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Abstract. We introduce a non zero-sum game between a government and a legislative body to study
the optimal level of debt. We succeed in characterising Nash equilibria in the class of Skorokhod-
reflection policies which implies that the legislator imposes a debt ceiling. In addition, we highlight
the importance of the time preferences in the magnitude of the optimal level of the statutory debt
ceiling. In particular, we show that laissez-faire policy can be optimal for high values of the legislator’s
discount rate.
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1. Introduction

There is probably no more topical issue in macroeconomics than the determination of the optimal
level of debt that favours both its sustainability and the long-term growth of an economy. Although
paramount and extensively studied in the literature (see [1] and [11] for a general presentation), the
question of the optimal debt level has not yet received clear theoretical foundations. This lack of a
consensual theoretical framework has led to the implementation of exogenous mechanisms to monitor
the level of debt. In USA, one of these mechanisms is the statutory debt ceiling which restricts the
amount of debt a government can be permitted to issue1. These have proven to be more or less
effective and resulted in a constant upward revision of the debt ceiling.

The traditional analysis of public debt has shown that high public debt has a negative effect
on long-term economic growth giving an argument to debt ceiling advocates. Indeed, a high level
of debt generates high risk premiums that reflect creditors’ doubts about the government’s ability
to refinance itself. Being unable not only to repay its debts but also to pay for the excess of its
expenditures over its revenues, the government must then immediately balance its budget by taking
exceptional measures, like increasing taxes and/or cutting its investments, which can have a dramatic
impact on growth, or alternatively negotiate the lift of the debt ceiling to avoid the huge costs of the
aforementioned measures. The latter negotiation could be challenging, when the governing party is
different from the majority party in the House of Representatives (and/or the Senate), as is often
the case in the United States. On the other hand, the positive effect of a high level of public debt on
growth should not be overlooked since public investments in social policies, education, healthcare,
justice, research, and infrastructure help private initiatives to develop effectively. As Blanchard
observed in his presidential address to the American Economic Association [2], as long as the interest
rate is lower than the growth rate, a large deficit can be allowed without increasing the debt-to-GDP
ratio. The subject of this paper is the study of the debt management game between two groups with
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opposing interests; on one hand, a government inclined to increase the debt and, on the other hand,
a legislature concerned with imposing a mechanism limiting the level of debt.

So far, the theoretical literature on public debt management has focused on the stochastic control
problem faced by a single decision maker (say a government), whose objective is to balance the pros
and cons of a high level of public debt. In [5] and [6], the debt-to-GDP ratio (also called “debt ratio”)
evolves as a controlled one-dimensional geometric Brownian motion and the government can only
reduce its debt level through singular and bounded variation controls, respectively. The objective
is to minimize the expected total costs resulting from the instantaneous cost of the debt level and
the intervention costs. In [12], the optimal debt ratio reduction problem is considered as well, but
this time the government takes into consideration the evolution of the inflation rate of the country
as well. The latter evolves as an uncontrolled diffusion process which makes the problem a fully
two-dimensional singular stochastic control problem. In [13], the authors consider a model where
the drift of the debt ratio process is affected by an exogenous macroeconomic shock modelled by a
continuous-time Markov chain and the government is allowed to both decrease and increase the debt
ratio. The stochastic control problem associated to the minimization of debt management costs is
then solved using probabilistic arguments. What all these papers have in common is that an optimal
level of debt ceiling is defined endogenously. However, they do not consider the potential political
game between a government and a legislative body (e.g. the Congress), whose political interests may
be divergent.

Our paper focuses on this alternative point of view. Instead of considering the case of a single
decision-maker, we consider the following two-player game. The first player is a government that
has an interest in increasing the level of debt for political reasons, such as increasing its chances
of re-election. The second player is a legislative body that may, for example, impose a debt limit
as a hard constraint on governments, in view of restraining government spending to avoid potential
debt crises. Unlike the aforementioned papers, the optimal debt level management policy by the
government must now be viewed as a best reply to a mechanism imposed by the legislative body
to monitor spending, while allowing further borrowing. In particular, the legislative body would
like governments to ideally keep the country’s debt ratio at low levels, in order to maintain a low
probability of default and feasible borrowing from the markets. When the level of debt collides
with the constraints of the mechanism, exceptional measures must be put in place to keep the debt
ratio below its limit. For instance, a liberalisation policy could be applied to increase the level of
GDP. This may include the privatisation of some governmental institutions and assets, the increase
of labour market flexibility, the lowering of tax rates for businesses, the reduction of restrictions on
both domestic and foreign capital, etc. In order to fine-tune such a mechanism, the legislative body
must therefore take into account the government’s debt issuance policy, and devise their mechanism
as a best response. This framework then results in a non-zero-sum game between a government,
whose mandate is to manage its public debt issuance policy, and a legislative body, that sets rules to
contain debt issuance. In mathematical terms, both players exert a monotone control to set the path
of the debt ratio. The first player (government) can only increase the level of debt ratio by exerting
its control, while the second player (legislative body) can only decrease the level of debt ratio. Each
player wants to minimize their own total cost functional and we allow the rate of increase/reduction
of each player to be unbounded and have an instantaneous effect on the debt ratio. This therefore
leads to the formulation of a stochastic non-zero-sum game of singular controls.

The main contribution of this paper is to show the existence of a unique Nash equilibrium in the
class of Skorokhod-reflection type policies, which in economic terms means that the mechanism is a
debt ceiling b. This is the level at which the legislative body will demand the decrease of the debt ratio
and the adoption of liberalisation policies by the government. The idea is to study separately the two
coupled constrained stochastic control problems faced by the two players, namely the government
and the legislative body. The government’s problem is as follows. Assuming that the legislative body
imposes a debt ceiling b or equivalently a Skorokhod reflection policy for the debt ratio process at b,
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what should be the optimal policy for issuing new public debt? We establish a connection between
this constrained stochastic control problem and a free-boundary problem, that we solve by a classical
guess-and-verify approach. As a result, we show that the best debt issuance policy is to reflect the
debt ratio process upwards at a level a(b). The problem of the legislative body is then the following.
Considering that the government is going to use a debt issuance policy of reflecting the debt ratio
process at a level a, should it impose a debt ceiling b(a)? In particular, if there is already a statutory
exogenous debt ceiling, is it optimal to raise it and by how much? We show that a debt ceiling should
indeed be imposed for a specific range of the legislative body’s time preference rates.

The remainder of our analysis then focuses on finding an equilibrium in the game. To that end,
we define a Nash equilibrium in the class of Skorokhod-reflection policies as a pair (a∗, b∗), such that
a∗ = a(b∗) and b∗ = b(a∗). We prove the existence and uniqueness of such a Nash equilibrium (a∗, b∗),
hence the optimal policies prescribe that the debt ratio is kept inside the interval [a∗, b∗] with the
minimal cost, associated to Skorokhod reflection policies. It is worth noting that, for another range
of the legislative body’s time preference rates, the legislative body should optimally not intervene,
and an associated Nash equilibrium without debt ceiling is proved to hold. Interestingly, we prove
that the optimality of adopting such a strategy relies solely on the legislative body’s time preferences
compared to the parameter constellation in the model – it does not depend on the actions of the
opposing player (government) – see specifically our results in Section 4.1. When the discount rate of
future costs is high, the consideration of the risk of a debt crisis in the future is too low to make the
implementation of a debt ceiling mechanism optimal. We thus split our search for Nash equilibria
based on the magnitude of the legislative body’s time preferences.

Our paper is closely related to [10] where the authors have proved the existence of a Nash equi-
librium in the same class of Skorokhod-reflection policies by establishing a new connection with a
non-zero-sum stopping game. In order to justify this connection between non-zero-sum games of
monotone controls and those of stopping, it is necessary that both players have the same discount
factor (or equivalently time preferences) and that the running cost is a differentiable function. Un-
like [10], we assume here that the two players have different discount rates reflecting a different
time preference and that the running cost is not a differentiable function, which requires a different
methodology to prove the existence of a Nash equilibrium.

The paper is organized as follows. Section 2 describes the setting and the two problems faced by
the two players. In Section 3, we solve the government constrained control problem by distinguishing
two cases: the legislative body does not intervene or forces the government to keep its debt ratio
below a debt ceiling b > 0. In both cases, we show that the government can devise an optimal
debt issuance policy when the debt ratio is sufficiently low. In Section 4, we solve the constrained
control problem of the legislative body and find its best response strategy to the above governmental
policy. We show that the magnitude of the legislative body’s time preference rate plays a crucial role,
which is a key result of our analysis. In particular, if it is relatively small, a debt ceiling mechanism
is optimal, while if it is relatively large, the legislative body should not set a debt ceiling at all.
We prove the existence and uniqueness of a Nash Equilibrium in the class of Skorokhod-reflection
policies in Section 5. Finally, Section 6 is devoted to a comparative statics analysis; we explore how
the optimal debt issuance policy and debt ceiling mechanism are affected by changes in the model
parameters. In particular, we are able to quantify the transition between a legislative body’s optimal
intervention and non-intervention regimes.

2. Setting and Problem Formulation

2.1. Motivation for the model. The nominal debt grows at rate r, i.e. it evolves according to

dDt = rDtdt, t ≥ 0,

in the absence of any intervention, where we denote by r ∈ R the interest rate on government debt.
When designing its economic policy, the government can choose to increase the current level of the
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debt by a new issuance. Denoting by ξt the cumulative percentage of debt increase up to time t ≥ 0,
the dynamics of the adjusted debt reads as

dDt = rDtdt+Dtdξt, t ≥ 0,

where the latter integral (and others of the same type in the following motivation) will be defined
later in Section 2.2. The GDP follows the stochastic dynamics

dGt = gGtdt+ σGtdŴt, t ≥ 0,

in the absence of any intervention, where we denote by g ∈ R the growth rate of the GDP and by

Ŵ a standard one-dimensional Brownian motion. A legislative body can implement a liberalisation
policy in order to boost the GDP.

Denoting by ηt the cumulative percentage of GDP increase up to time t ≥ 0, the dynamics of the
adjusted GDP read as

dGt = gGtdt+ σGtdŴt +Gtdηt, t ≥ 0,

Hence, we may conclude that the dynamics of the debt-to-GDP ratio, obtained via the use of Itô’s
formula on X := D/G, evolves according to

dXt = (r − g)Xtdt+ σXt(σdt− dŴt) +Xtdξt −Xtdηt, t ≥ 0,

Without loss of generality, a change of measure to one under which Wt := σt − Ŵt is a Brownian
motion, will allow for the following problem formulation.

2.2. Problem formulation. Let (Ω,F ,P) be a complete probability space accommodating a one-
dimensional Brownian motion W := (Wt)t≥0. We denote by F := {Ft, t ≥ 0} the filtration generated
by W augmented by P-null sets. In absence of any interventions, the debt-to-GDP ratio (also called
“debt ratio”) evolves according to the stochastic differential equation (SDE)

dX0
t = (r − g)X0

t dt+ σX0
t dWt, X0

t = x > 0.(2.1)

The classical macroeconomic dynamics of the debt ratio, see e.g. [3], are simply the deterministic
version of (2.1) with σ = 0. When increasing the current debt ratio level by ε > 0 percentage points,
the debt ratio exhibits a jump

∆Xt = Xt −Xt− = εXt−.

