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Abstract. Invoked to guide actions under irreversibility and uncertainty, the Pre-
cautionary Principle states that decision-makers should act cautiously unless the con-
sequences of acts are known. We consider a setting where the stock of past actions,
passed a tipping point which remains unknown, increases the probability of a catas-
trophe. When past acts are observable, decision-makers can reconstruct the whole
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timistic on their ability to delay the tipping point.
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1. INTRODUCTION

On the Precautionary Principle. The major environmental and health is-
sues that pertain to our modern risk society are most often due to our own pro-
duction and consumption.1 When dealing with such risks, decision-making is com-
plicated by two features that make the standard tools of cost-benefit analysis of
limited value. The first specificity is that consumption and production choices
might entail irreversibility. The most salient example is given by global warming.
Pollutants have been accumulating in the atmosphere from the beginning of the
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industrial era, leading to a steady increase in temperature. All current or planned
efforts against global warming consist in controlling the growth rate of temper-
ature, with little hope of reducing it. The second feature of those problems is
that the costs and benefits of any decision have to be assessed under significant
uncertainty. Although the consequences of acting might be detrimental to the
environment, the extent to which it is so and the probability of harmful events
remain to a large extent unknown to decision-makers when acting.

To guide decision-making in such contexts, the so called Precautionary Prin-
ciple has been repeatedly invoked. The original idea is due to philosopher Hans
Jonas. His Principle of Foresight states that decision-makers should recognize the
long-term irreversible consequences of their current actions, and refrain from un-
dertaking any such action if there is no proof that it would not negatively affect
future generations’ well-being.2

Since its inception, there has always been a lively debate, mainly led by philoso-
phers and political scientists, on whether the Precautionary Principle offers a con-
venient guide for decision-making under uncertainty. On the one hand, the fact
that it serves as a background for some regulatory policies suggests that it should
be judged on normative grounds. On the other hand, the fact that doubts always
exist on the fact that its adoption might actually do more harm, by hindering in-
novation and growth, than good, by protecting human health or the environment
points at the more positive view of this notion and suggests that the Precautionary
Principle might just describe suboptimal behavior.3

This paper proposes a simple model of dynamic decision-making under irre-
versibility and uncertainty that aims at giving theoretical foundations for the
Precautionary Principle and assesses its relevance in practice. Hereafter, an ac-
tion (consumption/production) taken at any point in time yields a flow payoff.
The stock of past actions affects the arrival rate of an environmental catastrophe.
This catastrophe is a major disruptive event with all opportunities for consump-
tion/production disappearing afterwards.4 Passed a tipping point, this arrival rate

2The Precautionary Principle was acknowledged by the United Nations in 1992, during the
Rio Earth Summit, and perhaps expressed less restrictively as: “Where there are threats of
serious and irreversible damage, lack of full scientific certainty shall not be used as a reason for
postponing cost-effective measures to prevent environmental degradation.” A similar principle
was invoked in the French 2004 Charter on Environment (Loi constitutionnelle n 2005-205 du 1
mars 2005 relative à la Charte de l’environnement) that is now part of the French Constitution.
Any risk, health or environmental regulation must thus comply with the legal framework that
the Precautionary Principle contributes to build.

3See O’Riordan (2013) for informal discussions.
4See Cropper (1976), Gjerde et al. (1999) and Clarke and Reed (1994) for a similar assumption.
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irreversibly jumps up.5 Only the distribution of possible tipping points is known.6

Whether the tipping point has been passed or not is ignored by the decision-maker
(thereafter DM). Acting today changes how likely it is that the tipping point will
be passed in the near future and thus affects posterior beliefs in case no catas-
trophe takes place. In this context, an optimal trajectory should a priori follow
a feedback rule that stipulates actions in terms of two state variables: the level
of stock and the decision-maker’s beliefs on whether the tipping point has been
passed. As DM becomes more pessimistic and believes that it is more likely that
the tipping point has been passed, actions come closer to the myopic optimum.

Stock-Markov Equilibria. This optimal path helps to understand how trajec-
tories are modified under more realistic assumptions on how a society addresses
such dynamic problems. In this respect, we view an ongoing society as a game
where different selves of DM may act at different points in time. In a Stock-
Markov Equilibrium (thereafter SME), those selves adopt a simple feedback rule
only based on the level of the stock. Each self can only commit to an action over
an infinitesimal period of time (a so called impulse deviation), anticipating that
future selves abide to the same Stock-Markov feedback rule. Of course, the evolu-
tion of beliefs along the equilibrium path is not only consistent with the feedback
rule but also with the underlying information structure.

Observable Impulse Deviations. Suppose first that past impulse deviations are ob-
servable. In any such SME, future selves will certainly believe that the tipping
point is more likely to have been passed following a past deviation that has in-
creased the stock they inherited; a Pessimistic Stigma. Thinking that the tipping
point is more likely to have been passed, yet no catastrophe has occured, future
selves no longer adopt a safe stance. Actions jump towards the myopic optimum.

Implementation of the Optimum. An optimal trajectory can always be imple-
mented as a SME when impulse deviations are observable. Although an optimal
feedback rule defines actions in terms of stock and beliefs, those state variables
evolve on a one-dimensional manifold along the optimal trajectory. The optimal
feedback rule thus induces a Stock-Markov feedback rule on path. By construc-
tion, actions being the same with those two rules, beliefs evolve similarly. Off path,
future selves always reconstruct the evolution of beliefs from the observed past im-
pulse deviation of a predecessor and the conjecture that, beyond such deviation,
all selves abide to the equilibrium feedback rule.

5Tipping points models are frequently used in ecology and in climatology (Lenton et al.,
2008). To illustrate, a recent report by the World Bank argues that “As global warming ap-
proaches and exceeds 2-degrees Celsius, there is a risk of triggering nonlinear tipping elements.
Examples include the disintegration of the West Antarctic ice sheet leading to more rapid sea-
level rise. The melting of the Arctic permafrost ice also induces the release of carbon dioxide,
methane and other greenhouse gases which would considerably accelerate global warming.” See
http://whrc.org/project/arctic-permafrost.

6Roe and Baker (2007) argue that whether past actions have already triggered a change of
regimes might remain unknown for a while.
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Non-Observable Impulse Deviations. In contrast, consider the more realistic sce-
nario where impulse deviations cannot be detected by future selves. This scenario
stands as a metaphor for the case where the consequences of past actions cannot
be inferred in the future. An informational externality now arises across decision-
makers. Future selves can no longer infer that the tipping point is more likely to
have been passed if they have not been able to observe past impulse deviations
that had increased stock levels. The equilibrium feedback rule now entails a more
prudent behavior. Actions are always too low in comparison with what the optimal
trajectory would request. Along such a low-action trajectory, the tipping point is
thought to be unlikely to have been passed yet; which in turn justifies adopting
a more prudent behavior. This scenario gives foundations for the Precautionary
Principle invoked by real-life decision-makers.

Organization. Section 2 reviews the literature. Section 3 presents the model.
Section 4 discusses beliefs, value function and the optimal trajectory. Sections 5
and 6 contrast how this trajectory can be implemented as a SME with observable
deviations, but not under non-observable deviations, giving way to the Precaution-
ary Principle. Section 7 briefly recaps our results. Proofs are relegated into several
Appendices.

2. LITERATURE REVIEW

Irreversibility and the Precautionary Principle. Arrow and Fisher
(1974), Henry (1974) and Freixas and Laffont (1984) were the first to show how
a decision-maker should take more preventive stances when the consequences of
irreversible choices are uncertain. This literature suggests that current abatements
of greenhouse gas emissions should be greater when more information will be avail-
able in the future (Chichilnisky and Heal, 1993; and Kolstad, 1996, among others).
Gollier, Jullien and Treich (2000) have built on this insight to give some economic
content to the Precautionary Principle. They interpret the Precautionary Principle
as the incentives to reduce actions below the level that would otherwise be optimal
without uncertainty, when actions are taken before learning information. Asano
(2010) has focused on the comparison of optimal environmental policies without
and with ambiguity, showing that lack of confidence forces decision-makers to
hasten policy adoption. In those models, decisions are always optimal although
constrained by informational requirements7 and information is exogenous whereas
in many contexts in environmental economics, actions also determine information
structures.8In contrast, we stress that beliefs on the state of the system are en-
dogenous, determined by the history of past actions and what is known on their
consequences. Relatedly, Salmi, Laiho and Murto (2019) study the trade-off faced
by a decision-maker who must choose between acting now, which means taking a
less informed decision but generating information that is useful in the sequel, and
acting later, when being more informed. Larger actions accelerate learning.

7This feature is shared by other models in the field like Immordino (2000) and Gonzales (2008).
8See Freixas and Laffont (1984) and Miller and Lad (1984).
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On Tipping Points and Catastrophes. Catastrophic outcomes due to stock
pollutants have been analyzed by Cropper (1976), Heal (1984) and Clarke and
Reed (1994) among others. In those models, the probability of a catastrophe (be
it irreversible or temporary) is increasing in the stock. Tsur and Zemel (1995)
have investigated a problem of optimal resource extraction when extraction affects
the probability that the resource becomes obsolete passed a certain threshold.
When this threshold is unknown, the initial state affects the optimal path and
there is less resource exploitation than under certainty. Sims and Finoff (2016)
have studied how irreversibility in environmental damage and irreversibility in
sunk cost investment interact in a model with tipping point uncertainty. Focusing
on the optimal control of atmospheric pollution, Tsur and Zemel (1996) have
shown how uncertainty on a tipping point introduces a multiplicity of possible
equilibria. Tsur and Zemel (2021) have studied trajectories with state-dependent
catastrophe thresholds. Contrary to us, these authors have focused on the case
where the mere fact that the stock of pollutants has passed the tipping point
is immediately learned by the decision-maker.9 To capture the decision-maker’s
ignorance, another state variable reflecting his beliefs is introduced hereafter. This
addition bears some resemblance to Crépin and Nævdal (2020)’s analysis. For
the sake of realism, these authors have also added to state-dependent catastrophe
models based on pollutants (or temperature) another state variable, the stress of
the system, that triggers changes of regime only when it itself passes a threshold.
Van der Ploeg (2014) has analyzed how uncertainty on tipping points may modify
the design of an optimal dynamic path for carbon taxes. Lemoine and Traeger
(2014) have investigated optimal policy in a context where decision-makers learn
over the location of the tipping point over time from observing how the system
responds. In the context of policies against global warming, they demonstrate
that the possibility of regime switching significantly increases the optimal carbon
tax. A similar empirical assessment has been obtained in Cai and Lontzek (2019).
Finally, Liski and Salanié (2020) have also studied a model with unknown tipping
points and uncertainty applied to climate change and pandemic crisis. They derive
conditions ensuring whether actions are monotonic over time.

3. MODEL

Preferences. A decision-maker, sayDM , chooses actions over time. Time is con-
tinuous. Let r > 0 be the discount rate. Let x = (x(τ))τ≥0 (resp. xt = (x(τ))τ≥t)
denote an action plan (resp. the continuation of a plan from date t on).

Action x(t) yields a flow payoff (net of the action cost) at date t worth u(x(t)).
Although, we most often keep a general formulation, some of our results (optimal
feedback rules and Hamilton-Bellman-Jacobi equations for value functions) are
expressed in a crisper way by taking a quadratic specification, namely

u(x(t)) ≡ ζx(t)− x2(t)

2

9On this, see also Nævdal (2006).
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where ζ > 0 is the marginal benefits of action (the consumption side) and x2(t)
2

its
cost (the production side). The set of feasible actions is X = [0, 2ζ] so that flow
payoff remains non-negative under all circumstances below.10

Technology and Catastrophes. Actions put the environment at risk. A
catastrophe may arise; an event that follows a Poisson process with a (non-
homogeneous) rate θ(t). That rate depends on the stock X(t) =

∫ t
0
x(τ)dτ of

past actions before date t. More precisely, we postulate

(3.1) θ(t) = θ0 + ∆1{X(t)>X}

where X is a tipping point. Although it remains quite close to a homogeneous
Poisson process, this specification features dependence on past actions. Indeed,
when the stock of past actions X(t) passes X, the rate jumps from θ0 to θ1 > θ0.
Let ∆ = θ1 − θ0 > 0 measure this jump.

To capture its detrimental and irreversible impact, we assume that, if a catas-
trophe arises at date t, the flow payoff is no longer realized from that date on.
A justification for this extreme assumption is that production may no longer be
possible afterwards.11

A Useful Benchmark. We start with the simplest scenario where DM has no
control over the arrival rate of a catastrophe and we assume that the tipping point
is at X = 0, i.e., the tipping point is passed at the start. DM ’s expected payoff
can thus be written as:∫ +∞

0

e−λ1tu(x(t))dt

where λ1 = r+θ1 stands for the effective discount rate that applies with the possi-
bility of a catastrophe. Since he cannot influence the arrival rate of the catastrophe,
DM maximizes his intertemporal payoff with the myopic action

xm(t) = ζ ∀t ≥ 0.

For future reference, the myopic payoff once the tipping point has been passed
writes as

V∞ =
u(ζ)

λ1

.

Of course, the same myopic action and payoff are obtained in any continuation;
once it is known that the tipping point has been passed for sure.

10We assume that there is no flow damage D(X(t)) due to the stock of past pollutant. This
possibility could be added to the model, although at the cost of unnecessary complications.

11A more general model would allow for an arbitrary number of catastrophes with possibly
changes in the production/consumption structure following each of those events. This additional
complexity would not add anything in terms of insights.
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4. BELIEFS, VALUE FUNCTION AND OPTIMAL TRAJECTORY

Suppose thus that DM does not know where the tipping point lies. Switching to
the myopic optimum once the tipping point has been passed is no longer possible
since DM remains ignorant on whether this event occurred or not.

4.1. Beliefs

Let denote by F the distribution of possible values for the tipping point and by
f its (positive) density function. This distribution has a finite support

[
0, X

]
(i.e.,

X < +∞) and, for simplicity, no mass point.

