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Abstract

Large-scale infrastructure investments are often carried out in set-
tings where their eventual usefulness or importance is di¢ cult to pre-
dict. This paper studies optimal incentives for investment when the
agent undertaking the investment has superior information on two
dimensions: the cost of investment and the likelihood it is useful or
bene�cial to the principal. Usefulness eventually becomes public, but
punishments are limited as the regulator aims at ensuring the agent
earns non-negative pro�ts in each period. We characterize the opti-
mal incentive scheme and show it involves either: (i) investments by
the agent even though he knows they are useless and rents to only
cost-e¢ cient types, or (ii) rents to all types. The possibility that rent
is left to all types contrasts with the usual prediction in static (and
also dynamic) mechanism design and arises even though the agent�s
preferences are stable over time.
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metric information.
JEL codes: D81, D82, L51.

�This paper has been supported by a research partnership between the French electricity
transmission network RTE and Toulouse School of Economics. We are especially grateful
for discussions with Max Papon at RTE. Our work has also been informed by discussion
with Dzhordzhio Naldzhiev at the UK energy regulator Ofgem. Both authors acknowl-
edge funding from the French National Research Agency (ANR) under the Investments for
the Future (Investissements d�Avenir) program (grant ANR-17-EURE-0010). Garrett has
been supported by funding from the European Research Council (ERC) under the Euro-
pean Union�s Horizon 2020 research and innovation programme (grant agreement number
714147).

yUniversity of Essex. E-mail: d.garrett@essex.ac.uk
zToulouse School of Economics, E-mail: e_panova@yahoo.com

1



Introduction.

A critical issue for the regulation of public utilities is incentive provision for

large investments. Part of the di¢ culty for regulation is that the eventual

usefulness of these investments can be highly uncertain. Moreover, because

the infrastructure provider understands its business better than the regu-

lator, the likelihood that a given investment will be useful can be part of

the private information of the regulated �rm. Designing incentive schemes

for investment in such an environment is potentially challenging because the

�rm�s information is then likely to be multidimensional ; the �rm may have

private information on both costs and the probable bene�t of investment to

the principal.

An important example of this kind of scenario is the regulation of in-

vestments by an electricity transmission network driven by the anticipated

transition to clean energies. For instance, investments in the grid may be

needed if the network anticipates the development of large-scale wind farms,

but such development takes years and its eventual extent is subject to reg-

ulatory uncertainty as well as uncertainty about the eventual energy mix.

This may in turn re�ect factor prices and societal preferences. Further, the

unpredictable evolution of the climate can create uncertainty on both supply

and demand sides. These considerations feed into technological uncertainties

about the nature and capacity of investments that are likely to be needed,

and these uncertainties might in some cases be best understood by the net-

work business.1

Setting. To better understand regulation in the above environment, we
consider a model in which the agent (the network business, �he�) invests on

behalf of the principal (the regulator, �she�) over two periods. At the outset,

1A described by Broer and Zwart (2013, p. 178), similar concerns arise for local elec-
tricity distribution networks, as these �are expected to make signi�cant investments in
their grid capacity, or in smarter grids, if electric vehicles become more wide-spread, or as
larger penetration of distributed generation - necessary to achieve lower carbon electricity
generation - changes local �ow patterns.�
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the agent has private information on two dimensions: the marginal cost of

investment and the probability that investment is useful. Uncertainty about

usefulness is completely resolved in the second period and usefulness then

becomes public information. Investment costs, however, remain private and

unchanged in the second period.

The presence of multidimensional information leads to a potentially com-

plex screening problem. Similar to Armstrong and Rochet (1999), we reduce

this complexity by studying the case where each type comes from a binary

distribution. On one dimension, the agent may have a high or low cost.

On the other, the agent either believes usefulness is possible, with a given

likelihood, or believes that investment is useless for sure. This simpli�cation

serves to highlight a central di¢ culty of economic regulation when invest-

ments are uncertain. An agent who believes a given investment is unlikely to

actually be needed may face incentives to undertake it anyway (akin to the

problem of �gold plating of assets�familiar to network regulators).

The initial investment takes place in period one. At this stage, the use-

fulness of investment is uncertain and the agent privately knows whether or

not the investment is potentially useful. An additional investment may take

place in period two after the usefulness of investment becomes public infor-

mation. The principal uses money and investment quantities to regulate the

agent; in particular, we assume that the agent�s actual investments (but not

its costs) are perfectly observed by the principal.

A key restriction on the available mechanisms is that the principal must

ensure the agent obtains non-negative pro�ts in both periods of the interac-

tion.2 Given that many network businesses recover costs from consumers over

long horizons, however, it is important to point out that it is the requirement

of cost recovery that is essential here, rather than restrictions on timing. In

2As we discuss in Section 2.2, without any restriction on agent pro�ts, the optimal
investment policy turns out to coincide with the one when information about the usefulness
of investment is symmetric. This policy is easier to characterize and follows from analysis
to a large extent already understood in the existing literature.
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particular, our pro�t constraints are shown to be equivalent to the require-

ment that cost recovery is guaranteed ex-post (i.e., after the realization of

all information) in NPV terms over the relevant horizon.

The pro�t constraints we impose are motivated particularly by a possible

regulatory concern for ensuring the agent can obtain �nance. Policies where

�rms may fail to have costs reimbursed seem likely, at the least, to raise

�nancing costs. We take the extreme view that the regulator therefore aims

at ensuring losses do not occur. This focus may be seen as providing a

benchmark against which regulatory policies which do not aim at full cost

recovery in all instances (e.g., that provide for �cost disallowances�or other

penalties) can be compared.

Our restriction on per-period pro�ts is in common with some existing

work that has similar motivations; e.g., Krishna et al. (2013) and Krasikov

and Lamba (2021). We discuss these contributions further in the Related

Literature below.

Findings. Our central result is then that optimal screening mechanism
in the presence of multidimensional private information involves either: (1)

some investments carried out by the agent who knows them to be useless,

or (2) information rents to all types of agents. The possibility that rents

are earned by all agent types contrasts with the usual situation in static

mechanism design where cost-ine¢ cient types earn no rents, and with most

of literature on dynamic mechanism design.

The basic logic underpinning these �ndings is the following. Because at

least some investment in the �rst period is assumed extremely valuable when

investment is potentially useful, some date-1 investment occurs in this case,

and it occurs even if costs are high. Moreover, in this case (cost is high

and investment may genuinely be useful), the agent must be compensated

for his costs. This creates an opportunity for the low-cost agent who knows

investment is useless to claim a high cost and that investment is potentially

useful, earning a rent.
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Given that the low-cost agent who knows investment is useless earns a

rent, the principal has two options. First, if investment is relatively costly

or if information rents are not too burdensome, she can aim at inducing the

agent who knows investment is useless not to produce even when he is more

cost e¢ cient. However, in this case, the high-cost agent who knows invest-

ment is useless has the same production cost (from not investing) as the more

cost-e¢ cient type, and so earns a rent as well. Since we restrict the principal�s

scheme not to penalize the agent when claiming production is useless while

production turns out to be useful, this means that the agent must also be

permitted a rent when he has high costs but knows investment is potentially

useful (lest he mimic the high-cost and certainly useless type). Hence, the

agent with high costs believing that investment is potentially useful earns a

rent, and so then must the more cost-e¢ cient agent who believes investment

is potentially useful. Hence, optimal regulatory design can involve positive

rents for all agent types.

The principal�s other alternative is where the low-cost agent who knows

the project is useless is induced to invest. Since the high-cost and cer-

tainly useless agent �nds such investment more costly, this renders mimicry

unattractive. It is then possible to deprive the high-cost agent of rents

whether or not he believes investment is likely to be useful.

