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A Proofs

Proof of Theorem 1 (i) For each inequality r, and each γ ∈ RP,

1

M

M∑
m=1

(
Zm,rB

⊤
mγ − Zm,rAm

)
− E

(
Zm,rB

⊤
mγ − Zm,rAm

) P−→
M→∞

0.

Theorem 5.5 of Shapiro et al. (2014) shows the convergence of the support function

of the estimated set Γ̂I toward the support function of the true set ΓI .

(ii) comes from Shapiro et al. (2014), Theorem 5.11. Shapiro’s proof is based on the

i.i.d. assumption but can be adapted as long as a Central Limit Theorem is valid for the

set of inequality constraints.

The uniformity in q for both (i) and (ii) comes from the compactness of the unit ball.

■

Proof of Theorem 2 (i) From the convergence of Γ̂κ
I to Γ

κ
I with respect to the Hausdorff

distance and the isomorphism with the support function, we have

sup
q, ∥q∥≤1

|δ(q,Γκ
I )− δ(q,ΓI)| = dH(Γ

κ
I ,ΓI) = V/κ. (A.1)

Then, Theorem 5.11 of Shapiro et al. (2014) combined with the compactness of the unit

ball shows that,

sup
q, ∥q∥≤1

|δ̂(q,Γκ
I )− δ(q,Γκ

I )|
P−→

M→∞
0. (A.2)

Combining (A.1) and (A.2) with the triangular inequality leads to (i).

(ii) Theorem 5.11 of Shapiro et al. (2014), combined with the delta method for the

asymptotic variance of the estimated constraints leads to the pointwise expansion. De-

noting br = E(Zm,rBm) and ar = E(Zm,rAm), for r = 1, . . . ,R, we have

∂gκ
∂br

(γ) =
γ exp

(
κ
[
b⊤r γ − ar

])
1 + exp (κ [b⊤r γ − ar])

=
γ

1 + exp (−κ [b⊤r γ − ar])
,

∂gκ
∂ar

(γ) =
−1

1 + exp (−κ [b⊤r γ − ar])
.

Therefore:

√
M(ĝκ(γ)− gκ(γ)) =

R∑
r=1

√
M

(
(b̂r − br)

⊤γ − (âr − ar)
)

1 + exp (−κ [b⊤r γ − ar])
+ oP (1),

=
R∑

r=1

Wr(γ)

1 + exp (−κ [b⊤r γ − ar])
+ oP (1).

The uniformity in q comes from the compactness of the unit ball. ■
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Proof of Corollary 1 See the proof of Proposition 10, Section C.2.1 of Bontemps et al.

(2012). The key argument is the uniqueness of the argmin of the test statistic combined

with (ii) of Theorem 2. ■

B Existence of Nash Equilibrium Networks

As discussed in Section 3.3 of the main paper, proving the existence of a pure strategy

Nash equilibrium (PSNE) G := (Gf : f ∈ N ) is difficult due to the presence of spillovers

from entry across markets on the demand, marginal cost and fixed cost sides.

Berry (1992) establishes the existence of a PSNE in one of the first empirical models

of entry that incorporates strategic interactions between firms in the second-stage pricing

game. His proof relies on the assumption that the entry decisions are independent across

markets. It is therefore not applicable to our framework. Another approach used in the

network formation literature to show the existence of a PSNE is to represent the model

as a potential game (Monderer and Shapley, 1996). This is possible if the payoff function

is additive separable in the linking decisions and linear in the spillovers (as for example in

Mele, 2017), which is not the case here. Alternatively, it is possible to show the existence

of a PSNE under the assumption that the game is supermodular, in order to exploit the

fixed point theorem for isotone mappings (Topkis, 1979). However, supermodularity does

not hold in our setting due to the second-stage competition between airlines. Finally, one

could try to decompose the original game into “local” games such that the original game

is in equilibrium if and only if each local game is in equilibrium (Gualdani, 2021). In

turn, the existence of a PSNE in each local game—which is typically easier to establish—

is sufficient for the existence of a PSNE in the original game. However, the classes of

spillovers considered in our model do not allow us to implement such a decomposition.

One might also ask whether allowing for private fixed cost shocks could simplify the

existence proof. Esṕın-Sánchez et al. (2023) prove equilibrium existence in an entry model

where firms have some private information at the entry stage. However, they do not allow

for multi-product firms and they do not allow for spillovers from entry across markets.

Moreover, in our setting it is more reasonable to assume that the fixed cost shocks are

common knowledge among airlines, as discussed in Section 3.2 of the main paper.

Note that the moment inequalities in Section 4.2 of the main paper are based on

necessary conditions for PSNE. Therefore, one could consider a first-stage equilibrium

notion that is weaker than PSNE. In particular, given our focus on one-link deviations,

inequalities (11) and (12) resemble the notion of pairwise stability used in network theory,

according to which no player has profitable deviations by adding or removing a link (Jack-

son and Wolinsky, 1996). Definition B.1 introduces a notion of first-stage equilibrium

along the lines of pairwise stability.
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Definition B.1. (Pairwise Stability) The networks G1, . . . , GN represent a pairwise sta-

ble outcome if, for each market {a, b} ∈ M and airline f ∈ N , it holds that

Gab,f = 0 ⇒ ∆Π(+ab),f ≤ ∆FC(+ab),f ,

Gab,f = 1 ⇒ ∆Π(−ab),f ≥ ∆FC(−ab),f ,

where the quantities ∆Π(+ab),f , ∆Π(−ab),f , ∆FC(+ab),f , and ∆FC(−ab),f are defined in Sec-

tion 4.2 of the paper. ⋄

Note that although pairwise stability is a weaker equilibrium notion than PSNE,

establishing the existence of a pairwise stable outcome does not appear to be easier

in our setting. In particular, according to Jackson and Watts (2002), for any payoff

function there is either a pairwise stable outcome or a closed cycle.1 A typical way used

in the literature to exclude the presence of closed cycles is to show that the model can be

represented as a potential game, as discussed by Jackson and Watts (2001) and Hellmann

(2013). As before, however, this is possible if the payoff function is additive separable in

the link decisions and linear in the spillovers (as in Sheng, 2020), which is not true in our

case.

C How to Deal with Incoherence

In Section 4.2 of the main paper, we have constructed the identified set for the first-stage

parameters under the assumption that PSNE networks exist for each parameter value

and variable realization. As discussed above, proving the existence of PSNE networks is

difficult. Therefore, it is legitimate to wonder whether one should modify the definition

of the identified set when non-existence is possible, i.e., when our model is incoherent in

the terminology of Tamer (2003) and Lewbel (2007).

To explain how we deal with incoherence, we first report here the moment inequalities

predicted by our model as derived in Section 4.2 of the main paper:

EPr

[
∆Π(+ab),f (1−Gab,f )Z(+ab),f,r + L+

r Gab,fZ(+ab),f,r

]
≤ γ1,fEPr

[
Z(+ab),f,r

]
+ γ2,fE

[
∆Q(+ab),fZ(+ab),f,r

]
, for r = 1, . . . ,R+,

EPr

[
∆Π(−ab),fGab,fZ(−ab),f,r + U−

r (1−Gab,f )Z(−ab),f,r

]
≥ γ1,fE

[
Z(−ab),f,r

]
+ γ2,fEPr

[
∆Q(−ab),fZ(−ab),f,r

]
, for r = 1, . . . ,R−,

(C.1)

where EPr is the expectation operator based on the probability function Pr associated

with the probability space where the random variables of the model are defined. Second,

1A closed cycle represents a situation in which individuals never reach a stable state and constantly
alternate between forming and severing links.
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to simplify the exposition, we focus on one moment inequality from (C.1):

E
[
∆Π(−ab),fGab,fZ(−ab),f,r + U−

r (1−Gab,f )Z(−ab),f,r

]
≥ γ1,fE

[
Z(−ab),f,r

]
+ γ2,fE

[
∆Q(−ab),fZ(−ab),f,r

]
.

(C.2)

Third, we streamline the notation of (C.2) as:

E(GmAm)− E(GmBm)
⊤γ ≥ 0, (C.3)

where the subscripts f and r are omitted, m is a market {a, b}.
Let P be the distribution of (GmAm, GmBm) identified by the sampling process. If

the set of PSNE networks is non-empty for each parameter value and variable realization,

then we can replace EPr with EP in (C.3) and obtain the identified set for γ associated

with P:
ΓI :=

{
γ ∈ Γ : EP(GmAm)− EP(GmB

⊤
m)γ ≥ 0

}
. (C.4)

If the set of PSNE networks is empty for some parameter values and variable realizations,

then the relationship between P and Pr is not completely defined because our model is

silent about the realizations of (GmAm, GmBm) when the set of PSNE networks is empty.

Since non-existence outcomes are never observed in our data, we approach the incoherence

problem by assuming that the data are drawn from the subset of the sample space in

which the set of PSNE networks is non-empty. That is, P comes from a truncated version

of Pr, as discussed in Section 4.2 of Chesher and Rosen (2020). In what follows, we show

that the identified set for γ associated with P is still defined by (C.4).

