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Abstract

In the framework of spatial econometric interaction models for origin-destination flows, we
develop an estimation method for the case when the list of origins may be distinct from the
list of destinations, and when the origin-destination matrix may be sparse. The proposed
model resembles a weighted version of the one of LeSage and Pace (2008) and we are able
to retain most of the efficiency gains associated with the matrix form estimation, which we
illustrate for the maximum likelihood estimator. We also derive computationally feasible
tests for the coherence of the estimation results and present an efficient approximation of
the conditional expectation of the flows, marginal effects and predictions.
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1 Introduction
Spatial interaction models describe interaction behavior that occurs between a set of origins and
a set of destinations. Some typical applications for this model are international trade flows be-
tween countries, passenger flows between cities, or geomarketing flows of customers who reside in
the districts of a city and who visit the stores of a brand. Traditionally, this type of problem has
been formulated in terms of the gravity equation, which assumes the size of the flow to increase
in proportion to the mass of the origins and destinations and to decrease in proportion to the
distance. Some examples for mass variables are the size of the population, or the surface area
of a store. The success of the gravity equation can be explained by its intuitive simplicity and
its high ability to explain the observed data in empirical applications. Also the criticism that
these models describe macro-level behavior without foundation in individual actions has been
overcome (see for example Wilson 1967; Bergstrand 1985). One legitimate concern, however,
arises from the fact that most gravity models rely on independently distributed data to pro-
vide efficient and unbiased parameter estimates and predictions. In the context of interaction
behavior, this independence assumption is usually untenable and has been refuted by empirical
evidence in very diverse applications, such as public transport Kerkman, Martens, and Meurs
(2018), air-passengers transport Margaretic, Thomas‐Agnan, and Doucet (2017), home-to-work
commuting Dargel (2021), international trade Fischer and LeSage (2020), migration Chun and
Griffith (2011), or social interactions Wang et al. (2018).

LeSage and Pace (2008) propose a spatial econometric interaction model that explicitly mod-
els spatial dependence in origin-destination (OD) flows. Their model is particularly appealing
because it can be estimated using a matrix representation of the flows, which reduces the di-
mension of most objects we need to manipulate during the estimation from N to

√
N , where

N represents the number of OD pairs. For spatial econometric models this reduction may be
critical in making the difference whether the model is computationally feasible in large data sets
or not. However, to attain this efficiency gains the model of LeSage and Pace (2008) relies on
two conditions that reduce its applicability to real-world data. The first condition requires that
the set of origins coincides with the set of destinations and excludes, for example, geomarketing
applications. The second condition requires that we actually observe interaction behavior for
all possible OD pairs. This constraint becomes more difficult to satisfy in practice, as data sets
with high spatial resolutions are increasingly frequent. Some examples of high resolution flow
data sources are GPS tracking, smart-card data for public transport networks, or interactions in
social networks. In such data sources the aggregation level is much lower, making the abundance
of zero flows more likely, and often the norm. The issue of abundant zero flows has recently
been raised again by Laurent, Margaretic, and Thomas-Agnan (2022b), who model bilateral re-
mittances. They solve this issue by restricting the model to a subset of the potential OD pairs.
However, they use a vectorized estimation approach, which does not benefit from the efficiency
gains of the matrix formulation.

In this article we present a generalization to the matrix form estimator of the spatial econo-
metric interaction model that extends the version of LeSage and Pace (2008) in two ways. The
new method applies to cases where the list of origins may be different from the list of destina-
tions, and where the model can be restricted to any subset of all potential OD pairs . To do so,
we develop a modeling framework that treats flows as interactions between the nodes of spatial
networks, and derive new properties of Kronecker products that allow to include weights in the
previous version of the matrix form estimator.

The previously mentioned issue of missing entries in the OD matrix is linked to the well
known zero flow problem, as unobserved flows may be considered as implicitly reflecting zero
values. When the number of such zeros is large, the normality assumption is clearly violated,
and alternative models, such as Tobit or zero inflated Poisson regression, have been proposed
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to accommodate the excess zeros. Burger, Oort, and Linders (2009) reviews and compares such
methods in the context of international trade flows, but without specific focus on spatial de-
pendence. Krisztin and Fischer (2015) extend the zero inflated Poisson model of trade flows
by spatial filtering (Griffith 2003), which addresses the problem of biases in the parameter esti-
mates due to spatial correlation. However, the main drawback of spatial filtering is that spatial
dependence is treated as a nuisance, which means that we loose the ability to quantify spillover
effects (Pace, Lesage, and Zhu 2013). There exist models that simultaneously account for excess
zeros and explicitly model spatial dependence, such as the Tobit models put forward by LeSage
and Pace (2009) and Xu and Lee (2015) or the family of models for spatially correlated limited
dependent variables developed in Liesenfeld, Richard, and Vogler (2016), but it is clear that
computational constraints make these approaches less feasible for big data environments. Unlike
the previous methods, the model presented here maintains the hypotheses of gaussian data by
only considering the subsample of OD pairs related to observed flows. It is easy to appreciate the
computational advantage of this procedure, but we have to be aware that the obtained results
do not generalize to the unobserved OD pairs. This would only be possible if the flows were
missing at random, which is hard to justify in our context as unobserved flows are most often
linked with high distances. While, this is certainly a drawback of the model here, it might be
the better compromise if the alternative is ignoring spatial dependence altogether. Moreover,
Linders and Groot (2006) find that the omission of zero flows yields results surprisingly similar
to those of a model that accounts for sample selection, and much better than Tobit models or
gaussian models in which the unobserved values are imputed by a constant.

The structure of the article is as follows: the next section introduces the origin-destination
flow problem from the perspective of interactions between networks and develops the generalized
version of the model. Section 3 presents the matrix form estimation for the MLE. The final
section concludes.

2 A generalized framework for spatial interaction models
In this section we present origin-destination flows from the perspective of pairwise interactions
between the nodes of an origin network and those of a destination network. Within this frame-
work we distinguish for the cases of square and rectangular flows. An example of the square case
is international trade, where the origin network as well as the destination network correspond
to the countries of the world. A typical rectangular example arises when modeling customer
flows in geomarketing. Here the origin network contains residential zones and the destination
network are the stores of a brand. In addition to the classification into rectangular and square,
we differentiate the cartesian from the non-cartesian case, as has been proposed by Laurent,
Margaretic, and Thomas-Agnan (2022b). The former applies when all possible interactions are
actually observed, implying that the number of OD pairs correspond to the cartesian product of
all origins with all destinations. When some of the possible OD pairs are unobserved we are in
the non-cartesian case. This additional separation becomes especially relevant if we want to use
the efficiency gains provided by the matrix formulation of the model.

Notations and definition of cases

πo: origin network
πd: destination network
no: number of nodes in the origin network
nd: number of nodes in the destination network
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OW : no × no neighborhood matrix of the origin network
DW : nd × nd neighborhood matrix of the destination network

F : the set of all potential OD pairs F = {(oj → di) : j = 1, 2, ..., no, i = 1, 2, ..., nd}
Γ: the subset of OD pairs that are actually included in the model Γ ⊆ F
N : the total number of OD pairs N = no · nd = card(F),where card is the cardinality
N∗: the number of OD pairs included in the model N∗ = card(Γ)

Using the above notations we formalize the distinction in our cases. The square case treats flows
within the same network πo = πd, which implies no = nd and OW = DW . In the rectangular
case we treat flows between two distinct networks πo ̸= πd. The cartesian case applies when
we model all theoretically possible OD pairs Γ = F , yielding N∗ = no · nd = N . In contrast, the
non-cartesian case, applies when we model a strict subset of all potential OD pairs Γ ⊂ F ,
which leads to N∗ < no · nd = N .

