
Appendix to the paper “Extreme expectile
estimation for short-tailed data”

Abdelaati Daouia, Simone A. Padoan and Gilles Stupfler

This appendix contains all necessary proofs and provides extra finite-sample results about
our simulation study.

A Proofs of the main results

A.1 Auxiliary results

We first of all list a number of facts that will be used numerous times in our proofs: if
condition C2(γ, a, ρ, A) holds, then

• Condition C2(γ, a, ρ,A) holds locally uniformly in z, see Remark B.3.8.1 on relation-
ship (B.3.3) in de Haan and Ferreira (2006).

• The right endpoint of F is finite and will be denoted in the sequel by x?, see Theo-
rem 1.2.1 on p.19 of de Haan and Ferreira (2006).

• One has a(s)/(x?−U(s))→ −γ as s→∞, see Lemma 1.2.9 on p.22 of de Haan and
Ferreira (2006).

• The functions x 7→ F (x?−1/x) and s 7→ x?−U(s) are regularly varying with indices
1/γ and γ, respectively, see Theorem 1.2.1.2 on p.19 and Corollary 1.2.10.2 on p.23
of de Haan and Ferreira (2006).

Our first auxiliary result is a useful asymptotic inversion lemma that will be used several
times.

Lemma A.1. Suppose that condition C2(γ, a, ρ, A) holds.

(i) One has

lim
x↑x?

U(1/F (x))− x
a(1/F (x))A(1/F (x))

= 0.

In particular

lim
x↑x?

1

A(1/F (x))

(
x? − U(1/F (x))

x? − x
− 1

)
= 0.

(ii) One has

lim
τ↑1

1

A((1− τ)−1)

(
F (qτ )

1− τ
− 1

)
= 0.

Proof of Lemma A.1. We only show (i); the proof of (ii) is similarly written by using an
equivalent second-order condition on F (see de Haan and Ferreira, 2006, Theorem 2.3.8
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p.48). Assume that A is positive; the proof for a negative A is similar. Condition
C2(γ, a, ρ, A) holds locally uniformly in z, so pick ε 6= 0 and apply this condition to obtain

lim
x↑x?

∣∣∣∣ 1

A(1/F (x))

(
U([1 + εA(1/F (x))]/F (x))− U(1/F (x))

a(1/F (x))
− (1 + εA(1/F (x)))γ − 1

γ

)
−
∫ 1+εA(1/F (x))

1
vγ−1

(∫ v

1
uρ−1du

)
dv

∣∣∣∣∣ = 0

and therefore

lim
x↑x?

1

a(1/F (x))A(1/F (x))

∣∣∣∣U([1 + εA(1/F (x))]/F (x))− U(1/F (x))

− a(1/F (x))
(1 + εA(1/F (x)))γ − 1

γ

∣∣∣∣ = 0.

Conclude that

lim
x↑x?

U([1 + εA(1/F (x))]/F (x))− U(1/F (x))

a(1/F (x))A(1/F (x))
= ε.

By definition of U as the left-continuous inverse of 1/F , one has U([1+εA(1/F (x))]/F (x)) ≥
x when ε > 0 (resp. ≤ x when ε < 0), so

lim sup
x↑x?

x− U(1/F (x))

a(1/F (x))A(1/F (x))
≤ lim

x↑x?
U([1 + εA(1/F (x))]/F (x))− U(1/F (x))

a(1/F (x))A(1/F (x))
= ε

and a similar lower bound applies. Let ε→ 0 to complete the proof of the first convergence.
The second convergence follows because a(s)/(x? − U(s))→ −γ as s→∞.

A fine understanding of the asymptotic behavior of extreme expectiles requires an
asymptotic expansion of ϕ(1)(x) = E((X − x)1{X > x}) for x close to the right endpoint
x?. This is the focus of the below lemma, where we recall that more generally ϕ(κ)(x) =
E((X − x)κ1{X > x}).

Lemma A.2. Suppose that condition C2(γ, a, ρ, A) holds.

(i) Then, for any κ ≥ 1, and as x ↑ x?,

ϕ(κ)(x)

F (x)[a(1/F (x))]κ
= O(1).

(ii) As x ↑ x?,

ϕ(1)(x)

F (x)a(1/F (x))
=

1

1− γ

(
1 +

1

1− γ − ρ
A(1/F (x)) + o(|A(1/F (x))|)

)
.

(iii) As x ↑ x?,

ϕ(2)(x)

F (x)[a(1/F (x))]2

=
2

(1− γ)(1− 2γ)

(
1 +

3− 4γ − 2ρ

(1− γ − ρ)(1− 2γ − ρ)
A(1/F (x)) + o(|A(1/F (x))|)

)
.
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Proof of Lemma A.2. Statement (i) is shown by writing

ϕ(κ)(x)

F (x)[a(1/F (x))]κ
≤
(

x? − x
a(1/F (x))

)κ
=

(
−1

γ
× x? − x
x? − U(1/F (x))

)κ
(1 + o(1)) = O(1)

by Lemma A.1(i) and because a(s)/(x? − U(s))→ −γ as s→∞.

To show (ii) and (iii), recall that X
d
= U(Y ), where Y is a unit Pareto random variable.

Write ϕ(1)(x) = E((U(Y )− x)1{Y > 1/F (x)}). By Lemma A.1(i),

ϕ(1)(x) = E((U(Y )− U(1/F (x)))1{Y > 1/F (x)}) + o(F (x)a(1/F (x))|A(1/F (x))|)

=

∫ ∞
1/F (x)

(U(y)− U(1/F (x)))
dy

y2
+ o(F (x)a(1/F (x))|A(1/F (x))|)

=
1

s

∫ ∞
1

(U(sz)− U(s))
dz

z2
+ o(F (x)a(1/F (x))|A(1/F (x))|) (A.1)

with s = s(x) = 1/F (x)→∞ (as x ↑ x?). Define now a? and A? as

a?(s) =


a(s)

(
1− 1

ρ
A(s)

)
, ρ < 0,

a(s)

(
1− 1

γ
A(s)

)
, ρ = 0,

and A?(s) =


1

ρ
A(s), ρ < 0,

A(s), ρ = 0.

(A.2)

By the set of uniform inequalities in Theorem 2.3.6 of de Haan and Ferreira (2006),
there exist functions a0 and A0 such that A0 is asymptotically equivalent to A? and
a0(s)/a?(s) = 1 + o(|A?(s)|) as s→∞, and, for any ε > 0, the following inequality holds
for s large enough:

∀z ≥ 1,

∣∣∣∣ 1

A0(s)

(
U(sz)− U(s)

a0(s)
− zγ − 1

γ

)
−Ψγ,ρ(z)

∣∣∣∣ ≤ εzγ+ρ+ε,
where Ψγ,ρ(z) =


zγ+ρ − 1

γ + ρ
, ρ < 0,

1

γ
zγ log(z), ρ = 0.

(A.3)

Write then

1

s

∫ ∞
1

(U(sz)− U(s))
dz

z2
=
a0(s)

s

∫ ∞
1

zγ − 1

γ

dz

z2

+
a0(s)A0(s)

s

∫ ∞
1

1

A0(s)

(
U(sz)− U(s)

a0(s)
− zγ − 1

γ

)
dz

z2

and use (A.3) in conjunction with the dominated convergence theorem together with
straightforward calculations to get

1

s

∫ ∞
1

(U(sz)− U(s))
dz

z2

=
a0(s)

s

(
1

1− γ
+A0(s)

[
1

1− γ − ρ
1{ρ < 0}+

1

γ(1− γ)2
1{ρ = 0}+ o(1)

])
.