For ease of explanation, let us assume that Am and Bm are discrete random variables.

Given γ ∈ ΓI , our model predicts that∑
a∈A

a× Pr(Am = a,Gm = 1)−
∑
b∈B

b⊤ × Pr(Bm = b,Gm = 1)× γ ≥ 0, (C.5)

where A and B are the supports of Am and Bm, respectively. Let Sθ,γ(X
⊕,W⊕,MS, η) be

the random closed set of PSNE networks.2 If our model is correctly specified, then the

observed realization of G is associated with realizations of X⊕,W⊕,MS, η from the trun-

cated support {(x⊕, w⊕,ms, η̄) ∈ SuppX⊕,W⊕,MS,η : Sθ,γ(x
⊕, w⊕,ms, η̄) ̸= ∅}. Therefore,

it holds that:

P(Am = a,Gm = 1) = Pr(Am = a,Gm = 1|Sθ,γ(X
⊕,W⊕,MS, η) ̸= ∅)

=
Pr(Am = a,Gm = 1,Sθ,γ(X

⊕,W⊕,MS, η) ̸= ∅)
Pr(Sθ,γ(X⊕,W⊕,MS, η) ̸= ∅)

=
Pr(Am = a,Gm = 1)

Pr(Sθ,γ(X⊕,W⊕,MS, η) ̸= ∅)
.

(C.6)

2For the formal definition of a random closed set, see Molchanov and Molinari (2018) and Molinari
(2020).
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In turn, we can write:

Pr(Am = a,Gm = 1) = P(Am = a,Gm = 1)× Pr(Sθ,γ(X
⊕,W⊕,MS, η) ̸= ∅),

Pr(Bm = b,Gm = 1) = P(Bm = b,Gm = 1)× Pr(Sθ,γ(X
⊕,W⊕,MS, η) ̸= ∅).

(C.7)

We plug (C.7) in (C.5) and obtain:

Pr(Sθ,γ(X
⊕,W⊕,MS, η) ̸= ∅)× [EP(GmAm)− EP(GmB

⊤
m)γ] ≥ 0, (C.8)

which is equivalent to

EP(GmAm)− EP(GmB
⊤
m)γ ≥ 0. (C.9)

Hence, the identified set associated with P is:

ΓI :=
{
γ ∈ Γ : EP(GmAm)− EP(GmB

⊤
m)γ ≥ 0

}
, (C.10)

as in (C.4).

D Computing the First-Stage Moment Inequalities

We provide some directions on how to compute the variable ∆Π(+ab),f in (11). A similar

procedure can be followed to compute ∆Π(−ab),f in (12). We proceed in three steps.

First, from the vector of second-stage estimates, θ̂, we compute the second-stage

shocks for each product offered using the BLP inversion. For each airline f , we compute

the mean and variance of the second-stage shocks just obtained and denote them by µf

and Σf , respectively. For each potential product of each airline f , we take 100 random

draws from a normal distribution with mean µf and variance Σf . We store all such draws

in a matrix Ξ.

Second, we compute the expected variable profits of airline f under (G(+ab),f , G−f ).

To do so, we update the list of products offered by firm f , by adding direct flights

between cities a and b. Further, note that setting Gab,f = 1 induces ripple effects in

neighboring markets due to the creation of new products and changes in the characteristics

of existing products of airline f . For example, suppose a is a hub. Hence, adding a

direct flight between cities a and b creates a one-stop flight via a between b and any

city c directly connected to a, effectively adding a new product in all markets {b, c}
such that Gac,f = 1. Additionally, the characteristics of existing products offered in

neighboring markets change due to the spillover variables. In particular, we must update

the demand attractiveness of these flights due to the “Nonstop Origin” spillover variable

on the demand side. Moreover, the marginal costs of all flights originating from or

destined to a or b change due to the “Connections” spillover variable on the marginal
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cost side.

Third, letMab,f be the list of markets containing either new products or products with

updated covariates of airline f . For each market m ∈ Mab,f , we let the firms re-optimize

their prices by iterating on the F.O.C.s in (4), for every draw of the second-stage shocks

stored in the matrix Ξ.3 We compute the variable profits of airline f , average across

draws, and get the simulated expected variable profits of airline f , which we denote by∑
m∈Mab,f

E[Πm,f (X
⊕,W⊕,MS, ξ⊕, ω⊕, G(+ab),f , G−f ; θ)|X⊕,W⊕,MS].

We implement a similar procedure to compute the expected variable profits of airline f

in each market m ∈ Mab,f under G, which we denote by∑
m∈Mab,f

E[Πm,f (X
⊕,W⊕,MS, ξ⊕, ω⊕, G; θ)|X⊕,W⊕,MS].

Lastly, we calculate

∆Π(+ab),f =
∑

m∈Mab,f

E[Πm,f (X
⊕,W⊕,MS, ξ⊕, ω⊕, G(+ab),f , G−f ; θ)|X⊕,W⊕,MS]

−
∑

m∈Mab,f

E[Πm,f (X
⊕,W⊕,MS, ξ⊕, ω⊕, G; θ)|X⊕,W⊕,MS].

E Bounds under Two-link Deviations

In this section, we highlight that several classes of two-link deviations do not significantly

tighten our identified set. Specifically, in Section E.1, we theoretically show that two-link

deviations involving either the addition or deletion of links in two non-hub markets, or in

two markets sharing a hub endpoint, generate redundant inequalities compared to those

produced by one-link deviations. In Section E.2, we construct the identified set for the

first-stage parameters by considering two-link deviations that involve either adding a link

in one hub market while deleting one in a non-hub market, or vice versa, and we find

that the resulting bounds do not practically improve.

3We have decided to use the F.O.C.s in (4) as a contraction mapping. While we do not formally prove
that (4) is indeed a contraction mapping, we have found that the resulting price vector does not change
when starting from different values and that the mapping converges in all the cases considered.
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E.1 Two Non-hub Markets or Two Markets Sharing a Hub

Adding Two Links

Consider markets {a, b} and {c, d} that are not served by airline f with direct flights (i.e.,

Gab,f = Gcd,f = 0). From the revealed preference principle, it holds that

∆Π(+ab),f ≤ ∆FC(+ab),f , (E.1)

∆Π(+cd),f ≤ ∆FC(+cd),f , (E.2)

∆Π(+ab,+cd),f ≤ ∆FC(+ab,+cd),f , (E.3)

where ∆Π(+ab),f , ∆Π(+cd),f , ∆FC(+ab),f , and ∆FC(+cd),f are defined in Section 4.2 of the

paper; ∆Π(+ab,+cd),f is the difference between the expected variable profits at G(+ab,+cd),f

and Gf and ∆FC(+ab,+cd),f is the difference between the fixed costs at G(+ab,+cd),f and Gf .

(E.1) and (E.2) are taken into account by our identification methodology, as they refer to

one-link deviations. (E.3) is ignored by our identification methodology, as it refers to a

two-link deviation. In what follows, we show that if markets {a, b} and {c, d} are non-hub

markets for airline f and have no cities in common, or they share a hub endpoint, then

(E.1) and (E.2) imply (E.3). Hence, (E.3) is redundant.

First, consider the case where markets {a, b} and {c, d} are non-hub markets for airline

f and have no cities in common. Given our fixed cost equation, it holds that

FCf (G(+ab,+cd),f , ηf ; γ)− FCf (G(+cd),f , ηf ; γ) = ∆FC(+ab),f .

Therefore, the right-hand-side of (E.3) is equal to

∆FC(+ab,+cd),f =∆FC(+cd),f +∆FC(+ab),f . (E.4)

Observe that the left-hand-side of (E.3) can be rewritten as

E[Πf (X
⊕,W⊕,MS, ξ⊕, ω⊕, G(+ab,+cd),f , G−f ; θ)|X⊕,W⊕,MS]

− E[Πf (X
⊕,W⊕,MS, ξ⊕, ω⊕, G(+cd),f , G−f ; θ)|X⊕,W⊕,MS]

+ ∆Π(+cd),f .

Furthermore, from our second-stage estimates, it generally holds that

E[Πf (X
⊕,W⊕,MS, ξ⊕, ω⊕, G(+ab,+cd),f , G−f ; θ)|X⊕,W⊕,MS]

− E[Πf (X
⊕,W⊕,MS, ξ⊕, ω⊕, G(+cd),f , G−f ; θ)|X⊕,W⊕,MS]

≤ ∆Π(+ab),f .

(E.5)

In other words, adding an independent edge {a, b} to the counterfactual network G(+cd),f
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does not tend to generate more expected variable profits than adding it to the actual

network Gf . In fact, adding {a, b} to G(+cd),f increases expected variable profits due

to two effects. First, the demand in market {a, b} increases because the passengers of

market {a, b} can now fly directly between a and b instead of flying through a hub of

f which is neither c nor d (recall the variable “Indirect” entering the demand function).

