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Abstract

Antimicrobial resistance (AMR) increases hospital stays, medical costs and mortality. Antibiotic

consumption and resulting selective pressure on bacteria can create AMR. We study the role of AMR

on changes in prescriptions of antibiotics in France for treating bladder inflammation (cystitis) using a

representative sample of general practitioners between 2002 and 2019. Effects of resistance on demand and

substitution behavior are identified via a random coefficient logit model, controlling for the endogeneity

of resistance using antibiotics sales in veterinary medicine. As resistance increases, physicians substitute

to other drugs, and we test whether physicians consider predictable resistance evolution in their decisions.

We perform counterfactual analysis assessing the impact of decreasing veterinary use of antibiotics and

limiting fluoroquinolone use to treat cystitis. Both policies reduce resistance against fluoroquinolones

but have opposite effects on substitution behavior and consumer surplus. Finally, we propose a method

for the optimal pricing of rapid bacterial detection and antibiotic susceptibility testing.
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1 Introduction

Antibiotic resistance poses an immense threat to modern medicine. The consequences of infections becoming

untreatable with antibiotics range from longer hospital stays and riskier surgeries to death in the most

severe case. Recent estimates by Murray et al. (2022) attribute 1.27 million deaths to bacterial antimicrobial

resistance (AMR) in 2019 worldwide (with 4.95 million associated with bacterial AMR)1. There are two

reasons for the gravity of the situation. First, there are negative consumption externalities (Ventola, 2015).

The higher antibiotic use is, the faster resistance develops. This effect is also present in antimicrobial usage in

livestock production and agriculture, exacerbating the problem2. Second, a steady decrease in the number

of new antibiotics developed and approved emphasizes that the consequences of antibiotic resistance will

continue to be a concern3 (CDC, 2013). Therefore, it is important to preserve the antibiotics that are

currently effective by limiting their consumption. Action plans from health authorities worldwide recognize

this issue and are intended to slow the development of resistance by limiting externalities through antibiotic

stewardship programs. To design such programs, we first need to understand to what extent physicians

consider bacterial resistance when treating an infection. This would help to assess the effectiveness of

policies intended to provide richer information on resistance or that limit the use of certain antibiotics. We

address this question by studying antibiotic prescriptions for cystitis (bladder inflammation), one of the most

common reasons for antibiotic prescription in the outpatient setting in France.

France has been struggling with high resistance rates and consumption levels, leading to campaigns to

encourage antibiotic use only in necessary cases such as a nationwide campaign called “Antibiotics are not

Automatic” in 2002. Sabuncu et al. (2009) shows a decrease in antibiotics use, especially in pediatric cases,

following the campaign. Carlet et al. (2020) questions the continuation and preservation of this decrease

after the campaign. Efforts to decrease the veterinary use of antibiotics have also been on the agenda for the

last decade because it represents a serious threat to the effectiveness of the measures taken regarding human

1For the European Union/European Economic Area, estimates by WHO Regional Office for Europe/European Centre for
Disease Prevention and Control (2022) predict that each year 670,000 resistant infections lead to 33,000 deaths

2National- or multinational/regional-level plans against AMR address the problem with one health approach, acknowledging
the links between actions regarding animals (such as farming practices), agriculture and the environment, and people.
Examples include France (https://solidarites-sante.gouv.fr/IMG/pdf/brochure_mesures_innovantes_lutte_atbr-en_vf.
pdf (14/08/2022)) and the US (https://www.cdc.gov/onehealth/in-action/combating-ar-in-people-and-animals.html
(14/08/2022)) among many others.

3There is consensus that additional incentives for innovation against AMR are needed, and various incentive policies for
different stages of the research and development of antibiotics have been proposed (Dubois et al., 2022; Majewska, 2022; Simpkin
et al., 2017).
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consumption (Laxminarayan et al., 2015). In 2010, France and the Netherlands were leading countries in

agricultural consumption of antibiotics. In the past decade, there have been two consecutive campaigns

named EcoAntibio during 2012-2016 and 2017-2021 that target this problem in France. The first met the

goal of reducing antimicrobial use by 25%. The second plan also set a goal of reducing use in specific

classes such as fluoroquinolones and third- and fourth-generation cephalosporins, which are crucial resources

for human medicine (ANSES, 2021). France has also taken action on incentivizing physicians to prescribe

antibiotics appropriately by attaching financial rewards to issuing fewer antibiotic prescriptions overall and to

broad-spectrum antibiotics. To understand how these policies interact and to provide a view of stewardship

programs’ outcomes, it is important to understand the role of AMR in curbing treatment decisions and the

demand for the available antibiotic drugs.

In this paper, we identify physicians’ response to AMR in their prescriptions for cystitis using prescription

data in France from 2002 to 2019, a period long enough to observe meaningful variation in resistance. We

focus on this specific infection because i) it is one of the most common reasons for antibiotic prescription, ii)

in most cases it is caused by the bacteria Escherichia coli (E. coli), and iii) the increase in extended-spectrum

beta-lactamase (ESBL) producing E. coli is a concern since it leads to multi-drug resistant bacteria (Martin

et al., 2016). Therefore, modeling physicians’ choices in this diagnostic allows us to abstract from the

physician’s expectation of what bacteria caused the disease, and consequently, to directly use the resistance

of E. coli to identify the impact.

We first estimate a discrete choice model for differentiated products à la Berry (1994) and Berry et al.

(1995) where bacterial resistance to antibiotics serves as an observable product characteristic and enters

the utility function. We consider two information models in terms of how the decision-maker takes bacterial

resistance into account. We test the model where physicians only account for the publicly known previous-year

resistance level against the model where they use an expected value of resistance for the current year

taking into account the antibiotic consumption of humans and animals in addition to the previous-year

resistance level. We fail to reject the null that physicians consider the expected resistance instead of the

information on past resistance only. Estimating demand, we control for the endogeneity of prices and

advertising by instrumenting with competition measures and BLP-type instruments. As we also have a
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potential simultaneity problem between demand and resistance, we leverage the link between antibiotic use

in animals and bacterial resistance in humans. As mentioned above, France introduced two consecutive

campaigns and regulations4 that generated substantial exogenous (to human consumption) variations in

sales of antibiotics for animal production over time.

Our results indicate that physicians substitute away in response to an increase in resistance. Moreover,

the degree of substitution varies by region. We also identify a negative price impact with heterogeneity,

positive returns to advertisement and a preference for nongenerics. This is because during our sample period,

payments to general practitioners started to include performance-based bonuses in addition to fixed visit

fees. We also control for the financial incentives introduced under this remuneration based on public health

objectives and find the expected effects: i) increasing the share of generics prescribed and ii) decreasing the

share of certain groups of antibiotics.

We also estimate a model of resistance evolution where resistance depends on past usage, past resistance

and antibiotic use by humans and animals and identify a positive correlation between past antibiotics usage

and resistance. Then, using our demand estimates and resistance evolution model, we study the impact of

two policies: i) banning fluoroquinolones for the treatment of uncomplicated cystitis and ii) minimizing

the use of fluoroquinolones in animals. The first policy changing prescriptions then impacts bacterial

resistance and subsequently even more prescriptions. The second policy first reduces resistance rates by

diminishing antibiotic use in animals and then affects prescriptions due to the lower resistance. When banning

fluoroquinolones, we find that physicians substitute not only toward the most valued narrow-spectrum

alternative but also to other broad-spectrum antibiotics. Consumer surplus per prescription decreases

because, on average, the decision makers (patients and physicians) value broad-spectrum antibiotics more

and fluoroquinolones are an example of this case despite the increasing resistance. However, there are also

long-term benefits of this policy since our model predicts that resistance decreases by 1 percentage point for

the fluoroquinolones ban for cystitis and by 4 percentage points for the veterinary usage reduction, which will

extend the life of the antimicrobial agent. However, when reducing veterinary use of antibiotics, physicians’

prescriptions of fluoroquinolones increase as resistance is lowered. This increases consumer surplus but also

4In 2016, some groups of antibiotics belonging to third- and fourth-generation cephalosporins and fluoroquinolones were
assigned a status of critical importance by a decree banning preventive use of these drugs and requiring susceptibility testing
before curative use.
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expenses. Finally, we provide a framework to analyze the added value of a diagnostic test at the point of

care in terms of savings per prescription and the change in treatment success probabilities. Rapid antibiotic

susceptibility testing with high accuracy is identified as one of the key tools in combating AMR 5. Using

our demand model, we provide a lower bound on the maximum price that would be optimal for an insurer

to reimburse the test in a mandatory testing scheme. This maximum price depends on the probability of

infection in society and the value of treatment and is a lower bound because of the additional long-term

benefits of lower resistance.

Our work contributes to the literature on how physicians’ prescription behavior is affected by the presence

of AMR in the outpatient setting6. Earlier work provides evidence on substitution away from older drugs,

which are potentially less effective, to newer and more expensive drugs in outpatient and intensive care

units Filippini et al. (2009); Heister et al. (2017); Howard (2004). Howard (2004) introduces a choice model

for antibiotics where resistance to penicillin appears as the main independent variable to capture such

substitution behavior. The paper shows that information on an increasing level of resistance encourages

substitution to newer alternatives. At a more aggregate level, Filippini et al. (2009) studies small-area

variations using quarterly data on antibiotic sales in the outpatient setting in Switzerland in 2002. They

proxy for resistance using the incidence rate of infections at the county level. In line with the conclusion of

Howard (2004), the results indicate that the higher physicians’ expectations of bacterial resistance are, the

more they substitute toward newer and more expensive antibiotics. Bokhari et al. (2019) also study antibiotic

demand from 2003 to 2013 in the UK using a discrete choice model of demand and supply. They study the

role of spectrum in demand and consider different tax policies to address the gap in the prescription of

narrow-spectrum antibiotics against broad-spectrum antibiotics. Therefore, they analyze the effects of taxes

in the substitution across narrow- and broad-spectrum antibiotics, but they do not allow bacterial resistance

to enter the utility of the patient–physician pair.

5For the French health context, see https://sante.gouv.fr/IMG/pdf/brochure_mesures_innovantes_lutte_atbr-en_

vf.pdf retrieved on 21/06/2023. For the US context, see https://www.cdc.gov/drugresistance/us-activities/

national-action-plan.html. Some recent reviews on testing include Gajic et al. (2022); van Belkum et al. (2020).
6In our setting, we can focus on the effects of resistance in isolation of other factors that might affect antibiotic prescription

behavior. This is thanks to the regulations on physician payments in France and focusing on a disease that is almost always
of bacterial cause. First, the physician payment system prevents any supply-side-driven effects on prescription drugs due to
financial benefits to physicians such as those observed in Japan Iizuka (2007) or China Currie et al. (2014). Moreover, the
gatekeeper system where each patient has a registered first-contact physician (usually a general practitioner) lets us assume
away the effects of potential competition across physicians Bennett et al. (2015). Second, focusing on cystitis, which is a type
of bladder infection, minimizes the risk of physician- or patient-driven abuse of antibiotics Currie et al. (2011).
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Our contribution to the literature on antibiotic prescription decisions is threefold. First, our demand

model incorporates a wide range of factors that affect the decision and therefore provides a more complete

analysis. Moreover, our data allow us to utilize not only cross-section variation but also time-series variation

in identifying the effects, especially that of resistance on demand. Second, we consider two information models

of how physicians account for bacterial resistance. It would be important for informational campaigns to

differentiate between the two models because the response of a physician’s to the information would differ.

Third, we consider the endogeneity of resistance. As resistance develops due to the consumption of antibiotics

and the consumption of antibiotics is also affected by resistance, we face a simultaneity problem. We control

for endogeneity by using veterinary use of antibiotics, which relates to the second stream of literature we

add to.