Combine this last identity with (A.1), (A.2) and a straightforward calculation to conclude
the proof of (ii). We turn to showing (iii). Start by writing

(X − x)2
d
= (U(Y )− U(1/F (x)))2

+ (U(1/F (x))− x)× (2(U(Y )− U(1/F (x))) + (U(1/F (x))− x))
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and use the results of the proof of (ii) along with Lemma A.1(i) to obtain

ϕ(2)(x) = E((U(Y )− U(1/F (x)))21{Y > 1/F (x)}) + o(F (x)[a(1/F (x))]2|A(1/F (x))|)

=

∫ ∞
1/F (x)

(U(y)− U(1/F (x)))2
dy

y2
+ o(F (x)[a(1/F (x))]2|A(1/F (x))|)

=
1

s

∫ ∞
1

(U(sz)− U(s))2
dz

z2
+ o(F (x)[a(1/F (x))]2|A(1/F (x))|) (A.4)

where again s = s(x) = 1/F (x)→∞ as x ↑ x?. Now

1

s

∫ ∞
1

(U(sz)− U(s))2
dz

z2
=

[a0(s)]
2

s

∫ ∞
1

(
zγ − 1

γ

)2 dz

z2

+ 2
[a0(s)]

2

s

∫ ∞
1

(
U(sz)− U(s)

a0(s)
− zγ − 1

γ

)
zγ − 1

γ

dz

z2

+
[a0(s)]

2

s

∫ ∞
1

(
U(sz)− U(s)

a0(s)
− zγ − 1

γ

)2 dz

z2
.

Combine (A.3) with the dominated convergence theorem and straightforward calculations
to find

1

s

∫ ∞
1

(U(sz)− U(s))2
dz

z2
=

[a0(s)]
2

s

(
2

(1− γ)(1− 2γ)

+A0(s)

[
2(2− 2γ − ρ)

(1− γ)(1− γ − ρ)(1− 2γ − ρ)
1{ρ < 0}+

2(2− 3γ)

γ(1− γ)2(1− 2γ)2
1{ρ = 0}+ o(1)

])
.

Conclude the proof by combining (A.2) with (A.4) and further straightforward calcula-
tions.

Inverting the limiting relationship (2.4), and providing an asymptotic expansion that
strengthens (2.5), requires in particular an asymptotic expansion of x? − ξτ . We do so in
the following lemma.

Lemma A.3. Suppose that condition C2(γ, a, ρ, A) holds with ρ < 0.

(i) The limit C = lims→∞ s
−γ(x? − U(s)) exists, is positive and finite, with

x? − U(s) = Csγ
(

1 +
γ

ρ(γ + ρ)
A(s) + o(|A(s)|)

)
and a(s) = −γCsγ

(
1 +

A(s)

ρ
+ o(|A(s)|)

)
as s→∞.

(ii) With the notation of (i), as x ↑ x?,

F (x) = C1/γ(x? − x)−1/γ
(

1 +
1

ρ(γ + ρ)
A(1/F (x)) + o(|A(1/F (x))|)

)
and F (x)a(1/F (x)) = −γC1/γ(x? − x)1−1/γ

(
1 +

ρ+ 1

ρ(γ + ρ)
A(1/F (x)) + o(|A(1/F (x))|)

)
.
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Proof of Lemma A.3. The main difficulty is to show (i). We start by the assertion on U .
By Remark B.3.7 in de Haan and Ferreira (2006) with (c1, c2) = (1, 0), the limit c =
lims→∞ s

−γa(s) ∈ (0,∞) exists and the function g defined by

g(s) = U(s)− cs
γ − 1

γ

satisfies

lim
s→∞

g(sz)− g(s)

a(s)A(s)
=

1

ρ
× zγ+ρ − 1

γ + ρ
, for all z > 0.

By Theorem B.2.2 on p.373 of de Haan and Ferreira (2006) applied to − sign(A)g, c′ =
lims→∞ g(s) exists and

lim
s→∞

c′ − g(s)

a(s)A(s)
= − 1

ρ(γ + ρ)
.

The identity c′ = lims→∞ g(s) yields

c′ = x? +
c

γ
and thus c′ − g(s) = x? − U(s) + c

sγ

γ
.

The above convergence and the convergence a(s)/(x? − U(s)) → −γ, as s → ∞, then
provide

x? − U(s) = −cs
γ

γ
− 1

ρ(γ + ρ)
a(s)A(s)(1 + o(1))

= −cs
γ

γ
+

γ

ρ(γ + ρ)
(x? − U(s))A(s)(1 + o(1)).

Set finally C = −c/γ to find

x? − U(s) = Csγ
(

1 +
γ

ρ(γ + ρ)
A(s) + o(|A(s)|)

)
, s→∞,

as required. To show the assertion on a, set h(s) = s−γa(s) and rewrite Equation (2.3.7)
on p.44 of de Haan and Ferreira (2006) as

lim
s→∞

h(sz)− h(s)

s−γa(s)A(s)
=
zρ − 1

ρ
, for all z > 0.

By Theorem B.2.2 on p.373 of de Haan and Ferreira (2006) again,

lim
s→∞

c− h(s)

s−γa(s)A(s)
= −1

ρ
.

The conclusion in (i) is now immediate since h(s) = s−γa(s) and c/C = −γ. The expan-
sions in (ii) are obtained by taking s = 1/F (x) in the expansion of x? − U(s) and then
using Lemma A.1(i).

The following lemma is the essential element in obtaining the joint asymptotic nor-
mality of the LAWS estimator and empirical quantile when the data generating process
is α−mixing. In the proof of this lemma and later on we shall use the following result:
under condition C2(γ, a, ρ, A), if xn, un ↑ x? satisfy (x? − xn)/(x? − un)→ 1, then

F (xn)

F (un)
→ 1 and

a(1/F (xn))

a(1/F (un))
→ 1. (A.5)

The first convergence is found by using the regular variation property of x 7→ F (x?−1/x).
The second one is then obtained by combining the convergence a(s)/(x? − U(s)) → −γ,
as s→∞, with the regular variation property of s 7→ x? − U(s).
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Lemma A.4. Assume that X satisfies condition C2(γ, a, ρ, A). Suppose that F is contin-
uous and that (Xt)t≥1 is a strictly stationary sequence of copies of X satisfying conditions
M and D. Let finally un ↑ x? be such that nF (un) → ∞, rnF (un) → 0, and xn, x

′
n ↑ x?

be such that (x? − xn)/(x? − un)→ 1 and (x? − x′n)/(x? − un)→ 1.

(i) If sn →∞ is such that sn = O(rn), one has

n

sn
Var

 sn∑
t=1

√
F (un)

n

(
1{Xt > xn}
P(X > xn)

− 1

)→ 1 + 2
∞∑
t=1

Rt(1, 1),

n

sn
Cov

 sn∑
t=1

√
F (un)

n

(
(Xt − xn)1{Xt > xn}
E((X − xn)1{X > xn})

− 1

)
,

sn∑
t=1

√
F (un)

n

(
1{Xt > x′n}
P(X > x′n)

− 1

)
→ 1 + (1− γ−1)

∫ 1

0

∞∑
t=1

[Rt(x
−1/γ , 1) +Rt(1, x

−1/γ)] dx, and

n

sn
Var

 sn∑
t=1

√
F (un)

n

(
(Xt − xn)1{Xt > xn}
E((X − xn)1{X > xn})

− 1

)
→ 2(1− γ)

1− 2γ
+ 2(1− γ−1)2

∫∫
(0,1]2

∞∑
t=1

Rt(x
−1/γ , y−1/γ) dx dy.

(ii) If the assumption sn → ∞ is dropped, then each of the three sequences in (i) stays
bounded.

