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Abstract

We develop a structural model to represent individual transportation decisions,
road traffic levels, and speeds in equilibrium within a city. The micro-founded model
incorporates extensive heterogeneity: individuals differ in their access to transportation
modes, travel time valuation, and scheduling constraints, while road congestion tech-
nologies vary across city zones. We estimate the model for the Paris area and predict
the consequences of driving restrictions, uniform road tolls, and per-kilometer road tolls.
We measure each policy’s impact on welfare and its components - consumer surplus,
toll revenue, and the value of emissions avoided- and benchmark these simple policies
against welfare-maximizing personalized tolls.
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1 Introduction
Road traffic reduction is a key objective in large metropolitan areas due to the two main
negative externalities cars generate: pollution and congestion. INRIX estimates that con-
gestion costs an annual aggregate of 87 billion dollars in the U.S.1 The effects of policies
that aim to reduce congestion and pollution are difficult to predict since the road traffic
levels are equilibrium outcomes of drivers’ independent transportation decisions. Predicting
individual reactions to changes in their transportation environment requires knowing how
the road traffic equilibrium is modified after individuals make their transportation decisions.
We define the transportation environment as all factors that affect individual transportation
decisions and are exogenous to individuals, including the presence of urban traffic regulations.
Observational studies that measure the direct impact of a change in the transportation
environment are limited to comparing two equilibria. By contrast, we can separately identify
individual reactions and the resulting equilibrium adjustments.

We develop a novel framework to analyze individual responses to changes in their trans-
portation environments in equilibrium. It is a structural model representing equilibrium traffic
conditions in a metropolitan area, with essential dimensions of heterogeneity at the individual
and geographic levels. The first part of the model represents the choice of transportation
mode and departure time by individuals with heterogeneous but fixed travel patterns (origin,
destination, and itinerary). Since individuals have different travel patterns, transportation
modes, preferences, and schedule flexibility, they react differently to changes in the trans-
portation environment. Our model includes two key features that allow us to account for
this heterogeneity. The first key feature is that different transportation modes are imperfect
substitutes. The second key feature is the inclusion of individual schedule constraints, limiting
their ability to substitute across departure times. We rely on a discrete choice nested logit
model, containing heterogeneity in choice sets, sensitivities to trip duration and costs, and
stochastic departure time constraints. The second part of the model represents the road
congestion technologies which describe how driving speeds vary with changes in traffic level,
represented by the total kilometers driven. Our model takes into account spatial heterogeneity
by allowing the congestion technology to vary across areas of the city.

The model has the advantage of being transparent, tractable, and estimable with combi-
nations of data that are typically publicly available for many metropolitan areas. We also
provide a method to verify whether the model parameters are such that the equilibrium is
unique. This model differs from existing ones in three key aspects. First, the model represents

1Source: https://www.cnbc.com/2019/02/11/americas-87-billion-traffic-jam-ranks-boston
-and-dc-as-worst-in-us.html.

2

https://www.cnbc.com/2019/02/11/americas-87-billion-traffic-jam-ranks-boston-and-dc-as-worst-in-us.html
https://www.cnbc.com/2019/02/11/americas-87-billion-traffic-jam-ranks-boston-and-dc-as-worst-in-us.html


equilibrium transportation decisions for the entire metropolitan area rather than focusing
on a specific road. Second, it accounts for different types of roads that may have different
congestion technologies instead of considering one city-wide congestion technology. Third,
all the model parameters are estimated and represent the joint distribution of preferences,
schedule constraints, trip distances and itineraries, individual characteristics, and the available
set of transportation mode choices. This joint distribution is key to analyze the effects of
changes in the transportation environment at the individual level. To build a model with
such individual heterogeneity, we must make some simplifications and consider some factors
as exogenous. First, we consider only two departure times: peak and off-peak hours. Second,
we hold fixed residential locations and trip destinations, i.e., we do not allow individuals to
change where they live or work in response to a change in the transportation environment.2

We focus on unavoidable trips (work or study trips), thus considering individuals who have
to take their trips and do not model the number of trips. Consequently, the model does
not micro-found the entire traffic; instead, we incorporate this by treating a portion of
the traffic as unobserved. We believe that the population under study will be the most
impacted by urban traffic regulations. Finally, we assume that the transportation modes
available to an individual are fixed. While the choice of car ownership and car characteristics
(e.g., fuel efficiency) may be affected by traffic regulations in the long term, we keep them
constant in our analysis. Our welfare measures can be interpreted as short-run consequences
of regulations.