Consider a history of past actions xt with no catastrophe up to date t and a
stock reached at that date (starting from 0) given by X̂(t; 0) =

∫ t
0
x(s)ds. To

evaluate DM ’s continuation payoff, we compute his posterior beliefs f(X̃|t,xt)dX̃
that the tipping point lies within the interval

[
X̃, X̃ + dX̃

]
given that past history

xt at date t. This posterior density f(X̃|t,xt) should take into account that, if the

tipping point lies at X̃ ≤ X̂(t; 0), the arrival rate has already jumped from θ0 to

θ1 at an earlier date T (X̃; 0) ≤ t. If instead the tipping point is at X̃ > X̂(t; 0),
the arrival rate remains θ0. A key variable to describe how the posterior density
evolves is thus the probability of survival up to date t when the path of past
actions is xt, namely

(4.1) H(t,xt) =

∫ X̂(t;0)

0

f(X̃)e−θ0T (X̃;0)e−θ1(t−T (X̃;0))dX̃ +

∫ +∞

X̂(t;0)

f(X̃)e−θ0tdX̃.

After manipulations, we obtain:

(4.2) H(t,xt) = e−θ0t
(

1−∆e−∆t

∫ t

0

F (X̂(τ ; 0))e∆τdτ

)
.12

When the current stock X̂(τ ; 0) is close to 0, the likelihood of having passed
the tipping point is also close to 0. The survival probability is then nearly that
obtained when the arrival rate of a catastrophe is known to be θ0 for sure. As
X̂(τ ; 0) increases towards X, it becomes more likely that the tipping point has
been passed and the survival probability accordingly decreases. Of course, the
shape of the distribution function F matters to evaluate this probability. As F
puts more mass around the origin, it is more likely that the tipping point has been
passed early on and the survival probability diminishes.

For future reference, let us define the regime survival ratio Ẑ(t,xt) as

(4.3) Ẑ(t,xt) = H(t,xt)eθ0t = 1−∆e−∆t

∫ t

0

F (X̂(τ ; 0))e∆τdτ ∀t ≥ 0.

It is the ratio between the survival probability H(t,xt) at date t following a history
xt and the survival probability e−θ0t that would prevail had the tipping point never

12See the Proof of Lemma A.1 in the Appendix.
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been passed.13 This ratio actually reflects DM ’s beliefs on whether the tipping
point has been passed or not. The faster the trajectory moves towards X, the
faster Ẑ(t,xt) decreases. If the trajectory stays close to X = 0, Ẑ(t,xt) decreases
very slowly. In other words, a higher value of Ẑ(t,xt) can be viewed as reflecting
greater optimism for DM . DM still thinks that the tipping point is ahead.

4.2. Value Function

The value function V̂(t,xt) is DM ’s continuation payoff starting from date t
onwards given the past history xt. This function is computed with the posterior
density function f(X̃|t,xt) that the tipping point lies ahead of the current stock

X = X̂(t; 0) reached at date t (i.e., for X̃ ≥ X̂(t; 0)) given that, following past
history, no catastrophe has yet occurred. For τ ≥ t, the stock (denoted with a
slight abuse of notations by X̂(τ ;X, t)) will evolve according to the stream of
future actions xt = (x(τ))τ≥t. Lemma 1 provides a compact representation for
this value function.

Lemma 1 The value function V̂(t,xt) satisfies

(4.4) V̂(t,xt) ≡ sup
xt,X̂(τ ;X,t)=X+

∫ τ
t x(s)ds

∫ +∞

0

e
−
∫ τ
0

(
λ0−

dẐ
ds

(t+s,xt+s)

Ẑ(t+s,xt+s)

)
ds

u(x(t+ τ))dτ

where λ0 = r + θ0.

The representation (4.4) of the value function suggests that the state of the
system is best described by adding to the stock X a second state variable, the
regime survival ratio Z that reflects beliefs. Two trajectories that have reached
the same stock X with the same beliefs Z at a given date should have the same
continuation. Instead, two trajectories that have reached the same stock but with
different beliefs might be pursued differently. If the regime switch is thought as
having been likely (Z small), DM will pursue with higher actions since he has less
incentives to take a precautionary stance.

Representation of the Value Function. To complete the state of the sys-
tem, we must thus add to the law of motion for the stock, namely

(4.5) Ẋ(τ) = x(τ),

the law of motion for the regime survival ratio.14 Differentiating (4.3) and using
(4.2) yields

(4.6) Ż(τ) = ∆(1− F (X(τ))− Z(τ)).

13Since the survival probability is bounded below by e−θ1t, the regime survival ratio itself lies
within (e−∆t, 1].

14Reed (1989) and Tsur and Zemel (1995) have developed dynamic optimization models which
all have in common to use the survival probability as a state variable. The difference in our setting
comes from the fact that this survival probability depends on where the trajectory lies in the
distribution of possible tipping points.
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Integrating (4.6) with the initial condition Z(0) = Z, we get the following expres-
sion for the regime survival ratio Z(τ):

(4.7) Z(τ) = 1−∆e−∆τ

∫ τ

0

F (X(s))e∆sds︸ ︷︷ ︸
Memoryless Evolution

−(1− Z)e−∆τ︸ ︷︷ ︸
Pessimistic Stigma

.

This expression highlights how the evolution of beliefs actually superposes two
effects. Suppose that DM keeps no memory of what happened in the past. He
is naively believing to start with Z = 1, only knowing about the current level of
stock X and considering, from that point on, the ensuing trajectory X(t) given by
(4.5). The first term on the r.h.s. of (4.7) captures how such a naive DM would
evaluate the consequences of pursuing this trajectory on future beliefs. Instead,
whenever DM starts with some grain of pessimism inherited from past history,
(i.e., starting with Z < 1) this (negative) Pessimistic Stigma is carried on in
the future (although at a decreasing rate) and all the more so as Z is lower; an
effect that is captured by the second term on the r.h.s. of (4.7). Finally, (4.6) also
implies that, once a trajectory X(τ) has reached the upper bound X at a date T ,
the regime survival ratio evolves from then on as

(4.8) Z(τ) = Z(T )e−∆(τ−T ) ∀τ ≥ T .

Remark: For future reference, it is worth noticing that (4.6) together with the
initial condition Z(0) = Z imply that necessarily

(4.9) Z(τ) > 1− F (X(τ)) ∀τ ≥ 0

and thus

(4.10) Ż(τ) < 0.

The first of those inequalities can be readily interpreted. Indeed, 1 − F (X(τ)) is
the probability that the tipping point lies above X(τ). Consider an alternative
scenario where the fact of having passed the tipping point would be always im-
mediately known (which also means that when not having crossed the tipping
point yet, the rate of arrival of a catastrophe is known to be θ0). The probabil-
ity of survival conditional on not having crossed the tipping point yet at date τ
along a path X(τ) would thus be (1−F (X(τ)))e−θ0τ . The regime survival ratio in
that scenario would be 1− F (X(τ)). Henceforth, (4.9) can be interpreted as say-
ing that not knowing whether the tipping point has been passed, decision-makers
somehow remain more optimistic. The second inequality (4.10) simply means that
those decision-makers nevertheless become more pessimistic over time.

Using (4.4) and (4.8), we can now get a representation of the value function in
terms of the bi-dimensional state variable (X,Z). Let accordingly define the value
function Ve(X,Z) for X ≥ 0 and any Z ∈ (0, 1] as

(4.11) Ve(X,Z) = sup
A

∫ T

0

e
−
∫ τ
0

(
λ0− Ż(s)

Z(s)

)
ds
u(x(τ))dτ + e

−
∫ T
0

(
λ0− Ż(s)

Z(s)

)
dsV∞.
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where the set of admissible trajectories is

A = {x, X(·), Z(·), T s.t. (4.5), (4.6), X(0) = X, X(T ) = X, Z(0) = Z}.15

Starting from any pair (X,Z), DM looks for an optimal arc that reaches X at
some date T . After having passed the tipping point at date T , DM always chooses
the myopic optimal action ζ and gets, from that date on, a discounted continuation
payoff worth V∞. In fact, the tipping point might have already been passed a long
time ago but DM could not know it for sure before reaching X.

The expression (4.11) showcases that, under uncertainty, the effective discount
rate is time-dependent, namely

λe(τ) ≡ λ0 −
Ż(τ)

Z(τ)
.

Using the regime survival ratio as a state variable keeps track of this time-dependency.
The choice of an action at any given date has no direct impact on how this im-
plicit discount rate evolves since the law of motion (4.6) for beliefs does not depend
on current action. Yet, because stock and beliefs evolve over time, this implicit
discount rate keeps on changing and DM must take this into account to assess
how future payoffs should be discounted. Specifically, DM is using λe(τ) ≈ λ0 to
discount future payoffs earlier on but, eventually, will switch to λe(τ) ≈ λ1. The
hazard rate −Ż(τ)/Z(τ) measures how information contained in the fact that no
catastrophe has yet happened is incorporated into this implicit discounting.

4.3. Optimal Trajectory

Next proposition presents some important properties of the value function Ve(X,Z)
and the corresponding feedback rule.

Proposition 1 The value function Ve(X,Z) satisfies the Hamilton-Bellman-
Jacobi equation:

(4.12)

∂Ve

∂X
(X,Z) = −ζ+

√
2λe(X,Z)Ve(X,Z)− 2∆(1− F (X)− Z)

∂Ve
∂Z

(X,Z) a.e.

where

(4.13) λe(X,Z) = λ0 −
∆(1− F (X)− Z)

Z

together with the boundary conditions

(4.14) Ve(X,Z) = V∞ ∀X ≥ X,∀Z ∈ (0, 1].

The optimal feedback rule is

(4.15) σe(X,Z) = ζ +
∂Ve

∂X
(X,Z).

15We allow for the possibility that T = +∞. It turns out that the upper bound on its distri-
bution is always reached in finite time for the optimal trajectory.
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Before commenting on Proposition 1, it is useful to investigate a special case.

When The Tipping Point Is Known. Suppose that the tipping point is known
and located at X > 0. Proposition 1 still applies provided one is ready to let
F (X) = 0 for X ∈ [0, X) with F having a mass point at X. Inserting into (4.7)
and using the fact that Z = 0 at τ = 0, immediately yields Z(τ) = 1 for all τ ≥ 0
in this scenario. Accordingly, we are now ready to further characterize the value
function and the optimal feedback rule in this scenario with no uncertainty on
where the tipping point lies.

Proposition 2 The value function Ve(X, 1) satisfies the following Hamilton-
Bellman-Jacobi equation

(4.16)
∂Ve

∂X
(X, 1) = −ζ +

√
2λ0Ve(X, 1), ∀X < X.16

Ve(X, 1) is decreasing and strictly concave for X ∈ [0, X) with the boundary
condition

(4.17) Ve(X, 1) = V∞ ∀X ≥ X.

The optimal feedback rule is

(4.18) σe(X, 1) = ζ +
∂Ve

∂X
(X, 1).

Moreover, σe(X, 1) is decreasing in X for X ∈ [0, X).

Actions profile. Before reaching the tipping point, actions have a long-lasting im-
pact since they may contribute to passing the tipping point earlier on. Reducing
those actions decreases the probability that a catastrophe arises earlier. The quan-
tity −∂Ve

∂X
(X, 1) found on the r.-h.s. of (4.18) is the Lagrange multiplier for the

irreversibility constraint

(4.19)

∫ T

0

x(τ)dτ = X −X.

As X increases towards X, this constraint becomes more demanding, and the
value function decreases. Actions are below the myopic optimum to account for
this Irreversibility Effect.

The optimal action decreases over time before the tipping point. All actions
taken during this first phase contribute the same to the overall stock. Because
of discounting, DM prefers to choose higher actions earlier on and lower ones
when approaching the tipping point. Expressed in terms of the value function,
this monotonicity means that Ve(X, 1) is strictly concave over this first phase

16At X = X, this derivative is in fact a left-derivative but we use the same notation for
simplicity.
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while it is flat once the tipping point has been passed. By then, DM knows that
his actions will no longer have any impact on the arrival rate of a catastrophe and
thus chooses the myopic optimum.

Tipping Point. Because actions are now lower than the myopic optimum over the
first phase, the tipping point is reached at a date17

(4.20) T
k

= T
m

+

(
1−

√
λ0

λ1

)
1− e−λ0T

k

λ0

> T
m

=
X

ζ

where T
m

is the time necessary to reach the tipping point when acting myopically.

Pushing a bit further in the future the date T
k

at which the tipping point is
reached by a small amount dT has costs and benefits. First, DM incurs a welfare
loss for a longer period of time since, over the first phase, actions are below the

myopic optimum. Second, increasing T
k

maintains the arrival rate of a catastrophe
at its low level θ0 longer.

Positive Lower Bound on Actions. Because actions are decreasing before reaching
the tipping point, we necessarily have

(4.21) ζ

√
λ0

λ1

≤ σe(X, 1) ≤ ζ ∀X.

where the left-hand side above is the action at the end of the first phase.

Comments on Proposition 1. Comparing the Hamilton-Bellman-Jacobi equa-
tions with and without uncertainty is instructive. The first difference between
(4.16) and (4.12) is related to how future payoffs are discounted. Under uncer-
tainty, the effective discount rate is now time-dependent. As a thought experiment,
suppose that the evolution of the hazard rate −Ż(τ)/Z(τ) were exogenously given.
The implicit discount rate being low early on and higher later on, the optimal so-
lution would call for taking large actions early on, then slightly smaller actions,
a change which would accelerate over time (with substantially smaller actions) as
the discount rate increases. In our model, this dynamics is endogenous. Current
actions modify stock and beliefs and somewhat control the evolution of the hazard
rate −Ż(τ)/Z(τ).

The second difference comes from a new term, not present under complete in-
formation, −2∆(1− F (X)− Z)∂V

e

∂Z
(X,Z) on the r.-h.s. of (4.12). Less optimistic

stances, i.e., lower values of Z are associated with lower continuation values (i.e.,
∂Ve
∂Z

(X,Z) < 0). Along the optimal trajectory, this new term is negative.18 Being
less optimistic and thinking that the tipping point has already been passed, DM
certainly chooses to increase actions.

Finally, the comparison of the feedback rule (4.15) with its complete information
counterpart (4.18) shows that the term ∂Ve

∂X
(X,Z) can again be interpreted as an

opportunity cost of irreversibility. This cost now depends on beliefs.