Proof of Lemma A.4. We prove both statements for the third sequence because the proofs
for the first two sequences are simpler, and we start by preliminary calculations. By
Lemma A.2(ii),

n

sn
Var

 sn∑
t=1

√
F (un)

n

(
(Xt − xn)1{Xt > xn}
E((X − xn)1{X > xn})

− 1

)
= (1− γ)2 × 1 + o(1)

F (un)[a(1/F (un))]2
× 1

sn
Var

(
sn∑
t=1

(Xt − xn)1{Xt > xn}

)
. (A.6)

Then, combining Lemma A.2(ii) and (iii) with (A.5) and snF (un) = O(rnF (un))→ 0,

1

sn
Var

(
sn∑
t=1

(Xt − xn)1{Xt > xn}

)
= E((X − xn)21{X > xn})− sn [E((X − xn)1{X > xn})]2

+
2

sn

sn−1∑
t=1

(sn − t)E((X1 − xn)(Xt+1 − xn)1{X1 > xn, Xt+1 > xn})

=
2

(1− γ)(1− 2γ)
F (un)[a(1/F (un))]2(1 + o(1))

+ 2

∞∑
t=1

(
1− t

sn

)∫∫
[xn,x?)2

P(X1 > v,Xt+1 > v′) dv dv′1{t < sn}. (A.7)

It remains to control the integral in (A.7). Taking into account the continuity of F , the
change of variables (v, v′) = (xn− γ(x?− xn)w, xn− γ(x?− xn)w′) = (x?− (1 + γw)(x?−
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xn), x?−(1+γw′)(x?−xn)), convergence a(s)/(x?−U(s))→ −γ as s→∞, Lemma A.1(i)
and convergence (A.5) yield

1

F (un)[a(1/F (un))]2

∫∫
[xn,x?)2

P(X1 > v,Xt+1 > v′) dv dv′

=

∫∫
[0,−1/γ)2

1

F (un)
P(F (X1) ≤ F (x? − (1 + γw)(x? − xn)),

F (Xt+1) ≤ F (x? − (1 + γw′)(x? − xn))) dw dw′(1 + o(1)). (A.8)

Since x 7→ F (x? − 1/x) is regularly varying with index 1/γ, one has

∀w ∈ [0,−1/γ), lim
n→∞

F (x? − (1 + γw)(x? − xn))

F (xn)
= (1 + γw)−1/γ .

Then, we find, using Potter bounds (see Proposition B.1.9.5 on p.367 of de Haan and
Ferreira, 2006) and the 1-homogeneity of the function Rt in condition D (as a direct
consequence of its definition) along with (A.5) that, for any w,w′ ∈ [0,−1/γ) and t ≥ 1,

1

F (un)
P(F (X1) ≤ F (x? − (1 + γw)(x? − xn)), F (Xt+1) ≤ F (x? − (1 + γw′)(x? − xn)))

→ Rt((1 + γw)−1/γ , (1 + γw′)−1/γ) as n→∞. (A.9)

We now assume that sn → ∞ and we prove (i). Fix ε ∈ (0,−1/γ). From condition D,
Potter bounds and (A.5) again, we have, for n large enough,

1

F (un)
P(F (X1) ≤ F (x? − (1 + γw)(x? − xn)), F (Xt+1) ≤ F (x? − (1 + γw′)(x? − xn)))

≤ C
(
ρ(t)

√
(1 + γw)−1/γ−ε(1 + γw′)−1/γ−ε + F (un)(1 + γw)−1/γ−ε(1 + γw′)−1/γ−ε

)
(A.10)

for any t ≥ 1 and any w,w′ ∈ [0,−1/γ), where C is a positive constant. Notice that for
any t < sn,

ρ(t)
√

(1 + γw)−1/γ−ε(1 + γw′)−1/γ−ε + F (un)(1 + γw)−1/γ−ε(1 + γw′)−1/γ−ε

→ ρ(t)
√

(1 + γw)−1/γ−ε(1 + γw′)−1/γ−ε (A.11)

as n→∞, and
∞∑
t=1

∫∫
[0,−1/γ)2

(
ρ(t)

√
(1 + γw)−1/γ−ε(1 + γw′)−1/γ−ε

+ F (un)(1 + γw)−1/γ−ε(1 + γw′)−1/γ−ε
)

dw dw′ 1{t < sn}

→

(∫
[0,−1/γ)2

√
(1 + γw)−1/γ−ε dw

)2 ∞∑
t=1

ρ(t) <∞ (A.12)

by splitting the sum and using the assumption that snF (un) = O(rnF (un))→ 0. Combine
Theorem 1 in Pratt (1960) with (A.8), (A.9), (A.10), (A.11) and (A.12) to get

1

F (un)[a(1/F (un))]2

∞∑
t=1

(
1− t

sn

)∫∫
[xn,x?)2

P(X1 > v,Xt+1 > v′) dv dv′1{t < sn}

→
∫∫

[0,−1/γ)2

∞∑
t=1

Rt((1 + γw)−1/γ , (1 + γw′)−1/γ) dw dw′.
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Plug this into (A.7) and use a change of variables to complete the proof of (i). To show
(ii), write sn ≤ C ′rn where C ′ is a positive constant, and note that, by (A.7),

1

sn
Var

(
sn∑
t=1

(Xt − xn)1{Xt > xn}

)

≤ 2

(1− γ)(1− 2γ)
F (un)[a(1/F (un))]2(1 + o(1))

+ 2
∞∑
t=1

(
1− t

C ′rn

)∫∫
[xn,x?)2

P(X1 > v,Xt+1 > v′) dv dv′1{t < C ′rn}.

Follow then the proof of (i) and use (A.6) to obtain that the upper bound converges as
n→∞. The desired conclusion is now immediate.

Lemma A.5 below provides the asymptotic normality of the empirical survival function

Ên at intermediate levels, when the data generating process is at least α−mixing. The
asymptotic normality of the intermediate LAWS estimator will follow from that result.

Lemma A.5. Assume that X satisfies condition C2(γ, a, ρ, A). Suppose that F is contin-
uous and that (Xt)t≥1 is a strictly stationary sequence of copies of X satisfying conditions
M and D. Let finally un ↑ x? be such that nF (un) → ∞, rnF (un) → 0, and xn, x

′
n ↑ x?

be such that (x? − xn)/(x? − un)→ 1 and (x? − x′n)/(x? − un)→ 1.

(i) If there is δ > 0 such that rn(rn/
√
nF (un))δ → 0, then one has

√
nF (un)

(
ϕ̂
(1)
n (xn)

ϕ(1)(xn)
− 1,

F̂n(x′n)

F (x′n)
− 1

)
d−→ N (0,Σ(γ) + 2D(γ,R))

where the 2 × 2 symmetric matrices Σ(γ) and D(γ,R) are defined elementwise as
Σ11(γ) = 2(1− γ)/(1− 2γ), Σ12(γ) = Σ22(γ) = 1,

D11(γ,R) = (1− γ−1)2
∫∫

(0,1]2

∞∑
t=1

Rt(x
−1/γ , y−1/γ) dx dy

D12(γ,R) =
1

2
(1− γ−1)

∫ 1

0

∞∑
t=1

[Rt(x
−1/γ , 1) +Rt(1, x

−1/γ)] dx

and D22(γ,R) =
∞∑
t=1

Rt(1, 1).

(ii) If, choosing δ > 0 as in (i), one has E(|min(X, 0)|2+δ) <∞ and
∑

l≥1 l
2/δα(l) <∞,

then √
nF (un)

(
Ên(xn)

E(xn)
− 1,

F̂n(x′n)

F (x′n)
− 1

)
d−→ N (0,Σ(γ) + 2D(γ,R)).

If X is bounded, then in (ii) assumption
∑

l≥1 l
2/δα(l) <∞ can be weakened to

∑
l≥1 α(l) <

∞ and no integrability assumption on X is necessary.

If the Xi are in fact i.i.d. then both results hold with D(γ,R) = 0 under the sole assump-
tions that X satisfies condition C2(γ, a, ρ,A), un ↑ x? is such that nF (un) → ∞, and
xn, x

′
n ↑ x? are such that (x? − xn)/(x? − un)→ 1 and (x? − x′n)/(x? − un)→ 1, with the

extra requirement that E(|min(X, 0)|2) <∞ for (ii) only.
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Proof of Lemma A.5. (i) Pick (λ, µ) ∈ R2 \ {(0, 0)}. Clearly√
nF (un)

{
λ

(
ϕ̂
(1)
n (xn)

ϕ(1)(xn)
− 1

)
+ µ

(
F̂n(x′n)

F (x′n)
− 1

)}

=
n∑
t=1

λ×

√
F (un)

n

(
(Xt − xn)1{Xt > xn}
E((X − xn)1{X > xn})

− 1

)
+ µ×

√
F (un)

n

(
1{Xt > x′n}
P(X > x′n)

− 1

)

=

n∑
t=1

Xn,t(λ, µ)

is a mean of identically distributed and centered random variables for every n. We start
by the case when (Xt)t≥1 is an α−mixing sequence. We aim to apply Lemma C.7(ii)
in Davison et al. (2023), of which we check each condition. By Lemma A.4, and using
condition M,

n

rn
Var

(
ln∑
t=1

Xn,t(λ, µ)

)
= O(ln/rn)→ 0,

Var

n−rnbn/rnc∑
t=1

Xn,t(λ, µ)

 = O((n− rnbn/rnc)/n) = O(rn/n)→ 0,

lim
n→∞

n

rn
Var

(
rn∑
t=1

Xn,t(λ, µ)

)
= λ2(Σ11(γ) + 2D11(γ,R)) + 2λµ(Σ12(γ) + 2D12(γ,R))

+ µ2(Σ22(γ) + 2D22(γ,R)).