Hence, for small ε > 0, we can associate a governmental intervention on the debt ratio with Xt =
(1 + ε)Xt− ≈ eεXt−. Furthermore, interpreting an intervention ∆ξt as a sequence of N individual
interventions of size ε = ∆ξt/N we have Xt = eNεXt− = e∆ξtXt−, for N large enough. We can thus
model the controlled debt ratio dynamics (by arguing similarly for the interventions of the legislative
body) via

dXξ,η
t = (r − g)Xξ,η

t dt+ σXξ,η
t dWt +Xξ,η

t ◦u dξt −Xξ,η
t ◦d dηt, t ≥ 0,(2.2)

where the operators ◦u and ◦d are defined as

Xξ,η
t ◦u dξt = Xξ,η

t dξct +Xξ,η
t−

∫ ∆ξt

0
eudu = Xξ,η

t dξct +Xξ,η
t−

[
e∆ξt − 1

]
,

Xξ,η
t ◦d dηt = Xξ,η

t dηct +Xξ,η
t−

∫ ∆ξt

0
e−udu = Xξ,η

t dηct +Xξ,η
t−

[
1− e∆ξt

]
.

(2.3)

Here, ξc (resp., ηc) denotes the continuous part of the process ξ (resp., η).
Using Itô’s formula we can verify that the solution to (2.2) starting at time zero from level x > 0

is given by

Xξ,η
t = x exp

((
r − g − 1

2
σ2

)
t+ σWt + ξt − ηt

)
= X0

t exp(ξt − ηt), t ≥ 0,(2.4)
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where X0
t denotes the solution to (2.1). Notice that the impact of interventions by the government

and legislative body are of multiplicative structure and additive to the logarithm of the debt ratio.
In accordance with our reasoning above, ξt denotes the cumulative percentage amount of debt

increase by the government and ηt denotes the cumulative percentage amount of debt decrease by
the legislative body, up to time t ≥ 0. It is therefore natural to model them as nondecreasing
stochastic processes, adapted with respect to the available flow of information F. Hence we take ξ
and η in the set

U :=
{
υ : Ω× R+ → R+ : (υt)t≥0 F-adapted, nondecreasing, càdlàg, and υ0− = 0

}
.

The problem of the government. In this framework, the government is facing a potential debt
ceiling (or debt limit) as a hard constraint imposed by a legislative body, when the country’s debt
ratio is too high. In other words, the government has an exogenous factor, namely a debt ratio
ceiling b, to take into consideration when designing its economic policy. This is the level at which a
legislative body will demand the decrease of the debt ratio and the adoption of liberalisation policies

by the government. In the following, we assume that having a debt level Xξ,η
t at time t ≥ 0, the

government incurs an instantaneous cost h(Xξ,η
t ). This may be interpreted as an opportunity cost

resulting from having less room for financing public investments. We make the following standing
assumption.

Assumption 2.1. The instantaneous (running) cost function h : R+ → R+ satisfies:

(i) x 7→ h(x) is strictly convex, continuously differentiable and increasing on [0,∞);
(ii) the derivative h′ of h satisfies limx→0 h

′(x) = 0 and limx→∞ h′(x) = +∞;
(iii) there exists p > 1, K1 > 0 such that

h(x) ≤ K1(1 + |x|p), x ∈ R.

Remark 2.2. It is worth noticing that a cost function of the form h(x) = 1
2x

2 for x > 0 satisfies
Assumption 2.1. Notice that h(0) = 0 together with h′(0) = 0 imply that any infinitesimal amount
of debt does not generate holding costs for the country; indeed, h(ε) ≈ h′(0)ε = 0. If one wishes to
obtain closed-form solutions, a specific function h must be chosen according to Assumption 2.1; our
choice will be precisely the above one.

Moreover, whenever a legislative body decides to impose a debt ceiling mechanism, the government
incurs a proportional cost to the amount of debt reduction (see also [5], [12] and [13]). This might
be seen as a measure of the social and financial consequences, or repercussions for the financial
stability of households and individuals, deriving from the enforcement of debt-reduction policies.
The associated constant marginal cost c1 > 0 allows to express it in monetary terms. Finally, the
government’s main aim is to increase the current level of debt ratio through public investments, e.g.
investments in infrastructure, healthcare, education and research, etc. We assume that this has a
positive political, social and financial effect, thus overall reduces the total expected “costs” of the
government. The marginal benefit of increasing the debt ratio is a strictly positive constant c2 > 0.
From the point of view of the government, assuming that it discounts at a rate ρ > 0, the total
expected cost functional, net of investment benefits, is thus given by

Jx,η(ξ) := Ex

[ ∫ ∞

0
e−ρth(Xξ,η

t )dt+ c1

∫ ∞

0
e−ρtXξ,η

t ◦d dηt − c2

∫ ∞

0
e−ρtXξ,η

t ◦u dξt

]
,(2.5)

where, for any x ∈ R+, Ex denotes the expectation under the measure Px(·) := P(· | Xξ,η
0−

= x).

The problem of the legislative body. On one hand, the legislative body (e.g. Congress) would
like governments to ideally keep their country’s debt ratio at low levels to maintain a low probability
of default and a feasible borrowing from the markets. Even though countries that can print their
own currency cannot default on their debts, there are many countries that do not control their own
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monetary policy, e.g. EU members who rely on the European Central Bank (ECB), or countries that
hold large amounts of foreign denominated debts, e.g. Argentina (who defaulted on US government
bonds). Several levels m > 0 defining the “healthy” region [0,m] of relatively “low” debt ratio have
been used in the last decades, e.g. m = 60% is the Maastricht Treaty’s reference value of 1992 for all
EU countries, or m = 77% is the threshold found by researchers at the World Bank [8] for developed
economies and m = 64% for emerging markets.2

When the debt ratio Xξ,η exceeds this pre-specified value m > 0, the legislative body would face
social and political pressure, which may lead to the implementation of liberalisation policies in order
to decrease the level of Xξ,η via a control strategy η. This could, for example, be done by setting
a debt ceiling b. This debt ceiling b is expected to be bigger than m, since imposing structural
adjustment programs on countries or restricting further borrowing by governments, is costly for the
legislative body and the associated marginal cost is κ > 0. From the point of view of such a legislative
body, assuming that it discounts at a rate λ > 0, we model the expected cost functional as3

Ix,ξ(η) := Ex

[ ∫ ∞

0
e−λtα(Xξ,η

t −m)+dt+ κ

∫ ∞

0
e−λtXξ,η

t ◦d dηt
]
.(2.6)

When a government wants to reduce its public deficit, it has, in simple terms, a choice between
increasing tax revenues while keeping expenditures constant, or reducing public expenditures with
stable tax revenues. The second choice is usually the more difficult to make: public spending is some-
times structural (for example, the payment of civil servants’ salaries) and therefore incompressible
in the short term. This is why, when seeking to reduce public deficits, one most frequently turns
to taxation. Hence, α > 0 can be interpreted as a country tax compliance factor, the smaller α is
the bigger is the willingness to pay tax, if needed in the future. When this factor is low as it is in
Denmark for instance, the legislative body has thus less social pressure to reduce the debt ratio.

The non-zero-sum game of singular controls. In our analysis, we restrict our attention to
controls producing finite payoffs, which includes the realistic assumption that both players will not
use an economic policy leading to infinite cost and/or benefit of interventions. Moreover, we note
that the definition of the integrals with respect to the controls, as specified in (2.3), requires some
attention since simultaneous jumps of ξ and η may be difficult to handle.

Given that the debt ratio is always a positive number, we therefore consider pairs (ξ, η) ∈ U × U
such that

Ex

[ ∫ ∞

0
e−ρth(Xξ,η

t )dt+ c1

∫ ∞

0
e−ρtXξ,η

t ◦d dηt + c2

∫ ∞

0
e−ρtXξ,η

t ◦u dξt

]
< +∞,

Ex

[ ∫ ∞

0
e−λtα(Xξ,η

t −m)+dt+ κ

∫ ∞

0
e−λtXξ,η

t ◦d dηt
]
< +∞,

Px(∆ξt ·∆ηt > 0) = 0 for all t ≥ 0 and x ∈ R+.

(2.7)

To that end, we define the class of controls (ξ, η) ∈ A := Aη ×Aξ, where

Aη := {ξ ∈ U : (ξ, η) ∈ U × U satisfies (2.7)} and Aξ := {η ∈ U : (ξ, η) ∈ U × U satisfies (2.7)}
The problem introduced partly in (2.5) and (2.6) is therefore formulated as a non-zero-sum game

between two players: The government (player 1) which aims at solving

V1(x; η) := inf
ξ∈Aη

Jx,η(ξ), x ∈ R+,(2.8)

2This study goes a step further to quantify the economic cost per percentage point the debt ratio exceeds m (see also
[20] for an empirical study on the effect of high debt towards private investments’ crowding out and a low subsequent
growth)

3We again highlight the fact that the legislative body discounts with a different discount rate than the government,
which can be interpreted as different time preferences. Moreover, the running cost function inside the first integral
is non-differentiable, which clearly destroys the link between non-zero-sum games of singular controls and optimal
stopping observed in [10].
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for any fixed control process η ∈ U , and the legislative body (player 2) which aims at solving

V2(x; ξ) := inf
η∈Aξ

Ix,ξ(η), x ∈ R+,(2.9)

for any fixed control process ξ ∈ U .

Definition 2.3. A couple (ξ∗, η∗) ∈ A forms a Nash equilibrium if and only if{
Jx,η∗(ξ

∗) ≥ Jx,η∗(ξ) for any ξ ∈ Aη∗ ,

Ix,ξ∗(η∗) ≥ Ix,ξ∗(η) for any η ∈ Aξ∗ .

Each player’s value of the game is then given by V1(x; η
∗) = Jx,η∗(ξ

∗) and V2(x; ξ
∗) = Ix,ξ∗(η∗).

The following assumptions on the model’s parameters will hold true in the rest of this paper.

Assumption 2.4. The model’s parameters satisfy:

(i) c1 > c2;

(ii) ρ > (p(r − g) + σ2

2 p(p− 1))+, where p is defined in Assumption 2.1;
(iii) λ > r − g;
(iv) m > 0.

The condition in Assumption 2.4.(i) is typically assumed in the literature on bounded-variation
stochastic control problems in order to ensure well-posedness of the optimisation problem (see, e.g.,
[15], [9] and [13]) and to avoid arbitrage opportunities. In economic terms, a possible interpretation
is that the Keynesian multiplier is not high enough to offset the costs of liberalisation policies.

Assumption 2.4.(ii) reflects the fact that governments are more concerned about the present than
the future, since they are in power for only a limited amount of years; hence discounting future costs
and benefits at a sufficiently large rate. Moreover, combining this with Assumption (2.1).(iii), the
trivial policy “never intervene on the debt ratio” is admissible, since it yields a finite expected cost.
The latter is guaranteed also for the problem of the legislative body due to Assumption 2.4.(iii).

In this paper, we will devote our attention to the existence of Nash equilibria of the game (2.8)–
(2.9) in the class of strategies, where at least one of the players chooses a Skorokhod reflection
type policy at a constant threshold. To this end, we first recall the following well known results on
Skorokhod reflection.

Lemma 2.5. Let a, b ∈ R+ with a < b. For any x ∈ [a, b] there exists a unique couple (ξ(a), η(b)) ∈ A
that solves the Skorokhod reflection problem

Find (ξ, η) ∈ A s.t.


Xξ,η

t ∈ [a, b],P-a.s. for t > 0,∫ T
0 1{Xξ,η

t >a}dξt = 0,P-a.s. for any T > 0,∫ T
0 1{Xξ,η

t <b}dηt = 0,P-a.s. for any T > 0,

(SP(a,b;x))

and it follows that supp{dξt(a)}∩ supp{dηt(b)} = ∅.

Lemma 2.6. For any η ∈ U , a ∈ R+ and x ≥ a there exists a unique ξ(a) ∈ Aη solving the Skorokhod
reflection problem

Find ξ ∈ Aη s.t.

