∗T+λI)−1 − (T̂
∗
T̂ + λI)−1]h0∥H

=∥λ(T̂
∗
T̂ + λI)−1[T̂

∗
T̂− T∗T](T∗T+λI)−1h0∥H

=∥λ(T̂
∗
T̂ + λI)−1[T̂

∗
(T̂− T) + (T̂

∗
− T∗) T](T∗T+λI)−1h0∥H

≤∥(T̂
∗
T̂ + λI)−1T̂

∗
∥op ∥T̂− T ∥op ∥λ(T∗T+λI)−1∥op ∥h0∥H

+ ∥λ(T̂
∗
T̂ + λI)−1∥op ∥T̂

∗
− T∗ ∥op ∥T(T∗T+λI)−1∥op ∥h0∥H = OP

(
1√
nλ

)
.

Here we use that ∥T̂ − T ∥op = ∥T̂
∗
− T∗ ∥op = OP (1/

√
n) from Lemma B.2(vi), and that

∥λ(T∗T+λI)−1∥op ≤ c, ∥λ(T̂
∗
T̂ + λI)−1∥op ≤ c, and ∥(T̂

∗
T̂ + λI)−1T̂

∗
∥op ≤ c′/

√
λ from

Lemma B.1. Gathering results gives (A.26).

Step 4. We here show convergence of our estimators. Since T is injective from Step

1 and compact from Lemma B.2(i), ∥(T∗T+λI)−1T∗Th − h∥H = o(1) for all h whenever

λ → 0, see Kress (1999, Definition 15.5 and Theorem 15.23). Hence ∥hλ − h0∥H = o(1).

This and (A.26) yields ∥ĥ− h0∥H = oP (1) if in addition nλ→ ∞.
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We now show that ∥β̂ − β0∥ = OP

(
1√
n
+ ∥ĥ− h0∥H

)
. From (A.25),

β̂ − β0 =[(B̂
∗
B̂)−1 − (B∗ B)−1]B̂

∗
(r̂ − Âĥ) + (B∗ B)−1[B̂

∗
− B∗](r̂ − Âĥ)

+ (B∗ B)−1 B∗(r̂ − r) + (B∗ B)−1 B∗(A−Â)ĥ− (B∗ B)−1 B∗A(ĥ− h0)

⇒ ∥β̂ − β0∥ ≤∥(B̂
∗
B̂)−1 − (B∗ B)−1∥op ∥B̂

∗
∥op
(
∥r̂∥µ + ∥Â∥op ∥ĥ∥H

)
+ ∥(B∗ B)−1∥op ∥B̂

∗
−B∗∥op

(
∥r̂∥µ + ∥Â∥op ∥ĥ∥H

)
+ ∥(B∗ B)−1∥op ∥B∗∥op

(
∥r̂ − r∥µ + ∥Â− A∥op ∥ĥ∥H + ∥A∥op ∥ĥ− h0∥H

)
.

Lemma B.1 ensures that ∥(B̂
∗
B̂)−1 − (B∗ B)−1∥op, ∥B̂

∗
−B∗∥op = ∥B̂−B∥op, ∥r̂− r∥µ, and

∥Â−A∥op all are OP (n
−1/2). We have ∥B∗∥op = ∥B ∥op <∞ as B is a linear operator with

finite dimensional domain, see Kreyszig (1978, Theorem 2.7-8), and ∥B∗ B ∥op = ∥B ∥2op.
Similarly, ∥(B∗ B)−1∥op < ∞ as B is injective. From Lemma B.2(i), A is compact and

hence bounded, and from Lemma B.2(iv) ∥Â∥op = OP (1). From a similar reasoning,

∥B̂
∗
∥op = OP (1). Also ∥ĥ− h0∥H = oP (1) implies ∥ĥ∥H = OP (1). Combine these results to

obtain that

∥β̂ − β0∥ = OP

(
n−1/2 + ∥ĥ− h0∥H

)
= oP (1) .