We apply our model of transportation decisions and congestion to the Paris metropolitan
area (Île-de-France region) and combine data from different sources to estimate the model
parameters. We rely on transportation surveys conducted in 2010 and 2020, where respondents
provided detailed information on all trips taken the day before the interview. We focus on the
morning and work or study-related trips and construct a final sample of 15,470 individuals to
estimate the transportation mode choice model. The surveys do not provide trip durations
using the transportation modes that are not chosen or car trip durations for alternative
departure times. To overcome this issue, we supplement the survey with data on expected
travel times using Google Directions for public transport and the TomTom application
programming interface (API, hereafter) for private vehicles during peak and off-peak hours.
The surveys do not contain any information about individual schedule constraints. We assume
that the ability to substitute between departure times depends on individual professional
activity. We leverage additional workforce survey data to estimate the probability of being

2In our sample, the primary factor influencing residence choice is the price or size of the home, cited by
42.5% of respondents. This is followed by proximity to work, noted by 16.5%, and access to public transport,
which is a priority for 1.9% of respondents.
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flexible and therefore able to choose the departure time. The types of schedule constraints,
i.e., whether individuals must commute during peak or off-peak hours when constrained, are
jointly estimated with preference parameters, exploiting the distribution of departure times
across socio-professional activities.

We estimate congestion technologies using two years of high-frequency data on traffic
density and speed collected hourly from 1,359 traffic sensors across highways, ring roads,
and the city center. Additionally, we use subway and suburban train ridership data to
approximate overcrowding levels on metro and train lines during peak and off-peak hours.

We use our equilibrium model and estimated parameters to predict the effects of policy
instruments that reduce road traffic, measuring changes in consumer surplus, toll revenue,
and local and global pollutant emissions reductions valued at standard levels. We combine
these three outcomes into a welfare function. While traffic reduction itself is not directly
embedded in the welfare function, we treat it as the primary objective of these policies,
maintaining a constant level of traffic reduction across different instruments. We analyze the
effects of simple instruments: road tolls and simple driving restrictions.

Driving restrictions apply uniformly to all individuals, which is inefficient because even those
who have limited alternatives are prevented from driving. Their advantage is implementation
simplicity and ensuring that everyone contributes to traffic reduction, making them simple
and effective policy instruments to decrease congestion. Such restrictions are often used
as emergency schemes, which are temporary measures put in place under peak pollution
episodes.3 An alternative consists of sending price signals through road tolls. For instance,
Stockholm and Singapore use congestion charges, restricting access to the city center during
peak hours to those who pay a fee. Price mechanisms have the advantage of sorting
individuals according to the benefits they get from driving: those who stop driving at peak
hours have good transportation alternatives to driving or fewer schedule constraints, limiting
the consumer surplus loss of traffic regulations. In addition, road tolls generate revenue that
can be redistributed to individuals, mitigating consumer surplus losses.

In the main analysis, we compare the effects of driving restrictions with both fixed and
variable tolls. These policies apply only during peak hours, allowing individuals unrestricted
driving during off-peak times. We begin by examining the impacts of each policy across all
possible levels of policy stringency. Under moderate stringency, both types of tolls improve
welfare. This is not the case for driving restrictions, which always reduce welfare. Then, we

3Between 1997 and 2016, the Paris metropolitan area implemented alternate traffic restrictions based on
license plate digits on six occasions. The longest of these schemes lasted four days, from December 6th to
December 9th, 2016. Since 2017, emergency plans activated during pollution peaks have instead imposed
targeted driving restrictions based on vehicle age and fuel type.
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decompose the welfare and evaluate its different components separately. All the regulations
decrease consumer surplus, as speed gains cannot compensate for the consumer surplus losses
due to the constraints imposed by the policies. From the consumer surplus perspective only,
driving restrictions outperform the uniform tolls. Driving restrictions efficiently reduce traffic
as they impose all drivers contribute to traffic reduction while a uniform toll requires a
high value to reduce traffic as it mainly targets short-distance commuters. A high toll value
generates high consumer surplus losses for all drivers. The variable toll is much more efficient
since it targets long-distance commuters, who exert the largest congestion externalities.
However, both tolls raise considerable revenue. Finally, the benefits of reducing emissions,
computed using standard social values, are modest as they offset less than 6.8% of consumer
surplus losses. In addition, w find that all policies are always progressive: the top 10% of
high-income individuals lose more than those in the bottom 10%.

To further assess the effectiveness of the variable toll, we establish a first-best benchmark
in which a social planner sets personalized tolls to maximize overall welfare. Our analysis
shows that the variable toll performs well, capturing an average of 77.2% of potential welfare
gains across different levels of stringency. However, the consumer surplus always decreases,
and welfare improves only through the high toll revenues collected. Indeed, the social planner
sets high tolls for individuals who are more likely to pay the toll in order to raise revenue.
We also compare optimal policies conditional on each policy instrument. Here, we extend
the set of policies analyzed and evaluate the performances of tolls with two parameters
(fixed and variable parts, location-specific, and time-specific). We find that the fixed and
variable toll achieves 86.4% of potential welfare gains; this is only one percent more than the
variable toll. Location and time-specific tolls significantly improve the welfare gains relative
to a uniform toll, which captures only 46.1% of potential welfare gains. Additionally, we
explore personalized tolls that maximize consumer surplus and find some potential to reduce
traffic while improving consumer surplus. The policy that maximizes consumer surplus sets
prohibitively large tolls to a fraction of individuals while letting another share of individuals
drive freely.