Second, the demand in markets having a or b as endpoints is increased by adding the

direct service between a and b (recall the variable “Nonstop Origin” entering the demand

function). From Table 5 (demand panel) we can see that the first effect dominates the

second: flying direct increases utility by 1.794; adding one direct connection increases

utility by 0.00868. In turn, by combining (E.1), (E.2) and (E.5), we see that

E[Πf (X
⊕,W⊕,MS, ξ⊕, ω⊕, G(+ab,+cd),f , G−f ; θ)|X⊕,W⊕,MS]

− E[Πf (X
⊕,W⊕,MS, ξ⊕, ω⊕, G(+cd),f , G−f ; θ)|X⊕,W⊕,MS]

+ ∆Π(+cd),f

≤ ∆FC(+ab),f +∆FC(+cd),f .

(E.6)

Hence, by combining (E.4) and (E.6), (E.3) is verified.

Second, consider the case where markets {a, b} and {c, d} share a hub endpoint. For

instance suppose a = c and a is a hub. Then,

∆FC(+ab,+cd),f = ∆FC(+ab),f +∆FC(+cd),f + γ2,f (2Na,f + 3),

where Na,f is the number of hub a’s spokes in the factual network Gf . Again, given our

second-stage estimates, it generally holds that

E[Πf (X
⊕,W⊕,MS, ξ⊕, ω⊕, G(+ab,+cd),f , G−f ; θ)|X⊕,W⊕,MS]

− E[Πf (X
⊕,W⊕,MS, ξ⊕, ω⊕, G(+cd),f , G−f ; θ)|X⊕,W⊕,MS]

−∆Π(+ab),f ,

is small, compared to γ2,f (2Na,f + 3). (E.5) is not always satisfied because adding {a, b}
and {a, d} creates opportunities to fly from b to d via a. However, in our data, it is

always possible to fly from b to d via other hubs in the factual network for the same

airline f . As a result, it is reasonable to believe that (E.5) holds for most, if not all,

two-link deviations. Therefore, using the same steps as above, we conclude that (E.3)

holds.
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Removing Two Links

Consider the case where markets {a, b} and {c, d} are served by airline f with direct

flights (i.e. Gab,f = Gcd,f = 1). From the revealed preference principle we can see that

∆Π(−ab),f ≥ ∆FC(−ab),f , (E.7)

∆Π(−cd),f ≥ ∆FC(−cd),f , (E.8)

∆Π(−ab,−cd),f ≥ ∆FC(−ab,−cd),f , (E.9)

where ∆Π(−ab),f , ∆Π(−cd),f , ∆FC(−ab),f , and ∆FC(−cd),f are defined in Section 4.2 of

the paper; ∆Π(−ab,−cd),f is the difference between the expected variable profits at Gf

and G(−ab,−cd),f and ∆FC(−ab,−cd),f is the difference between the fixed costs at Gf and

G(−ab,−cd),f . (E.7) and (E.8) are taken into account by our identification methodology, as

they refer to one-link deviations. (E.9) is ignored by our identification methodology, as it

refers to a two-link deviation. By mirroring the steps above, it is possible to show that,

in most of the cases, (E.9) is redundant.

E.2 One Hub market and One Non-hub Market

Consider markets {a, b} and {c, d} for which Gab,f = 0 and Gcd,f = 1. Let airline f ’s

counterfactual network be the network in which airline f operates in all markets served

under Gf , but no longer offers direct flights between cities c and d and, additionally,

offers direct flights between cities a and b. We denote it by G(+ab,−cd),f .

From the revealed preference principle, the difference between the expected variable

profits earned by airline f under its counterfactual network G(+ab,−cd),f and the expected

variable profits earned by airline f under its factual network Gf , while the competitors

maintain G−f , must be less than or equal to the extra fixed-cost that airline f pays for

the added and subtracted direct flights:

∆Π(+ab,−cd),f ≤ ∆FC(+ab,−cd),f , (E.10)

where ∆Π(+ab,−cd),f is the difference between the expected variable profits at G(+ab,−cd),f

and Gf and ∆FC(+ab,−cd),f is the difference between the fixed costs at G(+ab,−cd),f and

Gf . (E.10) is not taken into account by our identification methodology, as it refers to

a two-link deviation. In what follows, we construct the estimated identified set for the

first-stage parameters based on (E.10), assuming that {a, b} is a hub market and {c, d}
is a non-hub market, or vice versa.

Before proceeding, we make two remarks. First, note that (E.10) could, in principle,

generate useful restrictions on the congestion cost parameter, γ2,f , given our fixed cost
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specification. For example, when a is a hub and b, c, and d are non-hubs, then

∆FC(+ab,−cd),f = ηab,f − ηcd,f + γ2,f (2Na,f + 1).

Hence, (E.10) can provide a “lower” bound for γ2,f . Similarly, when c is a hub and a, b,

and d are non-hubs, then

∆FC(+ab,−cd),f = ηab,f − ηcd,f + γ2,f (1− 2Nc,f ),

Hence, (E.10) can provide an “upper” bound for γ2,f .

Second, as thoroughly discussed in Section 4.2 of the paper, in order to transform

(E.10) into a moment inequality, we rely on the availability of one (or more) exogenous

binary “instruments”, denoted Z(+ab,−cd),f , which may vary by both market and firm and

satisfy a standard exogeneity condition:

E
(
ηab,f , ηcd,f | Z(+ab,−cd),f = 1

)
= 0.

To construct such instruments, we combine the covariates Z(+ab),f and Z(−cd),f defined in

Section 4.2 and used for one-link deviations. In particular, we define Z(+ab,−cd),f to take

the value one if both Z(+ab),f = 1 and Z(−cd),f = 1, and zero otherwise. In doing so, as

indicated in Table 3, we construct 7 instruments per airline.

Table E.1 displays the projection for γ2,f of the estimated identified set of the first-

stage parameters, Γ̂I (defined in (25)), constructed based on the moment inequalities

derived from (E.10). Comparing these results with those in Table 7, we observe that the

projections are not refined by the two-link deviations considered.

Table E.1: First-stage estimates of γ2,f based on two-link deviations.

Congestion costs (γ2,f ) LB UB
AA 3,018 36,294
DL 1,326 29,048
UA 1,554 22,106
US 1,556 35,090
WN 1,342 39,988

Note: Quantities are in USD.

F Inference on the Demand and Supply Parameters

We conduct inference on θ via GMM under the assumption that the number of markets

goes to infinity. Formally, we consider the moment conditions of Section 4.1 and use their

sample analogues to construct a GMM objective function which should be minimized with
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respect to θ ∈ Θ:

Q(θ) = D(θ)′AD(θ), (F.1)

where

D(θ) :=


1
|J |

∑
m∈M

∑
j∈Jm

[τj,m(X
⊕
m,W

⊕
m ,MSm, s

⊕
m, P

⊕
m , G; θ)× zj,m,1(X

⊕
m,W

⊕
m)]

1
|J |

∑
m∈M

∑
j∈Jm

[τj,m(X
⊕
m,W

⊕
m ,MSm, s

⊕
m, P

⊕
m , G; θ)× zj,m,2(X

⊕
m,W

⊕
m)]

...
1
|J |

∑
m∈M

∑
j∈Jm

[τj,m(X
⊕
m,W

⊕
m ,MSm, s

⊕
m, P

⊕
m , G; θ)× zj,m,L(X

⊕
m,W

⊕
m)]

 ,

J := ∪m∈MJm is the set of all offered products, and A is an appropriate 2L×2L weighting

matrix. In particular, A is computed via the usual two-step procedure: first, we estimate

the parameters using the optimal weighting matrix under conditional homoskedasticity;

second, we use the obtained estimates to construct the optimal weighting matrix under

conditional heteroskedasticity and re-estimate the parameters.

Note that we estimate the demand and supply sides jointly. We could also estimate the

demand and supply sides separately by following a two-step procedure: first estimating

the demand parameters; then using these estimates to calculate the markups; finally

regressing the resulting marginal costs on the observed marginal cost shifts to obtain the

supply parameters. We have chosen to estimate the demand and supply sides together

because it allows us to take into account the potential correlation between the demand

and supply moments and thus obtain more precise estimates, as discussed in Berry et al.

(1995). Moreover, since we have a computationally “light” demand specification, the

additional cost of estimating the demand and supply sides jointly is negligible.

G Spatial HAC Estimation of the Variance

In Sections G.1 and G.2, we explain how to construct confidence intervals for both the

first- and second-stage parameters without assuming that data points are mutually in-

dependent across markets. In fact, in our setting, the observed product characteristics

offered by a given airline in different markets are correlated due to spillover variables,

which in turn induce correlation among the moment functions used for identification. To

address this issue, we employ a spatial heteroscedasticity and autocorrelation consistent

(SHAC) estimator for the variances.

Constructing a HAC estimator of the variance generally requires defining a distance

measure between units of observation. In the network literature, the typical unit is a

node (a city, in our context), so HAC estimators are often based on a distance measure

between nodes; see, for example, Kojevnikov (2021), Kojevnikov et al. (2021), and Leung

(2023). By contrast, our framework considers a market (a pair of nodes) as the unit of

observation, necessitating a distance measure between markets. The network literature

12



commonly uses path distance, defined as the length of the shortest path connecting two

nodes a and b. However, this notion does not readily extend to pairs of nodes. For

instance, we attempted to adapt path distance to markets {a, b} and {c, d} by taking the

maximum of the length of the shortest paths among their endpoints, but these measures

were nearly identical across most pairs of markets. Consequently, they did not effectively

reflect a decaying distance measure in our setting. As a result, we chose a geographical

distance measure (Conley, 2010), since it is natural in our empirical context to assume

that the correlation between markets systematically declines with geographic distance.