In qualitative terms, our �ndings suggest the severity of the agency prob-

lem that the principal faces in this environment. We conclude that infor-

mation asymmetry on the additional dimension (usefulness of investment on

top of �classic�cost), combined with period and state-speci�c nonnegative

pro�t constraints for the agent, leads to a qualitatively high apparent burden

for the principal. This burden could potentially be reduced, however, by de-

parting from the objective of guaranteeing cost recovery no matter whether

investments turn out to be useful or not.
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Related Literature Our work connects the literature on the option

value of investment under uncertainty (see Dixit and Pindyck, 1994, and

McDonald and Siegel, 1986) with that on the regulation of a monopolist

under adverse selection (see Baron and Myerson, 1982). Other work that

combines these features includes Maeland (1999), Broer and Zwart (2013),

Arve (2016), and Willems and Zwart (2018).3 In these papers, the bene�t

of investment to consumers or to the principal evolves stochastically, but

unlike our paper it is public information. The concern of multidimensional

screening therefore does not arise in these works.4

Perhaps the closest paper in terms of the model is Arve (2016). She

considers a two-period procurement problem with the possibility of addi-

tional investment after uncertainty concerning the bene�t to the principal is

publicly resolved. The agent undertaking the investment has private infor-

mation on his marginal cost. A central result is that the optimal contract

with perfect commitment resolves a rent-e¢ ciency trade-o¤ by setting the

initial investment lower than in the case where no additional investments

can be made following the realization of uncertainty about its bene�t. We

show that the combination of information asymmetries on both costs and

bene�ts can lead to still further investment delays.

Our paper is connected to the literature on dynamic mechanism design

such as Baron and Besanko (1984) and Pavan et al. (2014), where agent

private information evolves stochastically with time.5 A key di¤erence is that

the realization of uncertainty in the second period of our model is public

rather than private to the agent. For this reason, the agent in our model

only has an initial information revelation decision that occurs at date 1. As

3For further references see Arve and Zwart (2023).
4Grenadier and Wang (2005) is another study where there is investment by an agent

and the bene�t to the principal evolves stochastically, but here the agent has private
information about the bene�t. Again, screening is one dimensional in this paper.

5Perhaps most related to our problem, work on dynamic screening includes applications
to non-time separable regulatory investment problems with stochastically evolving types.
An instance is Zwart (2021), where the agent�s private types are investment costs.
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mentioned above, our requirement of non-negative payo¤s in all periods is

essentially the same assumption explored in the dynamic mechanism design

papers of Krishna et al. (2013) and Krasikov and Lamba (2021), where agent

types are private and evolve stochastically. Note that these papers generally

predict positive expected rents for all types of agent both because the agent is

protected from negative payo¤s and because, even if his current cost is high,

it will fall with positive probability at future dates. In contrast, we obtain

the possibility of positive rents for all types even though agent preferences

(in particular, costs) are stable over time.6

Also relevant to our analysis are papers that examine mechanism design

under correlated information. For instance, Crémer and McLean (1985, 1988)

examine full extraction of agent rents in auctions where bidders have corre-

lated types. Riordan and Sappington (1988) examines an analogous question

in a principal-agent environment where, like our paper, there is eventual re-

alization of a public signal that is correlated with the agent�s initial private

information. While �rst-best outcomes can often be sustained in these set-

tings, constraints on payments are known to limit the applicability of these

results. Papers such as Demski et al. (1988) and Demougin and Garvie

(1991) seek to understand the optimal design response to bankruptcy and

limited liability constraints when correlated information is available. Our

paper also contributes to this agenda, although in a setting where the agent

has a multidimensional type, and where the public signal is correlated with

only one dimension of the agent�s information (that concerning the usefulness

of investment to the principal). Hence, in our problem, correlation can be

exploited for extracting information only on this dimension.

Finally, our paper relates to work on multidimensional screening by a mo-

6Some other work in dynamic mechanism design has also identi�ed the possibility of
positive rents to all types due to the fact that an agent�s future preferences are uncertain.
To give an example, Garrett (2017) studies a dynamic mechanism design problem where
the agent arrives over time and can choose when to participate in the mechanism. Again
related to the fact that types will evolve stochastically in the future, even the �worst�type
of agent can expect a positive rent.
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nopolist. Di¤erent to classic contributions such as Wilson (1993), Armstrong

(1996), Rochet and Choné (1998), and most of the literature that follows, our

speci�cation has a �common values� element in that one dimension of the

agent�s type determines the preferences of the principal and not the agent.

Note, however, that Chade et al. (2022) and Gottlieb (2023) are recent con-

tributions that treat multidimensional screening in environments with some

interdependence in values. As mentioned, our analysis is tractable because

we follow the approach of Armstrong and Rochet (1999) in considering a

�2x2�model where there are two dimensions of private information, with

binary distributions for both dimensions.

Roadmap. Section 1 describes the model. Section 2 establishes two

useful benchmarks: the optimal mechanism when information is symmetric,

and the optimal mechanism when the agent has superior information solely

on the cost of investment while information on the usefulness of investment

is symmetric. Section 3 characterizes the optimal mechanism when agent

private information is multidimensional. Section 4 concludes.

1 Basic model.

The agent (�he�) operates a network business on behalf of the principal

(�she�). The agent�s role is to make possible investments in network en-

hancement over the course of two periods. The bene�ts of investment are

potentially experienced over this time, and the parties have a common dis-

count factor � 2 (0; 1). The principal designs a regulatory contract that

aims at maximizing the expected discounted bene�ts of investment net of

payments to the agent. Both principal and agent are assumed to be able to

fully commit to this contract.

The investment technology is described as follows.
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Investment technology. Investment in network enhancement is pos-

sible in two successive time periods indexed with t = 1; 2. Investment in

period t is denoted by qt. The agent incurs only variable investment costs,

with a constant marginal cost c that is the same in both periods.

The initial (irreversible) investment at the beginning of the �rst period

delivers gross return �S(q1) at the end of the period, where S(�) is strictly
increasing concave function such that S(0) = 0, S is bounded above and

hence lim
q!1

S 0(q) = 0, and lim
q#0
S 0(q) = 1 (Inada conditions). Parameter �

captures the usefulness or need for the investment and is uncertain when the

initial investment takes place (we provide details below). In particular, it

can either be that the investment is not at all bene�cial, � = 0, or it has

a positive bene�t to the principal, A > 0. The possibility that investment

is not at all bene�cial (rather than merely providing small bene�ts) is a

convenient simpli�cation.

While the value of � is uncertain in the initial period, its value is realized

by the second period, at which point it is commonly observed by the par-

ties and directly contractible. In the second period, the agent can make an

additional investment q2 (on top of the initial investment q1 which does not

depreciate). The gross bene�t to the principal realized at the end of period

2 is equal to �S(q1 + q2).

A couple of remarks are worth making regarding these assumptions. First,

note that the Inada condition as investment approaches zero implies that the

principal has a strong incentive to induce at least some investment, including

in the �rst period, in case � = A with positive probability. This means

that shutting down when investment is expected to be useful with positive

probability will not be part of the principal�s optimal policy. This assumption

is therefore convenient as it reduces the number of cases.

A second remark is that we assume �rst-period investment creates a ben-

e�t to the principal at date 1, even before the usefulness of investment be-

comes common knowledge. Our interpretation is that it is important for the
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principal to have network investments installed at date 1 to avoid delays if

investment turns out to be useful. The actual bene�ts to the principal might

properly be understood as occurring over some time between date 1 and date

2 (when the need for the investment might be known, but before the players

interact for a second time at date 2).

Information. It is commonly known that the marginal cost of invest-

ment c may take either relatively low value c > 0 or relatively high value c

> c:

c =

�
c with probability �,
c with probability 1� �.

The agent privately knows the realization of c. Parameter �c = c � c is a
measure of the principal�s uncertainty about the marginal cost.

Note that our view that the agent has private information on costs is

in line with that taken by Baron and Myerson (1982). We believe that our

model remains relevant even when the regulator is able to monitor accounting

costs ex post. This is because some components of the relevant economic

costs, such as the costs of managerial e¤ort to undertake an investment, or

opportunity costs of other foregone investments in the network, may never

be fully understood by the regulator.

