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Abstract

We study a matching model in which firms face budget constraints. If the pro-
duction function only depends on a firm’s technology, a weak stable matching always
exists; furthermore, when a strong stable matching does not exist, there is a nearby
budget vector for firms such that a strong stable matching exists for the problem
with perturbed budgets. If the production function is multiplicative, one can reach
a strong stable matching by changing the budget of firms such that the total budget
remains the same and each firm’s budget change is bounded by the value of at most
one worker for that firm.
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1 Introduction

We study a many-to-one matching problem with salaries in which firms face budget con-

straints. Kelso and Crawford (1982) study the same matching with salaries in cases in

which firms have access to a perfect credit market. They show that a stable matching al-

ways exists if workers are regarded as gross substitutes. But Mongell and Roth (1986) show

that when firms face a budget constraint, workers are not gross substitutes from a firm’s
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point of view; therefore, a stable matching may not exist. We study the same problem

that Mongell and Roth (1986) researched under two special forms of firms’ valuation of

workers. We show that the existence of a stable matching is not guaranteed, even in these

special cases; however, it is possible to achieve a stable matching by changing the budget

constraints. In one case, the required budget change is minimal; i.e., we can bound the

budget change to any small positive number. On the other hand, for the second case, the

required upper bound for the budget change of a firm is equal to the value of a worker to

that firm, while the sum of the budget changes for all firms is zero.

First, assume that workers are homogeneous from each firm’s standpoint; i.e., each firm

values all workers equally. There are many applications in which a firm cannot differentiate

between candidates or in which the marginal gain of hiring different workers is the same;

however, the marginal product of a worker is different at different firms. The marginal gain

to a hospital of hiring a general practitioner is the same no matter which candidate the

hospital hires, but based on the location of the hospital and the scarcity of general prac-

titioners, the value of a general practitioner to different hospitals can be unequal. Schools

that hire fresh-out-of-school teachers cannot differentiate among candidates; however, the

value of a teacher is not the same for schools in different districts or cities. A district attor-

ney’s office that is required by law to hire an attorney for indigent criminal defendants does

not differentiate among attorneys, as the law specifies only a minimum set of requirements

for an assigned counsel, so the actual quality of the attorney does not affect the value of

the attorney to the DA’s office, but the number of attorneys and cases in a district can

cause the value of an assigned counsel to vary between two districts of the same state.

More generally, a firm that hires unskilled workers does not differentiate among workers,

as the marginal product of workers in a job slot is the same, even though different job slots

have a different marginal product of labor for the same worker. We show that in this

setting, a weakly stable matching always exists, where all workers get hired with equal

salaries. We prove that a strong stable matching, even in this special case, need not exist.
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However, we can find nearby budgets for firms such that a strong stable matching exists.

More specifically, we show that when a matching problem with a specified budget vector

does not have strong stable matching, then there is a sequence of budget vectors converging

to the specified budget vector such that each element of the sequence has a strong stable

matching.

Second, assume that all firms agree on their valuation of workers; however, the produc-

tivity of a worker at a firm depends on the firm technology as well as on worker productivity.

We consider the multiplicative functional form for the valuation of a worker at a firm.1 In

this setting, there is a complementarity between worker’s skills and the firm’s technology.

We call this case matching of skilled workers with firms, as opposed to the first case, which

we call matching of unskilled workers with firms.

Schools may value a teacher by his/her score card report; hence, a school’s valuation of

every teacher’s quality may be the same; however, the productivity of the teacher depends

on the specific school as well as on the teacher’s quality. Hospitals agree on the quality of

a surgeon based on his/her quality report card.2 However, the value of a surgeon depends

on the specific hospital that he/she works in. We provide an example in this case such

that the assumption of gross substitution fails and Kelso and Crawford (1982)’s algorithm

for finding a stable matching does not work. We show that changing the budgets of firms

such that the total budgets of all firms remain the same and each firm’s budget change

is bounded by, at most, one worker’s value, allows us to find a stable matching. Suppose

that one entity is allocating budgets to several branches, as in the cases of public schools

in various locations in a city or a hospital with a variety of specialties; then, changing

the budgets without affecting the sum of all the budgets seems reasonable.3 For example,

1This production function is a common functional form for a super modular production function in
matching literature and CEO compensation literature; see, e.g., Mailath et al. (2017) and Tervio (2008).

2For example, there is a quality “report card” for surgeons performing coronary artery bypass graft
(CABG) surgery in Pennsylvania; see Kolstad (2013).

3Nguyen and Vohra (2022) state that “If a ‘planner’ knows the excess demand a priori, they can withhold
that amount to ‘add back in’ to ensure that each agent’s demand is satisfied which amounts to ‘burning’
some of the supply to ensure feasibility. ”
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suppose we have a proposal for budgets for all the public schools in a state. We provide a

budget vector that is close to the proposed budget vector and has a stable matching. Note

that the sum of all the budgets in the new budget vector is equal to the sum of the budgets

in the proposed budgets.

2 Related literature

Gale and Shapley (1962) study the college admissions problem as a two-sided matching

problem with no monetary transfer. They introduce the deferred-acceptance algorithm,

which results in a stable matching. They assume that colleges’ preferences are responsive.

Kelso and Crawford (1982) model a labor market as a one-to-many matching problem

with salaries. They drop the responsive preference assumption and replace it with a gross

substitutes assumption. Note that this assumption rules out a budget constraint for firms.

Moreover, Kelso and Crawford (1982) show that without this assumption, a stable matching

may not exist. Mongell and Roth (1986) explore a matching model with budget constraints.

They show that, if firms do not have access to a perfect credit market, a stable match may

not exist.

The matching problem with constraints is important because the standard theories

are not always applicable to practical problems. Supply constraints, such as capacity

constraints for firms or schools, are the only constraints in the standard theory of matching.

However, other constraints are observed in practical matching markets. Kojima (2017)

explains that the medical market in Japan limits the number of medical doctors in some

regions. With this restriction, a stable match may not exist. Another example of matching

with constraints is the national resident matching program with couples, where a stable

matching need not exist. Nguyen and Vohra (2018) show that perturbing the capacity of

hospitals ensures that a stable matching exists. They prove that this perturbation is less

than 2 for each hospital’s capacity and less than 4 for aggregate capacities. Abizada (2016)
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studies matching of colleges and students in which colleges have fixed budgets and offer

stipends to students. He assumes that stipends are offered in only three different amounts

and that the colleges’ preferences depend only on the students, not the stipends. He shows

that stable matching may not exist in the presence of budget constraints. However, a

pairwise stable allocation always exists. Hamada et al. (2017) investigate the same problem

where each student has one type that is the same for all colleges. Moreover, colleges have

budget constraints and colleges’ preferences are responsive over students and independent

of wages. Hamada et al. (2017) focus on discrete sets of wages instead of a continuum. They

conclude that a pairwise stable matching always exists (the same result reached by Abizada

(2016)). Kawase and Iwasaki (2017) perturbed budgets in order to find a stable matching.

Kawase and Iwasaki (2017) provide an example in which, if firms’ budgets are constrained

at particular intervals, a stable matching does not exist. They introduce a compatibility as

a new assumption, which is restrictive in our setting. Under this assumption, they conclude

that a stable matching exists if the budget change is bounded by a certain amount.

Under some restrictions, stable matchings correspond to competitive equilibrium (CE).

A rich literature has studied finding CE in a market with divisible or indivisible goods.