{
Xξ,η

t ≥ a,P-a.s. for t > 0,∫ T
0 1{Xξ,η

t >a}dξt = 0,P-a.s. for any T > 0.
(SP(a;x))

Analogously, for any ξ ∈ U , b ∈ R+ and x ≤ b there exists a unique η(b) ∈ Aξ solving

Find η ∈ Aξ s.t.

{
Xξ,η

t ≤ b,P-a.s. for t > 0,∫ T
0 1{Xξ,η

t <b}dηt = 0,P-a.s. for any T > 0.
(SP(b;x))
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Moreover, we define

M := {(ξ, η) ∈ A : ξ solves SP(a;x) or η solves SP(b;x) for some a, b ∈ R+ and x ∈ R+}(2.10)

and aim to prove the existence and uniqueness of a Nash equilibrium (ξ, η) ∈ M, in different pa-
rameter configurations of the game. Indeed, we will show that if at least one player acts according
to a Skorokhod reflection type policy as specified above, the game (2.8)–(2.9) admits a unique Nash
equilibrium. Clearly, when not restricting at least one of the players to a Skorokhod reflection type
policy there could also exist Nash equilibria outside of the set M. However, as pointed out in previ-
ous contributions such as [10], it is impossible to rank different Nash equilibria without an additional
optimality criterion.

3. The Optimal Governmental Debt Management Rule

In this section, we study the problem of the government choosing their investment economic policy
ξ, taking into account that the legislative body (e.g. Congress) may or may not choose to intervene
on the debt ratio. In the following, we distinguish between two cases, depending on the chosen
control policy of the legislative body:

(I) ηt = ηt := 0, (II) ηt = ηbt := 1{t>0}[(x− b)+ + ηt(b)].(3.1)

In particular, the legislative body does not intervene in Case (I), while in Case (II) it imposes a debt
ceiling mechanism, which forces the government to keep its debt ratio below a fixed level b ∈ R+

(via e.g. the adoption of liberalisation policies). In the latter definition, η(b) uniquely solves the
Skorokhod reflection problem SP(b; (x∧ b)). In the following, we aim at determining a best response
(i.e. an optimal control strategy ξ ∈ Aη) in both cases. For simplicity of exposition, we assume the
running cost function h(x) = x2/2 in (2.5) (cf. Remark 2.2) in the rest of the paper, which further
yields that

(3.2) Assumption 2.4.(ii) with p = 2 ⇔ ρ > 2(r − g) + σ2.

3.1. The government’s optimal strategy under no legislative body intervention: Case (I).
Let us assume that the legislative body does not intervene on the government’s debt. The value
function (2.8) thus rewrites as

V 1(x) := inf
ξ∈Aη̄

Ex

[ ∫ ∞

0
e−ρth(Xξ,η

t )dt− c2

∫ ∞

0
e−ρtXξ,η

t ◦u dξt

]
.(3.3)

where we let V 1(x) := V1(x; η). It follows from standard theory that we can associate the value
function V 1 of (3.3) with a suitable solution to the Hamilton-Jacobi-Bellman (HJB) equation

min
{
(L − ρ)u(x) + 1

2x
2, u′(x)− c2

}
= 0(3.4)

for all x ∈ R+, where the second order linear operator L defined by its action on functions f ∈ C2 is
defined by

Lf := 1
2σ

2x2f
′′
+ (r − g)xf

′
.

We guess that the government chooses to increase its debt ratio only when the current level is
sufficiently small. Hence, we expect that there exists a critical x-level a at which the government
increases their debt ratio via a Skorokhod reflection type policy. For any x ∈ R+, we thus consider
the control

ξat := 1{t>0}[(a− x)+ + ξt(a)](3.5)
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where ξ(a) is the unique solution to the Skorokhod reflection problem SP (a; (x ∧ a)). As a conse-
quence, we can associate the given problem (3.3) with the free-boundary problem

(L − ρ)u(x) ≥ 1
2x

2, x ∈ R+,

(L − ρ)u(x) = 1
2x

2, ā < x,

u′(x) ≥ c2, x ∈ R+,

u′(x) = c2, 0 < x ≤ ā,

u′′(ā) = 0,

lim
x→+∞

(
u(x)− x2

2(ρ− 2(r − g)− σ2)

)
= 0,

(3.6)

where we impose an additional smoothness condition at the boundary ā and the latter one in order
to guarantee uniqueness of the solution to the free-boundary problem. We begin solving the free-
boundary problem (3.6), by constructing a solution to the ordinary differential equation and imposing
the boundary conditions, to obtain a candidate value function

U1(x) :=

{
U1(a)− c2(a− x), 0 < x ≤ a,

D1(a)x
δ2 + 1

2(ρ−2(r−g)−σ2)
x2, a < x,

(3.7)

where

D1(a) := − 1

(ρ− 2(r − g)− σ2)δ2(δ2 − 1)aδ2−2
, and a :=

(1− δ2)c2(ρ− 2(r − g)− σ2)

(2− δ2)
,(3.8)

with δ2 denoting the negative root to the equation 1
2σ

2δ(δ − 1) + (r − g)δ − ρ = 0.

Lemma 3.1. The function U1 of (3.7) solves the free-boundary problem (3.6) and satisfies the HJB
equation (3.4).

Proof. In view of the construction of U1, it remains to check whether (i) (L − ρ)U1(x) ≥ −1
2x

2 for

x ∈ (0, a) as well as (ii) U
′
1(x) ≥ c2 for x ≥ a.

We firstly notice that by construction (L − ρ)U1(a) = −1
2a

2. We then observe that x 7→ (L −
ρ)U1(x) decreases with slope −c2(ρ−(r−g)), while x 7→ −1

2x
2 decreases with slope −x. To conclude

(i), it is thus sufficient to prove that c2(ρ − (r − g)) > x for all x ∈ (0, a), or equivalently that
c2(ρ− (r − g)) > a. The latter follows straightforwardly from the definition (3.8) of a and δ2 < 0.

Then, we show that x 7→ U
′
1(x) is increasing for x ≥ a, by computing

U
′′
1(x) =

1

ρ− 2(r − g)− σ2

(
1−

(x
a

)δ2−1)
> 0,

where the latter inequality follows from (3.2). Hence, given that U
′
1(a) = c2 by construction, we

conclude that (ii) holds true, which completes the proof. □

We now prove that indeed V 1 = U1 and thus obtain an optimal debt management rule.

Theorem 3.2 (Verification Theorem: Case (I)). Assume that the legislative body does not intervene
on the debt ratio and thus acts according to the policy η ≡ 0. Then, the function U1 of (3.7) coincides
with the government’s value function V 1 in (3.3) and the admissible ξat of (3.5), with a given by (3.8),
is optimal for problem (3.3).

Proof. The proof is similar to the one of Theorem 3.6 below and thus omitted for brevity. □
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3.2. The government’s optimal strategy under legislative body interventions: Case (II).
We begin by fixing a constant b ∈ R+ and assume that the legislative body acts according to the
control policy ηb of (3.1), thus keeping the debt ratio below the debt ceiling b according to a Skorokhod
reflection type policy. From the government’s point of view, we thus study the problem V1(x; η

b)
defined in (2.8) and given by4

V1(x; b) := inf
ξ∈A

ηb

Ex

[ ∫ ∞

0
e−ρth(Xξ,ηb

t )dt+ c1

∫ ∞

0
e−ρtXξ,ηb

t ◦d dηbt − c2

∫ ∞

0
e−ρtXξ,ηb

t ◦u dξt

]
.(3.9)

Again, we can associate the latter value function with the solution to the HJB equation

min
{
(L − ρ)u(x; b) + 1

2x
2, u′(x; b)− c2

}
= 0(3.10)

for all x ∈ (0, b) with boundary condition u(0; b) = 0 and Neumann boundary condition u′(b; b) = c1.
We guess that the government increases their debt ratio only when the current level is sufficiently

small. Hence, we expect that for any given debt ceiling b ∈ R+, there exists a critical debt-issuance
level a(b) at which the government increases their debt ratio with minimal effort, via a Skorokhod
reflection type policy, where we stress the (possible) dependency on the debt ceiling threshold b ∈ R+.
For any x ∈ R+, we thus consider the control

ξ
a(b)
t := 1{t>0}[(a(b)− x)+ + ξt(a(b))],(3.11)

where ξ(a(b)) is the unique control such that the couple (ξ(a(b)), η(b)) solves the Skorokhod reflection
problem SP(a(b), b; (x∨ a(b))∧ b). As a consequence, we can associate the given problem (3.9) with
the free-boundary problem 

(L − ρ)u(x; b) ≥ −1
2x

2, 0 < x < b,

(L − ρ)u(x; b) = −1
2x

2, a(b) < x < b,

u′(x; b) ≥ c2, 0 < x < b,

u′(x; b) = c2, 0 < x ≤ a(b),

u′(x; b) = c1, b ≤ x,

u′′(a(b); b) = 0,

(3.12)

where we impose an additional smoothness condition at the free boundary a(b). The forthcoming
analysis is dedicated to determining the optimal debt-issuance threshold a(b) and proving the opti-
mality of the control (3.11) for the original debt ratio management problem of the government (3.9),
which corresponds to (2.8) with η = ηb defined in (3.1).

We begin with solving the free-boundary problem (3.12) by constructing a solution to the ordinary
differential equation and imposing the boundary conditions to obtain a candidate value function

U1(x; b) =


U1(a(b); b)− c2(a(b)− x), 0 < x ≤ a(b),

D1(a(b))x
δ1 +D2(a(b))x

δ2 + 1
2(ρ−2(r−g)−σ2)

x2, a(b) < x < b,

U1(b; b) + c1(x− b), b ≤ x,

(3.13)

with

Di(a) =
(δ3−i − 2)a− c2(δ3−i − 1)(ρ− 2(r − g)− σ2)

(−1)i+1δi(δ1 − δ2)(ρ− 2(r − g)− σ2)aδi−1
, for i = 1, 2,

and the constants δ1, δ2 denoting the positive and negative roots to the equation 1
2σ

2δ(δ − 1) + (r −
g)δ−ρ = 0, respectively. The optimal boundary is given by the solution a(b) ∈ (0, b) to the equation

F (a(b), b) = 0,(3.14)

4For ease of notation, we denote by V1(x; y) and V2(x; y), x, y ∈ R+, the control value functions V1(x; η
y) and

V2(x; ξ
y), i.e. when their opponents choose the Skorokhod reflection type strategies ηy and ξy, respectively.
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where we define

F (a, b) :=[(2− δ2)a− c2(1− δ2)(ρ− 2(r − g)− σ2)]
( b

a

)δ1−1

+[(δ1 − 2)a− c2(δ1 − 1)(ρ− 2(r − g)− σ2)]
( b

a

)δ2−1
− (δ1 − δ2)[b− c1(ρ− 2(r − g)− σ2)].(3.15)

We prove the existence and uniqueness of the optimal boundary in the following lemma.