Finally, we fix a stringency level to go beyond the aggregate impacts of simple policy
instruments and identify winners and losers. The analysis of consumer surplus changes
under different policies shows that all policies result in a small fraction of winners. In a
hypothetical vote on policy instrument, support would roughly be evenly distributed among
driving restrictions, personalized tolls, and variable tolls, with no clear majority preference.
Moreover, our analysis shows a U-shaped relationship between consumer surplus changes and
income, indicating that middle-income individuals face the highest policy costs. Additionally,
most emissions reductions stem from the far suburbs, implying that improving air quality in
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the city center may be challenging.

We contribute to recent literature on modeling joint transportation decisions and traffic
equilibrium in a city. Barwick et al. (2024) analyze the impact of tolls and driving restrictions
on commuting choices and equilibrium congestion levels in Beijing. They endogenize individual
housing location decisions and investigate the policies’ effects on residential sorting. We
consider housing locations fixed in our model but have a more flexible representation of
congestion technology in the city and model departure time choice. Kreindler (2024) estimates
a structural model of transportation decisions to analyze the welfare effects of congestion
pricing in India. He leverages data from a field experiment to estimate preferences over
departure times and the value of travel time. His model includes heterogeneous stochastic
departure time preferences, costs for being early or late, and a switching cost parameter
for route change. Our model focuses on the substitution between transportation modes
and incorporates stochastic scheduling constraints and estimates heterogeneous sensitivities
to travel time and trip cost. Almagro et al. (2024) consider a model similar to ours,
but their analysis focuses on the combination of public transport policies and congestion
charges. They utilize aggregate transportation data that do not contain any individual
demographic characteristics, resulting in a more streamlined representation of individual
preference heterogeneity compared to our approach.

Other papers with structural models of traffic equilibrium focus on a specific route or
area rather than modeling the entire city. Tarduno (2022) models route and departure time
choices for a bridge crossing but abstracts from mode substitution and ignores the effects of
individual decisions on equilibrium speeds. Cook and Li (2023) evaluate the welfare effects
of dynamic pricing on highway toll lanes with substitution across routes. Basso and Silva
(2014) calibrates a single-road model where congestion varies with the choice of driving or
taking the bus. Batarce and Ivaldi (2014) estimate a mode choice model with endogenous
congestion, where the number of individuals driving generates congestion for the whole day.

Discrete choice models have been traditionally used to model transportation mode choices
(McFadden, 1974, Small, 2012). Recent literature has relied on new data to estimate the
value of travel time (VOT). Small et al. (2005) estimates individual VOT and valuations of
travel time reliability using revealed and stated preferences data. Bento et al. (2020) use data
from drivers entering an expressway subject to a toll to disentangle the value of urgency from
the VOT of individuals. Buchholz et al. (2024) exploits data from a ride-sharing platform to
retrieve individual VOT. Recent work has implemented field experiments to elicit directly
travel time valuations (Goldszmidt et al., 2020, Kreindler, 2024, Hintermann et al., 2024).
While our estimates of the VOT rely on the model structure, our results are consistent with
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the estimates from this literature.

Our model for the congestion technology extends the work from the literature in two ways.
First, we do not impose a linear or log-linear relationship between speed and traffic density
as in Russo et al. (2021), Yang et al. (2020), Couture et al. (2018), Akbar and Duranton
(2017). We estimate the relationships between speed and traffic density flexibly and find that
the marginal impact of traffic on speed is not constant. Second, we estimate area-specific
congestion technologies and model the equilibrium traffic level in each area and each period.
Both differences have important consequences: the marginal cost of congestion varies with
traffic level and city area.

This paper relates to the literature measuring the impacts of existing traffic regulations
using direct policy evaluation methods. The initial literature focused on driving restrictions
in developing countries (Davis, 2008, Gallego et al., 2013). Recent studies evaluate European
policies such as low emissions zones, congestion charges, and road closures (Galdon-Sanchez
et al., 2021, Tassinari, 2024, Herzog, 2023, Bou Sleiman, 2021). Our analysis differs, as we
evaluate hypothetical policies, the heterogeneity of the their effects across individuals, and
provide estimates for unobserved outcomes that are a function of the model parameters, such
as consumer surplus.