Budish (2011) shows that if agents have equal budgets, the CE for indivisible goods may

not exist. However, he proves that existence is not an issue if we can perturb budgets by a

small amount. Another problem in this literature is the Fisher market, where each buyer

has a linear-additive utility and a monetary budget. However, budgets have no intrinsic

value; they are useful only for buying products. Babaioff et al. (2017) explore the Fisher

market with indivisible goods and two buyers. They show that if you perturb both budgets,

CE does exist. Segal-Halevi (2018) proves that even after changing budgets, CE with four

buyers and four goods may not exist; there exists a positive measure of budget space such

that CE does not exist in that space. In our model, each salary that a firm pays has a dis-

utility. Hence, money has an intrinsic value. Moreover, we assume a continuum of salaries.

Furthermore, we use stability as our equilibrium concept, not just pairwise stability.
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In recent work, Jagadeesan and Teytelboym (2022) study the existence of stable match-

ing in the presence of budget constraints, which is the closest paper to our setting with

a different approach.4 They define the net substitutability condition under which a sta-

ble outcome exists, showing that net substitutability is more general than the gross sub-

stitutability condition in Kelso and Crawford (1982) and can incorporate hard budget

constraints. However, as we show in example 2, the net substitutability condition is not

satisfied in our setting. Moreover, Jagadeesan and Teytelboym (2022) show the existence

of a stable matching without perturbing the budget, which is a different approach than

the one we use here.5 Furthermore, our definition of a strong stable match is equivalent to

the Jagadeesan and Teytelboym (2022) definition of competitive equilibrium, which may

not exist in their setting even if the net substitutability condition is satisfied; their defini-

tion of stable matching, which is the solution concept that they work with, is weaker than

our definition of weakly stable matching. Nguyen and Vohra (2022), Nguyen and Vohra

(2018), and Azevedo et al. (2013) take the same approach as our paper, but in different

contexts. Similar to our paper, they change the resource constraint to prove the existence

of an equilibrium. More specifically, they use an approximate market clearing condition

that becomes negligible as the market grows large.

3 Model

There is a finite set of workers W , and a finite set of firms F . Each firm f ∈ F has a budget

bf ∈ R+; denote the budget of all firms as B = (bw)f∈F . Each firm can hire (match) zero,

one, or more workers and has to pay a non-negative salary to the hired workers.6 A worker

cannot work in two different firms (cannot match with two different firms). 7 Formally, a

4The first draft of our paper was publicly available in 2020.
5Similarly, Baldwin et al. (2020) use Hicksian demands to define net substitutability and show the

existence of equilibrium in the presence of income effect, absent hard budget constraints.
6We assume the outside option of firms and workers to be zero.
7Workers cannot work part-time in one firm and part-time in the other firm.
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many-to-one matching is an assignment of workers to firms with specified salaries, denoted

by µ : W → (F × S) ∪ {(∅, 0)}, where each worker is either matched with one firm or is

unmatched with a salary equal to zero. The set of all possible salaries is represented as

S = R+. A firm can hire more than one worker; denote the set of workers assigned to firm

f by µo(f) := {(w, s)|(f, s) = µ(w) for some w ∈ W}. Denote the budget of all firms by

B ∈ R|F |
+ .

The set of workers’ values is V = {vwf} where vwf is the value of worker w ∈ W for firm

f ∈ F . Each firm has a utility function uf : ∪A⊂W (A× SA) → R+, which under matching

µ is equal to

uf (µ
o(f)) =

∑
(w,sw)∈µo(f)

vwf − sw,

if
∑

(w,sw)∈µo(f) sw ≤ bf . Otherwise, the utility is −∞; firms face a hard budget constraint.

Denote worker w’s utility with uw : (F ∪ {∅}) × S → R+, which is equal to the worker’s

salary if he/she is employed and zero if he/she is unemployed.

Firms have additive and quasi-linear utility functions. Money is not neutral; it plays an

important role in the firms’ utility functions. Each worker’s importance to firms equals the

net worker’s value, which is the difference between the worker’s value and his/her salary;

the group of workers does not have a separate value for firms. Salary is the only important

thing for workers. They do not care about the firm where they are employed or about the

group of their coworkers.

A matching is feasible if ∀f ∈ F :
∑

(w,sw)∈µo(f) sw ≤ bf . A matching µ is individually

rational, if (1) it is feasible; (2) for each f ∈ F , uf (µ
o(f)) ≥ uf (C) for all C ⊂ µo(f); and

(3) uw(µ(w)) ≥ uw(∅, 0). A matching µ is strongly stable if it is individually rational and,

for any firm f and A ⊂ W , if there is a feasible salary vector (sw)w∈A with uf ({(w, sw)|w ∈

A}) > uf (µ
o(f)), then there exists a w ∈ A such that uw(µ(w)) > uw(f, sw). A matching

µ is weakly stable if it is individually rational and, for any firm f and A ⊂ W , if there is

a feasible salary vector (sw)w∈A with uf ({(w, sw)|w ∈ A}) > uf (µ
o(f)), then there exists a
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w ∈ A such that uw(µ(w)) ≥ uw(f, sw).

Kelso and Crawford (1982) define gross substitutability as:8

Definition 1 Workers are gross substitutes for each firm f , if for any two vectors of

salaries, s⃗ = (sw)w∈W and s⃗′ = (s′w)w∈W , where s⃗ ≤ s⃗′ and sw = s
′
w, then hiring worker w

at salary s implies hiring that worker at salary s′.

The algorithm provided by Kelso and Crawford (1982) assumes that workers are gross

substitutes for each firm f . The following example shows that when firms face budget

constraints, workers may not be gross substitutes for each firm.

Example 1 There are two firms: F = {1, 2} with budgets b1 = b2 = 50. There are three

workers, W = {1, 2, 3}, with values v11 = 100, v12 = 75, v21 = 100, v22 = 75, v31 = 20, and

v32 = 15.9 Let s⃗ = (20, 20, 10) and s⃗′ = (25, 25, 10). Note that s⃗ ≤ s⃗′ and s3 = s
′
3. Firm 1

chooses worker 3 when the salary vector is s⃗ but does not choose worker 3 when the salary

vector is s⃗′. Therefore, Kelso and Crawford (1982)’s gross substitutes condition is violated.

Jagadeesan and Teytelboym (2022) define net substitutability similarly to the gross

substitutability of Kelso and Crawford (1982) by changing the Marshallian demand for a

fixed income to Hicksian demand for a fixed utility level. However, the following example

shows that the net substitutability condition is not satisfied in our setting:

Example 2 Consider a firm and three workers, which are the buyer and three trades in

the spirit of Jagadeesan and Teytelboym (2022). The buyer values the first trade at v1 = 5,

the second trade at v2 = 1, and the third trade at v3 = 4. We add the value of each trade to

find the value of a set of trades. The income of the buyer is 2. First, we find the Hicksian

demand at the utility level of 5 utils when the prices are (0.9, 0.4, 0.4). The buyer’s Hicksian

8Kelso and Crawford (1982) have a richer utility function, but firms in their model do not have a budget
constraint. In their setting, utilities of the firms depend not only on individual workers’ values and salaries
but also on the group of workers that firms hire. Utilities of the workers depend on the salaries they receive
and the firms where they work.

9These values are multiplicative, same as our skilled worker section: v11 = 5× 20 = 100, v12 = 5× 15 =
75, v21 = 5× 20 = 100, v22 = 5× 15 = 75, and v31 = 1× 20 = 20, v32 = 1× 15 = 15.
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demand is {2, 3}. Next, we increase the price of the third trade to 0.55. At this new price

vector (0.9, 0.4, 0.55), and the utility level of 5 utils, the Hicksian demand of the buyer is

{1}, which violates the net substitutability condition.