17See the Appendix for details.
18Indeed, we have −Ż(τ)/Z(τ) = −∆(1−F (X(τ))−Z(τ))

Z(τ) > 0.
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5. STOCK-MARKOV EQUILIBRIUM WITH OBSERVABLE DEVIATIONS

The value function Ve(X,Z) is a mere technical device to use dynamic program-
ming techniques and compute a feedback rule σe(X,Z) that guides behavior along
the optimal trajectory. There are two ways of thinking about this device. First, this
feedback rule may be viewed as a machine that determines actions that a planner
would take at each point in time in response to the evolution of stock and beliefs.
Second, and it is a direct consequence of the Principle of Dynamic Programming,
such feedback rule can be viewed as a Perfect-Markov equilibrium strategy among
various selves of this decision-maker. In this non-cooperative scenario, selves act-
ing at different points in time have only a limited ability to commit to an action
over an infinitesimal period of time. They adopt Markov-strategies based on the
state variable (X,Z). Because those selves are endowed with the same objectives
and the same information than what a long-lived planner would have, their choice
of the best action obviously replicates that of this planner.

Hereafter, we instead ask whether a more parsimonious decentralization of an
optimal trajectory is also reached as a Perfect-Markov equilibrium if those selves
were to adopt less complete Stock-Markov feedback rules that only depend on the
stock X. Our motivation for looking at such a restriction on equilibrium strategies
is that, in practice, only the stock of pollutants in the atmosphere can be easily
verified and this stock might not be a sufficient statistics to form correct beliefs on
whether the tipping point has likely been passed or not. Even though selves are
still endowed with the same objectives, this restriction on feasible strategies may
bite and affect the implemented action plan. We will show below that the extent
to which it is so depends on whether impulse deviations are observable or not
(Section 6 below). First, instead of having a single decision-maker choosing actions,
the trajectory is viewed as the outcome of a game with different selves acting
at different points in time. Those selves choose actions that prevail only for an
infinitesimal period of time; a so called impulse deviation. Second, we consider that,
when acting, those selves might have only limited information on the consequences
of past acts (Section 6). At a Stock-Markov Equilibrium (thereafter SME), those
selves adopt a feedback rule based only on stock.

Those modeling assumptions certainly echo the framework in which the Precau-
tionary Principle is invoked. First, the concern that current actions may negatively
impact future generations is captured by having different decision-makers, each en-
dowed with the discounted flow of future payoffs, acting at different points in time.
Second, the fact that current selves have only limited information on the conse-
quences of past acts is a necessary ingredient to assess whether equilibrium actions
might be more cautious under those circumstances. When taken in tandem, those
assumptions allow us to assess whether an optimal trajectory can be decentralized
as a non-cooperative equilibrium and if not, the nature of the distortion.

5.1. Setting the Stage

We now consider a game in continuous time among selves of the decision-maker
who act at different points in time. At any point in time τ , the current self DMτ
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has limited commitment ability. He can only choose an action x(τ) over an interval
of infinitesimal length of time [τ, τ + ε]. DMτ ’s objective is to maximize intertem-
poral welfare from that date on given whatever information is available to him at
date τ . In the first subsection, we suppose that DMτ can observe whatever actions
may have been undertaken by all his predecessors DMτ ′ for τ ′ < τ both on and
off equilibrium path. Section 6 below will entertain the opposite scenario where
past actions remain unknown.

Stock-Markov equilibria are supported by Stock-Markov feedback rules. At any
such equilibrium, the self DMτ in charge at date τ sticks to the strategy σo(X)
when the stock has reached level X because he expects future selves to abide to
that rule as well following the subsequent evolution of the system.19

Along any such Stock-Markov trajectory, the stock Xo(τ ;X) evolves as

(5.1)
∂Xo

∂τ
(τ ;X) = σo(Xo(τ ;X)) with Xo(0;X) = X.

The various selves should also be able to reconstruct the regime survival ratio that
applies, along the equilibrium path, for each possible level of the stock and, by
that means, correctly infer how to discount future payoffs. Let denote by Zo(X)
such function. From (4.6), the regime survival ratio Z(τ ;X), that starts from value
Zo(X) at date 0 and that is consistent with the Stock-Markov feedback rule σo(X)
from that date on evolves as

(5.2)
∂Z

∂τ
(τ ;X) = ∆(1− F (Xo(τ ;X))− Z(τ ;X)) with Z(0;X) = Zo(X).

Since conjectures on how the regime survival ratio evolves along the trajectory are
correct on the equilibrium path, we must also have

(5.3) Z(τ ;X) = Zo(Xo(τ ;X)) ∀τ ≥ 0, X ≥ 0.

Taken together, those conditions dictate how the regime survival ratio evolves
with the current stock along the trajectory. Differentiating (5.3) with respect to τ
yields

(5.4) σo(X)Żo(X) = ∆(1− F (X)− Zo(X)) ∀X ≥ 0

with the initial condition

(5.5) Zo(0) = 1.

We may now define a Stock-Markov value function Vo(X), i.e., the intertemporal
payoff along such a Stock-Markov trajectory, as

(5.6) Vo(X) =

∫ +∞

0

e
−
∫ τ
0

(
λ0−σo(Xo(s;X))

Żo(Xo(s;X))
Zo(Xo(s;X))

)
ds
u(σo(Xo(τ ;X)))dτ.

19Of course, a Stock-Markov feedback rule should specify that σo(X) = ζ for X ≥ X but, to
save on notations, this expression of the continuation will be kept implicit in what follows.
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This definition showcases how future payoffs are discounted at a rate

λ0 − σo(Xo(s;X))
Żo(Xo(s;X))

Zo(Xo(s;X))

that depends on the regime survival ratio along the Stock-Markov trajectory.

For future reference, we define the intertemporal payoff once the tipping point
has been passed for sure but, being ignorant of that event, all future selves still
rely on the feedback rule σo(X) to choose actions, as

(5.7) ϕo(X) =

∫ +∞

0

e−λ1τu(σo(Xo(τ ;X)))dτ.

Impulse Deviations. To express the equilibrium requirement that sticking to
the feedback rule σo(X) is optimal at any point along the trajectory, we follow
an approach that was developed in Karp and Lee (2003), Karp (2005, 2007), Eke-
land, Karp and Sumaila (2015), Ekeland and Lazrak (2010) and Auster, Che and
Mierendorff (2023). These authors have analyzed dynamic decision-making models
with time-inconsistency problems. To model non-cooperative action choices by var-
ious decision-makers (or selves of the same decision-maker), the notion of perfect-
Markov equilibrium was imported into a continuous time setting. The idea is to
look at the benefits of deviating from the feedback rule for periods of commitment
which are arbitrarily short; deriving from there conditions for the sub-optimality
of such deviations and thus properties of the equilibrium feedback rule.

To this end, consider a possible deviation that would consist for the current
self in committing to an action x for a period of length ε, reaching a stock level
X + xε, before subsequent selves jumping back to the feedback rule σo. For such
an impulse deviation, actions are thus

(5.8) y(x, ε, τ ;X) =

{
x if τ ∈ [0, ε],

σo(X̂(x, ε, τ ;X)) if τ > ε

while the whole stock trajectory is modified as

(5.9) X̂(x, ε, τ ;X) =

{
X + xτ if τ ∈ [0, ε],

X + xε+
∫ τ
ε
σo(X̂(x, ε, s;X))ds if τ ≥ ε.

By adopting such impulse deviation, the regime survival ratio also changes as

(5.10) Ẑ(x, ε, τ ;X) = 1−∆e−∆τ

∫ τ

0

F (X̂(x, ε, s;X))e∆sds− (1− Zo(X))e−∆τ .

From this, we may define DM ’s deviation payoff V̂(x, ε;X) as

(5.11) V̂(x, ε;X) =

∫ +∞

0

e
−
∫ τ
0

(
λ0−

∂Ẑ
∂s

(x,ε,s;X)

Ẑ(x,ε,s;X)

)
ds

u(y(x, ε, τ ;X))dτ.
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That all future selves are able to observe any impulse deviation that the current
decision-maker may entertain allows those selves to reconstruct the evolution of
beliefs as expressed in (5.10). When considering the consequences of any impulse
deviation, the current decision-maker should thus assess those consequences on
his intertemporal payoff by applying the implicit discounting that follows from
the evolution of beliefs so induced. This inference is clear in the expression of the
continuation payoff on the right-hand side of (5.11).

Definition 1 A triplet (Vo(X), σo(X), Zo(X)) is a SME with observable impulse
deviations if the following conditions hold.

1. Vo(X) as defined by (5.6) cannot be improved upon by any impulse deviation
of the form (5.8)-(5.9) for ε made arbitrarily small:

(5.12) Vo(X) = max
x∈X

lim
ε→0+

V̂(x, ε;X).

2. σo(X) is optimal for ε made arbitrarily small:

(5.13) σo(X) ∈ arg max
x∈X

lim
ε→0+

V̂(x, ε;X).

3. Zo(X) is consistent with the feedback rule σo(X) and satisfies (5.4)-(5.5).

Item 1. requires to approximate the deviation payoff V̂(x, ε;X) to the first order
in ε and look for the optimal action that maximizes such approximation; an op-
timality condition that is expressed in Item 2. Those two steps are familiar from
applying the Principle of Dynamic Programming in contexts with time-consistent
plans. Item 3. follows from the consistency condition (5.3) which states that the
optimal evolution of beliefs is dictated by the Stock-Markov feedback rule. This
step is more novel. Of course, the evolution of the survival ratio should be consis-
tent with this feedback rule.

Properties of (Vo(X), σo(X)). Developing the equilibrium conditions in Defi-
nition 1 yields important properties.

Proposition 3 At any (continuously differentiable) SME, with observable im-
pulse deviations, the Stock-Markov value function Vo(X) satisfies the following
functional equation

(5.14)

V̇o(X) = −ζ− Ż
o(X)

Zo(X)
Vo(X)+

√√√√2λ0Vo(X) +

(
Żo(X)

Zo(X)
ϕo(X)

)2

∀X ∈ [0, X)

together with the boundary condition

(5.15) Vo(X) = V∞ ∀X ≥ X.

The corresponding Stock-Markov feedback rule writes as

(5.16) σo(X) = ζ + V̇o(X) +
Żo(X)

Zo(X)
(Vo(X)− ϕo(X)).
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The formula for the feedback rule in (5.16) bears some resemblance with its
counterpart (4.18) that was found under complete information. To understand
the changes, it is useful to come back on the expression of the Stock-Markov value
function (5.6). Starting from a current stock X with current beliefs Zo(X) on
the equilibrium path, consider an impulse deviation consisting in increasing by
a marginal amount dx the current action σo(X) over an interval of infinitesimal
length ε. Since the current stock increases by dX = εdx, such impulse deviation
reduces the Stock-Markov value function by

(5.17) −V̇o(X)εdx.

This impact can be decomposed into three different components. First, this im-
pulse deviation yields a marginal benefit on current payoff worth

(5.18) (ζ − σo(X))εdx.

Second, this impulse deviation also increases the implicit discount rate that applies
to future payoffs by

Żo(X)

Zo(X)
εdx < 0.

The corresponding impact on continuation payoff is thus a reduction in continua-
tion payoff worth

(5.19)
Żo(X)

Zo(X)
Vo(X)εdx < 0.

This effect decreases current action. Importantly, it is entirely due to the induced
change in stock. It takes as given the evolution of beliefs and would be also present

if the rate Żo(X)
Zo(X)

at which the survival ratio evolves was taken as given. This will
be the case in Section 6 below where we investigate the scenario of non-observable
impulse deviations.

Because it is here observable by future selves, an impulse deviation has neverthe-
less also a long-lasting effect on beliefs as highlighted by formula (5.10). A marginal
increase in the stock worth εdx makes it more likely that the tipping point has
been passed within the infinitesimal interval where this impulse deviation applies.
It brings an extra grain of pessimism over the whole future trajectory. From (5.10),
this deviation indeed impacts the Pessimistic Stigma by a term which, at a date
τ beyond the impulse deviation, is

Żo(X)e−∆τεdx < 0.

Passed the tipping point, payoffs would be discounted at rate λ1 if this event was
observed leading to an intertemporal gain worth ϕo(X). The benefit of believing
that the tipping point is more likely to have been passed following this impulse
deviation is thus

(5.20) −Ż
o(X)

Zo(X)
ϕo(X)εdx > 0.
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Since a more pessimistic decision-maker chooses higher actions, this last effect
increases current action.

Gathering (5.17), (5.18), (5.19) and (5.20) above finally yields Condition (5.16)
which characterizes the optimal feed-back rule.

Reciprocally, a triplet (Vo(X), σo(X), Zo(X)) that satisfies (5.14), (5.15), (5.16)
and the consistency requirements (5.4)-(5.5) forms a SME. This point is exploited
in Proposition 4 below to show that an optimal arc can be implemented as a SME.

Remark. Consider the alternative scenario where DM remains ignorant on where
the tipping point lies but, thanks to hard scientific evidence, immediately learns it
upon passing it.20 DM thus knows that his payoffs should be discounted at rate λ0

as long as he has not yet learned having passed the tipping point. The dynamics
of the system is thus fully summarized by the stock X that can be used as the sole
state variable. Observe also that the probability of not having yet switched regime
is then 1 − F (X) and that, once the tipping point has been passed, the myopic
action is chosen which yields a continuation payoff V∞. Denoting by Vu(X) the
value function conditionally on not having yet learned that the tipping point has
been passed, we may adapt our previous analysis to express this value function as

(5.21) Vu(X) =

∫ +∞

0

e
−
∫ τ
0

(
λ0+σu(Xu(s;X))

f(Xu(s;X))
1−F (Xu(s;X))

)
ds
u(σu(Xu(τ ;X)))dτ

and get the optimal feedback rule σu(X) as

(5.22) σu(X) = ζ + V̇u(X)− f(X)

1− F (X)
(Vu(X)− V∞).

This formula bears some obvious resemblance with (5.16). Upon learning that he

has passed the tipping point, an event whose hazard rate is f(X)
1−F (X)

, DM knows for

sure that the continuation payoff drops from Vu(X) to V∞. In order to postpone
this drop, DM reduces current actions.