Other empirical models that represent transportation decisions and congestion are based
on the bottleneck model of Arnott et al. (1990) and Arnott et al. (1993) (Van Den Berg
and Verhoef, 2011, Hall, 2018, and Hall, 2021). These models carefully describe congestion
dynamics for a single road but ignore the substitution between driving and other transportation
modes. Anderson (2014) shows that the substitution between cars and public transport
significantly affects congestion levels. Van Den Berg and Verhoef (2011), Hall (2018) and
Hall (2021) show that congestion pricing can improve consumer surplus without toll revenue
redistribution. By contrast, we find that simple road tolls do not increase aggregate consumer
surplus without redistributing the toll revenue, while personalized tolls can raise aggregate
consumer surplus. Our finding that simple tolls can never increase aggregate consumer
surplus is nevertheless consistent with Kreindler (2024), Barwick et al. (2024) and Almagro
et al. (2024) who estimate models that are closer to ours.4

Previous literature on urban traffic policies in Paris (De Palma and Lindsey, 2006, Kilani
et al., 2014) models equilibrium traffic level with a less detailed characterization of individual

4One important difference with bottleneck models is that we analyze traffic at the city level instead of
studying a representative road - typically a highway where the speed improvements may be higher. Moreover,
we model traffic levels at the period level instead of using a continuous time measure, ignoring the sorting of
individuals within the period, which may generate extra consumer surplus. Furthermore, we consider that all
roads are tolled while Hall (2018) and Hall (2021) consider only a fraction of the roads to be tolled.
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preferences and limited mode substitution. De Palma et al. (1997) and Javaudin and de Palma
(2024) incorporate a version of the bottleneck model into a calibrated citywide traffic simulator.
De Palma et al. (2017) and Haywood and Koning (2015) study the role of public transport
quality in Paris for driving decisions. Finally, while our model differs from general spatial
equilibrium models, the analysis in our paper could be useful for models representing the
locations choices of individuals when accounting for the role of transportation policies (see
Allen and Arkolakis, 2022, Tsivanidis, 2022, Herzog, 2023, and Carstensen et al., 2022).

2 A structural model of transportation decisions and
traffic conditions

We develop an equilibrium model representing the individual choice of a transportation mode
and departure time. The model considers car trip durations as endogenous and dependent
on the congestion levels on the roads, which are directly related to the number of drivers and
how long they drive. We approximate this by the number of kilometers individuals drive in
each time period. To represent the relationship between speed and traffic density, we model
road congestion technologies for different areas in the city. Finally, we describe how to solve
for the equilibrium of the model and check whether the equilibrium is unique. Table 18 in
Appendix A includes an index of the mathematical notation used in the paper.

2.1 Transportation mode choice model

We introduce the structural model representing individuals choosing which transportation
mode to use and their departure time for their morning commute trip. We consider that the
origins and destinations of trips are given and exogenous. We also make the assumption that
the itinerary from the origin to the destination is fixed. The city is split into A mutually
exclusive areas. We do not allow for an outside option, as we model the choice of individuals
facing unavoidable trips. We make the simplification that individuals choose between T

discrete periods. There are J different transportation modes. Our model is a nested discrete
choice model, and we follow the standard distributional assumptions from the literature
(see Train, 2009). The nests correspond to the different transportation modes. We assume
individuals choose a transportation mode and then decide when they leave home. The
consequence of this modeling assumption is that we allow individuals to have correlated
preference shocks for the same transportation mode across departure periods. The utility
function of an individual n associated with transportation mode j, and departure time t
is assumed to be a function of the mode and departure period characteristics Xnjt (which
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includes the trip cost, trip duration, and mode and period specific intercepts):

unjt = β′
nXnjt + ϵnjt. (1)

βn is a vector of coefficients of preferences for these variables for consumer n and ϵnjt is a
random idiosyncratic term. This assumption implies that the different modes and departure
periods are imperfect substitutes. We allow for correlation between these idiosyncratic terms
across different periods by decomposing the preference shocks into a mode-specific shock ζnj

common to all departure periods and a mode and period-specific shock ϵ̃njt:

ϵnjt = ζnj + σϵ̃njt. (2)

σ represents the degree of independence between the preference shocks ϵnjt across different
periods for the same transportation mode and is a parameter to estimate. When σ = 1, the
preference shocks are independent, while if σ = 0, the preference shocks are identical within a
mode and the departure periods are perfect substitutes. We assume here a simple correlation
structure where there is a common mode specific shock. This implies that different period
preference shocks have the same correlation. Distant periods might be less substitutable
than closer ones; our model captures this through the mode and period-specific constants
that should be more similar. There is another assumption behind Equation (2): σ does not
depend on the mode and thus the preference shocks ϵnjt have the same correlation across all
transportation modes.

Each individual has a choice set which comprises all transportation modes (Jn) and periods
(Tn) she can access. Individuals may have schedule constraints that make them unable to
travel at certain periods. Each individual chooses the combination of mode j∗ and departure
time t∗ that maximizes their utility:

{j∗, t∗} = arg max
j∈Jn,t∈Tn

unjt.