4 Unskilled workers

First, we study the existence of weak and strong stable matchings in a setting in which

workers are homogeneous from each firm’s standpoint, i.e., each firm values all workers

equally. However, different firms may have different valuations. We use the following

definitions of strict demand and pseudo demand to find the number of workers matched

with each firm in a strong stable matching and a weak stable matching respectively.

Definition 2 Define the strict demand Df (s) for firm f ∈ F as

Df (s) =


0 vf < s

{0, 1, ...,
⌊ bf

s

⌋
} vf = s⌊ bf

s

⌋
vf > s.

Define the pseudo demand D
′

f (s) for firm f ∈ F as:

D
′

f (s) =



0 vf < s

{0, 1, ...,
⌊ bf

s

⌋
} vf = s

{ bf
s
− 1,

bf
s
} vf > s and

bf
s
∈ N⌊ bf

s

⌋
vf > s and

bf
s
̸∈ N

The following theorem shows that when matching unskilled workers to firms, the ex-

istence of weak stable matching with equal salaries is guaranteed. Subsequently, we show

that the existence of a strong stable matching is an issue in this special case. Finally, we
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prove that there is always a nearby budget vector such that, with the new budget vector,

a strong stable matching exists.

Theorem 1

Suppose each firm values all workers equally, i.e., (vwf = vf ,∀w ∈ W, f ∈ F ):

i) There exists a weakly stable matching with equal salary sw = s for all w ∈ W . More-

over, the number of matches for firm f ∈ F is an element of the pseudo demand

D
′

f (s).

ii) A strongly stable matching may not exist.

iii) For any budget vector B, a sequence of budget vectors {Bn}n∈N exists such that

{Bn}n∈N converges to B and every element of the sequence has a strongly stable match-

ing. In any of these strongly stable matchings, salaries of workers are equal and the

number of matches of firms are an element of their strict demands.

The intuition behind Theorem 1 i is very close to the intuition for competitive equilib-

rium Arrow-Debreu (1951). However, here workers are indivisible objects. There exists a

salary s, such that the allocation based on the requested pseudo demand forms a weakly

stable matching. Moreover, the market clears on the worker side; all workers find a job.

Although, there may exist some firms with a low willingness to pay for the workers (low

value), in which they are left with no workers.

The non existence of a strong stable matching in Theorem 1 ii is due to the degree

of flexibility of the pseudo demand. In a weakly stable matching firm f is satisfied with

bf/s − 1 amount of workers when bf/s is an integer number. In this situation if firm f

wants to hire one more worker has to pay an additional salary s, and has to spend the

entire budget. The last worker that firm f wants to hire is already matched to a firm with

the same salary s, so firm f ’s offer is not very interesting to the this worker, and at the
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same time firm f cannot pay even one dolor more than s. In contrast to the strongly stable

matching, firm f is happy with bf/s− 1 workers under weakly stable matching.

In fact, the issue raises for strongly stable matching when at least for two firms the

ratio of budgets to the salary become integers. This can be solved by perturbing budgets.

Using this idea Theorem 1 iii shows there exist a sequence of budgets that converges to

the initial budgets such that for each element of this sequence the ratio of budgets to the

salary of at most one firm is integer.

In order to prove this theorem, we first state two lemmas.10 The first lemma shows

that, when each firm values all workers equally, we can restrict our attention to matchings

with equal salaries.

Lemma 1

Suppose each firm values all workers equally, i.e., (vwf = vf ,∀w ∈ W, f ∈ F ). If µ is a

weakly (strongly) stable matching, then a weakly (strongly) stable matching µ
′
exists such

that 1) the allocation of µ
′
is the same as the allocation in µ, and 2) salaries of workers in

µ
′
are equal.

The intuition of Lemma 1 is as follows: Assume there exist a worker wl outside of firm

f with a lower salary compare to a worker wh inside firm f . Firm f can fire the existing

worker wh (that receives a higher salary) and hire the outside worker wl with a salary that

is average of salaries of wl and wh.

Define the number of workers assigned to firm f , under matching µ and salary s by

Nf (µ(s)). Lemma 2, by using the strict demand and the pseudo demand, characterizes

weak and strong stable matchings. Using Lemma 1 allows us focus on matching µ with

salary s for all workers.

Lemma 2

10The Appendix provides proofs not given in the main text.
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Suppose each firm values all workers equally, i.e., (vwf = vf , ∀w ∈ W, f ∈ F ). Suppose

all salaries in matching µ are equal to s.11

1) Matching µ is strongly stable if and only if:

i) The number of workers assigned to firm f , Nf (µ(s)), is an element of the firm f

strict demand. Formally, Nf (µ(s)) ∈ Df (s).

ii) The market clears:
∑

f∈F Nf (µ(s)) = |W |.

2) Matching µ is weakly stable if and only if:

i) The number of workers assigned to firm f , Nf (µ(s)), is an element of the firm f ’s

pseudo demand. Formally, Nf (µ(s)) ∈ D
′

f (s).

ii) The market clears:
∑

f∈F Nf (µ(s)) = |W |.

Lemma 2 argues that if firms request a demand according to the pseudo (strict) demand

then the matching is weakly (strongly) if and only if the market clears on the workers side.

The intuition is that a firm can fire a worker with a positive income and hire an unemployed

worker with a very small salary. The offer is interesting for the unemployed worker since

the outside option of workers is zero. Therefore there should not exist unmatched workers

on a stable matching.

Using these two lemmas, we can prove Theorem 1:

Proof:

Define T (s) as the sum of all elements (Minkowski addition) of Df (s) for all f ∈ F .

Formally,

T (s) = {
∑
f∈F

af |af ∈ Df (s)}.

Observe that T (s) is a set. For example, suppose there are two firms, firm 1 and firm 2,

and some workers. Let s = 5, V1 = 5 (the value of the first firm), b1 = 10, V2 = 10, and

11With Lemma 1 we can focus on matchings with equal salaries.
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b2 = 10. Then D1(s) = {0, 1, 2}, and D2(s) = {1, 2}. Therefore,

T (s) = {1, 2, 3, 4}.

Note that T (s) is a set of consecutive natural numbers. Similarly, define

T
′
(s) = {

∑
f∈F

a
′

f |a
′

f ∈ D
′

f (s)}.

i) Using Lemma 2, we know that if there exists a salary s and Nf (µ(s)) ∈ D
′

f (s) such

that
∑

f∈F Nf (µ(s)) = |W |, then a weakly stable matching exists. The idea is to find

s, and Nf (µ(s)) ∈ D
′

f (s). If we find T
′
(s), such that |W | ∈ T

′
(s), then by definition

of T
′
(s), we have Nf (µ(s) ∈ D

′

f (s), such that
∑

f∈F Nf (µ(s)) = |W |. Now, we need

to show that for any |W | ∈ N, there exists s such that |W | ∈ T
′
(s).

By contradiction, assume that there exists k ∈ N exists such that there does not exist

a salary s, such that k ∈ T
′
(s). By decreasing s, the maximum element of set D

′

f (s)

for all f ∈ F is weakly increasing and not bounded from above. Hence, set T
′
(s) is

not bounded from above. Therefore, for any k ∈ N we can find an s small enough

that max{T ′
(s)} > k. Therefore, without loss of generality, we can assume that there

exists a salary s such that k + 1 ∈ T
′
(s), and k ̸∈ T

′
(s). This is true because T

′
(s) is

not bounded from above. When k + 1 ∈ T
′
(s) and k ̸∈ T

′
(s), we have that

k + 1 =
∑
f∈F

min{D′

f (s)}.

Define

ssup = sup{s|k + 1 ∈ T
′
(s)}.

