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Abstract 

The objective of this paper is to estimate the extent of agglomeration externalities taking into account the 

direct and indirect impacts of transport exposure on productivity. To do so, we take advantage of a rich data 

infrastructure that combines very fine georeferenced infra-municipality data on more than one million 

employees with detailed data on the public-transport and road networks of a typical European metropolitan 

area, namely the Toulouse Metropolitan Area (TMA). We recover the productivity effects of agglomeration 

and transport measures by the implementation and estimation of a wage determination model in two stages. 

The first stage assesses the importance of industrial concentration and employees’ characteristics against 

true productivity differences across zones on the average of local industrial wages. The second stage 

explains local productivity differences on our local factors of interest: agglomeration and transport. Finally, 

and to have a full representation of transport impacts, we investigate the size of the indirect effect of 

transport exposure on productivity by its impact on the distribution of metropolitan employment. We exploit 

the panel nature of our data and apply instrumentation techniques to cope with the endogeneity of 

agglomeration and transport measures. Our results suggest that both agglomeration and transport exposure 

measures have a substantial and significant effect on local productivity. Indeed, when density of 

employment doubles, productivity increases by 1.6%. Further, the effects of transport exposure measures 

differ for the two modes considered, private vehicle and public transport. In both cases, a higher exposure 

to transport supply implies higher levels of employment an productivity. 
Keywords: agglomeration economies; accessibility; transport exposure; public transport network; road network; 
productivity; transport infrastructure; density; cities; commuting costs; urban economics; transport economics. 

1. Introduction 

Urban economic activity tends to be highly concentrated, despite such concentration may involve 

high costs for inhabitants. It is well established in the economics literature that these agglomeration 

or concentration forms are driven by spatial externalities on productivity and are named 

agglomeration economies. In the same time, urban transport has also an important role on 

determining the productivity structure of a city. Firstly, transport may extend the scope of 

agglomeration externalities by reducing the interaction cost between economic agents placed in 

different locations. Secondly, transport may affect firms’ and employees’ location decisions by 

making some places more attractive than others. Also, it may disproportionally attract the high 

skilled labor force and high value-added firms, who have a comparative advantage to locate in 

better connected areas. This leads to local productivity gains in two ways, i.e. increased quantity 

and increased quality of the workforce.Thus, the objective of this paper is to estimate the extent of 

agglomeration externalities at the urban scale taking into account these impacts of transport on 

productivity. 

 
1 Toulouse School of Economics, Toulouse, France 
2 Paris School of Economics, Paris, France 
3 Toulouse School of Economics, Toulouse, France 

 



 

2 

To do so,  and to our knowledge for the first time in this literature, we take advantage of a 

rich data infrastructure combining very fine georeferenced infra-municipality data on more than 

one million employees with detailed data on the public-transport and road networks of a typical 

European metropolitan area, namely the Toulouse Metropolitan Area (TMA). Thanks to the 

availability of these data, we develop an econometric method inspired by Combes et al. (2008) to 

decipher the complex relations between agglomeration effects, supply of transport and 

productivity. This aims at providing a more precise tool to an urban planner who wants to 

maximize city’s wealth by identifying the disaggregated productivity impact of transport 

infrastructure.  

 This investigation brings together two important branches of the economics literature: the 

agglomeration economies literature and the literature investigating the effect of transport on 

several employment-related outcomes. Regarding the former, there is a long list of articles 

establishing the positive relationship between agglomeration measures and productivity using 

across cities variation (some examples are Ciccone, 2002; Glaeser and Mare, 2001; Combes et al., 

2010; De La Roca and Puga, 2012; D’Costa and Overman, 2014; Groot et al., 2014; for a recent 

review, see Combes and Gobillon, 2015). Yet, agglomeration literature exploiting within-city 

variation is very scarce (Arzaghi and Henderson, 2008), and only few studies include transport-

induced agglomeration measures (e.g. Graham, 2007; Holl, 2012; Gibbons et al., 2019). Regarding 

the second branch, there are several articles investigating the relationship between transport 

infrastructure and the spatial distribution of economic activity (see Redding and Turner, 2015 for 

a survey). These papers have mainly focused on the effect of railways and roads on outcomes such 

as employment and population (e.g. Chandra and Thompson, 2000; Holl, 2004; Baum-Snow, 

2007; Michaels, 2008; Atack et al., 2010 ; Duranton and Turner, 2012; Gibbons et al., 2012 ; 

Ghani et al., 2016, Mayer and Trevien, 2017). To the best of our knowledge, only Gibbons et al., 

(2019) study the effect of roads on labor productivity. We contribute to both literatures by 

simultaneously investigating the productivity effects of agglomeration and transport measures 

using variation across very small-scale geographical areas, and identifying the effect of both, 

public transport and private vehicle transport measures on the productivity structure of Toulouse 

metropolitan area. 
Our econometric approach consists on the implementation a two-stage wage determination 

model. The first stage allows us to assess the importance of average employees’ characteristics 

and industrial factors against those highlighting true productivity differences across zones. 

Formally, in this first stage we regress the local industrial average of the logarithm of individual 

wages on the local industrial average of time-varying employees’ characteristics, zone-year fixed 

effects, industry fixed effects, and a set of variables related to the local characteristics of the 

specific industry, which account for localization economies. In the second stage, we use as 

dependent variable the vector of zone-year fixed effects estimated in the first stage. This vector is 

considered a local wage index net of employees’ characteristics and industry effects. Formally, we 

regress the estimated zone-year fixed effects, on a set of time dummies, several agglomeration 

measures, which account for urbanization economies, and finally, several transport exposure 

measures. Furthermore, and to have a full representation of transport impacts, we investigate the 

effect of the later on local employment density, since transport exposure variation may affect 

firms’ and employees’ location decisions by making some places more attractive than others. 

We measure transport exposure by two continuous indexes of accessibility calculated at a 

small geographical scale. The first one measures the accessibility to employment from a given 

origin to all potential destinations along the road and public transport network, and the second one 
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measures the reachability level of a particular destination. Both indexes project transport 

improvements through changes in commuting times, and they represent the local and global 

exposure to transport of each location. In particular, accessibility to employment is measured by 

the weighted sum of inverse optimal travel times, where the weights are measures of employment 

density at destination. This index has been called in previous literature index of accessibility (e.g., 

El-Geneidy and Levinson, 2006; Vickerman et al., 1999), population or market potential (e.g., 

Harris, 1954), effective density (Graham, 2007), or market access (e.g., Donaldson and Hornbeck, 

2016). The basic idea is that transport exposure, by reducing the interaction cost between economic 

agents placed in different locations, extend the geographic scope of agglomeration externalities on 

productivity. Likewise, reachability levels are computed by the average of optimal travel times 

from all potential origins along the road and public transport network. The index is computed so 

that reachability improvements are achieved when the index decrease, reflecting a decline in the 

average of optimal travel times to get to a particular destination.4 Reachability levels have two 

potential effects on productivity. On the one hand, they may lead to productivity gains by locally 

attracting more and higher skilled employment activity. On the other hand, reachability 

improvements may affect productivity negatively when the last is measured by average wages, 

since companies may compensate employees for the higher commutes.  

The main challenge to deal with is the endogeneity of agglomeration and transport exposure 

measures. Firstly, there is an omitted variable bias when firms’ quality and/or employees’ skills 

are sorted by unobserved local characteristics correlated with observed local factors. For instance, 

differences in local amenities may influence the location of both firms and workers: places 

with higher amenities may disproportionally attract the high skilled workforce and the higher-

value added firms relying on skilled workers. When those amenities also determine agglomeration 

measures and the supply of transport, the estimates of both measures end up being biased upwards. 

Secondly, the reverse-causality between productivity and agglomeration, and between 

productivity and transport exposure, threatens identification. On one hand, employees are attracted 

by the higher wages of denser areas. On the other hand, the allocation decision of transport 

infrastructure is not at random. Indeed, the planner may intentionally decide to connect dynamic 

(deprived) areas, biasing the estimates upwards (downwards).  

To solve for the omitted variable bias, we exploit the high geographical disaggregation of 

our data and we include a rich vector of local fixed effects into our estimation. Specifically, we 

combine fixed effects on EPCI areas - Établissement Public de Coopération Intercommunale - with 

Toulouse sector fixed-effects. The first corresponds to a French administrative classification that 

bundles a relatively small number of municipalities who exercise jointly most of their 

competencies. The second corresponds to the main six sectors comprising the city of Toulouse 

(Toulouse Centre, Rive Gauche, Toulouse Nord, Toulouse Est, Toulouse Sud-Est, 

Toulouse Ouest).  

To solve for the reverse-causality bias, we perform an instrumental variables approach. We 

use several instruments proposed by previous literature, such as historical levels of agglomeration 

and transport exposure measures. Further, we add others, such as the physical-distance-based 

counterparts of the accessibility and reachability indexes.5 We also use several indicators of the 

 
4 Even if the structure of the index may seem counterintuitive, it is very convenient when interpreting its coefficients, 

since they reflect the change on productivity when the time to get to a particular destination changes, i.e. the effect on 

productivity when a commuter is able to arrive to a particular destination in a shorter period of time.   
5 These two instruments are inspired by the peripherality instrument used by Combes et al. (2008), where they 

compute the average distance of an employment zone with respect to all the others. 
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distance to historical infrastructure, i.e. the distance to the historical public-transport plan during 

the years 1863 and 1957, the distance to two ancient roads, the roman and Cassini roads, and the 

distance to the 1870 railway network. We further deal with the non-randomness of infrastructure 

location by controlling for infrastructure-type measures in our regressions. By doing so, we are 

able to evaluate the accessibility and reachability effects orthogonal to the endogenous presence 

of infrastructure. In other words, we exploit the continuous spatial variation of our transport 

exposure measures, that is partly unrelated to the local presence of infrastructure, to identify 

transport effects on productivity. This allows us to identify transport exposure effects 

independently from the advantages or disadvantages of chosen locations.6 

Our key findings suggest that both agglomeration and transport exposure measures have 

an important role in determining the internal productivity structure of a metropolitan area. Firstly, 

and according to our preferred estimates obtained after correcting for endogeneity, if local density 

is doubled, productivity increases by 1.6%. Secondly, the effects of transport exposure measures 

differ for the two modes considered, private vehicle and public transport. Regarding accessibility 

to employment by the road network, an average increase of 10% is associated with an increase of 

0.49% in local productivity. If accessibility to employment is calculated through the public 

transport network, an average increase of 10% is associated with an average increase of 0.53% in 

local productivity levels. Regarding reachability measures, only reachability by the road network 

has a direct impact on productivity. Specifically, when the average of optimal commuting times to 

arrive to a particular destination by the road network decreases by 10%, local productivity 

increases by 1.6%. With respect to the indirect impact of reachability levels on productivity, 

through the attraction of employment concentrations, we find that when optimal travel times by 

public transport (private vehicle) decrease by 1%, productivity increases by 0.38% (0.6%). All 

these results together suggest that agglomeration externalities are locally happening at the 

metropolitan level, and that private vehicle and public transport exposure measures affects 

productivity levels directly and indirectly, by locally increasing the quality and the quantity of the 

workforce, respectively. 

