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Abstract
We compare uniform and discriminatory-price auctions in wholesale electricity markets,
studying both long-run investment incentives and short-run bidding behaviors. We develop
a monopolistic competition model with a continuum of generation technologies ranging
from base load to peak load, free entry and uncertain elastic demand. Our findings reveal
that discriminatory-price auctions are inefficient because consumers’ willingness to pay
exceeds the marginal costs and investment incentives are distorted. Despite having an
equal total installed capacity, the generation mix under discriminatory-price auctions
skews towards a shortage of base-load technologies. Consequently, this results in a lower
long-run consumer surplus. (JEL: D44, D47, L94)

1. Introduction

In her 2022 State of the Union Address at the height of the energy crisis, the
President of the European Commission emphasized the urgent need for a “deep
and comprehensive reform of the electricity market”. The primary objective
of this reform would be to recoup the benefits from low-cost renewables
and to detach the electricity market price from the influence of dominant
gas generators (European Union, 2022). Among the various options under
consideration by policymakers is a potential reform of the price formation
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Figure 1. Comparison of uniform (left) and discriminatory-price auctions (right).

process in wholesale electricity markets. This would involve replacing the
current uniform-price auction with a discriminatory-price auction model.1

We compare these two market designs, investigating producers’ bidding
behaviors and price-cost markups in the short run, as well as investment
incentives and the equilibrium generation portfolio in the long run. The model
reveals that transitioning to a discriminatory-price auction system could lead to
a reduction in the average market price in the short run, ultimately benefiting
consumers. However, this comes at the expense of short-run inefficiencies,
such as the under-utilization of existing capacities. As a consequence, long-
run distortions occur in the generation mix, ultimately harming consumers in
the end.

Figure 1 illustrates how these two auctions work. In both auction formats,
each bidder submits a bid, consisting of a production quantity paired with a
corresponding price. Subsequently, the auctioneer dispatches the production
based on increasing price order, also known as the merit order, until the total
demand is met. In Figure 1, producers’ aggregate bids are visualized as an
increasing step function in orange, while the green downward-sloping curve
represents the aggregate demand. The market clears at the intersection (p∗ in
Figure 1), where the aggregate demand precisely matches the supply.

1. The focus here lies on the pan-European day-ahead power exchanges, providing
participants with the opportunities to buy and sell electricity in hourly blocks for the
entire 24-hour day. Various reform options are being considered, including enhancing the
role of long-term contracts and exploring more granular regional markets. For more detailed
insights, refer to the market assessment report by The Agency for the Cooperation of Energy
Regulators (ACER, 2021), the European Commission’s REPowerEU initiative (European
Commission, 2022), the CERRE report on market design (Pollitt et al., 2022) and the
concurrent review of British electricity trading arrangements (Department for Business,
Energy & Industrial Strategy, 2022).
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Figure 2. Strategic adjustments in discriminatory-price auctions. Left: Bids go above
marginal costs. Right: Investment is adjusted.

In a uniform-price auction, also known as a clearing-price auction, all
accepted producers receive the market-clearing price. On the other hand, in
a discriminatory-price auction also known as a pay-as-bid auction, winning
producers are remunerated at their bidding prices (i.e., p1, p2 and p3 in the
right figure of Figure 1). The green-shaded region in the figure represents the
consumer surplus, which is the difference between consumers’ willingness to
pay and the price(s) received by the winning producers.

At first glance, Figure 1 suggests that consumers may be better off in a
discriminatory-price auction. However, this is not immediately apparent. The
auction format can influence how producers bid. For instance, in uniform-
price auctions, a bidder may truthfully bid its marginal cost, expecting its
inframarginal bid to earn a markup along with the clearing price. However,
in discriminatory-price auctions, bidding marginal cost results in zero profit.
As a consequence, producers are likely to set higher prices in discriminatory-
price auctions, shading their bids as seen in the left figure of Figure 2, where
the dotted line represents marginal costs and the solid line represents the
corresponding bids. This change in bidding behavior can impact the market-
clearing price and technologies selected in the auction.

Moreover, the alternative auction format may also affect producers’ long-
run investment decisions, corresponding to a horizontal shift of the dotted line
in the right figure of Figure 2. Consequently, the overall impact on consumer
welfare from the different auction formats becomes ambiguous.

We study the impact of market design on both investments (depicted by the
blue line) and bidding behavior (illustrated by the orange line). To achieve this,
we develop a variant of the monopolistic competition model to characterize
the market equilibrium, capturing essential aspects of wholesale electricity
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markets. These markets encompass uncertain and elastic demand, with multiple
generation technologies ranging from base load to peak load.

In the first stage of our model, producers determine their investment
capacities. In the second stage, they simultaneously submit their bids, which
are then dispatched in increasing order to meet the demand. The selected
and remunerated generators are determined based on either uniform or
discriminatory-price auction rules.

Following Tirole (1988), our model maintains three characteristics of
monopolistic competition:2 First, each firm faces a downward-sloping demand.
Second, each firm achieves zero profit under the free entry condition. And
lastly, a change in one firm’s price does not affect the demand of other firms.
However, unlike the standard monopolistic competition model, we introduce
heterogeneity in production technologies instead of product variety in the
electricity market setting.

Our research contributes to the existing literature on equilibrium models in
multi-unit auctions utilized in electricity markets (see Table 1). The first three
papers compare the short-run performances of both auction formats in scenarios
with uncertain demand. Fedrico and Rahman (2003) construct a competitive
model incorporating multiple technologies, similar to our paper, while adopting
the setup of elastic demand. They find that discriminatory-price auctions lead
to less remuneration for infra-marginal plants, but marginal plants receive more
compared to uniform-price auctions, resulting in higher consumer surplus. Both
Holmberg (2009) and Fabra, von der Fehr, and Harbord (2006) develop models
considering market power and single technology. Holmberg (2009) applies a
supply function equilibrium model, while Fabra, von der Fehr, and Harbord
(2006) consider a duopoly model, where both suppliers submit a single price
offer for their entire capacity. These two papers also find that average prices
in discriminatory-price auctions are lower than in uniform-price auctions.
However, contrary to our findings, they conclude that consumer surplus is
higher with discriminatory-price auctions. Our model shares similarities with
Fedrico and Rahman (2003), but we extend it by incorporating an investment
stage and a more comprehensive formulation of the bidding strategies. We
relax the assumptions of linear demand and investments and uniform shock
distributions.

In the fourth paper, Fabra, von der Fehr, and de Frutos (2011) expand
on their 2006 model by introducing an investment stage and demonstrate
that discriminatory-price auctions generally result in lower prices compared to
uniform-price auctions while maintaining the same aggregate capacity under
reasonable assumptions. However, despite identical aggregate capacity, our
introduction of multiple generation technologies reveals that the generation mix

2. Thanks to Patrick Rey for suggesting this link.
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Table 1. Comparison of discriminatory-price auctions with uniform-price auctions in
multi-unit auctions with uncertain demand.

Demand CS W Invest Model

Federico & Rahman ’03 elastic + – no perf. comp & monopoly
Holmberg ’09 inelastic + = no supply function equil.
Fabra et al. ’06 inelastic + = no duopoly
Fabra et al. ’11 inelastic + = yes, 1 tech duopoly
Our paper elastic – – yes, ∞ tech monopolistic competition

CS: consumer surplus, W: welfare.

becomes distorted with discriminatory-price auctions, leading to a reduction in
consumer surplus.

Unlike Fabra, von der Fehr, and Harbord (2006), Fabra, von der Fehr,
and de Frutos (2011) and Holmberg (2009), our analysis considers demand
responsiveness. In the presence of elastic demand, price distortions cause
deadweight losses, resulting in decreased overall welfare. Conversely, there are
no welfare effects with perfectly inelastic demand. Given our focus on long-term
investment effects, the assumption of elastic demand is reasonable. Moreover,
in future low-carbon energy systems aiming to balance intermittent generation,
demand elasticity is expected to play a more critical role (Cramton, 2017).