We also contribute to the literature on AMR evolution and its links to the consumption of antibiotics in

humans and animals. There have been small-scale studies providing evidence on animal-originated resistant

bacteria in humans (Hammerum and Heuer, 2009; Landers et al., 2012). A recent report by European

Centre for Disease Prevention and Control (ECDC), European Food Safety Authority (EFSA) and European

Medicines Agency (EMA) uses EU-wide surveillance networks for 2016–2018 to document the relationships

between antibiotic use in farm animals and resistance in Europe. The findings for E. coli are mixed for

different groups of antibiotics. They present some correlation between the use of third- and fourth- generation

cephalosporins, fluoroquinolones and other quinolones and aminopenicillins in animals and resistance in

humans. At a larger scale, Adda (2020) studies the relationship between bacterial resistance and antibiotics

used in both humans and animals in the US across counties, time periods and multiple bacteria. He identifies

a positive correlation with human consumption but no significant relation with antibiotic use in animals,

which also depends on animal farming regulations and population density. In our analysis, we model E.

coli resistance as a function of past resistance and antibiotic use in humans and animals. In line with the

dynamics of the epidemiological model (Laxminarayan and Brown, 2001), we find strong time dependence of

resistance. Moreover, we identify a positive correlation between resistance and past antibiotic use in humans

and animals.

Our last contribution to the literature is to develop within our structural model a method for evaluating
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the optimal pricing of rapid bacterial detection and antibiotic susceptibility testing using the role of information

on resistance in decision making.

The remainder of this paper is organized as follows. Section 2 describes the different data sets we use

and provides details of variable construction. Section 3 provides the framework for demand estimation, our

methodology for testing the role of antibiotic resistance in physician prescription and the empirical results.

Section 4 presents the results of counterfactual policies. Section 5 describes the evaluation of rapid diagnostic

tests, and Section 6 concludes the paper.

2 Data

In our analysis, we employ multiple data sources to i) observe choice decisions regarding antibiotics for the

treatment of cystitis, ii) measure prices and aggregate sales of antibiotics, iii) account for bacterial resistance

in demand and iv) account for advertising. Regarding demand, we use patient-level proprietary data from

the company Cegedim (Cegedim Health Data) that consist of prescription records from a panel of physicians

covering the period from 2002 to 2019. Then, we use publicly available reimbursement data from the national

French Health Insurance to measure total drug-level antibiotic use in France and the prices of drugs that are

uniform across pharmacies by regulation. To account for bacterial resistance, we employ data made public

by the French observatory (ONERBA). As explained in Section model, resistance evolves endogenously with

antibiotic usage among humans and animals. Thus, we also use data on antibiotic use in livestock production

provided by the French Agency for Food, Environmental and Occupational Health & Safety ANSES (2021).

Data on veterinary sales of antibiotics serve two purposes. First, they are used in the demand estimation to

control for the endogeneity of resistance. Second, they serve as explanatory variables in predicting resistance

in counterfactual scenarios. Finally, we use proprietary data on advertising from IMS Health (IQVIA) Global

Promotional Track for France.

2.1 Data on Antibiotic Prescriptions

The proprietary patient-level prescription data cover the period from 2002 to 2019. From 2002 to 2009, the

data consist of an exhaustive record of prescriptions and visits to a representative panel of approximately

400 general practitioners who have over 1.5 million patients registered (these data were used in Dubois and
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Tunçel (2021) to study the prescription of antidepressants following a drug warning). From 2009 to 2019, the

representative sample size increased to approximately 2002 general practitioners. Each prescription record is

identified by a patient and a physician identifier, date, diagnostic, and product code of the drug prescribed 7.

Moreover, the age and gender of both physicians are patients are observed together with region of operation

for physicians and chronic diseases for patients.

Table 1: Top 5 diagnoses with antibiotic prescription

2002 - 2008 2014 - 2019

Diagnostic Perc. (%) Diagnostic Perc. (%)

Acute nasopharyngitis 13.79 Bronchitis 12.5

Bronchitis 11.12 Acute pharyngitis 12

Acute Sinusitis 5.70 Otitis 7.55

Sore throat 4.53 Acute nasopharyngitis 6.13

Cystitis 4.52 Cystitis 6.06

Note: For the 2009-2013 period, we only have access to the subset of prescriptions with a cystitis diagnostic, so we cannot check the
top diagnoses with antibiotic prescription during that period. However, we have 252,508 prescriptions for that period for cystitis.

We focus on cystitis (bladder infection) for three main reasons. First, it is one of the most prevalent

infections in the outpatient setting. Table 1 presents the most prevalent diagnoses for antibiotic prescriptions,

which are acute nasopharyngitis and bronchitis. However, they are usually caused by viral infections against

which antibiotics have little to no effect. They are followed by sinusitis and otitis, which could be viral or

bacterial in origin. Cystitis is considered to be bacterial, and guidelines suggest the use of antibiotic therapy8.

Second, the bacteria responsible for cystitis is E. coli in 80% of the cases (Kahlmeter, 2000; Rossignol et al.,

2017). Since different antibiotic groups are prescribed for various bacteria (with overlaps), knowing which

bacteria is the most likely responsible helps us to identify the role of resistance on the prescription behavior

of physicians by abstracting from uncertainty over the type of bacteria. Finally, the increasing prevalence

of extended-spectrum β-lactamase-producing E. Coli is a growing concern in France (Martin et al., 2016;

Nicolas-Chanoine et al., 2013) because these bacteria are difficult to treat and complicate the treatment of

infections such as urinary tract infections and cystitis. Therefore, policies targeting better treatment of E.

7The medical classification used is the International Statistical Classification of Diseases and Related Health Problems
code (ICD-10) defined by World Health Organization. CIP7/CIP13 are the standard French drug identification codes that
differentiate products at the box level. Two products with the same brand and active ingredient but different dosage and units
are assigned different CIP codes. The data also include information on active substances and the corresponding Anatomical
Therapeutic Chemical Classification System (ATC) Code.

8See recent guidelines from French Health Authority (HAS), accessed at https://www.has-sante.fr/upload/docs/

application/pdf/2021-08/fiche_memo_cystite_durees_antibiotherapies_.pdf on 02 November 2022.
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coli-caused infections and containing the resistance are very important.

When there is no information on the bacteria and/or on its susceptibility profile, the treatment of

uncomplicated cystitis remains an empirical therapy based on the physician’s guess. Until 2016, the only

recommended test was still the urine strip test to confirm the bacterial infection (Caron et al., 2018). This

test does not report the type of bacteria or the resistance profile of the bacteria causing the infection. For

the cases of cystitis at risk of complication or recurrent cystitis, the recent guidelines suggest performing

susceptibility testing if delayed treatment is possible and empirical treatment guidelines if delay is not

possible. In this paper, we focus on uncomplicated cystitis and the role of bacterial resistance in the

first-line (empirical) treatment to minimize the effect of the unobserved heterogeneity in complication risk

and differing guidelines based on this risk.

In our sample, we retain only female patients from 16 to 75 years old (male patients represent 5% of cystitis

diagnoses) without a cancer diagnostic (because their complication risk affects prescriptions) and exclude

all off-label prescriptions (0.6% of the total prescriptions concern products with no authorized indication for

cystitis). We also drop observations where multiple antibiotics are prescribed to the same patient on a given

date because there may be patient demand to accumulate stocks for future use (approximately 5% of total

prescriptions).

To address recurrent cystitis cases, we identify a visit as an “initial visit” if there is no other prescription

for cystitis or urinary tract infection in the preceding 30-day period. Visits following another prescription

within the 30 days after the initial visit are defined as a “secondary” prescription. A secondary prescription

could be a result of the failure of treatment due to bacterial resistance or simply due to misuse of antibiotics.

To avoid any interference from this channel, we drop observations from secondary infections, which represent

approximately 6.7% of all prescriptions.

Table 2 presents a summary of prescription shares by chemical substance between 2004 and 2019 (every

three years). We observe that Fosfomycin and Norfloxacin are initially prescribed at a high rate, but later,

especially after generic entry, Fosfomycin became the main treatment for cystitis with a more than 50%

market share. While this is in line with the recommendations for uncomplicated cystitis cases due to high

effectiveness and short treatment periods, the remaining antibiotics market shares do not necessarily follow
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the order from the guidelines. For instance, Nitrofurantion is presented as a substitute in the guidelines

before 2008 and was removed after 2008. Similarly, some critical groups of antibiotics, namely, Cefixime,

Ciprofloxacin, and Ofloxacin (fluoroquinolones), which are last-resort treatments, have considerable market

shares, especially in the early 2000s. Whether the physicians follow the guidelines in France for the treatment

of urinary tract infections remains an open question with contradictory results (Denes et al., 2012; Piraux

et al., 2021). In our demand estimate, we control for the changing guidelines with antibiotic-specific time

effects9.

Table 2: Prescription shares by chemical substance

Year 2004 2007 2010 2013 2016 2019

Molecule (ATC5) B
ra
nd
ed

G
en
er
ic

B
ra
nd
ed

G
en
er
ic

B
ra
nd
ed

G
en
er
ic

B
ra
nd
ed
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en
er
ic

B
ra
nd
ed

G
en
er
ic

B
ra
nd
ed

G
en
er
ic

Cefixime 2.09 3.19 5.62 0.75 4.48 1.16 6.72 3.16 4.92 2.83

Ciprofloxacin 8.72 0.02 4.68 1.12 3.97 1.50 3.71 1.80 3.16 1.84 1.96 0.92

Fosfomycin 29.71 27.34 29.42 0.43 20.79 16.08 23.78 24.72 28.09 31.86

Lomefloxacin 7.78 17.56 17.70 14.56 9.41 3.64

Nitrofurantoin 6.16 5.86 6.40 4.63 4.92 4.25

Norfloxacin 23.66 2.33 17.20 8.11 12.85 7.95 10.98 7.62 9.04 3.24

Ofloxacin 4.17 0.26 3.20 0.89 3.30 1.31 4.05 2.15 3.30 2.51 2.15 1.62

Sulfamethoxazole and trimethoprim 2.90 0.11 2.35 0.28 2.09 0.17 2.15 0.22 1.97 0.28 1.75 0.36

Notes: The molecules listed are the top 8 molecules by total market share and represent 92% of antibiotic prescriptions on the sample
period. Generics entered after patent expiration dates that are September 2007 for Cefixime, September 2003 for Ofloxacin, April 2003
for Norfloxacin and August 2010 for Fosfomycin.

2.2 National Health Insurance Data on Antibiotic Expenses

We use national health insurance data to measure prices and total antibiotic usage. Antibiotics are prescription

drugs in France and are partly reimbursed10 by the mandatory national health insurance (Assurance Maladie,

Medic’AM). We use the publicly available aggregate national data on expenses by the health insurance and

quantities to recover the average prices of drugs. The data provide information for all years between 2002

and 2019 on the total value of reimbursements and the number of boxes (of drugs) reimbursed by CIP

pharmaceutical code that can then be matched to individual prescriptions.

Table 3 shows the average prices per box (across products and brands) of the main chemical substances

prescribed for cystitis. The regulation of prices on patent drugs and generics leads to a gap between the

9In our sample period, the guidelines were updated three times. The documents were accessed on September 02 2022
from https://urgences-serveur.fr/IMG/pdf/LIVRET_ANTIBIOGUIDE_2002.pdf, https://www.infectiologie.com/UserFiles/
File/spilf/recos/infections-urinaires-spilf.pdf, https://www.infectiologie.com/UserFiles/File/spilf/recos/

infections-urinaires-spilf-argumentaire.pdf, https://www.has-sante.fr/upload/docs/application/pdf/2021-08/

fiche_memo_cystite_durees_antibiotherapies_.pdf
10Antibiotics are in the “major or important medical service” category and therefore are reimbursed at 65% at the baseline.
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generic and branded price of the same molecule. For molecules that experience generic entry during the

period of study, we observe significant price decreases.