From our findings we also document the importance of controlling by unobserved local 

effects and applying instrumentation techniques to cope with the omitted variable and the reverse-

causality biases present in OLS estimators. Indeed, when the econometric specification solve for 

those two sources of biases, agglomeration effects significantly decline, and both accessibility and 

reachability indexes increase by more than half. The decline in the size of agglomeration effects 

reveals that the skills-sorting issue remains an important matter at the metropolitan level. Also, the 

underestimation of transport effects are in line with a planner that tends to assign transport 

infrastructure to more secluded areas to stimulate its growth. 

Finally, we contribute to the literature in several ways. First, we evaluate agglomeration 

externalities together with transport exposure effects on productivity at the urban level, using very 

fine georeferenced data. Second, we estimate the full-set of productivity effects of transport 

exposure: indirect, through the change in the interaction cost among economic agents and their 

location decisions, and direct, through the increased quality of the labor force by the boost in local 

amenities. In order to account for these effects, we wide our definition of transport exposure; we 

introduce a new variable accounting for the local reachability level by the transport network to the 

location considered, apart from the more traditional measures investigated in the literature – i.e. 

the access to the transport network and the access by the transport network to other locations.  

 
6 Specifically, we control by the local distance to the closest node of the public transport and road network from each 

zone centroid.  
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Finally, we combine public transport and road accessibility-type indexes, namely, accessibility by 

the road and public transport networks to economic concentrations and reachability by the road 

and public transport networks of a particular location. 7  

The paper is organized as follows. In the next section, we introduce the data sources and 

the metropolitan area of the study. Section 4 displays the theory supporting our econometric 

methodology, explained in Section 5. The results are presented in Section 6. Finally, Section 7 

concludes and introduces some basis for future research. 

2. Study Area and Data 

2.1. Toulouse Metropolitan Area. 

 

This paper estimates agglomeration and transport effects within the metropolitan area of Toulouse. 

The core urban unit of Toulouse Metropolitan Area, the city of Toulouse, is the fourth biggest in 

France and it has experienced an important population growth since the 1970s. Today, its transport 

networks are well-developed and dense, both the public transport and the road networks. 

Regarding its public transport network, several modes operate in the city: two metro lines 

of a total of 28.2 kilometres, two tramway lines of 16.7 kilometres and 137 bus lines amounting 

3809.8 kilometres in routes. 8, 9 Table 1 presents some statistics on the economic activity and public 

transport network evolution in Toulouse over the period 2004 – 2015.10 Compared to 2004, the 

number of operating establishments increased by 115% in 2015. Also, the workforce increased by 

81,093 employees and the transport network experienced an important expansion; Starting with a 

length of 1,443.46 kilometers, it reaches the 3,742.84 kilometers in 2015, with 689 new metro, 

tramway and bus stations. Further, and focusing on our two years of analysis, 2013 and 2015, the 

network has also experienced many changes: 67 new public transport stations and 100 more 

kilometers of public transport network, the total number of establishments increased by 52,155 

and the labor force by 4,000 employees.  

 
7 Chatman and Nolan (2014) and Melo and Graham (2018) also include road together with transit measures. Although, 

their focus is on the aggregated metropolitan effects, ours is to investigate the economic dynamics happening within 

the city. 
8 It also counts with three lines of urban train and 20 lines of inter-urban train that passes through the metropolitan 

area and connects other parts of the region, i.e. Haute-Garonne. 
9 Developing such analysis within a metropolitan area could raise one concern: there may be relevant economic 

concentrations outside the metropolitan frontiers interacting with inner ones, which leads to a measurement error of 

some agglomeration measures, as for instance, employment accessibility of those zones lying in the limits of the 

metropolitan area. Thus, it is important to recall the French definition of a metropolitan area (“aire urbaine”) and its 

implications regarding this concern. A metropolitan area is defined by a core centre called urban unit (“unité urbaine”) 

plus its commuter municipalities. First, the urban unit consists of a city (“commune”), or a group of cities, that have 

over 2000 inhabitants and contain a centre of dense construction, i.e. the buildings are spaced no more than 200 metres 

apart. In our case, this core centre is the city of Toulouse. Second, the commuter municipalities are all these 

municipalities whose at least 40% of the population is attracted by the economic activity of the central urban unit. 

Therefore, the metropolitan area of Toulouse is described by its central urban core, the city of Toulouse, and its 

economic influence on the surrounding commuter municipalities. This implies that the main local economic activity 

happens inside the limits Toulouse Metropolitan Area, where the majority of inhabitants works in either their own 

municipality, or in any other municipality of the metropolitan area. 
10  The data used to construct this table has been provided by Tisseo Collectivités (TC), the company providing and 

managing public transport services in Toulouse Metropolitan Area. 

https://en.wikipedia.org/wiki/Unit%C3%A9_urbaine
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     Table 1. Evolution of internal structure of Toulouse Metropolitan Area over the period 2004 – 

2015. 

Variable 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Establishments 72994 76073 78602 83550 86413 89253 97150 105189 104797 119004 173573 156952 

Employees 451055 451429 478778 512783 519088 452371 459064 474030 387430 528142 529036 532148 

Public 

Transport 
Stations  

3120 32766 3470 3563 3740 3740 3509 2984 3619 3742 3799 3809 

Length of the 
Public 
Transport 

Network (km) 

1443.46 1491.77 1867.52 1827.97 1942.55 1982.55 1769.76 1566.05 3257.85 3643.46 3884.62 3742.84 

 

Regarding the structure of the public transport system, a new tramway line was opened, connecting 

the city center with the airport. These changes, together with many other small changes on already 

operating public transport services, creates enough variation in our transport exposure measures 

over the sample period to be able to identify productivity effects. Figure 1 displays the structure 

of the network in 2013 (Panel A) and in 2015 (Panel B). The network looks slightly denser in 

2015, and in both years the network does not directly supply the whole space of the metropolitan 

area. It is located in the center and extends its arms towards the periphery.11 

 

Figure 1: Public Transport Structure in 2013 and 2015, lines and stations. 

 

Panel A: Public Transport in 2013. 

 
 

Panel B: Public Transport in 2015. 

 
11 This have important implications on the construction of public transport commuting times, which are combined 

with other means of transport for the zones not directly accessible by the network.    
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Source: Own elaboration from data provided by the Agence d´Urbanisme et Amenagement de 

Toulouse (AUAT). 

 

Regarding the highway network, it is approximately 377 kilometers long and it is 

composed by highway and national roads. Figure 2 displays the representation of this network in 

the Metropolitan Area of Toulouse for the year 2013.  
 

Figure 2: Highway Network in 2013, highways and national roads. 

 

Source: Own elaboration from data ROUTE500, from the Institut National de l'Information 

Géographique et Forestière. 12 

 

 
12 https://geoservices.ign.fr/documentation/diffusion/telechargement-donnees-libres.html 
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2.2. Data Sources. 
 

We construct a unique database from three institutional sources: first, the Agency of Urbanism and 

Planning of Toulouse (Agence d'Urbanisme et d'Aménagement Toulouse, AUAT), second, Tisseo, 

the company in charge of the public transport service in the metropolitan area of Toulouse, and 

finally, the French Institute for Economic and Statistical Studies (Institut national de la statistique 

et des études économiques, INSEE). 

In the first place, from the AUAT we obtain (ii) the exact location of each establishment 

located in the metropolitan area of Toulouse for the years 2013 and 2015, together with its legal 

number, i.e. the SIRET number, and (iii) the matrix of optimal trajectory travel times by different 

modes between each pair of zones for 2013 and 2015. The transport modes considered are private 

vehicle, public transport and bike.  

Secondly, Tisseo facilitates the geographical placement of the Toulouse public transport 

network from 2004 to 2016, including the exact coordinates of every metro, bus and tram stations, 

together with the lines operating in each of these stations.  

And finally, INSEE provides information collected from the Déclaration Annuelle des 

Données Sociales (DADS) survey, which gathers data from all French employers and self-

employed. We have access to the establishments´ and employees´ files from 2004 to 2015. These 

contain, on one hand, a cross-section of public and private employees in manufacturing and 

services industries working in France for each year and, on the other hand, a cross-section of the 

establishments operating in France per year. In the employees file, personal data, establishment 

data, number of days worked, and several measures of earnings are incorporated. In the 

establishment one, information on the number of employees working, the start date of operations, 

together with the cessation date if it would be the case, is included. 

We geographically merge the data coming from all different data sources. From the first 

and the second source, we use the available geographical coordinates of each public transport line 

and station to identify the disaggregated local supply of public transport services in each of the 

867 zones. Similarly, we use the geo-coordinates of each establishment for identifying the study 

zone they operate in. Once public transport services and establishments are localized among the 

study space, we geographically identify employees´ workplace by exploiting information about 

the legal number of the establishment they work for, i.e. the SIRET number. This information, 

together with individual earning measures, is collected from INSEE data source. Finally, we end 

up with an original data set of very disaggregated and georeferenced data on more than one million 

employees working in Toulouse Metropolitan Area in 2013 and 2015.  

2.3. Geographical Distribution of the Study Space. 

 

In this subsection, we provide maps with the geographical distribution of the main variables of the 

study. From figures 3 and 4, the geographical decomposition in 867 zones of the metropolitan area 

of Toulouse can be identified. These zones are outlined based on the local population level, 

established at a rate of approximately 2000 inhabitants.  

