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A Product Differentiation

Consider highly concentrated markets where nA = nB = 2. In each market, two products are

horizontal differentiated à la Hotelling, and consumers’preferences over the two products are

perfectly correlated. There are two firms, A1 and B1, located at one end while the other two,

A2 and B2, are located at another end. Let αj and βj denote the margins for products Aj and

Bj , respectively.

In market A, a consumer located at x ∈ [0, 1] derives a net utility of wA−α1−tx from buying

A1 and wA−α2− t (1− x) from A2, where t > 0 indicates the degree of product differentiation.

Similarly, in market B, the same consumer obtains a net utility of wB − β1 − tx from B1 and

wB − β2− t (1− x) from B2. We assume that wA, wB > 3t, which ensures full market coverage.

We assume further that consumption synergies are uniformly distributed over [0, 1], with

F (s) = s for the sake of tractability in the analysis. Since the two markets, A and B, are

symmetric in this case, we focus on the symmetric equilibrium where α1 = β1 ≡ ρ1 and α2 =

β2 ≡ ρ2.

Before a merger, the two markets are independent. Consumers located at x < x̂ ≡ 1
2 −

ρ1−ρ2
2t

will purchase the combination {A1, B1}, while others will buy {A2, B2}. Firms A1 and B1 earn

a profit of ρ1x̂, while A2 and B2 earn ρ2 (1− x̂). Their best responses are given by ρ1 = 2tx̂ and

ρ2 = 2t (1− x̂). Solving for the best responses leads to the Hotelling price margins ρ∗1 = ρ∗2 = t,

and each firm earns a profit of t/2.

Consider a merger between A1 and B1. Suppose the conglomerate offers stand-alone products

A1 and B1, as well as the bundle A1 −B1. Consumers prefer A1 to A2 if:

x ≤ xA ≡
1

2
− α1 − α2

2t
, (1)

and prefer B1 to B2 if:

x ≤ xB ≡
1

2
− β1 − β2

2t
.

Without loss of generality, let’s assume xA ≤ xB. Consumers with x < xA buy the product

portfolio {A1, B1} if s < σ1 ≡ µ − α1 − β1, whereas consumers with xA < x < xB buy the

portfolio {A2, B2} if:

s < σ21 (x) ≡ µ− α2 − β1 + 2t

(
x− 1

2

)
, (2)

and consumers with x > xB buy {A2, B1} if:

s < σ2 (x) ≡ µ− α2 − β2 + 4t

(
x− 1

2

)
. (3)
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Conversely, consumers buy the bundle A1 −B1 if:

s > σ (x) ≡ max {σ1, σ21 (x) , σ2 (x)} ,

where σ (x) is continuous and satisfies σ1 = σ21 (xA) ≤ σ21 (xB) = σ2 (xB) ≤ σ2 (1).

The analysis takes into account various configurations determined by the comparison between

σ1 and σ2 (1) within the range of s ∈ [0, 1], as well as the boundaries of 0 and 1. Specifically,

we focus on the scenario where 0 < σ1 < σ2 (1) < 1, with 0 < xA < xB < 1, and this case is

illustrated in Figure A.0.

Figure A.0

We proceed to characterize the symmetric equilibria, where the conglomerate M sets sym-

metric stand-alone margins (α1 = β1 = ρ1), and the two stand-alone firms also charge symmetric

prices (α2 = β2 = ρ2). Consequently, the thresholds xA and xB are also symmetric:

xA = xB = x̂ ≡ 1

2
− ρ1 − ρ2

2t
. (4)

Throughout the analysis, we make the assumption that wA and wB are suffi ciently large to

guarantee that the entire market is served in equilibrium. The following lemma demonstrates

that, without loss of generality, we can further narrow our focus to the range where σ1 < 1 and

x̂ < 1:

Lemma 1 Without loss of generality, we can concentrate on candidate equilibria where σ1 < 1

and x̂ < 1.

Proof. Consider a candidate equilibria in which σ1 ≥ 1, or µ > 1 + 2ρ1, implying that

no consumer buys the bundle. We first note that the portfolio {A1, B1} must have a positive
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market share. To see why, suppose the portfolio {A2, B2} attracts all consumers, implying that

M attracts no consumers and obtains zero profit. It must be the case that ρ2 ≥ 0; otherwise, the

stand-alone firms would incur a loss, and they would benefit from raising their prices to at least

cover costs. However, in that case, M could profitably deviate by charging ρ1 slightly above ρ2

(along with a prohibitively high µ, for instance). This deviation would attract (almost) half of

the consumers and generate positive profits.

Thus, we must have x̂ ≡ 1
2 −

ρ1−ρ2
2t > 0 and ρ1 ≥ 0 (otherwise, M would incur losses

and could profitably deviate by increasing ρ1 to cost). Now, let’s suppose that M reduces the

margin on the bundle to µ′ = 1 + 2ρ1 − ε, where ε is a positive but arbitrarily small value, so

that σ′1 = µ′ − 2ρ1 = 1 − ε > 0. This deviation does not affect the demand from consumers

with s < σ′1, but it induces those with s > σ′1 and x < x̂ to switch from {A1, B1} to the bundle,

generating an additional margin of µ′− 2ρ1 = σ′1 > 0. Moreover, it also induces consumers with

x > x̂ and s > σ2 (x) to switch from {A2, B2} to the bundle, generating additional profits (as

µ′ = 2ρ1 + σ′1 > 2ρ1 ≥ 0). Thus, the deviation is profitable, which contradicts the assumption.

Consider a candidate equilibrium in which x̂ ≥ 1, implying that no consumer purchases from

the stand-alone firms. Once again, we observe that the portfolio {A1, B1} must have a positive

market share. To see why, suppose that all consumers buy the bundle, resulting inM obtaining µ.

Now, consider a deviation whereM charges ρ′1 = (µ− ε) /2 and µ′ = µ−ε+σ′1, where ε > 0 and

σ′1 ∈ (0, 1). In this deviation, all consumers with s < µ′ − 2ρ′1 = σ′1 then purchase the portfolio

{A1, B1} at a total margin of 2ρ′1 = µ− ε (as this gives them a higher net surplus compared to

the candidate equilibrium). Additionally, all consumers with s > σ′1 buy the bundle (as s then

exceeds the premium µ′−2ρ′1). By doing so,M obtains µ′ (1− σ′1)+2ρ′1σ
′
1 = µ−ε+σ′1 (1− σ′1),

which exceeds the profit of the candidate equilibrium, µ, for any σ′1 ∈ (0, 1) and ε < σ′1 (1− σ′1).

Hence, we must have σ1 = µ − 2ρ1 > 0 (and, as mentioned earlier, σ1 < 1). We now

demonstrate that ρ1 cannot be negative. To see this, consider a candidate equilibrium where

ρ1 < 0. If x̂ > 1, then a slight increase in ρ1 would not affect the sales of the bundle but would

reduce the loss incurred on the portfolio {A1, B1}, leading to a contradiction. If, instead, x̂ = 1,

consider a small deviation to µ′ = µ+ ε and ρ′1 =
(
µ′ − σ′1

)
/2 (such that σ′1 ≡ µ′ − 2ρ

′
1 = σ1).

This deviation induces some consumers with x ∈ (1−ε, 1] to switch to the rival portfolio {A2, B2}.

Specifically, those with s < σ1 switch away from the loss-making portfolio {A1, B1}, resulting in

an increased profit for M by (−2ρ1)× σ1 × ε. On the other hand, those with s ∈ (σ1, σ1 + 4tε)

stop buying the bundle, reducing M’s profit by µ × 4tε2. Since the gain is linear and the loss

is quadratic in ε, it follows that, for suffi ciently small ε, the deviation has a positive net impact
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on M’s profit.

Therefore, we must have ρ1 ≥ 0. However, in that case, any stand-alone firm can profitably

attract some consumers (specifically, those close to x = 1 and s = 0) by charging slightly more

than ρ1, leading to a contradiction.

Lemma 1 ensures that M sells the bundle in equilibrium (i.e., σ1 < 1). As a result, we can

focus on two types of equilibria: "true" mixed bundling, where M sells the portfolio {A1, B1}

alongside the bundle (i.e., σ1 > 0), and "de facto" pure bundling, whereM charges unattractive

stand-alone prices despite not committing to offering only the bundle (i.e., σ1 ≤ 0).

We proceed to characterize the candidate equilibria for each possible configuration before

addressing their existence.

A.1 Candidate symmetric equilibria

We begin by considering the true mixed bundling configuration, where M sells the bundle as

well as two stand-alone products: σ1 ∈ (0, 1). Let x̄ denote the location threshold such that

σ2 (x̄) = 1:

x̄ ≡ 1

2
+

2ρ2 − µ+ 1

4t
.

A.1.1 Configuration 1: 0 < σ1 < σ2(1) ≤ 1

This configuration arises when 0 < x̂ < 1 ≤ x̄, as illustrated by Figure A.1 below. The

conglomerate M’s profit can be expressed as:

ΠM = µ× {(1− σ1) x̂+

∫ 1

x̂
[1− σ2 (x)]dx}+ 2ρ1 × σ1x̂ = µ[1−

∫ 1

x̂
σ2 (x) dx]− σ2

1x̂

where the second equality follows from µ−2ρ1 = σ1, x̂ = 1
2−

ρ1−ρ2
2t , and σ2 (x) = σ1 +4t (x− x̂).

Figure A.1
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Differentiating this profit function with respect to ρ1 and using σ2 (x̂) = σ1, we obtain:

∂ΠM

∂ρ1

= −µσ1

2t
+ 4σ1x̂+

σ2
1

2t
=
σ1

2t
(σ1 − µ) + 4σ1x̂ = −σ1

t
ρ1 + 4σ1x̂ =

σ1

t
(4tx̂− ρ1) .

Solving for the first-order conditions for ρ1 gives:

ρ1 = 4tx̂.

Consider a slight decrease of A2’s margin α2 from α2 = ρ2. The profit of the stand-alone

firm A2 then becomes:

ΠA = α2[

∫ xB

xA

σ21 (x) dx+

∫ 1

xB

σ2 (x) dx],

where xA, σ21 (x), and σ2 (x) are given by (1), (2) and (3), respectively. Differentiating this

profit function with respect to α2 and evaluating the derivative at α2 = β2 = ρ2 leads to:

∂ΠA

∂α2

∣∣∣∣
α2=β2=ρ2

=

∫ 1

x̂
[σ1 + 4t (x− x̂)] dx− ρ2

σ1

2t
− ρ2

∫ 1

x̂
dx

= (
σ1

2t
+ 1− x̂) [2t (1− x̂)− ρ2] .

Solving for the first-order conditions for α2 = ρ2 gives:

ρ2 = 2t (1− x̂) .

Combining these two FOCs leads to the equilibrium margins:

ρ∗1 = ρm1 ≡
3

2
t, ρ∗2 = ρm2 ≡

5

4
t,

and the equilibrium threshold:

x̂∗ = x̂m ≡ 3

8
.

Moreover, differentiating ΠM with respect to µ yields:

∂ΠM

∂µ
= 1−

∫ 1

x̂
σ2 (x) dx− µ (1− x̂)− 2σ1x̂.

Evaluating the derivative at x̂m and ρm1 leads to:

µ∗ = µm ≡ 1

2
+

107

64
t,

σ∗1 = σm1 ≡
1

2
− 85

64
t.

Then, the assumption σm1 > 0 holds if:

t < tm ≡
32

85
.
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Conversely, whenever this condition holds, the other assumption also holds:

1− σ2 (1) = 1− [σ∗1 + 4t (1− x̂∗)] =
32− 75t

64
>

32− 75t

64

∣∣∣∣
t=tm

=
1

17
> 0.

Therefore, this candidate equilibrium arises whenever t < tm. We demonstrate in Online

Appendix B that this equilibrium indeed exists under this condition.

A.1.2 Configuration 2: 0 < σ1 < 1 ≤ σ2(1)

This case arises when 0 < x̂ < x̄ ≤ 1, as illustrated by Figure A.2 below. M’s profit is then

equal to:

ΠM = µ× {(1− σ1) x̂+

∫ x̄

x̂
[1− σ2 (x)]dx}+ 2ρ1 × σ1x̂ = µ[x̄−

∫ x̄

x̂
σ2(x)dx]− σ2

1x̂.

Figure A.2

We demonstrate that this configuration cannot arise in equilibrium. The proof consists of

two steps: first, we solve for the first-order conditions and derive the boundaries of parameters

for the best responses; second, we show that there is no interior solution for the best responses

in this configuration.

We first derive the first-order conditions for ρ1 and ρ2 and identify the boundary of σ1 under

the candidate equilibrium. The derivative of ΠM with respect to ρ1 remains the same as before:

∂ΠM

∂ρ1

=
σ1

t
(4tx̂− ρ1) .

Solving for the first-order conditions for ρ1 then gives: ρ1 = 4tx̂.

Following a slight decrease in α2 from α2 = ρ2, A2’s profit becomes:

ΠA = α2[

∫ xB

xA

σ21 (x) dx+

∫ x̄

xB

σ2 (x) dx+ (1− x̄)],

6



where xA, σ21 (x), and σ2 (x) are given by (1), (2), and (3), respectively, while:

x̄ ≡ 1

2
+
α2 + β2 − µ+ 1

4t
.

Differentiating this profit with respect to α2 and evaluating the derivative at α2 = β2 = ρ2

yields:

∂ΠA

∂α2

∣∣∣∣
α2=β2=ρ2

=

∫ x̄

x̂
[σ1 + 4t (x− x̂)] dx+ (1− x̄)− ρ2[

σ1

2t
+

∫ x̄

x̂
dx]

= [2t (x̄− x̂)− ρ2] (
σ1

2t
+ x̄− x̂) + 1− x̄

=
1

4t

{[
1− σ1

2
− ρ2

]
(1 + σ1) + 4t (1− x̂)− (1− σ1)

}
.

Solving for the first-order conditions for α2 = ρ2 and using 4t (x̄− x̂) = 1− σ1 then leads to:

ρ2 =
1− σ1

2
+

4t (1− x̂)− (1− σ1)

1 + σ1
.

Combine the two FOCs and using (4), we obtain the equilibrium margins:

ρ1 =
2t (5 + σ1)− (1− σ1)2

5 + 3σ1
, ρ2 =

20t− 3 (1− σ1)2

2 (5 + 3σ1)
,

and equilibrium thresholds:

x̂ =
2t (5 + σ1)− (1− σ1)2

4t (5 + 3σ1)
, x̄ =

t (5 + σ1) + 2
(
1− σ2

1

)
2t (5 + 3σ1)

. (5)

This candidate equilibrium arises under the condition x̄ ≤ 1, which amounts to:

t (5 + σ1) + 2
(
1− σ2

1

)
≤ 2t (5 + 3σ1)⇐⇒ (1 + σ1) (2− 5t− 2σ1) ≤ 0.

The above condition is equivalent to:

σ1 ≥ σ1 (t) ≡ 1− 5t

2
.

Therefore, this candidate equilibrium can arise if σ1 ∈ (max{σ1 (t) , 0}, 1). Note that σ1 (t) > 0

if and only if t < 2
5 .

Meanwhile, σ1 > σ1 also implies:

x̂ =
1

2
− (1− σ1)2 + 4tσ1

4t (5 + 3σ1)
>

1

2
−
(

5t
2

)2
+ 4t

(
1− 5t

2

)
4t
(
5 + 3

(
1− 5t

2

)) =
3

8
.

The inequality follows from the fact that the numerator, (1− σ1)2 + 4tσ1, decreases in σ1 for

σ1 > σ1 (t), while the denominator, 4t (5 + 3σ1), increases in σ1, then the second term decreases

in σ1.
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We show that the first-order derivative for µ, as evaluated at the candidate equilibrium, is

always negative. Differentiating M’s profit with respect to µ, while keeping ρ1 and ρ2 fixed and

using x̄ = (1 + 2ρ2 − µ) /4t, yields:

∂ΠM

∂µ
(µ, ρ1; ρ2) = x̄−

∫ x̄

x̂
σ2(x)dx− 2σ1x̂− µ

∫ x̄

x̂
dx

= x̂+
1− σ1

4t
− σ1

(1− σ1)

4t
− (1− σ1)2

8t
− 2σ1x̂− (σ1 + 8tx̂)

(1− σ1)

4t

= −x̂− 1− σ1

8t
(3σ1 − 1) ,

where the second equality comes from x̄ − x̂ = (1− σ1) /4t, µ = σ1 + 2ρ1, and the first-order

condition ρ1 = 4tx̂.

Moreover, using x̂ = x̂ (σ1) given by (5), we obtain:

∂ΠM

∂µ
(µ, ρ1; ρ2)

∣∣∣∣
x̂=x̂(σ1)

=
7− 20t− (21 + 4t)σ1 + 5σ2

1 + 9σ3
1

8t (5 + 3σ1)
≡ φ (σ1)

8t (5 + 3σ1)
.