We explore how our findings are influenced by the assumptions of (1)
stochastic demand and (2) demand responsiveness and demonstrate that both
assumptions combined lead to lower welfare in the discriminatory-price auction.

When demand is inelastic, price distortions in the discriminatory-price
auction have no impact on demand levels. Given free entry, the generation
portfolio is optimally chosen to meet the stochastic distribution of demand
levels. Consequently, the portfolios are the same under both market designs,
and both lead to efficient market outcomes.

When demand is perfectly predictable, bidders will mark up their bids in
the discriminatory-price auction until they match the clearing price. This leads
to equivalent short-run market outcomes in both scenarios, resulting in the
same investment levels. However, setting one’s bid equal to the clearing price
requires that each bidder has perfect information about demand and aggregate
production capacity, which may not be the case in practice.

In our model, we do not explicitly account for information asymmetries
regarding demand realization or production capacity. Bower and Bunn (2001)
employ an agent-based model to analyze the efficiency of uniform and
discriminatory-price auctions calibrated for the England and Wales market,
finding that the discriminatory-price auction leads to higher prices. This is
attributed to agents with significant market share possessing informational
advantages in a discriminatory-price auction, facing less competitive pressure.
As a result, a dominant producer with informational advantages may be
selected, even with high production costs, leading to scheduling power
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plants out of merit. Furthermore, prediction-related costs impose additional
inefficiencies (Kahn et al., 2001). Fabra and Llobet (2021) investigate scenarios
where capacities are private information for producers, which may reflect future
electricity markets with 100% intermittent renewable production. They find in
a short-run model that producers make lower profits under discriminatory-price
auctions.

This paper also contributes to the literature on the optimal portfolio choice
in wholesale electricity markets. Since electricity is non-storable, a diverse mix
of generation technologies is required to efficiently cater to the uncertain and
unpredictable demand. Prices for each period reflect the scarcity of production
capacity, known as peak-load pricing. The theoretical groundwork for this
concept was established in the mid-20th century in a regulated monopoly
setting (Boiteux, 1949; Steiner, 1957), forming the basis of our liberalized
energy sector and market models (Joskow and Schmalensee, 1988; Joskow
and Tirole, 2007). While engineers often use a discrete set of technologies to
reflect specific options, for mathematical tractability, Zöttl (2010) employs a
continuum of technologies representing the technology frontier for supplying
energy under varying capacity factors. We adopt this approach in our model
as well.

Zöttl (2010) studies oligopolistic competition in investment in generation
portfolios, assuming uniform prices in a reduced-form spot market model.
It is shown that producers prefer to invest in a portfolio that follows a
hockey stick-shaped aggregate supply function. Strategically, producers tend to
overinvest in base load and underinvest in peak capacity. Capacity allocation
serves as a strategic commitment device for the subsequent spot market. Our
model also assumes a continuum of technologies but places a greater focus
on the spot market rules and the bidding process. Additionally, we assume
that producers lack strategic investment incentives given the monopolistic
competition framework, but each producer correctly predicts the future
stochastic price distribution.

There has been an ongoing debate about the relative impact of various
factors, such as market structure (number of producers, vertical relations
and contracts), market design (auction rules), and behavior (insider trading,
collusion) on market outcomes in power markets.3 Empirical evidence can shed
light on bidding behaviors, but measuring the effect of investments can be a
complex challenge, and analytical models may be more appropriate for this
purpose.

Evans and Green (2003) empirically study the impact of market design on
electricity prices in Britain, accounting for market structure and underlying
costs. They find that the market design dummy is insignificant. Bushnell,

3. Wilson (2002) coins the term “market architecture” as the combination of market
structure and market design which policymakers rely on to create efficient markets.
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Mansur, and Saravia (2008) analyze three U.S. wholesale markets (California,
PJM and New England) that feature diverse market designs and underlying
cost characteristics (e.g., fuel costs and hydro production), and attribute the
variation in market competitiveness to both horizontal and vertical market
structures. They suggest that spot market design has only a limited impact
on market outcomes. In contrast, Fabra and Toro (2003) provide empirical
evidence suggesting a correlation between the reduction of the price-cost
margins in the British electricity markets and a decline in market concentration,
as well as the introduction of new regulations. This indicates that both market
design and market structure play a significant role in influencing market
outcomes.

The remainder of the paper is organized as follows: Section 2 establishes the
model, while Section 3 characterizes the bidding and investment equilibrium
for uniform and discriminatory-price auctions, and compares the equilibrium
outcomes. In Section 4, specific cases concerning demand assumptions are
examined. Finally, Section 5 presents the conclusions.

2. Model

This section presents a competitive power market in both a short-run and
long-run setting. In the short-run model, producers participate in a multi-
unit spot market auction by submitting a supply bid for their entire installed
capacity. In the long-run model, producers first make investment decisions and
then participate in the spot market auction. We consider both uniform and
discriminatory-price auctions. Consumers are price-takers and are represented
by a stochastic demand function. Bids are long-lived, that is, they are assumed
to be submitted before demand realization. In the remainder of this section,
we first describe the technical assumptions regarding production technologies
and the demand-side setup. We explain the market-clearing condition and then
characterize the equilibrium bids and investments.

2.1. Supply

We assume an atomistic market structure with a continuum of electricity
producers that are price-takers in the spot market auction and are free to enter
the market by investing in the generation technology of their choice. There are
no entry barriers. Each producer invests in an infinitesimal capacity unit dG,
which can produce output dq.

A generation technology is characterized by its marginal cost c and its
annualized investment cost k. We assume that a continuum of technologies is
available, corresponding to different marginal costs c on the half-open interval
(0, ĉ], where ĉ is the technology with the highest marginal cost. The investment
cost of a technology with marginal cost c is the function k(c), which represents
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the technology frontier of all existing production technologies. We make the
following assumption on the shape of the investment cost function, as shown
in Figure 3.

Assumption 1. The technology frontier k(c) is twice continuously
differentiable, downward sloping, convex and log-concave on the interval (0, ĉ]:

dk(c)

dc
< 0,

d2k(c)

dc2
> 0 and

d2 ln (k(c))

dc2
< 0.

At the lower boundary, INADA-like assumptions hold:

lim
c→0

k(c) = ∞, lim
c→0

k′(c) = −∞.

The capital cost at the upper boundary ĉ is zero and has a slope of zero:

k(ĉ) = 0, k′(ĉ) = 0.

The investment cost function has properties that resemble the electricity
market. First, investment cost decreasing with marginal cost c, k′(c) < 0,
implies that power plants with lower operating costs have higher fixed costs
and vice versa. For instance, to construct a nuclear power plant, the investment
cost k(c) is relatively high, while the marginal cost is relatively low. On the
other hand, a natural gas power plant has lower investment costs, but due to
higher fuel and carbon prices, operating costs are high. Second, k(c) is convex
since it describes the technology frontier. If the function would not be convex,
then there exists a technology c which is dominated by a linear combination of
two technologies c1 and c2. Hence, the technology c should not be part of the
frontier. Log-concavity implies that the elasticity of the technology frontier

εk(c) = d ln(k(c))/d ln(c)

is downward sloping, i.e., ε′k(c) < 0. This will guarantee that bids increase with
marginal costs in the discriminatory-price auction, and hence producers with
the lowest marginal costs are activated first.

The levelized cost of a technology c with a capacity factor h ∈ [0, 1], which
is the fraction of time a plant is producing, is equal to

LC = c+
k(c)

h
.

For a given capacity factor h the technology c that minimizes levelized costs
satisfies the condition:

k′(c) = −h.