Implementation of the Optimal Trajectory. The evolution of beliefs
along a SME is determined by the feedback rule on path. If DM expects fu-
ture selves to stick to a Stock-Markov rule that implements the optimal action
profile, he also expects beliefs to be modified as expected at the optimum. Hence,
when considering the possible benefits of an observable impulse deviation, there
is nothing that distinguishes the current self when he is playing the SME defined
in Proposition 4 from a long-lived planner who would be considering the impact
of a marginal change of action on the future stream of payoffs. Because impulse
deviations are observable, future selves will modify beliefs as thus planner would
also do and will accordingly choose the same actions profile.

20This scenario is analyzed in Tsur and Zemel (1996, 2021) and is isomorphic to Loury (1978)’s
analysis of how to exploit a resource with unknown reserve. In that model, when DM has reached
the limits of the resource stock, he immediately knows it and stops consuming from then on.
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Proposition 4 Suppose that impulse deviations are observable, an optimal path
can be implemented as a SME,21 (Vo(X), σo(X), Zo(X)), such that

(5.23) Vo(X) = Ve(X,Zo(X)) and σo(X) = σe(X,Zo(X)) ∀X

with Zo(X) being consistent with the feedback rule σo(X) and satisfying (5.4)-
(5.5).

6. STOCK-MARKOV EQUILIBRIA WITH NON-OBSERVABLE DEVIATIONS

We now consider a scenario where the self DMτ in charge over a period of
infinitesimal length around date τ does not observe any impulse deviations that his
predecessors DMτ ′ for τ ′ < τ may have entertained. Only the current level of the
stock X = X(τ) remains observable for DMτ . In practice, the consequences of an
action at a given point in time may only be detected after a lag. Hereafter, we will
take the polar view that the lag for detecting any impulse deviation is infinite. One
possible justification is that scientific knowledge might not be sufficiently advanced
to assess those consequences right away. An alternative explanation is that the
selves might have bounded rationality and limited ability to process information.
Accordingly, we need to slightly modify the notion of SME to account for the
non-observability of impulse deviations.

6.1. Setting the Stage

In any such SME, all selves conjecture that the feedback rule σno(X) is adopted.
Accordingly, they all believe that the regime survival ratio evolves according to

(6.1) σno(X)Żno(X) = ∆(1− F (X)− Zno(X)) ∀X ≥ 022

with the initial condition

(6.2) Zno(0) = 1.

Because necessarily σno(X) = ζ for X > X, (6.1) immediately imply

(6.3) Zno(X) = Zno(X)e−
∆
ζ

(X−X) ∀X > X.

For any stock X ≤ X, we may now define the Stock-Markov value function with
non-observable deviations Vno(X) along such SME as:

(6.4) Vno(X) =

∫ +∞

0

e
−
∫ τ
0

(
λ0−σno(Xno(s;X))

Żno(Xno(s;X))
Zno(Xno(s;X))

)
ds
u(σno(Xno(τ ;X)))dτ.

21The difficulty in directly proving existence of a SME comes from the fact that the differential
equation (5.14) for Vo(X) depends on DM ’s payoff ϕo(X) in case the tipping point has been
passed which itself depends on the Stock-Markov feedback rule computed over the whole future
trajectory. Local existence results are of little help given that non-local property. Proposition 4
overcomes this difficulty, in proving the existence of a SME indirectly from the existence of an
optimal path.
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6.2. Impulse Deviations

An impulse deviation again entails a modification of the action profile as spec-
ified in (5.8) and an ensuing evolution of the stock as in (5.9). Because impulse
deviations are now not observable, a deviation by DMτ has no impact on the
degree of pessimism that his followers DMτ ′ , for τ ′ > τ adopt. They still believe
that the regime survival ratio evolves on path as specified in (6.1) and (6.2). Of
course, an impulse deviation made earlier on modifies the current stock and affects
where the regime survival ratio lies along this trajectory. This point is made clear
in the following expression of the payoff for such a deviation:

(6.5) V̂no(x, ε;X) =

∫ +∞

0

e
−
∫ τ
0

(
λ0− ∂X̂∂s (x,ε,s;X)

Żno(X̂(x,ε,s;X)

Zno(X̂(x,ε,s;X)
)
)
ds
u(y(x, ε, τ ;X))dτ.

From there, we deduce the following definition.

Definition 2 A triplet (Vno(X), σno(X), Zno(X)) is a SME with non-observable
deviations if the following conditions hold.

1. Vno(X) as defined by (6.4) cannot be improved upon by any impulse deviation
of the form (5.8)-(5.9) for ε made arbitrarily small:

(6.6) Vno(X) = max
x∈X

lim
ε→0+

V̂no(x, ε;X).

2. σno(X) is optimal for ε made arbitrarily small:

(6.7) σo(X) ∈ arg max
x∈X

lim
ε→0+

V̂no(x, ε;X).

3. Zno(X) is consistent with the feedback rule σno(X) and satisfies (6.1)-(6.2).

This definition looks like Definition 1. Both definitions require first, that im-
pulse deviations should not improve payoffs locally (Item 1.) and second, that the
evolution of the regime survival ratio should be consistent with the feedback rule
(Item 3.). The key difference between Definitions 1 and 2 comes from the fact that
deviation payoffs are written differently. With observable deviations, continuation
payoffs following an impulse deviation are modified to account for how the regime
survival ratio carries over changes in the Pessimistic Stigma. With non-observable
deviations, subsequent decision-makers are more naive. The sole impact of an im-
pulse deviation on continuation payoff is to change the level of stock and thus the
implicit discount rate that applies to how they compute future payoffs. Decision-
makers take the evolution of beliefs as fixed when considering a deviation.

Remarks. Two implicit assumptions are made. First, each self only knows the
current level of stock when acting. Suppose instead, that he would have known
for how long the project has been run, or at which point in time he is acting.
Conjecturing that previous selves have abided to the Stock-Markov feedback rule
that prevails at equilibrium and comparing with the current stock he is observing
would allow this self to detect that (at least) one deviation has taken place earlier
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on, even if he might not be able to infer at which date it was. Assuming that
only the current stock is observed avoids such inference and accordingly simplifies
the analysis. This assumption is akin to suppose that selves are naive and have
limited memory. They can just keep track of the level of stock but cannot figure
out the precise actions path that induces such stock. Alternatively, it could be that
the initial level of stock remains unknown so that correct inferences on whether a
deviation took place are not feasible either.

Second, because impulse deviations are non-observable, all selves believe that
the regime survival ratio still evolves as on path, i.e., as in (6.1). Instead, when
deviating at date τ , DMτ knows that the correct evolution of beliefs is given by
(5.10). This difference a priori implies that, beyond the commitment period whose
length is infinitesimal, the discounted intertemporal streams of utilities evaluated
with DMτ ’s beliefs and that of his future selves DMτ ′ for τ ′ > τ differ. To fix
this issue, focus on the main consequences of non-observability in the simpler
scenario and again simplify the analysis, we assume that DMτ cares about the
intertemporal payoff of his subsequent selves; thus considering their own beliefs
when evaluating his future payoffs. From this, we may thus define DM ’s deviation
payoff V̂(x, ε;X) as in (6.5).

6.3. Equilibrium Properties

Next proposition echoes our findings in Proposition 3 but now considering a
scenario with non-observable deviations.

Proposition 5 At any (continuously differentiable) SME with non-observable
impulse deviations, the Stock-Markov value function Vno(X) satisfies the following
Hamilton-Bellman-Jacobi equation

(6.8) V̇no(X) = −ζ − Żno(X)

Zno(X)
Vno(X) +

√
2λ0Vno(X) ∀X ∈ [0, X)

together with the boundary condition

(6.9) Vno(X) = V∞ ∀X ≥ X.

The Stock-Markov feedback rule is

(6.10) σno(X) = ζ + V̇no(X) +
Żno(X)

Zno(X)
Vno(X) ∀X ∈ [0, X).

The feedback rule with non-observable deviations (6.10) is much like its coun-
terpart (5.16) found when those deviations are observable. Yet, the term (5.20)
is missing. To explain this omission, consider again increasing by a small amount
dx the current action σno(X) over an interval of infinitesimal length ε, starting
from a current stock X with current beliefs Zno(X). If this impulse deviation is
non-observable, future selves, when choosing their own actions, only consider its
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impact on the observable stock which has increased by εdx. The comparison with
observable deviations is thus straightforward.

First, this non-observable impulse deviation still impacts current payoff because
the feedback rule σno(X) requires a change in action at this new level of stock.
This term is again given by (5.17). Second, this impulse deviation also increases
the implicit discount rate; a term which is still captured by (5.18). Yet, with a
non-observable deviation, the regime survival ratio Zno(X) is taken as given over
the whole trajectory. Had such a deviation been observable, DMτ instead would
have known that increasing current action also means that future beliefs carry on
some Pessimistic Stigma and this pessimism makes it more attractive for future
selves, DMτ ′ for τ ′ > τ who think that the tipping point may have been passed,
to further increase actions later on. With a non-observable deviation, this motive
for raising actions disappears and actions remain low.

At equilibrium, the feedback rule now calls for excessively low actions in compar-
ison with the optimal trajectory. Indeed, in any SME with observable deviations,
we have

σo(X) > ζ + V̇o(X) +
Żo(X)

Zo(X)
Vo(X).

With low actions early on, the conjectured evolution of beliefs remains quite op-
timistic. Each self thinks that the tipping point remains unlikely to have been
already passed when he acts and, in response, adopts a prudent behavior. This
prudent behavior is of course excessive in comparison with the optimal trajectory.
Yet, it is self-fulfilling.

7. CONCLUDING REMARKS

We have considered a dynamic decision-making problem with irreversibility and
uncertainty. Increasing current actions makes it more likely to pass a tipping point
and thus increases the likelihood of an environmental catastrophe but the location
of such tipping point remains unknown through the process. The optimal trajec-
tory follows a feedback rule that depends not only on the stock of past actions
but also on beliefs on whether the tipping point has been passed or not. This tra-
jectory can be implemented as a decentralized equilibrium where decision-makers,
acting at different points in time and sharing the same objectives, have limited
commitment power and adopt a Stock-Markov feedback rule that only depends
on stock. This implementation requires that impulse deviations are observable
by followers. Indeed, upon observing such deviations, future decision-makers are
able to reconstruct the evolution of beliefs and do what a planner would do at
the optimal trajectory. Instead, when impulse deviations are non-observable, the
equilibrium feedback rule entails more prudent actions. When actions have been
kept low in the past, decision-makers remain quite optimistic on the fact that the
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tipping point has not been passed yet. In response, they also refrain from taking
large actions to avoid any irreversible move.

This framework has allowed us to discuss the relevance of the Precautionary
Principle that states that one should not act when the consequences of those
acts remain unknown. The debate on the relevance of the Precautionary Principle
would really matter if the trajectories with and without observability of deviations
were significantly different in terms of welfare levels. In this respect, we performed
several numerical simulations (available upon request) suggesting that imperfect
information on the consequences of past behavior might not entail any signifi-
cant welfare cost. This result softens concerns about the use of the Precautionary
Principle in practice. The two trajectories with and without observability mainly
differ at early dates but are very close afterwards; and this result holds under a
broad range of scenarios. The lack of information between decision-makers acting
at different points in time might thus not be so damageable to society, softening
concerns regarding the use of the Precautionary Principle.

REFERENCES

Arrow, K. and A. Fisher (1974). “Environmental Preservation, Uncer-
tainty, and Irreversibility,” The Quarterly Journal of Economics,
88: 312-319.

Asano, T. (2010). “Precautionary Principle and the Optimal Timing
of Environmental Policy under Ambiguity,” Environmental and Re-
source Economics, 47: 173-196.

Asheim, G and I. Ekeland (2015). “Resource Conservation across Gen-
erations in a Ramsey-Chichilnisky Game,” Economic Theory, 61:
611-639.

Auster, S., Y.-K. Che and K. Mierendorff (2023). “Prolonged Learning
and Hasty Stopping: the Wald Problem with Ambiguity,” forth-
coming The American Economic Review.

Beck, U. (1992). Risk Society: Towards a New Modernity. Sage.
Beltratti, A., G. Chichilnisky and G. Heal (1995). “Sustainable Growth

and the Green Golden Rule,” in The Economics of Sustainable De-
velopment, A. Halpern ed. Cambridge University Press.

Cai, Y. and T. Lontzek (2019). “The Social Cost of Carbon with Eco-
nomic and Climate Risks,” Journal of Political Economy, 127: 2684-
2734.

Chichilnisky, G. and G. Heal (1993). “Global Environmental Risks,”
The Journal of Economic Perspectives, 7: 65-86.

Clarke, H. and W. Reed (1994). “Consumption/Pollution Tradeoffs
in an Environment Vulnerable to Pollution-Related Catastrophic
Collapse,” Journal of Economic Dynamics and Control, 18: 991-
1010.
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APPENDIX A: VALUE FUNCTION AND FEEDBACK RULE

Beliefs

We start by presenting the evolution of the posterior density function f(X̃|t,xt). For
future reference, notice that, as times passes, a stock process X̂(t; 0) of the form

(A.1) X̂(t; 0) =

∫ t

0
x(s)ds.

goes through various possible values X̃ of the tipping point. We may thus also describe
this process by the time T (X̃; 0) at which this stock reaches a level X̃.23

Lemma A.1 The posterior density function f(X̃|t,xt) conditional on not having a
catastrophe up to date t following history xt satisfies:

(A.2) f(X̃|t,xt) =

{
e−θ0t

H(t,xt)f(X̃) if X̂(t; 0) ≤ X̃
e−θ0te−∆(t−T (X̃;0))

H(t,xt) f(X̃) otherwise.

Proof of Lemma A.1: We first compute the probability of survival H(t,xt) as (4.1).
The first term on the r.-h.s. of (4.1) stems for the probability that the tipping point is
below X̂(t; 0), and the rate of survival then jumps up to θ1 at a date T (X̃; 0) before
date t. The second term is the probability that the tipping point is above X̂(t; 0) and
the rate of arrival of a catastrophe is still θ0. Denote these terms respectively by P1t and
P2t. We immediately compute

(A.3) P2t = (1− F (X̂(t; 0)))e−θ0t.