The agent also has superior information regarding the distribution of

parameter �. Indeed, the agent knows at date 1 that � will turn out to equal

A with a probability p. We therefore have:

� =

�
A with probability p,
0 with probability 1� p.

We allow that p can take two possible values: either a strictly positive

value h or a value zero (in which case the investment is certainly useless). It

is commonly known at the outset that p takes the strictly positive value with

a probability r, and also that p is distributed independently of the marginal
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cost c. Thus, we have

p =

�
h with probability r;
0 with probability 1� r.

We assume that the probability h is not too high, and in particular,

h (1 + �) < 1. (1)

Inequality (1) is equivalent to assuming that the option value of delaying

investment is positive, so we avoid corner solutions where the only investment

takes place at date 1.

We denote the agent�s two dimensional type with � = (c; p) and we name

its four possible realizations as follows: �good�g = (c; h); �expensive�e =

(c; h); �useless but cheap�u = (c; 0); and �bad�b = (c; 0). The set of possible

types is denoted with � = fg; u; e; bg. Good and expensive types are termed
�potentially useful�while the other two types are referred to as �certainly

useless�. Good and useless but cheap types are termed �cost e¢ cient�, while

expensive and bad types are termed �cost ine¢ cient�.

We use notation � (�) for the probability of the agent�s type being �. By

the above distributional assumptions,

� (g) = �r, � (e) = (1� �) r, � (u) = � (1� r) , � (b) = (1� �) (1� r) .

Regulation subject to �nancing constraints. Investments and the

second-period realization of � are publicly observable and veri�able. Without

loss of generality (Dasgupta, Hammond and Maskin, 1979; Myerson, 1981),

the principal commits to a direct mechanism:

(q1(m); T1(m); q2(m;A); T2(m;A); q2(m; 0); T2(m; 0)),

where m = (ec; ep) is the agent�s report of type �, qt is investment required at
date t, and Tt is the agent�s compensation received at date t.
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We assume that a regulatory objective is to ensure the agent receives

non-negative pro�ts in both periods for both realizations of �. Formally, we

require that, for all � 2 �, and all � 2 f0; Ag,

T1(�)� cq1(�) > 0 and T2(�; �)� cq2(�; �) > 0. (2)

Note that constraints (2) are required to be met only when the agent

truthfully reports costs. The idea is that the regulatory objectives need to

be met only in equilibrium, and are thus not required to hold when the

agent deviates by misrepresenting costs. Implicit in the above, however, we

assume that part of the regulatory objective is to ensure the satisfaction of

�nancing constraints even if the agent turns out to be �wrong� about the

usefulness of regulation, and hence impose the constraints also when the

agent claims the investment to be certainly useless while it turn out at date

2 to be useful. This avoids a discontinuity in the constraints of the regulatory

problem if we instead consider an environment where the agent, in place of

being certain that investment is useless, merely believes it is useless with

very high probability. We address these nearby environments in Section 3.1

and show that our characterization of optimal mechanisms (in Proposition 3

below) continues to hold approximately.

As mentioned in the Introduction, it is worth pointing out that the es-

sential requirement expressed in the equation set (2) is not the timing of

payments but that the agent obtains a guarantee of eventual cost reimburse-

ment. In particular, our two-period model is equivalent to one where we

replace the pro�t constraints of equation set (2) with the following require-

ment. For all � 2 �, and all � 2 f0; Ag,

T1(�)� cq1(�) + �(T2(�; �)� cq2(�; �)) > 0. (3)

The inequality (3) clearly follows if the inequalities in equation set (2) hold.

Conversely, if the inequality (3) holds, keeping investments unchanged, we

can consider adjusted transfers �T1 and �T2 that satisfy the inequalities in (2) as
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follows. For all �, �T1(�) = cq1(�) (so that non-negative pro�ts are guaranteed

at date 1). Also, for all � and �,

�T2(�; �) = T2(�; �) +
1
�
(T1(�)� cq1(�)).

Date-2 pro�ts are then, for all � and �,

�T2(�; �)� cq2(�; �) = T2(�; �)� cq2(�; �) + 1
�
(T1(�)� cq1(�))

which is non-negative by the inequality (3). The NPV of payments to the

agent are unchanged across all types � and both realizations of �, and hence

agent incentives are una¤ected. The constraint in the inequality (3) can be

understood as a requirement that the NPV of agent pro�ts are non-negative

ex post.

A possible rationale for a regulatory objective that adheres to �nancial

constraints is that subjecting �rms to the risk of losses in any period may

increase �nancing costs (not only would �rms face increased risk, but they

would need to ensure su¢ cient reserves to weather any losses imposed by

the regulatory scheme). While we expect there is a trade-o¤ in practice, we

simplify in this paper by taking the extreme view that the regulatory scheme

should be designed to avoid any losses ex post. Our results might then be

seen as a benchmark against which improvements in regulatory performance

due to introducing some penalties can be measured. (Such penalties might

include, for instance, �cost disallowances�when investments turn out not to

be useful.)

One reason for our choice of focus is also that, without any such pro�t

constraints, the fact that the agent is initially privately informed about use-

fulness would not a¤ect regulatory performance (private information about

usefulness would not play a role in determining the optimal investments, and

the analysis would be fairly easily anticipated in light of the existing litera-

ture). As we discuss further in Section 2.2, this is because the agent could

e¤ectively be asked to �bet�at date 1 on the observed future state and then
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subjected to rewards or (unrestricted) penalties to incentivize revelation of

the relevant information on usefulness. Our analysis is therefore pertinent

to understanding optimal regulation when such �bets�, and in particular the

corresponding penalties, are restricted.

Payo¤s. With the description of the mechanism in place, it may now be

useful to summarize the intertemporal payo¤s of the players. The principal�s

payo¤ in the direct mechanism under truthful reporting, given � and �, is

� (S(q1(�)) + �S(q1(�) + q2(�; �)))� (T1(�) + �T2(�; �)) .

The agent�s payo¤, given � and �, is

T1(�)� cq1(�) + � (T2(�; �)� cq2(�; �)) .

2 Helpful benchmarks.

In this section, we consider two benchmarks that will be useful for under-

standing the solution to the problem of interest.

2.1 Complete information benchmark.

The �rst benchmark is the situation in which the principal knows �. We

refer to this solution as ��rst best�(and denote the �rst-best policy by su-

perscript �FB�). In this case, the principal �nds it optimal to choose invest-

ments e¢ ciently, compensating their cost to the agent. Given �, the optimal

investment pattern (qFB1 (�), qFB2 (�; A) ; qFB2 (�; 0)) maximizes the expected

net return

W (�) = pAS (q1 (�))� cq1 (�) + �pAS (q1 (�) + q2 (�; A))
��c (pq2 (�; A) + (1� p) q2 (�; 0)) .

(4)

Payments are set according to:

T FB1 (�) = cqFB1 (�) , T FB2 (�; �) = cqFB2 (�; �) . (5)
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We then have the following result.

Proposition 1. If the investment is potentially useful, that is p = h, then
the �rst-best investments are:

qFB1 (�) = F
�
c
A
1��h
h

�
, qFB2 (�; A) = F

�
c
A

�
� F

�
c
A
1��h
h

�
, qFB2 (�; 0) = 0,

(6)

where F = (S 0)�1. Otherwise, i.e. if p = 0,

qFB1 (�) = qFB2 (�; 0) = 0 (7)

and the choice of q2 (�; A) is irrelevant.

The formal proof of Proposition 1 is in Appendix A. Note that the e¢ cient

initial investment by useful types solves a trade-o¤ between a higher initial

investment, hence a higher return in period 1 in case of positive realization of

�, and an option of waiting in order to learn the realization of �. The higher

probability h, the higher the expected return from the initial investment

and the less valuable is the option �wait-and-see�. The inequality (1) is a

necessary and su¢ cient condition for this option to be valuable (see Appendix

A).