The negative relation between fixed investment cost and operating cost implies
that none of these technologies is strictly dominated by others, but are optimal
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Figure 3. Technology frontier k(c) is downward-sloping and convex. Technology
ˇ
c is the

“always-on” base-load technology, with k′(
ˇ
c) =−1. ĉ is the Value of Lost Load Technology

corresponding to consumer rationing.

for different capacity factors h. The INADA-like assumptions guarantee interior
solutions. The zero marginal cost technology c = 0 has prohibitively expensive
capital costs and will never be used. Define the always-on technology

ˇ
c as

the technology that is optimal for a capacity factor h = 1, hence k′(
ˇ
c) = −1.

The technology ĉ is the technology that minimizes levelized costs when the
capacity factor h= 0. It is common in electricity simulation models to represent
consumer rationing (by creating blackouts) as a technology with zero capital
costs. The marginal cost ĉ thus represents the Value of Lost Load (VOLL), the
amount that consumers are willing to pay to avoid blackouts.

The aggregate investment by producers with marginal costs equal to or
less than c is represented by the installed capacity function G(c). By design,
a producer with technology c can only invest positive amounts, i.e. dG(c) ≥ 0.
We use c0 to indicate the lowest marginal cost in which anyone invests:
c0 = min{c | G(c) > 0}. Thus function G(c) is defined on the interval [c0, ĉ].
The total installed capacity is Ĝ = G(ĉ). In the short-run version of the model,
G is exogenous and assumed to have a strictly positive slope G′ > 0 on the
interval [c0, ĉ].

In the spot market auction, a producer with marginal cost c submits a
single bid b(c) for its entire infinitesimal capacity dG(c). Hence the producers’
investment and bidding strategies can be summarized by two functions
{G(c), b(c)}. See Figure 4. At c = ĉ, the bidding curve and investment curve
are assumed to extend vertically, representing the capacity constraint. We will
restrict ourselves to set-ups where the bidding function b(c) is monotonic in
equilibrium.
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Figure 4. Producers’ investment function q = G(c) and the supply curve q = G(b−1(p)).

2.2. Demand

As for the demand side, we assume that consumers are price-takers represented
by a stochastic inverse demand function with additive price shocks.

p = P (q) + ε. (1)

This corresponds to the state contingent gross utility function V (q, ε):

V (q, ε) =

∫ q

0

P (t)dt+ ε · q.

Without loss of generality, we normalize demand by setting P (0) = 0, such that
the demand shock ε is the intercept of the demand function.

The demand shock ε follows a known cumulative distribution function F (ε)
over the interval [

¯
ε, ε̄]. Denote the quantile function of the demand shock

by Q(·) = F−1(·). The deterministic inverse demand P (q) and the demand
shock distribution F (ε) are known before producers submit bids, but the
demand shock realization ε is not. We impose the following assumption on
the distribution function.

Assumption 2. The distribution function of demand shocks Q and the
investment cost k satisfy

Q′(1 + k′(c)) >
1

k′′(c)
∀c ∈ (0, ĉ].

This condition is in the primitives of the model – the shock distribution
(Q = F−1) and the technology frontier k(c).
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Figure 5. Market clearing with realized demand shock ε (left). No market clearing exists
with small demand shock ε (right).

2.3. Market clearing

Based on the producers’ investment and bidding strategies {G(c), b(c)} and
after observing the demand shock ε, the auctioneer determines the equilibrium
price and aggregate production quantity by clearing the market. This is shown
on the left in Figure 5.

The auctioneer clears the market and determines the market-clearing price
pε, the clearing quantity qε, and the marginal technology cε by solving:

P (qε) + ε = b(cε) = pε and qε = G(cε).

However, for small demand shocks ε (see the right figure in Figure 5), the
market does not clear and the production level is zero, qε = 0. This happens
when the intercept of the demand curve ε is below the intercept of the supply
curve b(c0). That is, the willingness to pay for the first unit of production is
lower than the first supply bid. The equilibrium price pε is no longer uniquely
defined but lies between the intercepts: pε ∈ (ε, b(c0)].

For convenience, from now on, instead of indexing different states of the
world by the demand shock ε, we index by the marginal power plant c.
Mathematically, the market clearing condition in the state where producers
with technology c are marginal then becomes

p(c) = b(c) = P (G(c)) + ε(c), (2)

where the function ε(c) describes the size of the demand shock when technology
c is marginal. We define the technology

¯
c as the technology which is marginal

at the lowest possible demand shock, ε(
¯
c) =

¯
ε and c̄ as the technology which is

marginal at the highest demand shock ε̄, i.e. ε(c̄) = ε̄.
A producer with technology c will be selected by the auctioneer to produce

when the realized demand shock ε is larger than the shock where its technology
is marginal: ε > ε(c). The capacity factor h(c) of a producer with technology c
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is the likelihood of being selected to produce and is given by

h(c) = Pr[ε > ε(c)] = 1− F (ε(c)). (3)

We can combine the two market clearing conditions in equations (2) and the
capacity factor (3) in order to link the bid b(c) to the production level G(c)
and the capacity factor h(c):

b(c) = P (G(c)) +Q(1− h(c)). (4)

We use c˜ and c̃ to refer to the range of technologies that are relevant for
market clearing, given demand shock distribution, bids and investment levels.
It is the intersection of technologies with positive investments [c0, ĉ] and the
interval of technologies that are marginal with positive probability, given the
market-clearing process:

[c˜, c̃] = [c0, ĉ] ∩ [
¯
c, c̄].

In a uniform-price auction, all producers receive the market-clearing price
when producing and a producer with technology c collects an expected revenue
RU of

RU (c) =

∫ ∞

c

b(t)dh(t), (5)

while in a discriminatory-price auction, each producer simply sells at its own
bid and the producer with technology c receives an expected revenue RD of

RD(c) = b(c) · h(c). (6)

The total expected profit per unit of installed capacity of a producer with
technology c is then:

π(c) = R(c)− c · h(c)− k(c). (7)

It is equal to expected revenue minus expected operating costs and investment
costs.

The equilibrium price p is stochastic. Let Z(p) be the cumulative
distribution function of the price. This price distribution depends on aggregate
investment G(c), bids by producers b(c) and the market clearing condition
(Equation (2)). It is determined implicitly by the following identity:

Z(p(c)) = F (ε(c)). (8)

The consumer surplus in the state ε where technology c is marginal in both
auction formats is given by

CSU (c) = V (G(c), ε(c))− b(c)G(c),

CSD(c) = V (G(c), ε(c))−
∫ c

c˜
b(c)dG(c),
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and expected consumer surplus is equal to

E(CS(c)) =

∫ ∞

0

CS(c)dh(c).

Given the producers’ investment and bidding strategies {G(c), b(c)},
Equations (2) to (8) describe market outcomes, expected profits, and the price
distribution.

2.4. Monopolistic Competition

We now formally define the monopolistic competition equilibrium. We
assume all producers are risk-neutral, maximize their expected profits in the
equilibrium and can freely enter the market.

Definition 1 (Monopolistic Competition). The set of functions G(c), b(c),
ε(c), p(c) and Z(p) constitutes the long-run investment equilibrium, if the
following three conditions are satisfied.

(i) market clearing: prices p(c), demand shocks ε(c) and the price distribution
Z(p) are consistent with the market clearing (Equations (2) and (8) are
satisfied).

(ii) short-run optimum: taking the price distribution Z(p) as given, a producer
with marginal cost c finds it optimal to bid b = b(c);

(iii) long-run optimum: a producer with marginal cost c makes zero expected
profit π(c) = 0;

The set of functions b(c), ε(c), p(c) and Z(p) constitutes a short-run bidding
equilibrium for an exogenous level of investments G(c) if the first two
conditions are satisfied.