Besides, for any ε > 0,

n

rn
E

∣∣∣∣∣
rn∑
t=1

Xn,t(λ, µ)

∣∣∣∣∣
2

1

{∣∣∣∣∣
rn∑
t=1

Xn,t(λ, µ)

∣∣∣∣∣ > ε

} ≤ ε−δ × n

rn
E

∣∣∣∣∣
rn∑
t=1

Xn,t(λ, µ)

∣∣∣∣∣
2+δ


= O
(
nr1+δn E(|Xn,1(λ, µ)|2+δ)

)
= O

rn
 rn√

nF (un)

δ


by the Hölder inequality and Lemma A.2(i) and (ii). This converges to 0 by assumption,
so Lemma C.7(ii) in Davison et al. (2023) applies and yields the desired conclusion in
the α−mixing framework thanks to the Cramér-Wold device. When the Xi are i.i.d., one
may apply the standard Lyapunov central limit theorem (Billingsley, 1995, Theorem 27.3
p.362) instead: first of all

nVar(Xn,1(λ, µ))→ λ2
2(1− γ)

1− 2γ
+ 2λµ+ µ2

by Lemma A.2, because of (A.5). Then, by the Hölder inequality and Lemma A.2(i) and
(ii),

nE|Xn,1(λ, µ)|4 = O

(
n

(
F (un)

n

)2
(

ϕ(4)(xn)

[ϕ(1)(xn)]4
+

1

[F (un)]3

))
= O

(
1

nF (un)

)
.
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This converges to 0, so the Lyapunov central limit theorem applies and the proof of (i) is
complete.

To show (ii), write

log
Ên(xn)

E(xn)
= log

ϕ̂
(1)
n (xn)

ϕ(1)(xn)
− log

(
2ϕ̂

(1)
n (xn) + xn −Xn

2ϕ(1)(xn) + xn − E(X)

)
.

Since

2ϕ̂
(1)
n (xn) + xn −Xn

2ϕ(1)(xn) + xn − E(X)
− 1 =

2(ϕ̂
(1)
n (xn)− ϕ(1)(xn))− (Xn − E(X))

2ϕ(1)(xn) + xn − E(X)

= OP

 ϕ(1)(xn)√
nF (un)

×
√
nF (un)

(
ϕ̂
(1)
n (xn)

ϕ(1)(xn)
− 1

)+ OP

(
1√
n
×
√
n(Xn − E(X))

)
,

it follows that

2ϕ̂
(1)
n (xn) + xn −Xn

2ϕ(1)(xn) + xn − E(X)
− 1 = oP

 1√
nF (un)


by Lemma A.2(i) and Corollary 1.2 on p.10 of Rio (2017) along with (1.25a) and (1.25b) on
p.12 therein, when the Xi are α−mixing and under the assumptions E(|min(X, 0)|2+δ) <
∞ and

∑
l≥1 l

2/δα(l) < ∞. [When X is also bounded, condition
∑

l≥1 α(l) < ∞ is
sufficient, see (1.24) on p.11 of Rio (2017).] In the case when the Xi are i.i.d., the usual
central limit theorem can be applied instead in order to control Xn − E(X), under the
condition E(|min(X, 0)|2) <∞. Hence, in both cases, the equality

log
Ên(xn)

E(xn)
= log

ϕ̂
(1)
n (xn)

ϕ(1)(xn)
+ oP

 1√
nF (un)


from which (ii) follows by applying (i).

A.2 Proofs of the main results

Proof of Proposition 1. The starting point is to combine Equation (2.2) and Lemma A.2,
in order to obtain

x? − E(X)− (x? − ξτ )

=
2τ − 1

1− τ
× F (ξτ )a(1/F (ξτ ))

1− γ

(
1 +

1

1− γ − ρ
A(1/F (ξτ )) + o(|A(1/F (ξτ ))|)

)
as τ ↑ 1. In other words,

F (ξτ )a(1/F (ξτ ))

1− τ
= (1− γ)[(x? − E(X))− (x? − ξτ )]× (1− 2(1− τ))−1

×
(

1− 1

1− γ − ρ
A(1/F (ξτ )) + o(|A(1/F (ξτ ))|)

)
as τ ↑ 1. (A.13)
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Then, by Lemma A.3(i) with s = 1/F (qτ ) and Lemma A.3(ii) with s = 1/F (ξτ ) combined
with Lemma A.1, one has the alternative expansion

F (ξτ )a(1/F (ξτ ))

1− τ
= −γ (x? − ξτ )1−1/γ

(x? − qτ )−1/γ

(
1 +

ρ+ 1

ρ(γ + ρ)
A(1/F (ξτ )) + o(|A(1/F (ξτ ))|)

)
×
(

1− 1

ρ(γ + ρ)
A((1− τ)−1) + o(|A((1− τ)−1)|)

)
as τ ↑ 1.

A consequence of Equation (2.3) is that 1/F (ξτ ) = o((1 − τ)−1). Therefore, since |A| is
regularly varying with index ρ < 0, one has A((1 − τ)−1) = o(|A(1/F (ξτ ))|), from which
it follows that

F (ξτ )a(1/F (ξτ ))

1− τ
= −γ (x? − ξτ )1−1/γ

(x? − qτ )−1/γ

(
1 +

ρ+ 1

ρ(γ + ρ)
A(1/F (ξτ )) + o(|A(1/F (ξτ ))|)

)
(A.14)

as τ ↑ 1. Combine (A.13) and (A.14) to find

(x? − ξτ )1−1/γ

(x? − qτ )−1/γ
= (x? − E(X))(1− γ−1)

[
1− 1

x? − E(X)
(x? − ξτ )

]
× (1− 2(1− τ))−1

×
(

1− 1− γ
ρ(γ + ρ)(1− γ − ρ)

A(1/F (ξτ )) + o(|A(1/F (ξτ ))|)
)

as τ ↑ 1.

A consequence of Equation (2.4) is that 1− τ = o(x? − ξτ ). Hence

(x? − ξτ )1−1/γ

(x? − qτ )−1/γ
= (x? − E(X))(1− γ−1)

[
1− 1

x? − E(X)
(x? − ξτ ) + o(x? − ξτ )

]
×
(

1− 1− γ
ρ(γ + ρ)(1− γ − ρ)

A(1/F (ξτ )) + o(|A(1/F (ξτ ))|)
)

as τ ↑ 1.

(A.15)

Combine the above expansion with Equations (2.4) and (2.5) and the regular variation
property of |A| to get

(x? − ξτ )1−1/γ

(x? − qτ )−1/γ

= (x? − E(X))(1− γ−1)

×
[
1− (x? − E(X))−1/(1−γ)(1− γ−1)−γ/(1−γ)(x? − qτ )1/(1−γ)(1 + o(1))

]
×

(
1− (1− γ)[(x? − E(X))(1− γ−1)]−ρ/(1−γ)

ρ(γ + ρ)(1− γ − ρ)
A((1− τ)−1(x? − qτ )1/(1−γ))(1 + o(1))

)
as τ ↑ 1. Then clearly

x? − ξτ = [(x? − E(X))(1− γ−1)]−γ/(1−γ)(x? − qτ )1/(1−γ)

×
[
1− [(x? − E(X))(1− γ−1)]−1/(1−γ)(x? − qτ )1/(1−γ)(1 + o(1))

]
×

(
1 +

γ[(x? − E(X))(1− γ−1)]−ρ/(1−γ)

ρ(γ + ρ)(1− γ − ρ)
A((1− τ)−1(x? − qτ )1/(1−γ))(1 + o(1))

)
as τ ↑ 1, which is the first desired asymptotic expansion. The second statement is then
a direct consequence of a combination of Lemma A.3(i), for s = (1 − τ)−1, with this
asymptotic expansion.
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Proof of Theorem 1. Fix u, v ∈ R. To prove the desired joint convergence, it is sufficient
to examine the convergence of the sequence

P


√
nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn) ≤ u,

√
nF (ξτn)

a(1/F (ξτn))
(q̂πn − qπn) ≤ v

 .