Changing variables and letting X̂(τ ; 0) = X̃ with ∂X̂
∂τ (τ ; 0)dτ = dX̃, we rewrite

P1t =

∫ X̂(t;0)

0
f(X̃)e−θ0T (X̃;0)e−θ1(t−T (X̃;0))dX̃ =

∫ t

0
f(X̂(τ ; 0))

∂X̂

∂τ
(τ ; 0)e−θ0τe−θ1(t−τ)dτ.

Integrating by parts yields

(A.4) P1t = e−θ0t
([
F (X̂(τ ; 0))e∆(τ−t)

]t
0
−∆

∫ t

0
F (X̂(τ ; 0))e∆(τ−t)dτ

)
.

Inserting (A.3) and (A.4) into (4.1) finally yields the expression of the probability of
survival up to date t in (4.2). From this expression, we compute the conditional density

f(X̃|t,xt) =

{
e−θ0t

H(t,xt)f(X̃) if X̂(t; 0) ≤ X̃
e−θ0T (X̃;0)e−θ1(t−T (X̃;0))

H(t,xt) f(X̃) otherwise.

Simplifying yields (A.2). Q.E.D.

23If X̂(t; 0) is smooth, increasing and differentiable in t with no flat part, T (X̃; 0) is itself
increasing and smooth and differentiable with a finite derivative.
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Value Function

Proofs of Lemma 1: Following history xt, the stock X̂(τ ;X, t) evolves as

(A.5) X̂(τ ;X, t) = X +

∫ τ

t
x(s)ds.

with a stream of future actions xt = (x(τ))τ≥t. Let T (X̃;X, t) accordingly denote the

inverse function defined for X̃ ≥ X. The value function V̂(t,xt) can be written as

(A.6) V̂(t,xt) ≡ sup
xt,X(·) s.t. (A.5)

∫ X

0

(∫ +∞

t
e−r(τ−t)e−θ1(τ−t)u(x(τ))dτ

)
f(X̃|t,xt)dX̃

+

∫ +∞

X

(∫ T (X̃;X,t)

t
e−r(τ−t)e−θ0(τ−t)u(x(τ))dτ

+e−θ0(T (X̃;X,t)−t)
∫ +∞

T (X̃;X,t)
e−r(τ−t)e−θ1(τ−T (X̃;X,t))u(x(τ))dτ

)
f(X̃|t,xt)dX̃.

Taking into account the expression of the conditional density given in (A.2), we rewrite
the expression of V̂(t,xt) in (A.6 ) as

(A.7)

eθ0tH(t,xt)V̂(t,xt) ≡ sup
xt,X(·) s.t. (A.5)

∫ X

0

(∫ +∞

t
e−r(τ−t)e−θ1(τ−t)u(x(τ))dτ

)
e−∆(t−T (X̃;0))f(X̃)dX̃

+

∫ +∞

X

(∫ T (X̃;X,t)

t
e−r(τ−t)e−θ0(τ−t)u(x(τ))dτ

+e−θ0(T (X̃;X,t)−t)
∫ +∞

T (X̃;X,t)
e−r(τ−t)e−θ1(τ−T (X̃;X,t))u(x(τ))dτ

)
f(X̃)dX̃.

Let

I1 =

∫ X

0

(∫ +∞

t
e−r(τ−t)e−θ1(τ−t)u(x(τ))dτ

)
e−∆(t−T (X̃;0))f(X̃)dX̃

which rewrites as

(A.8) I1 =

(∫ +∞

t
e−λ1(τ−t)u(x(τ))dτ

)(∫ X

0
e−∆(t−T (X̃;0))f(X̃)dX̃

)
.

Changing variables and letting X̂(τ ; 0) = X̃ for τ ≤ t with ∂X̂
∂τ (τ ; 0)dτ = dX̃, we also

rewrite ∫ X

0
e−∆(t−T (X̃;0))f(X̃)dX̃ =

∫ t

0
e−∆(t−τ)f(X̂(τ ; 0))

∂X̂

∂τ
(τ ; 0)dτ.

Integrating by parts, yields∫ X

0
e−∆(t−T (X̃;0))f(X̃)dX̃ = e−∆t

([
F (X̂(τ ; 0))e∆τ

]t
0
−∆

∫ t

0
F (X̂(τ ; 0))e∆τdτ

)
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= F (X)−∆e−∆t

∫ t

0
F (X̂(τ ; 0))e∆τdτ

where the last equality follows from X̂(t; 0) = X. Inserting into (A.8) yields

(A.9) I1 =

(∫ +∞

t
e−λ1(τ−t)u(x(τ))dτ

)(
F (X)−∆e−∆t

∫ t

0
F (X(s; 0))e∆sds

)
.

We now compute

I2 =

∫ +∞

X

(∫ T (X̃;X,t)

t
e−r(τ−t)e−θ0(τ−t)u(x(τ))dτ

+e−θ0(T (X̃;X,t)−t)
∫ +∞

T (X̃;X,t)
e−r(τ−t)e−θ1(τ−T (X̃;X,t))u(x(τ))dτ

)
f(X̃)dX̃.

Changing variables and letting X̂(τ ;X, t) = X̃ for τ ≥ t with ∂X̂
∂τ (τ ;X, t)dτ = dX̃ and

X̂(t;X, t) = X , we also rewrite

I2 =

∫ +∞

t

(∫ τ

t
e−λ0(s−t)u(x(s))ds+e∆(τ−t)

∫ +∞

τ
e−λ1(s−t)u(x(s))ds

)
f(X̂(τ ;X, t))

∂X̂

∂τ
(τ ;X, t)dτ.

Integrating by parts yields

(A.10)

I2 =

[
F (X̂(τ ;X, t))

(∫ τ

t
e−λ0(s−t)u(x(s))ds+ e∆(τ−t)

∫ +∞

τ
e−λ1(s−t)u(x(s))ds

)]+∞

t

−∆

∫ +∞

t
F (X̂(τ ;X, t))e∆(τ−t)

∫ +∞

τ
e−λ1(s−t)u(x(s))ds

)
dτ.

Using that limτ→+∞ F (X̂(τ ;X, t)) = 1 if limτ→+∞ X̂(τ ;X, t) = +∞ (which holds when
the minimal action is positive at any point of time as we will see below), we get

(A.11) I2 =

∫ +∞

t
e−λ0(s−t)u(x(s))ds− F (X)

∫ +∞

t
e−λ1(s−t)u(x(s))ds

−∆

∫ +∞

t
F (X̂(τ ;X, t))e∆(τ−t)

(∫ +∞

τ
e−λ1(s−t)u(x(s))ds

)
dτ.

Integrating by parts, we obtain∫ +∞

t
F (X̂(τ ;X, t))e∆τ

(∫ +∞

τ
e−λ1(s−t)u(x(s))ds

)
dτ

=

[(∫ τ

t
F (X̂(s;X, t))e∆sds

)(∫ +∞

τ
e−λ1(s−t)u(x(s))ds

)]+∞

t

+

∫ +∞

τ
e−λ1(τ−t)

(∫ τ

t
F (X̂(s;X, t))e∆sds

)
u(x(τ))dτ
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=

∫ +∞

τ
e−λ1(τ−t)

(∫ τ

t
F (X̂(s;X, t))e∆sds

)
u(x(τ))dτ.

Inserting into (A.11), we thus obtain

(A.12) I2 =

∫ +∞

t
e−λ0(s−t)u(x(s))ds− F (X)

∫ +∞

t
e−λ1(s−t)u(x(s))ds

−∆e−∆t

∫ +∞

t
e−λ1(τ−t)

(∫ τ

t
F (X̂(s;X, t))e∆sds

)
u(x(τ))dτ.

Summing up (A.9) and (A.12) and taking into account that X̂(s;X, t) for s ≥ t is the
continuation of the trajectory X̂(s; 0), i.e., X̂(s;X, t) ≡ X̂(s; 0, 0) = X̂(s; 0) (where the
last equality slightly abuses notation) for s ≥ t, yields

I =

∫ +∞

t
e−λ0(τ−t)u(x(τ))dτ−∆e−∆t

∫ +∞

t
e−λ1(τ−t)

(∫ τ

0
F (X̂(s; 0))e∆sds

)
u(x(τ))dτ

and thus

I =

∫ +∞

t
e−λ0(τ−t)

(
1−∆e−∆τ

∫ τ

0
F (X̂(s; 0))e∆sds

)
u(x(τ))dτ.

Changing variables and setting τ ′ = τ − t yields

(A.13) I =

∫ +∞

0
e−λ0τ ′

(
1−∆e−∆(τ ′+t)

∫ τ ′+t

0
F (X̂(s; 0))e∆sds

)
u(x(τ ′ + t))dτ ′.

Generalizing (4.2) to paths that go till date t + τ , we observe that the probability of
survival up to date t+ τ can be expressed in terms of the action plan xt+τ followed up
to that date (that plan includes all past actions taken up to date t, namely xt, and the
actions planned from date t on xt+τt ) as

(A.14) H(t+ τ,xt+τ ) = e−θ0(t+τ)

(
1−∆e−∆(t+τ)

∫ t+τ

0
F (X̂(s; 0))e∆sds

)
.

Inserting into (A.13) and changing the name of dummy variables yields

(A.15) I = eθ0t
∫ +∞

0
e−rτH(t+ τ,xt+τ )u(x(τ + t))dτ.

Inserting into (A.7) yields

eθ0tH(t,xt)V̂(t,xt) ≡ sup
xt,X̂(·)

∫ +∞

0
e−λ0τeθ0(t+τ)H(t+ τ,xt+τ )u(x(t+ τ))dτ

s.t. X̂(t+ τ ; 0) = X +

∫ τ

0
x(t+ s)ds and X =

∫ τ

0
x(s)ds.

which can be written as

(A.16) Ẑ(t,xt)V̂(t,xt) ≡ sup
xt,X̂(τ ;X,t)=X+

∫ τ
t x(s)ds

∫ +∞

0
e−λ0τ Ẑ(t+ τ,xt+τ )u(x(t+ τ))dτ.

and, finally, (4.4) with the definition of Ẑ(t+ τ,xt+τ ) in (4.3). Q.E.D.
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Next proposition provides some properties of the value function Ve(X,Z). At a higher
stock, Ve(X,Z) is necessarily lower since the irreversibility constraints become more
stringent as X comes closer to X.

Proposition A.1 There exists a solution to the optimization problem (4.11). ZVe(X,Z)
is non-increasing in X, convex in Z, Lipschitz-continuous and thus a.e. differentiable.

Proof of Proposition A.1: We first define We(X,Z) as

We(X,Z) = ZVe(X,Z).

Inserting (4.7) into the r.-h.s. of (4.11), we thus rewrite

(A.17)

We(X,Z) = max
x,X(·),T s.t. (4.5),X(0) = X, X(T ) = X

(Z−1)

(∫ T

0
e−λ0τe−∆τu(x(τ))dτ

+λ1V∞
∫ ∞
T

e−λ0τe−∆τdτ

)
+

∫ T

0
e−λ0τ

(
1−∆e−∆τ

∫ τ

0
F (X(s))e∆sds

)
u(x(τ))dτ

+

∫ +∞

T
e−λ0τ

(
1−∆e−∆τ

∫ τ

0
F (X(s))e∆sds

)
λ1V∞dτ.

Existence. Existence of a solution to the optimization problem (A.17) follows from ap-
plying Filipov-Cesari Theorem with free final time (see Seierstad and Sydsaeter, 1987,
Theorem 12, p. 145). To check that all conditions for this theorem are satisfied, first
observe that X is closed and bounded, while X is bounded above by X and Z is also
bounded (Z ∈ [0, 1]). Denote

N(X,Z,X , τ) = {e−λ0τZu(x) + γ ≤ 0, x,∆(1− F (X)− Z); γ ≤ 0, x ∈ X}.

Let us check that N(X,Z,X , τ) is convex for each (X,Z, τ). Take a pair (x1, x2) ∈
N(X,Z,X , τ) × N(X,Z,X , τ), i.e., there exist γi ≤ 0 such that e−λ0τZu(xi) + γi ≤ 0.
Consider now λx1 + (1− λ)x2 for λ ∈ [0, 1] and observe that

e−λ0τZu(λx1+(1−λ)x2) ≤ e−λ0τZ(u(λx1+(1−λ)x2)−λu(x1)−(1−λ)u(x2))−λγ1−(1−λ)γ2.

Define γ = λγ1 + (1− λ)γ2 + e−λ0τZ(λu(x1) + (1− λ)u(x2)− u(λx1 + (1− λ)x2)) and
observe that γ ≤ 0 since u is concave and γi ≤ 0. Moreover, we have

e−λ0τZu(λx1 + (1− λ)x2) + γ ≤ 0.

Hence, N(X,Z,X , τ) is convex as requested. From Filipov-Cesari Theorem, an optimal
arc thus exists, say (Xe(τ ;X,Z), Ze(τ ;X,Z), xe(τ ;X,Z), T

e
(τ ;X,Z)).

Properties. Fixing an action path x and taking X ′ ≥ X, the corresponding stocks
satisfy X(s;X) ≤ X(s;X ′). The r.-h.s. of (A.17) is thus lower at X ′ for any action path.
Taking the max-operator proves that We(X,Z) is non-increasing in X. From (A.17), it
also follows that We(X,Z) is convex as a maximum of linear functions of Z.
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Consider an alternative pair (X ′, Z ′). Because an arc which is optimal for (X ′, Z ′), say
(Xe(τ ;X ′, Z ′), Ze(τ ;X ′, Z ′), xe(τ ;X ′, Z ′), T

e
(X ′, Z ′)), is weakly suboptimal for (X,Z),

the following inequality holds:

We(X,Z) ≥ (Z−1)

(∫ T
e
(X′,Z′)

0
e−λ0τe−∆τu(xe(τ ;X ′, Z ′)dτ+λ1V∞

∫ ∞
T
e
(X′,Z′)

e−λ0τe−∆τdτ

)

+

∫ T
e
(X′,Z′)

0
e−λ0τ

(
1−∆e−∆τ

∫ τ

0
F

(
X +

∫ s

0
xe(s′;X ′, Z ′)ds′

)
e∆sds

)
u(xe(τ ;X ′, Z ′))dτ

+

∫ +∞

T
e
(X′,Z′)

e−λ0τ

(
1−∆e−∆τ

∫ τ

0
F

(
X +

∫ s

0
xe(s′;X ′, Z ′)ds′

)
e∆sds

)
λ1V∞dτ.