We assume that ϵ̃njt are identically and independently distributed across individuals and
follow a type one extreme value distribution. We assume that ζnj follows the only distribution
such that ϵnjt is also distributed according to an extreme value (see Cardell, 1997). The
probability that individual n chooses the transportation mode j and departure time t is:

snjt|Tn =
exp

(
β′
nXnjt

σ

)
D1−σ

nj

∑
j′∈Jn D

σ
nj′
, (3)
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where Dnj′ = ∑
t∈Tn exp

(
β′
nXnj′t

σ

)
.

In the following, we consider that individual schedule constraints are stochastic, which
means that they may vary daily. Another interpretation of the stochastic constraints is
that there are unobserved constraints, and the model approximates this unobserved level
of individual heterogeneity (see Crawford et al., 2021 for a survey on unobserved choice
set heterogeneity). There are L possible combinations of periods. We denote by πnl the
probability that individual n has access to the subset of periods Tl. In this model, the
expected probability of choosing the combination of mode and period j and t is:

snjt =
L∑

l=1
πnlsnjt|Tl =

L∑
l=1

πnl

exp
(

β′
nXnjt

σ

)
D1−σ

njl

∑
j′∈Jn D

σ
nj′l

, (4)

where Dnjl = ∑
t′∈Tl exp

(
β′
nXnjt′

σ

)
.

To ease notation, when referring to driving as a transportation mode, we use index
d. Therefore, the probability of individual n driving in period t is sndt. The individual
probabilities of choosing a mode depend on trip durations. The individual car trip duration
is the sum of the duration driven in each area, which itself is the distance divided by the
driving speed in that area:

durationndt =
A∑

a=1

ka
n

va
t

× ρnt. (5)

ka
n represents individual n’s distance in area a and va

t is the speed in period t. If the itinerary
of an individual does not include an area, distance is set to 0. ρnt represents an individual and
period-specific multiplicative speed shock, which constitutes another structural parameter
of the model. It captures individual-specific unobserved trip characteristics that make an
individual average speed lower or higher than the average. We assume these shocks are
exogenous to the traffic conditions and hold them constant when we simulate new traffic
equilibria. We denote by v the vector of speeds for the different areas and periods and write
the probability of driving at period t for individual n as sndt(v).

In our data, we observe a sample of N individuals, who represent the entire population in
the metropolitan area using the individual weights ω1, ..., ωN . The total number of kilometers
driven in period t within area a, Ka

t , is given by:

Ka
t =

N∑
n=1

ωnk
a
nsndt(v). (6)
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2.2 Road traffic conditions and congestion technology

We model congestion technology at the local level, with A mutually exclusive areas. The
driving speed in an area depends on the congestion technology and the traffic level in that
area only. Following the transportation literature, we base our congestion technology model
on the fundamental traffic diagram (see Small et al., 2007). Geroliminis and Daganzo (2008)
empirically show the existence of a fundamental traffic diagram at the city level, called a
“macroscopic fundamental traffic diagram”. Other applications include Yang et al. (2020),
Couture et al. (2018), and Anderson and Davis (2020). We follow their approach but allow
for heterogeneity within the city by considering area-specific congestion technologies.

Congestion levels can be different throughout the day, but we consider that congestion
technology is fixed over time. Congestion technology represents all the elements that determine
the speed at which individuals can drive at a given traffic level. It represents the type of
road (highway or city road), the presence of traffic lights and intersections, and the number
of entries or exits that may force drivers to slow down. In area a, the traffic level in period
t is given by the total number of kilometers driven by the individuals in our sample, Ka

t ,
and from another unobserved source (trucks, buses, non-commuters) that we denote by Ka

0t.
Thus the total traffic level is Ka

t +Ka
0t. Ka

t is given by Equation (6) and depends on speeds.
By contrast, we assume that Ka

0t is fixed so that it does not depend on speeds. Formally, we
define the speed in area a at time t, va

t to be a function of the total traffic level:

va
t = fa(Ka

t +Ka
0t). (7)

fa represents the congestion technology that indicates how the speed decreases when the
number of kilometers driven increases.

2.3 Equilibrium of the model

This model’s equilibrium consists of individual probabilities to drive in all periods and speeds
for all areas and periods. We substitute the total number of kilometers driven, defined in
Equation 6 as a function of the individual probabilities, in the speed function defined in
Equation 7. We can thus express the equilibrium in terms of speeds only and get the following
system of non-linear equations:

va
t = fa

(
N∑

n=1
ωnk

a
nsndt(v) +Ka

0t

)
. (8)

There is no general result that guarantees that the system of non-linear equations always
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has a unique solution. However, there are two special cases where the speed equilibrium is
unique. The first case is when there is only one period and one area, so we have a single
non-linear equation to solve. Because the speed function fa is weakly decreasing, we are sure
that if a speed equilibrium exists, it is unique. The second case is when we have one area and
multiple periods. The proof of uniqueness relies on the fact that the Jacobian of the system of
equations has positive terms on the diagonal and negative terms off-diagonal. The property
of the Jacobian of the system of equations is the consequence of two key features of our
model: the speed function is decreasing, and the different departure periods are substitutes.
We provide the proofs of uniqueness under these two particular cases in Appendix B.