First of all, since a(s)/(x? − U(s)) → −γ as s → ∞, and s 7→ x? − U(s) is regularly
varying, the assumption F (ξτn)/(1− πn)→ 1 yields√

nF (ξτn)

a(1/F (ξτn))
=

√
n(1− πn)

a((1− πn)−1)
(1 + o(1)).

As a result, it is equivalent to analyze the asymptotic behavior of

P


√
nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn) ≤ u,

√
n(1− πn)

a((1− πn)−1)
(q̂πn − qπn) ≤ v

 .

The key observation in order to do so is that, for fixed u, v ∈ R, if

xn = xn(u) = ξτn + u
a(1/F (ξτn))√

nF (ξτn)
and x′n = x′n(v) = qπn + v

a((1− πn)−1)√
n(1− πn)

then, following a simple calculation,

P


√
nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn) ≤ u,

√
n(1− πn)

a((1− πn)−1)
(q̂πn − qπn) ≤ v


= P

(√
nF (ξτn)

(
Ên(xn)

E(xn)
− 1

)
≤
√
nF (ξτn)

(
E(ξτn)

E(xn)
− 1

)
,

√
nF (ξτn)

(
F̂n(x′n)

F (x′n)
− 1

)
≤
√
nF (ξτn)

(
1− πn
F (x′n)

− 1

))
(A.16)

because ξτn (resp. ξ̂τn) is the τnth quantile of the continuous distribution function E
(resp. the distribution function Ên), and likewise qπn (resp. q̂πn) is the πnth quantile
of the distribution function F (resp. the distribution function F̂n). We first handle the
right-hand sides of both of the inequalities in (A.16). Note that

x? − xn
x? − ξτn

− 1 = −ua(1/F (ξτn))

x? − ξτn
× 1√

nF (ξτn)
= O

 1√
nF (ξτn)

→ 0 (A.17)

using the convergence a(s)/(x?−U(s))→ −γ as s→∞, and Lemma A.1(i). Note further
that the function E is absolutely continuous on any compact interval, because

• The function x 7→ ϕ(1)(x) =
∫∞
x F (y) dy is Lipschitz continuous,

• The denominator x 7→ E(|X − x|) = 2ϕ(1)(x) + x − E(X) of E defines a Lipschitz
continuous function that is bounded away from zero.
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A straightforward calculation shows that E has Lebesgue derivative

E
′
(x) = −ϕ

(1)(x) + F (x)(x− E(X))

(2ϕ(1)(x) + x− E(X))2
.

In particular, it comes as a consequence of Lemma A.2(ii) that −E′(x)/F (x) → 1/(x? −
E(X)) as x ↑ x?. Then√

nF (ξτn)

(
E(ξτn)

E(xn)
− 1

)
=

√
nF (ξτn)

∫ ξτn

xn

E
′
(y)

E(xn)
dy

=

√
nF (ξτn)

∫ xn

ξτn

(1− γ)F (y)

F (xn)a(1/F (xn))
dy(1 + o(1))

= (1− γ)×
√
nF (ξτn)

xn − ξτn
a(1/F (ξτn))

(1 + o(1))

→ (1− γ)u (A.18)

as n→∞, by combining (A.5) with Lemma A.2(ii) and (A.17). Besides

x? − x′n
x? − ξτn

− 1 =

(
x? − qπn
x? − ξτn

− 1

)
− va((1− πn)−1)

x? − qπn
× 1 + o(1)√

nF (ξτn)
→ 0 (A.19)

because of the convergence (x?−qπn)/(x?−ξτn)→ 1, granted by the assumption F (ξτn)/(1−
πn) → 1, the regular variation property of s 7→ x? − U(s) and convergence a(s)/(x? −
U(s))→ −γ as s→∞, and Lemma A.1(i). Then√

nF (ξτn)

(
1− πn
F (x′n)

− 1

)
=

√
nF (ξτn)

(
F (qπn)

F (x′n)
− 1

)
+

√
nF (ξτn)

(
1− πn
F (qπn)

− 1

)
F (qπn)

F (x′n)

=

√
nF (ξτn)

(
F (qπn)

F (x′n)
− 1

)
+ o(1)

because of Lemma A.1(ii), the asymptotic equivalence between F (qπn), F (ξτn) and F (x′n)

due (in part) to (A.19), assumption
√
nF (ξτn)A(1/F (ξτn)) = O(1) and the regular vari-

ation property of |A|. Note now that the convergence in Theorem 2.3.8 on p.48 of de Haan
and Ferreira (2006), which is equivalent to the convergence granted by condition C2(γ, a, ρ, A),
is actually locally uniform by Theorem B.3.19 on p.401 of de Haan and Ferreira (2006),
and therefore√

nF (ξτn)

(
F (qπn)

F (x′n)
− 1

)
=

√
nF (ξτn)

(
F (qπn)

F (qπn + v a((1− πn)−1)/
√
n(1− πn))

− 1

)
→ v

using the asymptotic equivalence between 1− πn, F (qπn) and F (ξτn). Conclude that√
nF (ξτn)

(
1− πn
F (x′n)

− 1

)
→ v. (A.20)
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Combine (A.16), (A.18) and (A.20) to get

P


√
nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn) ≤ u,

√
n(1− πn)

a((1− πn)−1)
(q̂πn − qπn) ≤ v


= P


√
nF (ξτn)

1− γ

(
Ên(xn)

E(xn)
− 1

)
+ o(1) ≤ u,

√
nF (ξτn)

(
F̂n(x′n)

F (x′n)
− 1

)
+ o(1) ≤ v

 .

Use Lemma A.5(ii) (this is allowed because of (A.17) and (A.19)) to conclude the proof.

Proof of Corollary 2. Fix v ∈ R. The proof relies on the identity{√
nF (ξτn)

(
F̂n(ξ̂τn)

F (ξτn)
− 1

)
≤ v

}
= {q̂πn ≤ ξ̂τn}

where

πn = πn(v) = 1− F (ξτn)

1 +
v√

nF (ξτn)

 .

We therefore investigate the asymptotic behavior of P(q̂πn ≤ ξ̂τn). To this end we write

{q̂πn ≤ ξ̂τn}

=


√
nF (ξτn)

a(1/F (ξτn))
(q̂πn − qπn)−

√
nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn) ≤

√
nF (ξτn)

a(1/F (ξτn))
(ξτn − qπn)

 .

Now

ξτn − qπn = −

U
 1

F (ξτn)

1 +
v√

nF (ξτn)

−1− U ( 1

F (ξτn)

)+ o

a(1/F (ξτn))√
nF (ξτn)


by Lemma A.1(i) and condition

√
nF (ξτn)A(1/F (ξτn)) = O(1). Since condition C2(γ, a, ρ,A)

holds locally uniformly in z, a Taylor expansion and condition
√
nF (ξτn)A(1/F (ξτn)) =

O(1) yield √
nF (ξτn)

a(1/F (ξτn))
(ξτn − qπn)→ v.

As a consequence

{q̂πn ≤ ξ̂τn} =


√
nF (ξτn)

a(1/F (ξτn))
(q̂πn − qπn)−

√
nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn) + o(1) ≤ v

 .