An illustrative example

To illustrate the different cases let us consider two networks π1 and π2, whose number of nodes
are n1 and n2. The matrix Y⋄, with dimensions (n2 + n1) × (n2 + n1), represents all possible
pairwise interactions between nodes that belong to any of the two networks. We may then group
these interactions into four sub-matrices

Y⋄ =

(
Y11 Y12

Y21 Y22

)
, (1)

where the flows within the network π1 are represented by Y11(n1 × n1) and those within the
network π2 by Y22(n2 × n2). Similarly, flows that connect the nodes of π2 with those of π1

are contained in Y12(n1 × n2), and the flows connecting the nodes both networks in the other
direction in Y21(n2 × n1). Hence, if we model a diagonal block in (1) we are in the square case
and for the off-diagonal ones we are in the rectangular case. Whether we observe all values in
the sub-matrix then defines if the case is cartesian or not .

Differentiating the square from the rectangular case is trivial when the separation of nodes
into two distinct subsets of the network set of nodes is already given, but in practice such
considerations may be up to the definition of the researcher. Our advise regarding this issue is to
consider the potential neighborhood links between all of the observations. Separating origins and
destinations into two nodes subsets is appropriate if neighborhood relations within each subset
are conceivable but not between the two. Hence, in such a case, the neighborhood matrix of all
observations should have the form

W⋄ =

(
W1 0
0 W2

)
, (2)

where the matrices W1(n1 × n1) and W2(n2 × n2) capture the neighborhood relations between
the nodes the networks π1 and π2. When it is not possible to defend the zero matrices on the off-
diagonal blocks in (2) we should probably treat all observations as part of the same network and
consider the case as square. In geomarketing applications the separation is apparent from the
fact that the origins (residential areas) are conceptually different from the destinations (stores).
When this conceptual distinction is not possible we could also use geographical arguments for
such a separation as for example when modeling investment flows from the United States to the
Chinese provinces.
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2.1 The cartesian model
To define the spatial econometric interaction model we need to fix the role of the origin and
destination networks. Within the formalism of the previous example this choice corresponds
to setting πo = πj and πd = πi for one pair of i, j = 1, 2. Given the roles of each network
we may extract the part of the interaction matrix we want to model Y = Yij and define the
neighborhood matrix of the origins OW = Wj and that of the destinations DW = Wi. These
neighborhood matrices OW and DW should have only non-negative entries, a zero diagonal. We
further consider them to be similar to a symmetric matrix and have spectral radius, that is the
eigenvalues with largest absolute value, of one. In practice, these conditions are met if we use
matrices based on pairwise distances or contiguity, and normalize them by row or with respect
to their spectral radius. When all OD pairs are included in the model we may use the Kronecker
product ⊗ to derive three OD neighborhood matrices from the node-level neighborhood matrices.

Wd
N×N

= Ino
⊗DW Wo

N×N

= OW ⊗ Ind
Ww
N×N

= OW ⊗DW (3)

In the model Wo represents origin-based dependence, Wd represents destination-based depen-
dence and Ww represents origin-to-destination dependence. Definition (3) of these three matri-
ces makes clear that if we model interaction within the same network (πo = πd), we find that
OW = DW := W , which recovers the traditional framework of LeSage and Pace (2008). We use
these three matrices in conjunction with the three autoregression parameters ρ =

(
ρd ρo ρw

)
to define the spatial filter matrix (A = IN − ρdWd − ρoWo − ρwWw). This matrix can be used
to remove spatial autocorrelation from the flow vector y = Vec(Y ), which we obtain by stacking
the columns of the flow matrix. If we relate the spatially filtered flows to linear combination of
some exogenous variables Z(N ×K) and a gaussian error ε ∼ N (0, σ2IN )

Ay = Zδ + ε (4)
we obtain a spatial lag (LAG) model, where we follow the terminology of Elhorst (2010). In
Section 3 we present the Z matrix in detail, but for the introduction of the model in its vectorized
form the current definition suffices. It is also important to note that the above model is only
well defined if the inverse of the filter matrix exists, an issue that will be treated in Section 3.3.

2.2 The non-cartesian model
Model (4) has the disadvantage that we can only use it when we actually observe all values in
the flow matrix. In practice, this condition is rarely fulfilled, especially if we want to model flow
data with a high spatial resolution. To clarify this issue let us consider an origin network with
three nodes πo = {o1, o2, o3} and a destination network with two nodes πd = {d1, d2}, where
flows from o1 to d2 and from o3 to d1 are theoretically possible but unobserved.

Y =

(
yo1→d1

yo2→d1
×

× yo2→d2
yo2→d2

)
, (5)

It may be tempting to replace missing entries in the flow matrix by zeros and go on with
model (4), but this would introduce a point-mass at zero, invalidating the normality assumption.
To avoid this inconsistency, we prefer to drop the unobserved flows and create a truncated flow
vector of the form

y∗ =
(
yo1→d1

yo2→d1
yo2→d2

yo3→d2

)′
. (6)

This truncated flow vector only contains the subset of OD pairs we want to include in the model.
We then define the part of the spatial filter matrix A∗(N∗ ×N∗) and the explanatory variables
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Z∗(N∗×K) that correspond to the same subset of OD pairs to define a model for the truncated
sample

A∗y∗ = Z∗δ + ε∗, (7)
where the error is supposed to be gaussian ε∗ ∼ N (0, σ2IN∗). We can link the matrices of the
above non-cartesian model to those of the cartesian model in (4), by means of the selection
operator SΓ(N ×N∗). The effect of this operator on a matrix or vector is to drop the columns
or rows at the position of the OD pairs, for which we do not observe interaction data.

A∗ = S′
ΓASΓ Z∗ = S′

ΓZ y∗ = S′
Γy (8)

For the example considered in (5) and (6) the selection operator and the flow vector y = Vec(Y )
would be

SΓ =


1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

 y =


yo1→d1

×
yo2→d1

yo2→d2

×
yo2→d2

 .

It is easy to verify that the selection operator satisfies S′
ΓSΓ = I∗N and SΓS

′
Γ = RΓ, where RΓ

replaces the unobserved flows in y with zeros instead of removing them. We can derive this
replacement operator explicitly from a binary matrix of the observed flows, which is equal to one
if a flow is observed and zero if it is not. Denoting this flow indicator matrix IΓ the relationship
is RΓ = Diag(Vec(IΓ)), where the Diag operator places a vector on the main diagonal of a zero
matrix. Below we illustrate these matrices for our previous example.

IΓ =

(
1 1 0
0 1 1

)
Vec(IΓ) =


1
0
1
1
0
1

 RΓ =


1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 .

3 Matrix form estimation in the general case
This section derives the matrix form estimator for the non-Cartesian model in (7), where we
focus on the maximum likelihood estimator (MLE) for a LAG model. Extensions to a Spatial
Durbin Model and to Bayesian Markov-Chain Monte-Carlo or spatial two-stage least squares
estimators could be derived without much difficulty, using the arguments of Dargel (2021). The
likelihood of the non-cartesian model is

L(ρ, δ, σ2) =

(
1

2πσ2

)N∗/2

exp

{
1

2σ2
(A∗y∗ − Z∗δ)′(A∗y∗ − Z∗δ)

}
|A∗|. (9)

In the following four subsections we treat different parts of the estimation problem. The
first one deals with methods that allow to efficiently evaluate the quadratic term RSS(ρ, δ) =
(A∗y∗ −Z∗δ)′(A∗y∗ −Z∗δ). The next section deals with the log-determinant term log |A∗| that
appears in the log-likelihood function. In the third subsection we discuss the issue of the feasible
parameter space and in the last one we present a computationally efficient way to approximate
the conditional expectation of the flows.
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3.1 Second order moments matrix calculation
One key to the efficient estimation of the spatial econometric interaction model is to express
the quadratic term in the likelihood function in terms of low dimensional moment matrices that
are independent of the parameters. In what follows we first present some well-known and some
new properties of Kronecker products, that allow to avoid computations with high-dimensional
objects. Afterwards, we will treat the three moments that appear after expanding the quadratic
term

RSS(ρ, δ) = y∗′A∗′A∗y∗ + δ′Z∗′Z∗δ − 2δ′Z∗′A∗y∗. (10)