Since ĝ(z) = (1, z)β̂ + ĥ(z), to show uniform consistency of ĝ and ĝ′, it now suffices to

show that supz∈[0,1] |ĥ(z) − h0(z)| and supz∈[0,1] |ĥ′(z) − h′0(z)| are bounded by ∥ĥ − h0∥H.
As for any h ∈ H, h′(z) =

∫ z

0
h′′(t)dt,

sup
z∈[0,1]

|ĥ′(z)− h′0(z)| ≤ sup
z∈[0,1]

∫ z

0

|ĥ′′(t)− h′′0(t)|dt ≤
∫ 1

0

|ĥ′′(t)− h′′0(t)|dt ≤ ∥ĥ− h0∥H ,

from Cauchy-Schwartz inequality. Since h(z) =
∫ z

0
h′(t)dt, a similar reasoning yields

sup
z∈[0,1]

|ĥ(z)− h0(z)| ≤ sup
z∈[0,1]

∫ z

0

|ĥ′(t)− h′0(t)|dt ≤ sup
z∈[0,1]

|ĥ′(z)− h′0(z)| .

Step 5. We now obtain uniform convergence rates. Assumption 3.3 allows to apply

Proposition 3.11 in Carrasco et al. (2007) to the operator T and yields ∥hλ − h0∥H =

O
(
λ

γ∧2
2

)
. Combining with the results of Step 3 gives

∥ĥ− h0∥H = OP

(
1√
nλ

+ λ
γ∧2
2

)
and ∥β̂ − β0∥ = OP

(
1√
nλ

+ λ
γ∧2
2

)
.

We can now use the same arguments as in Step 4 to obtain uniform convergence rates.
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B.2 Proof of Lemma B.2

(i). Let us show A is compact by compact embedding. Define Ã as the extension of A to

L2([0, 1]), where L2([0, 1]) is the space of real-valued square-integrable functions on [0, 1], i.e.

Ãh = E{h(Z)eiW⊤·} for any h ∈ L2([0, 1]). For all h ∈ H, we have h(z) =
∫ z

0

∫ x

0
h′′(t)dtdx,

so that

||h||2L2[0,1] =

∫ 1

0

|h(z)|2dz ≤ sup
z∈[0,1]

|h(z)|2 ≤ sup
z∈[0,1]

∣∣∣∣∫ z

0

h′(t)dt

∣∣∣∣2 ≤ sup
t∈[0,1]

|h′(t)|2

≤ sup
t∈[0,1]

∣∣∣∣∫ t

0

h′′(u)du

∣∣∣∣2 ≤ (∫ 1

0

|h′′(u)|du
)2

≤ ∥h∥2H ,

where we used the inequality of Cauchy-Schwartz to obtain the last inequality. There-

fore, every bounded set on (H, || · ||H) is also a bounded set on (L2([0, 1]), || · ||). Hence,

compactness of Ã implies compactness of A. Now for any h ∈ L2[0, 1],

(Ãh)(t) = E{h(Z) E{exp(iW T t)|Z}} =

∫
h(z) E{exp(iW T t)|Z = z} fZ(z) dz ,

where ∫ ∣∣E{exp(iW T t)|Z = z}
∣∣2 µ(t)fZ(z) dt dz ≤ 1 ,

as | exp(i·)| ≤ 1. Since Ã is an integral operator whose kernel is Hilbert-Schmidt, i.e.

squared integrable, we can apply Busby et al. (1972, Proposition 2.1) to conclude that Ã

is compact.

Let us now show that T is compact. The range of B, R(B), is finite dimensional, linear,

and closed. P is the orthogonal projection onto R(B), and is thus bounded by Kress (1999,

Theorem 13.3). Hence, M = I − P is bounded as well. Since T = MA is the composition

of a bounded and a compact operator, it is compact by Kress (1999, Theorems 2.14 and

2.16).