2.2 Benchmark: no asymmetry on usefulness.

Suppose now that the anticipated likelihood of usefulness p is commonly

observed and is contractible, while the marginal cost of investment c is the

agent�s private information. The principal�s information is thus worse than

in the ��rst-best� case discussed in Section 2.1, but it is better than in

the model of interest. This situation is familiar from the literature cited

in the Introduction, and the analysis is similar to many other settings with

information asymmetry on a single dimension (for a treatment of such models,

see La¤ont and Martimort, 2002).

We now �nd it useful to introduce notation that we use throughout the

rest of the paper (including in Section 3 where the value of p is the agent�s
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private information). For any true type � and message m,

U1 (�;m) = T1 (m)� cq1 (m) , U2 (�;m;A) = T2 (�;m;A)� cq2 (�;m;A) ,

and U2 (�;m; 0) = T2 (�;m; 0)� cq2 (�;m; 0) .

These correspond to the agent�s rents in each period. We will �nd it useful

to view these rents as control variables in solving the principal�s problem,

rather than maximizing with respect to transfers.

As further notation, we write

U (�;m) = U1 (�;m) + � [pU2 (�;m;A) + (1� p)U2 (�;m; 0)]

for the expected rents by the agent of type � sending message m.

In addition, in a more or less standard abuse, we introduce notation for

period and state speci�c rents earned in equilibrium. We write:

U (�) = U (�; �) and U1 (�) = U1 (�; �)

for the expected lifetime and period 1 rents earned by the agent revealing his

type truthfully. Then,

P (�) = U2 (�; �; A)

denotes the agent�s �delayed�rents when he truthfully reveals his type and

the investment turns out to be useful. On the other hand,

B (�) = U2 (�; �; 0)

denotes the agent�s �delayed�rent when the agent truthfully reveals his type

and the investment turns out not to be useful.

By the revelation principle, we search for an optimal screening mecha-

nism among direct mechanisms incentivizing the agent to truthfully report

his marginal cost of investment c. Formally, given the commonly known

likelihood that investment is useful p, the principal�s problem is

max
fq1(�);q2(�;�);U(�);P (�);B(�)g�2f(c;p);(c;p)g;�2f0;Ag

X
�2f(c;p);(c;p)g

� (�) [W (�)� U (�)]
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subject to two incentive compatibility constraints

U (�) > U (�;m) for �;m in the set f(c; p) ; (c; p)g ,

and six nonnegative pro�t constraints. These pro�t constraints require that,

for each � in the set f(c; p) ; (c; p)g,

U (�)� � [pP (�) + (1� p)B (�)] > 0,

P (�) > 0, and B (�) > 0.

We will mark the solution to the above problem with �hat�b�. It is trivial
if the investment is de�nitely useless, that is, p = 0. Indeed, the e¢ cient no-

investment pattern (7) creates no incentive issues, and is therefore optimal.

Suppose that the investment is potentially useful, that is, p = h. The

analysis of the principal�s optimal mechanism is by now relatively standard

in the literature. In order to provide the agent of good type g with incentives

for revealing cost e¢ ciency, the principal must pay him rents at least

U (g) = �c (bq1 (e) + �hbq2 (e; A)) . (8)

Because these rents are increasing in the expected investment by the agent

of expensive type e, the principal distorts this investment downwards as

compared to real-option value benchmark in Proposition 1. This re�ects the

classic rents-e¢ ciency trade-o¤. Speci�cally, the investment pattern by the

agent of type e is the following:

bq1 (e) = F � bcA 1��hh �
where bc = c+�c �

1�� , (9)

bq2 (e; A) = F � bcA�� F � bcA 1��hh �
, and bq2 (e; 0) = 0. (10)

Note that inequality (1) is necessary and su¢ cient for the additional invest-

ment to be positive, as in the �rst best case (see Appendix B). Also, note

that the good type g invests e¢ ciently, which is the classic �no distortions

at the top�result. The main insights are summarized as follows.
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Proposition 2. Suppose that the principal knows pro�tability of investment
p, while its marginal cost c is the agent�s private information. Then, the op-

timal screening mechanism is the following.

(i) The agent of either type for which investment is certainly useless does not

invest and is not paid.

(ii) Investments by the agent of the good type are e¢ cient. He receives ex-

pected information rents given in Equation (8).

(iii) Investments by the agent of expensive type are speci�ed by Equation

(9) and by the set of equations (10). The initial investment, and the total

investment in case investment turns out to be useful at date 2, are down-

ward distorted relative to �rst-best levels. These investments are reimbursed

without any excess in either period (no rents).

Hence, when the agent has superior information solely on cost, the prin-

cipal has to provide rents only to the �good�(cost-e¢ cient and potentially

useful) type g. In order to decrease these rents, she optimally distorts the

investments of the �expensive�(cost-ine¢ cient and potentially useful) type

e downwards as compared to the real-option value benchmark in Proposition

1, as described in Proposition 2. This �nding aligns with earlier literature

on regulation of investment under uncertainty in the presence of asymmetric

information on cost.

We conclude this section with two remarks regarding the role of partici-

pation constraints. First, we note that the principal�s payo¤ and the optimal

investment plan would be the same as in Proposition 2 if, instead of non-

negative pro�ts at either date and in either state (as in our setting), the

agent needed to be guaranteed non-negative pro�ts only in expected terms

from the perspective of date 1. That is, our results would not change if we

imposed only a participation constraint at date 1, which has been the most

common approach in the literature on dynamic mechanism design.7

Second, and related to our discussion of �nancing constraints in Section

7The proof (available upon request) is similar to that of Proposition 2.
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1, we note that if non-negative pro�t constraints were replaced by the more

common date-1 participation constraint, then information asymmetries relat-

ing to the likelihood investment is useful would not constrain the principal�s

performance in the regulatory contract. In particular, the principal�s equi-

librium payo¤, and the equilibrium investments, would be the same as for

the regulatory contract characterized in Proposition 2. The reason is that

we could augment the mechanism in Proposition 2 with �bets�on the state

such that the agent breaks even on the bet if taking the option coinciding

to a truthful report of p and makes su¢ ciently large expected losses other-

wise (this is a standard argument and similar, for instance, to Riordan and

Sappington, 1988).

3 The optimal screening mechanism.

Now, consider our model in which both parameters c and p are the agent�s

private information (and where we impose the �nancing constraints intro-

duced in Section 1). The optimal screening mechanism solves

max
fq1(�);q2(�;�);U(�);P (�);B(�)g�2�;�2f0;Ag

X
�2�

� (�) [W (�)� U (�)] (11)

subject to twelve incentive compatibility constraints and twelve non-negative

pro�t constraints. The incentive compatibility constraints require that any

type � 2 � has no incentive to lie:

U (�) > U (�;m) for any � 2 � and any m 2 �n f�g : (12)

The non-negative pro�t constraints require that any type � receives non-

negative pro�t in period 1 and also in period 2 for either realization of �

when he truthfully reports his type. That is, for any � 2 �,

P (�) ; B (�) > 0, and

U (�)� � [pP (�) + (1� p)B (�)] > 0.
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We call the mechanism solving the above problem the �second best� and

mark it with an upper index SB.

Because the jointly observed realization of � is an informative signal on p,

the principal maximally relaxes the incentive constraints (12) by allocating

rents conditionally on this signal (see Appendix C). Rents to the agent of

either potentially useful type (if any) are paid in the form of pro�ts in period

2 conditional on � taking positive value A. This means that

U1 (�) = B (�) = 0 and U (�) = �hP (�) for either � 2 fg; eg . (13)

On the other hand, rents to the agent of either certainly useless type (if any)

are paid in the form of pro�ts at date 2 conditional on � taking value zero:

U1 (�) = P (�) = 0 and U (�) = �B (�) for either � 2 fu; bg . (14)

There is no loss in considering agent rents that are paid with the tim-

ing described above, and so we focus on this timing throughout the char-

acterization of the second-best mechanism. We determine this second-best

mechanism in Appendix D. This turns out to be generically unique up to the

timing of investment in case the agent is certain that investment is useless.