The short-run optimality condition (ii) is different for discriminatory and
uniform-price auctions. In discriminatory-price auctions, when a producer bids
b, it earns a markup b − c and is selected with a probability Z(b). The
competitive bid should satisfy:

bD(c) = argmax
b

(b− c)(1− Z(b)), (9)

In uniform-price auctions, when a producer bids b, it imposes a markup p− c
as long as its bid is below the price p ≥ b. The competitive bid should satisfy:

bU (c) = argmax
b

∫ ∞

b

(p− c)dZ(p). (10)
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3. Analysis

Now we set out to examine market equilibrium outcomes under the two
alternative auction designs. We first start with the short-run competitive
bidding equilibrium.

3.1. Bidding equilibrium

Lemma 1 (DPA short-run optimal bid; Fedrico and Rahman 2003). In
discriminatory-price auctions, a producer with technology c charges a markup
that is equal to the inverse hazard rate of the equilibrium price distribution:

b(c) = c+
1− Z(b(c))

Z ′(b(c))
. (11)

Proof. Taking the first-order condition of Equation (9) w.r.t. b(c), we obtain
the optimal bidding strategy in Lemma 1. □

Relating to single-unit auctions, the discriminatory-price auction is similar
to the first-price auction. By choosing b(c), producers are faced with a trade-off
between the markup on cost and the probability of getting accepted. Bidding
higher increases earnings but lowers the likelihood of the offer being accepted.
The optimal bidding strategy implies that all producers with marginal cost
c ∈ [c˜, c̃] set positive markups in discriminatory-price auctions, except for the
marginal producer that corresponds to the highest demand realization, who
will set the price exactly at the marginal cost (1−Z(b(c̄)) = 0), unless capacity
is scarce in which case Z ′ = 0 and we might still have a positive mark-up.

However, the price distribution Z(p) is endogenous and depends on the
bid function b(c). Combining the inverse hazard rate formula and the market
clearing conditions, we find Proposition 1.

Proposition 1 (DPA short-run optimal bidding strategy). In a discriminatory-
price auction, the equilibrium bid b(c) and the capacity factor h(c) need to
satisfy the differential equation

h(c) = − d

dc
[(b(c)− c)h(c)] , (12)

together with market clearing (4). The boundary condition that determines the
solution to this differential equation depends on the installed capacity Ĝ. If
capacity is plentiful, then the markup for the highest demand shock is zero, and
the highest active cost technology c̃ then clears the market

b(c̃) = c̃ = P (G(c̃)) + ε̄.
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Figure 6. The optimal short-run bid under discriminatory-price auctions with spare
capacity (left) and scarce capacity (right).

If capacity is scarce, then the markup at the highest demand shock is positive,
and the highest bid is

b(ĉ) = argmax
b

[1− F (b− P (Ĝ))](b− ĉ).

The functions {b(c), h(c)} that satisfy the first order condition 12 and the
boundary condition are an equilibrium if h′(c) ≤ 0.

Proof. See the proof in the Appendix. The first-order condition (12) follows
directly from applying the envelope theorem in a direct revelation formulation
of the bidding process. A revealed preference argument shows that h′ ≤ 0 is a
necessary condition for an equilibrium to exist. The fact that a solution of the
first-order condition is globally optimal if h′ ≤ 0, can be proven by showing that
profits are weakly increasing for smaller bids and weakly decreasing for larger
bids. The boundary condition requires that there is no markup for the highest
demand shock with spare capacity. Competition among marginal power plants
drives down the markup. When there is scarce capacity, there is no cut-throat
competition and the bids reflect a trade-off between mark-ups and capacity
factor. See Figure 6. □

The next proposition directly follows from the first-order condition of the
profit function for uniform-price auctions (Equation (10)).

Proposition 2 (UPA optimal bidding strategy). In a uniform-price auction,
the optimal bid b(c) is equal to marginal cost, and the capacity factor h(c) is
determined by equation (4).

Proof. The proof can be derived similarly to discriminatory-price auctions.
The first-order condition implies that bidding marginal cost is optimal. This
can be shown to be always globally optimal. For further details, refer to the
proof in the Appendix. □



Willems and Yu Bidding and Investment in Wholesale Electricity Markets 16

If we relate to single-unit auctions, uniform-price auctions are similar to
second-price auctions. Producers are paid the price of the first rejected bid,
rather than the amount that they bid themselves. Bidding higher does not
directly reduce the earnings but lowers the likelihood of winning the auction.
So the optimal bidding strategy requires that all producers bid exactly their
marginal costs. In this way, producers with a lower marginal cost will be first
assigned to operate, till the last unit that has a marginal cost equal to the
consumer’s marginal benefit. Uniform-price auctions are efficient: the most
efficient capacity is used first (production efficiency) and the willingness to pay
for consumers is equal to the marginal cost of the most expensive generator
(allocative efficiency).

3.2. Investment equilibrium

We need the following lemma to construct the investment equilibrium.

Lemma 2 (Local incentive constraint). Independent of the auction format,
the capacity factor satisfies the free entry condition. This implies

h(c) = −dk(c)

dc
. (13)

Proof. The proof follows from combining the envelop theorem on long-run
expected profits and the free entry condition of Definition 1, condition (iii).
See the proof in the Appendix. □

This lemma shows that the technology mix is conditionally efficient in the
long run, given the capacity factor h(c) of each technology. The derivations in
the proof are similar to a screening model where the capacity factor h is used
to screen technologies c. Free entry then guarantees that all information rents
are zero.

In the following propositions, we characterize the investment equilibrium
for the two alternative auction designs respectively.

Proposition 3 (DPA investment equilibrium). In the investment equilib-
rium of a discriminatory-price auction, producers with marginal cost c ∈ [c˜, c̃]invest. The cumulative installed capacity G(c) satisfies

P (G(c)) = c+
k(c)

h(c)
−Q(1 + k′(c)), (14)

and the bid follows

b(c) = c+
k(c)

h(c)
. (15)
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Proof. We combine Equation (12) with the free entry condition (13) h(c) =
−k′(c) and find:

d

dc

[
(b(c)− c)k′(c)

]
= −k′(c).

With sufficient capacity, integrating this differential equation over the interval
[c, c̃], and using the boundary condition in Proposition 1, we find that the
bidding markup is equal to −k(c)/k′(c):

b(c) = c− k(c)

k′(c)
= c+

k(c)

h(c)
.

Plugging the optimal bid into the market-clearing condition (2), we obtain the
equation that pins down the cumulative installed capacity G(c) in Equation
(14). □

We investigate several properties of the equilibrium. First, producers make
markups that are decreasing in their marginal costs. This can be seen by
combining the derivative of Equation (15) together with the properties of the
technology frontier in Assumption 2. The slope of the bidding function

b′ =
k′′k

k′2

is between zero and one. Bids increase with the marginal cost, which guarantees
that the producers are activated in accordance with their merit order. Second,
all technologies will be used in equilibrium, following Assumption 2, that is, G is
strictly increasing: G′(c)> 0 ∀c ∈ [c˜, c̃]. To see this, recall that the log-concavity
property of the technology frontier in Assumption 1 implies

1

k′′
>

k

k′2
.

Taking the derivative of (12), and using the fact that P ′ < 0, we see that G′ > 0
requires

Q′(1 + k′) >
k

k′2
,

which is satisfied thanks to Assumption 2.
The following lemma follows directly from Proposition 3.

Lemma 3. The Lerner index in the long-run equilibrium under
discriminatory-price auctions is the reciprocal of the elasticity εk(c) of
investment costs:

L =
b(c)− c

c
=

1

εk(c)
.