The function φ (·) ≡ 7− 20t− (21 + 4t)σ1 + 5σ2
1 + 9σ3

1 is strictly convex in σ1 for σ1 ≥ 0 (as

φ′′ (σ) = 54σ + 10 is positive) and satisfies φ (1) = −24t < 0. Thus, it is negative in the entire

range σ1 ∈ [max {σ1 (t) , 0} , 1] if and only if it is negative at the lower bound of the range.

If t ≥ 2/5, max {σ1 (t) , 0} = 0. Then:

φ (0) = 7− 20t ≤ −1 < 0,

where the first inequality stems from t ≥ 2/5. If, instead, t < 2/5, max {σ1 (t) , 0} = σ1 (t) > 0.

Then:

φ (σ1) = − t
8

(32− 75t) (16− 15t) < 0,

where the inequality stems from t < 2/5.

Hence, for any µ > 0 and any (ρ1, ρ2) satisfying the associated first-order conditions, the

first-order condition for µ is negative, implying that M can benefit from reducing µ.

We now proceed to the candidate equilibria with de facto pure bundling, where σ1 ≤ 0. We

need to consider several configurations with different values of σ2 (0) and σ2 (1). However, we

can straightforwardly rule out two irrelevant cases. First, σ2 (0) < σ2 (1) < 0, in which case the

stand-alone firms do not sell their products, resulting in ρ2 = 0. Then, σ2 (1) = µ− 2ρ2 + 2t =

µ+ 2t < 0 implies µ < 0, leading to a loss for the conglomerate from selling the bundle. Second,

0 < 1 < σ2 (0) < σ2 (1). In this case the conglomerate does not sell any products, and it must set
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µ = 0 (otherwise, the conglomerate could attempt to sell the bundle by continuously reducing

µ). However, this would imply σ2 (0) = 0− 2ρ2 − 2t < 0, which contradicts the assumption.

We consider the following four configurations: configurations 3, 4, 5, and 6, respectively.

A.1.3 Configuration 3: σ2 (0) ≤ 0 < σ2 (1) ≤ 1

Let x̃ ≡ 1
2 −

µ−α2−β2
4t denote the threshold such that σ2 (x̃) = 0. This case arises when 0 < x̃ <

1 < x̄. Consider a candidate equilibrium in which:

• firmM charges prohibitively high (infinite, for example) margins for stand-alone products,

selling the bundle only to consumers with s > σ2 (x),

• firm M charges a margin of the bundle such that 0 < σ2 (1) < 1, and

• stand-alone firms charge a margin such that σ2 (0) < 0.

Since x̃ = σ−1
2 (0) > 0, all consumers with x ≤ x̃ will purchase the bundle. Using:

σ2 (x) = µ− α2 − β2 + 4t

(
x− 1

2

)
= 4t (x− x̃) ,

the demand for the stand-alone firms can be expressed as:

D{A2B2} =

∫ 1

x̃
σ2 (x) dx =

∫ 1

x̃
4t (x− x̃) dx = 2t (1− x̃)2 ,

and the demand for the bundle is equal to 1−D{A2B2}.

This configuration is demonstrated in Figure A.3 below.

Figure A.3
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Then, the profits of the conglomerate and stand-alone firms are given respectively by:

ΠM = µ
(
1−D{A2B2}

)
= µ

(
1− 2t (1− x̃)2

)
, (6)

and:

ΠA = α2D{A2B2} = α22t (1− x̃)2 ,

ΠB = β2D{A2B2} = β22t (1− x̃)2 .

Each profit function is strictly concave in the firm’s own margin:

∂2ΠM

∂µ
= −2 (1− x̃)− µ

4t
< 0,

∂2ΠA

∂α2
2

= −2 (1− x̃)− α2

4t
< 0,

∂2ΠB

∂β2
2

= −2 (1− x̃)− β2

4t
< 0.

Then, the best responses are characterized by the following first-order conditions, which are

expressed as the functions of the threshold 1− x̃:

µ =
1

1− x̃ − 2t (1− x̃) ,

α2 = β2 = 2t (1− x̃) .

We now solve for the equilibrium threshold 1− x̃, which determines the equilibrium margins.

Note that:

σ2 (x̃) = γ − α2 − β2 + 4t

(
x̃− 1

2

)
=

1

1− x̃ − 6t (1− x̃) + 4t

(
x̃− 1

2

)
,

then σ2 (x̃) = 0 amounts to:

10t (1− x̃)2 − 2t (1− x̃)− 1 = 0.

The above is a quadratic function of 1− x̃, and the solution is given by:

1− x̃ =
t+
√
t2 + 10t

10t
.

The equilibrium margins are (where the superscript p stands for pure bundling):

µ∗ = µ̆p ≡ 4
√
t2 + 10t− 6t

5
,

ρ∗2 = ρ̌p2 =

√
t2 + 10t+ t

5
,
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and the corresponding threshold is:

x̃∗ = x̃p =
9t−

√
t2 + 10t

10t
.

It is straightforward to verify that x̃p > 0 and σ2 (1) < 1 under condition 32
85 < t < 5

12 .

The conglomerate’s equilibrium profit:

Π∗M = µ̆p
(

1− 2t (1− x̃p)2
)

=

(
4
√
t2 + 10t− 6t

5

)(
201− t−

√
t2 + 10t

25

)
,

and stand-alone firms’profits are given by:

Π∗A = Π∗B = ρ̌p2 × 2t (1− x̃p)2 =
(ρ̌p2)

3

2t
.

This equilibrium arises when 0 < σ2 (1) ≤ 1, which requires t ≤ tp ≡ 5
12 . Furthermore, to

prevent the conglomerate’s deviation leading to mixed bundling with 0 < σ1 ≤ σ2(1) ≤ 1, it

is required that t > tm = 32
85 (see the proof for existence of the equilibrium). Therefore, this

equilibrium exists if tm < t < tp. In the analysis of equilibrium existence, we demonstrate that

there are no profitable deviations within this parameter range.

A.1.4 Configuration 4: σ2 (0) ≤ 0 < 1 ≤ σ2 (1)

This case arises when 0 < x̃ < x̄ < 1. In the candidate equilibrium:

• firm C charges prohibitively high (infinite, for example) stand-alone margins, selling the

bundle only to consumers with s > σ2 (x) ,

• firm C charges a high margin on the bundle such that σ2 (1) > 1, and

• the stand-alone firms charge a margin such that σ2 (0) ≤ 0.

Recall that x̃ and x̄ denote the location thresholds such that σ2 (x̃) = 0 and σ2 (x̄) = 1.

The demand for the conglomerate and the stand-alone firms can be expressed respectively by

x̄− D̃{A2B2} and 1− x̄+ D̃{A2B2}, where:

D̃{A2B2} ≡
∫ x̄

x̃
σ2 (x) dx =

1

8t
.
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The demand in this configuration is illustrated in Figure A.4 below.

Figure A.4

The equilibrium margins are determined by the first-order conditions. Using σ2 (x̃) = 0 and

σ2 (x̄) = 1, we have:

x̃ =
1

2
+
α2 + β2 − µ

4t
, x̄ =

1

2
+

1 + α2 + β2 − µ
4t

. (7)

The conglomerate’s profit can be expressed as:

ΠM = µ
(
x̄− D̃{A2B2}

)
= µ

(
1

2
+
α2 + β2 − µ

4t
+

1

8t

)
, (8)

while the stand-alone firms’profits are given by:

ΠA = α2

(
1− x̄+ D̃{A2B2}

)
= α2

(
1

2
+
µ− α2 − β2

4t
− 1

8t

)
, (9)

ΠB = β2

(
1− x̄+ D̃{A2B2}

)
= β2

(
1

2
+
µ− α2 − β2

4t
− 1

8t

)
.

Each profit function is strictly concave in the firm’s own margin. Thus, the best responses

are characterized by the following first-order conditions:

For µ :
1

2
+
α2 + β2 − 2γ1

4t
+

1

8t
= 0,

For α2 :
1

2
+
µ− 2α2 − β2

4t
− 1

8t
= 0,

For β2 :
1

2
+
µ− α2 − 2β2

4t
− 1

8t
= 0.

Solving these equations leads to a unique candidate equilibrium:

µ∗ = µ̃p ≡ 5t

2
+

1

8
,

α∗2 = β∗2 = ρ̃p2 ≡
3t

2
− 1

8
.
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The corresponding thresholds are then given by:

x̄∗ = x̄p =
5

8
+

5

32t
, x̃∗ = x̃ps =

5

8
− 3

32t
.

The equilibrium profits are:

Π∗M ≡ (µ̃p)2

4t
= t

(
5

4
+

1

16t

)2

, (10)

Π∗A = Π∗B ≡
(ρ̃p2)

2

4t
= t

(
3

4
− 1

16t

)2

.

It is easy to verify that x̄ ≤ 1 if and only if t ≥ tp = 5
12 . Therefore, this equilibrium occurs

when t ≥ tp. In the analysis of existence, we demonstrate that no profitable deviation exists

from this candidate equilibrium within this parameter range.

A.1.5 Configuration 5: 0 < σ2 (0) < σ2 (1) ≤ 1

This case arises when x̃ < 0 < 1 ≤ x̄. In this candidate equilibrium:

• firm C charges prohibitively high stand-alone margins such that it sells the bundle only

to consumers with s > σ2 (x) ,

• firm C charges a margin on the bundle such that σ2 (1) ≤ 1, and

• the stand-alone firms charge a margin such that σ2 (0) > 0.

The demand for the conglomerate and the stand-alone firms are given by 1− D{A2B2} and

D{A2B2}, respectively, where:

D{A2B2} =

∫ 1

0
σ2 (x) dx = (µ− α2 − β2) .

The profits of the conglomerate and the stand-alone firms can be expressed by:

ΠM = µ
(
1−D{A2B2}

)
= µ (1− (µ− α2 − β2)) ,

ΠA = α2D{A2B2} = α2 (γ − α2 − β2) ,

ΠB = β2D{A2B2} = β2 (γ − α2 − β2) .

13



The demand under this configuration is demonstrated in Figure A.5.

Figure A.5

Solving for the best responses leads to:

µ∗ =
3

4
, ρ∗2 =

1

4
. (11)

The equilibrium exists if σ2 (0) = γ −α2− β2− 2t > 0 and σ2 (1) < 1, and these two conditions

hold when t < 1/8. The equilibrium profits are: Π∗M = 9
16 and Π∗A = Π∗B = 1

16 .

Now we demonstrate that the aforementioned candidate equilibrium cannot be sustained.

Let’s consider a deviation in which the conglomerate matches the rivals’margins for the stand-

alone products: ρ1 = ρ2. This allows the conglomerate to cater to its loyal consumers located at

x ≤ x̂ = 1/2, who will purchase either the bundle A1 − B1 or the portfolio {A1, B1}. However,

such a deviation will lead some consumers to choose the stand-alone products {A1, B1} instead

of the bundle. The net gain from this deviation can be calculated as follows:

∆ ≡ µ
∫ x̂

0
σ2 (x) dx− σ2

1x̂.

Using the equilibrium margins µ = 3
4 and ρ

∗
2 = 1

4 , and noting that x̂ = 1/2 and σ1 = 1
4 , we

obtain:

∆ =
3

4

∫ 1/2

0

(
1

4
+ 4t

(
x− 1

2

))
dx− 1

32
=

1

16
− 3t

8
> 0,

where the inequality holds when t < 1/8. Hence, the candidate equilibrium cannot be sustained

in this configuration under the conditions 0 < σ2 (0) < σ2 (1) < 1.

A.1.6 Configuration 6: 0 < σ2 (0) < 1 < σ2 (1)

This case arises when x̃ < 0 < x̄ < 1. In this candidate equilibrium:

14



• firm C charges prohibitively high stand-alone margins such that it sells the bundle only

to consumers with s > σ2 (x) ,

• firm C charges a high margin on the bundle such that σ2 (1) > 1, and

• the stand-alone firms charge a margin such that σ2 (0) > 0.

Using σ2 (x̄) = 1, we can calculate:

x̄ =
1 + 2t+ α2 + β2 − µ

4t
.

The demand faced by the conglomerate and the stand-alone firms is given by x̄− D̂{A2B2} and

1− x̄+ D̂{A2B2}, respectively, where:

D̂{A2B2} =

∫ x̄

0
σ2 (x) dx = x̄

(
1− 2t+ µ− 2ρ2

2

)
.

The conglomerate’s profit can be expressed as:

ΠM = µ
(
x̄− D̂{A2B2}

)
= 2tγ1 x̄

2,

and the stand-alone firm’s profits can be written as:

ΠA = α2

(
1− 2t x̄2

)
, ΠB = β2

(
1− 2t x̄2

)
.

The demand is demonstrated in Figure A.6.

Figure A.6

We now solve for the candidate equilibrium. Differentiating ΠA with respect to α2, we obtain:

∂ΠA

∂α2
= 1− 2t x̄2 − ρ2x̄.
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Taking a further derivative with respect to α2, we have:

∂2ΠA

∂α2
2

= − 2x̄− ρ2

1

4t
< 0.

The profit function is concave and the best response ρ2 is characterized by the first-order con-

dition:

ρ2 =
1− 2t x̄2

x̄
.

Now, differentiating ΠM with respect to µ, we have:

∂ΠM

∂µ
= 2t

(
x̄2 − µx̄ 1

2t

)
= x̄ (2tx̄− µ) .

There is a unique interior solution for the first-order condition, given by µ = 2tx̄.

Now we demonstrate that this interior optimum cannot be supported in the current config-

uration. From

x̄ =
1 + 2t+ 2ρ2 − µ

4t
,

we can derive:

4tx̄ = 1 + 2t+ 2ρ2 − µ = 1 + 2t+
2− 4t x̄2

x̄
− 2tx̄.

By rearranging and using ω ≡ 1/t, we have 10 x̄2 − (ω + 2) x̄− 2ω = 0. Solving for x̄ leads

to:

x̄ =
(ω + 2) +

√
(ω + 2)2 + 80ω

20
.

On the one hand, for x̄ < 1 to hold, we require ω ≤ 8
3 . On the other hand, σ2(0) = 1−4tx̄ > 0

requires x̄ < ω/4, which implies ω > 20
3 . These two conditions contradict each other. Therefore,

there is no interior optimum in this configuration, and the candidate equilibrium cannot be

supported for 0 < σ2 (0) < 1 < σ2 (1).

The equilibrium outcomes are summarized below:

Proposition 1 Consider a conglomerate merger between two markets where products are hori-

zontally differentiated à la Hotelling with perfect correlation across markets. Suppose the merged

entity does not commit to pure bundling.

• When products are weak differentiated (i.e., t < tm = 32
85), there exists a unique symmet-

ric equilibrium where the merged entity engages in mixed bundling. The equilibrium is

characterized in Configuration 1.
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• When products are mildly differentiated (i.e., tm < t < tp = 5
12), a unique symmetric

equilibrium exists where the merged firm engages in de facto pure bundling. The equilibrium

is characterized in Configuration 3.

• When products are strongly differentiated (i.e., t > tp), a unique symmetric equilibrium

exists where the merged firm engages in de facto pure bundling. The equilibrium is char-

acterized in Configuration 4.

A.2 Existence of Equilibria

We have thoroughly characterized the candidate equilibria under product differentiation and

identified three configurations, each having a unique candidate equilibrium. We will now examine

the existence of each candidate equilibrium by verifying all potential deviations. As the second-

order conditions hold for each candidate equilibrium, there are no profitable local deviations

within their respective configurations. However, since a firm can unilaterally deviate to other

configurations, we must consider all possible “global deviations”. We will begin by analyzing

unilateral deviations by the conglomerate firm and subsequently assess deviations by the stand-

alone firms.

A.2.1 Deviations by the Conglomerate

We show that the conglomerate cannot benefit from any deviations, given the stand-alone firms’

margins α∗2 = β∗2 = ρ∗2. Firm M has the flexibility to adjust three margins under deviation,

namely α1, β1, and µ, allowing for numerous possibilities. However, the following Lemma

enables us to focus on “symmetric”deviations and limit the number of relevant deviations:

Lemma 2 Without loss of generality, we can focus on deviations that result in xA = xB ∈ [0, 1]

and σ1 ∈ [0, 1).

Proof. Without loss of generality, we can focus on deviations that satisfy α1 ≥ β1, which

implies xA ≤ xB. Furthermore, we can narrow our focus to deviations that result in xA ≥ 0 and

xB ≤ 1. If xA < 0, firmM does not sell product A on a stand-alone basis. In this case, replacing

α1 with the "limit" margin α′1 = ρ∗2 + t, leading to x′A = 0, would not affect its profit. On the

other hand, if xB > 1, it means that marginal consumers are not interested in B2. Therefore,

firm M could increase its profit by slightly increasing µ and β1, as it would not affect consumer
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demand (the choice between the relevant portfolios {A1, B1} and {A1, B2} only depends on α1,

and the choice between the bundle and these portfolios only depends on µ−β1). Hence, we can

restrict our attention to deviations that lead to 0 ≤ xA ≤ xB ≤ 1.