Further, Figure 3 displays the density and productivity distributions over the 867 zones of 

the study space for 2013 in Panels A and B, and for 2015 in Panels C and D. Density levels are 

mapped in Panel A and Panel C. They are measured by the number of employees per squared 

kilometer. In Panels B and D, productivity levels are mapped, and they are expressed by the 

average of individual hourly net wages per zone. From the joint inspection of the graphs, we 

conclude that the geographical distribution of productivity and density are very similar, hosting 
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the highest levels around the center, and decreasing the farther you go from it. Therefore, zones 

with a higher density of employment also experience higher levels of productivity rates in both 

years. Furthermore, from the joint examination of Figures 1, 2, 3 and 4, those zones with a higher 

local supply of public transportation and road infrastructure, have higher levels of employment 

density. Moreover, average net hourly wages seem to follow the same pattern, although it is less 

clear than the case of employment density. Also, the effect of public transport expands in the 

direction of its constructed infrastructure, making higher the density and productivity levels on 

nearby zones. 

 

 

 

Figure 3: Density and productivity distributions for 2013 and 2015. 

 

Panel A: Employees per sq. km in 2013. Panel B: Hourly Net Wage in 2013. 

 

 

Panel C: Employees per sq. km in 2015. Panel D: Hourly Net Wage in 2015.  

 

Source: Own elaboration from data of the survey Declaration Annuelle de Donnees Sociales (DADS), 

provided by the Institut National de la Statistique et des Études Économiques (INSEE) .  
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Finally, Figures 4 represents the distribution of local average optimal travel times by the 

two modes available, representing our reachability indexes.13 From the inspection of the two 

figures, we confirm the negative correlation between average commuting times and employment 

density and productivity levels. Therefore, the more it takes to arrive to a zone, the less reachable 

it is, the lower is the level of productivity and employment density.  

 

 
13 The individual origin-destination commuting time by the public transport network has been computed by the sum of (i) the optimal access time 
to the transport network from the origin’s centroid, (ii) the average in-vehicle time of the optimal connection, and (iii) the optimal egress time 

from the transport network to destination’s centroid. The access and egress times are computed by the most convenient mode. If the zone lies into 

the space directly supplied by the transport network, access and egress times are computed by walking, given that this is the mode minimizing the 
time to access and egress the network. For zones sufficiently far away from the network, the times are computed by car. This way, any pair of 

zones is connected by the public transport network. 

Figure 4: Average Travel Times Distribution for 2013 and 2015. 

 

Panel A: Public Transport 2013 Panel B: Private Vehicle Mode 2013 

 

Panel A: Public Transport 2015 
 

Panel B: Private Vehicle Mode 2015 

Source: Own elaboration from data on optimal travel times provided by the Agence d´Urbanisme et 

Amenagement de Toulouse (AUAT). 
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2.4. The model. 

 

The objective of the model is to obtain an expression of individual wages with respect to local 

factors that can be estimated. With this purpose, the maximization problem of a competitive firm 

is carried out.14 We take the profit of a competitive firm operating in zone z and industry k in year 

t: 

 

 
z,k ,t

= p
z,k ,t

q
z,k ,t

- w
i ,t
l

i ,t
- r

z,k ,t
k

z,k ,tiÎ z,k ,t( )åÕ   (1) 

 

where p
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i ,t
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 is the 

number of working days and, finally, k
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 represents the quantity of other production factors used, 

being r
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  its price. The production function is assumed to follow a Cobb-Douglas function in 

labor and in all the other production factors: 
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where the coefficient b is such that 0 < b £ 1 , s
i ,t

 denotes the skills of employee i in year t and A
z,k ,t

is the total factor productivity. At the competitive equilibrium, employee i, located in zone z and 

operating in industry k at year t receives a wage equal to her marginal product: 
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Using the first-order condition for profit maximization with respect to the other factors and 

inserting it in Equation (3) yields: 

 
w

i ,t
= b(1- b)

1-b
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z,k ,t

A
z,k ,t
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)
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s
i ,t
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z,k ,t
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i ,t

  (4) 

 

From the expression above, wages are defined by two types of components. First, a location-

industry-specific component, B
z,k ,t

 , and second, an individual-based component, s
i
. Therefore, 

wage differences across employees can reflect differences in their characteristics and/or individual 

skills, or alternatively, they can reflect productivity differences across locations and industries. 

Further, this last source of wage variability can operate throughout three different channels: total 

 
14 The assumption of a competitive wage-setting mechanism may seem too restrictive. Still, in any imperfect competition framework, where the 

wage is a mark-up on marginal productivity, similar results would be obtained; given the use of a log specification, this mark-up would enter the 
constant or the industry fixed effects if such mark-ups vary between industries but not between areas. In France, there is some empirical support 

for the competitive/fixed-mark-up assumption (see Abowd et al., 1999).  
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factor productivity, A
z,k ,t

, the price of the output, p
z,k ,t

 and, finally, the price of non-labor inputs, 

r
z,k ,t

. The first objective of the following section is to build up an estimation equation for the 

expression of wages defined by Equation (4), and to estimate the effects of local factors on 

productivity. Hereinafter, we refer to this analysis as productivity analysis, and estimates, inter 

alia, the direct effect on productivity of transport exposure measures. The second objective of the 

following section lies in the development of a density analysis, where we recover the indirect 

effects of transport exposure measures on productivity. 

3. Econometric Methodology 

3.1. Productivity Analysis. 

 

The econometric methodology performed for the productivity analysis is based on a two-stage 

approach, inspired by Combes et al. (2008). Essentially, we perform a two-stage estimation 

approach because of two reasons. First, to properly take into account correlations between zone 

and industry variables and error terms at the zone level. And second, to account for zone-specific 

error terms when computing the standard errors for our coefficients of interest. In a single-stage 

estimation, the computation of the variance of local shocks is not possible, i.e. the error term of 

the second stage. Moreover, this variance has to be ignored when computing the covariance matrix 

of estimators. As shown by Moulton (1990), this creates large biases in the standard errors for the 

estimated coefficients of aggregate explanatory variables. 

3.1.1. Micro-econometric Specification for the Wage Equation: First Stage Specification. 

 

We take Equation (4) into the data. First, we apply logarithms to both sides of the equation: 
 

 log(w
i ,t

) = log(B
z,k ,t

) + log(s
i ,t

)   (5) 

 

Therefore, two specifications are needed: one for the logarithm of the individual-specific 

term, log(s
i ,t

) , and another for the one of the local-industry-productivity term, log(B
z,k ,t

) . Assume 

first that the logarithm of the individual-specific term of worker i at time t is explained by: 

 

 log(s
i ,t

) = X
i ,t
a + g

i
+ e

i ,t
  (6) 

 

where 𝑋𝑖,𝑡 is a vector of employee characteristics, g
i
 is an i.i.d. measurement error across 

employees, and e
i ,t

 is the time-varying unobserved component of individual skills. 

Second, assume that the logarithm of the term reflecting productivity differences across 

locations and industries, log(B
z,k,t

) , follows the subsequent expression:  

 

 log(B
z,k ,t

) = d
z,t

+ d
k ,t

+ X
z,k ,t

b
k
  (7) 
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where d
k ,t

 is the time-varying industry-specific effect and it is defined by a vector of dummies 

taking value one if employee i operates in industry k at time t, and zero otherwise; d
z,t

 is the time-

varying location-specific effect and it corresponds to a vector of dummies taking value one if 

employee i is located in zone z at time t, and zero otherwise, and finally, X
z,k ,t

 is the group of local 

characteristics of industry k at time t, measuring local interactions between employees at the 

industry level, and b
k
  its associated vector of coefficients. 

Summing the logarithm of the individual-specific term and the logarithm of the local-

industry-productivity term – i.e. Equation (6) and Equation (7), the econometric specification for 

the wage equation is: 

 

 
log(w

i ,t
) = log(s

i ,t
) + log(B

z,k ,t
)

= g
i
+ d

z,t
+ d

k ,t
+ X

z,k ,t
b

k
+ X

i ,t
a + e

i ,t

  (8) 

 

The direct estimation of Eq. (8) is not possible due to data limitations. Particularly, because we do 

not follow employees over time. Therefore, the systematic individual effect, g
i
 , is not identifiable. 

For this reason, we aggregate individual wages by industry and zone to define our final first stage 

specification:  

 

w
z,k ,t

=
1

N
z,k ,t

log(w
i ,t

)
iÎ( z,k ,t )

å

=d
z,t

+ d
k ,t

+ X
z,k ,t

b
k

+
1

N
z,k ,t

X
i ,t

iÎ( z,k ,t )

å
æ

è
ç

ö

ø
÷ a + V

z,k ,t

=d
z,t

+ d
k ,t

+ X
z,k ,t

b
k

+ I
z,k ,t

a + V
z,k ,t

  (9) 

Where I
z,k ,t

 is the vector of the average of individual time-varying characteristics, X
i ,t

, of 

the N
z,k ,t

 employees working in industry k and located in zone z at time t, and 

V
z,k ,t

=
1

N
z,k ,t

iÎ( z,k ,t )
(g

i
+ e

i ,t
)å  is the new error term.                                                                

As discuss in Combes et al. (2008), some variables in equation (9) exhibit interpretation 

issues. Specifically, X
z,k ,t

b
k
 and I

z,k ,t
a . These vectors of variables include an industry component 

non-dependent on location. For instance, the reader may think about an industry employing more 

female employees. The average proportion of women in this industry should be systematically 

higher in almost all locations. Therefore, and assuming wages are lower for women on average, 

this industry will pay lower wages, all else equal. This systematic industry component should be 

indeed captured by the “industry effect”, d
k ,t

. In order to properly account for these non-location-

dependent industry characteristics, we center the variables included in vectors X
z,k ,t

 and I
z,k ,t

 

around their industrial metropolitan means. This way, the systematic industry components in 

X
z,k ,t

b
k
 and I

z,k ,t
a  are added to the industry fixed effect to build the “total industry effect”.  

We also assume that the time trend is the same for all industries. Therefore, the total 

industry-year effect can be decomposed into the sum of an industry fixed effect and a year fixed 
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effect. Further, the last one is normalized to zero for all years, since time evolution is absorbed by 

the zone-year fixed effect, d
z,t

15. The final specification is:  

 

   (10) 

 

where  is the centered vector of local characteristics of industry k at time t and  is the 

centred vector of local average time-varying individual characteristics of employees working in 

industry k at time t.  