The Lerner index indicates that producers can charge more than their
marginal cost in the competitive equilibrium. However, the markup is not due
to demand elasticity, but demand uncertainty. In the long run, it allows for a
recoupment of the investment costs.
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Proposition 4 (UPA investment equilibrium). In the investment equilib-
rium of a uniform-price auction, producers with marginal costs c ∈ [c˜, c̃] invest.The cumulative installed capacity G(c) satisfies

P (G(c)) = c−Q(1 + k′(c)). (16)

A producer with technology c bids

b(c) = c.

Proof. The optimal bid follows directly from the first-order condition of
Equation (10). Plugging the optimal bid into the market clearing condition
(2), we obtain the equation that pins down the cumulative installed capacity
G(c) in Equation (16). To show that all technologies that are used, check that
G(c) is strictly increasing:

G′ > 0 ⇔ Q′(1 + k′) >
1

k′′
.

This is guaranteed by Assumption 2. □

3.3. Comparison

After characterizing the short-run and long-run equilibrium outcomes, we now
compare both auction formats. In the short run, the auction format only affects
bidding strategies b(c) as installed capacities G(c) remain fixed. For a given
demand realization ε and auction format i = D,U , let pε,i and qε,i represent
the equilibrium price and quantity, respectively:

pε,i = bi(cε,i), qε,i = G(cε,i),

where cε,i is the marginal technology, defined by a one-to-one relationship
between demand shocks and marginal technologies ε = εi(cε,i). This is
illustrated in Figure 7. We can now show the following lemma.

Lemma 4 (Comparison of short-run equilibrium outcomes). In the short run,
for a given demand realization ε, the marginal technology in the discriminatory-
price auction is lower than in the uniform-price auction, the equilibrium price
is higher, and the equilibrium production quantity is lower:

cε,D ≤ cε,U , pε,D ≥ pε,D and qε,D ≤ qε,D.

The inequalities are strict, except for the largest demand shock ε= ε̄ when spare
capacity exists.

Proof. See Appendix. □



Willems and Yu Bidding and Investment in Wholesale Electricity Markets 19

Figure 7. Short-run comparison of bidding between discriminatory and uniform-price
auctions with spare capacity.

A direct result of this lemma is that the equilibrium capacity factor
h(c) = 1 − F (ε((c)) in a discriminatory-price auction is lower than that in
a uniform-price auction hD(c) < hU (c) for any technology c, except for the
technology that is marginal at the largest demand shock when there is spare
capacity.

Figure 8 represents consumer surplus (blue), producer surplus (yellow), and
deadweight loss (grey) for a given demand shock ε. There is a deadweight loss
in the discriminatory-price auction as there is a gap between the marginal
willingness to pay and the marginal cost pDε > cDε . As total surplus decreases,
at least one side of the market must be worse off in the discriminatory-price
auction.

Lemma 5 (Comparison of short-run expected profits). In the short run, the
expected profits of generators of technologies c that are active in the market are
smaller in the discriminatory-price auction.

Proof. See Appendix. □

We need to specify particular functional forms for installed capacity G,
demand shock distribution F , and demand function P to make more precise
statements about expected consumer surplus. There is a trade-off: transitioning
to a discriminatory-price auction reduces the expected producer surplus and
creates a deadweight loss. Consumers could either benefit or lose out. Fedrico
and Rahman (2003) demonstrate that under the assumptions of uniform
demand shock distribution F (ε), linear investment function G(c) and linear
demand P (q), expected consumers surplus is higher and the average paid
price by consumers, defined as expected expenditure divided by expected
consumption, is lower.
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Figure 8. Comparison of short-run equilibrium revenue under uniform (left) and
discriminatory-price auctions (right) for a specific demand shock ε. The Figure shows
a case with spare capacity.

In the long run, auction formats affect both bidding decisions b(c) and
investment G(c). The following lemma compares both market outcomes.

Lemma 6 (Comparison of long-run investment). In the long-run equilibrium,
the capacity factor h is the same in both auction formats: hU (c) =
hD(c). The aggregate investments in uniform-price auctions first-order
stochastically dominate investments in discriminatory-price auctions, except
for the technology at the top, that is,

GD(c) ≤ GU (c) with equality for c = c̄.

Moreover, if the demand function is concave P ′′ < 0, then the marginal
investment in each technology G′(c) is larger in the discriminatory-price
auction

GD′(c) ≥ GU ′(c).

Proof. See Appendix. □

Figure 9 illustrates this lemma. For a given demand shock ε, the same
technology cD(ε) = cU (ε) = c is marginal. The bids are bU (c) = c and bD(c) =
c+ k(c)/h(c) for uniform and discriminatory-price auctions, respectively.

Lemma 7. In the long run, the discriminatory-price auction is less efficient
than the uniform-price auction and the expected consumer surplus is lower.

E(CSD(c)) < E(CSU (c)).

Consumers are better off with the discriminatory-price auction with the highest
demand shock c̄, but lose out for the lowest demand shock

¯
c.

CSD(c̄) > CSU (c̄), CSD(
¯
c),< CSD(

¯
c)
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Figure 9. Long-run comparison of bidding (solid) and portfolios (dashed) between
discriminatory auctions and uniform-price auctions. Note: for a given demand shock ε,
the same technology is marginal.

Figure 10. Long-run consumer surplus comparison: uniform and discriminatory-price
auctions.

Proof. From the standard welfare theorem, we know that a uniform-price
auction in a competitive market leads to an efficient market outcome.
It generates the standard peak-load pricing as in Boiteux (1960). In the
discriminatory-price auction prices and investment levels are distorted, hence
total expected surplus must be lower. By the free entry assumption, producers
make zero expected profit in both auction formats πD(c) = πU (c) = 0, so
the expected consumer surplus in the discriminatory-price auction must be
lower. For the highest demand shocks, the price in both auction formats is the
same bU (ĉ) = bD(ĉ) = ĉ, and consumers consume the same amount G(ĉ), but
the payment is lower in the discriminatory-price auction. So consumer surplus
must be larger. For the lowest demand shock, consumer surplus is lower with
the discriminatory pricing as consumers pay a price bD(

ˇ
c) >

ˇ
c for all units

consumed, while paying less bU (
ˇ
c) =

ˇ
c in the uniform price auction. □
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Figure 10 sketches the cumulative density function of consumer surplus for
both auction formats. For small demand shocks, discriminatory-price auctions
result in lower consumer surplus due to reduced base load investment and higher
prices compared to uniform-price auctions. Conversely, discriminatory-price
auctions lead to higher consumer surplus for high demand realizations. In this
case, consumers pay average bids that are lower than the market clearing price
in uniform-price auctions, with identical volume in both formats. It is worth
noting that the variance of consumer surplus is higher under discriminatory-
price auctions compared to uniform-price auctions.

Additionally, it is important to note that the revenue equivalence theorem
does not hold in our model. Although the rents of producers are the same in
both auctions (zero due to free entry), the market surplus differs, and hence, the
auctioneer who acts on behalf of consumers, is not indifferent. In our setting,
demand is elastic, and the total size of the “cake” (total surplus) therefore
changes with the auction format. Consequently, the two auction formats do not
yield the same expected expenditure. In Section 4.1 we will explore different
setups with inelastic demand or without demand uncertainty where the revenue
equivalence theorem holds.

3.4. Example

In this subsection, we consider particular functional forms and derive long-term
market outcomes. The demand function is linear P (q) = −q/ρ with ρ > 0, and
the stochastic demand intercept ε follows a truncated exponential distribution

F (ε) =
α− e−ε/λ

β

on the interval [
¯
ε, ε̄] with lower and upper boundaries

¯
ε = −λ ln(α) and

ε̄=−λ ln(α−β) and the quantile function: Q(y) =−λ ln(α−βy). The demand
side depends on four parameters: ρ which measures demand slope, α and
β which determine the range of demand shocks and λ which measures the
thickness of the right tail of the shock distribution.