Table 3: Average price by chemical substance

Year 2004 2007 2010 2013 2016 2019

Molecule (ATC5) B
ra
nd
ed

G
en
er
ic

B
ra
nd
ed
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en
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ic
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ed
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en
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ic

B
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er
ic

B
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G
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Cefixime 12.20 12.18 8.96 8.47 8.85 8.28 8.56 7.21 8.27 6.68

Ciprofloxacin 25.23 15.03 22.21 12.34 23.21 11.63 23.03 10.35 20.16 9.60 10.38 8.37

Fosfomycin 12.16 12.14 8.73 6.48 8.38 6.55 6.48 5.01 5.68 4.36

Lomefloxacin 21.16 21.06 21.00 20.65 19.29 17.80

Nitrofurantoin 2.42 2.42 2.42 2.58 2.28 2.68

Norfloxacin 7.05 5.87 5.57 4.82 6.29 4.64 6.23 4.69 3.63 3.35

Ofloxacin 16.44 15.96 11.02 11.97 11.25 11.75 11.27 11.56 10.21 10.47 8.04 7.43

Sulfamethoxazole

and trimethoprim 3.13 2.78 2.78 2.28 2.75 2.26 2.93 2.45 1.98 1.52 2.09 1.66

Note: Price in e per box.

2.3 Data on antibiotic resistance

We use data on resistance from a French network called REUSSIR (Réseau Epidémiologique des Utilisateurs

du Système SIR) that was founded in 1995. It provides data from France to the European Antimicrobial

Resistance Surveillance Network (EARS-Net). It is a network of hospital laboratories. We extract data on

E. coli’s susceptibility to antibiotics reported by REUSSIR using reports of ONERBA from 2002 to 201811.

Figure 1 shows the evolution over time of the resistance of E. coli to each antibiotic with the average

percentages of resistant strains tested of E. coli 12. The most concerning element in this graph is the increase

in resistance against aminoglycosides (Gentamicin) and fluoroquinolones, which are crucial last-resort antibiotics.

11There are ONERBA Activity reports, accessed at http://onerba.org/publications/rapports-onerba/ on 27 October
2022.

12As the REUSSIR data do not include resistance for the year 2014, we impute the resistance value in 2014 by taking the
average of the 2013 and 2015 values.
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Figure 1: Resistance of E. coli against each antibiotic group

2.4 Data on Antibiotic Consumption for Animals

Data on antibiotic sales for animal use come from The French Agency for Veterinary Medicinal Products,

Sales survey (ANSES, 2021). We used the sales by antimicrobial class since 1999 in mg of active ingredient

per kilogram of animal body weight (mg/kg). The antimicrobial groups and corresponding ATC codes used

for animal farming are listed in Table 4, which shows that there is a significant overlap between the chemical

substances used for animals and humans that could pose a threat regarding the development of resistance.

Table 4: List of antibiotics used in animals and their use in cystitis cases

Antibiotic Class ATC Code Prescribed for cystitis

Tetracyclines J01AA ✓

Phenicols J01BA

Penicillins J01C ✓

Cephalosporins 1&2G J01DB ✓

Cephalosporins 3&4G J01DD ✓

Sulfonamides+Trimethoprim J01E ✓

Macrolides J01FA ✓

Lincosamides J01FF ✓

Aminoglycosides J01G ✓

fluoroquinolones J01MA ✓

Quinolones J01MB ✓

Polymyxins J01XB ✓

Pleuromutilins J01XQ

Note: List of antibiotics used in animals from ANSES (2021).
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Figure 2 shows the data on sales of antibiotics (in log scale) for veterinary use, which are obtained

from ANSES (2021). Regulations on antibiotic use were introduced with the EcoAntibio 2012-2016 and

EcoAntibio 2017-2021 government plans and generated variation in animal usage of antibiotics that we can

use to identify the link between animal use and resistance in humans.

Figure 2: (Logs) Sales of antibiotics for veterinary medicine (Density – mg/kg)

2.5 Data on Detailing Expenses

Direct-to-consumer advertising of prescription drugs is strictly prohibited in France, but marketing activities

to healthcare professionals (detailing) are allowed. We use monthly data between 2002 and 2013 from

IMS Health Global Promotional Track on advertising expenses for each product. Figure 3 shows the total

expenses aggregated at the molecule level (ATC5) by year for the top 5 advertised molecules and the total

for others. We can see that firms engage more advertising at the time of generic entry than earlier in their

patent protection period. Then, as generics enter, detailing expenses decline. It is also typical that detailing

increases when a new indication is approved for an authorized drug. The detailing expenses on all drugs with

the same active ingredient may promote the use of the antibiotic for any of the possibly allowed indications,

including cystitis, and thus may generate variation in the prescription of each antibiotic.

12



Figure 3: Detailing expenses by molecule (millions e per year)

3 Demand Model and Estimation

3.1 Demand Model

We now define the demand model for antibiotic treatments in the case of cystitis. In the model, the

decision maker chooses to prescribe the utility-maximizing medication among a set of alternatives without

disentangling the physician and patient incentives. We model the random utility discrete choice of differentiated

products following Berry (1994) and Berry et al. (1995); Nevo (2001). In our setting, within a region and

given year, all physician–patient pairs with a cystitis diagnostic choose among products defined as a chemical

substance13 from a pharmaceutical company (brand)14.

We specify the decision utility uijlt for patient i’s prescription of product j ∈ {1, . . . , Jt} in period

t ∈ {2002, ..., 2019} and region l15 as additively separable between various terms:

uijlt = δjlt − βp
i pjt + εijlt (1)

where δjlt is the mean utility, pjt is the price of product j and εijlt is an idiosyncratic i.i.d. error term that

follows an extreme value distribution. We allow the price disutility to be heterogeneous across consumers

13We create a specific group including antibiotics that are prescribed fewer than 1,000 times during the 18 year period because
they have very small individual market shares. On average they represent 0.8% of the market in our sample.

14As there are many laboratories that produce generic products with very small market shares, we define a pseudo brand
”Fringe”. A brand is Fringe if the maximum market share observed in the 18-year period is less than 3%. The total average
market share of Fringe ranges from 4% to 7% across years.

15In our specifications, there are eight regions: Center-East, West, Center-West, East, North, South-West, South-West, Paris
(Ile-de-France)
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with a random coefficient βp
i = βp+σpν

p
i where βp is the mean preference, σp captures the degree of variation

in taste and νpi ∼ N (0, 1). We also specify an outside good utility with mean utility normalized to zero such

that ui0lt = εi0lt.

The mean utility is decomposed into an additively separable function with

δjlt = xjltβ + ξATC5(j) + ξBrand(j) + ξt + ξl + ξjlt

where xjlt is a vector of observable characteristics of product j except price, ξBrand(j) is a brand fixed effect,

ξt is a time fixed effect, ξl is a region fixed effect and ξjlt is an unobserved characteristic of product j at

period t and region l that affects demand. Observable characteristics can be grouped into four categories.

First, we observe resistance that varies annually at the chemical subgroup level16. We detail in Section

3.1.1 how we allow resistance to play a role in decision making. Second, we include detailing expenses

among time-varying observable characteristics, ajt. Third, during our sample period, the guidelines for

prescriptions changed, with some molecules either being excluded from the guidelines or changing from

first-line options to second-line or to the list of antibiotics to be prescribed when there is a complication

risk. Finally, some antibiotics were affected by financial incentives that were introduced starting in 2012. In

2012, a pay-for-performance system was introduced in addition to the existing fixed-fee scheme for physician

payments. The goal of the program is to address increasing healthcare costs and increase the standardization

in provided care. There are two measures of performance that are relevant to our analysis. Physicians have

been provided incentives to prescribe generics since 2012 and to prescribe less of certain antibiotics. The

impact on generic prescriptions is captured by the generic dummy interacted with the post-2012 dummy. If

we expect the program to work, the coefficient on the interaction variable should be positive. In addition

to the generics bonus, following an update in 2017, physicians have also been given financial rewards for

decreasing the prescription of certain groups of antibiotics to a preset level. We call this group the “at-risk”

antibiotics, and it includes amoxicillin and clavulanic acid, 3rd and 4th generation cephalosporins, and

16Note that not every drug in our sample is included in the surveillance resistance data. Therefore, for some drugs, neither we
nor the physicians observe resistance. The chemical subgroups presented in Section 2.3 cover approximately 66% of products
in 2018, and 22% percent in shares. The coverage is higher at the beginning of the sample period and decreases with the
increasing market share of fosfomycin, which is more than 50% at the end. The data collected from the different ONERBA
networks indicate that resistance is low (approximately 1% –2%) (retrieved from https://bigdata.onerba.org/ on 27 October
2022) and does not present time variation. Note that the demand model includes chemical substance (ATC 5) fixed effects, so
that what matters is to capture the physician’s information on the time variation of resistance.
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fluoroquinolones. As we already include chemical substance fixed effects, we interact the chemical subgroups

dummy with the post-2017 dummy and allow the effect to follow a trend. Similarly, we expect that if the

incentives have been successful, prescriptions of these drugs should decrease.

Assuming εijlt follows an extreme value distribution, the market share of product j, sjlt, is:

sjlt =

∫
exp (δjlt − βp

i pjt)

1 +
∑

k exp (δklt − βp
i pkt)

dϕ (νi) (2)

where ϕ is the N (0, 1) cumulative distribution function.

3.1.1 Information models

The mean utility of drug j may depend on the E. coli resistance to that drug j’s chemical subgroup. To

specify how, we explore two possible information models:

i) physicians consider the previous year’s resistance level, which is public information, or

ii) physicians consider the expected value of resistance for the current year.

We denote the first case as the unsophisticated information model where physicians solely consider the

available information on the previous year’s resistance and the second as the sophisticated information model

where physicians act upon the predicted resistance using the relevant available information. In both cases,

we allow the national average resistance level to interact with regional dummies to capture the possible

regional variation that may be known to physicians.

Unsophisticated Information Model Denoting by rjt ∈ [0, 100] the bacterial resistance of E. coli to

drug j in year t, we use the lagged value of resistance as an observable characteristic and let the utility

depend on log susceptibility log (100− rjt−1). This specification follows from the intuition that if a drug is

certainly not working against a bacteria, it should not be considered a possible treatment option. Therefore,

in our model, as resistance against drug j goes to 100%, meaning all the bacteria are resistant to treatment

by drug j, susceptibility goes to 0. Hence, drug j effectively drops out of the choice set as the utility attached

to it goes to −∞. We then specify the unobserved demand shock ζjlt such that:

ξjlt = βl
r log (100− rjt−1)︸ ︷︷ ︸

Susceptibility

+ζjlt (3)
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In the following, we denote by suscjt ≡ 100− rjt the susceptibility rate of the bacteria to drug j at time t.

Then, the estimation method of the demand model relies on the moment condition obtained from the

mean independence between the demand shock ζjlt and instruments wjlt.

Sophisticated Information Model In the sophisticated information model, we assume that the prescribers

use the expected susceptibility of the E. coli bacteria. In this case, the demand shock will follow:

ξjlt = ρξjlt−1 + βl
rEt[log(suscjt)] + ζjlt (4)

where Et[log(suscjt)] is unobserved to the econometrician but equal to the beginning-of-period-t expected

susceptibility of E. coli to drug j conditional on the information available at t. Defining the prediction

error as νjt ≡ log(suscjt) − Et[log(suscjt)], we can then identify βl
r instrumenting log(suscjt) by the lag

susceptibility log(suscjt−1), lagged total human usage of antibiotic j, qhjt−1, and lagged total animal usage

of antibiotic j, qajt−1 (given the known possible relationship between resistance and antibiotic consumption

(Adda, 2020; Austin et al., 1999)), in the following equation:

ξjlt = ρξjt−1 + βl
r log(suscjt)− βrνjt + ζjlt

In this case, the estimation method of the demand model relies on the moment condition obtained from

the mean independence between the demand shock ξjlt and instruments wjlt.