Lemma 3.3. Let b ∈ R+ and F (·, b) defined by (3.15) on (0, b). There exists a unique a(b) ∈ (0, b)
solving F (a(b), b) = 0 in (3.14), that satisfies ∂

∂aF (a(b), b) > 0 and a(b) < ã, where

ã :=
c2(δ1 − 1)(1− δ2)(ρ− 2(r − g)− σ2)

(δ1 − 2)(2− δ2)
= c2(ρ− (r − g)) > 0.(3.16)

Proof. We straightforwardly calculate

lim
a↓0

F (a, b) = −∞ and F (b, b) = (δ1 − δ2)(c1 − c2)(ρ− 2(r − g)− σ2) > 0,

where the latter inequality follows from (3.2). Then, the first derivative of F (a, b) with respect to a
is given by

∂

∂a
F (a, b) = a−1

[( b

a

)δ1−1
−
( b

a

)δ2−1][
c2(δ1 − 1)(1− δ2)(ρ− 2(r − g)− σ2)− (δ1 − 2)(2− δ2)a

]
,

which implies

∂

∂a
F (a, b) =

{
> 0, 0 < a < ã ∧ b,

< 0, ã ∧ b < a < b,
and

∂

∂a
F (b, b) = 0,(3.17)

for ã defined in (3.16); note that, the positivity of ã follows from (3.2). As a by-product from the
above, F crosses zero only once on (0, b) and we can further conclude that 0 < a(b) < ã ∧ b and
∂
∂aF (a(b), b) > 0. □

In the following, we make use of the partial derivatives

b
∂

∂b
F (a, b) = (δ1 − 1)[(2− δ2)a− c2(1− δ2)(ρ− 2(r − g)− σ2)]

( b

a

)δ1−1
(3.18)

+ (δ2 − 1)[(δ1 − 2)a− c2(δ1 − 1)(ρ− 2(r − g)− σ2)]
( b

a

)δ2−1
− (δ1 − δ2)b

and

b2
∂2

∂b2
F (a, b) = (δ1 − 1)(δ1 − 2)

[
(2− δ2)a− c2(ρ− 2(r − g)− σ2)(1− δ2)

]( b

a

)δ1−1
(3.19)

+ (1− δ2)(2− δ2)
[
(δ1 − 2)a− c2(ρ− 2(r − g)− σ2)(δ1 − 1)

]( b

a

)δ2−1
.

Furthermore, given that ∂
∂aF (a(b), b) > 0 at the value a(b) which satisfies (3.14) due to Lemma 3.3,

we can obtain the monotonicity of a(b) on (0,∞) through

a′(b) = −
∂
∂bF (a(b), b)
∂
∂aF (a(b), b)

≥ 0 ⇔ ∂

∂b
F (a(b), b) ≤ 0,(3.20)

and we state the following key result.

Proposition 3.4. Let a(b) be the unique solution to (3.14) as in Lemma 3.3. Then,

(3.21) a(·) is

{
increasing on (0, b̂),

decreasing on (̂b,∞),
where b̂ is the unique solution to

∂

∂b
F (a(̂b), b̂) = 0.
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Moreover, b 7→ a(b) is concave on the interval (0, b̂) and limb→0 a(b) = 0 as well as limb→∞ a(b) = ā,
where ā is the optimal debt-issuance threshold defined by (3.8) in Case (I) of non-intervention by a
legislative body.

Proof. Fix b ∈ R+ and consider the uniquely defined a(b) ∈ (0, ã ∧ b) given by the solution to
(3.14) according to Lemma 3.3. Regarding the monotonicity of a(·) and its limiting behaviour, we
distinguish two cases depending on the location of the fixed a(b) relative to ā defined in (3.8).

Case (i): a(b) ≤ ā. Given that ā < ã due to (3.2) and the definitions (3.8) of ā and (3.16) of ã, we
observe that

∂2

∂b2
F (a(b), x) < 0, for all x > a(b) ⇒ x 7→ ∂

∂b
F (a(b), x) is strictly decreasing on (a(b),∞).

Since ∂
∂bF (a(b), a(b)) = 0 due to (3.18), we have ∂

∂bF (a(b), x) < 0 for all x > a(b). Combining this
with the fact that b > a(b), we conclude from (3.20) that a′(b) > 0 for all b ∈ R+ s.t. a(b) ≤ ā. This
yields that

(3.22) a(·) is increasing on (0, b̄], where b̄ is such that a(b̄) = ā.

Also, we observe that a′(b̄) > 0 and a(b) > ā for all b > b̄.
Case (ii): a(b) > ā. We firstly note from Case (i) that this is realised when b > b̄. We observe

that ∂2

∂b2
F (a(b), x) ≤ 0 if and only if x ≤ x̃, where

x̃ :=
((2− δ2)(1− δ2)(c2(δ1 − 1)(ρ− 2(r − g)− σ2)− (δ1 − 2)a(b))a(b)δ1−δ2

(δ1 − 2)(δ1 − 1)((2− δ2)a(b)− c2(1− δ2)(ρ− 2(r − g)− σ2)

) 1
δ1−δ2

> a(b),

which is well-defined since a(b) ∈ (a, ã). To show the inequality via contradiction, assume that

x̃ ≤ a(b). Then, ∂2

∂b2
F (a(b), x) ≥ 0 and hence x 7→ ∂

∂bF (a(b), x) is increasing for all x ≥ a(b). But

since ∂
∂bF (a(b), a(b)) = 0, it would follow that x 7→ F (a(b), x) is increasing on (a(b),∞), which is a

contradiction to F (a(b), b) = 0, given that a(b) < b. Therefore,

∂2

∂b2
F (a(b), x)

{
≤ 0, a(b) ≤ x ≤ x̃,

≥ 0, x ≥ x̃
⇒ x 7→ ∂

∂b
F (a(b), x) is

{
decreasing on (a(b), x̃),

increasing on (x̃,∞).

Combining this with the fact that ∂
∂bF (a(b), a(b)) = 0 and limx→∞

∂
∂bF (a(b), x) = +∞, we conclude

that ∂
∂bF (a(b), x) = 0 admits a unique solution on (a(b),∞), denoted by xm(b) ∈ (x̃,∞). Hence,

x 7→ ∂

∂b
F (a(b), x)

{
< 0, x ∈ (a(b), xm(b)),

> 0, x ∈ (xm(b),∞)
⇒ x 7→ F (a(b), x) is

{
decreasing on (a(b), xm(b)),

increasing on (xm(b),∞).

Given that F (a(b), a(b)) > 0 (see proof of Lemma 3.3) and limx→∞ F (a(b), x) = +∞, we conclude
that there exist at most two solutions to F (a(b), x) = 0 and due to (3.20) that a′(b) changes sign
once. This implies – in view of the conclusion a′(b̄) > 0 in Case (i) – that a(·) is either increasing

on the whole (b̄,∞), or it is increasing only on (b̄, b̂) and then decreasing on (̂b,∞), where b̂ ∈ (b̄,∞)
would be satisfying

a′(̂b) = 0 ⇔ ∂

∂b
F (a(̂b), b̂) = 0 ⇔ b̂ = xm(̂b).

In order to show that such a b̂ always exists, we study the system of equations F (â, b̂) = 0 =
∂
∂bF (â, b̂) (cf. equations above), which is equivalent to{

J1,2(â) = J1,1(̂b),

J2,2(â) = J2,1(̂b),
where Ji,j(x) :=

(δi − 2)x− cj(δi − 1)(ρ− 2(r − g)− σ2)

xδ3−i−1
(3.23)
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It can be shown (see, e.g. [13]) that the system (3.23) admits a unique solution (â, b̂) ∈ R2
+, where

(3.24) â = a(̂b), such that a′(̂b) = 0 and a(·) is

{
increasing on (b̄, b̂),

decreasing on (̂b,∞).

The monotonicity then follows by combining (3.22) and (3.24). Furthermore, this monotonicity
together with the fact that for every choice of b ∈ R+, there always exists a best response a(b), due
to Lemma 3.3, that satisfies (3.14)–(3.15), then yields limb→∞ a(b) = ā.

Regarding the concavity of a(·) on the interval (0, b̂) we investigate the term

a′′(b) =
2Fa(a(b), b)Fb(a(b), b)Fab(a(b), b)− F 2

b (a(b), b)Faa(a(b), b)− F 2
a (a(b), b)Fbb(a(b), b)

F 3
a (a(b), b)

,

where we set Fa(a, b) := ∂aF (a, b) (and the other terms analogously). We first notice that, due to
Lemma 3.3, we have Fa(a(b), b) > 0. Direct computation yields

2Fa(a(b), b)Fb(a(b), b)Fab(a(b), b)− F 2
b (a(b), b)Faa(a(b), b)− F 2

a (a(b), b)Fbb(a(b), b)

=
{ 1

a(b)b
(2− δ2)

( b

a(b)

)δ1−1
+

1

a(b)b
(δ1 − 2)

( b

a(b)

)δ2−1
− (δ1 − δ2)

1

a(b)2

}
×
{
(δ1 − δ2)(ρ− 2(r − g)− σ2)

[
c2(δ1 − 1)(1− δ2)(ρ− 2(r − g)− σ2)− (δ1 − 2)(2− δ2)a(b)

]
× 1

b

[
c2(δ1 − δ2)

( b

a(b)

)δ1+δ2−2
− c1(δ1 − 1)

( b

a(b)

)δ1−1
− c1(1− δ2)

( b

a(b)

)δ2−1]
+ c2(1− δ2)(δ1 − 1)(ρ− 2(r − g)− σ2)

[( b

a(b)

)δ1−1
−
( b

a(b)

)δ2−1]
Fb(a(b), b)

}
Some straightforward calculations reveal that the first term on the above right-hand side (second
line) is strictly positive, while the term in the third line is strictly positive due to a(b) ≤ ã. Moreover,
the term in the fourth line is strictly negative, which easily follows upon using a(b) ≤ b. Finally, we

notice that for b ≤ b̂, we have Fb(a(b), b) < 0 (see (3.24)). Combining these facts, we conclude that

indeed a′′(b) < 0 for b ∈ (0, b̂) and the claim follows. □

Before we present the optimality of the controls, we first notice that the control policy ξa(b) as
in (3.11), combined with the policy ηb of (3.1), is indeed admissible. Clearly, the couple solves
SP(a(b), b;x) and as such belongs to A. Indeed, by arguing as in Lemma 4.1 in [21] one can easily

show (2.7) and moreover, Px(∆ξa(b) ·∆ηb > 0) = 0 for all t ≥ 0, by construction. Then, we have the
following result for the associated candidate value function.

Proposition 3.5. The function U1(x; b) of (3.13) solves the free-boundary problem (3.12), with a(b)
solving (3.14) as in Lemma 3.3, and satisfies the HJB equation (3.10).

Proof. By construction, we have (L−ρ)U1(x; b) = −1
2x

2 for x ∈ (a(b), b), U ′
1(x; b) = c2 for x ∈ (0, a(b))

and U ′
1(x; b) = c1 > c2 for x ≥ a(b). Therefore, it remains to show that: (i) (L− ρ)U1(x; b) ≥ −1

2x
2,

for x ∈ (0, a(b)) and (ii) U ′
1(x; b) ≥ c2, for x ∈ (a(b), b). In the following, we fix b ∈ R+, so that a(b)

is the (fixed) unique solution to (3.14) according to Lemma 3.3.
For x ∈ (0, a(b)), we get

(L − ρ)U1(x; b) = (r − g)xc2 − ρU1(a(b); b) + ρc2(a(b)− x).

Clearly, x 7→ (L − ρ)U1(x; b) decreases with slope −c2(ρ − (r − g)), while x 7→ −1
2x

2 decreases

with slope −x. Since (L − ρ)U1(a(b); b) = −1
2a(b)

2, to prove (i), it is sufficient to then show that
c2(ρ− (r − g)) > x, for all x ∈ (0, a(b)). The latter is true due to (3.16), thus (i) holds true.
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For x ∈ (a(b), b), we can calculate

U ′
1(x; b) =

(δ2 − 2)a(b)− c2(δ2 − 1)(ρ− 2(r − g)− σ2)

(δ1 − δ2)(ρ− 2(r − g)− σ2)

( x

a(b)

)δ1−1

− (δ1 − 2)a(b)− c2(δ1 − 1)(ρ− 2(r − g)− σ2)

(δ1 − δ2)(ρ− 2(r − g)− σ2)

( x

a(b)

)δ2−1
+

x

ρ− 2(r − g)− σ2
.

Combining this with the definition (3.15) of F , we notice that

U ′
1(x; b) ≥ c2 ⇔ F (a(b), x) ≤ (c1 − c2)(δ1 − δ2)(ρ− 2(r − g)− σ2).