Recapitulating, the first stage of our econometric methodology estimates local industrial 

productivity, measured by the average of the logarithm of net hourly wages of employees working 

in industry k and zone z at time t, as a function of (i) a vector of average observed employees 

characteristics – i.e. the average age, the average of the squared ages, the proportion of woman 

and the proportion of full-timers, (ii) an industry fixed effect, (iii) a zone-year fixed effect and (iv) 

a long vector of local industrial characteristics: the logarithm of the industrial share of local 

employment, henceforth the industrial specialization index, the log of the number of 

establishments locally operating in the industry, and finally, the log of the proportion of 

professionals working locally in the industry, used as a proxy of the level of education locally in 

the industry. The effects of this last vector of variables on productivity aims at identifying the 

productivity gains emerging from employees’ interactions within the same industry (localization 

economies).  

The derived specification allows us to identify separately the effects on productivity of 

“employees” (observed employees’ characteristics), versus “industries” (industry-specific effects 

and local industrial interactions), versus “places” (location-specific effects). The unbiased and 

consistent estimators of the location-specific effects on productivity provided by this first stage, 

d̂
z,t

, corresponds to the dependent variable of the second stage. This vector is considered as a local 

 

15 Formally, as specified by Combes et al. (2008), the effects of local industry characteristics, X
z ,k ,t

b
k
, can 

be decomposed into a non-location-dependent effect, X
i ,k ,t

b
k
, and a location-dependent effect net of 

metropolitan effects,  . Respectively, X
z ,k ,t

 is the location dependent 

vector of local industry characteristics and X
i ,k ,t

is the average of those industry characteristics weighted by 

the local number of industrial employees, i.e. X
i,k ,t

=
1

N
k ,t

zÎ( k ,t )
N

z ,k ,t
X

z ,k ,t
å , where N

z ,k ,t
is the number of 

employees working in industry k at time t in zone z, and N
k ,t

 is the number of employees working in industry 

k at time t in the full territory. Likewise, the effects of local average time-varying employees characteristics,

I
z ,k ,t

a  , may be decomposed into a non-location-dependent effect, I
i,k ,t

b
k
, and a location-dependent effect 

net of metropolitan effect , where I
i,k ,t

=
1

N
k ,t

zÎ( k ,t )
N

z,k ,t
I

z ,k ,t
å . The total 

industry effect is thus d
k

+ X
i,k . t

b
k

+ I
i,k ,t

a = d
k

+ t
t
= d

k
, once the year fixed effect has been normalized to zero, 

t
t

= 0 , since t
t
 and d

z ,t
cannot be identified separately in the same estimation equation. 
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wage index once controlled for employees’ characteristics and industry effects – or localization 

effects.  

3.1.2. Econometric Specification of the Second Stage. 

 

The objective of the second stage is to assess the relative importance of agglomeration measures, 

which shape urbanization economies, and transport endowments or amenities, on our measure for 

local productivity – i.e. the estimation of the location-specific term of the wage equation (Eq. 10). 

The econometric specification assumed is: 

 

 d̂
z,t

= k
t
+k

c
+ E

z,t
p

1
+ X

z,t
p

2
+ Controls

z,t
+u

z,t
  (11) 

 

Where k
t
 are time fixed-effects, k

c
 are sector fixed-effects for the Toulouse municipality and 

EPCI fixed-effects for the rest of municipalities, E
z,t

represents the vector of observed local 

transport endowments or amenities – i.e. transport exposure measures, and p
1
 its vector of 

coefficients, X
z,t

 is the vector of location-specific variables representing agglomeration 

characteristics, and p
2
 its vector of coefficients, Controls

z,t
 represent a vector of control variables 

relevant for productivity and correlated with our regressors of interest, and finally, v
z,t

is the error 

term reflecting local shocks assumed to be i.i.d. across zones and periods.  

Regarding our agglomeration measures, X
z,t

, the main one is the logarithm of the density 

of local employment, density
z,t

= log
emp

z,t

area
z

é

ë
ê

ù

û
ú  , where emp

z,t
 represents the number of employees 

working in zone z at time t, and area
z
 is the area of the zone in squared kilometers. Additionally, 

some of the specifications include an alternative agglomeration control traditionally used by the 

literature, i.e. industrial diversity. Jacobs (1969) made popular the intuition that industrial diversity 

could be favorable for productivity as there could be cross-fertilization of ideas and transmission 

of innovations between industries. This has been for instance formalized by Duranton and Puga 

(2001) and many measures of diversity have been proposed. The most used is the inverse of the 

Herfindahl index constructed from the shares of industrial employment within the local workforce,

diversity
z,t

=
1

HHI
z,t

=
1

k

emp
z,k ,t

emp
z,t

æ

è
ç

ö

ø
÷

2

å

, where emp
z,k ,t

 is the number of industry k employees working in 

zone z at time t. Since specialization is also introduced in the specification, interpretation is easier 

if the own industry is removed from the computation of diversity. In that case, whereas 

specialization relates to the role of the industrial local share, diversity relates to the role of the 

distribution of employment over all other industries, and the two indices clearly capture two 

different types of mechanisms. 16 

 
16 Since the Herfindahl index has the inconvenient property of being largely influenced by the number of units from 

which the index is computed, the number of industries in our case, we introduce the number of local active industries 

in our specification, as proposed by Combes et al. (2004). 
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Regarding transport exposure measures, which account for local transport endowments or 

amenities, two continuous indexes of accessibility are included: a reachability index, measured by 

the inverse of the average of optimal travel times, and a transport-based accessibility to 

employment measure. Both are computed for the two transport modes available – public transport 

and private vehicle. The former follows the following formula:  Reachability Index
z,m,t

=
j ¹z

d
jz( m)å

J
  

where J is the total number of zones except zone z, and d
jz,t ( m)

 is the commuting time from zone j 

to zone z by mode m at time t. The second index captures the local accessibility level to economic 

concentrations. This measure is the logarithm of the weighted average of optimal travel times, 

where the weights are levels of neighboring employment density, 

Accessibility to Employment
z,m,t

=
j¹z

dens
j

d
zj ,t ( m)

æ

è
ç

ö

ø
÷å  , where dens

j
 is the density of employment in zone j. 

Certainly, there are more ways to measure transport exposure. Most articles have opted for 

the use of infrastructure-type measures. For instance, articles analysing road-based transport 

improvements have used the local length of roads (Melo et al., 2010), whether an area is crossed 

by a highway (e.g. Chandra and Thompson, 2000; Michaels, 2008; Faber, 2014; Duranton and 

Turner, 2011), the distance to the closest highway (Baum-Snow, 2007; Ghani et al., 2016; Holl, 

2016), the local number of radial roads from a city centre (Baum- Snow, 2007, 2010; Baum-Snow 

et al., 2016a), or the local public expenditure on roads (Fernald, 1999). Regarding articles studying 

public-transport improvements, they use distance to infrastructure (Gibbons and Machin, 2005; 

Billings, 2011; Baum-Snow and Kahn, 2000; Glaeser et al., 2008) or the local number of public-

transport stations and lines (Gonzalez-Navarro and Turner, 2016).  

However, and in the context of our study, both networks are already well-developed and 

dense, leading to a very small variation on infrastructure-type measures from one year to the other. 

Indeed, in 2013, the public transport network was 3643.46 kilometres long, and it did not 

experience a large physical expansion by the end of 2015: it increased by 0.027% to 3742.84 

kilometres, with the construction of a second tram line. Regarding the road network, it is composed 

by 377 kilometres of highway and national roads and it experience no changes from the initial to 

the final date of this study. Nonetheless, we find much more variation on our accessibility-type 

indexes which measure transport exposure. Particularly, accessibility to employment by the public 

transport and road network change on average 11.93% and 14.25%, and reachability levels do so 

by 5.91% and 26.58%, respectively. This higher level of accessibility and reachability variation is 

explained by the multiple sources of travel time adjustments, where the construction of transport 

infrastructure plays a limited role. 17 

The second reason why we use accessibility-type measures is the serious endogeneity 

concerns raised by infrastructure-type measures and caused by the non-randomness of their 

location. Therefore, instead of using infrastructure-type measures as study indexes, we control for 

them in our analysis. By doing so, we are able to compute the accessibility and reachability effects 

orthogonal to the endogenous presence of infrastructure. In essence, we exploit the continuous 

variation over the space of our transport exposure measures that is partly unrelated to the local 
 

17 Even if the road network does not physically change from one year of the study to the other, its optimal travel times 

distribution changes as a consequence of several factors. For instance, the road congestion level. Congestion of roads 

may be affected by different determinants as changes in the public transport usage given a change in its supply, changes 

in individual preferences for private vehicles, changes in individual concerns about the environment, etc. Therefore, 

it is not surprising that travel times changes when the network has remained the same.  
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presence of infrastructure. This allows to identify transport exposure effects separately from the 

advantages or disadvantages of chosen locations. We control for the distance to the closest station 

and the distance to the closest highway from each zone centroid. 

Together with these infrastructure-type measures, included in the vector Controls
z,t

, we 

include an additional group of controls that are relevant for productivity and are correlated with 

agglomeration and transport exposure measures. These variables account for the urban structure 

of the metropolitan area. They control for any correlation between agglomeration and/or transport 

exposure levels, and urbanity. These two additional variables are a dummy variable indicating if 

the IRIS code belongs to an urban or a rural municipality and a continuous variable measuring the 

driving time from each zone centroid to the Central Business District (CBD) of Toulouse.  

3.1.3. Estimation Issues. 

 

There are several issues with respect to the estimation of equations (10) and (11). Manifestly, the 

true value of the dependent variable of the second stage, d
z,t

, is unknown. Therefore, we use the 

estimators d̂
z,t

 obtained in the first stage. Yet, if there is any correlation between our local 

characteristics of interest, i.e. agglomeration and transport exposure measures, and the average of 

local skills, included in the error term of the first stage, these estimators would be biased and 

inconsistent. Certainly, this issue becomes more relevant the higher the spatial aggregation of the 

data. For instance, when using cities as spatial units, entire cities are constrained to one unique 

unit of observation. This poses relevant concerns for unobserved variable bias, since there are 

variables persistently and simultaneously determining the quality of the urban workforce together 

with transport and agglomeration effects.  