Lastly, in Section G.3, we explain how to incorporate the uncertainty coming from

the second-stage estimates when constructing confidence regions for the first-stage pa-

rameters.

G.1 Demand and Supply Parameters

Consider the moment equalities listed in (10) in Section 4.1 of the paper:

E
(
τj,m(θ)× zj,m,l

)
= 0 ∀ l = 1, . . . ,L,

where we have omitted the arguments (X⊕
m,W

⊕
m ,MSm, s

⊕
m, P

⊕
m , G) to streamline the no-

tation. Let

gj,m,l(θ) := τj,m(θ)× zj,m,l,

and

gl(θ) :=
1

|J |
∑
m∈M

∑
j∈Jm

gj,m,l(θ).

In what follows, we describe how to estimate, for each θ ∈ Θ, the variance-covariance

matrix of the vector

g(θ) := (gl(θ) : l = 1, . . . ,L).

This variance–covariance matrix has size 2L×2L, where 2L is the total number of instru-

ment from both the demand and supply sides. The estimation of this variance-covariance

matrix requires consideration of the fact that the data are not mutually independent

across markets. To address this correlation, we employ a spatial heteroskedasticity and

autocorrelation consistent (SHAC) estimator.

In particular, an estimator of the covariance between gl(θ) and gl′(θ) for any two

l, l′ = 1, . . . ,L is:

Ĉov(gl(θ), gl′(θ)) =
1

|J |2
∑

(m,m′)∈M2

∑
j∈Jm

∑
j′∈Jm′

k(j, j′) gj,m,l(θ)g
⊤
j′,m′,l′(θ)−gl(θ)gl′(θ) (G.1)

where k(j, j′) is a kernel function that depends on an appropriately defined distance (see
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below) between the two markets m and m′, and is nonzero if the products j, j′ are offered

by the same airline.4

We calculate the distance between two markets as follows. We project the United

States onto a plane using a Mercator projection that is tangent to the Earth at the

center of the U.S. Representing a market as a segment [a, b], the distance between two

markets, [a, b] and [c, d], is measured using the Hausdorff distance from convex theory:

dH([a, b], [c, d]) = max

{
max
x∈[a,b]

d
(
x, [c, d]

)
, max

y∈[c,d]
d
(
y, [a, b]

)}
.

Finally, we employ a triangular kernel with a cutoff, Dmax, of 200 miles. Specifically, if

airline f offers product j in market m and product j′ in market m′, then

k(j, j′) =

(
1− d(m,m′)

200

)
1{d(m,m′) ≤ 200},

and k(j, j′) = 0 otherwise.

Table G.1 shows the estimated standard deviation for the main demand parameters,

both without (third column) and with (fourth column) the SHAC correction.

Table G.1: Demand estimates.

Utility function

Coefficient Std. deviation

i.i.d. SHAC
Dmax = 200

Intercept -5.598 (0.235) (0.309)
Price -0.587 (0.066) (0.085)
Indirect -1.794 (0.065) (0.088)
Nonstop Origin 0.868 (0.077) (0.088)
Distance 0.289 (0.090) (0.124)
Distance2 -0.093 (0.018) (0.029)
Nesting Parameter (λ) 0.623 (0.025) (0.035)

G.2 Fixed Cost Parameters

Consider the moment inequalities listed in (23) in Section 5 of the paper:

E(Zm,rBm)
⊤γ − E(Zm,rAm) ≤ 0, r = 1, . . . ,R.

Let

τm,r(γ) := Zm,rB
⊤
mγ − Zm,rAm,

4See Conley (2010).
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and

τr(γ) :=
1

M

M∑
m=1

(
Zm,rB

⊤
mγ − Zm,rAm

)
.

We now describe how to estimate, for each γ ∈ Γ, the variance-covariance matrix of the

vector

τ(γ) := (τr(γ) : r = 1, . . . ,R).

This variance-covariance matrix has size 28× 28, where 28 is the number of moment in-

equalities used in our estimation procedure. Once again, the estimation of this variance-

covariance matrix requires accounting for the fact that the data are not mutually indepen-

dent across markets. To address this correlation, we use the SHAC estimator presented

in Section G.1.

In particular, following (G.1), an estimator of the covariance between τr(γ) and τr′(γ)

for any two r, r′ = 1, . . . ,R is:

Ĉov(τr(γ), τr′(γ)) =
1

M2

∑
(m,m′)∈M2

k(m,m′)τm,r(γ)τm′,r′(γ)− τr(γ)τr′(γ),

where

k(m,m′) =

(
1− d(m,m′)

200

)
1{d(m,m′) ≤ 200}.

With the variance–covariance matrix of τ(γ), Σ(γ), computed, we can subsequently

estimate, for any direction q, the variance vκ(q) of Gκ(q). Recall that Gκ(q) is the limit in

distribution of δ̂(q; Γκ
I ) as stated in Theorem 2, and that vκ(q) is necessary for computing

both the confidence interval for each component of γ and the confidence region for the

entire vector.

Specifically, for a given direction q, let γκ
q denote the unique element of Γκ

I that lies on

the supporting hyperplane in direction q, and let λκ
q be the Lagrange multiplier obtained

when estimating the support function in direction q. Let sκ(q) be the R × 1 vector

collecting the (estimated) weights for each moment inequality:

sκ(q) =

 1

1 + exp
(
−κ

[
b̂⊤1 γ

κ
q − â1

]) , . . . , 1

1 + exp
(
−κ

[
b̂⊤Rγ

κ
q − âR

])
⊤

,

where

b̂r =
1

M

M∑
m=1

Zm,rBm, âr =
1

M

M∑
m=1

Zm,rAm, r = 1, . . . ,R.

Following Theorem 2, vκ(q) can be estimated as

v̂κ(q) = (λκ
q )

2 sκ(q)
⊤Σ(γκ

q )sκ(q). (G.2)
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G.3 Uncertainty from the Second Stage

When estimating the variance-covariance matrix of τ(γ) in Section G.2, note that Am is

computed using the quantity ∆Π(+ab),f (or ∆Π(−ab),f ), as discussed in Section D. Since this

quantity depends on the second-stage parameters θ (of which we only have an estimate,

θ̂), we must account for this additional source of uncertainty in our variance estimation.

To do so, we draw values from the 95% confidence region for θ and denote them by

{θ̂i}i.5 For each θ̂i, we follow the procedure described in Section D to obtain an estimate

of ∆Π(+ab),f , which we denote by ∆Π(+ab),f (θ̂i) (or similarly for ∆Π(−ab),f ). Using the

decomposition

∆Π(+ab),f (θ̂) = ∆Π(+ab),f (θ
0) + noise(+ab),f ,

where θ0 denotes the true unkown value of θ, the collection {∆Π(+ab),f (θ̂i)}i enables

us to estimate the noise term, n̂oise(+ab),f . Finally, we compute the SHAC estimator

of the variance-covariance matrix of τ(γ) by adding the variance of n̂oise(+ab),f to the

calculations described in Section G.2.

Table G.2 illustrates the effect of accounting for the noise in the second-stage regres-

sion as opposed to ignoring it. Because the demand and supply estimates are relatively

precise, the 95% confidence region of the first-stage parameters is largely determined by

the first-stage inference procedure.

Table G.2: First-stage inference with and without uncertainty from second stage esti-
mates.

95% Conf . Interval
With 2nd stage uncertainty Without 2nd stage uncertainty

LB UB LB UB
Baseline fixed costs (γ1.f)
Legacy carriers (AA, US, DL, UA) 554,483 1,299,833 554,780 1,295,108
WN 808,732 2,173,262 809,420 2,171,478
Congestion costs (γ2,f )
AA 5,150 41,203 5,256 41,159
DL 4,158 31,740 4,241 31,672
UA 3,542 19,780 3,609 19,705
US 11,199 39,159 11,277 39,097
WN 14,339 39,804 14,502 39,422

Note: Quantities are in USD.