Note that ssup exists since T
′
(s) = 0, for a large enough s. Consider two cases:

1) First assume that k + 1 ∈ T
′
(ssup), then k + 1 =

∑
f∈F min{D′

f (ssup)}. For ϵ1 ≥ 0

13



by assumption, k + 1 ̸∈ T
′
(ssup + ϵ1). Note that the maximum of sets D

′

f (s) for all

f ∈ F are weakly decreasing in s, therefore

k + 1 >
∑
f∈F

max{D′

f (ssup + ϵ1)}.

Hence, at least one firm, call it f ∗, exists such that for an arbitrary small ϵ1 ≥ 0

min{D′

f∗(ssup)} > max{D′

f∗(ssup + ϵ1)}.

Now either vf∗ = ssup or
bf
ssup

∈ N. Otherwise D
′

f∗(.) cannot change from ssup to

ssup + ϵ1, for a small enough ϵ1. Let vf∗ = ssup, then

0 = min{D′

f∗(ssup)} > max{D′

f∗(ssup + ϵ1)} = 0,

a contradiction. Let
bf
ssup

∈ N, then

bf
ssup

− 1 = min{D′

f∗(ssup)} > max{D′

f∗(ssup + ϵ2)} = ⌊ bf
ssup + ϵ1

⌋ = bf
ssup

− 1,

a contradiction.

2) Second, assume k + 1 ̸∈ T
′
(ssup). Then there exists m ≥ 1 such that k − m =∑

f∈F max{D′

f (ssup)}. Observe that for any ϵ2 ≥ 0 such that k + 1 ∈ T
′
(ssup − ϵ2),

we have that k −m ̸∈ T
′
(ssup − ϵ2), because if k + 1, k −m ∈ T

′
(ssup − ϵ2); then

we must have that k ∈ T
′
(ssup − ϵ2) as well, which is a contradiction. Maximums

of sets D
′

f (s) for all f ∈ F are weakly decreasing in s, therefore

k −m <
∑
f∈F

min{D′

f (ssup − ϵ2)}.
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Hence, at least one firm, call it f ∗, exists such that for an arbitrary small ϵ2 ≥ 0,

max{D′

f∗(ssup)} < min{D′

f∗(ssup − ϵ2)}.

Now either vf∗ = ssup or
bf
ssup

∈ N. Otherwise, D
′

f∗(.) cannot change from ssup to

ssup − ϵ2, for a small enough ϵ2. Let vf∗ = ssup, then

⌊ bf
∗

ssup
⌋ = max{D′

f∗(ssup)} < min{D′

f∗(ssup − ϵ2)} = ⌊ bf∗

ssup − ϵ2
⌋ = ⌊ bf

∗

ssup
⌋,

a contradiction. Let
bf
ssup

∈ N, then

bf∗

ssup
= max{D′

f∗(ssup)} < min{D′

f∗(ssup − ϵ2)} = ⌊ bf∗

ssup − ϵ2
⌋ = bf∗

ssup
,

a contradiction.

ii) Consider the following example: There are two firms: F = {1, 2} with budgets b1 =

b2 = 6. There are three workers W = {1, 2, 3} with values v11 = v12 = v21 = v22 =

v31 = v32 = 5. Note that in any strongly stable matching, there are no unemployed

workers: If sw > 0 for a hired worker, then hiring the unemployed worker instead

of worker w with salary sw
2

strictly increases the firm’s utility and the unemployed

worker’s utility. If the salary for all hired workers is zero, then hiring the unemployed

worker in addition to the hired worker with salary ϵ > 0 strictly increases the firm’s

utility and the unemployed worker’s utility. Suppose that there is a strongly stable

matching in which one firm hires at least two workers. The salary of one of these

workers must be less than or equal to 3. Without loss of generality, suppose that firm

1 hires at least workers 1 and 2, where s1 ≤ 3. Consider the following cases:

(1) Firm 1 hires all three workers. In this case, firm 2 hiring worker 1 with salary 4

strictly increases their utilities and is a blocking group.
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(2) Firm 2 hires worker 3 with salary s3 > 3. In this case, firm 2 hiring only worker

1 with salary s′1, where s1 < s′1 < s3, strictly increases their utilities and is a blocking

group.

(3) Firm 2 hires worker 3 with salary s3 ≤ 3. in this case, firm 2 hiring workers 1 and

3 with salaries s′1 = 3 and s3 strictly increases firm 2’s utility and does not decrease

the utility of workers 1 and 3 and is a blocking group.

Therefore, there is no strongly stable matching.

iii) First we show that for all budget vectors B ∈ R|F |
+ , a sequence of vectors Bk exists

such that: (1) limk→∞Bk = B; (2) for all k ∈ N, the proportion of each two different

arrays of Bk is not in Q. Note that a sequence of vectors Qk exist that converge to B

and that for each k, every array of Qk is rational. Using Qk, we can construct Bk. Let

bki and qki be array i in Bk and Qk respectively. Define

bki = qki(1 +
i
√
2

k
).

The ratio of array i to j (i ̸= j) of Bk is not rational. Suppose not; define

p =
qki(1 +

i
√
2

k
)

qkj(1 +
j
√
2

k
)

and p
′
= p

qkj
qki

. Observe that

k − kp
′

p′j − i
=

√
2,

which is a contradiction, because the left side is a rational number but the right side

is an irrational number.12

12Observe that:

k − kp
′

p′j − i
=

√
2, ⇐⇒ (j − i)

√
2

(1 + j
√
2

k )
=

√
2(p

′
j − i) ⇐⇒ (j − i)

√
2

(1 + j
√
2

k )
=

√
2
(j + ij

√
2

k − i− ij
√
2

k )

(1 + j
√
2

k )
.
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Using the above argument, we show that if for all f, f
′ ∈ F :

bf
b
f
′
̸∈ Q, a strongly

stable matching exists, which concludes the result. Using Lemma 2, we know that if

there exists a salary s and Nf (µ(s)) ∈ Df (s) such that
∑

f∈F Nf (µ(s)) = |W |, then

a strongly stable matching exists. The idea is to find s, and Nf (µ(s)) ∈ Df (s). If we

find T (s), such that |W | ∈ T (s), then by definition of T (s), we have Nf (µ(s) ∈ Df (s),

such that
∑

f∈F Nf (µ(s)) = |W |. We need to show that for any |W | ∈ N, there exists

s such that |W | ∈ T (s). The rest of the argument is almost the same as part i and is

provided in Appendix A.

5 Skilled workers

So far, we have considered the case in which vwf = vf . The second case we want to

investigate is one in which each worker’s value at a firm depends on both the worker’s

quality and the firm’s technology. We consider the multiplicative functional form for the

value of a worker at a firm. Assume that each worker w ∈ W has an intrinsic value

Vw (talent, productivity, knowledge, etc). Let the technology of firm f ∈ F be Vf . We

consider the case in which the value of the worker w for firm f is vwf = Vw.Vf , i.e., there is

complementarity between firms and workers. The efficient firm can combine its technology

(Vf ) and human resources (Vw) to produce a highly valued output (Vf .Vw), as there are

complementaries between firm’s technology and worker’s quality. For simplicity, assume

that V1 < V2 < ... < V|F |. We say salaries are fair when the salaries that workers receive

for each unit of productivity are the same for different workers. Formally

Definition 3 Workers have fair salaries if for all w,w
′ ∈ W :

Sw

Vw

=
Sw′

Vw′
.
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We introduce a fair salary algorithm, which results in a strongly stable matching by

changing the budget of firms so that the total budget remains the same and each firm’s

budget change is bounded by the value of at most one worker to that firm. The fair salary

algorithm, has two stages, in the first stage we find salaries, and the in the second stage we

introduce the matching mechanism.