To anticipate our characterization of the second-best mechanism, note

that if the principal uses the mechanism in Proposition 2, the agent of useless

but cheap type u gains rents�cbq1 (e) by pretending that his type is expensive.
This observation suggests that, in the second-best problem, ignoring other

incentive constraints, the useless but cheap type could be incentivized to

reveal his type and not to produce if paid a rent

BSB (u) = �c
�
qSB1 (e) (15)

at date 2 when � = 0. This bonus, however, would attract the agent of the

bad type. If the useless but cheap type u does not produce, then the bad

type can access precisely the same rents e¤ectively because this type is not

at a cost disadvantage when not producing anything.
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This discussion suggests, and we will show, that there are two kinds of

optimal responses from the principal. One is to accept that the bad type will

indeed earn a rent while not investing. In this case, note that because the

expensive type e can mimic the bad type, also type e will earn a rent. We will

then observe that all types of the agent expect a rent from the perspective

of date 1. In many environments (especially static, but also most dynamic

mechanism design environments) the possibility of rents for all types does

not survive a simple uniform reduction in transfers to the agent for all types,

which would increase the principal�s payo¤. Here, however, at the optimal

mechanism to be characterized below, it is not possible to reduce payments

to the agent uniformly (i.e., independently of type) at date 1 because of the

non-negative pro�t constraints for this period. Similarly, a uniform reduction

in payments at date 2 (independent of both type and realization of �) is not

possible due to non-negative pro�t constraints for this period.

The principal�s second possible response is to induce the useless but cheap

type u to invest a positive amount. This works to reduce the rents that must

be granted to the bad type b, as this type faces higher costs from the same

level of investment. When such a policy is optimal, we are able to show that

the principal pursues this logic to the point where the bad type earns no

rents. Similarly, then, the expensive type e will earn no rents.

Now, let us describe the principal�s optimal policy in more detail, starting

with the case where the cost-ine¢ cient types are deprived of any rent. Here,

we will �nd that the useless but cheap type�s total discounted investment is

the same as the expensive type�s investment at date 1 (this is su¢ cient to

deprive the bad type b of any rent). That is, we have

qSB (u) = qSB1 (e) , where (16)

qSB (u) = qSB1 (u) + �qSB2 (u; 0) .

Only cost-e¢ cient types receive rents, and these are described by the set of
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equations (13) and (14), as well as Equation (15) together with

P SB(g) = �c
�h

�
qSB1 (e) + �hqSB2 (e; A)

�
. (17)

The corresponding downward distortion of investments is described by the

following equations:

qSB1 (e) = F
� bc
A
1��h
h
+ c

hA
�(1�r)
(1��)r

�
, qSB2 (e; A) = F

� bc
A

�
� qSB1 (e). (18)

Note that this implies total investment by type e in case investment proves

useful, qSB1 (e)+qSB2 (e; A), is the same as for the optimal mechanism of Section

2.2 where there was no asymmetric information about usefulness. However,

the initial investment qSB1 (e) ismore distorted, which implies that investment

by type e is more delayed.

The alternative policy, termed hereafter �rents to all�, involves no pro-

duction by certainly useless types. It then involves paying the same delayed

bonus to the agent with a bad type as to the agent with a useless but cheap

type:

BSB (b) = �c
�
qSB1 (e) : (19)

This calls for upgrading delayed pro�ts by potentially useful types corre-

spondingly:

P SB (e) = 1�h
h
BSB (b) = (1� h) �c

�h
qSB1 (e) , and (20)

P SB(g) = P SB(e) + �c
�h

�
qSB1 (e) + �hqSB2 (e; A)

�
: (21)

In order to decrease agent pro�ts, the principal again distorts investments

by the expensive type e, as this type�s investments satisfy

qSB1 (e) = F
� bc
A
1��h
h
+ �c

hA
1�hr
(1��)r

�
and qSB2 (e; A) = F

� bc
A

�
� qSB1 (e) . (22)

Again, note that the sum of type e�s investments in case investment proves

useful, qSB1 (e) + qSB2 (e; A), turns out to be the same as in the benchmark

where there is no asymmetric information on the usefulness of investments.
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Relative to that benchmark, the initial investment qSB1 (e) is more distorted,

i.e. investments are again more delayed as a result of the additional infor-

mation asymmetry.

Of these two approaches, the former (production by the useless but cheap

type to avoid rents to cost-ine¢ cient types) is optimal if and only if the

expected cost of useless investments by the agent of the useless but cheap

type is weakly below the expected cost of in�ated information rents from non-

investment (which is increasing in the spread of the principal�s uncertainty

on the cost of investment �c). In particular, the condition is

� (1� r) c 6 �c (r (1� h) + (1� r) (1� �)) . (23)

We can summarize the key observations as follows.

Proposition 3 (second best). A second-best mechanism can be described

as follows. The investments by the agent of both good and bad types are

e¢ cient: for � 2 fg; bg and � 2 f0; Ag,

qSB1 (�) = qFB1 (�) and qSB2 (�; �) = qFB2 (�; �).

(i) If inequality (23) holds, the investments by the agent of the useless but

cheap type are distorted upwards in any way allowed by Equation (16), while

the investments by the agent of the expensive type are distorted downwards

and delayed as described by set of equations (18). Only cost-e¢ cient types

receive information rents, and these rents are described by sets of equations

(13) and (14) and equations (15) and (17).

(ii) If the inequality in Equation (23) is reversed, the agent of useless but

cheap type does not invest (which is e¢ cient), while the investments by the

agent of expensive type are distorted downwards and delayed as described by

set of equations (22). All types receive information rents, speci�ed by sets

of equations (13) and (14), by Equation (15), and by the equations (19) to

(21).

As discussed above, the result provides a qualitative sense in which op-

timal regulation has undesirable features, suggesting the high cost to the
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principal of information asymmetries. Either there is production by an agent

who knows investment is useless to the principal (Case (i) in the proposition)

or all agents can expect a positive rent at the time they agree to the contract

(date 1).

It is worth reiterating the reason why the agent can (from the perspective

of date 1) expect positive rents for all types in Case (ii) of the Proposition.

We have shown (see the discussion above as well as Appendix C) that it

is optimal to maximally separate the potentially useful from the certainly

useless types by backloading the payment of all rents to date 2, and then

paying rents to the potentially useful types when investment turns out to

be useful and to the certainly useless types when it turns out to indeed be

useless. This implies that zero rents are paid at date 1 and also at date 2

for some realization of �. It is therefore not possible to uniformly reduce the

agent�s rents either at date 1 or at date 2 without violating the non-negative

pro�t constraints. This o¤ers a partial reason why positive expected rents

for all types can survive in our environment, while it is not a prediction of

most other mechanism design settings.

3.1 Continuity: almost certainly useless types.

As mentioned, our focus on the case where the agent may know at the outset

that investment is certainly useless is a simpli�cation, but anticipates some

continuity of the optimal mechanism if we instead consider agents who view

the probability of usefulness as being positive but small. We now suppose

that p can take two values: either h as originally considered (the highest

probability with which investment is useful), or l, which is a low probability

that will be taken to zero. All other aspects of the design problem are

unchanged and held �xed as we vary l. Now, types u and b anticipate at

date 1 that the probability that � = A is l rather than zero.

Wemake an additional assumption that per-period investments are bounded

above by some �q which is large enough to accommodate any of the invest-

24



ments made under the second-best policy of Proposition 3. This bound will

ensure that the second-best investment does not explode for type u when

� = A is realized, which occurs with a vanishingly small probability as l! 0.

The same argument as appears in Appendix C can be applied to the

new incentive contraints when 0 < l < h to obtain the same conclusion as

presented in equation sets (13) and (14). That is, it is optimal for all rents to

be delivered in the second period as follows. Types who believe investment

is useful with probability h only receive rents when the investment is useful

(� = A): P (g) for the good type and P (e) for the expensive type. Types

who believe investment is useful with probability l only receive rents when

investment is useless (� = 0): B(u) for the useless but cheap type and B(b)

for the bad type. This timing for the payment of rents relaxes all incentive

constraints and we restrict attention to such policies.