We refer to the first part of the RSS term in (10) as uncentered TSS-moment because it
offers an analogy to the analysis of variance formula. Using τ(ρ)′ =

(
1 −ρd −ρo −ρw

)
, and

y• =
(
RΓy WdRΓy WoRΓy WwRΓy

)
, we can factorize the TSS-moment into

y∗′A∗′A∗y∗ = τ(ρ)′y′•RΓy•τ(ρ). (11)
The 4 × 4 matrix in the middle of the factorization TSS• = y′•RΓy• only depends on the data.
Hence, it needs to be computed once and can then be used to quickly reevaluate the term for
changing values of ρ. Based on the definition of the OD-level neighborhood matrices in (3) and
the properties K1, K2, K4 in Appendix A, we compute the elements of the TSS• matrix for
l, k = 1, 2, 3, 4 as

TSS•kl = ι′nd
(Y (k) ⊙ IΓ ⊙ Y (l))ιno

, (12)

where Y (1) = (IΓ⊙Y ), Y (2) = DW (IΓ⊙Y ), Y (3) = (IΓ⊙Y )OW ′ and Y (4) = DW (IΓ⊙Y )OW ′.
The second moment is given by Z∗′Z∗ = Z ′RΓZ. For centered data, it is proportional to the

variance-covariance matrix of Z∗. To exploit the benefits of the matrix form estimation we have
to pay attention to the structure of the variables that are contained in the matrix Z. For our
model we suppose that Z =

(
ιN Xd Xo g

)
is composed of four sets of variables 1, where

ιN is a constant, Xd contains the characteristics of the origins, Xo those of the destinations
and g is a vector characteristics for OD-pairs. In classical gravity models, this g vector reflects
the geographic distance, but we could use more general measures of separation between origins
and destinations, possibly several of them. The variables in Z can be expressed as functions
of the network-level data OX(no × ko), DX(nd × kd) and a matrix representation of the OD-
characteristics G(nd × no).

ιN = ιno ⊗ ιnd

g = Vec(G)

Xd = ιno ⊗DX

Xo = OX ⊗ ιnd

(13)

Given the above structure of the matrices in Z and the definition of the replacement operator
RΓ = Diag(Vec(IΓ)), we can use the Kronecker product properties developed in Appendix A to
derive the elements of the variance moment as

Z∗′Z∗ =


N∗ ι′no

I ′
ΓDX ι′nd

IΓOX ι′nd
(IΓ ⊙G)ιno

• DX ′ Diag(ι′no
I ′
Γ)DX DX ′IΓOX DX ′(IΓ ⊙G)ιno

• • OX ′ Diag(ιnd
IΓ)OX OX ′(I ′

Γ ⊙G′)ιnd

• • • ι′nd
(G⊙ IΓ ⊙G)ιno

 . (14)

1Many extensions to the spatial econometric interaction model correspond to additional sets of variables in
the matrix Z. We may, for example, use the spatial lags WdXd and WoXo as additional variables, to extend the
LAG model considered in this article to a Spatial Durbin model.
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For centered data, the moment Z ′RΓy• is proportional to the empirical covariances of the
explanatory variables and the spatial lags of the flow vector. This moment appears when we
factor out the autocorrelation parameters from the third part of the RSS term in (10) using the
same notations as in (11) and we get

2δ′Z∗′A∗y∗ = 2δ′Z ′RΓy•τ(ρ).

The result in the above formula is a product of a matrix Z ′RΓy• of small dimension with the
parameter vectors on each side. In the following we reuse definition (12) of Y (t), for t = 1, 2, 3, 4
to derive y(t) = Vec(Y (t)), and to compute the elements of each column of the moment Z ′RΓy•
as

Z ′RΓy
(t) =


ιnd

(IΓ ⊙ Y (t))ιno

DX ′(IΓ ⊙ Y (t))ιno

OX ′(I ′
Γ ⊙ Y (t)′)ιnd

ι′nd
(G⊙ IΓ ⊙ Y (t))ιno

 . (15)

3.2 Determinant calculation
In this section we treat the problem of evaluating the determinant term that appears in the likeli-
hood function in (9). Evaluating this term based on classical decomposition methods such as the
LU, QR, or Cholesky factorization would require O(N∗3) operations, which may be prohibitive
in large sample applications. This issue is well known in the spatial econometrics literature, and
to address it we adapt an existing approximation method to model (7). The underlying idea
was first proposed by Martin (1992) and later adjusted to the spatial econometric interaction
model by LeSage and Pace (2008) and Fischer and LeSage (2020), who use it in the square and
cartesian cases.

The general form of the approximation is derived from a Taylor series expression of the
log-determinant term

ln |A∗| = ln |IN∗ −W ∗
F | = −

∞∑
t=1

tr (W ∗t
F )

t
, (16)

where the matrix W ∗
F contains the weight matrices and the autoregression parameters. If all

eigenvalues of W ∗
F are less then one in magnitude the series in (16) converges and we can use

the first m terms to approximate the log-determinant.
For the model considered in this article W ∗

F = ρdW
∗
d + ρoW

∗
o + ρwW

∗
w, which means that

we have to compute the trace of t3 matrix products to evaluate the term t in the series (16).
For an approximation of order m this leads to an overall number of 13 + 23 + ... + m3 matrix
products. One big advantage of this approximation is that we can factor the parameters ρd, ρo
and ρw out of the traces of the matrix products that emerge from tr((ρdW

∗
d + ρoW

∗
o + ρwW

∗
w)

t).
However, even a single evaluation of the traces of these products of potentially large matrices
may significantly augment computational cost and memory requirement of the estimation. This
holds especially for high values of t, as the matrix products involved become increasingly dense,
even when the original matrices W ∗

d , W ∗
o and W ∗

w are sparse. In Appendix B we simplify the
computations for the fourth order approximation of the determinant. These simplification reduce
the number of required matrix products from 13 + 23 + 33 + 43 = 120 down to 10, but their
evaluation may remain a computational blocking point for large scale applications.

If we are willing to use the second order approximation the computational issues can be com-
pletely overcome. In this case, only the three trace values tr(W ∗

dW
∗
d ), tr(W ∗

oW
∗
o ) and tr(W ∗

wW
∗
w)
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are non-zero. By using the links W ∗
r = S′

ΓWrSΓ, for r = d, o, w, and some of the new Kronecker
product properties in Appendix A, we obtain these values with only O(no) +O(nd) operations

tr(W ∗
dW

∗
d ) = ι′nd

{IΓ ⊙ [(DW ⊙DW ′)IΓ]}ιno

tr(W ∗
oW

∗
o ) = ι′nd

{IΓ ⊙ [IΓ(OW ⊙OW ′)]}ιno

tr(W ∗
wW

∗
w) = ι′nd

{IΓ ⊙ [(DW ⊙DW ′)IΓ(OW ⊙OW ′)]}ιno
.

(17)

In the cartesian case, we can achieve a similar performance even for higher order approxima-
tions. Here we have W ∗

F = ρdWd + ρoWo + ρwWw. We may then notice that the three matrices
Wd, Wo and Ww represent a commuting family, which means that for any matrix product that
only involves a subset of these matrices the multiplication order is irrelevant. This allows to
compute the values of the traces of W t

F for t = 1, 2, ..,m from a multinomial expansion of the
form

tr(W t
F ) =

∑
kd+ko+kw=t

ρkd

d ρko
o ρkw

w

(
t

kd + ko + kw

)
tr

(
W kd

d W ko
o W kw

w

)
. (18)

We may further use the fact that WoWd = WdWo = Ww, allowing to simplify the trace of the
matrix products in the above expression by

tr(W kd

d W ko
o W kw

w ) = tr(W kd+kw

d W ko+kw
o ). (19)

The Kronecker product structures of Wd = Ino ⊗DW and Wo = OW ⊗Ind
then allow to express

the above trace in terms of the traces of powers of the much smaller node level neighborhood
matrices

tr(W kd+kw

d W ko+kw
o ) = tr(OW ko+kw) tr(DW kd+kw). (20)

3.3 Considerations about the feasible parameter space
The issue of the feasible parameter space is recurrent in the spatial econometrics literature and
relates to the fact that model (7) is incoherent when the spatial filter matrix A∗ is singular. This
condition imposes constraints on the autoregression parameters. Dargel (2021) discusses this
issue in the context of the cartesian and square flows and develops an efficient method to check
the coherence of the model. In this subsection we extend this method first to the rectangular
and cartesian case and then to the general case.