Let’s consider a deviation where 0 ≤ xA < xB ≤ 1, implying α1 > β1. In this case, the

portfolio {A1, B2} is strictly dominated by the portfolio {A2, B1}, which provides the same

utility but at a lower total price (since α∗2 = β∗2). As a result, consumers will choose either the

bundle (if their consumption synergies are significant) or one of the three stand-alone portfolios:

{A2, B1}, {A2, B2}, or {A1, B1}. Specifically, consumers with x < xA will opt for {A1, B1} if

s < σ1, while consumers with xA < x < xB will choose {A2, B2} if:

s < σ21 (x) = µ− ρ∗2 − β1,

and consumers with x > xB will buy {A2, B1} if:

s < σ2 (x) = µ− 2ρ∗2.

Conversely, consumers choose the bundle if:

s > σ (x) ≡ max {σ1, σ21 (x) , σ2 (x)} .

Note that, by construction, σ (x) is continuous and increasing in x, and σ (x) = σ1 for x ≤ xA,

σ (x) = σ21 (x) for xA ≤ x ≤ xB, and σ (x) = σ2 (xB) for x ≥ xB.

Let’s now replace α1 and β1 with:

α′1 = β′1 =
α1 + β1

2
,

and denote x̂ = xA+xB
2 as the resulting threshold for the choice between the stand-alone offers.

In other words, among the stand-alone offers, consumers will prefer the conglomerate if x < x̂

and will favor the stand-alone firms if x > x̂. Since this change does not alter σ2 (x), it does not

affect the demand of consumers with consumption synergies exceeding σ2 (xB), as they choose

between the bundle and {A2, B2}.

Furthermore, suppose there exists consumers with consumption synergies below σ1 (when

σ1 > 0). Then:

• consumers with x < xA or x > xB are not affected: the first ones continue buying {A1, B1},

and the latter continue purchasing {A2, B2};
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• consumers with xA < x < x̂ switch from {A2, B1} to the bundle (Area G1 in Figure A.7),

whereas consumers with x̂ < x < xB switch from {A2, B1} to {A2, B2} (Area L1 in Figure

A.7). As there are an equal number of consumers in both categories (i.e., xB− x̂ = x̂−xA),

the net impact on M’s profit is:

(µ− β1)− β1 > µ− α1 − β1 = σ1 > 0,

where the first inequality follows from α1 > β1, and the second inequality arises due to

the existence of consumers with 0 ≤ s < σ1.

Finally, suppose there exists consumers with consumption synergies s ∈ (σ1, σ2 (xB)). Let:

x′A (s) = σ−1
21 (s)

denote the relevant threshold for the choice between the bundle and {A2, B1} when facing the

margins α1 and β1. Furthermore, let:

x̂′ (s) =
x′A (s) + xB

2

denote the similar threshold when facing the margins α′1 and β
′
1. Then:

• consumers with x < x′A (s) or x > xB are not affected: the former continue purchasing the

bundle, and the latter continue buying {A2, B2};

• consumers with x′A (s) < x < x̂′ (s) switch from {A2, B1} to the bundle (with net gain

µ− β1 from each consumer; see Area G2 in Figure A.7), while these with x̂′ (s) < x < xB

switch from {A2, B1} to {A2, B2} (with a net loss β1 from each consumer; see Area L2

in Figure A.7). As there are an equal number of consumers in both categories (i.e.,

xB − x̂′ = x̂′ − x′A (s) and the Area G2 and Area L2 are equal), the net impact on M’s

profit is:

(µ− β1)− β1 > 0,

where the inequality follows from the existence of consumers with 0 ≤ s < σ2 (xB) =

µ− 2β1.

The gain and loss of demand resulting from this modification are illustrated in Figure A.7

(for the case with σ1 > 0 and σ2 (1) < 1), where Area G1 and Area G2 stand for the gain of
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demand and Area L1 and Area L2 are the loss of demand from this modification. Since x̂ is the

midpoint between xA and xB, Area G1 is equal to Area L1, and Area G2 is equal to Area L2.

Figure A.7

Thus, we can focus on deviations involving symmetric stand-alone margins: α1 = β1, which

implies xA = xB and σ2 (xA) = σ2 (xB) = σ1. Furthermore, we can narrow our attention to

deviations satisfying σ1 ≥ 0. To understand why, consider a deviation where α1 = β1 and

σ1 < 0. In this case, consumers only choose between the bundle and the offers of the stand-

alone firms. Let x̃ ≡ σ−1
2 (0) denote the lowest threshold above which some consumers may

prefer the stand-alone firms. Raising α1 and β1 to α
′
1 = β′1 = µ/2 would then yield σ′1 = 0 and

x′A = x′B = x̃, thereby leaving M’s profit unchanged. Consumers with x < x̃ would still choose

the bundle on which M charges the same margin µ, whereas consumers with x > x̃ would opt

for the stand-alone firms if s < σ2 (x) and revert to the bundle if s > σ2 (x).

Finally, we show that we can further narrow our focus to deviations satisfying σ1 < 1. To see

this, consider a deviation with µ and α1 = β1, resulting in σ1 ≥ 1. In this case, consumers do

not purchase the bundle but instead choose either {A1, B1} (if x < x̂ ≡ xA = xB) or {A2, B2}

(if x > x̂). Now, if we reduce the margin for the bundle to µ = 1 + α1 + β1 − ε, where ε is

a positive but arbitrarily small number, it does not affect the demand from consumers with

s < 1− ε, who continue to choose either {A1, B1} or {A2, B2}. However, among the consumers

with s > 1− ε, this change encourages those with x < x̂ to switch from {A1, B1} to the bundle

and also prompts some consumers with x > x̂ (specifically, those for whom s > σ2 (x)) to switch

from {A2, B2} to the bundle. It’s important to note that for this deviation to be profitable, the

initial deviation must satisfy α1 + β1 > 0. Then, the condition σ1 ≥ 1 implies µ ≥ α1 + β1 > 0.

Consequently, the alternative deviation resulting in σ1 < 1 is strictly more profitable than any
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deviation with σ1 ≥ 1.

Now we examine the existence for all three types of equilibrium under weak, mild, and strong

product differentiation, respectively.

Weak Product Differentiation (t < tm) We first verify the existence of the equilibrium

under weak differentiation (i.e., t ≤ tm = 32
85). The candidate equilibrium with mixed bundling

is characterized in Configuration 1. In this equilibrium, the conglomerate offers a price discount

for the stand-alone products such that σ1 > 0. The equilibrium arises under the conditions

0 < σ1 < σ2 (1) ≤ 1 and xA = xB = x̂ ∈ (0, 1). Denoting by ω ≡ 1
t , this equilibrium occurs in

the parameter region ω ≥ 85
32 .

Now, we examine the relevant deviations by the conglomerate given α∗2 = β∗2 = ρm2 = 5t
4 .

The relevant cut-off thresholds are now given by:

x̂ ≡ 1

2
− ρ1 − ρm2

2t
=

5

8
− ρ1

2t
,

σ2 (x) = µ− 2ρm2 + 4t

(
x− 1

2

)
= µ− 9

2
t+ 4tx.

The next Lemma 2 shows that we can further ignore deviations for which σ1 = 0 (i.e., any

deviations leading to pure bundling):

Lemma 3 Without loss of generality, we can focus on deviations that lead to xA = xB ∈ [0, 1]

and σ1 ∈ (0, 1).

Proof. From Lemma 2, we can restrict our attention to deviations of the form α1 = β1 = ρ1.

Consider such a deviation and further suppose ρ1 = µ/2, which implies σ1 = µ− 2ρ1 = 0. Two

cases can arise based on whether σ2 (1) is below or above 1. Let µ be the threshold value of µ

such that σ2 (1) = µ− 1
2 t = 1.

Suppose σ2 (1) ≥ 1, which occurs when:

µ ≥ µ = 1 +
t

2
.

Recall that x̃ and x̄ denote the location thresholds such that σ2 (x̃) = 0 and σ2 (x̄) = 1, respec-

tively. The demands for the conglomerate and for stand-alone firms are equal to x̄ − D̃{A2B2}
and 1− x̄+ D̃{A2B2}, where:

D̃{A2B2} =

∫ x̄

x̃
σ2 (x) dx =

1

8t
.
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Using σ2 (x̃) = 0 and σ2 (x̄) = 1, we have:

x̃ =
1

2
+

2ρ̂2 − µ
4t

=
9

8
− µ

4t
and x̄ =

9

8
+

1− µ
4t

.

Firm M’s profit is given by:

ΠM = µ
(
x̄− D̃{A2B2}

)
= µ

(
9

8
− µ

4t
+

1

8t

)
,

which is strictly concave in in µ. Solving for the best response yields:

µd =
1

4
+

9

4
t.

However, t ≤ 32
85 implies µ

d < µ. Hence, the maximum profit is achieved at the boundary µ = µ,

which is equal to:

ΠM = µ

(
9

8
−
µ

4t
+

1

8t

)
=

(
1 +

t

2

)(
1− 1

8t

)
= t

(
ω +

1

2

)(
1− ω

8

)
.

Comparing with the equilibrium profit:

ΠM =
1

4
+

107

64
t− 2375t2

4096
= t

(
ω

4
+

107

64
− 2375

4096ω

)
,

we have:
(ΠM −ΠM )

t
=
N (ω)

4096ω
,

where N (ω) ≡ 512ω3−2816ω2 +4800ω−2375. Note that N
(

85
32

)
> 0 and N ′ (ω) > 0 for ω ≥ 85

32

imply N (ω) > 0 for ω ≥ 85
32 . It follows that ΠM > ΠM , and such deviation is not profitable.

Consider now the case where σ2 (1) < 1, which occurs when:

µ < µ = 1 +
t

2
.

Then, firm M’s profit can be expressed as:

ΠM (µ) = µ
[
1− 2t (1− x̃)2

]
,

where x̃ is such that σ2 (x̃) = σ1 = 0 and satisfies:

4t (1− x̃) = σ2 (1) .

Differentiating ΠM with respect to µ yields:

∂ΠM

∂µ
= 1− 2t (1− x̃)2 − µ (1− x̃)

> 1−
1 + µ

8t
=

15t− 4

16t
> 0,
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where the first inequality comes from 1−x̃ = σ2 (1) /4t < 1/4t and µ < µ, and the last inequality

follows from t > 32
85 . Hence, any deviation involving σ1 = 0 and µ < µ is dominated by the

deviation with σ1 = 0 and µ = µ (i.e.σ2 (1) = 1), and the latter is not profitable as we have

already shown.

Relevant Deviations

It follows from Lemmas 2 and 3 that we can restrict our attention to deviations with sym-

metric stand-alone margins, of the form α1 = β1 = ρ1, and for which 0 < σ1 = µ−2ρ1 < 1. Two

cases can arise, depending on whether σ2 (1) is above or below 1. For 0 < σ1 < σ2(1) ≤ 1, we

know that the candidate equilibrium maximizes the conglomerate’s profit in this configuration,

and no such deviation can be profitable.

Hence, we only need to consider the deviation leading to 0 < σ1 < 1 < σ2(1). This case

arises when:

µ ≥ µ = 1 +
t

2
.

Recall that:

x̄ = σ−1
2 (s) =

2ρm2 − µ+ s+ 2t

4t
=

9

8
+
s− µ

4t
,

which represents the largest location for which a consumer may be buying the bundle (any

consumer with x > x̄ will patronize the stand-alone firms, as s ≤ s < σ2 (x)). The demand for

firm M’s stand-alone offering is given by:

D{A1B1} (µ, ρ1) = σ1x̂,

whereas the demand for the bundle is:

DA1−B1 (µ, ρ1) = (1− σ1) x̂+

∫ x̄

x̂
(1− σ2(x)) dx.

Therefore, firm M’s profit can be expressed as:

ΠM (µ, ρ1) = µDA1−B1 + 2ρ1D{A1B1} = µ

[
x̄−

∫ x̄

x̂
σ2(x)dx

]
− σ2

1x̂.

We first characterize the optimal deviation under the configuration 0 < σ1 < 1 < σ2(1).

Differentiating with respect to ρ1 (noting that x̄ does not depend on ρ1 and using σ2(x̂) = σ1)

yields:
∂ΠM

∂ρ1

(µ, ρ1) =
σ1

t
(4tx̂− ρ1) =

σ1

t
(2t+ 2ρm2 − 3ρ1) .

It follows from σ1 > 0 that ΠM (µ, ρ1) is strictly quasi-concave in ρ1 and is maximal for:

ρ1 = ρd1 =
3

2
t.
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The condition σ1 > 0 then amounts to (denote by µ̊ the threshold of µ such that σ1 = 0):

µ > µ̊ ≡ 2ρd1 = 3t.

Then:

µ− µ̊ = 1− 5

2
t > 1− 5

2
tm =

1

17
> 0.

The above condition implies that, for any µ > µ > µ̊:

σ1 > τ1 ≡ µ− 2ρm1 = 1− 5t

2
>

1

17
.

Thus, the optimal deviation must satisfy ρ1 = ρd1, implying:

x̂ =
1

2
− ρd1 − ρ̂2

2t
=

3

8
.

Now, we show that the optimal deviation is not profitable. Using:

x̄ = x̂+
1− σ1

4t
,

µ = σ1 + 2ρd1 = σ1 + 8tx̂,∫ x̄

x̂
σ2(x)dx = (x̄− x̂)

1 + σ1

2
=

(1− σ1) (1 + σ1)

8t
,

we can further express M’s profit as a function of σ1:

ΠM (σ1) = (σ1 + 8tx̂)

(
x̂+

1− σ1

4t
− (1− σ1) (1 + σ1)

8t

)
− σ2

1x̂

= (σ1 + 8tx̂)

(
x̂+

(1− σ1)2

8t

)
− σ2

1x̂.

The relevant range is σ1 ∈ (τ1, 1), and the derivative is given by

Π′M (σ1) =
1− 8tx̂− 4σ1 + 3σ2

1

8t
=

1− 3t− 4σ1 + 3σ2
1

8t
.

Then, Π′M (σ1) is convex and satisfies:

Π′M (1) =
−3

8
< 0,

Π′M (τ1) = −(32− 75t)

32
< 0,

where the second inequality comes from t ≤ 32
85 . It follows that ΠM (σ1) < 0 in the relevant

range σ1 ∈ (τ1, 1). Thus, any deviation leading to σ1 > τ1 is dominated by a deviation leading

to σ1 = τ1 (i.e., σ2(1) = 1). However, we know that any deviation leading to 0 < σ1 < σ2(1) = 1

is not profitable.
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Mild Product Differentiation (tm < t < tp) The equilibrium with de facto pure bundling

occurs under mild product differentiation occurs (i.e., 32
85 ≤ t ≤ tp = 5

12). The candidate

equilibrium is characterized in Configuration 4 with σ1 ≤ 0 < σ2 (1) ≤ 1. Using ω = 1
t , the

relevant parameter range is:
12

5
≤ ω ≤ 85

32
. (12)

Firm M’s equilibrium profit can be rewritten as:

ΠM = µ̆p
(

1− 2t (1− x̃p)2
)

= t

(
4
√

1 + 10ω − 6

5

)(
20ω − 1−

√
1 + 10ω

25ω

)
. (13)

Thanks to Lemma 1, without loss of generality, we can focus on deviations with α1 = β1 = ρ1,

given that the margins of stand-alone firms are α∗2 = β∗2 = ρ̌p2 = t
√

1+10ω+1
5 . Consumers’relevant

options include the bundle and the two stand-alone portfolios offered by firm M and by the

stand-alone firms. Specifically, consumers with x < x̂ will purchase {A1, B1} if s < σ1, where:

x̂ =
1

2
− ρ1 − ρ̌2

2t
=

√
1 + 10ω + 6

10
− ρ1

2t
.

Alternatively, these consumers will opt for the bundle if s > σ1. Conversely, consumers with

x > x̂ will buy {A2, B2} if s < σ2 (x), where:

σ2 (x) = µ− 2ρ̌2 + 4t

(
x− 1

2

)
= µ−

2t
(√

1 + 10ω + 6
)

5
+ 4tx, (14)

These consumers will opt for the bundle if s > σ2 (x).

The following Lemma demonstrates that we can further disregard deviations where σ1 = 0

(i.e., any deviations leading to pure bundling):

Lemma 4 Without loss of generality, we can focus on deviations leading to xA = xB ∈ [0, 1]

and σ1 ∈ (0, 1).

Proof. From Lemma 2, we can limit our focus to deviations of the form α1 = β1 = ρ1.

Consider a deviation with ρ1 = µ/2, such that σ1 = µ− 2ρ1 = 0. Two scenarios can then arise,

depending on whether σ2 (1) falls below or above 1. Let’s denote by µ the threshold value of µ

for which σ2 (1) = µ− 2ρ̌2 + 2t = 1.