We now view a policy M(l) as a collection of investment decisions

fq1(�); q2(�; 0); q2(�; A)g�2� together with the rents B(u), B(b), P (g), and
P (e). Applying the Theorem of the Maximum, we �nd the following result

(proved in Appendix E).

Proposition 4 (second best with almost certainly useless types).
Consider the principal�s mechanism design problem parameterized by the

probability l attached to � = A by types u and b. The set of solutions MSB(l)

is locally non-empty and upper hemi-continuous at l = 0.

Upper hemi-continuity has the implication that, considering any solu-

tions to the second-best problem with the probability of usefulness l > 0,

investments and rents become arbitrarily close to those described in Propo-

sition 3 as we take l to zero. In other words, our characterization also holds

approximately if types u and b are merely �close to certain� that they are

useless.
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4 Conclusions.

We have described the optimal regulation of investments under uncertainty

when the agent holds superior information on both the cost of investment

and the likelihood it is useful to the principal. We focused on the case where,

out of concern for the �rm�s ability to �nance the investments, the regulation

aims at ensuring non-negative pro�ts in any period.

Our main result was that, contrary to the case where information on

usefulness is symmetric, optimal regulation involves either investment by the

agent when he is certain it is useless, or positive expected rents to the agent

for all types. In the second case we mean that, from the perspective of the

time the agent agrees to the regulatory contract at date 1, the agent always

expects to earn positive rents from the relationship. While such a possibility

has been obtained elsewhere in the dynamic mechanism design literature (see

the Related Literature), we establish this result in an environment where the

agent�s preferences are stable over time (as investment costs are constant

across time).

Our �ndings are arguably pessimistic about the nature of optimal reg-

ulation, as they are suggestive of a high burden of asymmetric information

on the principal. We nonetheless see our results as a possible benchmark

against which regulatory policy might aim to improve. For instance, they

suggest the advantage of allowing that network businesses recuperate expen-

ditures only gradually over time, and determining that some costs are then

�disallowed�and hence not reimbursed in case investment turns out not to

be useful. Alternatively, the regulator may seek to reduce the extent of in-

formation asymmetries concerning the necessity of investments by requiring

the submission of detailed investment plans and understanding the parame-

ters of the network themselves (many regulators such as CRE in France and

Ofgem in the UK require network businesses to provide detailed plans). A

third possibility is that the regulator could provide payments only su¢ cient
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to cover low-cost investments, thus depriving �rms of rent but possibly fore-

going some bene�cial investments that have higher costs. Such a policy was

never optimal for the regulator in our model due to the Inada conditions (i.e.,

because we assumed that small amounts of investment were highly bene�-

cial). The role of these kinds of regulatory policies, as well as their practical

implementation, remain possible areas for future research.
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A. Proof of Proposition 1.

Step 1. It is easy to see that no investment is optimal when p = 0 in either

period, and that no investment is optimal at date 2 in case � = 0. When
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p = h and yet � = A, the amount of investment is irrelevant (as this event

has probability zero).

Step 2. The only case that needs attention is then where p = h. Here we are

maximizing the expression in Equation (4) by choice of q1(�) and q2(�; A).

Note that, by the Inada conditions, we may assume that these investments are

bounded above and that q1(�) is bounded away from zero. The objective is

continuous and strictly concave, and so a unique solution to the maximization

problem exists.

Necessary conditions for optimality are then:�
hAS 0 (q1 (�)) + �hAS

0 (q1 (�) + q2 (�; A)) = c; and
AS 0 (q1 (�) + q2 (�; A)) � c,

(24)

where the inequality is an equality in case q2 (�; A) > 0.

By Equation (1), in case q2 (�; A) = 0, we have that if the �rst statement

in Equation (24) holds, then the second statement (i.e., the weak inequality)

is violated. Therefore, we must have q2 (�; A) > 0 and both the equations in

(24) hold as equalities.

Plugging the expression for AS 0 (q1 (�) + q2 (�; A)) from the latter equa-

tion of system (24) into its former equation, we �nd

hAS 0 (q1 (�)) = c (1� �h) ,

which is equivalent to the �rst equation in set (6). Combining the �rst

equation in set (6) with the second equation in system (24), we �nd the

second equation in set (6).

B. Proof of Proposition 2.

Step 1. The case where p = 0 is immediate and omitted.

Step 2. Suppose that p = h. Consider the principal�s problem in more detail:

max
fq1(�);q2(�;�);U(�);P (�);B(�)g�2fe;gg;�2f0;Ag

X
�2fe;gg

� (�) [W (�)� U (�)]
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subject to two incentive compatibility constraints

U (g) > U (e) + �c (q1(e) + �hq2(e; A) + (1� h) q2(e; 0)) , (25)

U (e) > U (g)��c (q1(g) + �hq2(g; A) + (1� h) q2(g; 0)) , (26)

and six nonnegative pro�t constraints

U (g)� � [hP (g) + (1� h)B (g)] > 0, (27)

U (e)� � [hP (e) + (1� h)B (e)] > 0, (28)

P (g) > 0, B (g) > 0, (29)

P (e) > 0, B (e) > 0. (30)

Step 3. Let us solve the above problem under constraints (25), (28) and (30),

ignoring the other constraints (�the relaxed problem�).

Step 3.1. Given that rents are costly for the principal, the constraints of the

relaxed problem are binding:

P (e) = B (e) = U (e) = 0,

U (g) = U (e) + �c (q1(e) + �hq2(e; A) + (1� h) q2(e; 0)) . (31)

Step 3.2. Notice that setting q2(e; 0) = 0 is e¢ cient and it relaxes the in-

centive compatibility constraint (31). Furthermore, in the relaxed problem

q2(g; 0) = 0 because it is e¢ cient (we ignore for the moment constraint (26)).

Step 3.3. By Steps 3.1 and 3.2, the relaxed problem is equivalent to

max
fq1(�);q2(�;A)g�2fe;gg

� [W (g)��c (q1(e) + �hq2(e; A))] + (1� �)W (e).

The analysis of this relaxed optimization program is analogous to the

�rst-best problem considered in Proposition 1, but with a modi�ed marginal

cost for the �expensive� type (the �virtual marginal cost� in place of the
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true marginal cost). The same reasoning as for Proposition 1 therefore al-

lows us to conclude that q1(g); q1(e); q2(g; A); q2(e; A) > 0, and investments

are as speci�ed in Proposition 2. We refer to these investments now asbq1(g); bq1(e); bq2(g; A); and bq2(e; A).
Step 4. By set of nonnegative pro�t constraints (28) and (30), the agent of

type e is reimbursed for investment in each period:bT1 (e) = cbq1 (e) , bT2 (e; A) = cbq2 (e; A) , bT2 (e; 0) = 0.
Step 5. Now recall the original problem. There are many ways to ensure that

the non-negative pro�t constraints (27) and (29) are met through a judicious

choice of payments to the good type g. For instance, it will be enough that

P (g) = B(g) = 0 so that the good type earns no rents at date 2. This means

specifying bT2 (g; A) = cbq2 (g; A) , and bT2 (g; 0) = 0.
We can then ensure that type g receives the necessary rents at date 1 by

specifying bT1 (g) = cbq1 (g) + �c (bq1(e) + �hbq2(e; A)) .
Step 6. It remains to verify that the solution of the relaxed problem satis�es

the ignored incentive compatibility constraint (26).

This constraint is satis�ed provided that the payo¤ of type e when mim-

icking type g, as given by

�c(bq1(e) + �hbq2(e; A))��c(bq1(g) + �hbq2(g; A); (32)

is non-positive. This holds, however, because bq1(g) > bq1(e) and bq1(g) +bq2(g; A) > bq1(e) + bq2(e; A), so that
(1� �h)bq1(g) + �h(bq1(g) + bq2(g; A)) > (1� �h)bq1(e) + �h(bq1(e) + bq2(e; A))
which establishes that the expression in Equation (32) is negative. This

completes the proof.
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C. An optimal timing for the payment of rents.