Note that if one were willing to identify the demand parameters by directly introducing the expected

susceptibility or resistance E(log rjt|rjt−1, q
h
jt−1, q

a
jt−1) obtained after the estimation of Equation (5), introducing

the estimation error νjt in the ξ equation, one would need instrumental variables orthogonal not only to the

demand shock ζjlt but also the resistance prediction error νjt.

3.2 Identification and Estimation

We estimate the demand model using standard GMM (Berry et al., 1995) based on orthogonality conditions

between instrumental variables and unobservable demand shocks ζjlt. As prices may be correlated with

unobserved demand shocks and create endogeneity problems, we use the following instruments to construct

corresponding moment conditions: the number of different brands producing same ATC5 group products,
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the number of different products in ATC5 group products, and their interactions with a generic indicator and

years after generic entry. As we observe generic entry during the sample period in several chemical subgroups,

the instruments serve as indicators of competition in the market and, more important, competition between

products that have the same chemical substance.

Moreover, an endogeneity problem may also arise through the evolution of resistance to antibiotics.

Indeed, antibiotic resistance is affected by the use of antibiotics due to resistant strains’ selection over

susceptible strains. Therefore, it is likely that the shocks to resistance and demand are correlated. To

correct for endogeneity, we use antibiotic use in animals. Although there are debates on the roles of different

channels (such as environmental, processing, farm environment, and human use) through which antibiotic

use in farming affects antibiotic resistance in humans, many results indicate the presence of a link (Phillips

et al., 2004; Tang et al., 2017). However, this may depend on the environmental context, the rules concerning

farming and the population density, as for example, Adda (2020) does not find that the animal use of

antibiotics affects bacterial resistance from human samples in the US. In Europe, a recent joint report

(European Centre for Disease Prevention and Control et al., 2021) provides an exhaustive survey of the

empirical relationship in Europe between AMR in bacteria from humans and food-producing animals. As

each bacteria and antimicrobial pair behaves differently in terms of rate of resistance development and

transmission, our focus is on the results from E. coli related cases. Ramchandani et al. (2005) supports the

link between animal use of antibiotics and resistance in humans. Their results indicate that urinary tract

infections (which nest bladder infections (i.e., cystitis)) could be a food-borne illness, as they find that the

bacteria responsible for the infection in their sample are of animal origin. Hammerum and Heuer (2009) also

explains the threat of resistant E. coli with animal origin and its relation to resistant E. coli infections in

humans.

Thus, we instrument resistance using antibiotic sales for animal use. The identification of the demand

parameters is achieved using instruments and unobserved product characteristics to form conditional moment

conditions E
(
ζjlt | xexo

jlt , wjlt

)
where xexo

jlt are the exogenous characteristics, and wjlt consist of price and

resistance instruments. To more precisely identify variances in the random coefficients, we use optimal

instruments Chamberlain (1987); Reynaert and Verboven (2014) constructed as conditional expectations of
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the derivative of the conditional moment restriction with respect to nonlinear parameters.

3.3 Demand Estimates

Table 5 presents the estimates of the demand model using a simple logit model in Columns 1 (without

accounting for price endogeneity) and 2 (accounting for price endogeneity) and a random coefficient logit with

sophisticated information in Column 3 and with unsophisticated information in Column 4. The first-stage

regression of the endogenous variables on the instrumental variables is reported in Appendix A.2.1. The

differences in the estimates indicate that the comovement of resistance and price over time and across

products might also affect the results if the endogeneity of resistance is not accounted for.

The results show that price has a negative effect on mean utility and that there is significant heterogeneity

in price sensitivity, which may come from the partial reimbursement of antibiotics by the national mandatory

health insurance and the prevalence of complementary insurance (Grandfils et al., 2008) and from the

incentives to prescribe cheaper generics provided by the national health insurance system. Advertising

(detailing) has the expected positive effect. The effect of resistance on utility differs by region, although

the differences are not significant, which is consistent with variation in antibiotic use across regions17. Our

results are in line with Sabuncu et al. (2009), who documents that physicians are less sensitive to AMR

in the North. We also observe that the decision-maker (physician–patient pair) values generics less than

branded drugs on average. Then, regarding the coefficients capturing the impact of the pay-for-performance

program, we find a positive impact of the policy incentivizing generic prescriptions and a negative impact

for the policy discouraging the prescriptions of “at-risk” antibiotic groups18. Moreover, the impact of the

pay-for-performance program appears to increase over time. A robustness check in Appendix A.2.2 shows

that demand parameters are similar when using a quantity-weighted average price across different box sizes

per product.

17https://www.hauts-de-france.ars.sante.fr/antibioresistance-agir-tous-ensemble (accessed on 14/01/2022)
provides information on antibiotic consumption in defined daily dose/1,000 inhabitants in 2015 across regions. The highest
consumption is observed in the North of France, followed by the Paris region and South-West.

18J01DD: Third-generation Cephalosporins, J01MA: Fluoroquinolones, J01CR: Amoxicillin and beta-lactamase inhibitor.
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Table 5: Estimation results of the demand models

Logit Logit RC Logit RC Logit
OLS 2SLS Sophisticated Unsophisticated

Price (βp) -0.012∗∗ -0.155∗∗∗ -0.482∗∗∗ -0.455∗∗∗

(0.0041) (0.0177) (0.0586) (0.0584)
Price SD (σp) 0.211∗∗∗ 0.199∗∗∗

(0.0224) (0.0223)
log(suscj,t−1) Center-East 0.308 7.787∗∗∗ 8.438∗∗∗

(0.5880) (1.5189) (1.6723)
log(suscj,t−1) Center-West 0.119 7.344∗∗∗ 8.151∗∗∗

(0.5983) (1.5295) (1.6815)
log(suscj,t−1) East -0.104 7.431∗∗∗ 8.189∗∗∗

(0.5881) (1.5209) (1.6738)
log(suscj,t−1) North -0.566 6.700∗∗∗ 7.297∗∗∗

(0.5881) (1.5247) (1.6788)
log(suscj,t−1) West -0.037 7.448∗∗∗ 8.002∗∗∗

(0.5891) (1.5254) (1.6808)
log(suscj,t−1) Paris 0.478 8.065∗∗∗ 8.835∗∗∗

(0.5876) (1.5291) (1.6831)
log(suscj,t−1) South-East -0.495 6.759∗∗∗ 7.414∗∗∗

(0.5884) (1.5239) (1.6778)
log(suscj,t−1) South-West 0.095 7.631∗∗∗ 8.279∗∗∗

(0.5881) (1.5240) (1.6779)
Detailing (in Mil.) -0.065∗∗ 0.388∗∗∗ 1.087∗∗∗ 1.143∗∗∗

(0.0228) (0.0743) (0.1540) (0.1551)
Generic -3.722∗∗∗ -3.602∗∗∗ -4.132∗∗∗ -4.150∗∗∗

(0.0894) (0.1049) (0.1238) (0.1247)
Guidelines
Guidelines - First 0.081 0.245 -0.830∗∗∗ -0.396

(0.1670) (0.1952) (0.2290) (0.2446)
Guidelines - Second 0.147∗∗ 0.122∗ 0.145∗ 0.171∗∗

(0.0521) (0.0574) (0.0626) (0.0633)
Guidelines - Complicated 0.144∗∗∗ 0.016 -0.004 -0.084

(0.0353) (0.0419) (0.0453) (0.0493)
Pay-for-Performance
Generic (post 2012) 0.829∗∗∗ 0.708∗∗∗ 0.637∗∗∗ 0.703∗∗∗

(0.0573) (0.0747) (0.0809) (0.0826)
J01MA*Post 2017 -0.323∗∗ -0.499∗∗∗ -0.718∗∗∗ -0.786∗∗∗

(0.1010) (0.1118) (0.1317) (0.1335)
J01DD*Post 2017 0.110 0.133 -0.104 -0.066

(0.1339) (0.1459) (0.1629) (0.1641)
J01CR*Post 2017 -0.549∗∗ -1.391∗∗∗ -0.502∗∗ -1.452∗∗∗

(0.1742) (0.2497) (0.1921) (0.2756)
J01MA*Post 2017 Trend -0.144∗ -0.231∗∗ -0.506∗∗∗ -0.442∗∗∗

(0.0668) (0.0747) (0.0910) (0.0921)
J01DD*Post 2017 Trend -0.180 -0.237∗ -0.319∗∗ -0.334∗∗

(0.0927) (0.1010) (0.1122) (0.1132)
J01CR*Post 2017 Trend -0.166 -0.196 -0.268 -0.275

(0.1163) (0.1266) (0.1397) (0.1408)
N 8372 8372 8372 8372

Note: Standard errors in parentheses. Significance levels: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. All regressions include ATC 5
(chemical substance) and brand (pharmaceutical company), region and year fixed effects. We control for missing price and resistance
information using missing indicator variables.
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3.4 Test of Information Models

We now use the demand model estimates shown previously to test the two information models of physician

behavior with respect to the role of bacterial resistance in their prescriptions decisions. To do so, we estimate

Equation (4) in Table 6, which amounts to testing the null hypothesis that physicians do not account for

factors that potentially affect current resistance once past resistance is controlled for, against the alternative

that physicians consider factors other than past resistance that potentially affect current resistance, indicating

expectation formation for current resistance. Using the unsophisticated model, if we incorrectly omitted the

expectation of current resistance, it must be correlated with the error term of Equation (4) ζjlt.

Table 6: Unsophisticated information model test using ξjlt

(1) (2) (3) (4)

(OLS) (2SLS) (OLS) (2SLS)

b/se b/se b/se b/se

ξjt−1 0.668∗∗∗ 0.667∗∗∗

(0.014) (0.014)

log(suscj,t) Center-East -0.185 -0.037 -0.191 -0.168

(0.160) (0.188) (0.131) (0.194)

log(suscj,t) Center-West 0.102 -0.042 0.369 0.330

(0.189) (0.182) (0.190) (0.193)

log(suscj,t) East -0.203 -0.076 -0.433∗ -0.435

(0.218) (0.280) (0.182) (0.225)

log(suscj,t) North 0.085 -0.045 0.177 -0.030

(0.169) (0.180) (0.114) (0.171)

log(suscj,t) West 0.049 0.019 -0.094 0.018

(0.195) (0.179) (0.114) (0.130)

log(suscj,t) Paris -0.129 -0.049 -0.356∗∗ -0.294

(0.200) (0.183) (0.133) (0.162)

log(suscj,t) South-East 0.057 -0.071 0.254 0.051

(0.225) (0.210) (0.134) (0.178)

log(suscj,t) South-West -0.090 0.015 -0.206∗ -0.011

(0.170) (0.127) (0.100) (0.128)

Constant 0.006 0.006 0.041∗ 0.041∗

(0.021) (0.021) (0.020) (0.020)

No Obs. 8372 8372 7011 7011

Note: The standard errors are clustered at the market level.

The results presented in Table 6 fail to reject that current resistance does not affect prescription choice

once we control for past resistance. Columns (1) and (2) do not control for the lag shock ξjlt−1, while
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Columns (3) and (4) do. Columns (2) and (4) instrument for susceptibility to account for the measurement

error in expectations. Columns (2) and (4) confirm that current susceptibility does not matter. This result

is interesting because it shows that providing physicians with better information on the antibiotic resistance

environment could aid them in their decision-making processes. They might make better decisions, as

they may overestimate or underestimate current resistance using lagged resistance information since the

unsophisticated demand model estimates in Table 5 show that they account for lagged susceptibility. Of

course, the mistakes will be more or less important depending on the change in resistance over time and

thus on the use of antibiotics by humans or animals during the previous year. For the counterfactuals that

follow, we will thus use the preferred demand results from Column 5 of Table 5.

4 Regulating the Use of Antibiotics in Humans and Animals

We use our demand model to study counterfactual scenarios that target antibiotic resistance externalities

by regulating antibiotic use in humans and animals. The first policy consists of a ban on fluoroquinolone

prescriptions. The second consists of limiting the use of fluoroquinolones in veterinary practices. While the

policy goals are the same, how these policies affect the market, consumer surplus and expenses differ and

are affected by the response to bacterial resistance.