Even though there is no proof of the uniqueness of the equilibrium for the general model,
we provide a method to check if the system of equations in speeds has a unique solution given
our set of estimated parameters. The approach consists of defining the function:

ga
t (v, κ) = κva

t + (1 − κ)fa(v)

and check whether there exists κ ∈ [0, 1[ such that g(.) =
(
g1

1 · · · g1
T · · · gA

1 · · · gA
T

)′
is a

contraction. By the Banach fixed-point theorem, if g is a contraction and there exists v∗ such
that g(v∗, κ) = v∗, the solution v∗ is unique. This is a sufficient condition for equilibrium
uniqueness. Recall that a function g(.) is a contraction if it is K-Lipschitz, with K<1,
implying that ∀v ∈ [v,v] (the support of the speeds):

||g(v′, κ) − g(v, κ)|| ≤ K||v′ − v||.

We use the supremum norm, so the Lipschitz coefficient K is given by:

max
a∈1,...A

max
t∈1,...,T

max
a′∈1,...,A

max
t′∈1,...,T

max
v∈[v,v]

∣∣∣∣∣∂ga
t (v, κ)
∂va′

t′

∣∣∣∣∣ .
Suppose we can find κ ∈ [0, 1[ such that K < 1, the function g(.) is a contraction. Therefore,

if the iteration process converges, it converges to a unique solution of the system of equations.
If we find a set of κ such that the function g(.) is K-Lipschitz with K < 1, we should select the
value of κ that implies the lowest coefficient K to ensure the maximum speed of convergence.
Therefore, we solve for:

min
κ∈[0,1[

max
a∈1,...,A

max
t∈1,...,T

max
a′∈1,...,A

max
t′∈1,...,T

max
v∈[v,v]

∣∣∣∣∣∂ga
t (v, κ)
∂va′

t′

∣∣∣∣∣ .
In practice, we do a grid search over some possible values of κ between 0 and 1. We do a
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non-linear optimization over speeds, and the objective function we maximize is the highest
value of the absolute value of the elements of the Jacobian of g(.).

In this equilibrium model, only car trip durations are endogenous. We assume that the
durations in public transport are fixed and unaffected by changes in traffic equilibrium. This
assumption seems reasonable in our setting since, in the Paris metropolitan area, public
transport itineraries very often rely on the railway system.5 However, individuals may
care about the comfort of public transport, which depends on overcrowding levels. In our
application, we construct a proxy of the metro and train line-specific overcrowding levels to
assess individual sensitivity to public transit comfort. However, we do not endogenize the
overcrowding levels because our sample is not representative at the metro or train line level.
We still explore, in robustness, how changes in overcrowding may change the results of our
counterfactual analysis.

3 Specification and estimation of the transportation
choice model

We estimate the transportation choice model parameters using a combination of two main
datasets. First, we rely on data on individual commuting patterns in the Paris area from
the 2010 and 2020 survey waves of “Enquête Globale Transport” (EGT hereafter). They are
combined with a second self-constructed dataset on expected trip durations and itineraries
for cars and public transport from TomTom and Google Directions APIs. Additionally,
we leverage several ancillary datasets to complement the information about the different
transportation modes and individual characteristics.

3.1 Overview of the data

The EGT data contains information about the departure time, precise origin and destination
locations, transportation mode, and motive for every trip. In addition, the survey records
household and individual socio-demographic characteristics such as age, professional activity,
household size, income class, and housing characteristics. We model the choice of transporta-
tion mode and departure time for the morning commute. We consider that two possible
departure times: peak and off-peak hours, denoted t1 (peak hours) and t2 (off-peak hours).
We consider 7-8.59 a.m. to be peak hours while 6-6.59 a.m. and 9-9.59 a.m. are off-peak
hours, and assume individuals choose only one mode of transportation. If individuals take

5In our sample, 75.5% of the trips by public transport involves the usage of a railway-based mode (subway,
train, tramway).
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multiple modes, we keep the one reported as the primary mode.6 To focus on unavoidable
trips, we restrict the sample to trips related to work or study motives.7

We pick the individual as the observation unit rather than the household, assuming that
individual decisions are independent within families. However, individuals from the same home
still share access to the same transportation modes and household demographic characteristics.
This assumption implies that two people can take the same car to make their respective trips
without incurring any delay. In this case, we consider two vehicles are on the road.8 While
this simplification ignores potential cost savings and detours associated with carpooling,
modeling such joint decisions would add too much complexity to the model.