Stage one, finding salaries:

In stage one we find salaries. Define

α(−→x ) =

∑
f∈F xfbf∑
w∈W Vw

,

where xf is the f -th array of vector −→x ∈ [0, 1]|F |. Let y ∈ [0, 1], and define −→yf ∈ [0, 1]|F |

for f ∈ F a vector such that all the elements before f are zero, all the elements after f are

one, and the fth element is equal to y, i.e.,

−→yf .ei =


1 if i > f

0 if i < f

y if i = f.

Observe that if y = 1 and f = 1, then −→yf =
−→
1 .

Lemma 3 If α(
−→
1 ) > V1:

1. Either there exists f ∗ ∈ F and y ∈ [0, 1] such that:

Vf∗ = α(
−−→
yf∗),

2. or f ∗ ∈ F exists such that

Vf∗−1 < α(
−−→
1f∗) ≤ Vf∗ .
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Using the Lemma 3, we determine the salary, productivity ratio. Define α∗ = α(
−→
1 ), if

α(
−→
1 ) ≤ V1. If α(

−→
1 ) > V1, then define α∗ = α(−→yf∗), where f ∗ ∈ F , and y ∈ [0, 1] satisfies

Lemma 3.13 Choose Sw = α∗Vw for all w ∈ W .

When α(
−→
1 ) ≤ V1, then α∗ (the ratio of the salary to the productivity) is in a way that

all firms can hire workers. The reason is that value net salary for all firms are positive; i.e.

VwVf − α∗Vw = (Vf − α∗)Vw ≥ 0,

for all f ∈ F , and w ∈ W . If α(
−→
1 ) > V1, then based on Lemma 3 there exists f ∗ such

that Vf∗−1 < α∗ ≤ Vf∗ . This means that firms f
′ ∈ F such that Vf ′ < Vf∗ do not hire any

worker at this wage, because VfVw − α∗Vw = (Vf − α∗)Vw < 0. Firms f
′′ ∈ F such that

Vf ′′ ≥ Vf∗ have incentive to hire workers, because VfVw − α∗Vw = (Vf − α∗)Vw ≥ 0.

Next, we introduce the fair salary algorithm which finds a strongly stable matching with

fair salaries by changing the budgets of firms.

Stage two, the matching mechanism:

1. Remove firms that are not efficient; Vf < α∗ (if these firms exist).

2. Change bf∗ to b
′

f∗ = yf∗bf∗ .

3. Among firms that are efficient enough (Vf ≥ α∗), choose one firm, match workers as

much as possible until the budget constraint does not allow the matching of even one

more worker. Choose another firm and match some worker/workers (or zero workers)

from the rest of the workers until the budget constraint does not allow the matching of

more worker. Continue until there are no more firms in this group of firms (Vf ≥ α∗).

Remove all the firms that have exhausted their budgets completely.

4. Choose one worker among the unmatched workers (if one exists), and match that

worker with one of the remaining firms. Update the budget of the firm to the sum of

13If there are multiple f∗ ∈ F , and y ∈ [0, 1], which satisfy Lemma 3, select the firm with highest value
as f∗.
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the salaries that it has to pay, and remove both the firm and the worker. Repeat the

same process for another unmatched worker. Continue until no unmatched worker

remains.

5. Add bf∗ − b
′

f∗ to the budget of firm f ∗.

The following examples show how this algorithm works. In Example 3 α(
−→
1 ) is lower

than the minimum technology of the firms (V1), and in Example 4 α(
−→
1 ) is higher than the

minimum technology of the firms.

Example 3 There are three firms: F = {f1, f2, f3} with values Vf1 = 4, Vf2 = 6, and

Vf3 = 7, and budgets bf1 = 50, bf2 = 75, and bf3 = 25. There are three types of workers

with values 4, 5, and 6. Assume that there are five workers of each type: 15 workers in

total.

Now we run the fair salary algorithm. First, we need to find α∗.

α(
−→
1 ) =

bf1 + bf2 + bf3
5× 4 + 5× 5 + 5× 6

=
150

75
= 2 < Vf1 .

Therefore α∗ = α(
−→
1 ) = 2. Choose Sw = 2Vw for all w ∈ W .

Skip this step since V1 > α∗. Now we run the matching mechanism

1. Skip this step since α∗ = α(
−→
1 ).

2. Start from f1, and match all the type one workers (w1) to f1. This costs 5× 8 = 40,

so f1 still has 10 budgets that can hire one worker of the second type (w2). The new

worker costs 10, and f1 spends the entire budget. Now move to f2. For f2, match all

the remaining second type, w2, which costs 4×10 = 40, and match two workers of the

third type, w3, which costs 2 × 12. Finally, firm f2 spends 64, and has 11 left in its

budget. We cannot match any more workers with the remaining budget. So, move to

the third firm, f3. Match two workers of the third type, w3, to f3, which costs 24 out
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of the budget. At this point, the remaining budget for f3 does not have enough left to

hire any more workers. Because f1 has finished its budget, the algorithm removes it.

Figure 1: The outcome after step 4 in example 3.

Figure 2: The outcome after step 5 in example 3.

3. There is only one worker who has not been matched, a worker of the third type. Match

this worker to f2. Finally, update the f2 budget from 75 to 76, and the f3 budget from

25 to 24.

4. Skip this step since α∗ = α(
−→
1 ).
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Note that the outcome of the algorithm may not be unique. For instance, in step 5,

the algorithm can match the last worker to f3; there is no restriction for that. However,

all the outcomes have the properties of theorem 2. As we can see in this example, workers

receive a fair salary sw/vw = 2 for all w ∈ W . Moreover, the f1 budget does not change,

the f2 budget increases by one, and the f3 budget decreases by one.

Example 4 There are three firms: F = {f1, f2, f3} with values Vf1 = 4, Vf2 = 6, and

Vf3 = 7, and budgets bf1 = 115, bf2 = 150, and bf3 = 50. There are three types of workers

with values 4, 5, and 6. Assume that there are five workers of each type: 15 workers in

total.

Now we run the fair salary algorithm. First, we need to find α∗.

α(
−→
1 ) =

bf1 + bf2 + bf3
5× 4 + 5× 5 + 5× 6

=
315

75
= 4.2 > Vf1 .

α((
100

115
, 1, 1)) =

100
115

bf1 + bf2 + bf3
5× 4 + 5× 5 + 5× 6

=
315

75
= 4 = Vf1 .

Therefore α∗ = α((100
115

, 1, 1)) = 4, and f ∗ = f1. Choose Sw = 4Vw for all w ∈ W . Now we

run the matching mechanism.

1. There is no inefficient firm since V1 = α∗.

2. Change bf1 to b
′

f1
= yf1bf1 = 100.

3. Start from f1, and match all the type one workers (w1) to f1. This costs 5× 16 = 80,

so f1 still has 20 left in its budget, which is enough to hire one worker of the second

type (w2). The new worker costs 20, and f1 spends the entire budget. Now, move

to f2. For f2, match all the remaining workers of the second type, w2, which costs

4×20 = 80, and match two workers of the third type, w3, which costs 2×24. Finally,

firm f2 spends 128, and has 22 left in its budget. Firm f2 cannot match any more

workers with the remaining budget. So, move to f3. Match two of the third type (w3)
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of workers to f3, which costs 48 out of the budget of 50. With the remaining budget,

f3 cannot hire any more workers. Because f1 has exhausted its budget completely, the

algorithm removes f1.

4. There is only one worker who has not been matched, a worker of the third type. Match

this worker to f2. Finally update the budget of f2 from 150 to 152, and the budget of

f3 from 50 to 48.

5. Add bf1 − b
′

f1
= 115− 100 to the budget of firm f1. Therefore, bf1 = 115.