5Recall that the second-stage estimator is a GMM estimator and is therefore regular; hence its 95%
confidence region can be derived from standard GMM theory.
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H Inference on the Fixed cost Parameters

H.1 Writing (28) as Linear Optimization Problem with Expo-

nential Cone Constraints

In what follows, we show that (28) is a linear optimization problem with exponential cone

constraints. First, we simplify the notation of (28) and write it as

δ(q,Γκ
I ) := sup

γ∈Γ
q⊤γ,

s.t.
R∑

r=1

fκ(brγ − ar)− R log(2)/κ ≤ 0,
(H.1)

where br stands for E(Zm,rBm)
⊤ and ar for E(Zm,rAm). Both quantities can be estimated

consistently from their empirical analogue. Second, observe that

R∑
r=1

fκ(brγ − ar)− R log(2)/κ ≤ 0 (H.2)

⇔ log(1 + exp(κ(brγ − ar))) ≤ tr for r = 1, . . . ,R and
R∑

r=1

tr ≤ R log 2 (H.3)

⇔ exp(−tr) + exp(−tr + κ(brγ − ar)) ≤ 1 for r = 1, . . . ,R and
R∑

r=1

tr ≤ R log 2. (H.4)

Therefore, (H.1) is equivalent to

max q⊤γ +
R∑

r=1

0× tr + 0× ur + 0× vr,

under the constraints

R∑
r=1

tr ≤ R log 2,

ur + vr ≤ 1, r = 1, . . . ,R,

(vr, 1,−tr) ∈ Kexp r = 1, . . . ,R,

(ur, 1, κ(brγ − ar)− tr) ∈ Kexp r = 1, . . . ,R.

The exponential cone Kexp is a convex subset of R3 such that

Kexp = {(x1, x2, x3) : x1 ≥ x2 exp(x3/x2);x2 > 0} ∪ {(x1, 0, x3), x1 ≥ 0, x3 ≥ 0}.
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The constraints above ensure, in particular, that for any r, vr ≥ exp(−tr) and ur ≥
exp(−tr + κ(brγ − ar)), and, therefore, ensure (H.4).

See https://docs.mosek.com/modeling-cookbook/expo.html#softplus-function

for further details.

H.2 Discussion of the Smoothing Strategy

In this section, we discuss the advantages of smoothing the identified set by transforming

the system of R linear inequality constraints (23) into a unique inequality constraint (27),

as discussed in Section 5 of the paper.

Theorem 1 shows that the estimated support function in a given direction q does not

always converge to a standard normal random variable. This irregularity motivates the

use of smoothing techniques.

To build intuition for this result, consider the case where we estimate the support

function in direction q for a two-dimensional polytope ΓI defined by R inequalities:

b⊤r γ − ar ≤ 0, r = 1, . . . ,R.

Each inequality is estimated from a sample of M observations, with:

b̂r =
1

M

M∑
m=1

bm,r, âr =
1

M

M∑
m=1

am,r.

Following the notation of our original moment inequalities in (23), note that we abbreviate

Zm,rBm as bm,r and Zm,rAm as am,r. Similarly, we denote E(Zm,rBm) by br and E(Zm,rAm)

by ar.

Assume that all R inequalities are active in defining the identified set ΓI , and that

any vertex of ΓI is formed by the intersection of exactly two inequalities (as in Figure H.1

with R = 5). Under this assumption, the set of Lagrange multipliers, L0(q), defined in

Section 5, is a singleton. This condition is known in the optimization literature as the

Linear Independence Constraint Qualification (LICQ).
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r = 5

Figure H.1: A polytope ΓI defined by R = 5 inequalities.

Consider estimating the support function in direction q0 as depicted in Figure H.1.

The intersection between the supporting hyperplane in direction q0 and the polytope ΓI

is the segment [γ1,2, γ1,5], which is the exposed face of the convex set in direction q0.

According to Theorem 1, the asymptotic distribution of the estimated support function—

when the five inequalities are estimated from the data—is given by:

√
M

(
δ̂(q0; ΓI)− δ(q0; ΓI)

)
d−→

M→∞
sup

γ∈[γ1,2,γ1,5]

λ1W1(γ),

where λ1 is the Lagrange multiplier associated with the first inequality (i.e., r = 1), which

is the only binding inequality among the five, and W1(γ) is the limiting distribution of

1

M

M∑
m=1

(
b⊤m,1γ − am,1

)
,

a Gaussian process with variance that can be estimated using the SHAC estimator de-

scribed in Section G.2. In general, this asymptotic distribution is non-normal and takes

the form:

max
(
λ1W1(γ

1,2), λ1W1(γ
1,5)

)
.

The reason is that, due to sampling variability, the segment [γ1,2, γ1,5] is estimated as

[γ̂1,2, γ̂1,5] (see Figure H.2). Sometimes, the maximum of q⊤0 γ is attained at γ̂1,2, as

illustrated in Figure H.2(a), while in other samples, it is attained at γ̂1,5 as illustrated in

Figure H.2(b). This variation leads to the non-normality of the asymptotic distribution.

If we were able to target a specific point on the segment [γ1,2, γ1,5] and use this point

to estimate the support function in direction q0, we could restore normality. Take, for

example, the midpoint γc of [γ1,2, γ1,5] and consider the estimated midpoint as γ̂c =
1
2
(γ̂1,2 + γ̂1,5). The support function of ΓI in direction q0 is also equal to q⊤0 γc and can
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γ1
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q0
γ̂1,5

γ̂1,2

(a) δ̂(q0; ΓI) = q⊤0 γ̂
1,2 in the smooth case

γ1

γ2

q0

γ̂1,5

γ̂1,2

(b) δ̂(q0; ΓI) = q⊤0 γ̂
1,5

Figure H.2: Exposed face and asymptotic distribution of δ̂(q0; ΓI).

be estimated by q⊤0 γ̂c. The vertices of the estimated polytope are estimators of the true

vertices, and their asymptotic distribution is normal (because each estimated coefficient

of each inequality is asymptotically normally distributed). Therefore, this estimator of

the support function is asymptotically normal as well.

Based on this intuition, the smoothing approach implicitly selects a point on the

segment [γ1,2, γ1,5]; the intersection between the hyperplane with outer normal q0 and the

smooth outer set converges to this point as κ → ∞.

A Graphical Illustration

Consider the polytope, ΓI ∈ R2 defined by the following 6 inequalities:

Ineq 1: γ1 ≤ 2,

Ineq 2: γ1 + γ2 ≤ 4,

Ineq 3: γ2 ≤ 4,

Ineq 4: −γ1 + γ2 ≤ 4,

Ineq 5: −2γ1 − γ2 ≤ −1,

Ineq 6: 2γ1 − γ2 ≤ 4.

The polytope is drawn in Figure H.3, where its exposed faces are represented by the

red dashed lines. We also depict the smooth outer set Γ̂κ
I for five values of the smoothing

parameter κ, namely κ = 1, 3, 5, 10, and 20. First, observe that the outer set tends toward

the true polytope as κ increases. For each value of κ, we report the point that achieves

the maximum of γ1 over the corresponding smooth outer set. Standard calculations show

that:

max γ1 ≃ 2 +
log(2R − 1)

κ
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Figure H.3: Polytope ΓI and smooth outer sets Γκ
I .

and γ2 → 1, which corresponds to the value that equalizes the constraints γ1+γ2−4 and

2γ1 − γ2 − 4 (the two adjacent inequalities of our exposed face) when γ1 = 2. We also

trace the theoretical points that achieve the maximum of γ1 for values of κ ranging from

1 to 5000. This is the black curve on the right of the figure. The limiting point, denoted

γc, is indicated in the figure. Note that the smoothing procedure implicitly selects a point

on the exposed face, and this selection converges to γc as κ → ∞.

Interestingly, the third inequality is not necessary to define ΓI , and three inequalities

intersect at the point (4, 0). This configuration constitutes a violation of the classi-

cal LICQ (Linear Independence Constraint Qualification) assumption mentioned above.

As a consequence, the estimation of the support function in the direction (0, 1) is no

longer asymptotically normal because the Lagrange multipliers of the corresponding op-

timization procedure are no longer unique. However, the smoothing approach implicitly

stretches these three inequalities, thereby resolving the issue. By replacing the sharp

intersection with a smooth approximation, the smoothing procedure restores regularity

and avoids the degeneracy caused by the violation of LICQ.

Support Function and Asymptotic Normality in Specific Directions

Note that there is one case in which the support function in direction q0 is asymptotically

normal, even if ΓI has an exposed face in that direction. This occurs when q0 consistently
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remains the outer normal of an exposed face of the estimated polytope for every random

sample. We illustrate this with a specific example.

In our setting, the binding inequalities that determine the maximum and minimum

values of γ1,f are known. These inequalities stem from one-link deviations in non-hub

markets, where γ2,f is absent both in the sample and in the population. For instance,

consider the inequality that determines the minimum value of γ1,f . This inequality arises

by adding a nonexistent direct flight in a non-hub market {a, b} to airline f ’s network,

connecting a medium-sized city to a competitor’s hub. Specifically, it corresponds to the

instrument Z(+ab),f,3 defined in Table 3:

γ1,fE
[
Z(+ab),f,3

]
≥ E

[
∆Π(+ab),fZ(+ab),f,3

]
,

following the notation of (22) with Z(+ab),f,r = Z(+ab),f,3, Gab,f = 0, and without γ2,f .

Denote the sample analogue of this inequality as:

γ1,fZ(+ab),f,3 ≥ ∆Π(+ab),fZ(+ab),f,3,

Assuming the limit of the sample average Z(+ab),f,3 is non-zero, which holds in this case,

we obtain:

γ1,f ≥
∆Π(+ab),fZ(+ab),f,3

Z(+ab),f,3

.