To prove (ii), given that

F (a(b), a(b)) = (c1 − c2)(δ1 − δ2)(ρ− 2(r − g)− σ2) and F (a(b), b) = 0,

it is sufficient to have that x 7→ F (a(b), x) first decreases and changes sign at most once in (a(b), b).
The latter was shown in the proof of Lemma 3.4, thus (ii) holds true, and this completes the proof. □

We can now prove that indeed V1 = U1 and provide an optimal debt management rule.

Theorem 3.6 (Verification Theorem: Case (II)). Assume that the legislative body acts according to
the control policy ηb of (3.1). Then, the function U1 of (3.13) coincides with the government’s value

function V1 in (3.9) and the admissible ξa(b) of (3.11) is optimal for problem (3.9).

Proof. Step 1. Let x ∈ R+ and ξ ∈ Aηb such that (ξ, ηb) ∈ A. For n ≥ 1, we let τn := inf{t ≥
0 : X0,ηb

t ≥ n}. Since U1 ∈ C2(0, b), we can apply Itô-Meyer formula to the process e−ρτnU1(X
ξ,ηb
τn ; b)

on [0, τn] and obtain

e−ρτnU1(X
ξ,ηb

τn ; b)− U1(x; b) =

∫ τn

0
e−ρs(L − ρ)U1(X

ξ,ηb

s ; b)ds+ σ

∫ τn

0
e−ρsU ′

1(X
ξ,ηb

s ; b)dWs

−
∫ τn

0
e−ρsXξ,ηb

s U ′
1(X

ξ,ηb

s ; b)dηc,bs +

∫ τn

0
e−ρsXξ,ηb

s U ′
1(X

ξ,ηb

s ; b)dξcs

+
∑
s≤τn

e−ρs
(
U1(X

ξ,ηb

s ; b)− U1(X
ξ,ηb

s− ; b)
)
.(3.25)

Clearly, for any s ∈ (0, τn] we have 0 < Xξ,ηb
s < n ∧ b and thus continuity of U ′

1 implies that the
second term in (3.25) is a martingale. Furthermore, since (ξ, ηb) ∈ A, the last term in (3.25) rewrites
as∑
s<τn

e−ρs
(
U1(X

ξ,ηb

s ; b)− U1(X
ξ,ηb

s− ; b)
)
=

∑
s<τn

e−ρs
(
U1(X

ξ,ηb

s ; b)− U1(X
ξ,ηb

s− ; b)
)[
1{∆ξs>0} + 1{∆ηbs>0}

]
and

∑
s<τn

(
U1(X

ξ,ηb

s ; b)− U1(X
ξ,ηb

s− ; b)
)
1{∆ξs>0} =

∑
s<τn

e−ρs

∫ ∆ξs

0
euXξ,ηb

s− U ′
1(e

uXξ,ηb

s− ; b)du

∑
s<τn

(
U1(X

ξ,ηb

s ; b)− U1(X
ξ,ηb

s− ; b)
)
1{∆ηbs>0} = −

∑
s<τn

e−ρs

∫ ∆ηbs

0
e−uXξ,ηb

s− U ′
1(e

−uXξ,ηb

s− ; b)du

(3.26)
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Taking expectations, rearranging terms and using the notation introduced in (2.3) we can thus write
(3.25) as

U1(x; b) = Ex

[
e−ρτnU1(X

ξ,ηb

τn ; b)−
∫ τn

0
e−ρs(L − ρ)U1(X

ξ,ηb

s ; b)ds+

∫ τn

0
e−ρsXξ,ηb

s U ′
1(X

ξ,ηb

s ; b) ◦d dηbs

−
∫ τn

0
e−ρsXξ,ηb

s U ′
1(X

ξ,ηb

s ; b) ◦u dξs

]
≤ Ex

[
e−ρτnU1(X

ξ,ηb

τn ; b) +

∫ τn

0
e−ρsh(Xξ,ηb

s )ds+ c1

∫ τn

0
e−ρsXξ,ηb

s ◦u dηbs

− c2

∫ τn

0
e−ρsXξ,ηb

s ◦u dξs

]
,(3.27)

where, in the latter inequality, we exploit the fact that U1 solves the free-boundary problem (3.12),
as stated in Proposition 3.5. By admissibility of ξ we have that the right-hand side of (3.27) is finite
P-a.s., and we notice that Assumption 2.4.(ii) guarantees

lim
n→∞

Ex

[
e−ρτnU1(X

ξ,ηb

τn ; b)
]
= 0.

Then, noticing that τn ↑ ∞, P-a.s., and taking limits in (3.27), we can use Assumptions 2.1.(iii) and
2.4.(ii), employ the dominated convergence theorem, and conclude that

U1(x; b) ≤ Ex

[ ∫ ∞

0
e−ρsh(Xξ,ηb

s )ds+ c1

∫ ∞

0
e−ρsXξ,ηb

s ◦d dηbs − c2

∫ ∞

0
e−ρsXξ,ηb

s ◦u dξs

]
.

Since ξ ∈ Aηb was arbitrary, we have U1(x; b) ≤ V1(x; b) on R+.

Step 2. We can repeat the above arguments from Step 1, but now fix the control strategy ξa(b) of

(3.11). Since Xξa(b),ηb

t ∈ [a(b), b], P-a.s., for all t > 0, and U1(X
ξa(b),ηb

t ; b) = c2 on supp{dξa(b)t }, the
inequality in (3.27) becomes an equality and hence, employing dominated convergence arguments as
before, we observe

U1(x; b) = Ex

[ ∫ ∞

0
e−ρsh(Xξa(b),ηb

s )ds+ c1

∫ ∞

0
e−ρsXξa(b),ηb

s ◦d dηbs − c2

∫ ∞

0
e−ρsXξa(b),ηb

s ◦u dξa(b)s

]
≥ V1(x; b).

Step 3. Combining the results from Steps 1 and 2 then concludes that U1(x; b) = V1(x; b) and

ξa(b) of (3.11) is an optimal control strategy for problem (3.9). □

4. The optimal debt ceiling

In this section, we study the control problem of the legislative body. As seen in Section 3, the
best response of the government to either a legislative body non-intervention policy, or a debt ceiling
mechanism (threshold-type policy) is given by a debt-issuance threshold-type policy. We now reverse
the roles and assume that the government chooses to increase its debt ratio at a certain level a ∈ R+,
i.e. to the debt-issuance control policy

ξat := 1{t>0}[(a− x)+ + ξt(a)],(4.1)

where ξ(a) uniquely solves the Skorokhod reflection problem SP(a;x ∨ a). In the following, for any
such level a, we study the problem (2.9) of finding a best response (i.e. an optimal control strategy
η ∈ Aξa). We thus consider the problem4

V2(x; a) := inf
η∈Aξa

Ex

[ ∫ ∞

0
e−λtα(Xξa,η

t −m)+dt+ κ

∫ ∞

0
e−λtXξa,η

t ◦d dηt
]
.(4.2)
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Via standard arguments, we can associate the value function V2 of (4.2) with a suitable solution to
the HJB equation

min
{
(L − λ)u(x; a) + α(x−m)+, κ− u′(x; a)

}
= 0,(4.3)

for all x ∈ (a,∞) with Neumann boundary condition u′(a; a) = 0. We presume that the legislative
body may only decrease the debt ratio when the current level is sufficiently large. Therefore, if the
legislative body chooses to intervene, we expect that for any given debt-issuance threshold a ∈ R+,
there exists a critical debt ceiling level b(a) at which the legislative body forces a decrease in the
debt ratio via a Skorokhod reflection type policy, where we stress the (possible) dependency on the
debt-issuance threshold a ∈ R+. On the other hand, also a non-intervention policy is conceivable. As
it turns out, it is crucial in our analysis to distinguish two different cases, depending on the legislative
body’s time preference rate λ:

(I) λ > r − g +
α

κ
, (II) λ < r − g +

α

κ
.

In the forthcoming Sections 4.1 and 4.2 we study these cases separately, providing an optimal control
strategy by the legislative body for each one of them.

4.1. The legislative body’s optimal strategy under high time preference rate: Case (I).
Notice that the legislative body discounts future events with a relatively large discount factor in this
case, and it is therefore appropriate to assume that the legislative body disregards the risk of future
government insolvency at a greater extent compared to Case (II). We verify this intuition by showing
that indeed, the optimal control policy of the legislative body prescribes not to intervene on the debt
ratio at all.

To this end, we prove that the value function V2 of (4.2) coincides with a suitable solution to a
fixed-boundary problem 

(L − λ)u(x; a) = −α(x−m)+, a < x,

u′(x; a) < κ, a < x,

u′(x; a) = 0, 0 < x ≤ a.

(4.4)

We can solve the latter problem by constructing a solution to the ordinary differential equation and
imposing the stated boundary condition, which lead to the candidate value function

U2(x; a) =

{
U2(a; a), 0 < x ≤ a;

D2(a)x
θ2 +H(x), a < x,

(4.5)

where

D2(a) := − α

θ2
a1−θ2

∫ ∞

0
e−(λ−(r−g))tΦ(d1(a, t))dt,

H(x) := α

∫ ∞

0

(
xe−(λ−(r−g))tΦ(d1(x, t))−me−λtΦ(d2(x, t))

)
dt,

d1(x, t) :=
log

(
x
m

)
+ (r − g + 1

2σ
2)t

σ
√
t

and d2(x, t) := d1(x, t)− σ
√
t,

with θ2 denoting the negative root to the equation 1
2σ

2θ(θ− 1) + (r− g)θ− λ = 0 and Φ(·) denoting
the cumulative distribution function of a standard normal random variable.

Lemma 4.1. The function U2 of (4.5) solves the free-boundary problem (4.4) and satisfies the HJB
equation (4.3).
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Proof. In view of the construction of U2, it remains to check that ∂
∂xU2 < κ, for all x > a. Straight-

forward calculations lead to

∂

∂x
U2(x; a) = α

∫ ∞

0
e−(λ−(r−g))t

(
Φ(d1(x, t))−

(x
a

)θ2−1
Φ(d1(a, t))

)
dt < κ,

where the inequality follows from the facts that x > a and λ > r − g + α
κ > r − g under Case (I).

Furthermore, Assumption 2.4.(iii) guarantees that ∂
∂xU2(x; a) ≥ 0, for all x > a. □

We now prove that indeed V2 = U2 and that not intervening is an optimal debt management
strategy.

Theorem 4.2 (Verification Theorem: Case (I)). Assume that the government acts according to the
control policy ξa of (4.1). Then, the function U2 of (4.5) coincides with the value function V2 of
(4.2) and the optimal policy for the legislative body prescribes not to act on the debt ratio, i.e. η := 0.

Proof. The proof follows the lines of the proof of Theorem 4.8 and is thus skipped for brevity. □

Remark 4.3. Notice that the strategy of the legislative body not to intervene on the debt ratio is not
triggered by some specific a ∈ R+. This comes solely from the fact that λ > r− g+ α

κ , independently
of the governmental choice of a debt-issuance level a ∈ R+. On the other hand, the best response of
the government to a legislative body non-intervention policy η̄ from (3.1), has been treated in Section
3.1. In particular, the optimal control for problem V1(x; η) of (2.8) (cf. V 1(x) in (3.3)) is given by
the Skorokhod reflection type policy ξa as in (3.11), with a defined in (3.8). Indeed, we prove that
this pair of strategies leads to an equilibrium in Section 5.