Note that f1 has not spent all of its budget, i.e., the budget is 115, but the expenditure is

100. This fact does not create any problem, because f1 is indifferent between hiring and not

hiring workers at these wages.

Theorem 2 Using the fair salary algorithm results in a strongly stable matching with fair

salaries in which

1. The budget of firm f ∈ F changes at most maxw∈W{α∗Vw},

2. The sum of the budgets of all the firms remains the same.14

Given a proposed budget vector, the fair salary algorithm is a method for finding a

nearby budget vector with a strongly stable matching in which the total of all the budgets

is the same. For markets where a central authority assigns budgets, this mechanism is

very helpful. For example, when a state or federal government assigns budgets to schools

or other branches of the government, this algorithm, without changing the total budgets,

results in a strongly stable matching.

Corollary 1 The algorithm does not change the budget of firm f more than maxw∈W{vwf}.
14Formally, by changing bf to b

′

f such that |bf−b
′

f | ≤ maxw∈W {α∗Vw}, b
′

f ≥ 0, and
∑

f∈F bf =
∑

f ′∈F b
′

f .
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Proof: The algorithm does not change budgets of firm f ∈ F if Vf < Vf∗ . For firm f ∈ F ,

such that Vf ≥ Vf∗ , we know that α∗ ≤ Vf∗ ≤ Vf ; therefore, α
∗Vw ≤ maxw∈W{α∗Vw} ≤

VfVw.

Corollary 2 If α∗ < V1 (all firms are efficient enough):

1. The algorithm creates a worker-optimal strongly stable matching among all the strongly

stable matchings that are budget neutral,

2. The algorithm generates highest salaries for all workers among strongly stable match-

ings with fair salaries that are budget neutral.

Proof: When α∗ < V1, it means that

α∗ =

∑
f∈F bf∑
w∈W Vw

.

1. We have to show there is no vector of budgets B
′
and a strongly stable matching with

a vector of salaries S
′
such that 1)

∑
f∈F bf =

∑
f∈F b

′

f , 2) S
′
w ≥ Sw for all w ∈ W ,

and 3) S
′
w > SW for some w ∈ W . By contradiction, assume that there is a strongly

stable matching with the above properties. Then

∑
f∈F

b
′

f ≥
∑
w∈W

S
′

w >
∑
w∈W

Sw = α∗
∑
w∈W

Vw =
∑
f∈F

bf .

Hence,
∑

f∈F b
′

f >
∑

f∈F bf , a contradiction.

2. Suppose not: There exists a vector of budgets B
′
, and a strongly stable matching

with a vector of salaries S
′
such that 1)

∑
f∈F bf =

∑
f∈F b

′

f , 2) S
′
w = αVw for all

w ∈ W and some α ∈ R+, and 3) S
′
w > Sw for some w ∈ W . Therefore, it must be
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the case that α > α∗. Observe that

∑
f∈F

b
′

f ≥
∑
w∈W

S
′

w >
∑
w∈W

Sw = α∗
∑
f∈F

bf .

Hence,
∑

f∈F b
′

f >
∑

f∈F bf , a contradiction.

6 Conclusion

We study the problem of finding stable matching in cases in which firms hire workers

with a specified salary while facing a budget constraint. We know that, in this setting, a

stable matching need not exist; therefore, we study two special cases. Compared with the

literature, in our model, money has an intrinsic value for firms, salaries can be any positive

real number, and our equilibrium concept is stability.

We show that the problem of existence, when workers are homogeneous from the firms’

point of view, can be resolved in two ways: (i) Use weak stable matching as the solution

concept, which we prove always exists, or (ii) allow small perturbation of firms’ budgets.

We show that there is always a nearby budget vector with a strong stable matching.

In the second case, where we consider the multiplicative functional form for the valuation

of a worker at a firm, a stable matching may not exist. We introduce an algorithm that

results in a strong stable matching with fair salaries by changing the firms’ budgets. The

budget change for each firm is bounded by the value of at most one worker to that firm;

moreover, the sum of all new budgets equals the sum of all previous budgets, i.e., there is

no need for additional funds to find a strong stable matching.
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A Mathematical Appendix

Proof of Lemma 1:

We consider two cases. In the first, not all workers are hired by one firm in µ. In the

second case, all workers are hired by one firm in µ.
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1) Assume that not all workers are hired by one firm in µ. We show that salaries in µ

should be equal. Suppose there exist two workers w1, and w2, with different salaries

(s1 ̸= s2); then we have two cases:

i) Workers w1 and w2 are matched with different firms. Without loss of generality,

let w1 match with f1, and w2 match with f2. Assume s1 > s2. Consider a salary

s such that s1 > s > s2. Now, f1 and w2 with salary s form a blocking pair: a

contradiction.

ii) Workers w1 and w2 are matched with one firm; assume f1. We know there exists

a worker w
′
with salary s

′
who is matched with f

′ ̸= f1. Note that either s
′ ̸= s1

or s
′ ̸= s2. Then, suppose s

′ ̸= s1. If s
′
> s1, then firm f

′
and worker w1 with

salary s form a blocking pair, where s
′
> s > s1. On the other hand, if s

′
< s1,

then firm f1 and worker w
′
with salary s form a blocking pair, where s

′
< s < s1:

a contradiction.

2) Suppose all workers are matched with one firm (f1, for instance) in µ. Let sw be the

salary of worker w ∈ W in µ. Matching µ is weakly (strongly) stable, so for every hired

worker and every firm f ∈ F (if it exists), except in the case of f1, either sw ≥ vf or

sw ≥ bf (sw > bf in the case of a strongly stable matching). Define sm = minw∈W sw.

Define µ
′
such that all hired workers are matched to firm f1 with salary sm. This

matching is a weakly (strongly) stable matching, because for all hired workers w and

all firms f other than f1, either sm ≥ vf or sm ≥ bf (sw > bf if the matching is strongly

stable).

Proof of Lemma 2:
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Let sw = s for all w ∈ W . Define problem Pf for firm f ∈ F :

max
A⊂W

∑
w∈A

(vfw − sw) = max
A⊂W

∑
w∈A

(vf − s),

s.t.∑
w∈A

sw ≤ bf .

Before starting the first part of the lemma, we show that the matching with salary s

for all workers is strongly stable if and only if every firm f is assigned to the solution of

problem Pf and each worker is assigned to exactly one firm.

First, we show that if every firm f is assigned to the solution of problem Pf and each

worker is assigned to exactly one firm, with salary s, then this matching, µ, is strongly

stable. Matching µ is individually rational for workers because s ≥ 0. It is individually

rational for firms because it is the solution to the firm’s optimization problem. A firm

f and A ⊂ W cannot make a blocking pair. By contradiction, assume that there is a

feasible salary vector (s′w)w∈A with uf ({(w, s′w)|w ∈ A}) > uf (µ
o(f)), and for all w ∈ A,

uw(µ(w)) ≤ uw(f, s
′
w). This implies that s′w ≥ s for all w ∈ A. Therefore,

uf ({(w, s)|w ∈ A}) ≥ uf ({(w, s′w)|w ∈ A}).

However, uf ({(w, s′w)|w ∈ A}) > uf (µ
o(f)), hence,

uf ({(w, s)|w ∈ A}) > uf (µ
o(f)).

This contradicts the assumption that µo(f) is an optimal decision for firm f when salaries

are s.

On the other hand, if the matching µ with salary s for all workers is strongly stable, we

can conclude that every firm solves problem Pf , and each worker is assigned to exactly one
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firm. The matching µ is strongly stable, therefore, for all f ∈ F , there is no A ⊂ W with

the same salary s for all workers such that uf ({(w, s)|w ∈ A}) > uf (µ
o(f)). This implies

that µo(f) is the solution of problem Pf for all f ∈ F . µ is a matching, so each worker

matches with at most one firm. Moreover, there cannot be an unmatched worker because

any firm f ∈ F with µo(f) and the unmatched worker with salary zero forms a blocking

pair.