Therefore, the estimated support function in direction q0 = (−1, 0, . . . , 0)⊤ is given by

−
∆Π(+ab),fZ(+ab),f,3

Z(+ab),f,3

,

which is asymptotically normal by the delta method, as both the numerator and denom-

inator are sample averages.

We can repeat analogous arguments for the maximum value of γ1,f , which corresponds

to the direction q0 = (1, 0, . . . , 0)⊤ thereby obtaining that the asymptotic distribution of

the support function in direction q0 is also asymptotically normal.

Note that both estimated support functions are asymptotically normal, despite the

presence of exposed faces in the directions q0, because the estimated identified set exhibits

exposed faces exactly in these directions for every random sample, rather than only

approximately.

Importantly, the derivations above suggest that, in the case of γ1,f (and not γ2,f ),

we can construct a confidence interval without needing to implement the smoothing

procedure. We can leverage this special feature of our framework to further assess the

performance of our inference approach. Specifically, based on the asymptotic normality,

the confidence interval for γ1,f is (0.557, 1.263) for a legacy carrier and (0.816, 2.151) for
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Southwest Airlines (in millions of dollars). Table 9 shows that the confidence intervals

obtained using our smoothing procedure closely approximate these “correct” intervals.

Calibrating the Value of κ

Finally, we discuss the trade-off involved in choosing the smoothing parameter κ. A small

value of κ produces a smooth outer set with slowly varying curvature (see Figure H.3);

however, the distance between this smooth outer set and the true identified set—our

object of interest—can be large, leading to wide confidence regions. As κ increases, this

distance decreases, as demonstrated in Chen and Mangasarian (1995). Nonetheless, while

the variance of the support function estimator decreases smoothly with κ, the validity of

the asymptotic distribution becomes increasingly questionable for large κ.

To better understand this phenomenon, consider the second-order expansion of the

inequality constraint gκ(γ) defined in (27) as M → ∞ for a fixed κ. Following the

derivation of Theorem 2, we can write:

√
M(ĝκ(γ)− gκ(γ)) =

√
M

R∑
r=1

∆r(γ)

1 + exp (−κ [b⊤r γ − ar])

+
κ

2
√
M

R∑
r=1

exp
(
−κ

[
b⊤r γ − ar

])
(1 + exp (−κ [b⊤r γ − ar]))

2Wr(γ)
2 + oP (1/

√
M),

(H.5)

where ∆r(γ) = (b̂r − br)
⊤γ − (âr − ar), Wr(γ) denotes the limiting in distribution of√

M∆r(γ)—a normal distribution—and the variables br, b̂r, ar, âr are defined at the be-

ginning of Section H.2.

The expansion in (H.5) reveals a tension between the bias (linked to the distance

between the smooth and the true identified set) and the remainder term, which is of

order κ/
√
M.

Consider now the support function in direction q and assume q is the outer normal of

an exposed face. In this case, only one inequality, say r0, is binding. Let γκ
q denote the

unique point of intersection between the outer set Γκ
I and its supporting hyperplane in

direction q.

For large κ, it holds that

gκ(γ
κ
q ) ≃

1

κ
log

(
1 + exp

(
κ
[
b⊤r0γ

κ
q − ar0

]))
− R log 2

κ
,

implying

b⊤r0γ
κ
q − ar0 ≃

log(2R − 1)

κ
.

Plugging the latter expression into the second-order expansion, the leading remainder
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term becomes approximately:
κ√
M

2R − 1

(2R)2
Wr0(γ)

2.

Using the average value of the variances of Wr(γ) and setting R = 28—the number

of moment inequalities in our empirical application—we obtain an estimated remainder

term that is negligible for values of κ below 10,000; specifically, its magnitude is less than

10−6 times that of the first-order term. Recall that we chose κ = 100 in our empirical

application to control the distance between the outer set and the identified set. At this

value, the negligible magnitude of the remainder term ensures the robustness and validity

of our approximation.

H.3 Constructing a Confidence Interval for a Component of γ

Suppose we want to construct a confidence interval for a specific linear combination of

components of γ, c⊤γ. Let q = c/∥c∥. By Theorem 2,

√
M

(
δ̂(q; Γκ

I )− δ(q; Γκ
I )
)

d−→
M→∞

Gκ(q).

The optimization routine detailed in Section H.1 gives us the unique point, γq, which

achieves the maximum of c⊤γ on Γ̂κ
I . Equation (G.2) shows how to estimate the variance

of Gκ(q), which is denoted by vκ(q). The quantity

c⊤γq + ∥c∥nα

√
vκ(q),

is the upper bound of the 1−α confidence interval for c⊤γ, where nα is the α-th quantile

of the standard normal distribution.

Similarly, let −q = −c/∥c∥ and γ−q be the point which achieves the maximum of

−c⊤γ on Γ̂κ
I . The quantity

c⊤γ−q − ∥c∥nα

√
vκ(−q),

is the lower bound of the 1− α confidence interval for c⊤γ.

Note that, following Stoye (2009), we can adapt the choice of the quantile to handle

near to point-identified cases. Furthermore, we can follow Stoye (2021) to build robust

confidence intervals.

H.4 Drawing Points from the Confidence Region for γ

As highlighted in Footnote 27, our tables in Section 8.2 report intervals for the coun-

terfactual outcomes for two reasons. First, a counterfactual outcome must be computed

for each parameter value within the confidence region (or estimated identified set) of the

parameters. Second, multiple first-stage equilibria can generate several counterfactual
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networks for each parameter value and, in turn, multiple counterfactual outcomes.

To address these issues, we proceed as follows. First, we ignore the uncertainty stem-

ming from the second-stage estimates of θ, as it is negligible compared to the uncertainty

arising from the first-stage estimates of γ (see Table G.2). Second, rather than us-

ing the standard gridding approach—which is computationally intensive—we describe a

procedure to draw points uniformly from the confidence region. A similar but simpler

procedure applies when drawing points from the estimated identified set. Third, for each

draw of the first-stage parameters, we apply an algorithm—detailed in Appendices J.1

and J.2—that produces a probability distribution of equilibrium networks. Using this

distribution, we compute the corresponding set of counterfactual outcomes. We report

the range of these outcomes (particularly the minimum, median, and maximum) in our

tables in Section 8.2. Following Woutersen and Ham (2013), the interval spanned by the

minimum and maximum values provides a valid approximation of the confidence interval

for the counterfactual outcome under consideration.

In general, drawing points from a confidence region is nontrivial. In a standard GMM

framework, one typically evaluates a grid of points in the relevant parameter space and

retains those for which the GMM criterion is below the (1 − α) quantile. However, in

a set-identified context, this approach becomes much more complex. We leverage the

specific (smooth) geometry of our identified set to draw points directly from the (1− α)

confidence region, as described in detail below.

1. We look for an interior point γc in Γ̂κ
I . This is known in the convex optimization

literature as the Chebyshev center of a polyhedron (Boyd and Vandenberghe, 2004,

page 148). Interestingly, it can be solved based on linear programming:

max
r≥0

r,

s.t.
1

M

M∑
m=1

(−Zm,rB
⊤
mγ + Zm,rAm) + r∥ 1

M

M∑
m=1

Zm,rBm∥2 ≤ 0,

r = 1, . . . ,R.

2. Draw a random direction q on the unit sphere and find the frontier point γq = γc+rqq

of Γ̂κ
I (rq ≥ 0). Again, this is a linear program.

3. Calculate the outer normal vector of Γ̂κ
I at γq. This is the direction q′ such that

δ(q′; Γ̂κ
I ) = q′⊤γq. It can be done analytically by calculating the gradient of gκ(·) at

γq.

4. Calculate the variance vκ(q
′) of Gκ(q

′) from (G.2).
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5. The point fq = γq +
√
vκ(q′)nαq

′, i.e., drawn from γq in direction q′, is a frontier

point of the (conservative) confidence region CRM
1−α.

6. Draw a norm l uniformly on [0, 1].

7. Pick the point γc + lfq which belongs to CRM
1−α.

Figure H.4 illustrates the procedure, showing γq + 0.8fq as an example. This process

can be repeated S times to generate S draws from the (1− α) confidence region.

Γ̂κ
I

∂Γ̂κ
I

∂CRM
1−α

γc•
q

γq•
q′ γq + 0.8fq•

fq•

Figure H.4: Drawing points from the confidence region for the first-stage parameters.

I Empirical application

I.1 Results from Demand and Supply

Table I.1 complements Table 6 by presenting the estimated variable profits, prices,

marginal costs, and markups at the firm level across different levels of aggregation. For

each airline, the first, second, and third rows contain quantities averaged over all prod-

ucts, direct flights and one-stop flights respectively. The fourth and fifth rows contain

quantities averaged over direct flights where at least one of the endpoints is a hub, and

direct flights where no endpoint is a hub. We can see that airlines charge higher markups

on direct flights compared to one-stop flights, which is in line with the fact that con-

sumers prefer to take direct flights (see “Indirect” in Table 5, demand panel). The legacy

carriers charge higher markups on direct flights where at least one of the endpoints is

a hub than on direct flights where no endpoint is a hub, suggesting the existence of a

hub premium. This hub premium may be due to the fact that consumers value flying

from dense hubs (see “Nonstop Origin” in Table 5, demand panel) or to fixed costs due

to congestion effects at hubs (see Table 7). While American Airlines, US Airways and

Southwest Airlines have lower marginal costs for direct flights, the opposite is true for
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Delta and United Airlines.6 The marginal cost of Southwest Airlines is lower than the

marginal cost of the legacy carriers. For direct flights, the difference is quite substan-

tial. For one-stop flights, Southwest Airlines’ advantage is small, consistent with the fact

that Southwest Airlines uses focus cities rather than hubs. Therefore, the marginal cost

savings of offering one-stop flights (see “Connections” and “Indirect” in Table 5, supply

panel) may be less pronounced as not all the features of traditional hubs are used.