The convex investment cost function is defined by

k(c) =
ĉ−

ˇ
c

γ + 1

(
ĉ− c

ĉ−
ˇ
c

)γ+1

with γ > 0,

satisfying Assumption 1. It has three parameters: ĉ the value of lost load,
ˇ
c the

marginal cost of the always-on technology, and γ the convexity parameter. The
optimal portfolio choice, h(c) = −k′(c), determines that the long-term capacity
factor of technology c as :

h(c) =

(
ĉ− c

ĉ−
ˇ
c

)γ

.
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The demand intercept ε(c) = Q(1 − h(c)) that corresponds to the marginal
technology c is

ε(c) = −λ ln

(
α− β

[
1−

( ĉ− c

ĉ−
ˇ
c

)γ
])

.

The long-run aggregate investment, Gi(c), can be calculated by

Gi(c) = ρ(ε(c)− bi(c)),

where the bids bi(c) are given by:

bU (c) = c and bD(c) = c+
ĉ− c

γ + 1
.

If Assumption 2 is satisfied all technologies will be used, G′ > 0, this is,
for instance, the case if λ > (ĉ −

ˇ
c)2/γ2 and the shock follows a standard

exponential distribution, i.e. α = β = 1 on the interval [0,∞].

4. Extensions

In Section 3, we compared the equilibrium outcomes of both auction formats
assuming demand to be price-responsive and uncertain. However, in this
section, we show that disparities in market outcomes vanish when we drop
one of these assumptions.

4.1. Inelastic demand

With perfectly inelastic stochastic demand, represented by an inverse demand
function with a stochastic price shock p = P (q) + ε as in Equation (1), is no
longer applicable. Instead, we express the demand q by a stochastic quantity
variable θ, that is, q = θ. The quantity shock is characterized by a cumulative
distribution Fq(θ), a quantile function Qq(·), and has full support on the
interval [

¯
θ, θ̄]. Market clearing is now determined by the equation

θ(c) = G(c).

The capacity factor of technology c is given by

h(c) = 1− Fq(θ(c)).

The function θ(c) corresponds to the level of demand at which technology c
becomes marginal.

The short-term bidding and long-term investment behaviors are described
in the next proposition and can be derived as previously discussed.



Willems and Yu Bidding and Investment in Wholesale Electricity Markets 24

Proposition 5 (Equilibrium with inelastic demand). In the short term, i.e.
for a given investment pattern G(c), the optimal bids under uniform and
discriminatory-price price auctions are as follows ∀c ∈ [c˜, c̃]:

bU (c) = c,

bD(c) = c+

∫ c̃

c 1− Fq(G(t))dt

1− Fq(G(c))
. (17)

In the long term, the installed capacity G is the same in both auction formats,
and corresponds to the generation portfolio that minimizes total production
costs:

GUP (c) = GD(c) = Qq(1 + k′(c)).

Producers invest in a mix of technologies ranging from the always-on technology

ˇ
c to the VOLL (Value of Lost Load) technology ĉ, which are marginal for the
lowest demand shock

¯
θ and the highest demand shock θ̄, respectively. Therefore,

c̄ = ĉ and
¯
c =

ˇ
c = c0. In the long term, the equilibrium bid in discriminatory-

price auctions corresponds to levelized cost:

bD(c) = c+
k(c)

h(c)
.

Proof. As previously stated, in a uniform-price auction, the short-run optimal
bid is to bid marginal cost, as it remains a dominant strategy. Under
discriminatory-price auctions, the short-run optimal bid can be determined
by solving the differential equation from Lemma 1:

b(c) = c+
1− Z(b(c))

Z ′(b(c))
= c+

1− Fq(G(c))

F ′
q(G(c))G′(c)

b′(c),

which gives Equation (17). □

Figure 11 illustrates the investment and bidding equilibria with inelastic
but stochastic demand, ranging from θ to θ̄. Bids in discriminatory-price
auctions are higher than in uniform-price auctions, but the investment levels
GU (c) = GD(c) are identical.

Although markups are different in the two auction formats, with
inelastic demand they do not distort demand levels. Consequently, the
optimal generation mix must be the same in both auction formats. This
optimal generation mix corresponds to the least-cost investment to meet the
(unchanged) stochastic demand levels.

With inelastic demand, there are no deadweight losses, and the total surplus
is the same in both auction formats. Given free entry, the expected producer
surplus is zero, and the expected consumer surplus must be the same as well.
Hence, the revenue equivalence theorem holds in the case of inelastic demand.
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Figure 11. Long-run bidding strategy under discriminatory auctions and uniform-price
auctions with inelastic demand.

Lemma 8 (Revenue Equivalence). With perfectly inelastic demand,
consumers receive the same expected pay-off under both auction types.

Proof. See Appendix. □

4.2. Certain demand

We now consider the scenario where the demand shock is known. The inverse
demand function is given as

p(q) = P (Q) + ¯
¯
ε,

where ¯
¯
ε is a constant.

In the short run, the installed capacity G(c) is fixed, and producers compete
by submitting bids. The short-term equilibrium strategies are not unique, as
several strategy profiles can lead to the same market outcome. The following
proposition describes the short-term market equilibrium outcome:

Proposition 6 (Short-run equilibrium outcome with certain demand).
Define the technology c̊, at which a perfectly competitive market would clear
as:

c̊ = P (G(̊c)) + ¯
¯
ε. (18)

Under both auction formats, any equilibrium outcome is characterized by the
fact that producers with lower marginal cost c ≤ c̊ produce and are paid c̊, while
producers with higher marginal cost c > c̊ do not produce and thus not receive
a payment.

In the long-run equilibrium, outcomes under the two auction formats are
equivalent. Producers only invest in the base-load technology

¯
c, which is the



Willems and Yu Bidding and Investment in Wholesale Electricity Markets 26

Figure 12. Long-run optimal bidding and investment strategies with certain and elastic
demand under uniform auctions (left) and discriminatory-price auctions (right).

most efficient technology to meet a deterministic demand level. Since the
demand is certain, there is no need to use a portfolio of generation technologies.
Producers bid their marginal cost b =

¯
c under uniform-price auctions, and

levelized cost b=
¯
c+ k(

¯
c) under discriminatory-price auctions and earn a short-

term rent of k(
¯
c) ·G(

¯
c), which is used to recoup the investment cost. This is

illustrated in Figure 12, and formalized in the following Lemma.

Lemma 9. With a known demand shock, the long-term equilibrium outcomes
for uniform and discriminatory-price auctions are equivalent. The equilibrium
price reflects the levelized cost of the base-load technology.

Proof. Proposition 6 demonstrates that short-term outcomes are equivalent in
both auction formats for any investment level G(c). This implies that, with the
free-entry condition, the long-term equilibrium outcomes for the two auction
formats should also be equivalent.

Any investment in a technology c ̸=
¯
c will be unable to recoup its investment

cost when the equilibrium price is p =
¯
c+ k(

¯
c). If the price is above this level,

there will be new entries in the base-load investment, while if the price is
below the level, even base-load technologies would make a loss and leave the
market. □

Hence, this shows that when demand is certain, the revenue equivalence
holds. Total invested capacity is the same in both auction formats, and as only
the always-on technology is used in both formats, there is no distortion in the
generation mix.

5. Conclusions

Our paper draws motivation from recent proposals by authorities advocating
for the replacement of the current uniform-price auction format within
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the wholesale electricity market design. The purpose of this work is to
address the question of whether adopting discriminatory-price auctions would
enhance market performance, and how auction formats would affect electricity
producers’ long-run and short-run decision-making and distributional effects.
We aim to gain an all-around understanding of the impact of auction formats
on market outcomes and social welfare.