Still, this skill-sorting scenario, even if less troublesome, it can still happen at the infra-city 

level. Especially within big cities, that host a wide variety of neighborhoods characterized by an 

heterogeneous composition of local amenities. Therefore, in the estimation of the second stage we 

include sector effects for the six sectors comprising the municipality of Toulouse 

(Toulouse Centre, Rive Gauche, Toulouse Nord, Toulouse Est, Toulouse Sud-Est, 

Toulouse Ouest) and EPCI effects for the rest of smaller municipalities. Through this strategy, we 

are able to independently identify agglomeration and transport exposure effects on local 

productivity apart from potential employees´ sorting at the sector level within Toulouse, and at 

EPCI levels for the rest of the metropolitan area. 

We are also cognizant of the reverse-causality between local productivity rates and 

observed transport exposure and agglomeration measures. Employees, and more likely those with 

higher skills, are attracted by the higher productivity of denser areas. Further, the allocation 

decision of transport infrastructure is not random, the planner may intend to connect dynamic 

(deprived) areas, biasing the estimates upwards (downwards).  The direction of the bias is unclear 

and therefore endogeneity becomes a serious concern.  

To deal with this issue, we perform an instrumental variables approach. We use traditional 

instruments from the literature, i.e. past levels of agglomeration and transport exposure measures 

together with physical-distance-based counterparts of our accessibility and reachability indexes. 

Regarding the first group of instruments, we use 2004 levels of employment density, 2004 

predicted levels of accessibility to employment and local reachability, and the distance from every 

zone centroid to several historical networks: the distance to the closest roman and Cassini roads, 

and the distance to the closest line of the 1870 railway network. Regarding the second group of 
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instruments, we compute our accessibility to employment and reachability indexes using simple 

straight line distances in kilometers.18 The rationale behind is the following: geographical 

proximity alone should not have an independent impact on productivity as physical proximity does 

not affect productivity independently, it is instead the interaction between economic agents what 

generates productivity gains. Therefore, this interaction would not be possible without a network 

connecting the nodes. Therefore, we use as instruments synthetic measures of accessibility to 

employment and reachability that substitute travel times by simple physical distances between 

each pair of nodes. 

3.2. Density Analysis. 

In order to have a full representation of transport effects, we perform a density analysis by which 

we estimate the effects of transport exposure on local density of employment.  

 Transport exposure levels may make some places more attractive than others, affecting 

employment location decisions. Employees may prefer to work in better connected areas, where 

commuting is relatively shorter. Therefore, it is interesting to investigate the effect of our 

reachability index on employment location. 

Further, by estimating the effect of transport exposure levels on employment density, we 

are able to obtain the indirect effect of transport exposure on productivity through employment 

location. By interacting the reachability index coefficient from the density analysis with the density 

coefficient from the productivity analysis, we recover the indirect effect of transport on 

productivity through agglomeration and employment location. 

 Certainly, the estimation of transport exposure effects on employment density arises 

endogeneity issues. The reverse-causality between transport exposure and employment density, 

caused by the non-randomness of transport location, may bias the estimates both, upwards and/or 

downwards. If the planner decides to invest on transport within deprived and less dense areas to 

boost their growth, the estimate of transport exposure on density is bias downwards. If the planner 

decides to better connect dense and dynamic areas, the estimate is bias upwards. To solve for this 

bias, we follow the same method as in the productivity analysis. Firstly, we include variables 

measuring the local presence of physical transport infrastructure. This way, we control for the 

endogeneity of local infrastructure placement. Secondly, we perform an instrumental variables 

approach where the instruments are a sub-group of the ones proposed in the productivity analysis: 

levels of past reachability, the physical-distance counterpart of this index, and several indicators 

of the distance to historical infrastructure. 

4. Results 

4.1. Productivity Analysis Results. 

The results correspond to the estimation of the two-stage econometric specification presented in 

Section 5, i.e. the estimation of equations (10) and (11).   

Table 2. First Stage: Estimation Results. 

Stage I Results - Dependent Variable: Average of Log Wages of Industry K at Zone Z 

 
18 These instruments are inspired by the peripherality index introduced by Combes et al. (2008) to instrument 

current levels of employment accessibility. 
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 Coefficient St. Deviation 

Specialization Agriculture 0.386** (0.186) 

Specialization Manufacture 0.261*** (0.035) 

Specialization Construction 0.160*** (0.030) 

Specialization Commerce and Transport 0.097*** (0.020) 

Specialization Communication 0.010 (0.020) 

Specialization Education and Health 0.048*** (0.016) 

Num. Establishments Agriculture -0.025 (0.030) 

Num. Establishments Manufacture 0.002** (0.001) 

Num. Establishments Construction 0.003*** (0.003) 

Num. Establishments Commerce and Transport 0.000 (0.0002) 

Num. Establishments Communication -0.0002 (0.0002) 

Num. Establishments Education and Health -0.0008 (0.0008) 

Prop. Professionals Agriculture 0.472*** (0.078) 

Prop. Professionals Manufacture 0.639*** (0.035) 

Prop. Professionals Construction 0.805*** (0.038) 

Prop. Professionals Commerce and Transport 0.785*** (0.042) 

Prop. Professionals Communication 0.546*** (0.023) 

Prop. Professionals Education and Health 0.344*** (0.023) 

Mean Age 0.040*** (0.002) 

Mean Square Age -0.0003*** (0.00003) 

Prop. Woman -0.076*** (0.010) 

Prop. Full-timer 0.165*** (0.009) 

Industry-Time Effects Yes 

Zone-Time Effects Yes 

Observations 7,329 

Adjusted R2 0.562 

F Statistic 166.353 

 

Firstly, Table 2 presents the estimation results for Equation (10), i.e. the first stage. The 

dependent variable is the local industrial average of individual log wages. Regarding the 

regressors, all variables referring to individual characteristics are statistically significant and has 

the expected signs. The coefficients for the mean age and the mean of the squared ages in the 

industry are 0.040 and -0.0003, respectively. Both significant at 99%. Furthermore, the proportion 

of woman in the industry decreases average industrial log wages by 0.076, and the proportion of 

full-timers increases it by 0.165, respectively. On the other hand, even though they are not 

displayed here, none of the industry indicators 19 are significant, contrary to the high significance 

of local industry characteristics. This points out to the hypothesis that variation on individual 

productivity is not explained by the actual industry the employee is working for, but by the local 

characteristics of this industry. This hypothesis supports the existence of localization economies. 

The elasticity of industry specialization on productivity is constantly positive and significant 

 
19 The industry classification is the following: AZ refers to agriculture, silviculture and fishing, BE to manufacturing 

and extractive industries, FZ to construction, GI to commerce, transport and restauration, JU to information and 

communication, financing activities, and scientific, medical and social aid activities, and finally, OQ refers to the 

public administration and teaching activities. 
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except for communication, with an average of 0.1603. The log number of establishments in the 

same industry is positive for Manufacturing, Construction, Commerce and Transport. Whereas, it 

is negative for Agriculture, Communication and Education and Health. The average is 0.008. And 

finally, the proportion of professionals locally in the industry is very positive and significant for 

all industries, with an average effect of 0.5985. All these coefficients are of the expected sign and 

consistent with previous literature in localization economies. 

Focusing now on the second stage, the results are presented in Table 3. The dependent 

variable is the estimated zone-year fixed effect from the first stage. The instrumental variables (IV) 

estimations in columns (4) and (5) apply the nine instruments proposed in this paper, i.e. past 

density levels, the synthetic index for reachability and accessibility to employment, both past 

predicted levels of transport exposure measures, the distance to the closest railway line in 1870, 

the distance to the closest Cassini road, the distance to the closest Roman road, and the distance to 

the closest public transport station from 1863 to 1957. Table 3 also displays the over-identification 

tests computed by the Sargan method. Their values of  0.517 and 0.493 allows us to reject the null 

hypothesis of having at least one endogenous instrument. Therefore, we reject the alternative 

hypothesis of all instruments being not valid. The size of the first stage F-statistics displayed in 

Table 3 and in all specifications of Table 4, corresponding to the first stages of all endogenous 

regressors on the instruments, allows us to conclude that the instruments are relevant for all 

endogenous regressors.  

From Table 3, we identify several interesting findings. Firstly, employment density has a 

positive and significant effect on local productivity consistent among all specifications. Before 

instrumenting (columns 1 to 3), the estimate is between 0.024 and 0.025, depending on the controls 

and fixed-effects included in the specification. After instrumenting (columns 3 and 4), it decreases 

to 0.023 when local fixed-effects are not included, and to 0.016 when fixed-effects on Toulouse 

sectors and EPCI areas are included. The decline in the size of the coefficient reveals the 

importance of controlling by the skills-sorting and the reverse causality issues. Therefore, 

according to our preferred specification in column (5), if local density is doubled, productivity 

increases by 1.6%. This estimate is in the lower bound of the estimates found by previous literature, 

where transport exposure measures were not included.  

Secondly, transport exposure measures have different effects on productivity depending on 

the mode considered, i.e. public transport or private vehicle. On one hand, both accessibility to 

employment measures have a positive and significant effect on local productivity. Specifically, 

when accessibility to employment by the road network increases by 10%, local productivity does 

by 0.49%. Further, when accessibility to employment by the public transport network increases by 

10%, productivity does by 0.56%. Both estimates are lower (and in the case of public transport 

measures non-significant) before the introduction of Toulouse sectors and EPCI effects. This 

suggests a better identification of accessibility effects when exploiting the infra-metropolitan 

(within) variation of accessibility rates. In other words, while we find lower or non-significant 

accessibility effects when exploiting variation in the average accessibility from one IRIS code to 

the next, we find positive and significant accessibility effects when exploiting the variation in 

accessibility within each area (Toulouse sectors and EPCI areas) over time. This is because by 

introducing local fixed-effects into the estimation, we remove the pernicious effect of omitted 

variable by comparing IRIS codes with similar unobserved characteristics.  

Table 3. Productivity Results: Public Transport and Private Vehicle Measures.  