If σ2 (1) ≤ 1, then the demands for the conglomerate and for the stand-alone firms are

respectively equal to 1 − D{A2B2} and D{A2B2}, where D{A2B2} = 2t (1− x̃)2, and x̃ is such

that σ2 (x̃) = 0. Consequently, the profit of firm M , as given by (6) (with the margins of the

stand-alone firms set to their equilibrium values: α2 = β2 = ρ̌p2), is strictly concave in µ and

reaches its maximum for µ∗ = µ̌.
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Let’s consider the case where σ2 (1) > 1. Using (14), this condition arises when:

µ > µ = 1 + 2ρ̌2 − 2t = 1 +
t
(
2
√

1 + 10ω − 8
)

5
.

Firm M’s profit can be expressed as:

ΠM (µ) = µ
(
x̄−D{A2B2}

)
= µ

(
1

2
+

2ρ̌2 − µ
4t

+
1

8t

)
,

where x̄ is such that σ2 (x̄) = 1.

Differentiating ΠM with respect to µ, we obtain:

ΠM (µ) =
1

2
+

2ρ̌2 − 2γ1

4t
+

1

8t

<
3

2
− 3ω

8
− ρ̌2

2t

=
3

2
− 3ω

8
−
√

1 + 10ω + 1

10
≤ 0,

where the first inequality comes from µ > µ, and the last inequality follows from ω ≥ 12
5 . Hence,

any deviation involving σ1 = 0 and µ > µ is dominated by the deviation with σ1 = 0 and µ = µ

(i.e. σ2 (1) = 1). However, we have already shown that deviations leading to σ2 (1) = 1 is not

profitable.

It follows from Lemmas 2 and 4 that we can restrict our attention to deviations with sym-

metric stand-alone margins α1 = β1 = ρ1 satisfying 0 < σ1 = µ − 2ρ1 < 1. We examine two

relevant cases that depend on whether σ2 (1) lies above or below 1.

(1): Deviations leading to 0 < σ1 ≤ σ2(1) ≤ 1

Using (14), this case arises when µ ≤ µ. The demand for firm M’s stand-alone products is

given by:

D{A1B1} (µ, ρ1) = σ1x̂,

whereas the demand for the bundle is given by:

DA1−B1 (µ, ρ1) = (1− σ1) x̂+

∫ 1

x̂
[1− σ2(x)] dx.

Then, firm M’s profit can be expressed as:

ΠM (µ, ρ1) = µDA1−B1 + 2ρ1D{A1B1} = µ

[
1−

∫ 1

x̂
σ2(x) dx

]
− σ2

1x̂.

First, we solve for the optimal deviation. By differentiating Firm M’s profit with respect to

ρ1 and using σ2(x̂) = σ1, we get:

∂ΠM

∂ρ1

(µ, ρ1) =
σ1

t
(4tx̂− ρ1) =

σ1

t
(2t+ 2ρ̌2 − 3ρ1) .
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Given that σ1 > 0, it follows that ΠM (µ, ρ1) is strictly quasi-concave in ρ1 and reaches its

maximum at:

ρ1 = ρd1 =
2t+ 2ρ̌2

3
=

2t
(√

1 + 10ω + 6
)

15
.

The condition σ1 > 0 then implies:

µ > µ̊ = 2ρd1 =
4t
(√

1 + 10ω + 6
)

15
,

where µ̊ denotes the threshold of µ such that σ1 = 0.

We will now demonstrate that the optimal deviation is not profitable. To do this, we need

to compare µ̊ with µ, considering two scenarios: either either µ̊ > µ or µ̊ ≤ µ.

Suppose µ̊ ≥ µ. Then, µ ≤ µ < µ̊ implies σ1 < 0. Since ΠM (µ, ρ1) is continuous and strictly

quasi-concave in ρ1, it follows that any deviation leading to 0 < σ1 < 1 ≤ σ2(1) is dominated by

the deviation that leads to σ1 = 0 (maintaining µ and adjusting ρ1 to µ/2). However, according

to Lemma 4, deviations where σ1 = 0 are not profitable.

Suppose µ̊ < µ. For any µ ∈ (̊µ, µ], σ1 > 0 and the optimal deviation must satisfy ρ1 = ρd1,

which implies:

x̂ =
1

2
− ρd1 − ρ̌

p
2

2t
=

1

6
+
ρ̌p2
6t
.

Using σ2(x) = µ−2ρ̌2 + 4t
(
x− 1

2

)
= σ1 + 4t (x− x̂), we can rewrite ΠM as a function of σ1:

ΠM (σ1) = (σ1 + 8tx̂)
[
1− σ1 (1− x̂)− 2t (1− x̂)2

]
− σ2

1x̂.

The relevant range is σ1 ∈ (0, 1) and the derivative is given by:

Π′M (σ1) = 1− 2σ1 − 2t (1− x̂)2 − 8tx̂ (1− x̂) ,

which satisfies:

Π′M (1) = −1− 2t (1− x̂)2 − 8tx̂ (1− x̂) < 0,

and:

Π′M (0) = 1− 2t (1− x̂) (1 + 3x̂)

=
160ω − 383− 8

√
1 + 10ω

150

≤
160× 85

32 − 383− 8
√

1 + 10× 85
32

150
= 0,

where the inequality comes from ω ≤ 85
32 .
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Given that the second-order derivative is negative, it follows that ΠM (σ1) < 0 within the

relevant range of σ1 ∈ (0, 1). Therefore, any deviation leading to σ1 > 0 is once again dominated

by the deviation resulting in σ1 = 0. However, according to Lemma 4, there are no profitable

deviations when σ1 = 0.

(2): Deviation leading to 0 < σ1 < 1 < σ2(1)

This case arises when µ > µ. Recall that:

x̄ = σ−1
2 (1) =

2ρ̌2 − µ+ 1 + 2t

4t
=

3

5
+

√
1 + 10ω

10
+
ω

4
− µ

4t
,

which represents the maximum location x at which a consumer will choose to buy the bundle.

The demand for M’s stand-alone products is given by:

D{A1B1} (µ, ρ1) = σ1x̂,

while the demand for the bundle is:

DA1−B1 (µ, ρ1) = (1− σ1) x̂+

∫ x̄

x̂
[1− σ2(x)] dx.

Therefore, firm M’s profit can be expressed as:

ΠM (µ, ρ1) = µDA1−B1 + 2ρ1D{A1B1} = µ

[
x̄−

∫ x̄

x̂
σ2(x)dx

]
− σ2

1x̂.

First, we characterize the optimal deviation. Differentiating ΠM with respect to ρ1 (noting

that x̄ does not depend on ρ1, and using σ2(x̂) = σ1), we obtain:

∂ΠM

∂ρ1

(µ, ρ1) = −µσ1

2t
+
σ2

1

2t
+ 4σ1x̂ =

σ1

t
(4tx̂− ρ1) .

Given that σ1 > 0, it follows that ΠM (µ, ρ1) is strictly quasi-concave in ρ1 and is maximized

when:

ρ1 = ρd1 =
2t+ 2ρ̌2

3
.

The condition σ1 > 0 then corresponds to µ > µ̊ = 2ρd1. Similarly, we need to consider

two cases, depending on whether µ̊ > µ or µ̊ ≤ µ (recall that µ is the threshold of µ such that

σ2 (1) = 1).

Suppose µ̊ > µ. Given that ΠM (µ, ρ1) is continuous and strictly quasi-concave in ρ1, it

follows that any deviation involving µ ∈ [µ, µ̊) (i.e., σ1 < 0) is dominated by a deviation leading

to σ1 = 0. But deviations where σ1 = 0 is not profitable from Lemma 4.
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We now focus on the case where µ > µ̊ (i.e., σ1 > 0). From the above analysis, for any such

µ, the optimal deviation involves ρ1 = ρd1, which implies:

x̂ =
1

2
− ρd1 − ρ̌

p
2

2t
=

1

6
+
ρ̌2

6t
.

Using:

x̄ = x̂+
1− σ1

4t
,

µ = σ1 + 2ρd1 = σ1 + 8tx̂,∫ x̄

x̂
σ2(x)dx = (x̄− x̂)

1 + σ1

2
=

(1− σ1) (1 + σ1)

8t
,

we can express M’s profit as a function of σ1:

ΠM (σ1) = (σ1 + 8tx̂)

(
x̂+

1− σ1

4t
− (1− σ1) (1 + σ1)

8t

)
− σ2

1x̂,

where the relevant range is σ1 ∈ (0, 1).

Differentiating ΠM (σ1) with respect to σ1, we have:

Π′M (σ1) =
1− 8tx̂− 4σ1 + 3σ2

1

8t
,

which is convex and satisfies:

ΠM (1) = −x̂ < 0,

and:

ΠM (0) =
1− 2ρd1

8t
=

1

8

(
ω − 4

√
1 + 10ω + 24

15

)
< 0,

where the inequality comes from ω ≤ 85
32 .

It follows that ΠM (σ1) < 0 in the relevant range σ1 ∈ (0, 1). Hence, any deviation leading

to σ1 > 0 is once again dominated by a deviation that leads to σ1 = 0, which is not profitable

from Lemma 4.

Suppose µ̂ ≤ µ. Note that, given ρ1 = ρd1, ΠM (µ) = ΠM (σ1) < 0 with the relevant range

σ1 ∈ (0, 1), which corresponds to the relevant range of µ ∈ (µ̂, µ̄) with µ̄ = 2ρd1 + 1. Also note

that ω ≤ 85
32 implies:

µ̄− µ =
4t+ 4ρ̌p2

3
− 2ρ̌p2 + 2t =

t

15

(
48− 2

√
1 + 10ω

)
> 0.

Therefor, for µ̄ ≥ µ > µ > µ̊, any deviation leading to µ > µ is dominated by a deviation leading

to µ = µ (and σ2(1) = 1). However, we have already demonstrated that such a deviation is not

profitable.
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Strong Product Differentiation (t > tp) Another equilibrium with de facto pure bundling

arises under strong product differentiation (i.e., t ≥ tp = 5
12), and the candidate equilibrium

is characterized in Configuration 5 with σ2 (1) ≥ 1 and σ1 ≤ 0. We can rewrite the relevant

parameter region as:

t ≥ 5

12
⇐⇒ ω =

1

t
≤ 12

5
. (15)

Now, we demonstrate that the conglomerate cannot benefit from deviations, given that the

stand-alone firms set their margins α∗2 = β∗2 = ρ̃p2 = 3t
2 −

1
8 . Thanks to Lemma 2, we can

restrict our attention to relevant deviations with xA = xB ∈ [0, 1] and σ1 ∈ [0, 1). Under such

deviations, the thresholds are given by:

x̂ =
1

2
− ρ1 − ρ̃

p
2

2t
=

5

4
− ω

16
− ρ1

2t
,

and:

σ2 (x) = µ− 2ρ̃p2 + 4t

(
x− 1

2

)
= µ+

1

4
− 5t+ 4tx. (16)

The following Lemma demonstrates that we can further disregard deviations for which σ1 =

0:

Lemma 5 Without loss of generality, we can focus on deviations leading to xA = xB ∈ [0, 1]

and σ1 ∈ (0, 1).

Proof. From Lemma 2, we can restrict our attention to deviations with α1 = β1 = ρ1.

Let’s consider a deviation with ρ1 = µ/2, implying σ1 = µ− 2ρ1 = 0. Two cases can then arise,

depending on whether σ2 (1) lies below or above 1. Let γ
1
denote the threshold of µ such that

σ2 (1) = µ+ 1
4 − t = 1.

Suppose σ2 (1) ≥ 1. Then, the demand for the conglomerate and for the stand-alone firms

is respectively equal to x̄− D̃{A2B2} and 1− x̄+ D̃{A2B2}, where D̃{A2B2} = ω/8. Consequently,

the profit of the conglomerate is given by:

ΠM = µ
(
x̄− D̃{A2B2}

)
= µ

(
1

2
− µ− 2ρ̃2

4t
+
ω

8

)
,

which is strictly concave in µ and is maximized at µ = µ̃p.

Suppose σ2 (1) < 1. Using (16), this implies:

µ < µ = t+
3

4
.

The merged firm M’s profit can be expressed as:

ΠM (µ) = µ
[
1− 2t (1− x̃)2

]
,

30



where x̃ is such that σ2 (x̃) = 0 and satisfies:

4t (1− x̃) = σ2 (1) .

Differentiating ΠM (µ) with respect to µ, we obtain:

Π′M (µ) = 1− 2t (1− x̃)2 − µ (1− x̃) >
12t− 5

16t
≥ 0,

where the first inequality comes from 1 − x̃ = σ2 (1) /4t < 1/4t and µ < µ, while the last

inequality follows from (15). Hence, any deviation involving σ1 = 0 and µ < µ is dominated by

the deviation with σ1 = 0 and µ = µ (σ2 (1) = 1). However, we have already shown that the

deviation leading to σ2 (1) = 1 is not profitable.

As inferred from Lemmas 2 and 5, we can narrow our focus to deviations where the stand-

alone margins are symmetric, i.e., α1 = β1 = ρ1, which satisfy 0 < σ1 = µ− 2ρ1 < 1. Under this

condition, two cases can arise depending on whether σ2 (1) is greater or lesser than 1.

(1): Deviation leading to 0 < σ1 < 1 ≤ σ2(1)

This case arises when µ ≥ µ. Note that:

x̄ = σ−1
2 (s) =

2ρ̃2 − µ+ s+ 2t

4t
=

5

4
+

3ω

16
− µ

4t
.

Firm M’s profit can be expressed as:

ΠM (µ, ρ1) = µ

[
x̄−

∫ x̄

x̂
σ2(x)dx

]
− σ2

1x̂.

First, we characterize the optimal deviation. Differentiating ΠM with respect to ρ1, we have:

∂ΠM

∂ρ1

(µ, ρ1) =
σ1

t
(4tx̂− ρ1) =

σ1

t

(
5t− 1

4
− 3ρ1

)
.

Given that σ1 > 0, it follows that ΠM (µ, ρ1) is strictly quasi-concave in ρ1 and is maximized at:

ρ1 = ρd1 =
5t

3
− 1

12
.

Then, the condition σ1 > 0 implies:

µ > µ̊ = 2ρd1 =
10t

3
− 1

6
.

Then:

µ̊− µ =
7t

3
− 11

12
≥ t

18
> 0,

where the first inequality comes from (15).
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Given that ΠM (µ, ρ1) is continuous and strictly quasi-concave in ρ1, it follows that any

deviation involving µ ∈
[
µ, µ̊

]
and σ1 ∈ (0, 1) is dominated by a deviation leading to σ1 = 0,

which is not profitable from Lemma 5.

Then, we only need to examine the case where µ > µ̊ (i.e., σ1 > 0). From the previous

discussion, for any such µ, the optimal deviation must satisfy ρ1 = ρd1, which implies:

x̂ =
1

2
− ρd1 − ρ̃2

2t
=

5

12
− ω

48
.

Firm M’s profit can then be rewritten as a function of σ1:

ΠM (σ1) = (σ1 + 8tx̂)

(
8tx̂+ (1− σ1)2

8t

)
− σ2

1x̂,

where the relevant range is σ1 ∈ (0, 1). The derivative is given by:

Π′M (σ1) =
1− 8tx̂− 4σ1 + 3σ2

1

8t
,

which is convex and satisfies (using (15)):

Π′M (0) =
7ω − 20

48
≤ − 1

15
< 0,

Π′M (1) = −x̂ < 0.

This implies that ΠM (σ1) < 0 in the relevant range σ1 ∈ (0, 1). Thus, any deviation leading

to σ1 > 0 is once again dominated by a deviation leading to σ1 = 0, which is not profitable

according to Lemma 5.

(2): Deviation leading to 0 < σ1 ≤ σ2(1) < 1

This case arises when µ < µ. Firm M’s profit can be expressed as:

ΠM (µ, ρ1) = µ

[
1−

∫ 1

x̂
σ2(x) dx

]
− σ2

1x̂.

Differentiating ΠM with respect to ρ1 and using σ2(x̂) = σ1, we obtain:

∂ΠM

∂ρ1

(µ, ρ1) = −µσ1

2t
+
σ2

1

2t
+ 4σ1x̂ =

σ1

t
(4tx̂− ρ1) .

For σ1 > 0, the optimal deviation must lead to ρ1 = ρd1 = 4tx̂. However, µ < µ < µ̊ = 2ρ̂1

implies σ1 < 0. Since ΠM (µ, ρ1) is continuous and strictly quasi-concave in ρ1, it follows that

any such deviation is dominated by a deviation leading to σ1 = 0, which, as we’ve previously

established, is not profitable.
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A.2.2 Deviations by Stand-alone Firms

We demonstrate that the stand-alone firms cannot benefit from deviations from three types of

equilibria.

Weak Product Differentiation (t < tm) This equilibrium arises when t < 32
85 . The can-

didate equilibrium is characterized in Configuration 1, where equilibrium margins are given by

µ∗ = µm = 1
2 + 107

64 t, α
∗
1 = β∗1 ≡ ρm1 = 3

2 t, and α
∗
2 = β∗2 ≡ ρm2 = 5

4 t. Given the symmetric

positions of the two firms, we need to consider two situations. First, one firm, say, stand-alone

firm A2 reduces α2, resulting in xA < xB = x̂. Second, stand-alone firm B2 increases β2, leading

to xA = x̂ < xB.