To the best of our knowledge, there exists limited literature dedicated to
modeling multi-unit investment incentives with a variety of technologies in an
auction format. To address this gap, we construct a monopolistic competition
model featuring a continuum of generation technologies and consider demand
responsiveness and stochasticity.

We find that discriminatory-price auctions are inefficient. In the short run,
consumers’ willingness to pay is higher than producers’ marginal costs, and
capacity remains underused. In the long run, producers’ investment incentives
are affected, resulting in a distortion of the generation technology mix. While
the total generation capacity remains the same, it becomes harder for “always-
on” base-load producers to generate revenue. Consequently, investments in
these technologies decrease in the equilibrium to ensure that they can recoup
their investment costs.

Our research demonstrates that inefficiency does not necessarily originate
from market power, but can also stem from market design. The interplay of
demand uncertainty, diverse generation technologies, and demand elasticity
disrupts the revenue equivalence theorem.

Policymakers might be tempted to drastically change the spot market
design, driven by the short-term goal of reducing producers’ revenues and
increasing consumer surplus. However, our model reveals that such actions
may compromise efficiency in the short run and erode consumer surplus in the
long run. Moreover, other authors have shown that discriminatory auctions can
unfairly advantage larger bidders with inside information, potentially leading
to activations that deviate from the merit order.

In our model, we assume demand to be elastic, which is appropriate for our
focus on the long-run market equilibrium. In this context, consumers have the
flexibility to easily adjust their consumption patterns. It is worth noting that
with perfectly inelastic demand, both uniform and discriminatory price auctions
yield identical outcomes, which would not affect our policy recommendation.4

Our monopolistic competition model assumes free entry and zero long-
run expected profits. This assumption holds reasonable ground, particularly
in the European energy market context, provided there is sufficient investment
in cross-border capacity to improve competition, and permitting procedures

4. Introducing different short and long-run demand and supply elasticities, is more realistic,
but would require a more complex set-up which explicitly models flexibility and inter-
temporal arbitrage and additional reserve markets as in He and Willems (2023).
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that do not pose entry barriers.5 While extending our model to an oligopoly
setup would be intriguing, it is likely to be analytically intractable. Such an
extension would require a two-stage model wherein producers’ strategies are
represented by functions defining generation portfolios and technology-specific
bidding, akin to the approach in Holmberg and Willems (2015). These models
are characterized by nested differential first-order conditions and multiple
equilibria. In a companion paper, we study a monopoly version of our model
where a single firm invests in a portfolio of technologies and participates
in the spot market auction. Our findings reveal price-cost mark-ups in both
auction formats and suggest that welfare may be higher in a discriminatory-
price auction when demand is relatively inelastic and demand uncertainty is
relatively high.
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Appendix

Proof of Proposition 1: Short-run optimal bidding in pay-as-bid auction.

Proof. In a pay-as-bid auction, the expected profit of a firm with technology
c bidding as if it was of type cR, i.e., bidding b(cR), and obtaining load-factor
h(cR), is equal to:

Π(cR, c) = (b(cR)− c) · h(cR).

Applying the envelope theorem on the profit function at c = cR we find:

dΠ(c, c)

dc
=

∂Π(c, c)

∂c

⇒ d

dc
[(b(c)− c)h(c)] = −h(c). (A.1)

The envelope theorem can be applied as the bid function b(c) and corresponding
h(c) are chosen optimally by the firm. In particular, once b(c) is chosen the load
factor h(c) is given by the expression

h(c) = 1− Z(b(c)), (A.2)

which can be found by combining equations (2), (3) and (8).
The explicit form of functions {b(c), h(c)} can be pinned down by Equations

(A.1) and (A.2) together with a boundary condition for the highest type c̄. At
the highest demand shock ε̄, the markup is zero and the market always clears:

b(c̃) = c̃ = P (G(c̃)) + ε̄.

The explicit form of functions {b(c), h(c)} can be pinned down by Equations
(A.1) and (A.2) together with a boundary condition for the highest type c̃.
When the capacity is plentiful, the highest type c̃ = c̄ is marginal when the
demand shock is of the highest type ε̄. At the highest demand shock ε̄, the
markup is zero and the market always clears:

b(c̃) = c̃ = P (G(c̃)) + ε̄,
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which determines the upper bound. When the capacity is scarce, the markup is
still positive with the highest demand shock. The highest type c̃ = ĉ submits a
bid b to maximize Pr(b)(b− ĉ). The first-order condition pins down the highest
bid that gives the boundary condition for solving the ordinary differential
equation:

−f(b− P (Ĝ))(b− ĉ) + 1− F (b− P (Ĝ)) = 0

⇒ b∗ = ĉ+
1− F (b∗ − P (Ĝ))

f(b∗ − P (Ĝ))
.

Since the highest bid b is in the interval [ĉ, P (Ĝ) + ε̄], to prove the uniqueness
of the highest bid, we examine the monotonicity of the first-order condition.
Denote the first-order condition by g(b):

g(b) = −f(b− P (Ĝ))(b− ĉ) + 1− F (b− P (Ĝ))

= −1− F (b− P (Ĝ))

f(b− P (Ĝ))
(b− ĉ) + 1,

and then

g′(b) = −
( d

db

1− F

f

)
(b− ĉ)− 1− F

f
.

Decreasing hazard rate 1−F
f guarantees that the first-order condition is

decreasing, implying that b∗ is the unique optimum bidding for the highest
type of technology ĉ.

After deriving the first-order condition for the bid functions, we now study
the global optimality. The marginal effect on the expected profit for a firm with
technology c when bidding as if its technology was cR is:

∂Π(cR, c)

∂cR
= b′(cR)h(cR) + (b(cR)− c)h′(cR). (A.3)

The bid and load duration {b(cR), h(cR)} satisfy the first order condition ((12))
of the firm with technology cR:

∂Π(cR, c)

∂cR

∣∣∣∣
c=cR

= b′(cR)h(cR) + (b(cR)− cR)h
′(cR) = 0. (A.4)

Subtracting (A.4) from (A.3) gives:

∂Π(cR, c)

∂cR
= (cR − c)h′(cR).

To ensure global optimality, we need

∂π(cR, c)

∂cR
≥ 0 ∀cR < c, and

∂π(cR, c)

∂cR
≤ 0 ∀cR > c,
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which requires h′(cR) < 0 for all cR. The solution of the differential equation
(12) satisfies this condition if the bid function is increasing and the markup is
positive:

−h′(c)

h(c)
=

b′(c)

b(c)− c
> 0, (A.5)

which follows from rewriting the differential equation.
A necessary condition for any bidding equilibrium is that h′(c) ≤ 0 ∀c. This

follows from the incentive compatibility constraints:

(b(c1)− c0)h(c1) ≤ (b(c0)− c0)h(c0) (A.6)

(b(c0)− c1)h(c0) ≤ (b(c1)− c1)h(c1), (A.7)

which can be combined to find that

(c0 − c1)(h(c0)− h(c1)) ≤ 0.

Hence, the monotonicity of h(c) is a necessary condition for equilibrium and
a sufficient condition for a solution of the first-order condition to be an
equilibrium.

□

Proof of Proposition 2: Optimal bidding strategy in a uniform-price
auction.

Proof. Suppose the report by a firm with technology c is cR. The expected
profit of the firm is

Π(cR, c) =

∫ ∞

b(cR)

(p− c)dZ(p).

The marginal effect on the expected profit of a firm with technology c to bid,
as if it had technology cR is given by:

∂Π(cR, c)

∂cR
= −(b(cR)− c)Z ′(b(cR)).