The conclusion follows by applying Theorem 1.
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Proof of Theorem 2. Recall from Equation (2.4) that 1− τn = o(F (ξτn)) and write√
n(1− τn)

a(1/F (ξτn))
(ξ̂?1−pn − ξ1−pn)

=

√
n(1− τn)

a(1/F (ξτn))
(ξ̂τn − ξτn)

+
√
n(1− τn)

(
σ̂n

a(1/F (ξτn))
− 1

)
((1− τn)/pn)γ̂n/(1−γ̂n) − 1

γ̂n

+
√
n(1− τn)

(
((1− τn)/pn)γ̂n/(1−γ̂n) − 1

γ̂n
− ((1− τn)/pn)γ/(1−γ) − 1

γ

)

+
√
n(1− τn)

(
((1− τn)/pn)γ/(1−γ) − (F (ξτn)/F (ξ1−pn))γ

γ

)

−
√
n(1− τn)

(
ξ1−pn − ξτn
a(1/F (ξτn))

− (F (ξτn)/F (ξ1−pn))γ − 1

γ

)
(A.21)

=
√
n(1− τn)

(
((1− τn)/pn)γ̂n/(1−γ̂n) − 1

γ̂n
− ((1− τn)/pn)γ/(1−γ) − 1

γ

)

+
√
n(1− τn)

(
((1− τn)/pn)γ/(1−γ) − (F (ξτn)/F (ξ1−pn))γ

γ

)
+ oP(1) (A.22)

by Theorem 1 (for the control of the first term in (A.21)), the assumption on σ̂n, the
convergence of γ̂n to γ < 0, the assumption (1 − τn)/pn → ∞ (for the second term
in (A.21)), Lemma A.1 and the arguments leading to the control of the nonrandom bias
term IV in the proof of Theorem 4.3.1 on p.134 of de Haan and Ferreira (2006) (for the
fifth term in (A.21)). Now

((1− τn)/pn)γ̂n/(1−γ̂n) − 1

γ̂n
− ((1− τn)/pn)γ/(1−γ) − 1

γ

=
((1− τn)/pn)γ̂n/(1−γ̂n) − ((1− τn)/pn)γ/(1−γ)

γ̂n
+ [((1− τn)/pn)γ/(1−γ) − 1](γ̂−1n − γ−1)

=
((1− τn)/pn)γ/(1−γ)

γ
((1− τn)/pn)γ̂n/(1−γ̂n)−γ/(1−γ) − 1)(1 + oP(1)) +

γ̂n − γ
γ2

(1 + oP(1))

=
γ̂n − γ
γ2

(1 + oP(1)) + OP

(
((1− τn)/pn)γ/(1−γ) log((1− τn)/pn)√

n(1− τn)

)

=
γ̂n − γ
γ2

+ oP

(
1√

n(1− τn)

)
(A.23)

because γ̂n is
√
n(1− τn)−consistent and x−c log x→ 0 as x→∞ for any c > 0. Finally,

combining Lemma A.3 with Corollary 1 results in

F (ξτn)

F (ξ1−pn)
=

(
1− τn
pn

)1/(1−γ) (
1 + O((x? − qτn)1/(1−γ)) + O(|A((1− τn)−1)|)

)
(A.24)

because 1/F (ξτ ) = o((1− τ)−1) as τ ↑ 1, and therefore A((1− τn)−1) = o(|A(1/F (ξτn))|).
Combine (A.22), (A.23) and (A.24) to complete the proof.
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Proof of Theorem 3. We decompose ξ̃?1−pn − ξ1−pn in the following way:

ξ̃?1−pn − ξ1−pn
= x̂? − x? − (x̂? − ξ̃?1−pn − (x? − ξ1−pn))

= x̂? − x?

− {[(x̂? −Xn)(1− γ̂−1n )]−γ̂n/(1−γ̂n) − [(x? − E(X))(1− γ−1)]−γ/(1−γ)]}(x̂? − q̂?1−pn)1/(1−γ̂n)

− [(x? − E(X))(1− γ−1)]−γ/(1−γ)[(x̂? − q̂?1−pn)1/(1−γ̂n) − (x? − q1−pn)1/(1−γ)]

+ (x? − ξ1−pn)− [(x? − E(X))(1− γ−1)]−γ/(1−γ)(x? − q1−pn)1/(1−γ).

By Proposition 1 and Lemma A.3(i), it follows that

ξ̃?1−pn − ξ1−pn
= x̂? − x?

− {[(x̂? −Xn)(1− γ̂−1n )]−γ̂n/(1−γ̂n) − [(x? − E(X))(1− γ−1)]−γ/(1−γ)]}(x̂? − q̂?1−pn)1/(1−γ̂n)

− [(x? − E(X))(1− γ−1)]−γ/(1−γ)[(x̂? − q̂?1−pn)1/(1−γ̂n) − (x? − q1−pn)1/(1−γ)]

+ O(p−γ/(1−γ)n (p−γ/(1−γ)n + |A(p−1/(1−γ)n )|)). (A.25)

We control each of the three terms in (A.25). By the Skorokhod lemma, up to changing the
probability space and with appropriate versions of the estimators involved, Theorem 4.5.1
on p.146 of de Haan and Ferreira (2006) provides

x̂? − x? =
a(n/k)√

k
× 1

γ2

(
Γ + γ2B − γΛ− λ γ

γ + ρ
+ oP(1)

)
. (A.26)

Writing

[(x̂? −Xn)(1− γ̂−1n )]−γ̂n/(1−γ̂n) − [(x? − E(X))(1− γ−1)]−γ/(1−γ)

=

[(
x̂? −Xn

x? − E(X)

)−γ̂n/(1−γ̂n)
− 1

]
[(x? − E(X))(1− γ̂−1n )]−γ̂n/(1−γ̂n)

+ [(x? − E(X))(1− γ̂−1n )]−γ̂n/(1−γ̂n) − [(x? − E(X))(1− γ−1)]−γ/(1−γ),

and combining (A.26) with the assumption that
√
k(Xn − E(X))

d−→ 0 and the delta-
method, we find

[(x̂? −Xn)(1− γ̂−1n )]−γ̂n/(1−γ̂n) − [(x? − E(X))(1− γ−1)]−γ/(1−γ) = OP

(
1√
k

)
. (A.27)

It follows from our assumptions that log(k/(npn))/
√
k = O(log(n)/

√
k)→ 0, and therefore

x̂? − q̂?1−pn = −â(n/k)
(k/(npn))γ̂n

γ̂n

= −a(n/k)
(k/(npn))γ

γ

(
1 +

log(k/(npn))√
k

Γ + oP

(
log n√
k

))
. (A.28)

Recalling that, by Lemma A.3(i), (k/n)γa(n/k)→ −γC <∞ with C = lims→∞ s
−γ(x? −

U(s)), it follows that

(x̂? − q̂?1−pn)1/(1−γ̂n)−1/(1−γ)

=

(
−a(n/k)

(k/(npn))γ

γ

)1/(1−γ̂n)−1/(1−γ)(
1 + oP

(
log n√
k

))
= 1− log(pn)√

k
× γ

(1− γ)2
(Γ + oP(1)) + oP

(
log n√
k

)
.

16



Hence the asymptotic expansion

(x̂? − q̂?1−pn)1/(1−γ̂n)

=

(
−a(n/k)

(k/(npn))γ

γ

)1/(1−γ)

×
(

1 +
log(k/(npn))√

k
× 1

1− γ
Γ− log(pn)√

k
× γ

(1− γ)2
Γ + oP

(
log n√
k

))
=

(
−a(n/k)

(k/(npn))γ

γ

)1/(1−γ)
(

1 +
log(k/(np

1/(1−γ)
n ))√
k

× 1

1− γ
Γ + oP

(
log n√
k

))
(A.29)

= OP

((
−a(n/k)

(k/(npn))γ

γ

)1/(1−γ)
)

(A.30)

where the convergence (k/n)γa(n/k)→ −γC <∞ was used. Combining (A.27) and (A.30)
results in particular in

{[(x̂? −Xn)(1− γ̂−1n )]−γ̂n/(1−γ̂n) − [(x? − E(X))(1− γ−1)]−γ/(1−γ)]}(x̂? − q̂?1−pn)1/(1−γ̂n)

= oP

((
−a(n/k)

(k/(npn))γ

γ

)1/(1−γ) log n√
k

)
. (A.31)

Using Lemma A.3(i) and the convergence (k/n)γa(n/k)→ −γC <∞ again in conjunction
with the regular variation property of |A|,

x? − q1−pn =
x? − q1−pn
a(1/pn)

a(1/pn)

a(n/k)
a(n/k)

= −a(n/k)
(k/(npn))γ

γ

(
1− 1√

k
× λ

ρ
+ o

(
1√
k

))
(A.32)

and so

(x? − q1−pn)1/(1−γ) =

(
−a(n/k)

(k/(npn))γ

γ

)1/(1−γ)(
1− 1√

k
× λ

ρ(1− γ)
+ o

(
1√
k

))
.