We express the r.-h.s. in terms of We(X ′, Z ′) to get:

(A.18)

We(X,Z)−We(X ′, Z ′) ≥ (Z−Z ′)

(∫ T
e
(X′,Z′)

0
e−λ1τu(xe(τ ;X ′, Z ′))dτ+λ1V∞

∫ ∞
T
e
(X′,Z′)

e−λ1τdτ

)
+

∆

(∫ T
e
(X′,Z′)

0
e−λ0τ

(∫ τ

0

(
F

(
X ′ +

∫ s

0
xe(s′;X ′, Z ′)ds′

)

−F
(
X +

∫ s

0
xe(s′;X ′, Z ′)ds′

))
e∆sds

)
u(xe(τ ;X ′, Z ′))dτ

)

+∆

(∫ ∞
T
e
(X′,Z′)

e−λ0τ

(∫ τ

0

(
F

(
X ′ +

∫ s

0
xe(s′;X ′, Z ′)ds′

)

−F
(
X +

∫ s

0
xe(s′;X ′, Z ′)ds′

))
e∆sds

)
λ1V∞dτ

)
.

Permuting the roles of (X,Z) and (X ′, Z ′), we deduce a similar inequality. Putting
together those conditions implies

|We(X,Z)−We(X,Z)| ≤ V∞(‖f‖∞|X ′ −X|+ |Z ′ − Z|).

From which, we deduce that there exists k = 2V∞max{‖f‖∞, 1} such that

|We(X,Z)−We(X,Z)| ≤ k||(X ′, Z ′)− (X,Z)||)

where || · || is the Euclidian norm. We(X,Z) is Lipschitz continuous and thus a.e. dif-
ferentiable.

Q.E.D.

For future reference, we now defineDM ’s payoff along an optimal arc (Xe(τ ;X,Z), Ze(τ ;X,Z))
for the stock and the regime survival ratio starting from arbitrary initial conditions
(X,Z) in case the regime switch has already occurred as

(A.19) ϕe(X,Z) =

∫ T
e
(X,Z)

0
e−λ1τu(σe(Xe(τ ;X,Z), Ze(τ ;X,Z)))dτ + e−λ1T

e
(X,Z)V∞
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where T
e
(X,Z) is the date at which the highest possible value of the tipping point is

reached, namely Xe(T
e
(X,Z);X,Z) = X. Payoffs are discounted at a rate λ1 once the

tipping point has been passed. When X ≥ X, DM knows for sure that it has been
the case and adopts the myopic action with payoff V∞. Beliefs then evolve according to
(4.8). Because ϕe(X,Z) is computed when discounting payoffs at rate λ1, while Ve(X)
is computed when discounting at a lower rate λ0 over a first phase, we necessarily have
Ve(X,Z) ≥ ϕe(X,Z). Although DM ignores having passed the tipping point, he knows
that, if that happened, continuation payoffs are lower.

Proof of Proposition 1: Characterization. We start by characterizingWe(X,Z)
by means of an Hamilton-Bellman-Jacobi equation.

Proposition A.2 At any point of differentiability, We(X,Z) that solves (A.17) sat-
isfies the following Hamilton-Bellman-Jacobi partial differential equation:

(A.20)

λ0We(X,Z) = λ1V∞Z+ζ
∂We

∂X
(X,Z)+

1

2Z

(
∂We

∂X
(X,Z)

)2

+∆(1−F (X)−Z)
∂We

∂Z
(X,Z).

The feedback rule is given by

(A.21) σe(X,Z) = ζ +
1

Z

∂We

∂X
(X,Z).

Moreover, we have

(A.22)
∂We

∂Z
(X,Z) = ϕe(X,Z).

Proof of Proposition A.2: When it is continuously differentiable,We(X,Z) solves

(A.23) λ0We(X,Z) = sup
x∈X

{
Zu(x) + x

∂We

∂X
(X,Z) + ∆(1− F (X)− Z)

∂We

∂Z
(X,Z)

}
.

Feedback Rule. The maximand on the r.-h.s. of (A.23) is strictly concave. It immedi-
ately follows that the feedback rule σe(X,Z) is given by (A.21) when interior. Simplifying
(A.23) by using the feedback rule (A.21) finally yields (A.20).
Partial Differential Equation. Rewriting the optimality conditions in terms of
Ve(X,Z), (A.20) becomes

λ0Ve(X,Z) = λ1V∞+ζ
∂Ve

∂X
(X,Z)+

1

2

(
∂Ve

∂X
(X,Z)

)2

+
∆(1− F (X)− Z)

Z

∂We

∂Z
(X,Z).

Solving this second-degree equation and keeping the positive solution yields

(A.24)
∂Ve

∂X
(X,Z) = −ζ +

√
2λ0Ve(X,Z)− 2

∆(1− F (X)− Z)

Z

∂We

∂Z
(X,Z).

Denote the optimal solution to (A.17) by (xe(τ ;X,Z), Xe(τ ;X,Z), Ze(τ ;X,Z), T
e
(X,Z)).

From (A.17), we can write

(A.25)
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We(X,Z) =

∫ T
e
(X,Z)

0
e−λ0τZe(τ ;X,Z)u(xe(τ ;X,Z))dτ+Ze(T

e
(X,Z);X,Z)e−λ0T

e
(X,Z)V∞.

Integrating (4.6), we obtain

(A.26)

Z̃e(τ ;X,Z) = (Z−1)e−∆τ +1−∆e−∆τ

∫ τ

0
F (Xe(s;X,Z))e∆sds ∀τ ≥ 0, X, Z ≥ 0

Applying the Envelope Theorem to (A.17) thus yields

(A.27)
∂We

∂Z
(X,Z) = ϕe(X,Z)

or

Z
∂Ve

∂Z
(X,Z) + Ve(X,Z) = ϕe(X,Z)

where ϕe(X,Z) is defined as in (A.19). Inserting into (A.24) and simplifying yields

∂Ve

∂X
(X,Z) = −ζ +

√
2λ0Ve(X,Z)− 2

∆(1− F (X)− Z)

Z
ϕe(X,Z)

which can be written as (4.12).

Q.E.D.

Q.E.D.

Bounds. For future references, it is useful to provide simple bounds on Ve(X,Z).

Proposition A.3

(A.28) ZV∞ ≤ ZVe(X,Z) ≤
(
F (X) + (1− F (X))

λ1

λ0

)
V∞ ∀X ≥ 0,∀Z ∈ (0, 1].

Proof of Proposition A.3: Observe that (4.6) and F (X) ≤ F (Xe(τ ;X,Z))) ≤ 1
imply

0 ≤ d

dτ

(
Ze(τ ;X,Z)e∆τ

)
≤ ∆(1− F (X))e∆τ .

Integrating between 0 and τ yields

0 ≤ Ze−∆τ ≤ Ze(τ ;X,Z) ≤ Ze−∆τ + (1− F (X))
(
1− e−∆τ

)
.

From this and the fact that 0 ≤ Z ≤ 1, it follows that

(A.29) 0 ≤ Ze−∆τ ≤ Ze(τ ;X,Z) ≤ F (X)e−∆τ + 1− F (X) ≤ 1.

Henceforth, the whole trajectory Ze(τ ;X,Z) always remains in the stable domain [0, 1].

From the third inequality in (A.29), taking maximum on the r.-h.s. of (A.17), the
r.-h.s. inequality of (A.28) follows. From the first inequality in (A.29), we immediately
get the l.-h.s. inequality of (A.28). Q.E.D.
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Optimal Path

The intertemporal date 0-payoff Ve(0, 1) is achieved by adopting the action profile
σe(Xe(τ ; 0, 1), Ze(τ ; 0, 1)) for all τ ≥ 0 starting from the initial conditions X = 0 and
Z = 1. Next Proposition provides necessary conditions for an optimal arc.

Proposition A.4 An optimal action path xe(t) satisfies the following necessary con-
dition:24

(A.30) xe(τ) = ζ − ∆eλ0τ

Ze(τ)

∫ T
e

τ
f(Xe(s))e∆s

(∫ T
e

s
e−λ1s′u(xe(s′))ds′

)
ds

where, along the optimal trajectory, the survival ratio writes as

Ze(t) = 1−∆e−∆t

∫ t

0
F (Xe(τ))e∆τdτ.

X is reached at a date T
e
< T

m
with

(A.31) X = ζT
e −

∫ T
e

0

∆eλ0τ

Ze(τ)

(∫ T
e

τ
f(Xe(s))e∆s

(∫ T
e

s
e−λ1s′u(xe(s′))ds′

)
ds

)
dτ.

Proof of Proposition A.4 : From (4.4), DM ’s intertemporal payoff writes as

(A.32) Ve(0, 1) ≡ sup
A

∫ T

0
e−λ0τZ(τ)u(x(τ))dτ +

∫ +∞

T
e−λ0τZ(τ)λ1V∞dτ.

Existence. It immediately follows that there exists a solution to problem (A.32 ) from
the argument for existence in the Proof of Proposition 1.

Maximum Principle. Observe that, for τ ≥ T , (4.6) implies

(A.33) Z(τ) = Z(T )e−∆(τ−T )

and thus the scrap value on the r.-h.s. of the maximand in (A.32) writes as

(A.34)

∫ +∞

T
e−λ0τZ(τ)λ1V∞dτ = Z(T )e−λ0TV∞.

We now define the Hamiltonian for this optimization problem as

(A.35) He(X,Z, x, τ, µ, ν) = e−λ0τZu(x) + µx+ ν∆(1− F (X)− Z)

where µ and ν are respectively the costate variables for (A.1) and (4.6). The Maximum
Principle with free final time and scrap value now gives us the following necessary con-
ditions for optimality of an arc (Xe(τ), Ze(τ), xe(τ), T

e
). (See Seierstad and Sydsaeter,

1987, Theorem 11, p. 143).)

Costate variables. µ(τ) and ν(τ) are both continuously differentiable on R+ with

−µ̇(τ) =
∂He

∂X
(Xe(τ), Ze(τ), xe(τ), τ, µ(τ), ν(τ))

24We slightly abuse notations and omit the dependence on the initial conditions (0, 1).
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and

−ν̇(τ) =
∂He

∂Z
(Xe(τ), Ze(τ), xe(τ), τ, µ(τ), ν(τ))

or

(A.36) µ̇(τ) = ∆f(Xe(τ))ν(τ) ∀τ ∈
[
0, T

e]
;

and

(A.37) ν̇(τ) = −e−λ0τu(xe(τ)) + ∆ν(τ) ∀τ ∈
[
0, T

e]
.

Transversality conditions. The boundary conditions Xe(0) = 0, Xe(T
e
) = X and

Ze(0) = 1 imply that there are no transversality conditions on µ(τ) at both τ = 0
and τ = T

e
and on ν(τ) at τ = 0 only while

(A.38) ν(T
e
) = 0.

Free-end point conditions. The optimality condition with respect to T writes as

(A.39) He(Xe(T
e
), Ze(T

e
), xe(T

e
), T

e
, µ(T

e
), ν(T

e
)) +

d

dT

(
Z(T )e−λ0T

)
T=T

e V∞ = 0.

Using (A.35), (A.38), (4.6) taken for T
e

(with the fact that F has no mass point at X),
namely

(A.40) Ż(T
e
) = −∆Z(T

e
),

Condition (A.39) rewrites as

(A.41) e−λ0T
e

Z(T
e
)
(
u(xe(T

e−
))− λ1V∞

)
+ µ(T

e
)xe(T

e−
) = 0

or

(A.42) −1

2
e−λ0T

e

Z(T
e
)(xe(T

e−
)− ζ)2 + µ(T

e
)xe(T

e−
) = 0

where xe(T
e−

) denotes the l.-h. side limit of xe(τ) as τ → T
e−

.
Control variable xe(τ).

xe(τ) ∈ arg max
x≥0
He(Xe(τ), Ze(τ), x, µ(τ), ν(τ)).

Because He(Xe(τ), Ze(τ), x, τ, µ(τ), ν(τ)) is strictly concave in x, an interior solution
satisfies

∂He

∂x
(Xe(τ), Ze(τ), xe(τ), τ, µ(τ), ν(τ)) = 0

or

(A.43) xe(τ) = ζ + eλ0τ µ(τ)

Ze(τ)
.

Characterization. Inserting (A.43) taken for T
e

into (A.42) yields

eλ0T
e

µ2(T
e
)

2Ze(T
e
)

+ µ(T
e
)ζ = 0.
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The only solution consistent with a non-negative action at date T
e

is thus

(A.44) µ(T
e
) = 0.

From there, it follows that the optimal action is continuous at T
e
, namely

(A.45) xe(T
e−

) = xe(T
e+

) = ζ.

The solution for (A.37) that satisfies the transversality condition (A.38) is

(A.46) ν(τ) = e∆τ

∫ T
e

τ
e−λ1su(xe(s))ds.

Inserting into (A.36) and integrating yields

µ(τ) = µ(T
e
)−

∫ T
e

τ
∆f(Xe(s))e∆s

(∫ T
e

s
e−λ1s′u(xe(s′))ds′

)
ds

or, using (A.44),

(A.47) µ(τ) = −
∫ T

e

τ
∆f(Xe(s))e∆s

(∫ T
e

s
e−λ1s′u(xe(s′))ds′

)
ds.

Inserting into (A.43), we obtain (A.30). Finally, the value of T
e

is obtained when∫ T e
0 xe(τ)dτ = X or (A.31). That T

e
< T

m
is immediate.

Q.E.D.

Proofs of Proposition 2 : The Hamilton-Bellman-Jacobi equation (4.16) and the
optimal feedback rule (4.18). Iimmediately follows from Proposition 1 taken at Z = 1.