Stage II Results: Public Transport and Private Vehicle Measures. 
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 Dependent Variable: First Stage Zone-Year Effects 
  

 OLS OLS OLS IV IV 
 (1) (2) (3) (4) (5) 

 

log(Density) 0.025*** 0.025*** 0.024*** 0.023*** 0.016*** 
 (0.002) (0.002) (0.002) (0.005) (0.004) 

log(Acc. to Emp. by Private Vehicle)  0.011*** 0.010** 0.023* 0.049*** 
  (0.003) (0.004) (0.013) (0.015) 

log(Acc. to Emp. by Public 

Transport) 
 0.001 -0.001 0.014 0.056** 

  (0.003) (0.003) (0.017) (0.021) 

log(Reachability by Private Vehicle)  -0.004 -0.038 0.111 -0.165** 
  (0.022) (0.029) (0.193) (0.077) 

log(Reachability by Public 

Transport) 
 -0.001 -0.011 0.120 0.162 

  (0.009) (0.011) (0.125) (0.153) 
      

Urban Controls No Yes Yes Yes Yes 

Physical Infrastructure Controls No Yes Yes Yes Yes 

Agglomeration Controls No Yes Yes Yes Yes 

Time Effects No Yes Yes Yes Yes 

EPCI Effects No No Yes No Yes 

Sector Effects No No Yes No Yes 

 

Instruments: 
     

Past Levels of Employment Density    x x 

Past Levels of Reachability    x x 

Past Levels of Acc. to Emp.    x x 

Physical Reachability (Peripherality)    x x 

Distance to Roman Roads    x x 

Distance to PT Network from 1863 

to 1957  
   x x 

Distance to Railway lines in 1870    x x 

Distance to Casini Roads    x x 

Observations 1,723 1,663 1,663 1,629 1,629 

Adjusted R2 0.174 0.166 0.173 0.052 0.017 

Over-identification p-value    0.517 0.493 

 

First Stage Statistics for:  
     

log(Density)    85.752 78.059 

log(Acc. to Emp. by Private Vehicle)    160.508 59.720 

log(Acc. to Emp.  by Public 

Transport) 
   41.955 18.418 

log(Reachability by Private Vehicle)    38.661 43.511 

log(Reachability by Public 

Transport) 
   15.942 25.318 
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On the other hand, only local reachability levels by the road network have a significant 

impact on productivity.20 Specifically, if the average time it takes to arrive to a particular 

destination by the road network decreases by 10%, local productivity increases by 1.65%. Again, 

road-reachability effects are not significant before instrumenting for their endogeneity and before 

controlling by Toulouse sectors and EPCI effects. This result is in line with the accessibility to 

employment results, pointing out at a better identification coming from the comparison of zones 

with similar unobserved characteristics. Further, it suggests that reachability improvements are 

associated with a larger increase in productivity in a randomly chosen IRIS code than in a selected 

zone under the prevailing political process. Therefore, this result is consistent with a planner that 

tends to assign transport infrastructure to more secluded areas to stimulate its growth. 

Table 4. First Stage IV Results for All Endogenous Regressors in Productivity Analysis.  

First Stage Results for Productivity Analysis 

 Dependent variable: 

 log(Density) 

log(Acc.to 

Employment by 

Private Vehicle)  

log(Acc. to 

Employment by 

Public Transport)  

log(Reachability 

by Private Vehicle) 

log(Reachability 

by Public 

Transport) 

log(Past Density) 0.418*** 0.001 0.079*** -0.005*** -0.008** 

 (0.016) (0.007) (0.030) (0.001) (0.003) 

log(Past Acc. To 

Employment) 
0.013 -0.105*** 0.117 0.015*** -0.037** 

 (0.070) (0.030) (0.131) (0.005) (0.015) 

log(Past Reachability) 0.556 -0.540*** -1.377* -0.088*** 0.313*** 

 (0.390) (0.165) (0.723) (0.030) (0.085) 

log(Physical Reachability) -6.816*** -7.688*** 4.604 1.157*** -0.424 

 (1.565) (0.662) (2.903) (0.119) (0.334) 

log(Synthetic Acc. to Emp. 

Index) 
0.115 -0.378*** 0.828** -0.069*** -0.022 

 (0.220) (0.093) (0.408) (0.017) (0.046) 

Distance to 1870 Railway -0.036 -0.084*** 0.028 -0.015*** 0.008 

 (0.026) (0.011) (0.048) (0.002) (0.006) 

Distance to Cassini Roads -0.032 0.030*** -0.006 0.002 0.019*** 

 (0.022) (0.009) (0.041) (0.002) (0.005) 

Distance to Roman Roads -0.092*** 0.025** -0.060 0.010*** 0.006 

 (0.025) (0.010) (0.046) (0.002) (0.005) 

Distance to PT Network from 

1863 to 1957   
0.067* 0.037** 0.014 -0.004 -0.009 

 (0.040) (0.017) (0.075) (0.003) (0.008) 

Time Effects Yes Yes Yes Yes Yes 

EPCI Effects Yes Yes Yes Yes Yes 

Sector Effects Yes Yes Yes Yes Yes 

Adjusted R2 0.859 0.977 0.438 0.922 0.835 

 
20 Although, from the density analysis results presented in Subsection 6.2, Table 4, we learn the significant impact of 

reachability by the public transport network on employment density. Therefore, it is important to precise that our 

results does not suggest a direct effect of public transport reachability levels on productivity, but they indeed suggest 

an indirect effect on productivity, explained by the significant impact on the metropolitan distribution of employment.  
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F-Statistic for Instruments 78.059 59.720 18.418 43.511 25.318 

F Statistic 183.971 1,302.613 24.542 362.697 153.955 

4.2. Density Analysis Results.  

The results from the density analysis are presented in Table 5. The first columns display 

the OLS results, and column (4) displays the results after applying instrumentation techniques. The 

instruments used are a subset of the group proposed for the productivity analysis. The subset of 

candidates are: the past predicted reachability levels by the public transport network computed for 

2004, the synthetic reachability index computed with simple straight line distances and the distance 

to several historical networks, i.e. the public transport network in Toulouse during the period 1863-

1957, the 1870 railway network, the Cassini roads and the Roman roads. Table 5 also displays the 

over-identification p-value computed by the Sargan method. Its value of  0.467 allows us to reject 

the null hypothesis of having at least one endogenous instrument, concluding that all instruments 

are valid. Also, Table 3 and in all specifications of Table 4 display the first stage F-statistics 

corresponding to the first stages of all endogenous regressors on the instruments. The size of these 

estimates allows us to conclude that the instruments are relevant for all endogenous regressors.  

 

Table 5. Density Results: Public Transport and Private Vehicle Measures. 
Density Analysis Results: Private Vehicle and Public Transport Measures. 

 
 Dependent Variable: First Stage Zone-Year Effects 
  

 OLS 

(1) 

OLS 

(2) 

OLS 

(3) 

IV 

(4) 
 

log(Reachability by Private Vehicle) -4.777*** -1.003*** -2.213*** -2.382* 
 (0.260) (0.357) (0.430) (1.238) 

log(Reachability by Public Transport) -1.751*** -0.099 -0.292* -3.763*** 
 (0.122) (0.139) (0.165) (0.641) 

      

Urban Controls No Yes Yes Yes 

Physical Infrastructure Controls No Yes Yes Yes 

Agglomeration Controls No Yes Yes Yes 

Emp. Accessibility Controls No Yes Yes Yes 

Time Effects No Yes Yes Yes 

EPCI Effects No No Yes Yes 

Sector Effects No No Yes Yes 
     

 

Instruments: 
    

Past Levels of Reachability     x 

Physical Reachability (Peripherality)    x 

Distance to Roman Roads    x 

Distance to Railway lines in 1870    x 

Distance to Casini Roads    x 
 

Observations 1,664 1,664 1,664 1,664 

Adjusted R2 0.544 0.651 0.694 0.615 

Over-identification p-value    0.467 
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First Stage Statistics for:  
    

log(Reachability by Private Vehicle)    60.486 

log(Reachability by Public Transport)    30.659 

 

From the inspection of the columns (1) to (4) of the table, we find that both public transport 

and private vehicle reachability measures have a significant impact on employment density. 

Indeed, according to all specifications, if the average of optimal travel times to a particular 

destination decreases, employment density increases. Interestingly, we identify a similar behavior 

of reachability estimates in both, density and productivity analyses. In both cases, and when all 

controls are included, they increase after the introduction of Toulouse sectors and EPCI areas 

fixed-effects, and after instrumentation techniques are applied. Further, the coefficients for 

reachability by the public transport network are barely significant before instrumenting and/or 

introducing local effects. This suggests that the omitted variable problem was biasing the estimates 

downwards. Further, it suggests that the planner may be using transport infrastructure to better 

connect deprived areas and to attract employment activity.  

On one hand, when the average of optimal travel times by the road network to a particular 

destination decreases by 10%, local employment density increases by 23.8%. On the other hand, 

when the average of optimal travel times by the public transport network to a particular destination 

decreases by 10%, local employment density increases by 37.6%. These results suggest that higher 

levels of local connectivity impact positively the local level of employment density. Therefore, 

more secluded areas have lower employment levels. These results provide evidence of an indirect 

effect of public transport and private vehicle exposure measures on productivity through 

employment their impact on the distribution of employment, since reachability levels affects 

employment density, and at the same time employment density affects productivity. By the 

interaction of both effects we achieve the complete indirect effect of reachability levels on 

productivity. In our case, we multiply the reachability estimates of our preferred density 

specification (column 4 of Table 5) and our preferred estimate of the impact of density on 

productivity (column 5 of Table 3). The interaction of both estimates suggest that if the time to 

arrive to a particular destination by the road network (public transport network) doubles, 

productivity decreases by 3.8% (6%) through the impact on employment density. 

Table 6. First Stage IV Results for All Endogenous Regressors in Density Analysis.  

First Stages Results for Density Analysis 

 Dependent variable: 

 log(Reachability by Private Vehicle)  log(Reachability by Public Transport) 

log(Past Reachability) -0.136*** 0.237*** 
 (0.024) (0.071) 

log(Peripherality) 1.236*** 0.107 

 (0.110) (0.320) 

Distance to Historical PT Network -0.016*** 0.010* 
 (0.002) (0.006) 

Distance to 1870 Railway 0.001 0.023*** 
 (0.002) (0.005) 

Distance to Cassini Roads 0.011*** 0.002 
 (0.002) (0.005) 
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Distance to Roman Roads -0.136*** 0.237*** 
 (0.024) (0.071) 

Time Effects Yes Yes 

EPCI Effects Yes Yes 

Sector Effects Yes Yes 

Observations 1,724 1,664 

Adjusted R2 0.922 0.828 

F-Statistic for Instruments 60.486 30.659 

F-Statistic 421.861 161.329 

5. Conclusions  

This paper develops a framework to investigate the sources of productivity variation across small-

scale geographical units within the metropolitan area of Toulouse. We focus on two factors: 

agglomeration and transport exposure measures. On the one hand, we investigate the positive 

spatial externalities on productivity coming from the concentration of economic activity. On the 

other hand, we investigate the channels by which transport have an impact on productivity. Firstly, 

transport extends the geographic scope of agglomeration externalities, by reducing the interaction 

cost between economic agents placed in different locations. And secondly, transport increases the 

quantity and the quality of the local workforce. Indeed, firms and employees, and more those with 

higher skills and more added value, are attracted by the higher connectivity of places with higher 

levels of transport exposure. Therefore, in this paper we estimate the extent of agglomeration 

externalities at the urban scale taking into account the impacts of transport exposure on local 

employment and productivity.  