For the cartesian and rectangular case, the filter matrix is given by A = IN − WF , with
WF = ρd(Ino ⊗DW ) + ρo(OX ⊗ Ind

) + ρw(OW ⊗DW ). The necessary and sufficient condition
for A to be non singular is that all its eigenvalues are different from zero. As this condition is
too hard to work with in practice, we use the sufficient, but more restrictive, alternative that
the spectral radius r(WF ) is smaller than one. Using the developments in Appendix C we can
write the eigenvalues vector of λ(WF ) of WF in terms of λ(DW ) and λ(OW )

λ(WF ) = ρd(ιno ⊗ λ(DW )) + ρo(λ(OW )⊗ ιnd
) + ρw(λ(OW )⊗ λ(DW )). (21)

This representation clearly shows that we can test the condition r(WF ) < 1 without having
to construct WF explicitly. Furthermore, to infer r(WF ), we do not require to compute the full
spectrum of OW and DW , but only their smallest and largest eigenvalue (for more details see
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Dargel 2021). We refer to these two extreme eigenvalues as λmax and λmin. When OW and
DW are sparse these eigenvalues can be computed with only O(nd) + O(no) operations, using
for example the implicitly restarted Arnoldi method of Sorensen (1992) or the Krylow-Schur
algorithm of Stewart (2002).

It is obvious that equation (21) does not hold in the non-cartesian case, as we loose the
Kronecker product structure of the spatial filter matrix A∗. Consequently, the eigenvalues of
A∗ cannot be directly expressed as a function of those of the matrices OW and DW . However,
we can show that the previous test for non-singularity of A still allows to conclude that the
non-cartesian model is coherent. To do so, let us first recall the definition of the spatial filter
matrix in the non-cartesian case A∗ = IN∗ − W ∗

F . We may then note that W ∗
F = S′

ΓWFSΓ is
a principal sub-matrix of WF , which is evident from the fact that the indices of the rows and
columns removed by the selection operator are identical. When WF is symmetric, so is W ∗

F ,
which allows us to recursively apply Cauchy’s eigenvalue interlacing theorem (see for example
Horn and Johnson 2012, page 242) to conclude

λmin(WF ) ≤ λmin(W
∗
F ) and λmax(W

∗
F ) ≤ λmax(WF ). (22)

In Appendix C.2, we demonstrate that the relations also hold for the case of WF matrices which
are not necessarily symmetric but similar to a symmetric matrix. In particular, this extends to the
case of row-normalized symmetric matrices. The inequalities (22) clearly show that constraints
placed on the eigenvalues of WF are more binding than those placed on the eigenvalues of W ∗

F .
Hence, a condition that ensures the coherence of the cartesian model remains sufficient for the
coherence of its non-cartesian versions.

3.4 Expectation, Impacts and Predictions
In this subsection we describe some techniques to efficiently compute the conditional expectation,
marginal effects and predictions.

3.4.1 Expectations

Another practical concern is the computation of the conditional expectation of the value of the
flows E[y∗|Z∗] = A∗−1Z∗δ. We need this expectation to compute predictions (see for example
Goulard, Laurent, and Thomas-Agnan 2017) and to evaluate the impact measures of LeSage and
Thomas‐Agnan (2015). Since the direct computation of A∗−1 is often not feasible we will use an
approximation based on a series expression of the inverse matrix. For a standard spatial model
this approximation is already suggested by LeSage and Pace (2009, page 111) and we will adapt
it to the spatial interaction model and derive is matrix form expression.

Let us first recall that the inverse of a matrix may be derived as A∗−1 =
∑∞

t=0(I − A∗)t,
which is a converging series if the spectral radius of A∗ is inferior to one. This expression allows
to approximate the conditional expectation without the need to compute an inverse.

E[y∗|Z∗] ≈
m∑
t=1

(W ∗
F )

tZ∗δ (23)

With some further restructuring we can also bypass computing the powers of W ∗
F . This is done

based on the recursive expression zt+1 = WFR
′
Γzt, for t = 0, 1, ...,m− 1 that we derive from

E[y∗|Z∗] ≈
m∑
t=0

(S′
ΓWFSΓ)

tS′
ΓZδ = S′

Γ

m∑
t=0

zt, (24)
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where the starting point of the sequence zo = Zδ corresponds to a vectorized representation
of the signal. We then denote by Zt the matrix version of zt = Vec(Zt), which entails further
dimension reductions of our calculations.

Vec(Zt+1) = WFRΓ Vec(Zt)

= (ρdWd + ρoWo + ρwWw)Diag(Vec(IΓ))Vec(Zt)

= Vec(ρdDW (IΓ ⊙Zt) + ρo(IΓ ⊙Zt)OW ′ + ρdDW (IΓ ⊙Zt)OW ′)

(25)

The final approximation is E[y∗|Z∗] ≈
∑m

t=0 S
′
Γ Vec(Zt), and for a fixed order m its quality

depends on the values of the autoregressive parameters. When their magnitude is small the
terms of the series will quickly tend to zero and for stronger autocorrelation the higher order
terms become more important.

3.4.2 Impacts

We can use the same technique to infer the marginal impact of changes in the explanatory
variables. A same variable may enter the model multiple times, for example when using the
population and its spatial lag for the origins and the destinations. This fact makes the direct
derivative computation with respect to a given variable complex thus we propose the following
factorization of the effect of changes in the data on the conditional expectation

∂E[y∗|z∗]
∂D

=
∂E[y∗|z∗]

∂z∗
· ∂z

∗

∂D
= A∗−1∆z∗ , (26)

where ∆z∗ = ∂z∗

∂D captures how the non-cartesian version of the signal Z∗δ changes if the input
data is altered. From (26), it is fairly simple to compute ∆z∗ in practice as we only need to alter
the input data and subtract the previous signal from the new one. Given the change in the signal
we can use the methods of the previous section to approximate the impact that any variation in
the input data has on the flows. Additionally, if these variations only concern few observations
the change in signal can be represented by a sparse matrix which accelerates the computations.

As usual for spatial models this impact is different for all observations and to ease the inter-
pretation it is possible to use the summary measures that have been proposed in the literature.
For changes in variables that describe OD pairs (e.g. distance, or travel time) we recommend the
traditional summaries, that is a total effect which can be decomposed into network effect and
direct effect. For variables that describe the origins or the destinations, the summaries as well
as their decomposition proposed by LeSage and Thomas‐Agnan (2015) and further developed in
Laurent, Margaretic, and Thomas-Agnan (2022a) are more adapted.

3.4.3 Predictions

Predictions for spatial autoregressive models have been studied by Goulard, Laurent, and Thomas-
Agnan (2017), who use the optimality criterion of Goldberger (1962) to develop the best predictor
(BP) for spatial econometric models. In the following we call in sample-predictors those that
are feasible based on knowledge of the sample only, and full-sample predictors are those that
require knowledge of the neighborhood structure and the explanatory variables for the entire
population. At first this seems to be a harsh requirement, but in the case of interaction models
it is often met, since most explanatory variables and the neighborhood structure are derived from
node-level information. A third family of predictors should be developed for the case of changes
in the underlying population, as for example when adding a new shop in a network of stores.
However, such an extrapolation requires to anticipate changes in the neighborhood structure of
the original population, which is not a topic in the scope of the current article.