Comparative Statics. From (4.16), we have ∂Ve
∂X (X, 1) ≤ 0 if and only if Ve(X, 1) ≤

λ1
λ0
V∞ Observe that Ve(X, 1) < λ1

λ0
V∞ because of (4.17). Moreover, Ve(X, 1) were to

cross λ1
λ0
V∞ at X1 < X, we would have ∂Ve

∂X (X1, 1) = 0. Observe that λ1
λ0
V∞ is a constant

solution to (4.16). Suppose that Ve(X, 1) were to cross λ1
λ0
V∞ at X1 < X. By Cauchy-

Lipschitz Theorem, the only solution to (4.16) which is such Ve(X1, 1) = λ1
λ0
V∞ is such

that Ve(X, 1) = λ1
λ0
V∞ for all X ∈

[
0, X

]
. This would contradict the boundary condition

(4.17). Hence, necessarily, Ve(X, 1) < λ1
λ0
V∞ for all X. From (4.16), ∂Ve

∂X (X, 1) < 0 for

X < X. From (4.17), we thus have Ve(X, 1) > V∞) for X < X.

Turning now to the optimal action. The r.-h.s. inequality of (4.21) follows from (4.18)
and ∂Ve

∂X (X, 1) < 0 for X < X. The l.-h.s. inequality follows from observing that V∞ ≤
Ve(X, 1) together with (4.16) and (4.18).

Differentiating (4.16) with respect to X yields

(A.48)

(
1 +

ζ
∂Ve
∂X (X, 1)

)
∂2Ve

∂X2
(X, 1) = λ0.

Because ∂Ve
∂X (X, 1) < 0 for X ∈ [0, X) and σe(X, 1) = ∂Ve

∂X (X, 1) + ζ > 0, we deduce that
∂2Ve
∂X2 (X, 1) < 0 for X ∈ [0, X) and thus σe(X, 1) is decreasing. Q.E.D.
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APPENDIX B: SME WITH OBSERVABLE IMPULSE DEVIATIONS

For further reference, we now state some preliminary Lemmas (whose proofs are avail-
able upon request).

Lemma B.1

(B.1)
∂Xo

∂X
(τ ;X) =

σo(Xo(τ ;X))

σo(X)
=

∂Xo

∂τ (τ ;X)

σo(X)
.

Lemma B.2

(B.2)
∂X̂

∂ε
(x, ε, τ ;X)|ε=0 = σo(Xo(τ ;X))

(
x

σo(X)
− 1

)
.

Lemma B.3 Z(τ ;X) and Zo(X) satisfy the following conditions

(B.3) σo(X)
∂Z

∂X
(τ ;X) =

∂Z

∂τ
(τ ;X) ∀τ ≥ 0, X ≥ 0,

(B.4) σo(X)Żo(X) = ∆(1− F (X)− Zo(X)) ∀X ≥ 0 with Zo(0) = 1.

Zo(X) ≥ 1 − F (X) for all X with equality at X = 0 only, and thus Żo(X) ≤ 0 when
σo(X) > 0.

Next Lemma provides properties of any continuously differentiable SME with Stock-
Markov value function and feedback rule (Vo(X), σo(X))).

Lemma B.4 If Vo(X) is continuously differentiable, the following necessary conditions
hold:

(B.5) 0 = max
x∈X

∂V̂
∂ε

(x, 0, X),

(B.6) σo(X) ∈ arg max
x∈X

∂V̂
∂ε

(x, 0, X).

We are now ready to characterize the Stock-Markov value function.

Proof of Proposition 3: We define

(B.7) Wo(X) = Zo(X)Vo(X)

where

(B.8) Wo(X) =

∫ +∞

0
e−λ0τZ(τ ;X)u(σo(Xo(τ ;X)))dτ.

Next lemma turns to the properties of Vo(X) and ϕo(X).
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Lemma B.5 Vo(X) and ϕo(X) satisfy the following system of first-order differential
equations:

(B.9) σo(X)

(
V̇o(X) +

Żo(X)

Zo(X)
Vo(X)

)
= λ0Vo(X)− u(σo(X)),

(B.10) σo(X)ϕ̇o(X) = λ1ϕ
o(X)− u(σo(X)).

Proof of Lemma B.5: Differentiating (B.8) with respect to X yields

Ẇo(X) =

∫ +∞

0
e−λ0τZ(τ ;X)u′(σo(Xo(τ ;X)))σ̇o(Xo(τ ;X))

∂Xo

∂X
(τ ;X)dτ

+

∫ +∞

0
e−λ0τ ∂Z

∂X
(τ ;X)u(σo(Xo(τ ;X)))dτ.

Using (B.1), we rewrite this condition as

(B.11) σo(X)Ẇo(X) =

∫ +∞

0
e−λ0τZ(τ ;X)u′(σo(Xo(τ ;X)))σ̇o(Xo(τ ;X))

∂Xo

∂τ
(τ ;X)dτ

+

∫ +∞

0
e−λ0τσo(X)

∂Z

∂X
(τ ;X)u(σo(Xo(τ ;X)))dτ.

Integrating by parts the first integral above, we find

(B.12)

σo(X)Ẇo(X) =
[
e−λ0τZ(τ ;X)u(σo(Xo(τ ;X)))

]+∞

0
+λ0

∫ +∞

0
e−λ0τZ(τ ;X)u(σo(Xo(τ ;X)))dτ

+

∫ +∞

0
e−λ0τ

(
σo(X)

∂Z

∂X
(τ ;X)− ∂Z

∂τ
(τ ;X)

)
u(σo(Xo(τ ;X)))dτ.

Using (B.3) and simplifying yields

(B.13) σo(X)Ẇo(X) = λ0Wo(X)− Zo(X)u(σo(X)) ∀X.

Using the definition of Wo(X) in (B.7) and simplifying yields (B.9).
Using (5.7) and differentiating with respect to X yields

ϕ̇o(X) =

∫ +∞

0
e−λ1τu′(σo(Xo(τ ;X)))

∂Xo

∂X
(τ ;X)dτ.

Using (B.1), we rewrite this condition as

(B.14) σo(X)ϕ̇o(X) =

∫ +∞

0
e−λ1τu′(σo(Xo(τ ;X)))

∂Xo

∂τ
(τ ;X)dτ.

Integrating by parts we obtain∫ +∞

0
e−λ1τu′(σo(Xo(τ ;X)))

∂Xo

∂τ
(τ ;X)dτ =

[
e−λ1τu(σo(Xo(τ ;X)))

]+∞

0

+λ1

∫ +∞

0
e−λ1τu(σo(Xo(τ ;X)))dτ = −u(σo(X)) + λ1ϕ

o(X).

Inserting into (B.14) ends the proof. Q.E.D.



ACTING IN THE DARKNESS 39

By adopting the deviation (5.8)-(5.9), the regime survival ratio would also change as
(5.10). We can thus write the benefit of a deviation as

(B.15) W(ε, x;X) =W1(ε, x;X) +W2(ε, x;X)

where

(B.16)

W1(ε, x;X) = (Zo(X)−1)

(∫ ε

0
e−λ1τu(x)dτ +

∫ +∞

ε
e−λ1τu(σo(X̂(x, ε, τ ;X)))dτ

)
and

(B.17) W2(ε, x;X) =

∫ ε

0
e−λ0τ

(
1−∆e−∆τ

∫ τ

0
F (X + xs)e∆sds

)
u(x)dτ

+

∫ +∞

ε
e−λ0τ

(
1−∆e−∆τ

∫ τ

0
F (X̂(x, ε, τ ;X))e∆sds

)
u(σo(X̂(x, ε, τ ;X)))dτ.

From (B.16), we deduce

(B.18)
∂W1

∂ε
(0, x,X) = (Zo(X)− 1)

(
u(x)− u(σo(X))

+

∫ +∞

0
e−λ1τu′(σo(Xo(τ ;X)))σ̇o(Xo(τ ;X))

∂X̂

∂ε
(x, ε, s;X)|ε=0dτ

)
.

Using (B.2), this expression can be simplified as

(B.19)
∂W1

∂ε
(0, x,X) = (Zo(X)− 1)

(
u(x)− u(σo(X))

+

(
x

σo(X)
− 1

)∫ +∞

0
e−λ1τu′(σo(Xo(τ ;X)))σ̇o(Xo(τ ;X))

∂Xo

∂τ
(τ ;X)dτ

)
.

Integrating by parts, we also have

(B.20)

∫ +∞

0
e−λ1τu′(σo(Xo(τ ;X)))σ̇o(Xo(τ ;X))

∂Xo

∂τ
(τ ;X)dτ

=
[
e−λ1τu(σo(Xo(τ ;X)))

]+∞

0
+ λ1

∫ +∞

0
e−λ1τu(σo(Xo(τ ;X)))dτ.

= −u(σo(X)) + λ1ϕ
o(X) = σo(X)ϕ̇o(X)

where the last equality follows from (B.10). Inserting into (B.19) yields

(B.21)
∂W1

∂ε
(0, x,X) = (Zo(X)− 1)

(
u(x)− u(σo(X)) + (x− σo(X)) ϕ̇o(X)

)
.

From (B.17) and (5.10), we deduce

(B.22)
∂W2

∂ε
(0, x,X) = u(x)− u(σo(X))
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+

∫ +∞

0
e−λ0τ

(
Z(τ ;X)− (Zo(X)− 1)e−∆τ

)
u′(σo(Xo(τ ;X)))σ̇o(Xo(τ ;X))

∂X̂

∂ε
(x, ε, τ ;X)|ε=0dτ

+

∫ +∞

0
e−λ0τ

(
−∆e−∆τ

∫ τ

0
f(Xo(s;X))

∂X̂

∂ε
(x, ε, s;X)|ε=0e

∆sds

)
u(σo(Xo(τ ;X)))dτ.

Using (B.2), this expression can be simplified as

(B.23)
∂W2

∂ε
(0, x,X) = u(x)− u(σo(X))

+

(
x

σo(X)
− 1

)(∫ +∞

0
e−λ0τ

(
Z(τ ;X)− (Zo(X)− 1)e−∆τ

)
u′(σo(Xo(τ ;X)))σ̇o(Xo(τ ;X))

∂Xo

∂τ
(τ ;X)dτ

+

∫ +∞

0
e−λ0τ

(
−∆e−∆τ

∫ τ

0
f(Xo(s;X))

∂Xo

∂τ
(s;X)e∆sds

)
u(σo(Xo(τ ;X)))dτ

)
.

Observe that

(B.24) Z(τ ;X) = (Zo(X)−1)e−∆τ +1−∆e−∆τ

∫ τ

0
F (Xo(s;X))e∆sds ∀τ ≥ 0, X ≥ 0,

Differentiating now (B.24) with respect to X and using (B.1) yields

(B.25) σo(X)
∂Z

∂X
(τ ;X) = σo(X)Żo(X)e−∆τ−∆e−∆τ

∫ τ

0
f(Xo(s;X))

∂Xo

∂s
(s;X)e∆sds.

Using (B.25), we now rewrite

(B.26)

∫ +∞

0
e−λ0τ

(
−∆e−∆τ

∫ τ

0
f(Xo(s;X))

∂Xo

∂τ
(s;X)e∆sds

)
u(σo(Xo(τ ;X)))dτ

=

∫ +∞

0
e−λ0τ

(
σo(X)

∂Z

∂X
(τ ;X)− σo(X)Żo(X)e−∆τ

)
u(σo(Xo(τ ;X)))dτ.

Integrating by parts, we also have

(B.27)∫ +∞

0
e−λ0τ

(
Z(τ ;X)− (Zo(X)− 1)e−∆τ

)
u′(σo(Xo(τ ;X)))σ̇o(Xo(τ ;X))

∂Xo

∂τ
(τ ;X)dτ

=
[
e−λ0τ

(
Z(τ ;X)− (Zo(X)− 1)e−∆τ

)
u(σo(Xo(τ ;X)))

]+∞

0
+∫ +∞

0

(
λ0

(
Z(τ ;X)− (Zo(X)− 1)e−∆τ

)
− ∂Z

∂τ
(τ ;X)−∆(Zo(X)− 1)e−∆τ

)
e−λ0τu(σo(Xo(τ ;X)))dτ.

= λ0Wo(X)−u(σo(X))−λ1(Zo(X)−1)ϕo(X)−
∫ +∞

0
e−λ0τ ∂Z

∂τ
(τ ;X)u(σo(Xo(τ ;X)))dτ.

Using (B.26) and (B.27) and inserting into (B.23) yields

∂W2

∂ε
(0, x,X) = u(x)− u(σo(X))



ACTING IN THE DARKNESS 41

+

(
x

σo(X)
− 1

)(
λ0Wo(X)− u(σo(X))− λ1(Zo(X)− 1)ϕo(X)

+

∫ +∞

0
e−λ0τ

(
σo(X)

∂Z

∂X
(τ ;X)−∂Z

∂τ
(τ ;X)−σo(X)Żo(X)e−∆τ

)
u(σo(Xo(τ ;X)))dτ

)
.

Using (B.3) and simplifying yields

(B.28)
∂W2

∂ε
(0, x,X) = u(x)− u(σo(X))

+

(
x

σo(X)
− 1

)(
λ0Wo(X)−Zo(X)u(σo(X))+(Zo(X)−1)u(σo(X))−σo(X)Żo(X)ϕo(X)

−λ1(Zo(X)− 1)ϕo(X)

)
.

Using (B.13) and (B.10) and simplifying yields

(B.29)

∂W2

∂ε
(0, x,X) = u(x)−u(σo(X))+(x− σo(X))

(
Ẇo(X)− (Zo(X)− 1)ϕ̇o(X)− Żo(X)ϕo(X)

)
.

Gathering (B.29) and (B.21) finally yields

∂W
∂ε

(0, x,X) = Zo(X)

(
u(x)−u(σo(X))

)
+(x− σo(X))

(
Ẇo(X)−Żo(X)ϕo(X)

)
.

Because ∂W
∂ε (0, x,X) so obtained is strictly concave in x, the following first-order condi-

tion is necessary and sufficient for an interior optimum obtained from (B.5) and (B.6):

0 =
∂2W
∂ε∂x

(0, σo(X), X)

Developing, we find

(B.30) σo(X) = ζ +
Ẇo(X)

Zo(X)
− Żo(X)

Zo(X)
ϕo(X).

which writes as (5.16).
Inserting (5.16) into (B.9), we now obtain

σo(X)

(
σo(X)− ζ +

Żo(X)

Zo(X)
ϕo(X)

)
= λ0Vo(X)− λ1V∞ +

1

2
(σo(X)− ζ)2.