Transport exposure is measured by two continuous accessibility-type indexes: an 

employment accessibility index and a reachability. The accessibility to employment index is 

measured by the weighted sum of inverse optimal travel times, where the weights are measures of 

employment density at destination, and the reachability index is computed by the average of 

optimal travel times from all potential origins along the road and public transport network. Both 

indexes project transport improvements through changes in commuting times, and they measure 

the local and global levels of transport exposure for each location. 

 We recover the productivity effects of agglomeration and transport measures by the 

implementation and estimation of a wage determination model in two stages. The first stage 

assesses the importance of industrial concentration and employees’ characteristics against true 

productivity differences across zones on the average of local industrial wages. The second stage 

explains local productivity differences on our local factors of interest: local agglomeration and 

local transport measures. Finally, we recover the size of the indirect effect of transport exposure 

on productivity through, first, the estimation of the relationship between local employment density 

and transport exposure measures, and second, by interacting these estimates with those relating 

employment density and productivity. 

 We deal with the endogeneity of agglomeration and transport exposures measures 

provoked by the omission of unobserved local characteristics and the reverse-causality between 

agglomeration and transport measures, and productivity. Firstly, to deal with the omitted variable 

bias we take advantage of the panel nature of our data and we introduce Toulouse sectors and EPCI 

areas effects into the estimation productivity effects of agglomeration and transport exposure 

measures. Secondly, to control for the reverse-causality, we perform an instrumental variables 
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approach where the instruments are historical levels of agglomeration and transport exposure 

measures, the physical-distance-based counterparts of the accessibility and reachability indexes 

and several indicators of the distance to historical infrastructure, i.e. the distance to the historical 

public-transport plan during the years 1863 and 1957, the distance to two ancient roads, the roman 

and Cassini roads, and the distance to the 1870 railway network. 

Interestingly, less exhaustive specifications of the model display higher employment 

density effects and lower transport exposure effects on productivity than specifications with fixed 

effects and instrumentation techniques. The decline in the size of agglomeration effects reveals 

that the skills-sorting issue remains an important matter at the metropolitan level, where high 

skilled employees and high value-added firms may be persistently locating in denser and more 

accessible municipalities and/or denser and more accessible sectors within the municipality of 

Toulouse. Also, the underestimation of transport effects suggest that the non-random condition of 

transport location is an important matter, where the results are in line with a planner that tends to 

assign transport infrastructure to more secluded areas to stimulate its growth. 

Our key findings suggest that both agglomeration and transport exposure have an important 

role in determining the internal productivity structure of a metropolitan area. According to our 

preferred specification, where local effects are introduced and instrumentation techniques are 

applied, we find that if local density is doubled, productivity increases by 1.6%. Further, the effects 

of transport exposure measures differ for our two modes, private vehicle and public transport. On 

one hand, both accessibility to employment measures have a positive and significant effect on local 

productivity. Specifically, when accessibility to employment by the road network increases by 

10%, local productivity does by 0.49%. Further, when accessibility to employment by the public 

transport network increases by 10%, productivity does by 0.56%. On the other hand, we identify 

the direct effect of reachability levels on local productivity and the indirect effect through its 

impact on the spatial distribution of employment. In the case of reachability levels by the road 

network, measured by the average of optimal travel times, they affect productivity directly and 

indirectly. Firstly, a 10% decrease in the average of optimal travel times by the road network 

increases productivity by 1.65%. Further, this same decrease makes local employment density to 

increase by 23.8%. In the case of reachability levels by the public transport network, the effect is 

only indirect through its impact on employment density. Specifically, if the average of optimal 

travel times by the public transport network decreases by 10%, density of employment increases 

by 37.6%, which translates into an impact in local of productivity of a 3.8%.  

Concluding, all these results point out that, first, agglomeration externalities are locally 

happening at the metropolitan level, and second, that private vehicle and public transport exposure 

levels affects productivity directly and indirectly by locally increasing the quality and the quantity 

of the workforce, respectively. 
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Appendix A. Instruments Construction: Past levels of agglomeration and transport 

exposure measures.  

 

This appendix provides additional information on the computation of past levels of agglomeration 

and transport exposure measures. In the following appendix, i.e. Appendix B, we provide a 

description of the rest of instruments used in this study. 

In order to compute past levels of agglomeration and transport exposure measures, we need 

disaggregated data on previous employment levels and disaggregated data on previous optimal 

travel times between every pair of zones within the study. The farthest year for which we have 

access to both sources of data is 2004. From the Agence d´Urbanisme et Aménagement de Toulouse 

(AUAT), we have the geo-coordinates of all establishments operating in Toulouse during that year. 

Then, from the Déclaration Annuelle de Données Sociales (DADS), we identify the number of 

employees working on the establishments and aggregate them by zone. In this manner, 

employment levels for 2004 are obtained for all zones of the study. 

However, we have not direct access to the distribution of optimal travel times for this year. 

Yet, we can predict them, since we know in detail the structure of the public transport network in 

2004, displayed by Figure A.1. Specifically, our predictive approach makes use of observed 

optimal travel times for the years 2013 and 2015, and regress them on observed characteristics of 

the public transport network in those two years, i.e. we regress the observed distribution of optimal 

travel times in 2013 and 2015 on observed variables related to the structure of the public transport 

network for those two years.  

Then, we interact the estimated coefficients of this regression with the observed variables 

of the public transport network in 2004, obtaining the predicted distribution of optimal travel times 

by the public transport network in 2004. Finally, the predicted levels are introduced in the 

computation of past transport exposure levels.  

Unfortunately, this predictive approach can only be done for the prediction of optimal 

travel times by the public transport network, and not for the road network. The reason is that road 

infrastructure has not changed much in the last years, and consequently, infrastructure variation is 

not a good predictor of changes in road travel times. In other words, we have not enough variability 

in observed road characteristics to provide consistent predictions. Further, we lack access to other 

sources of road travel times variation that we could use to predict previous road travel times, as 

for instance, road congestion levels or road quality improvements. Thus, instruments identifying 

past levels of transport exposure are only computed for the public transport network. Nevertheless, 

we include other instruments that are more oriented to instrument road exposure measures, like 

several distance indicators of distances to ancient road infrastructures. 

In order to predict optimal travel times by the public transport network in 2004, we first 

estimate a prediction regression of optimal travel times in 2013 and 2015 on public transport 

network characteristics of origins and destinations in those two years. Then, we recover the 

estimated coefficients and interact them with 2004 observed variables. The product is a vector of 

optimal predicted travel times in 2004 between all pairs of origins and destinations. The estimated 

prediction regression is the following: 
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where TT
t ,od

 is the optimal travel time by the public transport network for our two times t available, 

i.e.  2013 and 2015, between every origin o and destination d, and X
t ,o

and X
t ,d

are vectors of public 

transport network characteristics at time t in origin o and destination d, respectively. Then, controls 

on zones´ location and the Euclidean distances between each pair are also included: long
o
 and 

long
d
 , and lat

o
 and lat

d
, are the longitudes and latitudes of the geographic coordinates of origin o 

and destination d, respectively; and Dist
od

 is the physical distance between origin o and destination 

d. The predicted vectors of coefficients b̂
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,q̂{ } is interacted with the vectors of 
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{ }, evaluated in 2004. The result of this 

interaction is a vector of predicted optimal travel times for 2004, T̂T
2004,od

. This vector of predicted 

optimal travel times is used in the estimation of past levels of transport exposure measures, i.e. 

employment accessibility and reachability levels.  

 

Figure A.1: Public Transport in 2004. 

 
Source: Own elaboration from data provided by the Agence d´Urbanisme et Amenagement de Toulouse 

(AUAT). 
 

 

Table A1 displays the results of the prediction regression. We consider three public 

transport modes: bus, metro and tram. Therefore, all variables are computed for these three modes 

and evaluated at both, the origin and the destination zones. The network characteristics for each 

origin-destination pair included in the regression are: (i) a categorical variable specifying the 

closest public transport mode, (ii) the distance to each of the modal networks, (iii) the local length 

of the modal network, and (iv) the total number of lines and stations locally per mode. Also, and 

together with the geographical position controls and Euclidean distances between nodes, we 

include the area and the area covered by the water for all origins and destinations.  

 The results suggest that the group of variables chosen for the predictive exercise is relevant 

and explain almost the 60% of the variation of optimal travel times by the public transport network. 
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Further, all the variables are highly significant and the F-Static is high, evidencing an efficient 

predictive power of the regression. 

Table A1. Prediction regression for the distribution of travel times in 2004. 

Prediction Regression for Public Transport Travel Times in 2004 
 

Dependent variable: Travel Times in 2013 and 2015. 
 