Deviations by Stand-alone Firm A2 Suppose firm A2 sets α2 < α∗2 = ρm2 . Consumers

with xA < x ≤ xB = x̂ prefer the mix of {A2, B1} than other options if:

s ≤ σ21 (x) = µ∗ − α2 − β∗1 + 2t

(
x− 1

2

)
=

1

2
− 53

64
t+ 2tx− α2.

Moreover, consumers prefer {A2, B2} than other options if:

s ≤ σ2 (x) = µ∗ − α2 − β∗2 + 4t

(
x− 1

2

)
=

1

2
− 101

64
t+ 4tx− α2.

We will examine the following four relevant deviations respectively:

(1). Deviations leading to σ2(1) ≤ 1 and 0 ≤ xA ≤ xB = x̂

This case arises when:

σ2(1) =
1

2
+

155

64
t− α2 ≤ 1,

0 ≤ xA =
α2

2t
− 1

4
≤ 3

8
.

This requires α2 ∈ [α2, α
∗
2], where α2 = min{155

64 t −
1
2 ,

t
2}. Firm A2’ profit function can be

written as:

ΠA(α2) = α2

[∫ x̂

xA

σ21(x)dx+

∫ 1

x̂
σ2(x)dx

]
=

α2

(
64α2

2 − 2α2(32 + 75t) + 5t(32 + 15t)
)

256t
.

Differentiating ΠA with respect to α2, we obtain:

Π
′
A(α2) =

(4α2 − 5t)(48α2 − 32− 15t)

2561t
.
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Solving for the first-order condition leads to:

α1
2 =

5t

4
and α2

2 =
32 + 15t

48
,

where α1
2 = α∗2 < α2

2.

Differentiating Π
′
A(α2) further with respect to α2 leads to:

Π
′′
A(α2) =

384α2 − 128− 300t

256t
,

and

Π
′′′
A(α2) =

3

2t
.

Note that t < 32
85 implies:

Π
′′
A(α1

2) =
180t− 128

256t
< 0.

It is straightforward to verify that Π
′
A(α2) > 0. Hence, the profit function is strictly increas-

ing in the relevant range α2 ∈
[
min{155

64 t−
1
2 ,

t
2},

5
4 t
]
and is maximized at α1

2 = α∗2.

(2). Deviation leading to σ2(1) ≤ 1 and xA < 0

This case occurs when:
155

64
t− 1

2
≤ α2 <

t

2
.

Firm A2’profit function can be expressed as:

ΠA(α2) = α2

[∫ x̂

0
σ21(x)dx+

∫ 1

x̂
σ2(x)dx

]
=
α2(−16α2 + 8 + 9t)

16
.

The first-order derivative of ΠA(α) is given by:

Π
′
A(α2) =

−32α2 + 8 + 9t

16
.

Then, the profit function is strictly concave:

Π
′′
A(α2) = −2 < 0.

It is straightforward to verify that Π
′
A(α2) > 0 for α2 <

t
2 , given that t <

32
85 . Therefore, the

profit function is strictly increasing in the relevant range and is maximized at α2 = t
2 . The

maximum profit from deviation is equal to:

Πd
A =

t(81 + t)

32
=
t(8ω + 1)

32ω
.

Comparing it with the equilibrium profit:

Π∗A =
25t(32− 5t)

2048
=

25t(32ω − 5)

2048ω
,
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it follows that: (
Π∗A −Πd

A

)
ω

t
=

25(32ω − 5)

2048
− (8ω + 1)

32
=

9(32ω − 21)

2048
> 0.

Hence, such deviation is not profitable.

(3). Deviation leading to σ2(1) > 1 and xA ≥ 0

This case occurs under the following conditions:

t

2
≤ α2 < ᾱ2 =

155

64
t− 1

2
.

This requires:
32

123
< t <

32

85
,

or equivalently:
85

32
< ω <

123

32
.

In this case, firm A2’profit function can be written as:

ΠA(α2) = α2

[∫ x̂

xA

σ21(x)

1
dx+

∫ x̄

x̂

σ2(x)

1
dx+ (1− x̄)

]
=

α2

[
1024

(
4α2

2 − 12α2 − 1
)

+ 320t(2α2 + 95)− 14425t2
]

32768t
.

The profit function is cubic with respect to α2 and the derivative satisfies:

Π
′′′
A(α2) =

3

4t
.

Taking the first-order derivative leads to:

Π′A(α2) =
1024

(
12α2

2 − 24α2 − 1
)

+ 320t(4α2 + 95)− 14425t2

32768t
.

Solving for FOC yields two optimal values:

α1
2 =

1921− 10t−
√

39936− 95040t+ 43375t2

192
,

α2
2 =

1921− 10t+
√

39936− 95040t+ 43375t2

192
,

where α1
2 < α2

2.

We now show that both values are out of the range for α2, and thus the optimal deviation

must be at the boundary. To see this, note that:

α1
2 − ᾱ
t

=
3

2
ω − 475

192
− 1

192

√
39 936ω2 − 95 040ω + 43375

=
288ω − 475−

√
39 936ω2 − 95 040ω + 43375

192
.

35



The above expression is positive since:

M (ω) ≡ (288ω − 475)2 −
(
39 936ω2 − 95 040ω + 43375

)
.

= 43 008

(
ω − 465

224

)2

− 21 600

7
.

> 43 008

(
85

32
− 465

224

)2

− 21 600

7
= 11400,

where we used ω > 85
32 to obtain the inequality.

Hence, the profit function is strictly increasing in the relevant range for α2 ≤ ᾱ2 and is

maximized at ᾱ2. The maximum profit is equal to:

Πd
A(ᾱ2) =

(155t− 32)
(
3072− 4800t+ 5575t2

)
1048576t

=
t(155− 32ω)

(
3072ω2 − 4800ω + 5575

)
1048576ω

.

It is less than the equilibrium profit Π∗A, since ω ≥ 85
32 implies:

Π∗A −Πd
A(ᾱ2)

t
=

3(32ω − 75)2

1048576ω
(32ω − 55) > 0.

(4). Deviation leading to σ2(1) > 1 and xA ≤ 0

This case can occur in the following range: α2 ∈ (0, ᾱ2 = min
{

155t
64 −

1
2 ,

t
2

}
). It requires:

32

155
< t <

32

85
,

or equivalently:
85

32
< ω <

155

32
.

In this case, firm A2’profit function can be written as:

ΠA(α2) = α2

[∫ x̂

0
σ21(x)dx+

∫ x̄

x̂
σ2(x)dx+ (1− x̄)

]
=

α2

[
64t(411− 202α2)− 1024(2α2 + 1)2 − 5593t2

]
32768t

.

The profit function is cubic with respect to α2 and the derivative satisfies:

Π
′′′
A(α) = − 3

4t
.

The first-order derivative of ΠA(α2) is given by:

Π
′
A(α2) =

64t(411− 404α2)− 1024(2α2 + 1)(6α2 + 1)− 5593t2

32768t
.
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Solving for the relevant optimum leads to

α2 =

√
1024 + 104768t+ 24025t2 − 64− 202t

192

= t

√
1024ω2 + 104768ω + 24025− 64ω − 202

192
.

Comparing with the upper bound ᾱ2, we have:

α2 − ᾱ2

t
= k1 (ω) , for ω ∈ (

123

32
,
155

32
)

α2 − ᾱ2

t
= k2 (ω) , for ω ∈ (

85

32
,
123

32
),

where:

k1 (ω) ≡
α2 −

(
155t
64 −

1
2

)
t

=

√
1024ω2 + 104768ω + 24025− (667− 32ω)

192
,

k2 (ω) ≡
α2 − t

2

t
=

√
1024ω2 + 104768ω + 24025− (64ω + 298)

192
.

Note that k1 (ω) is positive in the relevant range:

k1 (ω) ≡ 1024ω2 + 104768ω + 24025− (667− 32ω)2

= 147 456ω − 420 864 > 147 456× 123

32
− 420 864 > 0.

Moreover, k2 (ω) is also positive in the relevant range:

k2 (ω) ≡ 1024ω2 + 104768ω + 24025− (64ω + 298)2 = 66 624ω − 64 779− 3072ω2 > 0.

This is true since k′2 (ω) = 66 624 − 6144ω > 0 for ω ∈ (85
32 ,

123
32 ), and k2

(
85
32

)
= 90516 > 0. It

follows that the profit function is strictly increasing in the relevant range α2 ∈ [0, ᾱ2) and is

maximized at ᾱ2. The maximum profit under deviation is:

Πd
A(ᾱ2) = max

{
Πd
A(

155t

64
− 1

2
),Πd

A(
t

2
)

}
.

We now show that Πd
A(ᾱ2) is less than the equilibrium profit. Note that:

Π∗A −Πd
A(ᾱ2)

t
= min

{
Π∗A −Πd

A(155t
64 −

1
2)

t
= d1 (ω) ,

Π∗A −Πd
A( t2)

s
= d2 (ω)

}
,

where:

d1 (ω) ≡ (18195− 12128ω)

4096ω
+
ω

2
,

d2 (ω) ≡ 3(3027 + 448ω)

65536ω
+
ω

64
.

It follows that d1 (ω) is positive in the relevant range ω ∈ (123
32 ,

155
32 ) and d2 (ω) is also positive

in the relevant range ω ∈ (85
32 ,

123
32 ).
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Deviations by Stand-alone Firm B2 Lastly, we confirm that the standalone firm B2

cannot profit from any deviations. Consider the deviation where firm B2 increases β2 such that

xA = x̂ ≤ xB. It is never optimal to deviate such that xB > 1, as firm B2 would then face no

demand. For simplicity, we focus on cases where xA = x̂ ≤ xB ≤ 1. Furthermore, increasing β2

reduces σ2(x) = µ−α∗2−β2 + 4t(x− 1
2), eliminating the possibility of σ2(1) > 1 since σ2(1) ≤ 1

in the equilibrium.

Hence, the relevant deviation arises under the following constraints:

max{155

64
t− 1

2
,
5t

4
} ≤ β2 ≤

5t

2
.

In this case, firm B2’s profit can be written as:

ΠB(β2) = β2

[∫ 1

xB

σ2(x)dx

]
=
β2(5t− 2β2)(32− 5t)

256t
.

The profit function is quadratic and its derivative is given by:

Π′B (β2) =
(5t− 4β2)(32− 5t)

256t
.

Solving for the optimum leads to:

β2 = β∗2 =
5t

4
,

and the profit function is exactly equal to the equilibrium profit Π∗B. Thus, there are no profitable

deviations for firm B2.

Mild Product Differentiation (tm < t < tp) In this candidate equilibrium, the conglom-

erate only sells the bundle and the margins of its stand-alone products must satisfy α1 + β1 >

µ∗ = µ̌p. Without loss of generality, we focus on the candidate equilibrium with α1, β1 = ∞

(any other candidate equilibrium with lower stand-alone prices for the conglomerate would only

generate fewer sales and profits for a deviating stand-alone firm) and on deviations by firm A2

(given the symmetric positions of the two standalone firms, they face the same deviation profits).

As firmM charges prohibitively high stand-alone prices, the demand for A2 can only come from

consumers buying {A2, B2}, which requires s ≤ σ2 (x), where:

σ2 (x) = µ̌p − α2 − ρ̌p2 + 4t

(
x− 1

2

)
=

3
√
t2 + 10t− 17t

5
+ 4tx− α2.
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Recall that the equilibrium margins are given by:

µ∗ = µ̌p ≡ 4
√
t2 + 10t− 6t

5
=
t
(
4
√

1 + 10ω − 6
)

5
,

α∗2 = β∗2 = ρ̌p2 =

√
t2 + 10t+ t

5
=
t
(√

1 + 10ω + 1
)

5
.

and the equilibrium arises in the parameter range 12
5 ≤ ω ≤

85
32 .

As before, let x̃ and x̄ denote the location thresholds such that σ2 (x̃) = 0 and σ2 (x̄) = 1.

By construction, x̄ > x̃ and, as long as x̃ ≥ 0 and x̄ ≥ 1, firm A2’s profit is given by ΠA =

α22t (1− x̃)2, which is strictly concave in α2. It follows that there is no profitable deviation in

this range. We now consider deviations leading to either x̃ < 0 or 0 < x̃ < x̄ < 1.

(1). Deviation leading to x̃ < 0

This case arises when σ2(0) > 0. This condition holds when:

α2 <
3
√
t2 + 10t− 17t

5
=
t

5

(
3
√

1 + 10ω − 17
)
< 0,

where the last equality comes from ω ≤ 85
32 . Hence, this deviation cannot profitable.

(2). Deviation leading to 0 ≤ x̃ < x̄ < 1

This case arises when σ2(1) > 1, which holds when:

α2 < ᾱ2 =
3
√
t2 + 10t+ 3t

5
− 1.

Using σ2 (x̃) = 0 and σ2 (x̄) = 1, we have:

x̃ =
1

2
+
α2 + β2 − µ

4t
and x̄ =

1

2
+

1 + α2 + β2 − µ
4t

,

and: ∫ x̄

x̃
σ2 (x) dx =

1

8t
.

We can rewrite firm A2’s profit as:

ΠA (α2) = α2

(∫ x̄

x̃
σ2(x)dx+ 1− x̄

)
= α2

(
3
√
t2 + 10t+ 3t

20t
− 1

8t
− α2

4t

)
.

Differentiating ΠA with respect to α2, we obtain:

Π′A (α2) =
3

20
+

3
√
t2 + 10t

20t
− 1

8t
− α2

2t
.
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Then, α2 < ᾱ2 implies:

Π′A (α2) >
3

20
+

3
√
t2 + 10t

20t
− 1

8t
− ᾱ2

2t

=
31

8t
− 3
√
t2 + 10t+ 3t

20t

=
3

40

(
5ω − 2− 2

√
1 + 10ω

)
≥ 0,

where the last inequality follows from ω ≥ 12
5 . It follows that ΠA (α2) is increasing in the relevant

range α2 < ᾱ2. Thus, any deviation leading to x̄ < 1 is strictly dominated by the deviation

leading to x̄ = 1, which is not profitable as we have already shown.

Strong Product Differentiation (t > tp) This equilibrium with de factor pure bundling

arises when t > 5
12 . The candidate equilibrium is characterized in Configuration 5 where σ2 (1) ≥

1. Without loss of generality, we focus on the candidate equilibrium with α1, β1 = ∞ and on

deviations by firm A2. As firm M charges prohibitively high stand-alone prices, the demand for

A2 can only come from consumers buying {A2, B2}, which requires s ≤ σ2 (x), where:

σ2 (x) = µ∗ − α2 − β∗2 + 4t

(
x− 1

2

)
=

1

4
− t+ 4tx− α2.

The equilibrium margins are given by:

µ̃p =
5t

2
+

1

8
and ρ̃p2 =

3t

2
− 1

8
.

Let x̃ and x̄ denote as before the location thresholds such that σ2 (x̃) = 0 and σ2 (x̄) = 1.

Then σ2 (1) ≥ 1 amounts to x̄ ≤ 1. By construction, x̄ > x̃ and, as long as x̃ ≥ 0 and x̄ ≤ 1,

firm A2’s profit remains given by (9), and is strictly concave in α2. It follows that there is no

profitable deviation in this range. We now consider deviations leading to either x̃ < 0 and x̄ > 1.

(1). Deviation leading to x̄ > 1

This case arises when σ2(1) < 1, which amounts to:

α2 > α2 ≡ 3t− 3

4
.

Using:

4t (1− x̃) = σ2(1) =
1

4
+ 3t− α2,

firm A2’s profit can be written as:

ΠA (α2) = α2

∫ 1

x̃
σ2(x)dx = α22t (1− x̃)2 = α2

σ2
2 (1)

8t
.
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Differentiating ΠA with respect to α2, we get:

Π′A (α2) =
σ2 (1)

8t
(σ2 (1)− 2α2)

=
σ2 (1)

8t

(
1

4
+ 3t− 3α2

)
≤ 3σ2(1)

4t

(
5

12
− t
)
≤ 0,

where the first inequality comes from α2 ≥ α2 and the second inequality follows from t > 5
12 .

Hence, any deviation leading to x̄ > 1 (or, equivalently, to α2 ≥ α2) is dominated by the

deviation that leads to α2 = α2, which is not profitable as we have already shown.

(2). Deviation leading to x̃ < 0

This case arises when σ2(0) > 0, which amounts to α2 < ᾱ2 ≡ 1
4 − t. Since t >

5
12 implies

ᾱ2 < 0, this deviation cannot be profitable.

A.3 Welfare Comparison

We compare firms’profits and consumer surplus before and after the merger. We consider three

types of equilibria respectively. Recall that before the merger, firms compete à la Hotelling in

each market and set equilibrium margins equal to t. Each firm earns a profit equal to t
2 . Total

consumer surplus before the merger can be expressed as:

S0 ≡
∫ 1/2

0
(w − 2tx− 2t) dx+

∫ 1

1/2
(w − 2t (1− x)− 2t) dx = w − 5

2
t.