We consider five transportation mode alternatives: biking, public transport, two-wheeled
motor vehicles (motorcycles), walking, and driving.9 If the household does not own a car
or a motorcycle, the alternative is considered unavailable to the individual. If walking or
biking takes more than 2.5 hours, we also define those alternatives as unavailable. If Google
Directions cannot provide a public transport itinerary, we consider the option unavailable
(this occurs for 13.4% of the final sample that combines 2010 and 2020).

We obtain a final sample of 15,470 individual trips, 12,353 from the 2010 survey and 3,117
from the 2020 survey.10 Using the weights provided by the surveys, we have transporta-
tion decisions representing 3.8 million individuals in both survey waves, corresponding to
approximately one-third of the total population of the Paris metropolitan area (11.9 million
inhabitants in 2011). We provide more information about the EGT data in Appendix C.1.

Since the EGT data only provides trip durations for chosen transportation modes, we must
rely on additional data to compute travel times. For consistency across alternatives, we
ignore self-reported trip durations. Instead, we consider predicted travel times for chosen
and non-chosen transportation modes. We use Google Directions API to provide expected
trip durations and itineraries by public transport and use TomTom API for expected driving
times and itineraries.11 We specify the trip query to a future date, so the predictions are not

6Only 7.7% (6.1%) of public transport trips in the 2010 (2020) survey also use a car. Around 1% of public
transport trips also use a bicycle or motorcycle.

7Unavoidable trips cover a large share of transportation decisions. In the 2010 survey, they represent 66%
of the trips (67.2% in the 2020 survey) and 72.3% of the total distance traveled during peak hours. For the
off-peak period (between 6 and 7 and 9 and 10 a.m.), unavoidable trips account for 50.1% of the trips in 2010
(50.9% in the 2020 survey) and 67.5% of the distance traveled (55% in the 2020 survey).

8In our sample, only 7.2% (6.8%) of individuals report using a car as a passenger in 2010 (2020).
9Recent literature highlights the role of ridesharing and taxis on congestion levels (Rosaia, 2024 and

Mangrum and Molnar, 2020). In the EGT data, only 0.12% (0.37%) of the trips in 2010 (2020) use a taxi or
ridesharing. We thus ignore these transportation modes.

10The Covid crisis stopped early the data collection of the 2020 survey and thus only contains interviews
made in 2019.

11We did the queries in November 2023. These APIs can only provide trip durations now or for a future
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subject to the current traffic conditions and their idiosyncrasies. The predictions nevertheless
rely on the expected traffic level to predict car trip durations. We thus use the predicted
car trip durations at 8:30 a.m. for peak hours and 6:30 a.m. for off-peak hours. We provide
more details about the queries in Appendix C.2.

The EGT surveys do not include information on individual schedule constraints. We
complement our data with the “Enquête Emploi” workforce survey for 2019 and 2022
(workforce survey, hereafter).12 These surveys explicitly ask workers if they can choose
starting and ending working times. Since schedule constraints are likely specific to the
occupation, we calculate the fraction of individuals with flexible work hours for 16 socio-
professional categories (SPC hereafter). This dataset does not include information for
students. We assume the students in high school or below have the lowest flexibility observed
among workers. We assume that students in higher education have the largest observed
flexibility. Appendix C.3 contains additional information about the workforce survey and
how we aggregate a few SPCs.

3.2 Functional form assumptions, identification and estimation

We now explain how we estimate the parameters of the utility function presented in Equation
1. First, we parameterize the individual heterogeneity in preferences and assume that βn are
functions of a finite number of observable demographic characteristics. σ, which represents the
correlation of individual preference shocks across periods, is another parameter to estimate.
θ denotes the vector that regroups these parameters.

In Section 2.1, we consider a model where individuals face stochastic constraints regarding
their departure times. From an estimation perspective, the challenge arises due to the lack of
information about whether individuals are schedule-constrained on the data collection day.
We consider the schedule constraints depend only on the SPC of individual n, denoted by
c(n). There are C SPCs. We let ϕc(n) denote the probability of being schedule-constrained,
i.e., the individual has to commute at a specific time, and 1 − ϕc(n) the probability of being
unconstrained. Conditional on being schedule-constrained, the individual has a probability
πc(n) that she has to commute during peak hours. The probability of having to commute
during peak or off-peak hours is also a function of the SPC only. There are three possible
combinations for the departure times available to individual n, Tn: T12 = {t1, t2}, T1 = {t1},
or T2 = {t2} with probabilities that are respectively 1 − ϕc(n), ϕc(n)πc(n), ϕc(n)(1 − πc(n)).