11



For the three in-sample predictors presented in (27) below, Goulard, Laurent, and Thomas-
Agnan (2017) have shown the following ranking ŷ∗BPI > ŷ∗TS > ŷ∗TC , indicating that ŷ∗BPI

has the smallest and ŷ∗TC the largest prediction error. The trend corrected predictor ŷ∗TC

corresponds to the conditional expectation E(y∗|X), whose calculation in matrix form is presented
in Section 3.4.1. The predictors ŷ∗TS and ŷ∗BPI reduce the prediction error by additionally using
information on y for all other observations. When the values of X change, this becomes a problem
for ŷ∗TS because the observed values of y may no longer be valid. The trend-signal predictor
ŷ∗TS goes back to Haining (1990) and the in-sample best predictor ŷ∗BPI is the one of Goulard,
Laurent, and Thomas-Agnan (2017) for the LAG models. It is originally presented as a correction
on ŷ∗TC , that uses additional information contained in the residuals y − ŷ∗TC . The correction
term is defined in terms of the precision matrix Q∗ = 1

σ2 (A
∗′A∗) and the matrix DQ∗ = Q∗⊙IN∗

in which all elements outside the main diagonal of Q∗ are zero.

ŷ∗TCI = Â∗−1Z∗δ̂

ŷ∗TS = ρ̂dW
∗
d y

∗ + ρ̂dW
∗
d y

∗ + ρ̂dW
∗
d y

∗ + Z∗δ̂

ŷ∗BPI = ŷ∗TC −D−1
Q∗(Q

∗ −DQ∗)(y∗ − ŷ∗TC)

= y∗ −D−1

Q̂∗Â
∗′(y∗ − ŷ∗TS)

(27)

In the last line of (27) we derive an alternative form for ŷ∗BPI that presents it as a correction
on the observed values y∗, involving a residual based on ŷ∗TS . This has a clear computational
advantage since we do not require ŷ∗TC that is defined in terms of inverse Â∗−1. In Appendix
D we show how the matrix formulations for ŷ∗TS and ŷ∗BPI can be used to compute them
efficiently.

Before entering into the details of the full population predictors we need to define the notions
of sample and population more rigorously, as different sets of observations. For the spatial
interaction model considered in this article these sets have the following relations Γsample ⊆
Γpop ⊆ F , where all previous results where based on the assumption that the population is
entirely observed in our sample Γ = Γsample = Γpop. If we are only concerned with parameter
estimation, and in-sample predictors the distinction between the sample and the population
is not necessary, but when predicting new observations we need to be acutely aware of the
difference between these sets. In the following we develop predictors for the case where we want
to extrapolate from the observed sample to the all possible OD-pairs, implying Γ = Γsample ⊂
Γpop = F . Generalizations for the case where Γpop ⊆ F would not be much more complicated,
tough more tedious. (In this case we would have to introduce an additional population selector
SΓpop

that disappears under Γpop = F , since SF = IN ).
The trend signal predictor depends on the observed values of y, meaning that it cannot

be used for extrapolations, unless there is only a single unit to predict. The trend corrected
predictor ŷTC = Â−1Zδ̂ should be based on the filter matrix for the full population. Even for
in-sample units this leads to different predictions ŷ∗TCI ̸= SΓŷ

TC . This inequality is due to the
non-linearity of the inverse Â∗−1 = (SΓÂSΓ)

−1 ̸= S′
ΓÂ

−1SΓ. For the same reason the impact
measures should change when we consider the population to be larger than the sample. Indeed,
one should also be aware that using Â∗−1 entails the implicit assumption that the unobserved
part of the population does not affect the sample. To derive a full population version of the
best predictor we combine the in-, and out-of-sample versions of Goulard, Laurent, and Thomas-
Agnan (2017) leading to

ŷBP = RΓ(y +D−1
Q QSΓ(y

∗ − S′
Γŷ

TC) + (I −RΓ)(ŷ
TC +Q−1RΓQSΓ(y

∗ − S′
Γŷ

TC). (28)
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The first term associated with RΓ is based on the formula of ŷ∗BPI in (27), where ŷ∗TCI is
replaced by its population version ŷTC . The second term associated with (I −RΓ) corresponds
to the prediction for the unobserved part of the population. Its main computational challenge
is the inversion of the precision matrix Q = 1

σ2 (A
′A). To overcome this challenge we present

an approximate version ŷBPA which only uses the inversion of the main-diagonal DQ as in the
exact version of the in-sample best predictor formula:

ŷBPA = ŷTC −D−1
Q (Q−DQ)SΓ(y

∗ − S′
Γŷ

TC)

= yRΓ + ŷTC(IN −RΓ)−D−1
Q QSΓ(y

∗ − S′
Γŷ

TC).
(29)

Both predictors in (28) and (29) can be understood as a correction computed from the residuals
added to a reference value. This reference is the response variable for in sample units and the
ŷTC predictor for out of sample ones. Due to the the replacement of Q−1 by D−1

Q in (29), the
correction only applies to units which are direct neighbors to in-sample ones, while (28) adds a
correction to all observations.

4 Conclusion
This article develops a new framework for estimating interaction models of spatially correlated
origin-destination flows. We extend the approach of LeSage and Pace (2008) to allow for missing
values in the OD matrix and to account for situations where the list of origins may different from
the list of destinations. Our methodology allows to estimate the generalized model efficiently
from a matrix representation of the flows, which we demonstrate for the MLE. With these gener-
alizations, it is much easier to estimate the spatial econometric interaction model for increasingly
common, high spatial resolution flow data. A limitation of the model is that the absence of a flow
is not modeled explicitly, which means that, in general, the results apply only to the sub-sample
of OD pairs with observed values for the flow. We leave extensions that simultaneously account
for the selection mechanism and spatial autocorrelation for future research.
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Appendix A Some properties of Kronecker products
Consider the following four rectangular, four square matrices and four column vectors

U(nd × no) A(no × no) a(no × 1)

V (nd × no) C(no × no) c(no × 1)

X(nd × kx) B(nd × nd) e(no × 1)

Y (no × ky) D(nd × nd) b(nd × 1)

Z(no × kz) d(nd × 1),

Most of the properties listed below are either well-known (see for example Harville 1998) or
follow trivially from the linearity of the operators. Some of them have already been used by to to
increase the efficiency of estimators for the cartesian spatial interaction model (see for example
LeSage and Pace 2008; LeSage and Pace 2009). Here we use A[ij] to access one element, A[i•] to
access one row, A[•j] to access one column of the matrix A and a[j] for one element of the vector
a.

k1 : (Y ′ ⊗X ′)Vec(V ) = Vec(X ′V Y ).

k2 : Vec(V )′ Vec(U) = ι′nd
(V ⊙ U)ιno = tr(V ′U)

k3 : Vec(V )⊙Vec(U) = Vec(V ⊙ U)

k4 : Diag(a)c = Diag(c)a = a⊙ c

k5 : V ⊙ [Diag(b)U Diag(a)] = Diag(b)(V ⊙ U)Diag(a)

k6 : a′ Diag(c)e = (a′ ⊙ c′)e =
∑no

j=1 a[j]c[j]e[j]

k7 : Y ′ Diag(c)Z =
∑no

j=1 c[j]Y
′
[j•]Z[j•]

k8 : diag(A′ Diag(a)C) = (A′ ⊙ C ′)a

Given these basic properties we derive some additional properties that can be directly applied
to simplify the computations required for estimation and prediction of the spatial econometric
interaction model.