(ii). For β ∈ R2, we have

∥(B̂− B)β∥2µ =

∫
|(En−E){exp(iW⊤t)(1, Z)}β|2µ(dt) ,

where En denotes the empirical expectation. By the Cauchy-Schwarz inequality,

E ∥B̂− B ∥2op ≤E

{∫
(|(En −E){exp(iW⊤t)}|2 + |(En−E){Z exp(iW⊤t)}|2)µ(dt)

}
.
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Since data are i.i.d.,

E
{
|(En−E){Z exp(iW⊤t)}|2

}
= E


∣∣∣∣∣n−1

n∑
i=1

Zi exp(iW
⊤
i t)− E{Z exp(iW⊤t)}

∣∣∣∣∣
2


= Var

{
1

n

n∑
i=1

Zi exp(iW
T
i t)

}
= n−1(E{|Z exp(iW⊤t)|2} − |E{Z exp(iW⊤t)}|2) = O(n−1) ,

as |Z exp(iW⊤t)| ≤ 1 for all t ∈ T . Similarly, E {|(En−E){exp(iW⊤t)}|2} = O(n−1). This

implies E ∥B̂ −B∥2op = O(n−1), and by Markov’s inequality, ∥B̂− B ∥op = OP (n
−1).

(iii). From Kreyszig (1978, Theorem 2.7-8), as B is a linear operator with a finite di-

mensional domain, it is bounded, and ∥B ∥op <∞. Also ∥B∗ ∥op = ∥B ∥op and ∥B∗ B ∥op =
∥B ∥2op. The operator B∗ B maps R2 into R2, and is thus a matrix. From (ii), ∥B̂∥op and

∥B̂
∗
∥op are OP (1), and

∥B∗ B−B̂
∗
B̂∥op = ∥(B∗−B̂

∗
)B + B̂

∗
(B−B̂)∥op

≤ ∥B∗−B̂
∗
∥op ∥B ∥op + ∥B̂

∗
∥op ∥B−B̂∥op = OP (n

−1/2) .

Since B is injective, B∗ B is invertible, (B∗ B)−1 exists and is bounded. By the continuous

mapping theorem, ∥(B̂
∗
B̂)−1 − (B∗ B)−1∥op = oP (1). Hence ∥(B̂

∗
B̂)−1∥op ≤ ∥(B̂

∗
B̂)−1 −

(B∗ B)−1∥op + ∥(B∗ B)−1∥op = OP (1). Moreover,

∥(B̂
∗
B̂)−1 − (B∗ B)−1∥op =∥(B̂

∗
B̂)−1(B∗ B−B̂

∗
B̂)(B∗ B)−1∥op

≤∥(B̂
∗
B̂)−1∥op ∥B∗ B−B̂

∗
B̂∥op ∥(B∗ B)−1∥op = OP (n

−1/2) .

For the difference between M = I − B(B∗ B)−1 B∗ and M̂ = I − B̂(B̂
∗
B̂)−1B̂

∗
, we have

∥M̂−M ∥op =∥(B̂− B)(B̂∗B̂)−1B̂
∗
+ B[(B̂

∗
B̂)−1 − (B∗ B)−1]B̂

∗
+ B(B∗ B)−1[B̂

∗
− B∗]∥op

≤∥B̂− B ∥op ∥(B̂
∗
B̂)−1∥op ∥B̂

∗
∥op + ∥B ∥op ∥(B̂

∗
B̂)−1 − (B∗ B)−1∥ ∥B̂

∗
∥op

+ ∥B ∥op ∥(B∗ B)−1∥op ∥B̂
∗
− B∗ ∥op = OP (n

−1/2) .

(iv). Recall that for any h ∈ H, h(z) =
∫ z

0

∫ x

0
h′′(u)dudx. Thus,

(Âh)(t) =
1

n

n∑
i=1

h(Zi) exp(iW
T
i t) =

1

n

n∑
i=1

∫ Zi

0

∫ x

0

h′′(u) du dx exp(iW T
i t)

=

∫
[0,1]2

h′′(u)

[
1

n

n∑
i=1

1(0 < u < x)1(0 < x < Zi) exp(iW
T
i t)

]
du dx

=

∫ 1

0

h′′(u)