Coefficient St. Deviation 

Closest Mode Origin: Metro -0.558*** (0.205) 

Closest Mode Origin: Tram 4.149*** (0.320) 

Dist. Bus Network at Origin 0.001*** (0.00002) 

Dist. Metro Network at Origin 0.002*** (0.00002) 

Dist. Tram Network at Origin -0.002*** (0.00002) 

Length Bus Network at Origin 0.0001*** (0.00001) 

Length Metro Network at Origin -0.001*** (0.0001) 

Length Tram Network at Origin -0.001*** (0.0001) 

Total Bus Lines at Origin -0.339*** (0.017) 

Total Metro Lines at Origin -3.473*** (0.159) 

Total Tram Lines at Origin -3.009*** (0.248) 

Total Bus Stations at Origin -0.102*** (0.004) 

Total Metro Stations at Origin 0.419*** (0.037) 

Total Tram Stations at Origin 0.070 (0.052) 

Area Origin 0.00000*** (0.000) 

Area Water Origin -0.033*** (0.0001) 

Closest Mode Destination: Metro -1.352*** (0.204) 

Closest Mode Destination: Tram 2.366*** (0.318) 

Dist. Bus Network at Destination 0.0002*** (0.00002) 

Dist. Metro Network at Destination 0.001*** (0.00002) 

Dist. Tram Network at Destination 0.0002*** (0.00002) 

Length Bus Network at Destination 0.00003*** (0.00001) 

Length Metro Network at Destination 0.0002* (0.0001) 

Length Tram Network at Destination -0.001*** (0.0001) 

Total Bus Lines at Destination -0.207*** (0.017) 

Total Metro Lines at Destination -1.144*** (0.158) 

Total Tram Lines at Destination 1.800*** (0.246) 

Total Bus Stations at Destination -0.196*** (0.004) 

Total Metro Stations at Destination 0.291*** (0.037) 

Total Tram Stations at Destination 0.340*** (0.051) 

Area Destination 0.00000*** (0.000) 

Area Water Destination -0.032*** (0.0001) 

Physical Distance 0.002*** (0.00001) 

Origin Longitude 0.001*** (0.00000) 

Origin Latitude -0.0004*** (0.00000) 



 

35 

Destination Longitude 0.0002*** (0.00000) 

Destination Latitude -0.0003*** (0.00000) 

Time Fixed Effects Yes 

Observations 1,365,848 

R2 0.591 

Adjusted R2 0.591 

F Statistic 51,838.690*** 
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Appendix B. Instrument Analysis. 

 

In this appendix we explore the nine instruments proposed for our four endogenous regressors, i.e. 

the local density of employment, the accessibility to employment through the public transport and 

the road networks, and the reachability levels by those two networks computed by the average of 

optimal travel times from any origin to a particular destination. Likewise, we remind that the 

instrumental candidates are past levels of local employment density computed for 2004, past 

transport exposure measures computed for 2004, two synthetic indexes of reachability and 

employment accessibility computed with physical distances instead of optimal travel times, and 

finally, the distance to four historical networks, i.e. the roman roads, the Cassini roads, the 1870 

railway and the public transport network from 1863 to 1957. 

 As a first group of candidates, we consider past levels of employment density and 

employment accessibility, computed for 2004. Following Ciccone and Hall (1996), they were the 

first one to argue that endogeneity may be caused by “contemporaneous” local shocks. Therefore, 

and considering that these shocks did not have any effect on the distribution of the employment in 

the past, we can instrument employment density between 2013 and 2015 by lagged employment 

variables. This strategy rests on the hypothesis that employment agglomeration in the past is not 

related to modern differences in productivity. Same logic is applied to the instrumental candidate 

measuring past levels of employment accessibility. Indeed, past levels of reachability are 

correlated with actual levels, but they do not have a direct impact on nowadays productivity.  

The second group of candidates is composed by the two synthetic indexes of employment 

accessibility and reachability, where instead of using optimal travel times, we introduce physical 

distances between nodes. The rationale behind is the following: geographical proximity alone 

should not have an independent impact on productivity. Physical proximity does not affect 

productivity independently, it is instead the interaction between economic agents what generates 

productivity gains. This interaction would not be possible without a network connecting the nodes. 

Finally, the third and last group comprises a set of distance indicators to several types of 

historical infrastructure. Indeed, it has been frequently pointed out in the literature that modern 

networks are built following the routes traced in the past. It is easier and cheaper to build new 

transportation infrastructure by improving existing one, or nearby it. Therefore, past networks of 

infrastructure shapes current ones. For this reason, historical infrastructure indicators are useful 

instruments for current levels of transport exposure measures since they better satisfy the 

exogeneity condition, and more specifically the exclusion restriction, than more modern 

infrastructure indicators. Certainly, while the relevance of historical instruments decreases with 

time, their exogeneity increases with it.   

Within this group, the first candidate considered is the distance to the closest roman road. 

The main Roman roads passing through Toulouse (Tolosa at the time) were built around 118 BC. 

As a whole, our first candidate, the Roman network around Toulouse, was based on 352 km of 

roads and it is represented on the right of Figure B.1, together with the overall ancient Roman road 

network, on the left.  

 

Figure B.1: Roman Roads 
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Source: Own elaboration based on the Digital Atlas of Roman and Medieval Civilizations. 
 

The second candidate is the railroad network as it existed in 1870 in the region around 

Toulouse, based on 321 km of railroad lines. Certainly, the effect of trains and railways on 

employment and productivity outcomes is out of the scope of this paper, as we focus on roads and 

public transport infrastructure. However, we believe that historical railway structures can be useful 

instruments as they should not only affect current railway patterns, but also the current structure 

of road and public transport infrastructure. The 1870 railway network is displayed by Figure B.2, 

as well as the map of railways network in Europe (Martí-Henneberg, 2013). 

 

Figure B.2: Railway Network in 1870. 
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Source: Own elaboration based on Martí-Henneberg (2013) maps. 21 
 

The third candidate is the distance to the network of Cassini roads. In 1747 César-François 

Cassini de Thury was formally commissioned by Louis XV to draw the entire map of France. Due 

to financial difficulties, the Revolution and regime changes, the constitution of this map was 

delayed and it was releas in 1815. Therefore, the Cassini roads corresponds to the road 

infrastructure existing in France within the years 1747 and 1815. As a whole, the Cassini network 

along the metropolitan area of Toulouse was based on 1.064 km of roads. Figure B.3 presents the 

network of Cassini roads in the Metropolitan Area of Toulouse, and the full digitalized map of the 

Cassini network in France.  
  

Figure B.3: Cassini Roads. 
 

 
 

Source: Own elaboration based on the Geo Historical Data Research Project from Harvard University. 
22 

 The forth and last candidate corresponds to the historical public transport network of 

Toulouse for the years 1863 to 1957. The network evolved considerably between those two dates. 

It started as a “omnibus à impériale”, where four-wheels vehicles were driven by horses around 

the city. This omnibus was substituted in 1887 by a railway network where vehicles, although still 

moved by horses, were circulating only along the rails. Finally, from 1913 onwards, the network 

was electrified, looking very much alike than the tramways that exist nowadays. The network is 

represented in Figure B.4.  
 

Figure B.4: Historical Public Transport Network Toulouse - 1863 to 1957. 
 

 
21 https://www.sciencedirect.com/science/article/abs/pii/S0966692312002517 
22 https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/28674 
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Source: Data Toulouse Métropole. 23 

 
23 https://data.toulouse-metropole.fr/explore/dataset/transports-en-commun-a-toulouse-entre-1863-et-1957-terminus/information/ 
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Appendix C. Evaluation of a transport investment: Toulouse third metro line.  

[Introduction of the project. Date of opening, exact route, purpose…]  

From the results obtained in Section 5, we identify that transport exposure measures 

significantly affects the productivity structure of a metropolitan area in two ways. Firstly, directly, 

through the change of reachability levels by the road network, and secondly, indirectly, through 

the change in reachability levels by the public transport network which leads to productivity 

changes by modifying the metropolitan distribution of employment density.  

In this appendix, we apply these results to compute the productivity gains of a real 

infrastructure change: the construction of a third metro line in Toulouse that will start operating in 

2022. Figure C.1 displays the trajectory of this new line in Toulouse Metropolitan Area. 
 

Figure C.1: Course of the Third Metro Line. 
 

 
Not surprisingly, even if the infrastructure change evaluated only concerns the public 

transport network, travel times by the road network are also adjusted. This is explained by the 

following reasoning: when a transport investment takes place in any of the networks operating in 

a metropolitan area, commuters usage of all networks is affected, being the demand for all modes 

adjusted. In our case, the construction of a third metro line in the Toulouse public transport network 

changes the way commuters use both, public transport services and their private vehicles. Figure 

C.2 and Figure C.3 display the change (in percentual levels) of public transport and private vehicle 

reachability measures, respectively, after the construction of the new metro line. Both maps show 

that zones crossed by the trajectory of the new metro line, displayed in Figure C.1, host the most 

intense decreases on average travel times. Further, the intensity of those decreases diminish the 

farther we go from the infrastructure change. Importantly, both figures disclose that the decrease 

in public transport travel times is quantitatively stronger than the decrease in private vehicle travel 

times. 

Regarding the direct effect on productivity of road reachability, from Section 5 we know 

that when the average travel time by private vehicle decreases by 1%, productivity increases by 
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0.289%. Therefore, we can compute the percentual change in the productivity of each zone by 

multiplying the percentual change in local levels of private vehicle reachability after the metro line 

construction, by an elasticity of -0.289, 

 

E
Productivity|PV Reachability

=
%D Productivity

%D PV Reachability
Û

%D Productivity= E
Productivity|PV Reachability

* %D PV Reachability

= (-0.289) * %D PV Reachability

  

 

The distribution of the effects is displayed in Figure C.4. Further, the average increase on 

productivity after the construction of the third metro line is 0.89%. 

Regarding the indirect effect of public transport reachability on productivity through 

employment density, first, from Section 5, we learn that there is a significant effect of public 

transport reachability on employment density, represented in the following expression.  

 

 

E
Density|PT Reachability

=
%D Density

%D PT Reachability
Û

%D Density= E
Density|PT Reachability

* %D PT Reachability

  

 

Specifically, when the average time it takes to arrive to a particular destination by the public 

transport network increases by 1%, density levels decrease by 2.955%. Then, and also from 

Section 5, we know that when density increases by 1%, productivity do so by 0.01%. Therefore, 
 

 

E
Productivity|Density

=
%D Productivity

%D Density
Û

%D Pr oductivity= E
Pr oductivity|Density

* %D Density

= E
Pr oductivity|Density

* E
Density|PT Re achability

*%D PT Reachability

= 0.01*(-2,955) * %D PT Reachability

  

 

This means that the full indirect effect of public transport reachability through density on 

productivity is equal to (0.01 * (-2.955) = ) -0.02955%. The distribution of this change is displayed 

by Figure C.5. Further, the average indirect effect of public transport reachability levels on 

productivity is equal to 0.13%. 

 Finally, and according to our results, we can conclude that the construction of the third 

metro line in Toulouse is beneficial for metropolitan productivity. While the change in private 

vehicle reachability levels increases productivity by 0.89%, on average, public transport 

reachability improvements do so by 0.13%. 
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Figure C.2: Public Transport Reachability Change after the Third Metro Line. 
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Figure C.3: Private Vehicle Reachability Change after the Third Metro Line. 
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Figure C.4: Productivity Change after the Third Metro Line: Private Vehicle Reachability. 
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Figure C.5: Productivity Change after the Third Metro Line: Public Transport Reachability. 
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