For simplifying the exposition, we will use ω = 1/t.

A.3.1 Weak Product Differentiation

The conglomerate engages mixed bundling in the equilibrium when t < 32
85 (equivalent to ω >

85
32).

Using ω = 1/t, we can rewrite firm M’s equilibrium profit as:

ΠM (ω) = t

(
ω

4
+

107

64
− 2375

4096ω

)
,

It appears that ΠM (ω) increases with ω, and ω > 85
32 implies that the merger is profitable:

ΠM (ω) > ΠM

(
85

32

)
=

36

17
t > t.

It is straightforward to check that the stand-alone firms are worse off after the merger:

Π∗A (ω) = Π∗B (ω) =
25(32ω − 5)t

2048ω
<

25(32ω)t

2048ω
=

25t

64
<
t

2
.
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We now examine consumer surplus. Following the merger, the conglomerate charges µm for

the bundle, while the margins for the stand-alone products are α∗1 = β∗1 = ρm1 and α∗2 = β∗2 = ρm2 ,

respectively. The cut-off threshold is x̂ = 3
8 . Consumers with x ≤ x̂ and s ≤ σ1, who purchase

{A1, B1}, obtain a surplus of w − 2tx − 2ρm1 . Those with x̂ < x ≤ 1 and s ≤ σ2 (x) who buy

{A2, B2}, receive a surplus of w − 2t (1− x)− 2ρm2 . The remaining consumers, who opt for the

bundle, receive a surplus of w + s− 2tx− µm.

Using σ1 = µm − 2ρm1 and σ2 (x) = µm − 2ρm2 + 2t (2x− 1) = σ1 + 4t (x− x̂m), the total

consumer surplus post-merger can be expressed as:

S1 =

∫ x̂m

0

∫ σ1

0
(w − 2tx− 2ρm1 ) dsdx+

∫ 1

x̂m

∫ σ2(x)

0
(w − 2t (1− x)− 2ρm2 ) dsdx

+

∫ x̂m

0

∫ 1

σ1

(w + s− 2tx− µm) dsdx+

∫ 1

x̂m

∫ 1

σ2(x)
(w + s− 2tx− µm) dsdx

=

∫ x̂m

0

∫ σ1

0
(w − 2tx− 2ρm1 ) dsdx+

∫ 1

x̂m

∫ σ2(x)

0
(w − 2t (1− x)− 2ρm2 ) dsdx

+

∫ x̂m

0

∫ 1

σ1

(w − 2tx− µm) dsdx+

∫ 1

x̂m

∫ 1

σ2(x)
(w − 2tx− µm) dsdx+

∫ x̂m

0

∫ 1

σ1

sdsdx+

∫ 1

x̂m

∫ 1

σ2(x)
sdsdx

= w −
∫ x̂m

0
(2tx+ µm) dx−

∫ 1

x̂m
(2tx+ µm) dx+

1

2
+

∫ 1

x̂m

σ2
2 (x)

2
dx+

σ2
1

2
x̂m

= w − t− µm +
1

2
+
σ2

1

2
+ 2tσ1 (1− x̂m)2 +

8t2 (1− x̂m)3

3
.

Substituting µm = 1
2 + 107

64 t, ρ
m
1 = 3

2 t, σ1 = µm − 2ρm1 = 1
2 −

85
64 t, and x̂

m = 3
8 into the above

expression leads to:

S1 = w +
t

24 576ω

(
3072ω2 − 72 384ω + 12 175

)
.

Comparing with the total consumer surplus before the merger, we obtain:

∆1 (ω) ≡ S1 − S0

t
=

1

24 576

(
3072ω − 10 944 +

12 175

ω

)
.

Note that ∆1

(
85
32

)
= 239

3264 when ω = 85
32 . Furthermore, ω >

85
32 implies:

∆′1 (ω) =
1

24 576

(
3072− 12 175

ω2

)
> ∆′1

(
85

32

)
=

95

1734
> 0.

It follows that the merger increases total consumer surplus in this equilibrium.

A.3.2 Mild Product Differentiation

The conglomerate engages in de facto pure bundling in the equilibrium when 32
85 < t < 5

12

(equivalently 12
5 < ω < 85

32). The equilibrium margins for the bundle and the stand-alone
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products are given by:

µ̌p =

(
4
√

10ω + 1− 6
)
t

5
, ρ̌p2 =

(√
10ω + 1 + 1

)
t

5
,

while the corresponding threshold is:

x̃p =
9−
√

10ω + 1

10
.

In equilibrium, firm M’s profit is given by:

ΠM (ω) =
t
(
4
√

10ω + 1− 6
)

125
×
(
20ω − 1−

√
10ω + 1

)
ω

.

It is easy to check that both terms increase in ω. Then, ω > 12
5 implies:

ΠM (ω) > ΠM

(
12

5

)
=

49

25
t > t.

Thus, the merger increases the conglomerate’s total profit.

We now demonstrate that the stand-alone firms earn lower profits after the merger than

before. The equilibrium profits for the stand-alone firms are given by:

Π∗A (ω) = Π∗B (ω) =
ρ̌3

2

2t
=
t
(√

10ω + 1 + 1
)3

250ω
=
tΦ (ω)

250
,

where:

Φ (ω) ≡
(√

10ω + 1 + 1
)3

ω
.

Note that ω > 12
5 implies:

Φ′ (ω) =

(√
10ω + 1 + 1

)2
ω2

(
5ω − 1−

√
10ω + 1√

10ω + 1

)
> 0.

It follows that Π∗A increases with ω. Then, ω <
85
32 implies:

Π∗A (ω) < Π∗A

(
85

32

)
=

t

250
Φ

(
85

32

)
=

25

68
t <

t

2
.

Next, we assess the consumer surplus following the merger. In this scenario, the conglomerate

offers the pure bundle only. Consumers with x ≥ x̃ and s ≤ σ2 (x) purchase {A2, B2}, and they

achieve a surplus of w − 2t(1− x)− 2ρ̌p2. In contrast, others who purchase the bundle receive a

surplus of w + s− 2tx− µ̌p. The total consumer surplus can be calculated as follows, using the
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expression σ2 (x) = µ̌p − 2ρ̌p2 + 2t (2x− 1) = 4t (x− x̃p) for x ≥ x̃p:

S2 =

∫ x̃p

0

∫ 1

0
(w + s− 2tx− µ̌p) dsdx+

∫ 1

x̃p

∫ 1

σ2(x)
(w + s− 2tx− µ̌p) dsdx

+

∫ 1

x̃p

∫ σ2(x)

0
(w − 2t(1− x)− 2ρ̌p2) dsdx

= w −
∫ x̃p

0
(2tx+ µ̌p) dx−

∫ 1

x̃p
(2tx+ µ̌p) (1− σ2 (x)) dx−

∫ 1

x̃p
(2t(1− x) + 2ρ̌p2)σ2 (x) dx

+
1

2
−
∫ 1

x̃p

σ2
2 (x)

2
dx

= w − t− µ̌p +
1

2
+

8t2

3
(1− x̃)3 .

Substituting the value of µ̌p and ρ̌p2, we obtain:

S2 = w −
t
(
4
√

10ω + 1− 1
)

5
+

1

2
+

8t2

3

(
1 +
√

10ω + 1

10

)3

.

Comparing with the total surplus before the merger, we have:

∆2 (ω) ≡ S2 − S0

t
=

27

10
+

1

2
ω − 4

√
10ω + 1

5
+

8

3ω

(
1 +
√

10ω + 1

10

)3

=
1

750

(
2085 +

6
√

10ω + 1

ω
+

2 (10ω + 1)
3
2

ω
+ 375ω − 600

√
10ω + 1 +

8

ω

)
.

Note that:

∆2

(
12

5

)
=

6

5
+

7

2
− 24

5
+

10

9

(
6

10

)3

=
7

50
,

∆2

(
85

32

)
=

85

64
+

7

2
− 5 +

8

3× 85
32

(
1 + 21

4

10

)3

=
239

3264
.

Moreover, 12
5 < ω < 85

32 implies:

∆′2 (ω) =
1

750

(
− 30ω + 6

ω2
√

10ω + 1
−
√

10ω + 1 (17ω + 2)

ω2
+ 375− 3000√

10ω + 1
− 8

ω2

)
< 0.

It follows that ∆2 (ω) > 0 for 12
5 < ω < 85

32 . Thus, the merger increases total consumer surplus

in this equilibrium.

A.3.3 Strong Product Differentiation

The conglomerate offers the pure bundle only when t > 5/12 (equivalently ω < 12
5 ). The

equilibrium margins are given by:

µ̃p = t

(
5

2
+
ω

8

)
, ρ̃p2 = t

(
3

2
− ω

8

)
,
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while the corresponding thresholds are:

x̄p =
5

8
+

5ω

32
, x̃ps =

5

8
− 3ω

32
.

The conglomerate benefits from the merger since:

ΠM = t

(
5

4
+
ω

16

)2

> t.

The stand-alone firms’profits after the merger become:

Π∗A = Π∗B = t

(
3

4
− ω

16

)2

.

Comparing with the profit before merger, t2 , the merger increases their profits if:

ω < 12− 8
√

2 ' 0.686 29,

or equivalently:

t > tr ≡
3 + 2

√
2

4
.

Thus, the merger reduces the stand-alone firms’profits when 5
12 < t < tr but increases their

profits when t > tr.

We now compare the total consumer surplus. Consumers with x̃ ≤ x and s ≤ σ2 (x) will

choose to buy {A2, B2}, and they obtain a surplus of w − 2t(1− x)− 2ρ̃p2. On the other hand,

those who purchase the bundle receive a surplus of w+s−2tx− µ̃p. The total consumer surplus

can be expressed as (using σ2 (x) = µ̃p − 2ρ̃p2 + 2t (2x− 1) = 4t (x− x̃ps) for x ≥ x̃ps):

S3 =

∫ x̃ps

0

∫ 1

0
(w + s− 2tx− µ̃p) dsdx+

∫ x̄p

x̃ps

∫ 1

σ2(x)
(w + s− 2tx− µ̃p) dsdx

+

∫ x̄p

x̃ps

∫ σ2(x)

0
(w − 2t(1− x)− 2ρ̃p2) dsdx+

∫ 1

x̄p

∫ 1

0
(w − 2t(1− x)− 2ρ̃p2) dsdx

= w −
∫ x̃ps

0
(2tx+ µ̃p) dx−

∫ x̄p

x̃ps
(2tx+ µ̃) (1− σ2 (x)) dx+

1

2
x̄p −

∫ x̄p

x̃ps

σ2
2 (x)

2
dx

−
∫ x̄p

x̃ps
(2t(1− x) + 2ρ̃p2)σ2 (x) dx−

∫ 1

x̄p
(2t(1− x) + 2ρ̃p2) dx

= w − t (x̄p)2 − µ̃px̄p +
1

2
x̄p +

8t2 (x̄p − x̃ps)3

3
− 2ρ̃p2 (1− x̄p)− t(1− x̄p)2.

Substituting x̄p = 5
8 + 5ω

32 , x̄
p − x̃ps = ω/4, µ̃p = t

(
5
2 + ω

8

)
, and ρ̃p2 = t

(
3
2 −

ω
8

)
into the above

expression, we obtain:

S3 = w + t

(
19

1536
ω2 +

21

64
ω − 103

32

)
.
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Comparing with the total consumer surplus before the merger, we get:

∆3 (ω) ≡ S3 − S0

t
=

19

1536
ω2 +

21

64
ω − 23

32

=
19

1536

((
ω +

252

19

)2

− 84 480

361

)
.

Note that ∆3 (ω) is a quadratic function. Furthermore, we have ∆3

(
12
5

)
= 7

50 , and ∆3 (0) =

−23
32 . Then, ∆3 > 0 if:

ω > ω̄ ≡ 16
√

330− 252

19
,

or equivalently:

t < ts ≡
19

16
√

330− 252
' 0.49.

Thus, the merger increases consumer surplus when 5
12 < t < ts. Conversely, the merger reduces

consumer surplus when t > ts.

B Merger Dynamics

In this section, we begin by proving Lemma 1 in the text.

Proof. Intuitively, in the absence of mergers, firms always have an incentive to initiate the

first merger, as portfolio differentiation allows for profit generation. Conversely, if a conglomerate

L already exists, attempting to form a second conglomerate with an identical portfolio would

trigger unprofitable Bertrand-type competition between the two conglomerates. We now prove

that there cannot be two medium-sized conglomerates in equilibrium.

Let’s assume the existence of two conglomerates, M1 and M2, where M1 is formed by the

first merger between firms A1 and B1, and M2 is formed by the second merger between firms

B2 and C2. Firm M1 offers the bundle A1−B1 at a margin µ1
M while firm M2 offers the bundle

B2 − C2 at the margin µ2
M .

When consumers combine the bundle A1 − B1 with a stand-alone product Cj , they obtain

a net consumer value of w + s − µ1
M − γj , where γj represents the margin for Cj . On the

other hand, mixing the bundle B2 − C2 with a stand-alone product Aj yields a net surplus of

w+s−µ2
M−αj , where αj represents the margin for Aj . Consumers prefer the first portfolio over

the second portfolio if and only if µ1
M + γj ≤ µ2

M +αj . This triggers Bertrand-type competition

between these two portfolios, resulting in zero margins for all products.
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Suppose µ1
M + γj > µ2

M + αj ≥ 0. In this case, the merged firm M2 can benefit from raising

its margin µ2
M . Similarly, suppose µ

2
M +αj > µ1

M +γj > 0. In this scenario, firmM1 can benefit

from raising its margin µ1
M slightly. Finally, suppose µ2

M +αj = µ1
M + γj > 0. In this situation,

eitherM1 orM2 can benefit from undercutting the rival. Therefore, µ1
M +γj > 0 or µ2

M +αj > 0

cannot be an equilibrium outcome. Since firms will not charge a negative margin, in equilibrium,

we must have µ1
M = µ2

M = αj = γj = 0. Thus, if there is already a conglomerate M1 formed, it

is never profitable for the remaining stand-alone firms to form another conglomerate M2.

Hence, without loss of generality, we can focus on market configurations that have at most

one conglomerate of any size. This means we consider market configurations where there is one

large conglomerate L offering all three products and one medium-sized conglomerateM offering

two products. In this case, we can analyze the medium-sized conglomerate merger involving two

firms Aj and Bj without any loss of generality.

In the subsequent analysis, we will examine the equilibria in three scenarios: highly concen-

trated markets with n = 2, mildly concentrated markets with n = 3, and dispersed markets with

n ≥ 4. For each scenario, we will consider different market configurations resulting from the

mergers. These configurations include two conglomerates L and M , only one conglomerate L,

and only one conglomerateM . We characterize the equilibrium under different bundling options

and calculate the equilibrium profits of the merged firms. By comparing the profits obtained

under different configurations, we can determine the subgame perfect Nash equilibrium for the

dynamic merger game.

As a result of conglomerate mergers, there will be three possible product portfolios available

to consumers:

• Portfolio PL includes the bundle BL offered by the conglomerate L. Consumers derive a

gross value of w + 2s from consuming this portfolio.

• Portfolio PM consists of a bundle BM (e.g., Aj −Bj) offered by the conglomerate M and

a stand-alone product Cj . Consumers derive a gross value of w + s from consuming this

portfolio.

• Portfolio PS comprises three stand-alone products, namely Aj , Bj , and Cj . Consumers

derive a gross value of w from consuming this portfolio.

We assume that the aggregate social value generated by the three products w is suffi ciently

large such that w > 3/4. This assumption ensures that all consumers will purchase all three
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products in equilibrium. We will also introduce µL and µM as the margins for the bundles BL
and BM , respectively.

B.1 Highly concentrated markets

We first analyze the merger decisions in highly concentrated markets with ni = 2 for each market

i = A,B,C. We consider three market configurations in the candidate equilibria: both L and

M are present, only L is formed, and only M is formed.

B.1.1 Configuration 1: two conglomerates

In the first market configuration, both conglomerates L and M have been formed by the end

of Stage 2. Suppose conglomerate M is formed by two firms from market A and market B,

respectively. After the two mergers, there is only one stand-alone firm remaining in market C,

while there are no stand-alone firms in the other markets. We analyze the equilibrium prices

and profits in Stage 3.

Mixed bundling by both L and M Suppose both merged firms, L and M , continue to

supply stand-alone products in addition to their bundles. In this case, all three markets for

stand-alone products remain competitive, and the stand-alone products are supplied at cost.

Consumers have three product portfolios to choose from:

• opting for portfolio PL provides a net utility of w + 2s− µL;

• purchasing portfolio PM yields a net value of w + s− µM ;

• selecting portfolio PS results in a net surplus of w.