Banning fluoroquinolones as a treatment option for the case of simple cystitis is equivalent to removing

it from the choice set of the decision maker. This will inevitably reduce fluoroquinolone antibiotics use,

leading to decreasing resistance of E. coli to fluoroquinolones but substitutions toward antibiotics will occur

as predicted by our demand estimates. Regulating the veterinary use of fluoroquinolones will decrease

resistance, ceteris paribus. However, the demand model predicts that decreased resistance will increase

prescriptions of fluoroquinolones in response to increased susceptibility19.

Banning the Use of Fluoroquinolones Limiting the prescription of fluoroquinolones has been part of

the financial incentives provided to physicians in France since 2017. However, we still observe that it is

prescribed for cystitis in our data even after 2017 and constituted a substantial share at the beginning of the

sample. Therefore, we simulate the effects of a stricter rule regarding the prescription of fluoroquinolones

19We take as given the use of antibiotics for other infections. Modeling the changes in treatments of other bacterial diseases
due to the change in resistance is beyond the scope of this paper. Hence, one can read our results as an upper bound in terms
of the change in resistance and the counterfactual quantities.
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from 2002 by banning their use for the treatment of cystitis. This policy is interesting for two reasons. First,

it has been documented that bacterial resistance to fluoroquinolones has been increasing rapidly, but the

antibiotic remains effective in treating bacteria that are multidrug resistant. Therefore, fluoroquinolones

need to be saved for cases where first-line antibiotics fail20. Second, a large proportion of fluoroquinolone

antibiotics are prescribed for cystitis.

Figure 4: Shares of diagnoses for fluoroquinolone prescriptions (2014-2019)

Figure 4 shows the percentage of a diagnosis (cystitis or cystitis and urinary tract infection (UTI)) in

the prescriptions of fluoroquinolone molecules for women during the period 2014-2019. The most striking

share belongs to J01MA07 (Lomefloxacin). Over all prescriptions of Lomefloxacin, more than 50% were

prescribed for cystitis. It is followed by J01MA06 (Norfloxacin) at approximately 40%. Hence, this policy

would generate a significant impact on the overall prescription of fluoroquinolones in outpatient care.

Limiting the Use of Fluoroquinolones in Veterinary Practices This counterfactual policy is a

stricter version of a policy restricting the use of fluoroquinolones in animals. Indeed, as part of the battle

against AMR, the EcoAntibio campaigns have been in action since 2012 with the objective of decreasing

antibiotic use, increasing awareness and monitoring. The second wave of the campaign (EcoAntibio2

2017-2021), presented stricter measures,21 and a decree published in March 2016 banned preventive use

of several fluoroquinolones for animal farming. Exemptions required a susceptibility test if the use is strictly

20These were also the reasons why fluoroquinolones were in the “at-risk” group defined by the financial incentive scheme.
21Accessed from https://agriculture.gouv.fr/le-plan-ecoantibio-2-2017-2022 on 31 October 2022.
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necessary for treatment purposes. Figure 5 presents the change in the antibiotics sold for veterinary use in

terms of mg per kilogram of animal body weight and the stark decrease by the end of the sample period. In

counterfactual simulation, we set sales to the minimum observed in the data (a level that has been shown

to be attainable), also presented in Figure 5. Then, we examine the change in resistance in response to this

policy being implemented in the early 2000s and how demand responds to this change in resistance.

Figure 5: Sales (mg/kg) of fluoroquinolones, Source: ANSES

To simulate those counterfactuals, we first need to identify the link between the consumption of antibiotics

and the evolution of resistance. We do so by estimating a simple model of resistance evolution in the following

section. Using the demand estimates from the unsophisticated information model (Column 5 of Table 5) and

the resistance evolution model, we then study the change in market shares, consumer surplus and expenses

in the two counterfactual cases. Note that the estimates of consumer surplus and expenses are those at the

time of prescription, not accounting for the long-term value of lower resistance.

4.1 Escherichia Coli Resistance Evolution

In line with the literature on the evolution of resistance that shows the role of antibiotic consumption in

both humans and animals, as well as epidemiological models of infections (Adda, 2020; Austin et al., 1999;

Čižman et al., 2001; Hammerum and Heuer, 2009; López-Lozano et al., 2000), we model E. coli resistance as

a function of antibiotic use in humans and animals and past resistance levels. We assume that a nonlinear

transformation of the expected resistance is linear additive in the explanatory variables, which leads to the
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following fractional logit model of Papke and Wooldridge (1996):

E

(
log rjt

1− log rjt

)
= β0 + ρrjt−1︸ ︷︷ ︸

Past resistance

+β1q
h
jt−1 + β2q

h2

jt−1 + β3q
h
ATC4(−j)t−1︸ ︷︷ ︸

Quantities reimbursed from

National Health Insurance

+ σ1q
a
jt−1︸ ︷︷ ︸

Veterinary sales (mg/kg)

(5)

where j indexes the chemical substance (ATC5), t denotes years, qajt represents veterinary sales in mg of

active ingredient per kilogram of animal body weight (mg/kg) of product j in period t, and qhjt is the

quantities reimbursed by the French national insurance at the ATC5 level. The effect of antibiotic use by

humans is captured using quantities reimbursed at the ATC5 level provided by the French Health Insurance.

The antibiotic sales for veterinary use data come from ANSES (2021).

Two points are important to note in the interpretation of the results presented. First, as seen in Table

4, some veterinary antibiotic uses are provided at the ATC3 level (Penicillins, Aminoglycosides), whereas

others are reported at the ATC4 level (note that there is no overlap), while the level of observation of E. coli

resistance is at the ATC5 level, which prevents us from estimating the effect of the use of certain antibiotic

molecules in animals on resistance. Second, as we explain in Section 2.3, the data on bacterial resistance

have some missing information. Therefore, the analysis is conducted using the chemical molecules for which

we have resistance data, which could introduce selection bias. However, given that the time period is long,

data collection on resistance started before the growing resistance trend occurred, and the selection of tested

antibiotic resistance of E. coli is based on the value of antibiotics, selection bias should be limited.

The results are presented in Table 7. First, the effect of consumption by humans positively correlates

with resistance, but the marginal effect is decreasing in quantity. We also find a positive relation between

the use of other chemical substances within the same chemical subgroup, indicating possible cross-resistance

effects. Past resistance also plays an important role, which is in line with infectious disease models. Finally,

we observe a positive link between the veterinary sales of antibiotics and resistance. Next, we use the results

in Column 2 (as preferred by the BIC and AIC) to simulate the counterfactual resistance in each policy

scenario.
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Table 7: Estimation results for Equation (5)

(1) (2) (3)

Lag Resistance 0.058∗∗∗ 0.061∗∗∗

(0.002) (0.002)

Lag Quantity (ATC5) 0.154∗∗∗ 0.041∗∗∗ 0.038∗∗∗

(0.009) (0.008) (0.008)

Lag Quantity sq -0.002∗∗∗ -0.001∗∗∗ -0.001∗∗∗

(0.000) (0.000) (0.000)

Lag Quantity - Others ATC4 -0.152∗∗∗ 0.014 0.032∗∗∗

(0.010) (0.008) (0.006)

Lag sales ATC4 (Vet.) 2.594∗∗∗ 0.728∗∗∗ 0.997∗∗

(0.354) (0.215) (0.304)

Lag sales ATC3 (Vet.) 0.164∗∗∗ 0.095∗∗∗ 0.097∗∗∗

(0.015) (0.011) (0.010)

Year FE No No Yes

No Obs. 330 330 330

BIC 256.755 257.8954 350.2318

AIC 230.1613 227.5027 259.0536

Note: The regressions include corresponding dummy variables to control for sales information being provided at different ATC levels.

4.2 Counterfactual Policies’ Impacts on Resistance

To obtain the counterfactual quantities of antibiotics after the ban on fluoroquinolones for treatment of

cystitis, we decrease the quantity of each chemical subgroup of fluoroquinolones by the rates shown in 4.

For the second counterfactual, we implement the change in sales presented in Figure 5. The counterfactual

resistance for each policy separately and in combination is provided in Figure 6.
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Figure 6: E. coli resistance under counterfactual policies

We see that at the beginning of the sample period, resistance increases as a result of increasing use of

fluoroquinolones. By 2010, the effect of policies reaches a stable difference of approximately 1 percentage

point for the ban on fluoroquinolones for cystitis and 4 percentage points in the minimum veterinary sales

case.

4.3 Counterfactual Market Shares

Figure 7 plots the changes in market shares for both counterfactuals. We focus on four groups that represent

significant market shares and are important in terms of assessing the consequences of policies for AMR.

Additional to fluoroquinolones, we present the change in market shares for i) fosfomycin, which has the

highest market share and is the first-line therapy throughout the sample, ii) 3rd generation cephalosporins

and iii) Amoxicillin and β- lactamase inhibitors, both of which are included in the “at-risk” antibiotic groups

because they are crucial to preserve for the future.
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Figure 7: Change in market shares in percentage points

Note: The time variation in mean differences is plotted. The vertical bars around mean estimates indicate the range of variation across
regions.

The takeaway from the results of the fluoroquinolone ban is that while physicians largely substitute

toward fosfomycin, there is also significant substitution toward 3rd generation cephalosporins. Fosfomycin

(J01XX01) is a narrow-spectrum antibiotic to which E. coli responds at a high rate and is recommended as a

first-line therapy in uncomplicated cystitis cases. However, cefixime (J01DD08) belongs to the “at-risk” list

as a result of bacteria becoming highly resistant to treatment. Therefore, a policy that targets one antibiotic

group might create unintended consequences for AMR.

Minimizing veterinary use, on the other hand, affects the market through a change (here, a decrease) in

resistance. As expected from the demand estimates, we observe that the share of fluoroquinolones increases

in response to decreasing resistance. This substitution is mostly from fosfomycin, partly from 3rd generation

cephalosporins and then other antibiotics. Neither policy substantially affects the share of amoxicillin and

β- lactamase inhibitors. Overall, we see that although they serve the same purpose of decreasing resistance,

the two policies have quite opposite impacts on the market.

4.4 Counterfactual Changes in Consumer Surplus and Expenses

We then compute the compensating variation per patient following the usual Small and Rosen (1981) formula

with differentiated product demand and using the changes in utility as a result of banning fluoroquinolone
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prescriptions (MacFadden et al., 2018). Note that we abstract from the impacts of the policy on potential

follow-up visits. This impact is likely limited in our case because we focus on “first visits” to capture

nonrecurring/initial diagnoses. More important, we do not account for future benefits from a potential

decrease in bacterial resistance. Therefore, these results should be considered with caution and only reflect

the immediate consequences at the time of prescription.

Figure 8 provides the change in average consumer surplus and expenses per prescription, where the

vertical bars show the variation across regions around the mean effect in a given year. The fluoroquinolone

ban leads to greater effects in magnitude. On average, the loss of consumer surplus is 4 e and the decrease

in expenses is approximately 2 e until 2010. Then, both of these effects decrease in magnitude after 2010.

This is partly a result of generic entry of fosfomycin products and incentives for generic prescriptions. From

minimizing veterinary use, the changes are smaller than when banning fluoroquinolones but of a different

sign. On the one hand, the decrease in resistance increases consumer surplus. On the other hand, this

decrease leads to higher market shares for fluoroquinolones, whose price remains well above average and

above that of their largest competitor, fosfomycin.

Figure 8: Changes in consumer surplus per patient and expenses per prescription in e

Note: The time variation in the mean differences is plotted. The vertical bars indicate the range of variation across regions.
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5 The Value of Diagnostic Tests

We now use our framework to simulate the counterfactual effects of the availability of rapid diagnostic tests

that could be used by physicians at the time of prescription. We assume that a new test becomes available

and that physicians would be able to prescribe an antibiotic conditional on a test result. Without a test,

physicians make “empirical” prescribing decisions affected by the mean resistance of E. coli to each antibiotic.