This appendix concerns an optimal speci�cation for the timing of rents to

the agent in the second-best mechanism of Section 3. Consider the set of

incentive compatibility constraints (12) under the direct mechanism:

U (g) > U (e) + �c (q1 (e) + �hq2 (e; A) + � (1� h) q2 (e; 0)) ,

U (g) > U (b) + �c (q1 (b) + �hq2 (b; A) + � (1� h) q2 (b; 0))
+�h (P (b)�B (b)) , (33)

U (g) > U (u) + �h (P (u)�B (u)) , (34)

U (u) > U (b) + �c (q1 (b) + �q2 (b; 0)) , (35)

U (u) > U (e) + �c (q1 (e) + �q2 (e; 0)) + �h (B (e)� P (e)) , (36)

U (u) > U (g) + �h (B (g)� P (g)) , (37)

U (e) > U (u)��c (q1 (u) + �hq2 (u;A) + � (1� h) q2 (u; 0))
+�h (P (u)�B (u)) , (38)

U (e) > U (g)��c (q1 (g) + �hq2 (g; A) + � (1� h) q2 (g; 0)) , (39)

U (e) > U (b) + �h (P (b)�B (b)) , (40)

U (b) > U (e) + �h (B (e)� P (e)) , (41)

U (b) > U (u)��c (q1 (u) + �q2 (u; 0)) , (42)

U (b) > U (g)��c (q1 (g) + �q2 (g; 0)) + �h (B (g)� P (g)) . (43)

When the principal distributes the rents as explained in Equations (13) and

(14), the incentive constraints (33), (34), (36) to (38), (40), (41), and (43),

are maximally relaxed, while the remaining constraints are not a¤ected.
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D. Proof of Proposition 3.

Step 1 speci�es the set of incentive constraints (12) under our assumption on

the timing of rents paid to the agent:

P (g) > P (e) + �c
�h
(q1 (e) + �hq2 (e; A) + � (1� h) q2 (e; 0)) , (44)

P (g) > 1�h
h
B (b) + �c

�h
(q1 (b) + �hq2 (b; A) + � (1� h) q2 (b; 0)) , (45)

P (g) > 1�h
h
B (u) , (46)

B (u) > B (b) + �c
�
(q1 (b) + �q2 (b; 0)) , (47)

B (u) > �c
�
(q1 (e) + �q2 (e; 0)) , (48)

B (u) > 0, (49)

P (e) > 1�h
h
B (u)� �c

�h
(q1 (u) + �hq2 (u;A) + � (1� h) q2 (u; 0)) , (50)

P (e) > P (g)� �c
�h
(q1 (g) + �hq2 (g; A) + � (1� h) q2 (g; 0)) , (51)

P (e) > 1�h
h
B (b) , (52)

B (b) > 0, (53)

B (b) > B (u)� �c
�
(q1 (u) + �q2 (u; 0)) , (54)

B (b) > ��c
�
(q1 (g) + �q2 (g; 0)) . (55)

Step 2 asks which incentive constraints are potentially relevant.

Step 2.1. Inequalities (49), (53) and (55) follow from nonnegative pro�t con-

straints. Hence, the set of relevant incentive constrains belongs to (44) to

(48), (50) to (52), and (54).

Step 2.2. By Step 2.1, inequality (54) is the unique relevant incentive con-

straint that is a lower bound on B (b). Because the principal�s objective is

decreasing in B (b), we may assume that

B (b) = max
�
B (u)� �c

�
(q1 (u) + �q2 (u; 0)) ; 0

	
. (56)
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We may then view B(b) as determined by the choice of B(u) according to

this equation.

Step 2.3. Equation (56) together with Equation (52) imply that Equation

(50) is satis�ed. Hence, we can ignore also constraint (50).

Step 2.4. Inequalities (45) and (47) are relaxed and the remaining incentive

constraints are una¤ected when investments by the agent of bad type are

e¢ cient (zero). Therefore,

qSB1 (b) = qSB2 (b; �) = 0 for all � in set f0; Ag . (57)

Step 2.5. By Equation (56) and set of equations (57), inequality (47) fol-

lows from nonnegative pro�t constraints. Therefore, inequality (48) is the

unique relevant lower constraint on B (u). Because the principal�s objective

is decreasing in B (u), we may then assume that

B (u) = �c
�
(q1 (e) + �q2 (e; 0)) . (58)

Note that setting q2 (e; 0) = 0 is e¢ cient, it permits a reduction of B (u)

through the equality (58), and it relaxes incentive constraint (44) without

any e¤ect on the remaining incentive constraints. Therefore,

qSB2 (e; 0) = 0. (59)

By equations (58) and (59),

B (u) = �c
�
q1 (e) . (60)

Step 2.6. By Equation (56) and set of equations (57), inequality (45) follows

from inequality (46). Hence, there are two constraints limiting the choice of

P (g) from below, namely

P (g) > P (e) + �c
�h
(q1 (e) + �hq2 (e; A)) and (61)

P (g) > (1� h) �c
�h
q1 (e) . (62)
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By the non-negative pro�t constraint P (e) > 0, inequality (62) follows from
inequality (61). Therefore, inequality (61) is the unique constraint limiting

P (g) from below. Because the principal�s objective is decreasing in P (g),

we may assume

P (g) = P (e) + �c
�h
(q1 (e) + �hq2 (e; A)) . (63)

Step 3. Conjecture now that we can ignore constraint (51). Then the in-

equality (52) is the only relevant lower constraint on P (e) and so can be

assumed to hold with equality. If this conjecture is correct, then information

rents are uniquely determined, in any optimal mechanism satisfying our as-

sumptions on the timing of rents, by the investment decisions through the

inequality (52) holding with equality, as well as the equalities (56), (60) and

(63).

We therefore obtain

B (u) = �c
�
q1 (e) , (64)

together with

B (b) = max
�
�c
�
q1 (e)� �c

�
(q1 (u) + �q2 (u; 0)) ; 0

	
, (65)

also

P (e) = 1�h
h
max

�
�c
�
q1 (e)� �c

�
(q1 (u) + �q2 (u; 0)) ; 0

	
, (66)

and
P (g) = 1�h

h
max

�
�c
�
q1 (e)� �c

�
(q1 (u) + �q2 (u; 0)) ; 0

	
+�c
�h
(q1 (e) + �hq2 (e; A)) .

(67)

Step 4 now solves problem (11) given the satisfaction of (64) to (67).

Step 4.1 speci�es problem (11) incorporating these values for rents. This

yields the problem of maximizing by choice of q1 (e), q2 (e; A), q1 (g), q2 (g; A),

q2 (g; 0), q1(u), and q2(u; 0) the expression

36



�rW (g) + (1� �) rW (e)
��r�c (q1 (e) + �hq2 (e; A))
��cmax fq1 (e)� q(u); 0g (r (1� h) + (1� �) (1� r))
�� (1� r) [cq(u) + �cq1 (e)]

(68)

where q(u) = q1(u) + �q2(u; 0).

Step 4.2 shows that investments by the agent of the good type are e¢ cient:

qSB1 (g) = qFB1 (g) , qSB2 (g; �) = qFB2 (g; �) for either � in set f0; Ag . (69)

This follows from optimization with respect to q1 (g) and q2 (g; �).

Step 4.3 shows that qSB(u) 2
�
0; qSB1 (e)

	
. Indeed, any positive investment

by the agent of useless type is wasteful. It allows saving rents as long as it

lies no higher than qSB1 (e). Therefore,

qSB(u) 6 qSB1 (e) (70)

(where qSB(u) = qSB1 (u) + �qSB2 (u; 0)). By set of equations (69), the princi-

pal�s problem (68) is equivalent to maximizing by choice of q1 (e), q2 (e; A),

q1(u), and q2(u; 0)

r(1� �)W (e)� �r�c (q1 (e) + �hq2 (e; A))
��c (q1 (e)� q(u)) (r (1� h) + (1� �) (1� r))

�� (1� r) [cq(u) + �cq1 (e)]
(71)

subject to inequality q(u) 6 q1(e). Problem (71) is linear in q(u) with coef-

�cient which is equal to the di¤erence between the right- and the left-hand

sides of inequality (23). If this coe¢ cient is positive, that is, inequality (23)

holds, constraint q(u) 6 q1(e) is binding:

qSB(u) = qSB1 (e) . (72)

Otherwise, qSB(u) = 0.