Simplifying, we obtain

(B.31)

(
σo(X) +

Żo(X)

Zo(X)
ϕo(X)

)2

= 2λ0Vo(X) +

(
Żo(X)

Zo(X)
ϕo(X)

)2

.

Taking then the highest root to (B.31), we obtain

(B.32) σo(X) +
Żo(X)

Zo(X)
ϕo(X) =

√√√√2λ0Vo(X) +

(
Żo(X)

Zo(X)
ϕo(X)

)2

.
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Inserting (5.16) into (B.32) and simplifying finally yields (5.14).
Limiting Behavior. From (B.24) and the fact that Xo(τ ;X) ≥ X for all τ ≥ 0 and
X ≥ X, it follows that

(B.33) Z(τ ;X) = Zo(X)e−∆τ ∀τ ≥ 0, X ≥ X.

Inserting into (5.6) immediately yields (5.15). From there, it immediately follows that

(B.34) σo(X) = ζ ∀X ≥ X.

Q.E.D.

Proof of Proposition 4: Clearly (5.23) holds for X ≥ X. We turn to the more
difficult case, X ∈ [0, X). Consider the pair (Ve(X,Zo(X)), σe(X,Zo(X))) together
with Zo(X) which is now defined as

(B.35) σe(X,Zo(X))Żo(X) = ∆(1− F (X)− Zo(X))

with the boundary condition

(B.36) Zo(0) = 1.

Observe that, provided that σe(X,Z) remains positive, such a Zo(X) is uniquely defined
and satisfies the same properties as in Lemma B.3. In particular, Zo(X) is positive for
all X ∈ [0, X).

We shall prove that Ve(X,Zo(X) ≡ Vo(X), σe(X,Zo(X)) ≡ σo(X) and Zo(X) as
defined above altogether form a SME. To ease notations, define accordingly Wo(X) as
in (B.7).

First, notice that, from (A.23), it immediately follows that, for X ∈ [0, X),

(B.37)

λ0We(X,Zo(X)) = sup
x∈X

{
Zo(X)u(x) + x

∂We

∂X
(X,Zo(X)) + ∆(1− F (X)− Zo(X))

∂We

∂Z
(X,Zo(X))

}
where we remind that We(X,Zo(X)) = Zo(X)Ve(X,Zo(X)).

Using (A.27) and (B.35), we rewrite (B.37) as

(B.38)

λ0We(X,Zo(X)) = sup
x∈X

{
Zo(X)u(x) + x

∂We

∂X
(X,Zo(X)) + σe(X,Zo(X))Żo(X)ϕe(X,Zo(X))

}
where the maximand above is achieved for

(B.39) σe(X,Zo(X)) = ζ +
1

Zo(X)

∂We

∂X
(X,Zo(X)) ∀X ∈ [0, X).

Still using (A.27), we obtain the following expression of the total derivative ofWe(X,Zo(X))

(B.40)
dWe

dX
(X,Zo(X)) =

∂We

∂X
(X,Zo(X)) + Żo(X)ϕe(X,Zo(X)) ∀X ∈ [0, X).

Inserting (B.40) into (B.39) yields

(B.41)
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σe(X,Zo(X)) = ζ+
1

Zo(X)

(
d

dX
We(X,Zo(X))− Żo(X)ϕe(X,Zo(X))

)
∀X ∈ [0, X).

Also, (A.19) allows us to rewrite

(B.42) ϕe(X,Zo(X)) =

∫ +∞

0
e−λ1τu(σe(X̃e(τ ;X,Zo(X)), Z̃e(τ ;X,Zo(X))))dτ.

At equilibrium, DM expects that the feedback rule σo(X ′) = σe(X ′, Zo(X ′)) prevails
for all X ′ > X and in particular for X ′ = Xo(τ ;X) for τ > 0, Observe that the
future trajectory of stock and beliefs is thus such that X̃e(τ ;X,Zo(X)) = Xo(τ ;X) and
Z̃e(τ ;X,Zo(X))) = Zo(Xo(τ ;X)) for all τ > 0. Hence, we rewrite (B.42) as

ϕe(X,Zo(X)) =

∫ +∞

0
e−λ1τu(σe(Xo(τ ;X), Zo(Xo(τ ;X)))dτ

or

(B.43) ϕo(X) = ϕe(X,Zo(X)).

Inserting (B.43) into (B.41) yields

(B.44)

σe(X,Zo(X)) = ζ+
1

Zo(X)

(
Zo(X)

d

dX
Ve(X,Zo(X)) + Żo(X)(Ve(X,Zo(X))− ϕo(X))

)
∀X ∈ [0, X).

Rewriting (B.38), we obtain that Ve(X,Zo(X)) solves

(B.45) λ0Z
o(X)Ve(X,Zo(X)) = sup

x∈X
Zo(X)u(x)

+x

(
Zo(X)

d

dX
Ve(X,Zo(X)) + Żo(X)(Ve(X,Zo(X))− ϕo(X))

)
+σe(X,Zo(X))Żo(X)ϕo(X)

where the maximum is achieved with σe(X,Zo(X)) that satisfies (B.44).

From this, we now observe that Vo(X) ≡ Ve(X,Zo(X) and σo(X) = σe(X,Zo(X))
altogether solve

(B.46) λ0Z
o(X)Vo(X) = sup

x∈X
Zo(X)u(x) +x

(
Zo(X)V̇o(X) + Żo(X)(Vo(X)−ϕo(X))

)
+σo(X)Żo(X)ϕo(X)

where σo(X), which achieves the maximum on the r.-h.s. above, satisfies

(B.47) σo(X) = ζ +
1

Zo(X)

(
Zo(X)V̇o(X) + Żo(X)(Vo(X)− ϕo(X))

)
∀X ∈ [0, X).

Inserting (B.47) into (B.46), rearranging and simplifying yields that Vo(X) = Ve(X,Zo(X))
indeed satisfies (5.14) as requested with any (continuously differentiable) SME. More-
over, and from (4.14), the boundary condition (5.15) holds. Hence, (Ve(X,Zo(X)), σe(X,Zo(X)))
together with the associated index Zo(X) that satisfies (B.35)-(B.36) form a SME.
Q.E.D.
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APPENDIX C: SME WITH NON-OBSERVABLE IMPULSE DEVIATIONS

Proof of Proposition 5: Being given that each decision-maker takes as given the
evolution of beliefs when looking for an optimal action, Vno(X) as defined by (6.4) and
following Definition 2 solves

(C.1) Vno(X) = sup
A

∫ +∞

0
e
−
∫ τ
0

(
λ0−σno(Xno(s;X))

Żno(Xno(s;X))
Zno(Xno(s;X))

)
ds
u(σno(Xno(τ ;X)))dτ.

where Zno(X) is consistent with the feedback rule σno(X) that is optimal for problem
(C.1) and satisfies (6.1)-(6.2).

Let first define

(C.2) Wno(X) = Zno(X)Vno(X).

It is routine to show that, at any point of differentiability,Wno(X) satisfies the following
Hamilton-Bellman-Jacobi equation for problem (6.4):

(C.3) λ0Wno(X) = max
x∈X

Zno(X)u(x) + xẆno(X).

The maximand is obtained for an interior solution

(C.4) σno(X) = ζ +
Ẇno(X)

Zno(X)
.

Simplifying yields (6.10). Inserting (C.4) into (C.3) yields

λ0Wno(X) = Zno(X)λ1V∞ +
(Ẇno(X))2

2Zno(X)
+ ζẆno(X).

Solving this second-degree equation in Ẇno(X) yields

(C.5) Ẇno(X) = Zno(X)

(
− ζ +

√
2λ0
Wno(X)

Zno(X)

)
.

Rewriting this condition in terms of Vno(X) yields (6.8).

The boundary condition (6.9) is immediate. For future reference, observe that it also
writes in terms of Wno(X) as

(C.6) Wno(X) = Zno(X)V∞ ∀X ≥ X.

Q.E.D.

Existence. Finally, our last result proves existence of a SME with non-observable im-
pulse deviations. Its proof consists in studying the properties of the system of first-order
differential equations satisfied by (Vno(X), Zno(X)) and showing that the boundary
conditions at X = 0 and X = X for that system are satisfied.

Proposition C.1 A Stock-Markov value function with non-observable deviations Vno(X)
and an associated feedback rule σno(X) always exist.
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Proof of Proposition C.1: We consider the flow of the differential system made
of (6.1) and (C.5) with the initial condition for Zno(X) given by (6.2) together with an
arbitrary initial condition for Wno(X) given by

(C.7) Wno(0) ∈
[
0,
λ1

λ0
V∞
]
.

We look for such an initial valueWno(0) so that the terminal condition (C.6) is satisfied.
Observe that the system (6.1)-(C.5) is Lipschitz-continuous on the open domain

(C.8) Wno(X) > 0

We now define W̃no(Y ) = Wno(X), Zno(Y ) = Zno(X), σ̃no(Y ) = σno(X) where Y =
1−F (X) ∈ [0, 1]. Let also denote R(Y ) = f(F−1(1− Y )) for all Y ∈ [0, 1]. First, notice

that we also have Żno(Y ) = − Żno(X)
R(Y ) and

˙̃W
no

(Y ) = −Ẇ
no(X)
R(Y ) . Second, using (6.10)

and (C.2), we rewrite

(C.9) σ̃no(Y ) =

√
2λ0
W̃no(Y )

Zno(Y )
.

We now transform the system of first-order differential equations (6.1)-(C.5) as

(C.10)
˙̃W
no

(Y ) =
Zno(Y )

R(Y )
(ζ − σ̃no(Y )),

(C.11) Żno(Y ) =
∆(Zno(Y )− Y )

R(Y )σ̃no(Y )
.

together with the following boundary conditions

(C.12) W̃no(1) ∈
[
0,
λ1

λ0
V∞
]
, Zno(1) = 1

and

(C.13) W̃no(0) = Zno(0)V∞.

Satisfying boundary conditions at the two end-points Y = 0 and Y = 1 requires a global
analysis of the system. The first step consists in observing that the new system (C.10)
can be transformed into an homogenous system expressed in terms of a variable τ ∈ R+

such that (slightly abusing notations by not changing the names of variables although
they now depend on τ)

(C.14)
˙̃W
no

(τ) = Zno(τ)(−ζ + σ̃no(τ)),

(C.15) Żno(τ) =
∆(Y − Zno(τ))

σ̃no(Y )
,

(C.16) Ẏ (τ) = −R(Y (τ))
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together with the following boundary conditions

(C.17) W̃no(0) ∈
[
0,
λ1

λ0
V∞
]
, Zno(0) = 1, Y (0) = 1

(C.18) and lim
τ→+∞

W̃no(τ)− Zno(τ)V∞ = 0, lim
τ→+∞

Y (τ) = 0.

Observe that Y (τ) is decreasing. Moreover, direct integration of (C.16) together with
the third condition in (C.17) yields

(C.19) τ =

∫ 1

Y (τ)

dY

R(Y )
.

Consider now the hyperplans

D0 =

{
(W̃, Z, Y ) ∈ R+

3 s.t. W̃ =
λ1V∞
λ0

Z

}
and D1 =

{
(0, Z, Y ) ∈ R+

3
}
.

Observe that the segment for initial conditions

D3 =

{
(W̃, Z, Y ) ∈ R+

3 s.t. W̃ ∈
[
0,
λ1

λ0
V∞
]
, Z = 1, Y = 1

}
lies in the cone of the positive orthant whose faces are the hyperplans D0 and D1.
Observe that the hyperplan

D4 =
{

(W̃, Z, Y ) ∈ R+
3 s.t. W̃ = ZV∞

}
belongs to that cone since 0 < V∞ < λ1

λ0
V∞ and intersects D0 and D1 at the origin only.

Condition (C.19) shows that any trajectory is such that Y (τ) is decreasing and remains
in the bandwith

D2 =
{

(W̃, Z, Y ) ∈ R+
3 s.t. Y ∈ [0, 1]

}
.

Moreover, Condition (C.19) also implies that a trajectory reaches Y = 0 in finite time if
and only if

∫ 1
0

dY
R(Y ) < +∞. If instead

∫ 1
0

dY
R(Y ) = +∞, Y = 0 is reached asymptotically.

Note that any solution to the system (C.14)-(C.15)-(C.16) with initial conditions
(C.17) that would cross the hyperplan D0 at a time T crosses it from below (from the

fact that
˙̃W
no

(T ) ≤ 0 and that direction is not in the hyperplan D0). Similarly, any so-
lution to the system (C.14)-(C.15)-(C.16) with initial conditions (C.17) that would cross
the hyperplan D1 at a time τ1 reaches it from above (from the fact that Żno(τ1) = +∞
and that direction is not in the hyperplan D1). Moreover, such trajectory stops there.

Because the system is continuous on the open positive cone defined by the faces D0,
D1, and D2, any trajectory starting from the segment D3 can be extended till it reaches
the boundaries of this domain in finite time (Nemytskii and Stepanov, 1989, p. 307).
Because the flow of the system is continuous, the image of D3 which is connected and
compact consists of a continuous line L that might lie on D0, D1, and D2. Observe that,
for the initial condition W̃(0) = λ1

λ0
V∞, the trajectory immediately crosses D0 and goes

out of the cone. Similarly, for the initial condition W̃(0) = D
λ0

, the trajectory immedi-
ately reaches D1 and stays there. By continuity of the flow of the differential system,
trajectories with an initial condition W̃(0) in a neighborhood of λ1

λ0
V∞ goes through D0
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while trajectories with an initial condition W̃(0) in a neighborhood of D
λ0

reaches D1.
Two cases may a priori arise. First, L may not go though the origin (0, 0, 0). In this case,
and by continuity, the part of L that lies on D2 necessarily crosses D4 somewhere and the
boundary problem has a solution such that limτ→+∞ W̃(τ) = limτ→+∞ Z

no(τ)V∞ > 0
or, expressed in terms of original variables Wno(X) = Zno(X)V∞ > 0. Second, L may
go though the origin (0, 0, 0). In this case, there is a trajectory that satisfies the bound-

ary condition with limτ→+∞ W̃(τ) = limτ→+∞ Z
no(τ)V∞ = 0 or expressed in terms of

original variables Wno(X) = Zno(X)V∞ = 0.
Q.E.D.
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