(A.33)
Combine (A.29) and (A.33) to obtain

(x̂? − q̂?1−pn)1/(1−γ̂n) − (x? − q1−pn)1/(1−γ)

=

(
−a(n/k)

(k/(npn))γ

γ

)1/(1−γ)
(

log(k/(np
1/(1−γ)
n ))√
k

Γ

1− γ
+ oP

(
log n√
k

))
. (A.34)

Finally, combine (A.26), (A.31) and (A.34) to complete the proof.

Proof of Corollary 3. Under the assumptions of the result, and by Lemma A.3(i), a(n/k)

is asymptotically proportional to n(1−χ)γ , and [a(n/k)(k/(npn))γ ]1/(1−γ) log(np
1/(1−γ)
n /k)

is asymptotically proportional to nωγ/(1−γ) log n. The assumption χ < 1 − ω/(1 − γ)
therefore ensures

a(n/k)√
k

= o

(
[a(n/k)(k/(npn))γ ]1/(1−γ) log(np

1/(1−γ)
n /k)√

k

)
.
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Moreover, it is a consequence of Proposition B.1.9.1 on p.366 of de Haan and Ferreira
(2006) that |A(s)| = o(sρ+ε) as s→∞ for any ε > 0, so A(nω/(1−γ)) = o(nωρ/(1−γ)+δ) for
any δ > 0. Hence, using the assumption χ < 2ωmin(−γ,−ρ)/(1− γ), the convergence

√
k

[a(n/k)(k/(npn))γ ]1/(1−γ) log(np
1/(1−γ)
n /k)

× nωγ/(1−γ)(nωγ/(1−γ) + |A(nω/(1−γ))|)→ 0.

Apply Theorem 3 to complete the proof.

Proof of Corollary 4. It was shown in the proof of Corollary 3 that a(n/k) is asymptoti-

cally proportional to n(1−χ)γ , and [a(n/k)(k/(npn))γ ]1/(1−γ) log(np
1/(1−γ)
n /k) is asymptot-

ically proportional to nωγ/(1−γ) log n. Under the assumptions of the result,

[a(n/k)(k/(npn))γ ]1/(1−γ) log(np
1/(1−γ)
n /k)√

k
= o

(
a(n/k)√

k

)
.

Apply Theorem 3 to complete the proof.

Proof of Proposition 2. Write

log
1− τ̂n
1− τn

= log

(
x̂? − q̂?1−pn
x? − q1−pn

)
− log

(
x̂? −Xn

x? − E(X)

)
− log

(
1− γ̂−1n
1− γ−1

)
+ log

(
x? − q1−pn

(x? − E(X))(1− γ−1)
pn

1− τn

)
. (A.35)

Note that condition χ < min(−2ωγ,−2ρ/(1−2ρ)) ensures in particular that
√
kA(n/k)→

0. Combine (A.26), (A.28), (A.32), convergence
√
k(Xn − E(X))

P−→ 0 and the delta-
method to get

√
k

log(k/(npn))

(
log

(
x̂? − q̂?1−pn
x? − q1−pn

)
− log

(
x̂? −Xn

x? − E(X)

)
− log

(
1− γ̂−1n
1− γ−1

))
=

√
k

log(k/(npn))
log

(
x̂? − q̂?1−pn
x? − q1−pn

)
+ oP(1)

d−→ Γ. (A.36)

Combine now Proposition 1 and Lemma A.3 with the relationship 1 − τ = o(x? − ξτ ) as
τ ↑ 1 (coming as a consequence of Equation (2.4)) to get

(x? − ξτ )F (ξτ )

1− τ
= (x? − E(X))(1− γ−1)(1 + O(x? − ξτ ) + O(|A(1/F (ξτ ))|)) as τ ↑ 1.

With τ = τn such that ξτ = ξτn = q1−pn and using Lemma A.1(ii), we find

(x? − q1−pn)

(x? − E(X))(1− γ−1)
pn

1− τn
= 1 + O(x? − q1−pn) + O(|A(1/pn)|) as n→∞. (A.37)

Assumptions χ + ω − 1 > 0 and χ < min(−2ωγ,−2ρ/(1 − 2ρ)) ensure that A(1/pn) =
o(|A(n/k)|) and

√
k(x?− q1−pn)→ 0. Plug (A.36) and (A.37) into (A.35) to complete the

proof.

Proof of Theorem 4. We know that τ 7→ ξ̂τ is the inverse of the distribution function

Ên = 1− Ên defined by

Ên(x) =
ϕ̂n(x)

2ϕ̂n(x) + x− 1
n

∑n
t=1 ε̂

(n)
t

, where ϕ̂n(x) = ϕ̂(1)
n (x) =

1

n

n∑
t=1

(ε̂
(n)
t −x)1{ε̂(n)t > x}.
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The conclusion of the proof of Theorem 1 contains the fact that for any fixed u ∈ R,

P


√
nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn) ≤ u


= P

(√
nF (ξτn)

(
Ên(xn)

E(xn)
− 1

)
≤
√
nF (ξτn)

(
E(ξτn)

E(xn)
− 1

))

= P


√
nF (ξτn)

1− γ

(
Ên(xn)

E(xn)
− 1

)
+ o(1) ≤ u

 ,

where

xn = xn(u) = ξτn + u
a(1/F (ξτn))√

nF (ξτn)
.

Define also the unfeasible, innovation-based LAWS estimator of ξτn(ε) by

ξ̃τn = arg min
θ∈R

n∑
t=1

ητn(εt − θ).

Then τ 7→ ξ̃τ is the inverse of the distribution function Ẽn = 1− Ẽn given by

Ẽn(x) =
ϕ̃n(x)

2ϕ̃n(x) + x− εn
, where ϕ̃n(x) = ϕ̃(1)

n (x) =
1

n

n∑
t=1

(εt − x)1{εt > x}

and εn is the sample mean of the εt, 1 ≤ t ≤ n. We are going to prove that if xn = xn(u)
as above, then √

nF (ξτn)

∣∣∣∣∣Ên(xn)− Ẽn(xn)

E(xn)

∣∣∣∣∣ P−→ 0. (A.38)

This will result in the fact that, for any fixed u ∈ R,

P


√
nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn) ≤ u

 = P


√
nF (ξτn)

1− γ

(
Ẽn(xn)

E(xn)
− 1

)
+ oP(1) ≤ u

 ,

from which the conclusion will immediately follow by applying Lemma A.5(ii) to the
i.i.d. sequence (εt).

Clearly

∣∣∣Ên(xn)− Ẽn(xn)
∣∣∣ =

∣∣∣∣∣ ϕ̂n(xn)

2ϕ̂n(xn) + xn − 1
n

∑n
t=1 ε̂

(n)
t

− ϕ̃n(xn)

2ϕ̃n(xn) + xn − εn

∣∣∣∣∣
≤ ϕ̂n(xn)

2|ϕ̂n(xn)− ϕ̃n(xn)|+ | 1n
∑n

t=1 ε̂
(n)
t − εn|

(2ϕ̂n(xn) + xn − 1
n

∑n
t=1 ε̂

(n)
t )(2ϕ̃n(xn) + xn − εn)

+
|ϕ̂n(xn)− ϕ̃n(xn)|
2ϕ̃n(xn) + xn − εn

. (A.39)
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Our assumption on |ε̂(n)t − εt| immediately entails∣∣∣∣∣ 1n
n∑
t=1

ε̂
(n)
t − εn

∣∣∣∣∣ ≤ max
1≤t≤n

|ε̂(n)t − εt| = oP

a(1/F (ξτn))√
nF (ξτn)

 . (A.40)

In particular,

1

n

n∑
t=1

ε̂
(n)
t

P−→ 0 (A.41)

from the law of large numbers and the fact that a(x)→ 0 as x ↑ e?. Besides

|ϕ̂n(xn)− ϕ̃n(xn)| ≤ 1

n

n∑
t=1

|ε̂(n)t − εt|1{εt > xn}

+
1

n

n∑
t=1

|ε̂(n)t − xn|
∣∣∣1{ε̂(n)t > xn} − 1{εt > xn}

∣∣∣ . (A.42)

Denoting the empirical survival function of the εt by F̃n, we obviously have

1

n

n∑
t=1

|ε̂(n)t − εt|1{εt > xn} ≤ F̃n(xn) max
1≤t≤n

|ε̂(n)t − εt| = oP

F (ξτn)a(1/F (ξτn))√
nF (ξτn)

 (A.43)

using our assumption on |ε̂(n)t − εt|, along with the Chebyshev inequality showing that

F̃n(xn)/F (xn) = 1 + oP(1) and the asymptotic equivalence between F (xn) and F (ξτn)
due to a combination of (A.5) with (A.17) applied to the distribution of ε. Note then

that, using again our assumption on |ε̂(n)t − εt|, one may define by induction a sequence of
increasing integers Nk, for k ≥ 1, such that for any n > Nk,

P


√
nF (ξτn)

a(1/F (ξτn))
max
1≤t≤n

|ε̂(n)t − εt| >
1

k

 ≤ 1

2k
.