Table I.1: Profits by firms.

Profits (100k) Price Marginal cost Markup Lerner Index

AA
All 1.78 453.36 335.20 118.16 0.28
Direct 13.77 402.37 277.42 124.94 0.32
One-stop 0.39 459.26 341.89 117.38 0.27
Direct, hub endpoint 15.06 402.75 276.66 126.09 0.33
Direct, non-hub endpoints 2.00 398.87 284.48 114.40 0.30

DL
All 1.41 436.45 310.40 126.05 0.31
Direct 12.31 463.26 321.03 142.23 0.33
One-stop 0.33 433.80 309.35 124.45 0.31
Direct, hub endpoint 13.49 482.67 336.83 145.84 0.32
Direct, non-hub endpoints 4.47 334.75 216.44 118.31 0.38

UA
All 1.25 445.56 328.43 117.13 0.28
Direct 9.17 458.50 334.97 123.53 0.29
One-stop 0.20 443.85 327.56 116.28 0.28
Direct, hub endpoint 11.03 456.82 332.24 124.58 0.29
Direct, non-hub endpoints 2.17 464.88 345.33 119.55 0.29

US
All 1.30 453.43 336.77 116.67 0.27
Direct 8.99 407.34 275.17 132.17 0.35
One-stop 0.35 459.10 344.34 114.76 0.26
Direct, hub endpoint 10.42 418.96 282.96 136.00 0.35
Direct, non-hub endpoints 3.95 366.22 247.58 118.64 0.36

WN
All 2.79 419.43 299.51 119.92 0.31
Direct 12.09 365.14 237.09 128.05 0.38
One-stop 0.23 434.40 316.73 117.67 0.29
Direct, hub endpoint 16.49 362.34 233.95 128.39 0.38
Direct, non-hub endpoints 8.88 367.19 239.39 127.80 0.38

Note: Quantities are in USD.

I.2 Estimated Shares of Variable Costs over Operating Costs

To verify if our fixed cost estimates are reasonable, we compute the estimated share of

the variable costs over the “operating costs”. The former are obtained as marginal costs

6Note that the fact that American Airlines, US Airways and Southwest Airlines have lower marginal
costs on direct flights does not contradict the negative sign of the coefficient on “Connections” in Table
5. In fact, recall that the results in Table 5 should be interpreted ceteris paribus. Instead, the results in
Table I.1 are obtained by averaging over all itineraries, including those with different characteristics.
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times the number of passengers, summed for all direct flights proposed by each airline.

The latter are defined as the sum of the variable costs and fixed costs, without considering

the congestion costs. Table I.2 reports the minimum and maximum share for each airline.

Table I.3 compares these shares with the Federal Aviation Administration (FAA)’s 2018

estimates based on administrative data, revealing similar orders of magnitude.7

Table I.2: Estimated shares of the variable costs over the operating costs.

Airline Min share Max share
(in %) (in %)

AA 72.7 % 83.0 %
DL 69.9 % 81.0 %
UA 68.2 % 79.7 %
US 61.8 % 74.8 %
WN 43.5 % 64.3 %

J Counterfactuals

J.1 Descriptions of the Counterfactual Algorithm

The possibility of multiple PSNE networks raises the question of how to obtain counter-

factuals when airlines are allowed to re-optimize their networks and prices. Although the

data tell us which equilibrium was played in the past, they do not tell us which equilibrium

will be chosen by the players once we change the environment. Previous literature has

suggested several ways of solving this problem. For example, the analyst could enumerate

all possible equilibria and report some summary measures of the resulting range of coun-

terfactuals (Eizenberg, 2014). Alternatively, the analyst could implement best-response

dynamics to select a probability distribution of possible equilibria (Lee and Pakes, 2009;

Wollmann, 2018). The first approach is not computationally feasible in our setting, due

to the large number of markets and the presence of entry spillovers. Therefore, we fol-

low the second approach. We fix an order of markets and firms.8 For a given value

of the parameters, the first firm in the first market best responds to its competitors in

terms of entry and pricing decisions. The second firm similarly best responds, taking

into account the best response of the first firm. The third company also best responds,

taking into account the best responses of the first and second companies. The algorithm

cycles through the firms and markets until no airline wishes to deviate. The procedure

7See https://www.faa.gov/regulations_policies/policy_guidance/benefit_cost, Section 4 of
the Benefit-Cost analysis, Table 4-6.

8We focus on the markets where at least one of the endpoints is a hub of the merged entity.
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Table I.3: Passenger Air Carriers Filing Schedule P-5.2 Operating and Fixed Costs per
Block Hours.

Cost per Block Hour
Aircraft Category Fuel Mainte- Crew Total Deprec. Rentals Other Total Share

and Oil nance Variable Fixed Variable

Wide-body more
than 300 seats

$5,411 $1,331 $2,356 $9,097 $845 $406 $5 $1,254 87.9%

Wide-body 300
seats and below

$4,080 $1,289 $1,857 $7,227 $685 $366 $8 $1,058 87.2%

Narrow-body more
than 160 seats

$2,054 $718 $1,152 $3,925 $355 $217 $10 $582 87.1%

Narrow-body 160
seats and below

$1,741 $737 $1,034 $3,512 $306 $215 $12 $533 86.8%

RJ more than 60
seats

$115 $431 $444 $991 $131 $252 $14 $397 71.4%

RJ 60 seats and be-
low

$92 $479 $470 $1,041 $58 $227 $8 $293 78.0%

Turboprop more
than 60 seats

$0 $880 $360 $1,241 $439 $103 $2 $544 69.5%

All Aircraft $1,681 $727 $1,012 $3,420 $314 $239 $11 $564 85.8%

Source: FAA, https://www.faa.gov/

regulations_policies/policy_guidance/

benefit_cost, Section 4 of the Benefit-Cost
analysis, Table 4-6.
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is repeated for 50 draws of parameter values from the estimated identified set (or confi-

dence region) of the fixed cost parameters. For each parameter value, we consider four

market orderings. In the first ordering, we rank the markets according to which hub is

involved, whether the market is served by the merged firm, the size of the merged firm’s

operations at the endpoints, and the market size (ordering A). In the second ordering,

we reverse this ranking (ordering B). In the third and fourth orderings, we rank markets

randomly (orderings C and D). For each of the four market orderings, we consider two

firm orderings: AA-DL-UA-WL (ordering 1) and the reverse (ordering 2). This procedure

generates a distribution of possible equilibria over 400 (i.e., 50 × 4 × 2) counterfactual

runs. In the tables of Section 8, we report the minimum, maximum, and median changes

in the relevant outcomes under such distribution.

The remainder of the section illustrates the details of the counterfactual algorithm.

In particular, we explain the algorithm implemented to simulate the merger under the

Networks vary - without remedies scenario, given an order of markets and firms and a

value of the parameters. The algorithm is structured in the following steps:

1. Latent variables. We determine the realizations of the latent variables that are

needed to evaluate the airlines’ profits. In particular, from the vector of second-stage

estimates, θ̂, we compute the second-stage shocks for each product offered by the air-

lines before the merger, via BLP inversion. For each airline f , we compute the mean

and variance of the second-stage shocks and denote them by µf and Σf , respectively.

When computing µf and Σf for the merged airline, we consider the second-stage shocks

associated with all the products offered by the merging firms before the merger. If both

American Airlines and US Airways offer a given itinerary before the merger, then we take

the mean value of the second-stage shocks of the two pre-merger products. For each po-

tential product of every airline f , we take 100 random draws from a normal distribution

with mean µf and variance Σf . We store all such draws in a matrix Ξ. Further, for each

market {a, b} and airline f , we impute the fixed cost shock ηab,f as explained in Appendix

J.2.

2. Initial state. At the start, all firms except the merged entity are assigned their pre-

merger networks and products. The merged entity is assigned the network resulting from

combining the pre-merger networks of American Airlines and US Airways. The products

initially offered by the merged entity and their observed characteristics are constructed

from such a merged network. We denote by G := (G1, . . . , GN-1) the initial networks of

the carriers. We let the firms play the simultaneous pricing game described in Section

3.1, for each draw of the second-stage shocks stored in the matrix Ξ. We save the initial

equilibrium prices in a matrix P .

3. Iterations. We take the first firm f in the first market {a, b} and let it play its best

response as follows. Suppose, for instance, that the initial network Gf is characterized by

Gab,f = 0. First, we compute airline f ’s expected variable profits under (G(+ab),f , G−f ).