K1 : (a′ ⊗ b′)DiagVec(V )(c⊗ d) = (b′ ⊙ d′)V (a⊙ c)

K2 : (ι′no
⊗X ′)DiagVec(V )(ιno

⊗X) = X ′ Diag(V ιno
)X

K3 : (ι′no
⊗X ′)DiagVec(V )(Y ⊗ ιnd

) = X ′V Y

K4 : (Y ′ ⊗ ι′nd
)DiagVec(V )(Y ⊗ ιnd

) = Y ′ Diag(ιnd
V )Y

K5 : (Ino ⊗ b′)DiagVec(V )(Ino ⊗ d) = Diag[(b′ ⊙ d′)V ]

K6 : (a′ ⊗ Ind
)DiagVec(V )(c⊗ Ind

) = Diag[V (a⊙ c)]

K7 : diag {(A′ ⊗B′)DiagVec(V )(C ⊗ E)} = Vec[(C ′ ⊗ E′)D(A⊙B)]

K8 : tr[(A⊗B)DiagVec(V )(C ⊗ E)DiagVec(U)] = ι′nd
{V ⊙ [(B ⊙ E′)U(A′ ⊙ C)]}ιno
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A.1 Proof of K1

(a′ ⊗ b′)DiagVec(V )(c⊗ d) = (a′ ⊗ b′)Diag(c⊗ d)Vec(V )

= (a′ ⊗ b′)(Diag(c)⊗Diag(d))Vec(V )

= (a′ ⊗ b′)Vec(Diag(d)V Diag(c))

= Vec(b′ Diag(d)V Diag(c)a)

= (b′ ⊙ d′)V (a⊙ c)

A.2 Proof of K2
For the proof of this property we can directly exploit the block structure that follows from the
Kronecker product.

(ι′no
⊗X ′)DiagVec(V )(ιno

⊗X) = (X ′X ′ . . . X ′)DiagVec(V )(X ′X ′ . . . X ′)′

=
∑no

j=1 X
′ Diag(V[•,j])X

= X ′ Diag(
∑no

j=1 V[•,j])X

= X ′ Diag(V ιno
)X

A.3 Proof of K3
The proof of this property proceeds similarly to the previous one with the slight inconvenience
that the blocks related to the second Kronecker product cannot be factored out of the sum. Note
that in the line before the last we recover the inner product of two matrices.

(ι′no
⊗X ′)DiagVec(V )(Y ⊗ ιnd

) = (X ′ . . . X ′)DiagVec(V )(Y ′
[1,•]ι

′
nd

. . . Y ′
[no,•]ι

′
nd
)′

= X ′ ∑no

j=1 Diag(V[•,j])ιnd
Y[j,•]

= X ′ ∑no

j=1 Diag(ιnd
)V[•,j]Y[j,•]

= X ′ ∑no

j=1 V[•,j]Y[j,•]

= X ′V Y

A.4 Proof of K4
We use the same procedure as for the previous two properties, noting that this time no factor-
ization is possible.

(Y ′ ⊗ ι′nd
)DiagVec(V )(Y ⊗ ιnd

) = (Y ′
[1,•]ι

′
nd

. . . Y ′
[no,•]ι

′
nd
)DiagVec(V )(Y ′

[1,•]ι
′
nd

. . . Y ′
[no,•]ι

′
nd
)′

=
∑no

j=1 Y
′
[j,•]ι

′
nd

Diag(V[•,j])ιnd
Y[j,•]

=
∑no

j=1 Y
′
[j,•]ι

′
nd
V[•,j]Y[j,•]

=
∑no

j=1(ι
′
nd
V )[j]Y

′
[j,•]Y[j,•]

= Y ′ Diag(ι′nd
V )Y
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A.5 Proof of K5
To proof the statement (Ino ⊗ b′)DiagVec(V )(Ino ⊗ d) = Diag[(b′ ⊙ d′)V ], we may first observe
that the result must be a diagonal matrix, where the diagonal elements are given by

b′ Diag(V[•,j])d = b′ Diag(d)V[•,j] = (b′ ⊙ d′)V[•,j],

for j = 1, ..., no. Applying the same step to all diagonal elements directly yields the final result.

A.6 Proof of K6
To proof this property we rewrite the initial statement as a sum of no matrices of size (nd ×nd).

(a′ ⊗ Ind
)DiagVec(V )(c⊗ Ind

) =
∑no

j=1 a[j] Diag(V[•,j])c[j]

= Diag(
∑no

j=1 V[•,j](a⊙ c)[j])

= Diag(V (a⊙ c))

for j = 1, ..., no. The same applied to all diagonal elements leads directly to the result.

A.7 Proof of K7

tr[(A⊗B)DiagVec(V )(C ⊗D)DiagVec(U)]

= ι′N{(A⊗B)⊙ [DiagVec(V )(C ′ ⊗D′)DiagVec(U)]}ιN
= ι′N DiagVec(V )[(A⊗B)⊙ (C ′ ⊗D′)] DiagVec(U)ιN

= Vec(V )′(A⊙ C ′)⊗ (B ⊙D′)Vec(U)

= Vec(V )′ Vec[(B ⊙D′)U(A′ ⊙ C)]

= ι′nd
{V ⊙ [(B ⊙D′)U(A′ ⊙ C)]}ιno

A.8 Proof of K8
We are interested in proving diag {(A′ ⊗B′)DiagVec(V )(C ⊗ E)} = Vec[(C ′ ⊙ E′)V (A ⊙ B)].
The properties of Kronecker products allow to rewrite

(A′ ⊗B′)DiagVec(V )(C ⊗ E) = (Ino
⊗B′)(A′ ⊗ Ind

)DiagVec(V )(C ⊗ Ind
)(Ino

⊗ E)

= (Ino
⊗B′)(M)(Ino

⊗ E)

= (Ino ⊗B′)(MD +MO)(Ino ⊗ E)

In the last equation the matrix M = (A′⊗ Ind
)DiagVec(V )(C⊗ Ind

) is decomposed into a block
diagonal matrix MD with its diagonal blocks denoted by MDm(nd × nd),m = 1, ..., no . The
counterpart MO contains all other blocks of M , with the diagonal ones set to zero. Since the
other two Kronecker products lead to block diagonal matrices we find that

diag
{
(Ino

⊗B′)(MD +MO)(Ino
⊗ E)

}
= diag

{
(Ino

⊗B′)(MD)(Ino
⊗ E)

}
.

The explicit expression of the first block if MD is given by
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MD1 = (A′[·, 1]⊗ Ind
)DiagVec(V )(C[·, 1]⊗ Ind

)

= (A[1, ·]⊗ Ind
)′ DiagVec(V )(C[·, 1]⊗ Ind

)

= Diag(V (A[1, ·]⊙ C[·, 1]))
= Diag(V (A⊙ C)[·, 1]).

With the same developments applied to all all other diagonal blocks, we find that MD is not
only block diagonal but actually diagonal.

MD = DiagVec(V (A⊙ C))

Denoting V ∗ = V (A ⊙ C) allows to rewrite (Ino
⊗ B′)DiagVec(V ∗)(Ino

⊗ E) := M∗, which is
obviously a block-diagonal matrix. We may then find the diagonal of the first block M∗1(nd×nd).

diag(M∗1) = diag[B′ Diag(V ∗[·, 1])D]

= (B′ ⊙ E′)V ∗[·, 1]

Performing the above step for all the remaining blocks then allows to conclude the proof.

diag(M∗) = Vec[(B′ ⊙D′)V ∗]

= Vec[(B′ ⊙D′)V (A⊙ C)].

Appendix B Log determinant for non-cartesian flows
We want to approximate the log determinant in the non-cartesian case based on the first four
terms of its Taylor series expression.

In the following we first recall the intuition of the Martin (1992) approximation of the log-
determinant term and then develop the terms required for the fourth-order approximation of the
general spatial econometric interaction model. We start by expressing the determinant of as the
product of the eigenvalues denoted by λ(A∗).

log |A∗| = log |IN∗ −W ∗
F | = log |ΠN∗

i=11− λ(WF )i|

For the next step we require that all eigenvalues of WF are less than one in magnitude, which
allows to remove the absolute value. We then write the log of a products as a sum of logs and
replace the logarithm in each term by an infinite Taylor series.