Now we want to use the above result. Instead of strongly stable matching, we use a

matching with a fixed salary s in which firm f ∈ F is assigned to the solution of problem

Pf for all f ∈ F , and each worker matches to exactly one firm.

1) Strongly stable ⇒ i), and ii): Since the values and salaries of workers for firm f are

the same, firm f is indifferent between workers. The number of workers who firm f can

hire based on the solution of problem Pf is Df (s).
15 Each worker should be assigned to

exactly one firm, thus the sum of demands should be equal to the number of workers.

Strongly stable ⇐ i), and ii): A matching µ with salary s in which the number of

workers who match to firm f is an element of Df (s) implies that firm f solves problem

Pf . This is because firms are indifferent among workers and the only relevant parameter is

the number of workers they hire. The market clearing condition ensures that each worker

matches to exactly one firm.

2) Weakly stable ⇐ i), and ii): Suppose that each firm is assigned to the number of

workers equal to an element of the firm’s pseudo demand and the market clears. Observe

that s ≥ 0 so the matching is individually rational for workers. Moreover, it is individually

rational for firms: If vf < s, firm f does not choose any worker; if vf = s, the firm gets

zero utility from workers; if vf > s, each worker has a strict positive value and the firm

prefers more workers. By contradiction, suppose that there is a firm f , a set A ⊂ W , and

a feasible salary vector (s′w)w∈A such that uf ({(w, s′w)|w ∈ A}) > uf (µ
o(f)) and for every

15Note that when vf = s, firm f is indifferent to the hiring of workers, so it can hire any number of

workers between 0 and
⌊ bf

s

⌋
.
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w ∈ A salaries are higher; i.e., s′w > s. Consider three cases:

1. vf ≤ s: If A is not empty, then uf ({(w, s′w)|w ∈ A} < 0. However, uf (µ
o(f)) = 0,

which is a contradiction.16

2. vf > s and
bf
s
∈ N: If salaries are higher than s, then firm f can hire at most

bf
s
− 1

workers. Define s̃ = min
w∈A

s′w. Note that we have (
⌊ bf

s̃

⌋
)(vf−s̃) ≥ uf ({(w, s′w)|w ∈ A}).

Putting these together, we have:

(
⌊bf
s̃

⌋
)(vf − s̃) ≥ uf ({(w, s′w)|w ∈ A}) > uf (µ

o(f)) ≥ (
bf
s
− 1)(vf − s).

Therefore, we have

(
⌊bf
s̃

⌋
)(vf − s̃) > (

bf
s
− 1)(vf − s).

This is a contradiction because
⌊ bf

s̃

⌋
≤ bf

s
− 1 and vf − s̃ ≤ vf − s.

3. vf > s and
bf
s
̸∈ N: Note that vf (µ

o(f)) ≥ (
⌊ bf

s

⌋
)(vf − s). Define s̃ = min

w∈A
s′w. Note

that (
⌊ bf

s̃

⌋
)(vf − s̃) ≥ uf ({(w, sw)|w ∈ A}). Putting these together, we have:

(
⌊bf
s̃

⌋
)(vf − s̃) ≥ uf ({(w, sw)|w ∈ A}) > uf (µ

o(f)) ≥ (
⌊bf
s

⌋
)(vf − s),

which is a contradiction.

Weakly stable ⇒ i), and ii): Suppose matching µ with salary s for each worker is

weakly stable. We show that all firms are assigned to their pseudo demands. Consider four

cases:

1. vf < s: Firm f does not choose any worker due to individual rationality, which is

equal to the pseudo demand.

2. vf = s: Firm f cannot choose more than
⌊ bf

s

⌋
. Firm f is indifferent between hiring

and not hiring workers. Note that any number less than
⌊ bf

s

⌋
satisfies pseudo demand.

16This case includes both vf < s, and vf = s, where in both cases uf (µ
o(f)) = 0.

31



3. vf > s and
bf
s
∈ N: Firm f should match to at least

bf
s
− 1 workers. Otherwise, it

matches to
bf
s
− 2 or fewer workers. In that case, firm f with

bf
s
− 1 workers and

salary s+ ϵ (ϵ small enough) make a blocking pair.

4. vf > s and
bf
s

̸∈ N: Firm f should match to at least
⌊ bf

s

⌋
workers. Otherwise, it

matches to
⌊ bf

s

⌋
− 1 or fewer workers. In that case, firm f with

⌊ bf
s

⌋
workers and

salary s+ ϵ (ϵ small enough) make a blocking pair.

When matching µ is weakly stable, then there is no unmatched worker, because a firm

can replace one worker with the unmatched worker with a salary less than s. Therefore,

the market clears.

Proof of Theorem 1:

Here is the rest of the proof of part iii of Theorem 1. By contradiction, assume k ∈ N

exists such that there does not exist a salary s such that k ∈ T (s). By decreasing s, the

maximum element of set Df (s) for all f ∈ F is weakly increasing and not bounded from

above; hence, set T (s) is not bounded from above. Therefore, for any k ∈ N, we can find

an s small enough that the max{T (s)} > k. Therefore, without loss of generality, we can

assume that a salary s exists such that k + 1 ∈ T (s), and k ̸∈ T (s). This is because T (s)

is not bounded from above. k + 1 ∈ T (s), and k ̸∈ T (s), so

k + 1 =
∑
f∈F

min{Df (s)}.

Define

ssup = sup{s|k + 1 ∈ T (s)}.

Note that ssup exists because T (s) = 0, for a large enough s. Consider two cases:

1) Assume k + 1 ∈ T (ssup), then k + 1 =
∑

f∈F min{D′

f (ssup)}. For ϵ1 ≥ 0 by assumption,

k ̸∈ T (ssup + ϵ1). The maximum of sets Df (s) for all f ∈ F are weakly decreasing in s;
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therefore, ∑
f∈F

min{Df (ssup)} − 1 = k >
∑
f∈F

max{Df (ssup + ϵ1)}.

There are two cases: First, there exist two firms, f ∗ and f ∗∗, in which the strict demand

decreases by at least one:

min{Df (ssup)} > max{Df (ssup + ϵ1)},

for f ∈ {f ∗, f ∗∗}, and for ϵ1 > 0. Second, there exists one firm f ∗ in which the strict

demand decreases by at least two:

min{Df∗(ssup)} − 1 > max{Df∗(ssup + ϵ1)},

for ϵ1 > 0. For both cases, vf∗ ̸= ssup (and vf∗∗ ̸= ssup in the first case). Otherwise,

0 = min{Df∗(ssup)} > max{Df∗(ssup + ϵ1)} = 0,

which is a contradiction.17 Observe that for both cases
bf∗

ssup
∈ N, (and bf∗∗

ssup
∈ N for the

first case). Otherwise, Df∗(.) cannot change from ssup to ssup + ϵ1. Consider the first

case,
bf∗

ssup
∈ N and

bf∗∗

ssup
∈ N, therefore, bf∗∗

bf∗
∈ Q. This is a contradiction because for all

f, f
′ ∈ F :

bf
b
f
′
̸∈ Q. Consider the second case,

bf∗

ssup
∈ N and

min{Df∗(ssup)} − 1 > max{Df∗(ssup + ϵ1)}.

This is impossible becauseDf∗(ssup) cannot decrease more than one from ssup to ssup+ϵ1,

for ϵ1 > 0 small enough.