Step 4.4 considers the situation in which inequality (23) holds. By equation

(72), qSB1 (e) and qSB2 (e; A) solve
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max
q1(e);q2(e;A)

r(1� �)W (e)� �r�c (q1 (e) + �hq2 (e; A))� � (1� r) cq1 (e) .

Using the Inada conditions and concavity of the objective, there exists a

unique solution to this optimization. Using the �rst-order conditions, we

�nd that qSB1 (e) and qSB2 (e; A) are given by set of equations (18).

Step 4.5 considers the situation in which inequality (23) is violated. Then,

we �nd that investment by the agent of useless type is zero and hence e¢ -

cient. By an analogous argument to the previous case, using the �rst-order

conditions, we �nd that the investments qSB1 (e) and qSB2 (e; A) by the agent

of expensive type are given by set of equations (22).

Step 5 veri�es that constraint (51), ignored in Step 4, is satis�ed in the above

solution.

Step 5.1 supposes that inequality (23) holds. Then, by sets of equations (69)

and (18),

qSB1 (e) + �hqSB2 (e; A) < qFB1 (e) + �hqFB2 (e; A)
< qFB1 (g) + �hqFB2 (e; g) = qSB1 (g) + �hqSB2 (e; g) .

(73)

therefore, the incentive constraint (51) is veri�ed.

Step 5.2 supposes that inequality (23) is reversed. By sets of equations (69)

and (22), set of inequalities (73) holds. Once again, the incentive constraint

(51) ignored in Step 4 is veri�ed.

Step 6 concludes with noticing that qSB1 (e) is positive by the Inada condi-

tions, while qSB2 (e; A) is positive by comparison to the case with no infor-

mation asymmetry on usefulness (see Section 2.2 and the discussion in the

main text). This is true no matter whether qSB1 (e) and qSB2 (e; A) are given

by set of equations (22) or (18).

Step 7 notes that, except when the condition (23) holds as in equality, the

characterization obtained here is unique (recalling that only the discounted

investment of the useless but cheap type q(u) is uniquely pinned down by
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this characterization, and recalling that the allocation of rents over time was

shown in Appendix C to be optimal, though not necessarily uniquely so).

Uniqueness follows because the investments determined by our optimizations

above yield unique investment choices (up to the timing of investments by

type u), and because rents are then uniquely determined by Equations (64)-

(67). When (23) holds as an equality, both characterizations in Part (i) and

Part (ii) of the proposition are valid.

E. Proof of Proposition 4.

Step 1. Let l 2 [0; h). We �rst list the set of incentive constraints, analogous
to Equations (44) to (55) in the previous proof:

P (g) > P (e) + �c
�h
(q1 (e) + �hq2 (e; A) + �(1� h)q2 (e; 0)) , (74)

P (g) > 1�h
h
B (b) + �c

�h
(q1 (b) + �hq2 (b; A) + �(1� h)q2 (b; 0)) , (75)

P (g) > 1�h
h
B (u) , (76)

B (u) > B (b) + �c
�(1�l) (q1 (b) + �lq2 (b; A)) , (77)

B (u) > l
1�lP (e) +

�c
�(1�l) (q1 (e) + �lq2 (e; A) + �(1� l)q2 (e; 0)) , (78)

B (u) > l
1�lP (g) , (79)

P (e) > 1�h
h
B (u)� �c

�h
(q1 (u) + �hq2 (u;A) + � (1� h) q2 (u; 0)) , (80)

P (e) > P (g)� �c
�h
(q1 (g) + �hq2 (g; A) + � (1� h) q2 (g; 0)) , (81)

P (e) > 1�h
h
B (b) , (82)

B (b) > l
1�lP (e) , (83)

B (b) > B (u)� �c
�(1�l) (q1 (u) + �lq2 (u;A) + � (1� l) q2 (u; 0)) , (84)

B (b) > l
1�lP (g)�

�c
�(1�l) (q1 (g) + �lq2 (u;A) + � (1� l) q2 (u; 0)) . (85)
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The principal faces a choice of policy M(l) as described in the main text,

which is subject to the incentive constraints above, to the requirement that

0 � q1 (�) ; q2 (�; �) � �q for all � 2 � and � 2 f0; Ag, and to the requirement
that the second-period rents P (g), P (e), B (u), and B (b) are non-negative.

In addition, note that, because S is bounded above, and yet an available

policy is to induce no investment and pay the agent zero, we may assume

these rents are also bounded above (say by some �R > 0) and we impose this

bound from now on.

Step 2. For each l < h, let �(l) denote the set of policies M(l) satisfying the

above constraints, and note that �(l) is compact. We will show in addition

that there is �l 2 (0; h) such that �(l) is a continuous correspondence over�
0; �l
�
. Upper hemi-continuity of � follows because the constraint set is always

non-empty (it includes the null policy where the agent does not invest and is

paid nothing) and because the right-hand side of Equations (74) to (85) are

continuous in l.

To obtain lower hemi-continuity over this set for small enough �l, observe

that there is a choice of M , call it M�, such that the following is true. There

exists �l; � > 0 such that all incentive constraints in Equations (74) to (85)

hold by at least � for all l 2
�
0; �l
�
(i.e., the di¤erence between the left and

right-hand sides is at least �). To see this, it is enough to consider a policy

M� where the only positive investments are q1 (g) = q1 (u) = �q, and where

B(b) = ", B(u) = 2", P (g) = 4"1�h
h
, and P (e) = 2"1�h

h
for some " su¢ ciently

small. (For " small enough, all incentive constraints are strict for l = 0, and

hence by continuity also for l in a su¢ ciently small neighborhood of zero.)

Note that this also means that M� can be chosen to satisfy the upper and

lower bounds on investments and rents.

Taking the values of �l and � selected above, consider any l0 2
�
0; �l
�
and

any corresponding policy M 0 2 �(l0). Consider any sequence (ln) in [0; �l]

with ln ! l0. Note that we can �nd a sequence (Mn) with Mn ! M 0 and

Mn 2 �(ln) for all n as follows. For each n, put Mn = (1� �n)M 0 + �nM
�,
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where �n 2 [0; 1) is chosen to ensure that Mn 2 �(ln). That we can choose
(�n) so that �n ! 0 follows because policy M 0, to the extent it violates

the constraints of the program for ln, only violates the incentive constraints

(74) to (85) and then only by a vanishing amount as n ! 1 (this is true

by continuity of the right-hand side of these constraints in l). Moreover, for

policy (1 � �n)M 0 + �nM
�, the di¤erences between the left and right sides

of constraints (74) to (85) are linear in �n.

Step 3. Now consider the principal�s objective for l 2 [0; �l]. This is to

maximize by choice of a policy M 2 �(l) the expression

�(g)(W (g)� �hP (g)) + �(e)(W (e)� �hP (e))
+�(u)(W (u)� �(1� l)B(u)) + �(b)(W (b)� �(1� l)B(b)),

where recall thatW (�) represents the discounted expected surplus generated

by type � under the investments q1(�); q2(�; �) undertaken by type �, which

note depends also on the probability l. Fixing the other parameters, this

expression is continuous in both M and l. Moreover, as argued above, the

constraint set �(l) is non-empty, compact-valued and continuous on [0; �l]. We

conclude by the Theorem of the Maximum that the set of solutions MSB(l)

is an upper hemi-continuous correspondence on [0; �l], and hence is upper

hemi-continuous in particular at l = 0. This concludes the proof.
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