N∗∑
i=1

log(1− λ(WF )i) = −
N∗∑
i=1

∞∑
t=1

λ(WF )
t
i

t

By interchanging the sums we express the above series in terms of the traces of WF . With our
constraint on the eigenvalues of WF we are sure that the series converges and we can use the
first m terms as an approximation.
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∞∑
t=1

N∗∑
i=1

λ(WF )
t
i

t
=

∞∑
t=1

tr(W t
F )

t
≈

m∑
t=1

tr(W t
F )

t

In Section 3.2 we have seen that, when the model is cartesian, the traces tr(W t
F ) may be

calculated efficiently from those of tr(OW t) and tr(DW t). Unfortunately, this is not possible in
the non-cartesian version, and we have to expand the terms of W ∗t

F explicitly to compute the
trace values.

tr(W ∗t
F ) = tr((ρdW

∗
d + ρoW

∗
o + ρwW

∗
w)

t),

for each power t = 1, ...,m. With a direct approach this would require 120 matrix products for
the fourth order approximation, which is unpractical even for moderate sample sizes. We can do
much better if we exploit the following properties:

T1 : A well known property of the trace operator is that the trace of a product of matrices is
invariant under cyclic permutations of the multiplication order.

T2 : For any t = 0, 1, 2, ..., we have 0 = tr(W ∗t
d W ∗

o ) = tr(W ∗t
o W ∗

d ) = tr(W ∗t
d W ∗

w) = tr(W ∗t
o W ∗

w).
This property is demonstrated in the next subsection. It follows from the zero diagonal
and the Kronecker product structure of the matrices Wo, Wd an Ww.

T3 : For two square matrices A and B with the same size we have tr(AB) = ι(A⊙B′)ι, which
is a direct consequence of the definition of the trace and the matrix product.

The properties T1 and T2 can be used to avoid the computation of 92 out of 120 values as
they are either zero or duplicated. In the following we show the 28 unique trace values that are
required for the fourth order approximation:
For t = 1, we can use T2 to avoid any computation

tr(W ∗
F ) = ρd tr(W

∗
d )︸ ︷︷ ︸

0

+ρo tr(W
∗
o )︸ ︷︷ ︸

0

+ρw tr(W ∗
w)︸ ︷︷ ︸

0

= 0

For t = 2, we can use T2 to conclude that only 3 of the 9 required traces are different from zero.

tr(W ∗2
F ) = ρ2d tr(W

∗2
d ) + ρ2o tr(W

∗2
o ) + ρ2w tr(W ∗2

w )

For t = 3, we can use T1 and T2 to infer that 12 out of 27 traces are zero and that among the
remaining values only seven are unique.

tr(W ∗3
F ) = ρ3d tr(W

∗3
d ) + ρ3o tr(W

∗3
o ) + ρ3w tr(W ∗3

w )

+ 3ρdρ
2
w tr(W ∗

dW
∗2
w ) + 3ρoρ

2
w tr(W ∗

oW
∗2
w )

+ ρdρoρw[3 tr(W
∗
dW

∗
oW

∗
w) + 3 tr(W ∗

oW
∗
dW

∗
w)]

For t = 4, we can use T1 and T2 to infer that 16 out of 81 traces are zero and that among the
remaining 65 traces only 18 are unique.
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tr(W ∗4
F ) = ρ4d tr(W

∗4
d ) + ρ4o tr(W

∗4
o ) + ρ4w tr(W ∗4

w )

+ ρ2dρ
2
o[2 tr(W

∗
dW

∗
oW

∗
dW

∗
o ) + 4 tr(W ∗2

d W ∗2
o )]

+ ρ2dρ
2
w[2 tr(W

∗
dW

∗
wW

∗
dW

∗
w) + 4 tr(W ∗2

d W ∗2
w )]

+ ρ2oρ
2
w[2 tr(W

∗
oW

∗
wW

∗
oW

∗
w) + 4 tr(W ∗2

o W ∗2
w )]

+ ρ2dρoρw[4 tr(W
∗
dW

∗
oW

∗
dW

∗
w) + 8 tr(W ∗2

d W ∗
oW

∗
w)]

+ ρdρ
2
oρw[4 tr(W

∗
dW

∗
oW

∗
wW

∗
o ) + 8 tr(W ∗

dW
∗2
o W ∗

w)]

+ ρdρoρ
2
w[4 tr(W

∗
dW

∗
oW

∗2
w ) + 4 tr(W ∗

oW
∗
dW

∗2
w ) + 4 tr(W ∗

dW
∗
wW

∗
oW

∗
w)]

+ ρdρ
3
w4 tr(W

∗
dW

∗3
w ) + ρoρ

3
w4 tr(W

∗
oW

∗3
w )

Using T3 we can derive the 28 trace values from only ten matrix products that involve at most
two of the weight matrices. An example of this calculation is tr(W ∗4

d ) = ι′N∗(W ∗2
d ⊙W ∗2′

d )ιN∗ .
This makes clear that we avoid direct computation of matrix products of third and fourth order
that become increasingly dense in comparison to the lower order products. Below are the ten
matrices that need to be computed for the fourth-order approximation.

W ∗
d W ∗

o W ∗
w W ∗

dW
∗
d W ∗

oW
∗
o

W ∗
wW

∗
w W ∗

dW
∗
o W ∗

oW
∗
d W ∗

dW
∗
w W ∗

oW
∗
w

B.1 Proof of T2
We will demonstrate the four statements in T2: 0 = tr(W ∗t

d W ∗
o ) = tr(W ∗t

o W ∗
d ) = tr(W ∗t

d W ∗
w) =

tr(W ∗t
o W ∗

w) in two steps. At first, we focus on the statements that involve powers of the desti-
nation weight matrix W ∗t

d .

0 = tr(W ∗t
d W ∗

o ) = tr((RΓWdRΓ)
tWoRΓ)

0 = tr(W ∗t
d W ∗

w) = tr((RΓWdRΓ)
tWwRΓ)

(30)

The above development is possible because eliminating or replacing rows and columns by zero
has the same effect on the trace value tr(S′

ΓWdSΓ) = tr(R′
ΓWdRΓ). From the definition Wd =

Ino
⊗ DW it is clear that the first term inside the two traces has the following block-diagonal

structure

(R1WdR1)
t =


(R1DWR1)

t 0 · · · 0
0 (R2DWR2)

t · · · 0

0 0
. . . 0

0 0 · · · (RnoDWRno)
t

 (31)

where Rj(nd×nd), for j = 1, ..., no are the diagonal blogs of the replacement matrix RΓ. Equation
(31) shows that we can concentrate on the diagonal blocks if we compute the traces given (30). If
we then partition the matrices Wo and Ww into the same block structure we obtain zero matrices
for the diagonal blocks, which makes clear that the traces in (30) are indeed zero.

To demonstrate the remaining two statements

0 = tr(W ∗t
o W ∗

d ) = tr((RΓWoRΓ)
tWdRΓ)

0 = tr(W ∗t
o W ∗

w) = tr((RΓWoRΓ)
tWwRΓ),

(32)
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we again partition the matrix (RΓWoRΓ)
t into n2

o blocks of size nd ×nd. This leads to a matrix,
for which all blocks Dij(t) for i, j = 1, ..., no are diagonal matrices, whose entries vary with the
powers t = 1, ...,m.

(RΓWoRΓ)
t =


D11(t) D12(t) · · · D1no

(t)
D21(t) D22(t) · · · · · ·

· · · · · ·
. . . · · ·

Dno1(t) · · · · · · Dnono(t)

 , (33)

Hence, if we compute the trace of a matrix product that involves (RΓWoRΓ)
t we know that

values off the main diagonal of the blocks will not play a role. For the matrices Wd and Ww the
same partition leads to blocks that have zero diagonal, which confirms the statements in (32).

Appendix C Parameter space
In the following we derive the two results that were used to handle the issue of the feasible
parameter space presented in Section 3.3. The first one is formulated as a general theorem and
the second one is derived in the specific context of model (7).