4.2. The legislative body’s optimal strategy under low time preference rate: Case (II).
While it is optimal for the legislative body to never intervene in Case (I), we show that in this
case the best response to a governmental policy (4.1) requires intervention. Indeed, for any given
governmental debt-issuance threshold a ∈ R+, this will prescribe keeping the debt ratio below a
certain debt ceiling b(a) with minimal effort, via a Skorokhod reflection type policy, where we stress
the (possible) dependency on the debt-issuance threshold a ∈ R+. For any x ∈ R+, we thus consider
the control

η
b(a)
t := 1{t>0}[(x− b(a))+ + ηt(b(a))](4.6)

where η(b(a)) is the unique control such that the couple (ξ(a), η(b(a))) solves the Skorokhod reflection
problem SP(a, b(a); (x∨ a)∧ b(a)). As a consequence, we can associate the given problem (4.2) with
the free-boundary problem

(L − λ)u(x; a) ≥ −α(x−m)+, a < x,

(L − λ)u(x; a) = −α(x−m)+, a < x < b(a),

u′(x; a) ≤ κ, a < x,

u′(x; a) = κ, b(a) ≤ x,

u′(x; a) = 0, 0 < x ≤ a,

u′′(b(a); a) = 0,

(4.7)

where we imposed an additional smoothness condition at the free boundary b(a). The forthcom-
ing analysis is dedicated to determining the optimal threshold b(a) and proving the optimality of
the control (4.6) for the original debt ratio management problem of the government (4.2), which
corresponds to (2.9) with ξ = ξa defined in (4.1).
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We begin with solving the free-boundary problem (4.7) by constructing a solution to the ordinary
differential equation and imposing the boundary conditions to obtain a candidate value function

U2(x; a) :=


U2(a; a), 0 < x ≤ a,

D3(b(a))x
θ1 +D4(b(a))x

θ2 +H(x), a < x < b(a),

U2(b(a)); a) + κ(x− b(a)), b(a) ≤ x,

(4.8)

where

Di(b) :=
b1−θi−2

θi−2(θ2 − θ1)

[
(θ5−i − 1)

(
k − α

∫ ∞

0
e−(λ−(r−g))tΦ(d1(b, t))dt

)
+ α

∫ ∞

0
e−(λ−(r−g))t 1√

2πtσ
e−

1
2
d1(b,t)2dt

]
, i = 3, 4,

and the constants θ1, θ2 are given by the positive and negative roots to the equation 1
2σ

2θ(θ − 1) +
(r − g)θ − λ = 0, respectively. The optimal boundary is given by the solution b(a) ∈ (a,∞) to the
equation

G(a, b(a)) = 0,(4.9)

where G(a, ·) is defined on (a,∞) by

G(a, b) :=
[( b

a

)1−θ2
−
( b

a

)1−θ1][ α

θ1 − θ2

∫ ∞

0
e−(λ−(r−g))t 1√

2πtσ
e−

d1(b,t)
2

2 dt
]

+
[
(θ1 − 1)

( b

a

)1−θ2
− (θ2 − 1)

( b

a

)1−θ1][ k

θ1 − θ2
− α

θ1 − θ2

∫ ∞

0
e−(λ−(r−g))tΦ(d1(b, t))dt

]
+ α

∫ ∞

0
e−(λ−(r−g))tΦ(d1(a, t))dt.

After lengthy but straightforward calculations we get

G(a, b) =
[
(θ1 − 1)

( b

a

)1−θ2
+ (1− θ2)

( b

a

)1−θ1]( κ

θ1 − θ2
− α

(θ1 − θ2)(λ− (r − g))
1{b≥m}

)
+

α

(θ1 − θ2)(λ− (r − g))

[
(1− θ2)

(m
a

)1−θ1
1{b>m>a} + (θ1 − 1)

(m
a

)1−θ2
1{b>m>a}

]
+

α

(λ− (r − g)
1{a≥m}.(4.10)

In addition, we can derive the following expression for

∂

∂b
G(a, b) =

[( b

a

)1−θ2
−
( b

a

)1−θ1] (θ1 − 1)(1− θ2)

(θ1 − θ2)(λ− (r − g))b

[
κ(λ− (r − g))− α1{b>m}

]
,(4.11)

which will be crucial for obtaining the existence and uniqueness of the optimal boundary.

Lemma 4.4. Let a ∈ R+ and G(a, ·) defined by (4.10) on (a,∞). There exists a unique b(a) ∈ (a,∞)
solving G(a, b(a)) = 0 in (4.9), that satisfies ∂

∂bG(a, b(a)) < 0 and b(a) > m.

Proof. We conclude from the representation of G in (4.10) that

G(a, a) = k > 0, and lim
b→∞

G(a, b) = −∞,

where the latter follows precisely from the fact that λ < r − g + α
κ in Case (II). Hence, there exists

a solution to the equation (4.9). Moreover, it follows from (4.11) that

∂

∂b
G(a, b) =

{
> 0, a < b < a ∨m,

< 0, a ∨m < b.

Therefore, for any a ∈ R+, there exists a unique b(a) ∈ (a∨m,∞) such that G(a, b(a)) = 0. Moreover,
due to (4.11), we conclude that ∂

∂bG(a, b(a)) < 0. □
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In what follows, we aim at deriving the monotonicity properties of the boundary function a 7→ b(a).
To that end, we first present a useful lower bound.

Lemma 4.5. Let a ∈ R+. Then

b(a) ≥ b0 :=
( α

α− κ(λ− (r − g))

) 1
1−θ2 m > m.(4.12)

Proof. Let b0 be defined as in (4.12). Fix a ∈ R+ and recall that there exists a unique (fixed)
b(a) > a∨m, for any a ∈ R+, due to Lemma 4.4. To show (4.12), we examine two cases of a-values.

Case (i): a ≥ b0. In this case, we immediately have b(a) > b0.
Case (ii): a < b0. Notice that simple comparison arguments yield that b0 > m and can be

shown that G(a, b0) ≥ 0. We then assume (aiming for contradiction) that b(a) ∈ (a ∨m, b0). Since
b 7→ G(a, b) is strictly decreasing for b > a ∨m (see proof of Lemma 4.4), it follows that

G(a, b(a)) > G(a, b0) ≥ 0,

which is a contradiction due to Lemma 4.4, thus b(a) ≥ b0. □

We are now in position to obtain the monotonicity of b(·) on (0,∞). Given that ∂
∂bG(a, b(a)) < 0

at the value b(a) which satisfies (4.9), due to Lemma 4.4, we have that

b′(a) = −
∂
∂aG(a, b(a))
∂
∂bG(a, b(a))

> 0 ⇔ ∂

∂a
G(a, b(a)) > 0,(4.13)

and we state the following key result.

Proposition 4.6. Let b(a) be the unique solution to (4.9) as in Lemma 4.4. The function a 7→ b(a)
is strictly increasing on R+. In particular, it takes a linear form b(a) = (1/q̃)a, for all a > m, where
q̃ ∈ (0, 1) is given by the solution to

(1− θ2)(κ(λ− (r − g))− α)q̃θ1−1 + (θ1 − 1)(κ(λ− (r − g))− α)q̃θ2−1 + α(θ1 − θ2) = 0.(4.14)

Moreover, a 7→ b(a) is convex on the interval (0,m), lima→0 b(a) = b0, where b0 is given by (4.12),
and lima→∞ b(a) = ∞.

Proof. In order to obtain the desired results, we distinguish two cases.
Case (i). If a > m, then we notice that

∂

∂a
G(a, b(a)) =

(θ1 − 1)(1− θ2)(k(λ− (r − g))− α)

(θ1 − θ2)(λ− (r − g))a

[( b

a

)1−θ1
−
( b

a

)1−θ2]
> 0.(4.15)

This implies, thanks to (4.13), that

(4.16) a 7→ b(a) is increasing on (m,∞).

Furthermore, combining the expressions of the partial derivatives in (4.11) and (4.15) with the

expression of b′(·) in (4.13) yields b′(a) = b(a)
a , which further implies that b(a) = (1/q̃)a, for some

q̃ ∈ (0, 1). The latter can be specified as the unique equation to the solution G(q̃, 1) = 0, which is
equivalent to (4.14).

Case (ii). If a ≤ m, then we notice that

∂

∂a
G(a, b(a))

=
2(α− κ(λ− (r − g))

(θ1 − θ2)aσ2

[(b(a)
a

)1−θ2
−

(b(a)
a

)1−θ1]
+

2α

(θ1 − θ2)σ2a

[(m
a

)1−θ1
−
(m
a

)1−θ2]
≥ 2(α− κ(λ− (r − g))

(θ1 − θ2)aσ2

[(b0
a

)1−θ2
−
(b0
a

)1−θ1]
+

2α

(θ1 − θ2)σ2a

[(m
a

)1−θ1
−
(m
a

)1−θ2]
=

[ 2α

(θ1 − θ2)σ2a
− 2(α− κ(λ− (r − g))b1−θ1

0

(θ1 − θ2)σ2a

]
≥ 0,
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where the first inequality follows from Lemma 4.5 and the second one from the definition (4.12) of
b0. This implies, thanks to (4.13), that

(4.17) a 7→ b(a) is increasing on (0,m].

Regarding the convexity of b(·) on this interval, we examine the term

b′′(a) =
2Ga(a, b(a))Gb(a, b(a))Gab(a, b(a))−G2

b(a, b(a))Gaa(a, b(a))−G2
a(a, b(a))Gbb(a, b(a))

G3
b(a, b(a))

,

where Ga(a, b) := ∂aG(a, b) (and the other terms analogously). We first notice that, due to Lemma
4.4, we have Gb(a, b(a)) < 0. Upon using (4.10) and some direct calculation, we find

2Ga(a, b(a))Gb(a, b(a))Gab(a, b(a))−G2
b(a, b(a))Gaa(a, b(a))−G2

a(a, b(a))Gbb(a, b(a))

=
(θ1 − 1)3(1− θ2)

3(α− κ(λ− (r − g))α

(λ− (r − g))3(θ1 − θ2)3a2b(a)2

×
{
(α− κ(λ− (r − g))

[(b(a)
a

)1−θ1
−
(b(a)

a

)1−θ2]2[
θ2

(m
a

)1−θ2
− θ1

(m
a

)1−θ1]
+ α

[(m
a

)1−θ2
−
(m
a

)1−θ1]2[
θ1

(b(a)
a

)1−θ1
− θ2

(b(a)
a

)1−θ2]}
While the first term on the above right-hand side (second line) is clearly positive, one can employ
the fact that b(a) > b0 > m for all a > 0, with b0 as in (4.12), to show that the second term is strictly
negative. Consequently, we obtain b′′(a) > 0 and thus the strict convexity of b(·) on (0,m).

Moreover, we straightforwardly calculate lima↓0G(a, b0) = 0, which due to Lemma 4.4 and the
monotonicity of b(a) implies lima↓0 b(a) = b0. □

Before we present the optimality of the controls, we first notice that the control policy ηb(a)

as in (4.6), combined with the policy ξa of (4.1), is indeed admissible. Clearly, the couple solves
SP(a, b(a);x) and as such belongs to A. Indeed, by arguing as in Lemma 4.1 in [21] one can easily

show (2.7) and moreover, Px(∆ξa ·∆ηb(a) > 0) = 0 for all t ≥ 0, by construction. Then, we have the
following result for the associated candidate value function.

Proposition 4.7. The function U2(x; a) of (4.8) solves the free-boundary problem (4.7), with b(a)
solving (4.9) as in Lemma 4.4, and satisfies the HJB equation (4.3).

Proof. By construction, we have (L − λ)U2(x; a) + α(x − m)+ = 0 for x ∈ (a, b(a)) as well as
∂
∂xU2(x; a) = κ for x ≥ b(a). It thus remains to show that: (i) (L − λ)U2(x; a) + α(x−m)+ ≥ 0 for
x ≥ b(a) and (ii) U ′

2(x; a) ≤ κ for x ∈ (a, b(a)). In the following, we fix a ∈ R+, so that b(a) is the
(fixed) unique solution to (4.9) according to Lemma 4.4.