Then, consumers with s < µM opt for portfolio PS , these with µM < s < µL− µM purchase

portfolio PM , and those with s > µL−µM buy portfolio PL. In the candidate equilibrium where

all three options attract consumers, the profits of the two merged firms are as follows:

ΠL = µL [1− F (µL − µM )] = µL (1 + µM − µL) ,

ΠM = µM [F (µL − µM )− F (µM )] = µM (µL − 2µM ) .

By solving for the equilibrium margins, we find:

µmmL ≡ 4

7
, µmmM ≡ 1

7
,
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where the superscript mm stands for "mixed bundling by L and mixed bundling by M". The

equilibrium profits of the merged firms are:

Πmm
L ≡ 16

49
, Πmm

M ≡ 2

49
.

Pure bundling by both L and M Suppose conglomerate L commits to offering only the

pure bundle BL, while conglomerate M commits to offering only the pure bundle BM . In this

case, there are no stand-alone firms in markets A and B. However, in market C, there remains

a single stand-alone firm that charges a positive margin γ. Consumers have two portfolios to

choose from. Choosing portfolio PL yields a net utility of w+ 2s−µL, while opting for portfolio

PM provides a net value of w + s− µM − γ.

In the candidate equilibrium where both options attract consumers, those with s > µL −

µM − γ choose portfolio PL, while others opt for portfolio PM . The profits of the three relevant

firms are given as follows:

ΠL = µL [1− F (µL − µM − γ)] = µL (1 + µM + γ − µL) ,

ΠM = µMF (µL − µM − γ) = µM (µL − µM − γ) ,

ΠS = γF (µL − µM − γ) = γ (µL − µM − γ) .

The equilibrium margins are given by

µppL ≡
3

4
, γpp = µppM ≡

1

4
,

where the superscript pp stands for "pure bundling by L and pure bundling by M". The

equilibrium profits are:

Πpp
L ≡

9

16
, Πpp

S = Πpp
M ≡

1

16
.

We examine whether all three options attract consumers in equilibrium. Consumers opting

for portfolio PM obtain a net surplus:

w − µppM − γ
pp + s = w − 1

2
+ s > w − 1

2
.

On the other hand, buying only the stand-alone firm’s product Cj would give them:

w

3
− γpp =

w

3
− 1

4
.

The assumption w > 3
4 implies w −

1
2 >

w
3 −

1
4 > 0, which ensures the existence of the above

interior equilibrium.
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Pure bundling by L only Suppose conglomerate L commits to offering only BL, while

conglomerate M continues to supply stand-alone products Aj and Bj alongside its bundle BM .

Conglomerate M charges positive margins α and β for the stand-alone products Aj and Bj ,

respectively. Consumers have three options:

• buying portfolio PL yields a net utility w + 2s− µL;

• purchasing portfolio PM provides a net value w + s− µM − γ;

• opting for portfolio PS results in a net surplus w − α− β − γ.

In the candidate equilibrium in which all options attract consumers, consumers with s <

µM −α−β opt for portfolio PS , these with s > µL−µM − γ buy portfolio PL, while others opt

for portfolio PM . The profits of the relevant firms in the candidate equilibrium are as follows:

ΠL = µL [1− F (µL − µM − γ)] = µL (1− µL + µM + γ) ,

ΠM = µM [F (µL − µM − γ)− F (µM − α− β)] + (α+ β)F (µM − α− β)

= µMF (µL − µM − γ)− (µM − α− β)F (µM − α− β) ,

ΠS = γF (µL − µM − γ) = γ (µL − µM − γ) .

In this case,M can increase its profits by squeezing the demand for its stand-alone products.

By replacing α+β < µM with α′+β′ = µM ,M’s profit increases by (µM − α− β)F (µM − α− β) >

0. Thus, conditional on L engaging in pure bundling, M strictly prefers to do the same even if

it did not commit to it. As a result, the equilibrium margins and profits are the same as if M

had committed to pure bundling:

µpmL ≡ µppL =
3

4
, γpm = γpp = µpmM ≡ µppM =

1

4
,

and

Πpm
L ≡ Πpp

L =
9

16
,

Πpm
S = Πpp

S = Πpm
M ≡ Πpp

M =
1

16
.

Pure bundling by M only Suppose M commits to offering only the pure bundle BM , while

L continues to offer stand-alone products along with the bundle BL. L becomes the sole supplier

of stand-alone products in markets A and B, charging positive margins α and β respectively.

However, it is not optimal for L to offer the stand-alone product in market C since there is
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already a stand-alone firm Cj in that market. Therefore, L commits not to offer the stand-alone

product in market C, and the remaining stand-alone firm Cj charges a positive margin γ.

Consumers can choose from three options:

• buying portfolio PL yields a net utility w + 2s− µL;

• purchasing portfolio PM provides a net value w + s− µM − γ;

• opting for portfolio PS results in a net surplus w − α− β − γ.

The profits of the three firms in the candidate equilibrium where all three options attract

consumers are as follows:

ΠL = µL [1− F (µL − µM − γ)] + (α+ β)F (µM − α− β)

= µL (1 + µM + γ − µL) + (α+ β) (µM − α− β) ,

ΠM = µM [F (µL − µM − γ)− F (µM − α− β)]

= µM (µL + α+ β − 2µM − γ) ,

ΠS = γ (µL − µM − γ)

The equilibrium margins are:

µmpL ≡ 12

17
, µmpM ≡ 2

17
, αmp + βmp ≡ 1

17
, γmp ≡ 5

17
,

where the superscript mp stands for "mixed bundling by L and pure bundling by M". In this

equilibrium, the profits of the firms are:

Πmp
L ≡ 145

289
, Πmp

M ≡ 8

289
, Πmp

S ≡ 25

289
.

Bundling decisions Based on the analysis, it is evident that pure bundling is a dominant

strategy for the merged entity L. Regardless of M’s bundling decision, L prefers pure bundling

over mixed bundling or mixed bundling by M . The profit comparison supports this:

Πpp
L −Πmp

L =
9

16
− 145

289
=

281

4624
> 0,

Πpp
L −Πmm

L =
9

16
− 16

49
=

185

784
> 0.

Thus, L always engages in pure bundling. Furthermore, L is better off by offering only one

bundle BL. On the other hand, given that L engages in pure bundling, M is better off also

opting for pure bundling.
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In conclusion, when there are two merged firms, L andM , they both commit to pure bundling

strategies: L provides only BL, while M offers only BM . The resulting equilibrium profits are:

Πpp
L =

9

16
, Πpp

S = Πpp
M =

1

16
.

B.1.2 Configuration 2: large conglomerate only

In the second configuration where only the large conglomerate L has been formed, there is no

benefit for L to supply the stand-alone products after the merger. In this case, L has the option

to offer either one bundle or two bundles. We will consider the two possible bundling options:

L offering one bundle BL only or L offering two bundles BL and BM .

L offers one bundle BL only Suppose L offers one bundle BL only. In each market there

remains one stand-alone product which charges a positive margin α, β, and γ respectively. There

are two options available to consumers:

• buying portfolio PL yields a net utility w + 2s− µL;

• purchasing portfolio PS offers yields a net value w − α− β − γ.

Consumers with s > (µL − α− β − γ) /2 buy PL while the others opt for PS . In the candi-

date equilibrium where both options attract consumers, the profits of the conglomerate L and

the stand-alone firm in each market (A,B,C) are given respectively by:

ΠL = µL

[
1− F

(
µL − α− β − γ

2

)]
=

1

2
µL (2 + α+ β + γ − µL) ,

ΠA = αF

(
µL − α− β − γ

2

)
=

1

2
α (µL − α− β − γ) ,

ΠB = βF

(
µL − α− β − γ

2

)
=

1

2
β (µL − α− β − γ) ,

ΠC = γF

(
µL − α− β − γ

2

)
=

1

2
γ (µL − α− β − γ) .

Solving for the equilibrium margins yields:

µlL ≡
8

5
, αl = βl = γl ≡ 6

5
,

where the superscript l stands for "large bundle only". The corresponding profits are:

Πl
L ≡

32

25
, Πl

A = Πl
B = Πl

C = Πl
S ≡

2

25
.
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L offers both bundles BL and BM Suppose now L offers both bundles BL and BM (A1−B1).

Consumers face three options:

• buying portfolio PL yields a net utility w + 2s− µL;

• purchasing portfolio PM provides a net value w + s− µM − γ;

• opting for portfolio PS leads to a net surplus w − α− β − γ.

Consumers with s > µL − µM − γ buy PL, these with µM − α− β < s < µL − µM − γ buy

PM , and the others purchase PS . In the candidate equilibrium where all three options attract

consumers, the relevant firms’profits are given respectively by:

ΠL = µL [1− F (µL − µM − γ)] + µM [F (µL − µM − γ)− F (µM − α− β)]

= µL (1 + µM + γ − µL) + µM (µL − 2µM − γ + α+ β) ,

ΠA = αF (µM − α− β) = α (µM − α− β) ,

ΠB = βF (µM − α− β) = β (µM − α− β) ,

ΠC = γF (µL − µM − γ) = γ (µL − µM − γ) .

Solving for equilibrium margins leads to

µlmL =
17

12
, µlmM =

3

4
, αlm = βlm =

1

4
, γlm =

1

3
,

where the superscript lm stands for "large and medium-sized bundles". The corresponding

equilibrium profits are:

Πlm
L =

145

144
, Πlm

A = ΠLM
B =

1

16
, Πlm

C =
1

9
.

Offering the medium-sized bundle BM on top of the large bundle BL can indeed lead to can-

nibalization and increased competition with the stand-alone firms. This can negatively impact

L’s profits. Comparing L’s profits under the two cases, we find that L is worse off in offering

both bundles after the merger: ΠL
L = 32

25 > ΠLM
L = 145

144 .

B.1.3 Configuration 3: medium-sized conglomerate only

Consider the third configuration in which a medium-sized conglomerate, M , has been formed

after the merger between firms Aj and Bj by the end of Stage 2. In this configuration, only one

stand-alone firm remains in markets A and B, while two stand-alone firms remain in market C.
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As a result, the remaining stand-alone firm in market A (resp. B) charges a positive margin

α (resp. β), while the margin for the stand-alone product in market C remains zero. The

conglomerate M does not benefit from supplying the stand-alone products.

Suppose M commits itself to pure bundling. Consumers face two options:

• buying PM yields a net utility w + s− µM ;

• purchasing PS provides a net value w − α− β.

Consumers with s > µM − α − β buy PM while the others opt for PS . In the candidate

equilibrium where both option attract consumers, the profits for the conglomerate and stand-

alone firms in markets A and B are given respectively by:

ΠM = µM [1− F (µM − α− β)] = µM (1 + α− β − µM ) ,

ΠA = αF (µM − α− β) = α (µM − α− β) ,

ΠB = βF (µM − α− β) = β (µM − α− β) .

Solving for equilibrium margins leads to:

µmM =
3

4
, αm = βm =

1

4
,

where the superscript m stands for "medium-sized bundle". The equilibrium profits are:

Πm
M =

9

16
, Πm

A = Πm
B =

1

16
.

B.1.4 Merger decisions

We analyze the merger decisions in the subgame perfect Nash equilibrium and consider the six

possible candidate equilibria based on Lemma 1:

• (a). Conglomerate L formed in Stage 1 followed by M in Stage 2;

• (b). Conglomerate L formed in Stage 1 and no merger in Stage 2;

• (c). Conglomerate M formed in Stage 1 followed by L in Stage 2;

• (d). Conglomerate M formed in Stage 1 and no merger in Stage 2;

• (e). No merger in Stage 1 followed by L in Stage 2;

• (f). No merger in Stage 1 followed by M in Stage 2.
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We proceed by eliminating dominated candidate equilibria to identify the subgame perfect

Nash equilibrium.

Suppose a large conglomerate has already emerged in Stage 1, and consider a subsequent

merger decision between two firms present in markets A and B in Stage 2. It is evident that

the second merger is never profitable if the conglomerate L is committed to providing both

bundles BL and BM . Suppose L is committed to offering the large bundle BL only. In this case,

by remaining independent, each firm obtains profits Πl
A = Πl

B = 2
25 . On the other hand, if a

merger occurs to form conglomerate M , where both merged firms engage in pure bundling, the

resulting profit is Πpp
M = 1

16 . However, considering the comparison

Πpp
M − 2ΠL

S =
1

16
− 2× 2

25
= − 39

400
< 0,

we conclude that the two firms are better off remaining as stand-alone entities. Hence, we can

rule out candidate equilibrium (a).

Suppose a medium conglomerateM between two firms in markets A and B has been formed

in Stage 1, and consider a subsequent merger decision between three firms present in markets

A, B, and C in Stage 2. Since mixed bundling is dominated, we only need to consider pure

bundling by M . By remaining stand-alone, each firm in market A and B earns Πm
A = Πm

B = 1
16 ,

while firms in market C earns zero profit. On the other hand, a subsequent merger forming a

larger conglomerate yields a total profit Πpp
L = 9

16 . Comparing this with three times the profit

of a stand-alone firm 3ΠM
S = 3

16 , we have

Πpp
L − 3ΠM

S =
9

16
− 3× 1

16
=

3

8
> 0.

This indicates that the merger is profitable. Therefore, we can exclude candidate equilibrium

(d) as it is not viable.

Suppose that the three firms decide not to merge in Stage 1, anticipating a potential merger

in Stage 2. It is evident that forming the large conglomerate L would be more profitable

than forming the medium conglomerate M in Stage 2. Therefore, we can rule out candidate

equilibrium (f) as it is not a viable option.

We now turn our attention back to Stage 1 and examine the merger decisions made by the

three randomly selected firms in the remaining candidate equilibria (b), (c), and (e).

In candidate equilibrium (b), all three firms decide to form the conglomerate L without any

subsequent mergers. In this configuration, the merged entity L earns a total profit of Πl
L = 32

25 .
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In candidate equilibrium (c), two firms choose to merge and form the conglomerateM , while

one firm remains as a stand-alone entity. This is followed by a subsequent merger to form the

conglomerate L. In this equilibrium, the merged entity M earns a profit of Πpp
M = 1

16 , while the

stand-alone firm earns a profit of Πpp
S = 1

16 , resulting in an aggregate profit
1
8 .

In candidate equilibrium (e), all three firms opt to remain as stand-alone entities in Stage 1.

Then, in Stage 2, a subsequent merger occurs, leading to the formation of the conglomerate L.

In this case, each stand-alone firm earns a profit of Πl
S = 2

25 , resulting in an aggregate profit of
6
25 .

Comparing the aggregate profits for the three selected firms and assuming effi cient merger

bargaining, we find that candidate equilibrium (b) yields the highest total profit among the

three. Therefore, it dominates the other equilibria. Consequently, based on the analysis, we

can conclude that there exists a dominant candidate equilibrium, namely (b), in which the

conglomerate L is formed in Stage 1 without any subsequent mergers. The merged entity L will

offer a pure bundle BL only, as summarized below:

Proposition 2 Consider a two-stage dynamic merger game involving three product markets,

where each market is served by two identical stand-alone firms. There exists a unique SPNE

in which only the large conglomerate will be formed in Stage 1, with no subsequent mergers. In

this equilibrium, conglomerate L offers a pure bundle consisting of three products and charges a

margin µlL = 8
5 , resulting in a profit Πl

L = 32
25 , while each stand-alone firm charges a margin of

6
5 and earns a profit Πl

S = 2
25 .

B.2 Mildly concentrated markets

We now analyze the merger dynamics in the context of mildly concentrated markets, where there

are three firms operating in each market. We will consider the same three market configurations

as discussed previously.

B.2.1 Configuration 1: two conglomerates

Consider the first market configuration, where both conglomerates L and M have been formed

by the end of Stage 2. Suppose conglomerate M is formed by one from market A and the other

from market B. As a result of the mergers, there is now only one stand-alone firm remaining in
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markets A and B, while in market C there are still two stand-alone firms, and the margin for

the stand-alone product in market C remains zero.

We will now analyze the equilibrium prices and profits under different bundling decisions,

following the same approach as before.

Mixed bundling When there are three firms in each market and at least one of the conglom-

erates does not commit to pure bundling, Bertrand-type competition leads to all stand-alone

prices being driven down to cost. In this case, the equilibrium outcomes are exactly the same as

under mixed bundling in highly concentrated markets. The profits of conglomerates L and M ,

denoted by superscript m for "mixed bundling by at least one conglomerate," are as follows:

Πm
L ≡

16

49
, Πm

M ≡
2

49
.

Pure bundling by both L and M Suppose that both conglomerates commit themselves to

pure bundling. In this case, the remaining stand-alone firm in market A (resp. B) will charge a

positive margin α (resp. β). However, competition among the two stand-alone firms in market

C drives their margins to zero. Consumers face three options:

• buying PL yields a net utility equal to w + 2s− µL;

• purchasing PM yields a net value w + s− µM ;

• opting for PS provides a net surplus w − α− β.

Consumers with s > µL−µM buy PL, these with µM −α− β < s < µL−µM purchase PM ,

and those with s < µM − α− β buy PS .