[∫ 1

0

1

n

n∑
i=1

1(u < x < Zi) exp(iW
T
i t) dx

]
du

=

∫ 1

0

h′′(u) k̂(u, t) du , (A.27)
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where k̂(u, t) is defined implicitly above. Exchanging the empirical measure with the pop-

ulation probability and using the same steps as above yield

(Ah)(t) =

∫ 1

0

h′′(u)

[∫ 1

0

E{1(u < x < Z) exp(iW T t)} dx
]
=

∫ 1

0

h′′(u) k(u, t) du . (A.28)

where k(u, t) = E k̂(u, t) is defined implicitly above. Next,

∥Â− A∥2op = sup
h∈H∥h∥H=1

∥Âh− Ah∥2µ = sup
h∈H∥h∥H=1

∫ ∣∣∣(Âh)(t)− (Ah)(t)
∣∣∣2 µ(dt)

= sup
h∈H∥h∥H=1

∫ ∣∣∣h′′(u) [k̂(u, t)− k(u, t)
]
du
∣∣∣2 µ(dt)

≤ sup
h∈H∥h∥H=1

∫ {∫ 1

0

|h′′(u)|2du
∫ 1

0

∣∣∣k̂(u, t)− k(u, t)
∣∣∣2 du}µ(dt)

= sup
h∈H∥h∥H=1

∥h∥H
∫ {∫ 1

0

∣∣∣k̂(u, t)− k(u, t)
∣∣∣2 du}µ(dt)

=

∫
[0,1]×Rq

∣∣∣k̂(u, t)− k(u, t)
∣∣∣2 du⊗ µ(dt)

⇒ E ∥Â− A∥2op ≤
∫
[0,1]×Rq

E
∣∣∣k̂(u, t)− k(u, t)

∣∣∣2 du⊗ µ(dt) .

Now,

E
∣∣∣k̂(u, t)− k(u, t)

∣∣∣2 =E

∣∣∣∣∫ 1

0

(En−E)1(u < x < Z) exp(iW T t) dx

∣∣∣∣2
≤
∫ 1

0

E
∣∣(En−E)1(u < x < Z) exp(iW T t)

∣∣2 dx
=

∫ 1

0

Var

{
1

n

n∑
i=1

1(u < x < Zi) exp(iW
T
i t)

}
dx

=
1

n

∫ 1

0

Var
{
1(u < x < Z) exp(iW T t)

}
dx = O(n−1) .

Use Markov’s inequality to obtain the desired result.

(v). By reasoning as in the proof of (i), compactness of T̂ = M̂Â follows if M̂ is bounded

and Â is compact. The first claim is shown following similar arguments as in (i). To obtain

compactness of Â, we will use Theorem 8.1-4 in Kreyszig (1978) stating that a bounded

operator with a finite dimensional range is compact. As

Âh =
n∑

i=1

h(Zi)
1

n
exp(W T

i ·) ∈ Span

(
1

n
exp(W T

1 ·), . . . ,
1

n
exp(W T

n ·)
)
,

the range of Â is finite dimensional for all n. Moreover, using (A.27)

∥Âh∥2µ =

∫ ∣∣∣∣∫ 1

0

h′′(u) k̂(u, t) du

∣∣∣∣2 µ(dt) ≤ ∥h∥2H sup
u,t

|k̂(u, t)|2 du ≤ ∥h∥2H ,
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as |k̂(u, t)| ≤ 1. Hence, ∥Â∥op ≤ 1, and Â is compact.

(vi). Since T̂ − T = (M̂ −M)Â + M(Â − A), the result follows from (ii), (iv), and the

fact that M is bounded.

(vii). The proof is analogous to the proof of (ii).

(viii). Write M̂r̂ − M r = (M̂ − M)r̂ + M(r̂ − r), and use ∥M̂ − M ∥op = OP (n
−1/2),

∥r̂ − r∥µ = OP (n
−1/2), and ∥M ∥op < ∞ from previous items to obtain ∥M̂r̂ − M r∥µ =

OP (n
−1/2). Use (vi) above to get ∥(M̂r̂ − T̂ h0) − (M r − Th0)∥µ = OP (n

−1/2), and note

that MZ r − Th0 = 0.
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