2) Second, assume that k + 1 ̸∈ T (ssup), then there exists m ≥ 1 such that k − m =

17Similarly, for the first case 0 = min{Df∗∗(ssup)} > max{Df∗∗(ssup+ϵ1)} = 0, which is a contradiction.
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∑
f∈F max{D′

f (ssup)}. Note that for ϵ2 ≥ 0 such that k + 1 ∈ T (ssup − ϵ2) we have that

k −m ̸∈ T (ssup − ϵ2). Because if k + 1, k −m ∈ T (ssup − ϵ2) then it must be true that

k ∈ T (ssup − ϵ2) , too, which is a contradiction.

The maximum of sets Df (s) for all f ∈ F are weakly decreasing in s; therefore,

∑
f∈F

max{Df (ssup)}+m = k <
∑
f∈F

min{Df (ssup − ϵ2)}.

Since m ≥ 1, there must be two cases: First, there exist two firms, f ∗ and f ∗∗, in which

the strict demand changes by at least one:

max{Df (ssup)} < min{Df (ssup − ϵ2)},

for f ∈ {f ∗, f ∗∗}, and for ϵ2 > 0. Second, there exists one firm f ∗ in which the strict

demand changes by at least two:

max{Df∗(ssup)}+ 1 < min{Df∗(ssup − ϵ2)},

for ϵ2 > 0. For both cases, vf∗ ̸= ssup (and vf∗∗ ̸= ssup in the first case). Otherwise,

⌊ bf
∗

ssup
⌋ = max{Df∗(ssup)} < min{Df∗(ssup − ϵ2)} = ⌊ bf

∗

ssup
⌋,

for ϵ2 small enough, a contradiction.18 Observe that for both cases,
bf∗

ssup
∈ N, (and

bf∗∗

ssup
∈ N for the first case), otherwise, Df∗(.) (and for the first case Df∗∗(.)) cannot

change from ssup to ssup − ϵ2. Consider the first case:
bf∗

ssup
∈ N and

bf∗∗

ssup
∈ N. Therefore,

bf∗∗

bf∗
∈ Q, which is a contradiction, because for all f, f

′ ∈ F :
bf
b
f
′
̸∈ Q. Consider the

18Similarly, for the first case, ⌊ bf∗∗

ssup
⌋ = max{Df∗∗(ssup)} < min{Df∗∗(ssup + ϵ1)} = ⌊ bf∗∗

ssup
⌋, which is a

contradiction.
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second case:
bf∗

ssup
∈ N, and

min{Df∗(ssup)} − 1 > max{Df∗(ssup + ϵ1)}.

This is impossible because Df∗(ssup) cannot change more than one from ssup to ssup−ϵ2,

for ϵ2 > 0 small enough.

Proof of Lemma 3:

By definition, α(
−→
1 ) = α(

−→
11) > V1. If α(

−→
12) ≤ V1, then by continuity, y ∈ [0, 1] exists

such that

V1 = α(
−→
y1).

If α(
−→
12) > V1, and α(

−→
12) ≤ V2, then part 2 of the Lemma 3 is satisfied. Otherwise,

α(
−→
12) > V2. If α(

−→
13) ≤ V2, then by continuity, y ∈ [0, 1] exists such that

V2 = α(
−→
y2).

If α(
−→
13) > V2, and α(

−→
13) ≤ V3, then part 2 of the Lemma 3 is satisfied. Otherwise,

α(
−→
13) > V3. By repeating this argument, we prove either Lemma 3 or α(

−→
1|F |) > V|F |. By

definition, α(
−→
0|F |) = α(

−→
0 ) = 0. Hence, by continuity, if α(

−→
1|F |) > V|F |, then y ∈ [0, 1] exists

such that

V|F | = α(
−−→
y|F |).

This concludes the argument.

Proof of Theorem 2:

Observe that the workers receive fair salaries because:

Sw

Vw

=
Sw′

Vw′
= α∗,
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for all w, w
′ ∈ W .

The algorithm generates a strongly stable matching. First, we show that firms do not

have any incentive to change their allocations at these wages. The argument is as follows.

In step two, for not efficient firms, all f ∈ F such that Vf < Vf∗ , hiring a worker at these

wages generates a negative profit, so the algorithm removes these firms from the market.

In step three, if bf ̸= bf ′ , then yf∗ < 1, which means Vf∗ = α∗. In this case, f ∗ makes a

zero profit, so f ∗ is indifferent between hiring and not hiring workers. In step four, efficient

firms (Vf ≥ α∗) that have exhausted their budgets completely hire zero or positive numbers

of workers. These firms are indifferent between workers because the value of spending one

dollar for hiring a worker is the same among different workers and is

VfVw − Sw

Sw

=
VfVw − α∗Vw

α∗Vw

=
Vf − α∗

α∗ .

These firms do not have any incentive to change their allocations. After step four and before

starting step five, there remain some unmatched workers and some firms, which are efficient,

but still have not finished spending their budgets.19 It is not possible to match all workers

without spending all budgets; in other words, it is not possible to exhaust all budgets

without matching all workers, because salaries are such that
∑

w∈W Sw =
∑

w∈W α∗Vw =

b
′

f∗+
∑

f>f∗ bf .
20 In step five, after matching workers and updating budgets, all firms f ∈ F

such that Vf > α∗ have reached their budgets, and do not have any incentive to change

their allocations, as they are indifferent between workers. In step six, changing the budget

of firm f ∗ does not create an incentive for f ∗ to change the allocation. This is due to the

fact that if bf ̸= bf ′ , then f ∗ is indifferent between hiring workers or not hiring them. Note

that if an efficient firm strictly prefers another vector of salaries to the current one, then

19Note that the algorithm may have finished at step four (matched all workers and finished spending all
budgets of all firms f ∈ F such that Vf > α∗).

20Note that the number of unmatched workers is less than or equal to the number of firms that still have
some amount left in their budgets (the remaining firms). Because the sum of the remaining budgets is equal
to the sum of the salaries of the unmatched workers, if the number of unmatched workers is larger than
the number of remaining firms, then at least one firm could afford the salary of one unmatched worker.
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it has to pay a salary less than the current one to at least one of the workers, because all

efficient firms have exhausted their budgets completely.

1. First, we analyze firms f such that Vf > Vf∗ . In step five, when the algorithm

matches w to f , firm f ’s remaining budget is less than Sw; therefore, it increases at

most Sw = α∗Vw, because the algorithm does not match two or more workers to a

firm at step five. After matching all workers, there are some firms that do not receive

any worker at step five. The algorithm decreases their budgets. Their budgets do

not change by more than the salary of a worker, because in step four they could not

hire any worker. The argument for firm f ∗ is as follows. In step two, the algorithm

changes the budget from bf∗ to b
′

f∗ , but in step six, it adds the difference back into

its budget. In step five, the same as it does at other efficient firms, the budget b
′

f∗

changes by, at most, maxw∈W α∗Vw. Hence, after step six, budget bf∗ does not change

by more than maxw∈W α∗Vw.

2. The sum of budgets at the end of step five is equal to the sum of salaries. This is

because the algorithm hires all workers at the specified salaries. The sum of all the

salaries at the end of step five is equal to the sum of the budgets at step four; i.e.,∑
w∈W Sw =

∑
w∈W α∗Vw = b

′

f∗ +
∑

f>f∗ bf . Finally, in step six, by adding bf∗ − b
′

f∗

to the budget of firm f ∗, the sum of all these firms’ budgets will be bf∗ +
∑

f>f∗ bf .

37


	modele_tse_wp1446
	Matching_with_Budget_Constraint (2)
	Introduction 
	 Related literature
	Model
	Unskilled workers
	Skilled workers
	Conclusion
	Mathematical Appendix