C.1 Eigenvalues of a sum of Kronecker products
Proposition: Let A(na × na) and B(nb × nb) be two square matrices and denote M = a(A ⊗
Inb

)+b(Ina⊗B)+c(A⊗B), where a, b and c are scalar values. The eigenvalue vector λM (na·nb×1)
of M and those of the matrices A and B denoted by λA and λB are linked by the relation

λM = a(λA ⊗ ιnb
) + b(ιna

⊗ λB) + c(λA ⊗ λB). (34)
Proof : By Schurs Lemma we know that for any square matrix X there exists a factorization
X = QXUXQ−1

X such that UX is upper triangular with the main diagonal equal to the eigenvalues
vector λX of X. Additionally, we may infer the Schur decomposition of a Kronecker product of
two matrices (A⊗B) from the Schur decompositions of A and B.

(A⊗B) = Q(A⊗B)U(A⊗B)Q
−1
(A⊗B)

= (QA ⊗QB)(UA ⊗ UB)(QA ⊗QB)
−1

= (QAUAQ
−1
A ⊗QBUBQ

−1
B )

Next, we have the following euqivalence M = QMUMQ−1
M ⇔ UM = Q−1

M MQM . If we replace QM

by (QA ⊗QB) for M = a(A⊗ Inb
) + b(Ina

⊗B) + c(A⊗B) and develop the resulting expression
we obtain the following result:

UM = (QA ⊗QB)
−1[a(A⊗ Inb

) + b(Ina ⊗B) + c(A⊗B)](QA ⊗QB)

= a(Q−1
A AQA ⊗Q−1

B Inb
QB + b(Q−1

A Ina
QA ⊗Q−1

B BQB) + c(Q−1
A AQA ⊗Q−1

B BQB)

= a(UA ⊗ Inb
) + b(Ina

⊗ UB) + c(UA ⊗ UB)

Since UA and UB are upper triangular matrices we conclude that UM is upper triangular too,
which confirms that we have indeed found a Schur decomposition of M . This triangular structure
also allows to conclude that the eigenvalues of UM are given by equation (34). Since M and UM

have the same spectrum the proof is finished.
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C.2 Similarity and the selection operator
In Section 3.3 we rely on the fact that all eigenvalues of W ∗

F are contained in the interval
[λmin(WF ), λmax(WF )]. When WF is symmetric this follows directly from Cauchy’s interlacing
theorem. Here we show that this argument also holds for the more general form of WF we have
considered in this article.

The properties of WF = ρd(Ino ⊗ DW ) + ρo(OW ⊗ Ind) + ρw(OW ⊗ DW ) depend on the
characteristics of the two node-level neighborhood matrices DW and OW . If these are symmetric,
so is WF and Cauchy’s theorem applies. When they are row-normalized they are no longer
symmetric, but we may still apply Cauchy’s theorem if they were symmetric before the row-
normalization. Let OW and DW to symmetric neighborhood matrices. Their row-normalized
counterparts are given by

DW = DdDW OW = DoOW,

where Dd and Do are diagonal matrices whose entries correspond to the inverse of the row-sums
of DW and OW . It is clear that DW is similar to the symmetric matrix D

1/2
d DWD

1/2
d and that

OW is similar to D
1/2
o OWD

1/2
o . We may use the same argument to show that WF is similar a

symmetric matrix

WF = DFWF = D
1/2
F (D

1/2
F WFD

1/2
F )D

−1/2
F ,

where DF = Do ⊗Dd and WF = ρd(Ino ⊗DW ) + ρo(OW ⊗ Ind) + ρw(OW ⊗DW ). The next
step is to show that the same holds in the non-cartesian version, where we use the selection
operator to obtain W ∗

F = S′
ΓDFWFSΓ. Since replacing rows with zero before dropping them

does not change the result we may write S′
ΓDF = S′

ΓD
1/2
F RΓD

1/2
F . Using this argument and the

link RΓ = SΓS
′
Γ we obtain

W ∗
F = (S′

ΓD
1/2
F SΓ)(S

′
ΓD

1/2
F WFD

1/2
F SΓ)(S

′
ΓD

1/2
F SΓ)

−1.

The above equation clearly shows the similarity of W ∗
F to the symmetric matrix S′

ΓD
1/2
F WFD

1/2
F SΓ.

Since this result does not depend on the specific subset selected by the operator SΓ we are sure
that the row-normalization of OW and DW does not compromise the applicability of Cauchy’s
interlacing theorem. Hence, we may conclude that the extreme eigenvalues of W ∗

F are bounded
by those of WF .

Appendix D Matrix form of predictors
Computing Z, such that Vec(Z) = Zδ is not difficult and was explained by LeSage and Pace
(2008).

ŷ∗TS = ρ̂dW
∗
d y

∗ + ρ̂dW
∗
d y

∗ + ρ̂dW
∗
d y

∗ + Z∗δ̂

= SΓ[ρ̂d(Ino
⊗DW )RΓy) + ρ̂o(OW ⊗ Ind

)RΓy) + ρ̂w(OW ⊗DW )RΓy) + Zδ̂]

= SΓ{[ρ̂d(Ino
⊗DW ) + ρ̂o(OW ⊗ Ind

) + ρ̂w(OW ⊗DW )] Vec(IΓ ⊙ Y ) + Vec(Z)}
= SΓ{Vec(ρ̂dDW (IΓ ⊙ Y ) + ρ̂o(IΓ ⊙ Y )OW ′ + ρ̂wDW (IΓ ⊙ Y )OW ′) + Vec(Z)}

Their formula for the best predictor can be further developed to appear as a correction on
the true value of y instead of its expectation. Goulard, Laurent, and Thomas-Agnan (2017)
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take an inspiration from Goldenberger’s formula to derive their best predictors for the spatial
econometric model:

ŷ∗BPI = Â∗−1Z∗δ̂ −D−1

Q̂∗(Q̂
∗ −DQ̂∗)(y

∗ − Â∗−1Z∗δ̂)

= Â∗−1Z∗δ̂ − (D−1

Q̂∗Q̂
∗ − IN∗)(y∗ − Â∗−1Z∗δ̂)

= y∗ −D−1

Q̂∗Q̂
∗(y∗ − Â∗−1Z∗δ̂)

= y∗ −D−1

Â∗′
Â∗Â

∗′(Â∗y∗ − Z∗δ̂)

= y∗ −D−1

Â∗′
Â∗Â

∗′(y∗ − ŷ∗TS).

An immediate advantage of this formulation is the removal of the inverse. The main diagonal of
DÂ∗′

Â∗ , can be found explicitly using property K8.

diag(A∗′A∗)

= S′
Γ diag(A

′RΓA)

= S′
Γ{diag(INRΓIN ) + ρ2d diag(W

′
dRΓW

′
d) + ρ2o diag(W

′
oRΓW

′
o) + ρ2w diag(W ′

wRΓW
′
w)}

= S′
Γ Vec{IΓ + ρ2d(DW ⊙DW )IΓ + ρ2oIΓ(OW ⊙OW ) + ρ2w(DW ⊙DW )IΓ(OW ⊙OW )}

For the filtered residual term ε̂∗TS = Â∗′(y∗ − ŷ∗TS) we may apply the same techniques as
previously to compute the spatial lag. The final form would then be

ŷ∗BPI = SΓ(Vec(Y +D(A′RΓA)−1 ⊙ ε̂TS)

To use their formula to predict the full population we need to invert the precision matrix
(using the original formula of the authors only the part of it linked to to unobserved units). This
quickly becomes infeasible if we have many units to predict. Solution 1 is to solve a linear system
instead of computing an inversion, solution 2 is an approximation in the same style as for the
expected value, solution 3 is an alternative formulation of the predictor that is inspired by the
in sample units.

ŷBP = Â−1Zδ̂ − Q̂−1Q̂SΓS
′
Γ(y − Â−1Zδ̂)

Approximation of the above

ŷBPA = yRΓ + ŷTC(IN −RΓ)−D−1

Â′Â
Â′ÂRΓ(y − ŷTC)
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