We have shown that the previous year’s resistance indeed affects their decision such that the mean utility

term of each drug in our discrete choice model depends negatively on the mean resistance.

The effect of mandatory testing for antibiotic prescriptions will depend on the information provided by

the test. Assuming that a test would provide information about whether the patient is infected by E. coli

and/or whether the bacteria is resistant to an antibiotic, we can infer how the decision model would be

affected. As discussed by Firth et al. (2023), policy makers are also considering the use of diagnostic tests

to combat growing AMR.

5.1 Rapid Bacterial Detection Test

First, if the test simply confirms whether cystitis is due to an E. coli infection22, the prescription choice

will essentially be scaled down by the average infection rate π by E. coli of this cystitis diagnosis23. With

probability 1 − π, the test indicates no bacterial infection, and hence no antibiotic is prescribed, and with

probability π, the test indicates E. coli infection, in which case the physician will prescribe according to the

same model while considering average resistance information. Thus, the prescription probability of drug j

depending on π will be:

sbactjt (π) = π

∫
exp(δjt − βp

i pjt)∑
k exp(δkt − βp

i pkt)
dϕ(νi) (6)

22Here, we assume that when the bacterial infection is detected, the probability of the bacteria being E. coli is 1.
23The population value of π depends on two quantities, the rate of physician visits for suspected urinary tract infections

conditional on having symptoms and the rate at which the suspected cases are indeed caused by bacterial infection. The
former is rather difficult to specify. However, for the latter, conditional on having suggestive symptoms, the infection rate is
approximately 50% but increases with certain symptoms (Bent et al., 2002; Medina-Bombardo et al., 2003).
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The savings per prescription in the presence of a test in year t, or the value of a rapid bacterial test vRapidTest
t ,

can be calculated as follows24:

vRapidTest
t (π)︸ ︷︷ ︸

Value of rapid bacterial test

=
∑

j∈{1,...,Jt}

pjt(s
NoTest
jt − sbactjt (π))︸ ︷︷ ︸

Additional expenses on drug j

if no test vs bacterial test

(7)

where sNoTest
jt denotes the choice probability of prescribing j in the absence of testing.

5.2 Rapid Antibiotic Susceptibility Testing

If, in addition, the test indicates whether the bacteria is resistant to drug j, the test allows the physician

to use patient-specific information that does not consider the average resistance in the population but the

patient-level resistance rijt. The resistance information will affect the consideration set of the physician by

simply excluding the drugs to which the bacteria is resistant. It will also increase the mean value of each drug

to which the bacteria is not resistant by an amount that is proportional to the expected resistance that was

considered before testing. Our framework allows one to predict choice probability under any susceptibility

testing as shown in Appendix A.3. We consider here the simpler case of susceptibility testing for a single

molecule.

Suppose that the test informs the physician whether the bacteria is resistant to chemical substance l

(for example, Amoxicillin (J01CA04)). For any drug l ∈ {1, .., J}, the choice probability for individual i is

written as:

silt(π, rilt) = π 1{rilt ̸=1}

exp
(
δ̃lt − βp

i plt

)
∑J

k=1 1{rikt ̸=1} exp
(
δ̃kt − βp

i pkt

)
where δ̃jt ≡ δjt − βrrjt−1 if rijt = 0 since δjt is the mean utility (excepting the price effect) of drug j when

24Note that the value of the test here represents a lower bound and reflects the health care savings per prescription without
considering the impact on resistance. Using the test will save antibiotic use overall and hence help to limit resistance externalities.
As bacterial resistance is attached to increased hospitalizations, deaths, and productivity loss, slowing resistance growth is likely
to generate higher returns on such a test in the future.

To account for the changes in resistance that would result from the reduced usage of antibiotics, one needs to approximate
the effect of the test for other diseases, which is beyond the scope of this paper. However, knowing µj for drug j, the scale
factor of drug j consumption, one can calculate the counterfactual usage q̃hjt of antibiotic j as

q̃hjt = (1− µj)q
h
jt + µjq

h
jt

s
testl
jt (π)

sjt
.

Then, using the counterfactual quantities, it is possible to compute the path of counterfactual resistance and the paths of
prescriptions, expenses and consumer surplus and compare it them to diagnostic test spending.
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physicians expect a resistance level of rjt−1
25. At the population level, we have E[1{rilt=1}] = rlt. Therefore,

the choice probability of drug j when physicians perform susceptibility testing for chemical substance l before

any prescription becomes:

sSusc.Testl
jt (π) = π rlt

∫
exp(δjt − βp

i pjt)∑
k ̸∈L exp(δkt − βp

i pkt)
dϕ(νi) + π (1− rlt)

∫
exp(δ̃jt − βp

i pjt)∑
k∈L exp(δ̃kt − βp

i pkt)
dϕ(νi)

We can then compute the total expenses per prescription with susceptibility testing, or the value of the

susceptibility test, for drug l and without susceptibility testing (but with diagnostic testing for bacterial

infection). The change in expenses will be given by the following expression.

vSusc.Testl
t (π)︸ ︷︷ ︸

Value of rapid susceptibility test

=
∑

j∈{1,...,Jt}

pjts
Susc.testl
jt (π)︸ ︷︷ ︸

Expenses on drug j when using

susceptibility test of drug l

−
∑

j∈{1,...,Jt}

pjtsjt(π)︸ ︷︷ ︸
Expenses on drug j

without test

(8)

We then calculate the value of rapid antibiotic susceptibility testing, which would indicate whether the

bacteria is susceptible to amoxicillin in 2018, where the resistance rate of E. coli was approximately 51%.

We chose amoxicillin because of its relevance in this context. In the recent treatment guidelines by the

French health authority (“Haute autorité de santé”) for cystitis 26, differential treatment following antibiotic

sensitivity testing suggests amoxicillin as the first choice. Table 8 shows the expenses per prescription in

2018 for the treatment of cystitis for three values of the bacterial infection rate π. The empirical treatment

without a test costs e 6.76 per prescription, and savings range from e 3.22 for π = 0.75 to e 5.58 for π = 0.25

if rapid susceptibility testing for amoxicillin and a bacterial detection test were implemented. Table 8 shows

that the higher the probability of bacterial infection is, the lower the savings from using a bacterial test or

penicillin susceptibility test. Conversely, the lower the probability of bacterial infection is, the larger the

savings in terms of treatment costs when using a test.

25Note that we could also assume that physicians keep in their choice set drugs to which they know the bacteria is resistant
and assume that they update their valuation of the drug for patient i using δijt = δjt − βl

rrjt−1 if rijt = 0 in addition to
δijt = δjt + βl

r(1− rjt−1) if rijt = 1.
26Accessed from https://www.has-sante.fr/upload/docs/application/pdf/2021-08/fiche_memo_cystite_durees_

antibiotherapies_.pdf on 31 October 2022
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Table 8: Expenses per prescription in 2018 (e)

Treatment cost Treatment cost Treatment cost

π without test with Detection test with Amoxicillin Susc. Test

0.25 6.76 1.69 1.18

0.50 6.76 3.38 2.36

0.75 6.76 5.07 3.54

From a welfare perspective, even without considering long-term effects on resistance, we should also value

the health outcome implied by the change in treatment that the test will lead to. We approximate this effect

using the success rate of treatment. In the following, we assume that a bacterial infection is present and,

therefore, focus solely on the effects of antibiotic choices with and without susceptibility testing.

The mean probability of being cured by antibiotic j is a function of all drugs’ resistance multiplied by the

choice probability of each drug (which of course also depends on resistance)
∑

j∈{1,...,Jt} sjt(1− rjt). Upon

testing, the change in the probability of being cured is then:

∆l
treat(π) ≡ π

 ∑
j∈{1,...,Jt}

sSusc.Testl
jt (1− rjt)−

∑
j∈{1,...,Jt}

sjt(1− rjt)


Table 9 shows the probability estimates of being cured with or without susceptibility testing27. In the

case of cystitis, this probability is very large even without testing, but testing still increases this probability

by 3.4 percentage points.

Table 9: Treatment success with and without susceptibility testing for π = 1

No Susceptibility Testing

(Empirical Treatment)

Susceptibility Testing

(Amoxicillin)

All regions (Mean Change)

Probability of being cured 94.2% 97.6%

∆Amoxicillin
treat 3.4%

Region: West (Min Change)

Probability of being cured 94.9% 97.8%

∆Amoxicillin
treat 2.9%

Region: East (Max Change)

Probability of being cured 93.4% 97.4%

∆Amoxicillin
treat 4.0%

27For 2018, we calculate the probabilities based on the resistance rates from the REUSSIR network, where the missing values
for fosfomycin, cefixime, pivmecillinam and sulfamethoxazole and trimethoprim are taken from the OSCAR Network of Onerba,
a network of private laboratories from Bourgogne Franche-Comte region.
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Then, the conditions under which susceptibility testing should be used will depend on the patient’s value

of being cured. This value may depend on the opportunity costs of sickness leave and the welfare loss in

terms of quality of life in the particular case of each disease (cystitis in this particular application). We thus

determine the set of values of being cured per patient V and price of tests plT such that it is optimal to

mandate a bacterial resistance test before the prescription of drug l. It is indeed desirable if the value of the

test due to an increased probability of being cured, ∆l
t×V , is greater than the health care cost of treatment

with a rapid susceptibility test, which is plT − vSusc.Testl
t (π), where the value of the susceptibility test comes

from Equation (8). In other words, imposing testing will be valuable if and only if

∆l
t(π) ≥

plT − vSusc.Testl
t (π)

V
(9)

Regarding the values of (plT , V ) satisfying Condition (9), the higher the value V is, the higher the

maximum price that should be accepted (provided that the net health cost of testing is positive).

Using the savings from Table 8 and the change in the probability of successful treatment from Table 9,

Figure 9 displays the regions in the {Value of treatment, Price} space where mandatory testing is optimal

for the case of rapid susceptibility testing for Amoxicillin in 201828.

Figure 9: Optimality of susceptibility testing

Note: The colored regions are provided for π = 0.5

While ∆l
t(π) fixes the slope of the relationship between the value of the treatment and the price of

28We assume that susceptibility testing also indicates the bacterial status of the suspected infection. Therefore, the relevant
comparison for expenses is between Columns 1 and 3 of Table 8.
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the susceptibility test for antibiotic l, the net health care costs (i.e., change in expenses) determines the

intercept. The probability of bacterial infection in the population of suspected cystitis infections π changes

the level of the maximum prices that should be paid, as it changes the expected savings due to testing and

the probability of treatment.

Moreover, we can see that for lower values of being cured V , the lower the probability of bacterial infection

π is, the higher the upper bound on the price of the test that is beneficial for society. This is because as the

rate of infection is lower, the savings from avoided useless treatments will be higher. However, the lower the

probability of bacterial infection is, the smaller the slope. Thus, an incremental value of being cured is (ex

ante) valued less than in the case in which the bacterial infection rate is higher. This is because the change

in the probability of the treatment is weighted by the rate of infection. Therefore, if the value of being cured

is high enough, the price that the insurer is willing to reimburse is higher if the probability of infection is

high (e.g., 75%) as opposed to low (e.g., 25%). This exemplifies where the use of susceptibility testing makes

a difference in addition to using a detection test.

6 Conclusion

In this paper, we study the effects of bacterial resistance on antibiotic prescription choice using a long

and exhaustive panel of general practitioner visits in France. We employ additional data on resistance

and the veterinary use of antibiotics to identify the effect of AMR on treatment choices and control for

the endogeneity of prices and resistance. The results indicate that bacterial resistance affects prescription

behavior, as physicians substitute away from antibiotics for which the resistance is higher. We explore two

ways in which physician response takes accounts for resistance. Using the estimation of an “unsophisticated”

information model, we test whether physicians might act upon the expectation of current resistance instead

of using resistance in the last period. We do not find evidence that physicians act based on expectations

of resistance. The results from the (“unsophisticated” information) demand specification where physicians

consider past resistance shows that they respond to resistance as they substitute toward antibiotics for

which the bacteria has higher susceptibility. We also find that physicians have a tendency to prescribe

more branded products. We find that physicians start to prescribe more generics upon the introduction of

a pay-for-performance bonus in 2012. Similarly, we observe a decline in preference for specific antibiotics
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groups that are targeted by the same pay-for-performance program since 2017.