Setting δn = 1/k when n ∈ {Nk + 1, . . . , Nk+1} results in a nonrandom positive sequence
(δn) converging to 0 and such that the event

An =


√
nF (ξτn)

a(1/F (ξτn))
max
1≤t≤n

|ε̂(n)t − εt| ≤ δn


has probability arbitrarily close to 1 as n→∞. On An,

1

n

n∑
t=1

|ε̂(n)t − xn|
∣∣∣1{ε̂(n)t > xn} − 1{εt > xn}

∣∣∣
≤ 1

n

n∑
t=1

|ε̂(n)t − xn| (1{εt > xn,−} − 1{εt > xn,+})

≤ 1

n

n∑
t=1

(|ε̂(n)t − εt|+ |εt − xn|) (1{εt > xn,−} − 1{εt > xn,+})

≤ 2δn
a(1/F (ξτn))√

nF (ξτn)
× 1

n

n∑
t=1

(1{εt > xn,−} − 1{εt > xn,+}) (A.44)
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where

xn,+ = xn + δn
a(1/F (ξτn))√

nF (ξτn)
= ξτn + (u+ δn)

a(1/F (ξτn))√
nF (ξτn)

and xn,− = xn − δn
a(1/F (ξτn))√

nF (ξτn)
= ξτn + (u− δn)

a(1/F (ξτn))√
nF (ξτn)

.

The upper bound in (A.44) is positive, so it is stochastically bounded from above by its
expectation in view of the Markov inequality. This means that

1

n

n∑
t=1

|ε̂(n)t − xn|
∣∣∣1{ε̂(n)t > xn} − 1{εt > xn}

∣∣∣ = oP

F (ξτn)a(1/F (ξτn))√
nF (ξτn)

 .

Combining this with (A.42) and (A.43) yields

|ϕ̂n(xn)− ϕ̃n(xn)| = oP

F (ξτn)a(1/F (ξτn))√
nF (ξτn)

 . (A.45)

In particular, if ϕ(xn) = E((ε− xn)1{ε > xn}),

ϕ̃n(xn)

ϕ(xn)

P−→ 1, so that
ϕ̂n(xn)

ϕ(xn)

P−→ 1 and then ϕ̂n(xn)
P−→ 0 (A.46)

from Lemma A.5(i) in the i.i.d. setting. Finally, recalling that, from Lemma A.2(ii),

E(xn) =
ϕ(xn)

2ϕ(xn) + xn − E(ε)
=

ϕ(xn)

2ϕ(xn) + xn

∼ ϕ(xn)

e?
∼ F (xn)a(1/F (xn))

(1− γ)e?
∼ F (ξτn)a(1/F (ξτn))

(1− γ)e?

as n→∞, (A.38) follows from combining (A.39), (A.40), (A.41), (A.45) and (A.46).

B Further finite-sample results

We enclose here the full set of graphs we obtained in our numerical results for the six
models we discuss in Section 3 and for the three sample sizes n = 150, 300, 500.
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Figure B.1: Empirical relative bias, variance and MSE (left, middle and right), multiplied
by 100, for the estimators of ξτ ′n obtained with i.i.d. observations from a Beta distribution
(simulation setup (i)), τ ′n = 1 − 1/n and sample size n = 150, 300, 500 (top, middle, bot-
tom). Purely empirical estimator ξ̂τ ′n (orange line), extrapolating LAWS estimators ξ̂?τ ′n
(magenta lines) and ξ

?
τ ′n

(blue lines), and extrapolating QB estimators ξ̃?τ ′n (black lines).
The versions of the extrapolating estimators based on the GPML scale and shape param-
eter estimates are referred to using solid lines, and those based on the Moment estimators
are referred to using dashed lines.
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Figure B.2: Empirical relative bias, variance and MSE (left, middle and right), multiplied
by 100, for the estimators of ξτ ′n obtained with i.i.d. observations from a power-law distri-
bution (simulation setup (ii)), τ ′n = 1−1/n and sample size n = 150, 300, 500 (top, middle,
bottom). Purely empirical estimator ξ̂τ ′n (orange line), extrapolating LAWS estimators ξ̂?τ ′n
(magenta lines) and ξ

?
τ ′n

(blue lines), and extrapolating QB estimators ξ̃?τ ′n (black lines).
The versions of the extrapolating estimators based on the GPML scale and shape param-
eter estimates are referred to using solid lines, and those based on the Moment estimators
are referred to using dashed lines.
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Figure B.3: Empirical relative bias, variance and MSE (left, middle and right), multiplied
by 100, for the estimators of ξτ ′n obtained with i.i.d. observations from a GEV distribution
(simulation setup (iii)), τ ′n = 1− 1/n and sample size n = 150, 300, 500 (top, middle, bot-
tom). Purely empirical estimator ξ̂τ ′n (orange line), extrapolating LAWS estimators ξ̂?τ ′n
(magenta lines) and ξ

?
τ ′n

(blue lines), and extrapolating QB estimators ξ̃?τ ′n (black lines).
The versions of the extrapolating estimators based on the GPML scale and shape param-
eter estimates are referred to using solid lines, and those based on the Moment estimators
are referred to using dashed lines.
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Figure B.4: Empirical relative bias, variance and MSE (left, middle and right), multiplied
by 100, for the estimators of ξτ ′n obtained with nonlinear AR(1) observations from a Beta
distribution (simulation setup (iv)), τ ′n = 1 − 1/n and sample size n = 150, 300, 500
(top, middle, bottom). Purely empirical estimator ξ̂τ ′n (orange line), extrapolating LAWS

estimators ξ̂?τ ′n (magenta lines) and ξ
?
τ ′n

(blue lines), and extrapolating QB estimators ξ̃?τ ′n
(black lines). The versions of the extrapolating estimators based on the GPML scale and
shape parameter estimates are referred to using solid lines, and those based on the Moment
estimators are referred to using dashed lines.
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Figure B.5: Empirical relative bias, variance and MSE (left, middle and right), multiplied
by 100, for the estimators of ξτ ′n obtained with nonlinear AR(1) observations from a power-
law distribution (simulation setup (iv)), τ ′n = 1 − 1/n and sample size n = 150, 300, 500
(top, middle, bottom). Purely empirical estimator ξ̂τ ′n (orange line), extrapolating LAWS

estimators ξ̂?τ ′n (magenta lines) and ξ
?
τ ′n

(blue lines), and extrapolating QB estimators ξ̃?τ ′n
(black lines). The versions of the extrapolating estimators based on the GPML scale and
shape parameter estimates are referred to using solid lines, and those based on the Moment
estimators are referred to using dashed lines.
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Figure B.6: Empirical relative bias, variance and MSE (left, middle and right), multiplied
by 100, for the estimators of ξτ ′n obtained with nonlinear AR(1) observations from a GEV
distribution (simulation setup (iv)), τ ′n = 1 − 1/n and sample size n = 150, 300, 500
(top, middle, bottom). Purely empirical estimator ξ̂τ ′n (orange line), extrapolating LAWS

estimators ξ̂?τ ′n (magenta lines) and ξ
?
τ ′n

(blue lines), and extrapolating QB estimators ξ̃?τ ′n
(black lines). The versions of the extrapolating estimators based on the GPML scale and
shape parameter estimates are referred to using solid lines, and those based on the Moment
estimators are referred to using dashed lines.

27


	Proofs of the main results
	Auxiliary results
	Proofs of the main results

	Further finite-sample results