30



To do so, we update the list of products offered by firm f , by adding direct flights

between cities a and b. Further, as explained in Appendix D, setting Gab,f = 1 induces

ripple effects in neighboring markets due to the creation of new products for airline f ,

changes in the variables “Nonstop Origin” and “Connections” of existing products of

airline f , and changes in the congestion costs of existing products of airline f . Let Mab,f

be the list of markets containing either new products or products with modified covariates

of airline f . For each of these products in every market m ∈ Mab,f , we let airline f find

the best-response price, while holding the other prices in P fixed, for every draw of the

second-stage shocks stored in the matrix Ξ. We compute airline f ’s variable profits,

average across draws, and get the simulated airline f ’s expected variable profits, which

we denote by∑
m∈Mab,f

E[Πm,f (X
⊕,W⊕,MS, ξ⊕, ω⊕, G(+ab),f , G−f ; θ)|X⊕,W⊕,MS].

We implement a similar procedure to compute the expected variable profits of airline f

in each market m ∈ Mab,f under G, which we denote by∑
m∈Mab,f

E[Πm,f (X
⊕,W⊕,MS, ξ⊕, ω⊕, G; θ)|X⊕,W⊕,MS].

Next, we calculate

∆Π(+ab),f =
∑

m∈Mab,f

E[Πm,f (X
⊕,W⊕,MS, ξ⊕, ω⊕, G(+ab),f , G−f ; θ)|X⊕,W⊕,MS]

−
∑

m∈Mab,f

E[Πm,f (X
⊕,W⊕,MS, ξ⊕, ω⊕, G; θ)|X⊕,W⊕,MS].

Lastly, we compute

∆Π(+ab),f −∆FC(+ab),f . (J.1)

If (J.1) is positive (negative), then the best-response entry of airline f is Gab,f = 1

(Gab,f = 0). We update G and P and move to the second firm in the first market. We

let this firm best respond, while taking into account the first firm’s best response. The

third firm similarly best responds, while taking into account the first and second firms’

best responses, and so on.

4. Stop. We cycle through the firms and markets. When no firm wants to deviate in

none of the markets, we stop the procedure. In practice, we have obtained convergence

in almost all the cases considered.

Due to computational costs, the above algorithm does not consider all possible entry

deviations by each firm. In fact, it imposes that each firm considers adding/deleting

direct flights in one market at a time. Nevertheless, at the rest point of the procedure, the
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necessary conditions for PSNE that are used in the estimation of the fixed cost parameters

hold. Hence, the algorithm provides an equilibrium that is internally consistent with our

model. Similar restrictions on the set of admissible deviations are assumed by Eizenberg

(2014) and Wollmann (2018).9

We also adopt the above algorithm in the merger simulation for the Networks vary -

with remedies and Networks vary - PHX dehubbed scenarios. In the scenario Networks vary

- w/ remedies, we do not allow the merged entity to exit the markets out of Charlotte,

New York, Los Angeles, Miami, Chicago, Philadelphia, and Phoenix that were served

before the merger by American Airlines or US Airways. In the scenario Networks vary -

PHX dehubbed we delete all flights of the merged entity between Phoenix and non-hub

cities and do not allow the merged entity to re-enter those markets.

J.2 Imputation of the Fixed Cost Shocks in the Counterfactuals

To perform the counterfactuals, we need to impute the fixed cost shocks. Different ap-

proaches have been taken in the literature. For example, Wollmann (2018) draws the fixed

cost shocks from a normal distribution with zero mean and variance equal to a fraction

of the variance of the systematic fixed costs. Kuehn (2018) finds, for each market, the

range of realizations of the fixed cost shocks generating the observed entry/exit patterns

and takes the midpoint. We use a procedure that is similar to Kuehn (2018). We repeat

the steps below for each value of γ drawn from the estimated identified set at which we

run the counterfactual algorithm. When we observe airline f serving market {a, b} with

direct flights (i.e., Gab,f = 1), we infer that this choice must be profitable, giving us an

upper bound for ηab,f . Next, we collect all the markets where airline f does not enter,

that are hub markets (non-hub markets) if market {a, b} is a hub market (is not a hub

market) for airline f , and that face similar congestion costs. These markets give us a

vector of lower bounds for ηab,f . We take the 2.5th percentile of these lower bounds and

use it as a lower bound for ηab,f . Lastly, we set ηab,f equal to the midpoint between the

lower and upper bounds. We implement a similar procedure to determine the fixed cost

shocks for the markets that are not served by airline f in the data. However, instead of

the 2.5th percentile, in that case we take the 97.5th percentile to obtain an upper bound.

When simulating the merger, the merged entity gets the mean value of the fixed cost

shocks imputed to the merging firms by following the above procedure.

9The networks at the rest point of our algorithm constitute a pairwise stable outcome, in the sense
illustrated in Appendix B. In fact, our algorithm resembles the tâtonnement dynamics discussed by
Jackson and Watts (2002), in which agents form or destroy individual connections, taking the remaining
network as given and not anticipating future adjustments. Jackson and Watts (2002) show that pairwise
stable networks can be achieved by tâtonnement dynamics.
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J.3 Additional Tables

Table J.1 reports the percentage change in prices, marginal costs, and markups of Amer-

ican Airlines and the other major airlines. It distinguishes between direct flights and

one-stop flights.
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Table J.1: Percentage change in prices, marginal cost, and markups.

Before Merger

w/o remedies w/ remedies PHX dehubbed

AA: Direct
Price 406.24 -6.12 -4.78 -5.77

[-6.49, -5.89] [-5.21, -4.45] [-6.45, -5.08]
[-6.66, -5.79] [-5.33, -4.44] [-6.73, -5.08]

Marginal Cost 276.7 -11.31 -9.71 -10.8
[-12.16, -11.01] [-10.57, -9.26] [-12.08, -9.48]
[-12.41, -10.84] [-10.67, -9.26] [-12.5, -9.48]

Markup 129.54 +5.15 +5.79 +4.98
[+4.78, +5.73] [+5.68, +6.24] [+3.99, +5.69]
[+4.59, +5.95] [+5.66, +6.24] [+3.9, +5.73]

Others: Direct
Price 413.19 +1.48 +0.99 +1.58

[+1.24, +1.92] [+0.8, +1.11] [+1.34, +2.04]
[+1.03, +2.43] [+0.69, +1.54] [+1.32, +2.56]

Marginal Cost 291.6 +1.83 +1.52 +1.7
[+1.51, +2.33] [+1.31, +1.73] [+1.5, +2.35]
[+1.36, +2.82] [+1.13, +2.21] [+1.37, +2.87]

Markup 121.59 +0.73 -0.32 +1.2
[+0.35, +1.14] [-0.55, -0.16] [+0.92, +1.47]
[+0.23, +1.71] [-0.77, +0.08] [+0.52, +1.95]

AA: One-stop
Price 466.39 -7.36 -4.96 -6.83

[-8.15, -6.8] [-5.56, -4.71] [-7.41, -5.59]
[-8.15, -6.59] [-5.58, -4.71] [-7.66, -5.59]

Marginal Cost 351.28 -12.77 -10.68 -11.92
[-13.92, -11.8] [-11.49, -10.3] [-12.7, -10.1]
[-13.96, -11.8] [-11.69, -10.29] [-12.9, -10.1]

Markup 115.11 +9.22 +12.39 +8.62
[+8.39, +9.88] [+12.15, +12.77] [+7.81, +9.15]
[+7.23, +10.43] [+11.55, +13.12] [+6.55, +9.99]

Others: One-stop
Price 416.12 +4.67 +4.15 +4.68

[+4.37, +4.96] [+4.02, +4.43] [+4.47, +4.87]
[+4.37, +5.07] [+3.95, +4.45] [+4.45, +5.08]

Marginal Cost 301.18 +6.18 +5.95 +6.15
[+5.78, +6.53] [+5.8, +6.32] [+5.85, +6.39]
[+5.78, +6.53] [+5.72, +6.32] [+5.76, +6.48]

Markup 114.94 +0.77 -0.59 +0.9
[+0.48, +0.93] [-0.66, -0.5] [+0.72, +1.07]
[+0.41, +1.53] [-0.79, -0.36] [+0.39, +1.64]

Note: Percentage changes with respect to
thepre-merger scenario are reported.

34



References

Berry, S. T. (1992). Estimation of a model of entry in the airline industry. Econometrica,
60(4):889–917.

Berry, S. T., Levinsohn, J., and Pakes, A. (1995). Automobile prices in market equilib-
rium. Econometrica, 63(4):841–890.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University
Press.

Chesher, A. and Rosen, A. M. (2020). Econometric modeling of interdependent discrete
choice with applications to market structure. CeMMAP Woking Paper 25/20.

Conley, T. G. (2010). Spatial Econometrics, pages 303–313. Palgrave Macmillan UK,
London.

Eizenberg, A. (2014). Upstream innovation and product variety in the U.S. home pc
market. The Review of Economic Studies, 81(3):1003–1045.
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