We then develop counterfactuals analysis using a resistance evolution model for E. coli bacteria. We study

the effects of a policy where the use of fluoroquinolones are banned in the treatment of cystitis or regulated for

veterinary use. We obtain opposing effects for these two policies on consumer surplus and expenses, as well

as the substitutions realized, while both policies reduce resistance against fluoroquinolones. In the case of

the fluoroquinolones ban, the results highlight the substitution toward other antibiotics that are as valuable

and need to be saved for more complicated cases. In the case of a veterinary regulation on fluoroquinolone

use, there is an increased market share for fluoroquinolone prescriptions in humans in the face of decreasing

resistance, which is likely to attenuate the impact of the policy. These findings highlight the importance of

a unifying approach that considers the entire ecosystem (such as the “One Health” approach)29. In all the

counterfactual studies we conduct, note that we do not account for the value of the long-term gains from

lower AMR, indicating that our results can be regarded as a lower bound on the benefits of the policies.

Finally, we use our demand model to assess the value of bacterial detection and susceptibility testing. We

examine the savings per prescription and probability of being cured in the case where a rapid susceptibility

test for amoxicillin is present and mandated using counterfactual shares generated as a result of the mandates.

In our setting, we show that the effects of the prevalence of bacterial infections in the suspected cases of

cystitis plays a role in identifying the price that comes from the changes in expenses due to testing only,

i.e., when there is no value of treatment. However, when accounting for the health care spending implied by

the treatment and the probability of being cured, we show that as the value of being cured increases, the

maximum price for which testing is optimal increases but that this maximum price decreases or increases

depending on whether the probability of infection is high or low. This maximum price that is optimal for

mandatory testing should be interpreted as a lower bound because we focus only on a particular infection

and do not incorporate the social value generated by testing through reduced antibiotic resistance. As the

data on resistance grows richer with improved surveillance of bacteria and data collection, future work could

address the question while including the long-term effects on public health.

29One Health French National Action Plan on Antimicrobial Resistance. Retrieved from https://sante.gouv.fr/IMG/pdf/

brochure_mesures_innovantes_lutte_atbr-en_vf.pdf on 21/06/2023.
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A Appendix

A.1 Data

Repeated visit rates

In the following, we report the repeated visit rates (in percentages) by chemical subgroup across years. A

repeat visit is defined as a re-visit to physician that results in an antibiotic prescription after an initial

antibiotic treatment for a urinary tract infection.

Table 10: Average time (days) between two prescriptions in case of a repeat visit

All ATC 4 Avg. time between

Year J01CA J01CR J01DD J01MA J01XX two repeat visits

2009 6.42 8.97 9.96 6.46 5.76 7.27 12.00

2010 6.43 8.32 12.66 7.44 5.78 6.96 12.00

2011 6.31 8.88 7.69 7.40 5.64 6.84 11.87

2012 6.43 8.53 7.00 7.18 5.73 7.10 12.13

2013 6.39 8.28 7.53 8.10 5.47 7.14 11.83

2014 6.71 8.66 10.59 7.22 5.93 7.14 11.86

2015 6.39 8.83 9.95 6.47 5.37 6.95 11.86

2016 6.60 7.81 10.59 6.71 5.72 6.97 11.69

2017 6.68 7.76 12.91 6.75 5.76 6.81 12.00

2018 7.03 8.51 7.45 7.15 6.34 7.02 11.96

2019 6.65 8.06 10.69 6.74 5.86 6.52 11.73

Note: The visits that are not followed by another prescription within 30 days are excluded. We also drop repeat visits, that is, the
second prescription within a month.

A.2 Additional Tables

A.2.1 First-stage instrumental variables regressions

In this section, we report the first stage of the IV regressions used in Column 2 of Table 5 and the

corresponding F statistics for the joint significance of excluded instruments.
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Table 11: First stage – IV (Part I)

Price Susc. Reg. 1 Susc. Reg. 2 Susc. Reg. 3 Susc. Reg. 4 Susc. Reg. 5 Susc. Reg. 6 Susc. Reg. 7 Susc. Reg. 8 Detailing

Nb. of labs in ATC5 -0.853∗∗∗ 0.000 0.001 0.000 0.000 0.001 0.001 0.001 0.001 -0.110∗∗∗

(0.0818) (0.0011) (0.0009) (0.0011) (0.0011) (0.0011) (0.0012) (0.0011) (0.0011) (0.0142)

Nb. of labs in ATC5 * Generic -0.006 0.000 0.000 0.000 0.000 -0.000 -0.001 -0.000 0.000 0.122∗∗∗

(0.0349) (0.0005) (0.0004) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0061)

Nb. of labs in ATC5 ¿ 2011 0.071∗∗ -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.029∗∗∗

(0.0263) (0.0003) (0.0003) (0.0003) (0.0004) (0.0003) (0.0004) (0.0003) (0.0003) (0.0046)

Nb. of labs in ATC5 gen ¿ 2011 -0.068∗ 0.000 0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.026∗∗∗

(0.0341) (0.0004) (0.0004) (0.0004) (0.0005) (0.0004) (0.0005) (0.0004) (0.0004) (0.0059)

Nb. of CIP in ATC5 0.052 -0.000 -0.001 -0.000 -0.000 -0.001 -0.001 -0.001 -0.000 -0.044∗∗∗

(0.0404) (0.0005) (0.0004) (0.0005) (0.0005) (0.0005) (0.0006) (0.0005) (0.0005) (0.0070)

Nb. of labs in ATC5 sq. 0.026∗∗∗ 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.002∗∗

(0.0035) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0006)

Nb. of CIP in ATC5 sq -0.001∗∗ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000∗

(0.0005) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001)

Year since generic entry -0.376∗∗∗ -0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.028∗∗∗

(0.0363) (0.0005) (0.0004) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0063)

lag mg/kg sq. (atc4) * Region 1 38.081∗∗∗ 1.556∗∗∗ -0.095 -0.124 -0.155 -0.151 -0.124 -0.139 -0.147 -11.003∗∗∗

(10.1986) (0.1325) (0.1062) (0.1318) (0.1357) (0.1345) (0.1437) (0.1329) (0.1336) (1.7656)

lag mg/kg sq. (atc4) * Region 1 -39.440 -3.108∗∗∗ 0.107 0.225 0.203 0.271 0.167 0.198 0.199 20.904∗∗∗

(22.7725) (0.2959) (0.2370) (0.2942) (0.3030) (0.3003) (0.3209) (0.2969) (0.2984) (3.9424)

lag mg/kg (atc3) * Region 1 0.066 -0.103∗∗∗ 0.013∗∗∗ 0.010∗ 0.014∗∗ 0.015∗∗∗ 0.014∗∗ 0.016∗∗∗ 0.015∗∗∗ -0.190∗∗

(0.3387) (0.0044) (0.0035) (0.0044) (0.0045) (0.0045) (0.0048) (0.0044) (0.0044) (0.0586)

lag mg/kg sq. (atc4) * Region 2 37.315∗∗∗ -0.140 1.690∗∗∗ -0.131 -0.168 -0.154 -0.145 -0.148 -0.160 -12.256∗∗∗

(11.1610) (0.1450) (0.1162) (0.1442) (0.1485) (0.1472) (0.1573) (0.1455) (0.1462) (1.9322)

lag mg/kg sq. (atc4) * Region 2 -39.456 0.220 -3.418∗∗∗ 0.241 0.237 0.279 0.210 0.224 0.231 23.701∗∗∗

(25.5605) (0.3321) (0.2661) (0.3303) (0.3400) (0.3370) (0.3602) (0.3332) (0.3349) (4.4250)

lag mg/kg (atc3) * Region 2 0.209 0.012∗∗ -0.105∗∗∗ 0.011∗ 0.015∗∗ 0.016∗∗∗ 0.014∗∗ 0.017∗∗∗ 0.015∗∗∗ -0.213∗∗∗

(0.3472) (0.0045) (0.0036) (0.0045) (0.0046) (0.0046) (0.0049) (0.0045) (0.0045) (0.0601)

lag mg/kg sq. (atc3) * Region 2 -0.010 -0.001∗∗∗ 0.008∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ 0.010∗∗

(0.0203) (0.0003) (0.0002) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0035)

lag mg/kg sq. (atc4) * Region 3 37.502∗∗∗ -0.134 -0.095 1.639∗∗∗ -0.162 -0.155 -0.135 -0.144 -0.154 -10.079∗∗∗

(9.9737) (0.1296) (0.1038) (0.1289) (0.1327) (0.1315) (0.1406) (0.1300) (0.1307) (1.7266)

lag mg/kg sq. (atc4) * Region 3 -38.114 0.209 0.111 -3.285∗∗∗ 0.226 0.284 0.202 0.216 0.217 18.897∗∗∗

(22.4313) (0.2915) (0.2335) (0.2898) (0.2984) (0.2958) (0.3161) (0.2924) (0.2939) (3.8833)

lag mg/kg (atc3) * Region 3 0.111 0.011∗ 0.012∗∗∗ -0.099∗∗∗ 0.013∗∗ 0.014∗∗ 0.013∗∗ 0.015∗∗∗ 0.014∗∗ -0.221∗∗∗

(0.3337) (0.0043) (0.0035) (0.0043) (0.0044) (0.0044) (0.0047) (0.0044) (0.0044) (0.0578)

lag mg/kg sq. (atc3) * Region 3 -0.003 -0.001∗∗∗ -0.001∗∗∗ 0.008∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ 0.010∗∗

(0.0196) (0.0003) (0.0002) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0034)

No Obs. 8372 8372 8372 8372 8372 8372 8372 8372 8372 8372
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Table 12: First stage – IV (Part II)

Price Susc. Reg. 1 Susc. Reg. 2 Susc. Reg. 3 Susc. Reg. 4 Susc. Reg. 5 Susc. Reg. 6 Susc. Reg. 7 Susc. Reg. 8 Detailing

lag mg/kg sq. (atc4) * Region 4 39.513∗∗∗ -0.116 -0.082 -0.117 1.466∗∗∗ -0.142 -0.110 -0.130 -0.137 -9.541∗∗∗

(9.7885) (0.1272) (0.1019) (0.1265) (0.1302) (0.1291) (0.1380) (0.1276) (0.1283) (1.6946)

lag mg/kg sq. (atc4) * Region 4 -45.152∗ 0.150 0.072 0.196 -2.845∗∗∗ 0.232 0.121 0.159 0.158 17.626∗∗∗

(21.9461) (0.2852) (0.2284) (0.2836) (0.2920) (0.2894) (0.3093) (0.2861) (0.2876) (3.7993)

lag mg/kg (atc3) * Region 4 0.070 0.011∗ 0.012∗∗∗ 0.010∗ -0.096∗∗∗ 0.015∗∗∗ 0.014∗∗ 0.015∗∗∗ 0.014∗∗∗ -0.229∗∗∗

(0.3296) (0.0043) (0.0034) (0.0043) (0.0044) (0.0043) (0.0046) (0.0043) (0.0043) (0.0571)

lag mg/kg sq. (atc3) * Region 4 -0.001 -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ 0.008∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ 0.011∗∗∗

(0.0188) (0.0002) (0.0002) (0.0002) (0.0003) (0.0002) (0.0003) (0.0002) (0.0002) (0.0033)

lag mg/kg sq. (atc4) * Region 5 45.424∗∗∗ -0.123 -0.088 -0.120 -0.145 1.531∗∗∗ -0.112 -0.132 -0.147 -11.253∗∗∗