For x ≥ b(a), we notice from the expression (4.8) of U2 that

(L − λ)U2(x; a) = (L − λ)
(
U2(b(a); a) + κ(x− b(a))

)
= (r − g)xκ− λU2(b(a); a)− λκ(x− b(a))

which is a decreasing, linear function in x, with slope −κ(λ − (r − g)). We then observe that
x 7→ −α(x − m) also decreases linearly for x ≥ b(a) > m, with a slope −α that is considered to
satisfy −α < −κ(λ− (r− g)), according to the parameter regime under Case (II). The claim (i) thus
follows by noticing that for x = b(a), we have (L− λ)U2(b(a); a) = −α(b(a)−m)+ = −α(b(a)−m).

For x ∈ (a, b(a)), we notice that U ′
2(x; a) = G(x, b(a)). Since x 7→ G(x, b(a)) is increasing (recall

(4.13) and Proposition 4.6), we obtain via the representation (4.10) of G that

U ′
2(x; a) = G(x, b(a)) ≤ G(b(a), b(a)) = κ,

which concludes our claim. Furthermore, we have ∂
∂xU2(x; a) ≥ G(a, b(a)) = 0 for x > a. □
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Theorem 4.8 (Verification Theorem: Case (II)). Assume that the government acts according to
the control policy ξa of (4.1). Then, the function U2 of (4.8) coincides with the value function V2

of (4.2). Furthermore, the policy ηb(a) of (4.6) with the optimal threshold determined via (4.9) is
optimal.

Proof. Step 1. We can proceed similarly as in Theorem 4.2. Let x ≥ 0 and η ∈ Aξa such that
(ξa, η) ∈ A. Since U2 ∈ C2(a,∞), we can apply Itô-Meyer formula, up to a localising sequence of

stopping times given by τn := inf{t ≥ 0 : Xξa,0
t ≥ n} P-a.s., to the process U2(X

ξa,η; a) and obtain

e−λτnU2(X
ξa,η
τn ; a)− U2(x; a) =

∫ τn

0
(L − λ)U2(X

ξa,η
s ; a)ds+ σ

∫ τn

0
U ′
2(X

ξa,η
s ; b)dWs

−
∫ τn

0
e−λsXξa,η

s U ′
2(X

ξa,η
s ; a)dηcs +

∫ τn

0
e−λsXξa,η

s U ′
2(X

ξa,η
s ; a)dξc,as

+
∑
s<τn

e−λs
(
U2(X

ξa,η
s ; a)− U2(X

ξa,η
s− ; a)

)
(4.18)

The second term in (4.18) is a martingale due to the continuity of U ′
2 and the fact that a ≤ Xξa,η

s < n
for any s ∈ (0, τn]. Furthermore, we can proceed similarly as in (3.26) in order to rewrite the last
term in (4.18) and obtain, after taking expectations and rearranging terms, that

U2(x; a) = Ex

[
e−λτnU2(X

ξa,η
τn ; a)−

∫ τn

0
e−λs(L − λ)U2(X

ξa,η
s ; a)ds

+

∫ τn

0
e−λsXξa,η

s U ′
2(X

ξa,η
s ; a) ◦d dηs −

∫ τn

0
e−λsXξa,η

s U ′
2(X

ξa,η
s ; a) ◦u dξas

]
≤ Ex

[
e−λτnU2(X

ξa,η
τn ; a) +

∫ τn

0
e−λsα(Xξa,η

s −m)+ds+ κ

∫ τn

0
e−λsXξa,η

s ◦d dηs
]
,(4.19)

where the latter inequality follows from the fact that U2 solves the free-boundary problem (4.7) and

U ′
2(X

ξa,η
s ; a) = 0 for all s in the support of dξa. By admissibility of η, the right-hand side of (4.19)

is finite P-a.s., and Assumption 2.4.(iii)

lim
n→∞

Ex

[
e−λτnU2(X

ξa,η
τn ; a)

]
= 0.

Then, taking limits in (4.19) upon using that τn ↑ ∞, we can employ dominated convergence due to
Assumption 2.4.(iii) and obtain

U2(x; a) ≤ Ex

[ ∫ ∞

0
e−λsα(Xξa,η

s −m)+ds+ κ

∫ ∞

0
e−λsXξa,η

s ◦d dηs
]
.

We conclude that U2(x; a) ≤ V2(x; a) on R+.

Step 2. We can now repeat the steps from above, upon fixing the control strategy ηb(a) of (4.6).

Since Xξa,ηb(a)

t ∈ [a, b(a)] a.s. for all t > 0 and U2(X
ξa,ηb(a)

t ; a) = κ on supp{dηb(a)}, the inequality in
(4.19) becomes an equality. Arguing as before, we thus obtain

U2(x; a) = Ex

[ ∫ ∞

0
e−λsα(Xξa,ηb(a)

s −m)+ds+ κ

∫ ∞

0
e−λsXξa,ηb(a)

s ◦d dηb(a)s

]
≥ V2(x; a).

Step 3. Combining the results from Steps 1 and 2 then concludes that U2(x; a) = V2(x; a) on R+

and ηb(a) is an optimal control strategy in problem (4.2). □

5. Nash Equilibria in the model

Our results from Sections 3 and 4 – each player’s best response to a Skorokhod-reflection type
strategy is a Skorokhod-reflection type strategy or a no-intervention policy – suggest that we should
aim at determining a Nash equilibrium via its Definition 2.3 in the class M of (2.10), in which at
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least one player acts according to a Skorokhod-reflection type policy. The analysis in this section
focuses on this direction.

Recall the peculiarity arising from our results in Section 4, where we show that the legislative body
may choose not to intervene on the debt ratio at all. Interestingly, we prove that the optimality of
adopting such a strategy relies solely on their (individual) time preferences compared to the parameter
constellation in the model – it does not depend on the actions of the opposing player (government)
– see specifically our results in Section 4.1. We thus split our search for Nash equilibria in the
forthcoming analysis based on the magnitude of the legislative body time preferences.

5.1. The case of λ > r−g+α/κ. Our results in Section 4.1, suggest that the legislative body should
restrain themselves from reflecting the debt ratio at any threshold, when their time preference rate λ
is relatively large. In light of this non-intervention policy, it is natural to then examine what should
the governmental strategy be as a best response. The characterisation of such a strategy is in fact the
main aim of Section 3.1, which studies the optimal control (debt issuance policy) of the government
when they are the sole player (there is no opponent).

We present the resulting Nash equilibrium in the following theorem.

Theorem 5.1 (Existence and uniqueness of Nash Equilibrium). Suppose that the model’s parameters
satisfy Assumptions 2.4 as well as λ > r − g + α/κ. A unique Nash equilibrium of the game (2.8)–
(2.9) in the set M of (2.10) can be characterised by the couple of controls (ξa, η̄) = (ξa, 0), with the
former component defined as in (3.5) and the threshold a defined in (3.8).

Proof. This simply follows from the notion of Nash equilibrium as introduced in Definition 2.3. □

5.2. The case of λ ∈ (r − g, r − g + α/κ). Our results from Sections 3 and 4 on each player’s
best response suggest that a Nash equilibrium could be characterised by Skorokhod-reflection type
policies at finite thresholds. More precisely, while the government increases the debt ratio at a(b)
(as a best response to a debt ceiling b ∈ R+), the legislative body forces a debt ratio reduction at a
debt ceiling b(a) (as a best response to a governmental debt-issuance threshold a ∈ R+).

The aim of the following theorem is to prove that there always exists a pair (a∗, b∗) forming a fixed
point of these best-response-maps, such that a∗ = a(b∗) and b∗ = b(a∗).

Theorem 5.2 (Existence of Nash Equilibrium). Suppose that the model’s parameters satisfy As-
sumptions 2.4 as well as λ ∈ (r − g, r − g + α/κ). A Nash equilibrium in the game (2.8)–(2.9) can
be characterised by the couple of Skorokhod-reflection type policies (ξa

∗
, ηb

∗
), as defined in (3.11) and

(4.6), respectively. The pair of thresholds (a∗, b∗) ∈ R2
+ satisfies a∗ < b∗ and solves the coupled system

of equations F (a∗, b∗) = 0 = G(a∗, b∗).

Proof. Recall the function a(b) from Proposition 3.4 and define the function

(5.1) a1(x) := a(x), for all x ∈ R+.

Then, we recall from Proposition 4.6 that the unique solution to G(a, ·) = 0 for any fixed a ∈ R+, is
given in terms of a strictly increasing function a 7→ b(a). We can therefore invert this function and
define

(5.2) a2(x) := b−1(x), such that x 7→ a2(x) is strictly increasing on R+.

Thanks to Proposition 4.6, we also know that b(a) = (1/q̃)a, for all a > m, which yields that

(5.3) a2(x) = q̃x, for x > m/q̃.

For illustration, Figure 1 sketches the maps for different parameter specifications.
We can thus conclude that

(5.4) ∃ a Nash equilibrium ⇔ ∃ an intersection point b∗, such that a∗ := a1(b
∗) = a2(b

∗).

In view of the definitions in (5.1)–(5.2), we have that a∗ = a(b∗) and b∗ = b(a∗). This would finally
imply that (a∗, b∗) solves the system of equations F (a∗, b∗) = 0 = G(a∗, b∗) and complete the proof.
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In the remainder of the proof, we examine the existence of b∗ in (5.4). On one hand, it follows

from (5.1) and (3.21) in Proposition 3.4 that a1(·) is bounded from above by â := a(̂b). On the other
hand, it follows from (5.2)–(5.3) that a2(·) is strictly increasing with limb→∞ a2(b) = +∞. We further
know from Propositions 3.4 and 4.6 that the functions a1(·) and a2(·) have supports on (0,∞) and
(b0,∞), respectively, with b0 > m > 0. due to (4.12). Clearly, there exists at least one b∗ ∈ (b0,∞)
such that a1(b

∗) = a2(b
∗), therefore (5.4) implies that there exists a Nash equilibrium. □

a1(b)

a2(b)

0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4
a1(b)

a2(b)

0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

Figure 1. A Sketch of the maps a1(b) and a2(b) for different parameter specifications.

Theorem 5.3 (Uniqueness of Nash Equilibrium). Assume that λ ∈ (r − g, r − g + α
κ ). The Nash

Equilibrium specified in Theorem 5.2 is unique in the class M, in which at least one player plays a
Skorokhod-reflection type policy.

Proof. Recall from Theorem 5.2 that there exists an intersection point b∗, such that a∗ := a1(b
∗) =

a2(b
∗), thus (a∗, b∗) is a Nash equilibrium (cf. (5.4)). In order to prove the uniqueness of this

equilibrium (in the class of Skorokhod reflection-type strategies), we must prove the uniqueness of
the intersection point b∗.

We begin by defining the function

a 7→ b0(a), for a ∈ R+, such that b0(a) = (1/q̃)a with q̃ ∈ (0, 1) as in Proposition 4.6,

which can be inverted to define

a0(b) := q̃b, for b ∈ R+.

Notice from Proposition 4.6 that b(a) = b0(a) for all a > m, hence in view of (5.2), we get a2(b) =
a0(b), for all b > m/q̃. Moreover, Lemma 4.6 implies that b 7→ a2(b) is strictly concave on (b0,

m
q̃ ),

where we notice that m/q̃ > b0 due to the monotonicity of b(a). Moreover, this implies a2(b) ≤ a0(b)
for all b ≥ b0.