In the candidate equilibrium where all three options attract consumers, the profits of relevant

firms are given respectively by:

ΠL = µL [1− F (µL − µM )] = µL (1 + µM − µL) ,

ΠM = µM [F (µL − µM )− F (µM − α− β)] = µM (µL + α+ β − 2µM ) ,

ΠA = αF (µM − α− β) = α (µM − α− β) ,

ΠB = βF (µM − α− β) = β (µM − α− β) .

Solving for equilibrium leads to:

µppL ≡
10

17
, µppM ≡

3

17
, αpp = βpp ≡ 1

17
.
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The corresponding equilibrium profits are:

Πpp
L ≡

100

289
, Πpp

M ≡
18

289
, Πpp

A = Πpp
B ≡

1

289
.

Bundling decisions It can be concluded from the analysis that pure bundling is a weakly

dominant strategy for both conglomerates.

• If conglomerate M chooses mixed bundling, conglomerate L is indifferent between mixed

and pure bundling. In either case, the margins for stand-alone products are zero, and the

conglomerates earn their profits solely from their bundles. However, if conglomerate M

chooses pure bundling, conglomerate L prefers pure bundling as well, as shown below:

Πpp
L −Πm

L =
100

289
− 16

49
=

276

14161
> 0.

• Similarly, if conglomerate L chooses mixed bundling, conglomerate M is indifferent be-

tween mixed and pure bundling. However, if conglomerate L chooses pure bundling,

conglomerate M prefers pure bundling as well, as shown by:

Πpp
M −Πm

M =
18

289
− 2

49
=

304

14161
> 0.

Suppose two conglomerates, L and M , have been formed. There are two Nash equilibria

in pure strategies: one in which both L and M commit themselves to pure bundling, and one

in which none of them does. However, eliminating weakly dominated strategies pins down a

unique outcome, in which both conglomerates commit themselves to pure bundling. The related

equilibrium profits are:

Πpp
L =

100

289
, Πpp

M =
18

289
, Πpp

A = Πpp
B =

1

289
.

B.2.2 Configuration 2: larger conglomerate only

Consider the second market configuration, where only the large conglomerate L has been formed

by the end of Stage 2. In this scenario, there are at least two stand-alone firms remaining in

each market. Regardless of the bundling decision made by L, Bertrand-type competition drives

stand-alone prices down to the cost.

Suppose L offers only one bundle BL. Consumers face two options:

• buying PL yields a net utility w + 2s− µL;
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• purchasing PS provides a net value w.

Consumers with s > µL/2 buy PL, whereas the others opt for PS . In the candidate equilib-

rium where both options attract consumers, the conglomerate’s profit is given by

ΠL = µL

[
1− F

(µL
2

)]
=

1

2
µL (2− µL) .

Solving for the equilibrium margin and profit leads to

µlL = 1, Πl
L =

1

2
.

Suppose now L offers both bundles BL and BM ( A1−B1). There are three options available

to consumers:

• buying PL yields a net utility w + 2s− µL;

• purchasing PM yields a net value w + s− µM ;

• buying PS provides a net value w.

Consumers with s > µL−µM buy PL, these with µM ≤ s ≤ µL−µM purchase PM , and the

others opt for PS .

Providing bundle BM does not affect the margins for stand-alone products, which remain at

zero. However, offering BM has the effect of diverting some consumers from option 1 to option

2. Since option 2 generates less consumer value than option 1, the conglomerate L does not

benefit from offering bundle BM . This can be shown by examining L’s profit when both bundles

are offered:

ΠL = µL [1− F (µL − µM )] + µM [F (µL − µM )− F (µM )]

= µL (1− µL + µM ) + µM (µL − 2µM ) .

The first-order condition for µM leads to µL = 2µM (the second-order derivative is negative),

which implies that at the optimum, F (µL − µM ) = F (µM ). Thus, L will set a suffi ciently high

margin µM to ensure that no consumers choose to buy bundle BM . Consequently, the resulting

equilibrium remains the same as before: µlL = 1 and Πl
L = 1

2 .
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B.2.3 Medium-sized conglomerate only

Suppose that only a medium-sized conglomerate, M , has been formed. In this case, regardless

the bundling decision by M , the margin for the stand-alone products remains zero in all three

markets. Consumers face two options:

• purchasing PM yields a net value w + s− µM ;

• buying PS provides a net value w.

Consumers with s > µM opt for the first option, whereas the others opt for the second

option. The conglomerate M’s profit is:

ΠM = µM [1− F (µM )] = µM (1− µM ) .

Solving for the equilibrium margin and profit leads to:

µmM =
1

2
, Πm

M =
1

4
.

B.2.4 Merger decisions

We now proceed to analyze the merger decisions. Similar to our previous analysis, we consider

the following six candidate equilibria:

• (a). Conglomerate L formed in Stage 1 followed by M in Stage 2;

• (b). Conglomerate L formed in Stage 1 and no merger in Stage 2;

• (c). Conglomerate M formed in Stage 1 followed by L in Stage 2;

• (d). Conglomerate M formed in Stage 1 and no merger in Stage 2;

• (e). No merger in Stage 1 followed by L in Stage 2;

• (f). No merger in Stage 1 followed by M in Stage 2.

By eliminating dominated candidate equilibria, we can determine the subgame perfect Nash

equilibrium.

Suppose conglomerate L has been formed in Stage 1. Consider a subsequent merger decision

between two firms from markets A and B in Stage 2. If these firms choose to remain stand-alone,

they will make zero profit due to intense Bertrand competition. However, if they decide to merge
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and form conglomerate M , it results in a positive profit. In this case, if both conglomerates

commit to pure bundling, L will earn a profit of Πpp
L = 100

289 . If at least one merged firm engages

in mixed bundling, L’s profit will be Πm
L = 16

49 .

On the other hand, if L commits to providing both bundles BL and BM , the second merger

will not occur. In this scenario, L’s profit will be Πl
L = 1

2 . Comparing the profits, we have

ΠL
L =

1

2
> Πpp

L =
100

289
> Πm

L =
16

49
.

Thus, L will commit to offering two bundles to prevent the subsequent merger. Therefore,

candidate equilibrium (a) cannot arise in the subgame perfect Nash equilibrium.

Suppose a medium-sized conglomerate M has already formed in Stage 1. In this case,

a subsequent merger to form conglomerate L is always profitable, which rules out candidate

equilibrium (d). Additionally, choosing not to merge in Stage 1 and anticipating a merger in

Stage 2 is a dominated strategy. Any selected firm would strictly prefer to participate in the

merger rather than remaining stand-alone because all stand-alone firms earn zero profits when

there is only one conglomerate. Therefore, we can rule out candidate equilibria (e) and (f).

When comparing candidate equilibria (b) and (c), conglomerate L is strictly better off in

case (b). As a result, in the scenario where there are three firms in each market, there exists a

unique subgame perfect Nash equilibrium in which the large conglomerate L is formed in Stage

1 and commits itself to offering two bundles. No subsequent mergers occur in this equilibrium.

B.3 Dispersed markets

In dispersed markets where each market has at least four firms (ni ≥ 4 for i = A,B,C),

regardless of the number of conglomerates formed, the competition among stand-alone firms

drives all stand-alone prices down to cost. In this context, both pure bundling and mixed

bundling strategies lead to the same equilibrium outcomes, resulting in zero profits for stand-

alone firms. The conglomerates, on the other hand, earn positive profits solely from their bundles

and not from the stand-alone products.

B.3.1 Configuration 1: two conglomerates

If both conglomerates have been formed in dispersed markets, the situation is indeed similar to

the case of fully mixed bundling in more concentrated markets. Therefore, the conglomerates’
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profit are given by:

Πm
L =

16

49
and Πm

M =
2

49
.

B.3.2 Configuration 2: larger conglomerate only

Suppose only the large conglomerate L has been formed. Then the equilibrium outcome is the

same as with mildly concentrated markets, in which L earns a profit

Πl
L =

1

2
.

B.3.3 Configuration 3: medium-sized conglomerate only

Suppose only a medium-sized conglomerate M has emerged. Once again, the equilibrium out-

come is the same as with mildly concentrated markets, in which M earns a profit

Πm
M =

1

4
.

B.3.4 Merger decisions

Since Πl
L > Πm

L , the large conglomerate L is better off when only one conglomerate has been

formed. Consequently, L will strategically commit itself to offering two bundles after the merger,

in order to preempt the subsequent merger. The equilibrium outcome is the same as in the case

with mildly concentrated market.

Summarizing the above analysis leads to the following proposition:

Proposition 3 Consider a two-stage dynamic merger game involving three product markets

where each market is served by at least three identical stand-alone firms. There exists a unique

SPNE in which only the large conglomerate is formed in Stage 1, with no subsequent mergers.

In this equilibrium, the conglomerate L commits itself to offering two bundles BL and BM and

charges the margins µlL = 1 and µlM ≥ 1/2 for bundles BL and BM respectively, making a profit

Πl
L = 1/2.

B.4 Welfare Analysis

In highly concentrated markets where each market has only two firms, after the first merger to

form the large conglomerate L, there are no subsequent mergers. In this equilibrium, L commits
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itself to offering the pure large bundle BL only. However, the merger leads to an increase in

prices for the stand-alone products. The equilibrium prices are determined as follows: µlL ≡ 8
5

and αl = βl = γl = 2
5 , while the cut-off threshold is given by

(
µlL − αl − βl − γl

)
/2 = 1

5 .

The welfare loss resulting from the price increases outweighs the welfare gain from consumption

synergies. Consequently, the total consumer surplus reduces after the merger:

Sl2 =

∫ 1
5

0

(
w − αl − βl − γl

)
ds+

∫ 1

1
5

(
w + 2s− µlL

)
ds = w − 14

25
< w.

In less concentrated markets where each market has at least three firms (ni ≥ 3), after the

first merger, conglomerate L will commit itself to offering two pure bundles, and there will be

no subsequent mergers. Unlike in highly concentrated markets, the merger in this case does not

result in higher prices for the stand-alone products. As a result, the merger actually increases

the total consumer surplus.

However, the large conglomerate’s preemptive behaviour harms consumers. It is straightfor-

ward to see that, in dispersed markets with ni ≥ 4, the subsequent merger to form a medium-

sized conglomerate M is welfare enhancing. This merger does not result in higher prices for the

stand-alone products and, in fact, provides consumers with more options. By committing to its

preemptive strategy, conglomerate L reduces competition and limits consumer choice, ultimately

harming consumer welfare.

In the mildly concentrated markets with ni = 3, the formation of conglomerate M in the

second merger raises the prices for the stand-alone products. However, the net welfare effect of

this merger is not straightforward and requires further analysis. To assess the welfare impact,

we compare the consumer surplus under two candidate equilibria.

In the equilibrium where only the large conglomerate L exists, the margins for the stand-

alone products remain zero, while the margin for the bundle is µLL = 1. The relevant cut-off

threshold is µLL/2 = 1/2. In this equilibrium, the total consumer surplus is given by:

Sl3 =

∫ 1
2

0
wds+

∫ 1

1
2

(
w + 2s− µlL

)
ds = w +

1

4
.

By contrast, if L commits itself to the large bundle BL only, there will be two conglomerates

L and M in equilibrium. The corresponding margins are:

µppL ≡
10

17
, µppM ≡

3

17
, αpp = βpp ≡ 1

17
,

while the cut-off thresholds are:

µL − µM =
7

17
, µM − α− β =

1

17
.
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In this equilibrium, the total consumer surplus is given by:

Slm3 =

∫ 1
17

0

(
w − 2

17

)
ds+

∫ 7
17

1
17

(
w + s− 3

17

)
ds+

∫ 1

7
17

(
w + 2s− 10

17

)
ds.

= w +
144

289
.

Since 144
289 >

1
4 , L’s preemption reduces total consumer surplus.

Proposition 4 Consider a two-stage dynamic merger game involving three product markets.

When each market is served by two stand-alone firms, the conglomerate merger with pure

bundling increase the prices for stand-alone products and reduces total consumer welfare. When

each market is served by more than three stand-alone firms, the conglomerate merger increases

total consumer surplus. However, the large conglomerate’s preemptive strategy to prevent the

second merger reduces consumer welfare.

C Monopoly in Market A

We provide an illustrative example for the equilibrium outcome and welfare comparison. Assume

F (s) = s and G (ω) = ω/ū. Before the merger, then the monopoly margin for product A is

αm = ū/2.

Equilibrium outcome

After the merger, the merged firm maximizes the following profit by choosing µ and α:

ΠM = µ

[
1− 1

ū

∫ α

0
(µ− ω) dω −

(
1− α

ū

)
(µ− α)

]
+ α

(
1− α

ū

)
(µ− α) .

The equilibrium margin α∗ is the solution to α = 2λ (α) = 2 (ū− α), which gives:

α∗ =
2

3
ū.

On the other hand, the equilibrium margin for the bundle µ∗ is determined by the following

first-order condition:

2 (µ− α)
(

1− α

ū

)
= 1− 1

ū

∫ α

0
(µ− ω) dω − µα

ū
.

Solving for the equilibrium µ∗ leads to:

µ∗ =
1

2
+

1

3
ū.

64



This equilibrium exists only if µ∗ > α∗, which holds when ū < 3
2 .

Welfare Analysis

Before the merger, consumers obtain a net value of ω+wB−αm if ω > αm and wB if ω < αm.

After the merger:

• consumers with ω < α∗ and s < α∗ − ω + µ∗ − α∗ purchase the stand-alone product Bi
only and receive wB;

• consumers with ω < α∗ and s > α∗ − ω + µ∗ − α∗ purchase the bundle and receive

ω + wB + s− α∗ − µ∗ − α∗;

• consumers with ω ≥ α∗ and s < µ∗ − α∗ mix A and Bi and get ω + wB − α∗;

• consumers with ω ≥ α∗ and s > µ∗−α∗ opt for the bundle and receive ω+wB + s−α∗−

µ∗ − α∗.

For comparison, consider three different parameter regions: ω ≥ α∗, αm ≤ ω < α∗, and

ω < αm. Then:

• consumers with ω ≥ α∗ and s < µ∗−α∗ are worse off since ω+wB −α∗ < ω+wB −αm;

• consumers with ω ≥ α∗ and s > µ∗−α∗ are better off if s > µ∗−αm > µ∗−α∗, and these

with µ∗ − α∗ < s < µ∗ − αm are worse off.

• consumers with αm ≤ ω < α∗ and s < µ∗ − ω now opt for the stand-alone product Bi

only, and they are worse off since wB < ω + wB − αm;

• consumers with αm ≤ ω < α∗ and s > µ∗−ω are better off if s > µ∗−αm > µ∗−α∗, and

these with µ∗ − α∗ < s < µ∗ − αm are worse off.

• consumers with ω < αm and s < µ∗ − ω receive the same net utility as before, wB;

• consumers with ω < αm and s > µ∗ − ω are better off since ω + wB + s− µ∗ > wB.

The merger does not have a negative impact on consumers who do not purchase A before

the merger, e.g., these with ω < αm. However, it harms consumers who choose to combine A

and Bj both before and after the merger. These consumers have ω ≥ αm and low consumption

synergies such that s < {µ∗ −α∗, µ∗ − ω}. Furthermore, the merger also harms consumers with

ω ≥ αm and moderate consumption synergies such that ω ≥ αm, who switch to purchasing the
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bundle after the merger. On the other hand, the merger benefits consumers with suffi ciently

high consumption synergies.

Total Consumer Surplus

We show now, under uniform distributions, the merger leads to an increase in total consumer

surplus.

The total consumer surplus before the merger is given by:

Sb = wB +
1

ū

∫ ū

αm

(ω − αm) dω = wB +
ū

8
.

Denoting by τ (ω) ≡ µ−ω the cut-off threshold, the total consumer surplus after the merger

can be expressed as:

Sa = wB +
1

ū

∫ α

0

∫ 1

τ(ω)
(s− τ (ω)) dsdω +

1

ū

∫ ū

α

∫ 1

µ−α
(s− τ (ω)) dsdω +

1

ū

∫ µ−α

0

∫ ū

α
(ω − α) dsdω

= wB +
1

2ū

∫ ū

0
(1− τ (ω))2 dω − 1

2ū

∫ ū

α
(µ− α− τ (ω))2 dω +

µ− α
ū

∫ ū

α
(ω − α) dω.

Substituting α∗ = 2
3 ū and µ

∗ − α∗ = 1
2 −

1
3 ū, we obtain:

Sa = wB +
1

2ū

∫ ū

0

(
1

2
− 1

3
ū+ ω

)2

dω − 1

2ū

∫ ū

2
3
ū

(
ω − 2

3
ū

)2

dω +
1

ū

(
1

2
− 1

3
ū

)∫ ū

2
3
ū

(
ω − 2

3
ū

)
dω

= wB +
5

162
ū2 +

1

9
ū+

1

8
.

Comparing to Sb, when ū < 3/2, we have:

Sa − Sb =
5

162
ū2 +

1

9
ū+

1

8
− ū

8
=

5

162
ū2 − 1

72
ū+

1

8
> 0.

Therefore, the merger results in an increase in total consumer surplus under mixed bundling.
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