(9.6856) (0.1259) (0.1008) (0.1251) (0.1289) (0.1277) (0.1365) (0.1263) (0.1269) (1.6768)

lag mg/kg sq. (atc4) * Region 5 -58.605∗∗ 0.173 0.089 0.208 0.173 -2.963∗∗∗ 0.138 0.172 0.185 21.482∗∗∗

(21.8183) (0.2835) (0.2271) (0.2819) (0.2903) (0.2877) (0.3075) (0.2844) (0.2859) (3.7772)

lag mg/kg (atc3) * Region 5 -0.001 0.011∗ 0.012∗∗∗ 0.010∗ 0.014∗∗ -0.095∗∗∗ 0.014∗∗ 0.015∗∗∗ 0.014∗∗ -0.203∗∗∗

(0.3329) (0.0043) (0.0035) (0.0043) (0.0044) (0.0044) (0.0047) (0.0043) (0.0044) (0.0576)

lag mg/kg sq. (atc3) * Region 5 0.004 -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ 0.007∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ 0.009∗∗

(0.0188) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0003) (0.0002) (0.0002) (0.0033)

lag mg/kg sq. (atc4) * Region 6 38.860∗∗∗ -0.118 -0.092 -0.116 -0.146 -0.138 1.545∗∗∗ -0.127 -0.140 -12.674∗∗∗

(9.2880) (0.1207) (0.0967) (0.1200) (0.1236) (0.1225) (0.1309) (0.1211) (0.1217) (1.6079)

lag mg/kg sq. (atc4) * Region 6 -39.537 0.164 0.092 0.204 0.175 0.239 -3.057∗∗∗ 0.168 0.173 24.810∗∗∗

(20.7363) (0.2694) (0.2158) (0.2679) (0.2759) (0.2734) (0.2922) (0.2703) (0.2717) (3.5899)

lag mg/kg (atc3) * Region 6 0.106 0.011∗ 0.012∗∗∗ 0.010∗ 0.013∗∗ 0.014∗∗∗ -0.094∗∗∗ 0.015∗∗∗ 0.014∗∗∗ -0.222∗∗∗

(0.3260) (0.0042) (0.0034) (0.0042) (0.0043) (0.0043) (0.0046) (0.0042) (0.0043) (0.0564)

lag mg/kg sq. (atc3) * Region 6 -0.003 -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ 0.007∗∗∗ -0.001∗∗∗ -0.001∗∗∗ 0.010∗∗

(0.0184) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0003) (0.0002) (0.0002) (0.0032)

lag mg/kg sq. (atc4) * Region 7 40.493∗∗∗ -0.120 -0.087 -0.118 -0.147 -0.148 -0.116 1.529∗∗∗ -0.147 -12.719∗∗∗

(10.0147) (0.1301) (0.1042) (0.1294) (0.1332) (0.1320) (0.1411) (0.1305) (0.1312) (1.7338)

lag mg/kg sq. (atc4) * Region 7 -47.916∗ 0.161 0.085 0.199 0.170 0.248 0.140 -2.974∗∗∗ 0.178 24.734∗∗∗

(22.6455) (0.2943) (0.2357) (0.2926) (0.3013) (0.2986) (0.3191) (0.2952) (0.2967) (3.9204)

lag mg/kg (atc3) * Region 7 -0.006 0.011∗ 0.012∗∗∗ 0.010∗ 0.013∗∗ 0.014∗∗ 0.013∗∗ -0.093∗∗∗ 0.014∗∗ -0.216∗∗∗

(0.3316) (0.0043) (0.0035) (0.0043) (0.0044) (0.0044) (0.0047) (0.0043) (0.0043) (0.0574)

lag mg/kg sq. (atc3) * Region 7 0.004 -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ 0.007∗∗∗ -0.001∗∗∗ 0.010∗∗

(0.0186) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0003) (0.0002) (0.0002) (0.0032)

lag mg/kg sq. (atc4) * Region 8 44.525∗∗∗ -0.125 -0.098 -0.124 -0.152 -0.151 -0.122 -0.142 1.543∗∗∗ -11.211∗∗∗

(10.4429) (0.1357) (0.1087) (0.1349) (0.1389) (0.1377) (0.1472) (0.1361) (0.1368) (1.8079)

lag mg/kg sq. (atc4) * Region 8 -56.540∗ 0.183 0.115 0.224 0.193 0.261 0.161 0.197 -3.083∗∗∗ 21.453∗∗∗

(23.3296) (0.3031) (0.2428) (0.3014) (0.3104) (0.3076) (0.3288) (0.3041) (0.3057) (4.0388)

lag mg/kg (atc3) * Region 8 0.055 0.012∗∗ 0.013∗∗∗ 0.011∗ 0.014∗∗ 0.015∗∗∗ 0.014∗∗ 0.016∗∗∗ -0.100∗∗∗ -0.217∗∗∗

(0.3281) (0.0043) (0.0034) (0.0042) (0.0044) (0.0043) (0.0046) (0.0043) (0.0043) (0.0568)

lag mg/kg sq. (atc3) * Region 8 0.000 -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ 0.008∗∗∗ 0.010∗∗

(0.0186) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0003) (0.0002) (0.0002) (0.0032)

No Obs. 8372 8372 8372 8372 8372 8372 8372 8372 8372 8372

F Stat ( 56, 8228) 15.33 380.48 442.00 377.39 378.63 398.63 377.64 379.49 399.18 30.92

Note: Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. All regressions include ATC 5 (chemical substance) and
brand (pharmaceutical company), region and year fixed effects. We control for missing price and resistance information with dummy
variables.
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A.2.2 Robustness check with weighted average price

Table 13: Estimation results of demand models

Logit Logit RC Logit RC Logit
OLS 2SLS Sophisticated Unsophisticated

Weighted Price (βp) -0.025∗∗∗ -0.244∗∗∗ -0.368∗∗∗ -0.340∗∗∗

(0.0045) (0.0239) (0.0391) (0.0405)
Price SD (σp) 0.127∗∗∗ 0.101∗∗∗

(0.0145) (0.0160)
log(suscj,t−1) Center-East 0.340 8.988∗∗∗ 8.301∗∗∗

(0.5870) (1.6206) (1.5910)
log(suscj,t−1) Center-West 0.145 8.529∗∗∗ 7.926∗∗∗

(0.5974) (1.6306) (1.5954)
log(suscj,t−1) East -0.072 8.616∗∗∗ 7.935∗∗∗

(0.5872) (1.6230) (1.5921)
log(suscj,t−1) North -0.536 7.886∗∗∗ 7.177∗∗∗

(0.5872) (1.6269) (1.5979)
log(suscj,t−1) West 0.003 8.705∗∗∗ 7.962∗∗∗

(0.5882) (1.6286) (1.6006)
log(suscj,t−1) Paris 0.518 9.341∗∗∗ 8.694∗∗∗

(0.5867) (1.6324) (1.5980)
log(suscj,t−1) South-East -0.458 7.982∗∗∗ 7.306∗∗∗

(0.5875) (1.6263) (1.5950)
log(suscj,t−1) South-West 0.133 8.878∗∗∗ 8.164∗∗∗

(0.5872) (1.6266) (1.5965)
Detailing (in Mil.) -0.059∗ 0.559∗∗∗ 0.754∗∗∗ 0.804∗∗∗

(0.0227) (0.0842) (0.1046) (0.1081)
Guidelines
Guidelines - First 0.066 0.217 -0.426∗ 0.000

(0.1667) (0.2083) (0.1893) (0.2124)
Guidelines - Second 0.147∗∗ 0.155∗ 0.141∗ 0.158∗∗

(0.0520) (0.0610) (0.0571) (0.0582)
Guidelines - Complicated 0.140∗∗∗ -0.019 0.039 -0.041

(0.0353) (0.0451) (0.0392) (0.0434)
Generic -3.753∗∗∗ -3.825∗∗∗ -4.025∗∗∗ -4.018∗∗∗

(0.0895) (0.1106) (0.1092) (0.1124)
Pay-for-Performance
Generic (post 2012) 0.827∗∗∗ 0.622∗∗∗ 0.599∗∗∗ 0.640∗∗∗

(0.0572) (0.0811) (0.0737) (0.0762)
J01MA*Post2017 -0.333∗∗∗ -0.541∗∗∗ -0.528∗∗∗ -0.601∗∗∗

(0.1008) (0.1197) (0.1123) (0.1155)
J01DD*Post2017 0.103 0.091 -0.046 0.007

(0.1337) (0.1561) (0.1478) (0.1508)
J01CR*Post2017 -0.553∗∗ -1.514∗∗∗ -0.502∗∗ -1.429∗∗∗

(0.1739) (0.2664) (0.1751) (0.2582)
J01MA*ROSP Trend -0.151∗ -0.263∗∗∗ -0.370∗∗∗ -0.316∗∗∗

(0.0667) (0.0798) (0.0763) (0.0789)
J01DD*ROSP Trend -0.183∗ -0.262∗ -0.281∗∗ -0.292∗∗

(0.0926) (0.1081) (0.1018) (0.1038)
J01CR*ROSP Trend -0.167 -0.208 -0.229 -0.232

(0.1162) (0.1353) (0.1271) (0.1296)
N 8372 8372 8372 8372

Note: Standard errors in parentheses. Significance levels: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. All regressions include ATC 5
(chemical substance) and brand (pharmaceutical company), region and year fixed effects. We control for missing price and resistance
information using missing indicator variables.
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A.3 Generalization of Antibiotic Susceptibility Testing

Suppose that the test is fully informative on all drugs, meaning that it indicates whether the infection is

resistant to each of the available antibiotics. The aggregate choice probability of drug j in this case will be:

sfulljt (π) =

∫ (∫
sfullijt (π, ri1t, .., riJt)dϕ(νi)

)
dF (ri1t, .., riJt|rjt, .., rJt)

where sfullijt is given by

sfullijt (π, ri1t, .., riJt) = π 1{rijt ̸=1}

exp
(
δ̃jt − βp

i pjt

)
∑

k 1{rikt ̸=1} exp
(
δ̃kt − βp

i pkt

)
Assuming for simplicity that the resistance of a bacteria is independently distributed across drugs (an

assumption that can be relaxed using data on correlations), this choice probability can be computed using

the average resistance rates at t and the estimated model parameters as follows:

sfulljt (π) = π

J∑
n=0

( ∑
(k1, .., kn) ∈ {1, .., J}

|kl ̸= km, ∀l,m

n∏
l=1

rklt︸ ︷︷ ︸
probability resistant

to all kl,∀l = 1, .., n

J∏
∀k ̸=kl,∀l

(1− rkt)︸ ︷︷ ︸
probability non resistant

to all k ̸= kl, ∀l = 1, .., n

∫
sfullijt (π, ri1t, .., rik1t, .., riknt, .., riJt)dϕ(νi)︸ ︷︷ ︸

choice probability of j

given information

on resistance to each drug

)

44


	Introduction
	Data 
	Data on Antibiotic Prescriptions
	National Health Insurance Data on Antibiotic Expenses
	Data on antibiotic resistance
	Data on Antibiotic Consumption for Animals
	Data on Detailing Expenses

	Demand Model and Estimation 
	Demand Model
	Information models

	Identification and Estimation
	Demand Estimates
	Test of Information Models

	Regulating the Use of Antibiotics in Humans and Animals 
	Escherichia Coli Resistance Evolution
	Counterfactual Policies' Impacts on Resistance
	Counterfactual Market Shares
	Counterfactual Changes in Consumer Surplus and Expenses

	The Value of Diagnostic Tests 
	Rapid Bacterial Detection Test
	Rapid Antibiotic Susceptibility Testing

	Conclusion  
	Appendix
	Data
	Additional Tables
	First-stage instrumental variables regressions
	Robustness check with weighted average price

	Generalization of Antibiotic Susceptibility Testing