The first-order condition requires that this expression is zero at cR = c, implying
that the producer would truthfully report its marginal cost b(c) = c. To ensure
global optimality, we need

∂Π(cR, c)

∂cR
> 0 ∀cR < c, and

∂Π(cR, c)

∂cR
< 0 ∀cR > c,

which requires Z ′(b(cR)) > 0 for all cR. Given that b′(cR) = 1, and using the
definition of Z, this is the case if and only if: h′(cR) < 0. This is satisfied when
firms bid their marginal cost. To prove this, we take derivatives w.r.t. c on both
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sides of the market-clearing condition ((4)) b(c) = c = P (G(c)) +Q(1− h(c))
and find that

h′(c) =
P ′(G(c))G′(c)− 1

Q′(1− h(c))
< 0.

This condition is always true and guarantees that the bidding strategy is
globally optimal. □

Proof of Lemma 2: Optimal capacity factor and free entry condition

Proof. Recall that the profit of a producer with technology c is given by

π(c) = R(c)− c · h(c)− k(c).

Taking the total differential, we have

dπ

dc
=

∂π

∂R
·R′(c) +

∂π

∂h
· h′(c) +

∂π

∂k
· k′(c) + ∂π

∂c
. (A.8)

By the envelope theorem the sum of the first two terms on the right-hand side
of Equation (A.8) equals zero, as the bidding strategy is chosen optimally. In
the long run, all generators earn zero profit due to the free entry:

π(c) = 0 ⇒ dπ

dc
= 0

Hence,
∂π

∂k
· k′(c) + ∂π

∂c
= 0 ⇒ h(c) = −dk(c)

dc
.

□

Proof of Lemma 4

Proof. For a given technology c, bids in the discriminatory auction are larger
than in the uniform-price auctions: bD(c) ≥ bU (c). It follows from the market
clearing condition bi(c) = P (G(c)) + εi(c) that εD(c) ≥ εU (c). Since εi(·) are
increasing functions, the marginal technology in the discriminatory auction
is smaller than in the uniform-price auction, i.e., cε,D ≤ cε,U . Consequently,
production capacity is lower in the discriminatory auction, i.e., qε,D =
G(cε,D) ≤ G(cε,U ) = qε,U . This implies higher prices in the discriminatory
auction, (pε,D > pε,D) to compensate for reduced production. □

Proof of Lemma 5
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Proof. For the highest demand shock ε̄ and with spare capacity, the marginal
technology is the same in both auctions as shown in Figure 8: c̄D = c̄U = c̄.
Firms make the same expected profit in both formats, as they have a zero load
factor hD(c̄) = hU (c̄) = 0.

πD(c̄) = πD(c̄) = −k(c̄).

Using the envelope theorem, the total derivative of expected profit in auction
i is given by dπi/dc = −hi(c)− k′(c). So we can write the difference in profits
for any technology c < c̄ as

πU (c)− πD(c) =

∫ c̄

c

(hU (t)− hD(t))dt > 0.

The last inequality follows from the fact that the load factor is higher with
uniform price auctions hU (c) > hD(c). Firms that are not active in the market
(c > c̄), do not have any short-term profit as they do not produce and hence
πD(c) = πU (c) = −k(c).

If capacity is scarce the expected profit of the highest marginal cost
technology ĉ is not zero, but given by the following conditions:

πD(ĉ) = −k(ĉ) +max
ε

[(ε− P (Ĝ)− ĉ)(1− F (ε))],

πU (ĉ) = −k(ĉ) +

∫ ε̄

ĉ−P (Ĝ)

(ε− P (Ĝ)− ĉ)dF (ε).

The expected profit in the discriminatory auction is lower than in the uniform
one: πD(ĉ) < πU (ĉ). In the uniform price auction the firm captures the
consumers’ marginal willingness-to-pay (ε− P (Ĝ)) for each demand shock ε.
In the discriminatory auction, the firm produces less often and does not receive
the marginal willigness to pay, but only its bid. We can use the envelop theorem
again and integrate up to the upper boundary ĉ to find that expected profit in
the discriminatory auction is lower:

πU (c)− πD(c) = πU (ĉ)− πD(ĉ) +

∫ ĉ

c

(hU (t)− hD(t))dt > 0.

□

Proof of Lemma 6

Proof. In the context of monopolistic competition, the free entry condition
(13) ensures efficient investments, which implies hU (c) = hD(c) = h(c).

In both auctions, the market clears with Equation (2):

bi(c) = pi(c) = P (Gi(c)) +Q(1− h(c)).
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Since firms bid a mark-up in discriminatory auctions, the equilibrium price
in the discriminatory auction is higher pD(c) > pU (c), ∀c ∈ [c˜, c̃]. With the
same capacity factor h(c), the optimal aggregate capacity is always lower
with discriminatory auctions GD(c) < GU (c) except for the highest demand
realization. Moreover, taking the first order derivatives of market clearing under
both auction format and subtracting gives:

P ′(GD)GD′ − P ′(GU )GU ′ = bD′ − bU ′.

We have shown above that bD′ − bU ′ < 0. If the inverse demand function is
concave, P” < 0, then P ′(GU ) < P ′(GD) and it follows that GU ′ < GD′. □

Proof of Lemma 8

Proof. We need to prove that consumers’ expected expenditures are the same
in both auction formats as they consume the same quantities. In a uniform-
price auction, consumers pay the bid of the marginal technology bU = c for the
total demand θ(c). The expected consumer expenditure EU is

EU =

∫ ĉ

ˇ
c

bUP (c) θ(c) dFq(θ(c)).

In a discriminatory auction, the capacity dθ receives the price bD(c) = c −
k(c)/k′(c) whenever it produces, which happens with probability 1 − Fq(θ).
The expected consumer expenditure ED is:

ED = bD(
ˇ
c)θ(

ˇ
c) +

∫ ĉ

ˇ
c

bD(c)(1− Fq(θ(c)) dθ(c).

In the long-run equilibrium, we have Fq(θ(c)) = 1 + k′(c), which allows us to
rewrite the expected equilibrium expenditures as follows:

EU =

∫ ĉ

ˇ
c

c θ(c)k′′(c) dc,

ED = (
ˇ
c+ k(

ˇ
c))θ(

ˇ
c) +

∫ ĉ

ˇ
c

(
k(c)− ck′(c)

)
dθ(c).

Partially integrating the second expression and using the fact that k(ĉ) =
k′(ĉ) = 0 and k′(

ˇ
c) = −1, we see that expected expenditures are equal,

EU = ED. □

Proof of Proposition 6
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Proof. First, note that c̊ is uniquely determined by Equation (18) since the
L.H.S. is an increasing function in c̊, and the R.H.S. is a decreasing function in
c̊.

Under uniform-price auctions, one possible equilibrium strategy profile is
where all firms bid their marginal cost b = c, and inframarginal firms c ≤ c̊
produce and receive c̊. However, other equilibrium strategies with equivalent
market outcomes exist. For instance, some inframarginal firms c ≤ c̊ could bid
any price below the competitive price b < c̊, while at least some inframarginal
firms bid the competitive price b = c̊. This is an equilibrium since the
inframarginal firms have no incentive to change their bidding strategy. They
are indifferent to reducing their bids, while they are worse off if they bid more
than c̊ and do not produce. Supramarginal firms would not like to bid below
cost to get selected, as this results in a loss.

Moreover, there is at least one firm that bids c̊. If firm j is the only firm
that bids c̊, and if it deviates downward by ε and bids b= c̊− ε, it would receive
a lower price, which could either be c̊− ε or the bid by the inframarginal firm
with the highest bid, resulting in a worse-off outcome.

Under discriminatory auctions, inframarginal firms with c ≤ c̊ bid b = c̊,
while supramarginal firms with c > c̊ bid above: b > c̊. This is an equilibrium.
Inframarginal firms receive a lower payment if they bid below c̊, and bidding
above c̊ drives them out of merit without any payment. The supramarginal
firms can only produce if they bid below costs, which is not optimal. □
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