As a first step, we prove that the curves a1(b) and a0(b) either admit no intersection or exactly
one for b > 0. Since a0(b) = q̃b, any intersection clearly is of the form (q̃b, b). Plugging in points of
this form into the function F of (3.15) we observe that

b → F (q̃b, b) = s(q̃)b+ y(q̃) is strictly increasing on R+,

with

s(q) = (2− δ2)q
2−δ1 + (δ1 − 2)q2−δ2 − (δ1 − δ2) > 0,

y(q) = (ρ− 2(r − g)− σ2)
[
c1(δ1 − δ2)− c2(1− δ2)q

1−δ1 − c2(δ1 − 1)q1−δ2
]
.

Clearly, this implies (depending on the value y(q)) that either no intersection point exists or exactly
one. Moreover, if no intersection of a0 and a1 exists, we conclude that a′1(0+) < a′0(0+) = q̃.

Next, we come back to the uniqueness of an intersection of the maps a1(b) and a2(b). Recall that

b 7→ a1(b) is concave on (0, b̂), and a 7→ b(a) is convex, which implies that b 7→ a2(b) is concave as
well.
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We now distinguish the following cases; an illustration for each one of them is given in Figure 2:
Case (i). No intersection exists of a1(b) and a0(b): In this case, we first notice that a′2(b) ≥ a′0(b) = q̃

for all b in the support of a2(b) due to the concavity of a2(b) and the fact that a2(b) ≤ q̃b. Furthermore,
we have q̃ > a′1(0+), and hence q̃ > a′1(b) for all b > 0. Combining these insights, it follows that
a1(b) = a2(b) for exactly one b ∈ R+.

For the following cases, we thus assume that there exists exactly one intersection of a1(b) and
a0(b), which yields the point (a∗0, b

∗
0).

Case (ii). If a∗0 ≥ m, the uniqueness of an intersection of a1(b) and a2(b) follows from the fact that
a2(b) = a0(b) for all b ≥ m/q̃. Hence, in this case, we obtain that the intersection of a1(b) and a2(b)
is exactly given by (a∗, b∗) = (a∗0, b

∗
0).

Case (iii). If a∗0 < m and b∗0 ≥ b̂, we again observe that a2(b) ≤ q̃b, which implies that the

intersection point is not realized on b ≤ b∗0. Therefore, since a1(b) is decreasing for b ≥ b̂ and a2(b)
is increasing, the intersection is unique and we denote it by (a∗, b∗).

Case (iv). If a∗0 < m and b∗0 < b̂, the concavity of a1(b) implies a′1(b
∗
0) < q̃ as well as a′1(b

∗
0) > a′1(b)

for all b ≥ b∗0. Since a′2(b) > q̃ for all b, we must have a1(b) = a2(b) for exactly one b ∈ R+ and we
again denote the unique intersection by (a∗, b∗). □
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*
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a2 (b)

q̃b

b0b0
* b


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*
a
*

Case (iv)

Figure 2. Case Study for the uniqueness of an intersection of a1(b) and a2(b)

Remark 5.4. It is interesting to notice that one can establish a connection between the equilibria
determined in Theorems 5.1-5.3 by considering the limit as λ ↑ r−g+α/κ. Hence, in what follows, we
stress the dependence of relevant quantities on the parameter λ. Recall that a2(b;λ) ≤ a0(b;λ) = q̃(λ)b
(see also Figure 2 for illustration), where q̃ ≡ q̃(λ) ∈ (0, 1) is given by the solution to (4.14), which
is equivalent to G(q̃(λ), 1) = 0. By defining

Ĝ(q) := (1− θ2)κ(λ− (r − g)) + (θ1 − 1)(κ(λ− (r − g))− α)qθ2−1 + α(θ1 − 1), q ∈ (0, 1),

we observe that G(q, 1) ≥ Ĝ(q) for all q ∈ (0, 1), since λ < r − g + α
κ . Moreover, we notice that

lim
q↓0

G(q, 1) = −∞, lim
q↓0

Ĝ(q) = −∞, G(1, 1) = Ĝ(1) = (θ1 − θ2)κ(λ− (r − g)) > 0
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and that both q 7→ G(q, 1) and q 7→ Ĝ(q) are monotonically increasing. Using these properties, we

can denote by q̂ ≡ q̂(λ) ∈ (0, 1) the unique solution to Ĝ(q) = 0 (which can be computed explicitly)
and obtain

q̃(λ) < q̂(λ) and lim
λ↑r−g+α/κ

q̂(λ) = 0 ⇒ lim
λ↑r−g+α/κ

q̃(λ) = 0.

First of all, recall from Theorem 5.2 that for every λ ∈ (r − g, r − g + α/κ), there exists a
unique equilibrium pair (a∗(λ), b∗(λ)), such that a∗(λ) = a1(b

∗(λ)) = a2(b
∗(λ);λ). Since a2(b;λ) ≤

q̃(λ)b, we notice that for any fixed b̃ ∈ (0,∞) we have limλ↑r−g+α/κ a2(̃b;λ) = 0. However, there

is no such fixed b̃ ∈ (0,∞) that can give a1(̃b) = limλ↑r−g+α/κ a2(̃b;λ) = 0 to create an equilibrium

pair limλ↑r−g+α/κ(a
∗(λ), b∗(λ)) = (0, b̃). Hence, the only possibility for obtaining an equilibrium as

λ ↑ r − g + α/κ, is for b∗(λ) → ∞. Given that b 7→ a1(b) is strictly decreasing on (̂b,∞) and
limb→∞ a1(b) = ā (independently of λ), we conclude that

lim
λ↑r−g+α/κ

a∗(λ) = lim
λ↑r−g+α/κ

a2(b
∗(λ);λ) = lim

λ↑r−g+α/κ
a1(b

∗(λ)) = ā and lim
λ↑r−g+α/κ

b∗(λ) = ∞.

6. Comparative Statics Analysis

In Section 5 we derived the existence and uniqueness of Nash equilibria under different parameter
regimes in our model. It was revealed that the parameter λ, measuring the legislative body’s time
preferences, plays a crucial role on the characterisation of Nash equilibrium. While it is optimal not
to intervene for large values of λ > r− g+α/κ, the equilibrium strategies are characterised by a pair
of thresholds (a∗, b∗) for intermediate values of λ ∈ (r − g, r − g + α/κ).

In this section, we study the sensitivity of these boundaries with respect to some of the model
parameters. In order to highlight the transition from Nash equilibria that are characterised by
thresholds (a∗, b∗) (cf. Theorems 5.2-5.3) to those that prescribe a non-intervention policy for the
legislative body (cf. Theorem 5.1), as stated in Remark 5.4, we plot the equilibrium values of (a∗, b∗)
as functions of λ in the following comparative statics.

Unless otherwise specified, we fix the following parameter set.

ρ σ r g α m c1 c2 κ
0.3 0.2 0.025 0.02 0.15 0.6 2 1.25 0.6

6.1. Sensitivity with respect to λ. To begin with, it is interesting to study the dependency
of the equilibrium values a∗ and b∗ on the discount factor λ. The numerical sensitivity analysis
exhibited in Figure 3 depicts the optimal intervention thresholds as functions of the legislative body’s
time preference rate, which here takes values on the interval λ ∈ (r − g, r − g + α/κ). The latter
guarantees, as shown in the previous analysis, the optimality of a finite debt ceiling mechanism.
Some remarks are worth mentioning. Clearly, the equilibrium debt ceiling b∗ exhibits a monotonically
increasing behaviour as a function of λ, with the peculiarity of an exploding behaviour b∗ ↑ +∞ for
λ ↑ r−g+α/κ. This illustrates our finding of the smooth transition from a debt ceiling mechanism to
a non-intervention policy by the legislative body, as stated in Remark 5.4. It is interesting to notice
that this monotonicity as well as limiting behaviour of b∗ does not depend on the other parameters
in the model, although some of them influence the interval bounds for the values of λ, for which the
legislative body’s optimal strategy is indeed a debt ceiling mechanism. More precisely, increasing
(decreasing) the term r − g shifts the interval to the right (left), while the fraction α/κ determines
the length of the interval (r − g, r − g + α/κ). A short discussion on the implications of a shift in
these parameters on the optimal strategy of the legislative body (depending on their time preference
rate λ) is given in the subsequent sensitivity study. Last, we note that the intervention threshold
a∗, characterising the optimal debt issuance policy by the government, again illustrates our finding
of Remark 5.4, in the sense that a∗ → ā for λ ↑ r − g + α/κ.
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Figure 3. Sensitivity of the equilibrium values for a∗ and b∗ (as functions of λ) with
respect to a change in some of the model parameters.

6.2. Sensitivity with respect to governmental time preference rate ρ. The discount factor
ρ serves as a measure on how myopic a government is regarding its debt. Increasing ρ has the effect
that the government discounts future costs and revenues more heavily, and thus cares less and less
about the future compared to the present. We observe the sensitivity regarding a change in ρ in
Figure 3A. Clearly, the government aims at increasing its debt ratio earlier, at a higher debt-issuance
threshold a∗, whenever its subjective discount rate increases. The legislative body reacts to such an
increase by increasing the debt ceiling as well, although we observe Figure 3A that the equilibrium
value b∗ is relatively robust with respect to a change in ρ.

6.3. Sensitivity with respect to debt ratio volatility σ. Increasing volatility increases the
fluctuations of the debt ratio. The government and the legislative body adapt by acting on the debt
ratio later, which is achieved by the government decreasing its optimal debt-issuance threshold and
by the legislative body increasing the debt ceiling. We can observe this in Figure 3B.

6.4. Sensitivity with respect to the interest rate r on government debt. Increasing interest
rates on public debt result in holding debt getting more costly for the government, which in turn
increases the drift of the debt ratio. Clearly, it is optimal for the government to increase its debt at
a later stage, which is achieved by decreasing its debt-issuance threshold, as observed in Figure 3C.
In the equilibrium, the legislative body also decreases the debt ceiling, since countries with a higher
cost of debt are more in danger of defaulting. Contrary, if interest rates decrease, the legislative body
can be more flexible, since it is optimal to increase the debt ceiling. Intuitively, in such a case, the
growth of GDP helps containing the debt ratio without interventions. Furthermore, we note that an
increase in the interest rate r shifts the interval of λ-values, for which the optimal strategy of the
legislative body prescribes to set a finite debt ceiling, to the right. It follows that a legislative body
with a fixed time preference rate could change its optimal strategy from a non-intervention policy to
a debt ceiling mechanism, if the government’s interest rate on debt increases. Notice that an increase
in the country’s GDP growth rate has the contrary effect, thus implying that fast growing economies
could allow a larger deficit without interventions from a legislative body.
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6.5. Sensitivity with respect to the tax compliance factor α. The parameter α denotes the
tax compliance factor, which measures the willingness to pay taxes within a country. This factor can
be chosen freely, hence, the legislative body can account for the fact that some countries have a low
probability of default, even though holding a lot of debt. In Figure 3D we observe the sensitivity
of the equilibrium values a∗ and b∗ with respect to a change in α. Clearly, if the tax compliance
factor increases (which implies decreasing willingness to pay tax), the legislative body faces stronger
social and political pressure to act via the implementation of a debt ceiling mechanism. This has
the consequence that a larger factor α (i) causes the legislative body to act earlier on the debt
ratio (by decreasing the debt ceiling b∗) and (ii) enlarges the interval of time preference values
λ ∈ (r − g, r − g + α/κ) for which the legislative body’s optimal strategy is to impose a debt ceiling
mechanism. The latter implies that, for a fixed time preference λ, a change in the factor α could
incentivise the legislative body to switch from a laissez-faire policy to implementing a debt ceiling.
On the other hand, if the assigned likelihood of the country’s default decreases (in terms of a decrease
in the parameter α), the legislative body is willing to postpone interventions by either implementing
a larger debt ceiling b∗ or even choosing a non-intervention policy.
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