In the workforce survey, we observe the probabilities of being schedule-constrained (ϕc)c=1,...,C ,

date, we cannot have expected trip durations that correspond exactly to the survey years.
12We do not exploit 2020 and 2021 data because the Covid crisis might have temporarily affected the

working conditions.
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but we need to estimate the probabilities that under schedule constraints, the individuals
must commute during peak hours π = (π1, ..., πC). We leverage the shares of individuals
choosing peak hours conditional on the SPC by writing πc as a function of the vector of
parameters of preferences θ. We start by expressing the probability of choosing to travel at
peak hours conditional on the SPC c that we denote µc and is observed:

µc = ϕcπc + (1 − ϕc)
∑

n∈C ωn
∑

j∈Jn
snjt1|T12 (θ)∑

n∈C ωn
,

where C denotes the set of individuals with the SPC c. snjt|T12(θ) corresponds to the mode
shares conditional of having no schedule constraints, defined in Equation 3. Thus, we can
write πc as function of µc, ϕc and θ:

πc(θ) = µc

ϕc

− (1 − ϕc)
ϕc

∑
n∈C ωn

∑
j∈Jn snjt1|T12(θ)∑
n∈C ωn

Since we need πc(θ) ∈ [0, 1], we define:

π∗
c (θ) = πc(θ)1{πc(θ) ∈ [0, 1]} + 1{πc(θ) > 1}. (9)

This allows us to write the probability that individual n chooses the combination j and t as
function of the parameters:

snjt(θ) =ϕc(n)π
∗
c(n)(θ)snjt|T1(θ) + ϕc(n)(1 − π∗

c(n)(θ))snjt|T2(θ)

+ (1 − ϕc(n))snjt|T12(θ).

The equation above is the same as Equation 4, but it is adjusted to our setting with two periods
and partially observed schedule constraints. When individuals are schedule-constrained, they
only choose a transportation mode, and the model becomes a logit, so the probabilities do
not depend on σ. It implies that the identification of σ is only possible when the probability
of being schedule-constrained is below one.

The identification of the unobserved schedule constraints represented by π∗ comes from
observing the departure time by SPC and the probability of having flexible hours (from
the workforce survey). Controlling for schedule constraints and preference heterogeneity
within SPCs, observed departure times conditional on a SPC reveal the type of schedule
constraints faced by individuals in that SPC. The key assumption for identification of π∗ is
that preferences do not systematically differ across socio-professional categories.
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Finally, an individual n contribution to the likelihood is:

ln = Πj∈JnΠt={t1,t2} (snjt(θ))ynjt ,

where ynjt = 1 when the mode j and the period t are chosen and 0 otherwise. We estimate θ

using the method of maximum likelihood; we want to find the values of the parameters that
best rationalize the observed choices given the theoretical probabilities. We maximize the
log-likelihood function:

LL(θ) =
N∑

n=1

∑
j∈Jn

∑
t={t1,t2}

ωnynjt log (snjt(θ)) . (10)

We recall that ωn corresponds to the sample weight of the individual n. The identification of
the parameters in θ comes from observing a cross-section of individuals with different choice
sets, trip characteristics, and demographic characteristics, making different choices.13

The maximum likelihood method requires that the individual preference shocks are uncor-
related to the mode and period observed characteristics:

E(ϵnjt|Xnjt) = 0.

This means that individual shocks that affect the decision to drive should be uncorrelated
with individual car trip duration. However, this contradicts the theoretical equilibrium
model, where individual driving times are an equilibrium outcome. Unobserved factors
may simultaneously affect individual preferences for driving and speeds (e.g., rain) or all
individuals’ preferences simultaneously and thus speeds (e.g., an important event). Our data
structure mitigates these concerns for two reasons. First, we do not rely on observed car trip
durations but on expected trip durations from TomTom on a future date. This prediction
is based on the expected traffic level and is not subject to real-time traffic or speed shocks
(e.g., caused by rain). Second, individuals are surveyed on different days throughout the year
(outside school holiday periods), so their unobserved preference shocks are less likely to be
correlated.

In addition, our specification allows for a rich set of interactions between demographics,
cost and travel time. Controlling for such individual-level heterogeneity is important to have
independence of the unobserved preferences shocks and mode characteristics.

13Our application is centered around policies influencing car usage. While we could adopt a simplified
model in which individuals choose between driving and public transport, identifying preferences in such a
model would be more difficult due to the limited variation in mode characteristics and the lack of variation in
choice sets.
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To further mitigate the risk of endogeneity of car trip durations, we use 93 zone fixed effects
for the individual origins and destinations interacted with the car alternatives. These fixed
effects capture unobserved driving conditions, since individuals with a high preference for
driving might live or work in areas with better road infrastructure, where driving time is low.
Barwick et al. (2024) also use such fixed effects to mitigate endogeneity concerns.

Additionally, we use a control function approach to deal with the potential endogeneity
of car trip durations. We construct a set of instruments and apply the control function
approach suggested by Petrin and Train (2010). The control function method is a widespread
approach to deal with endogeneity while relying on individual data and using the maximum
likelihood estimation method (Agarwal, 2015, Dubois et al., 2018, Buchholz et al., 2024).
Our instruments are inspired by Berry et al. (1995): they are characteristics of the choice
sets of other individuals living in the origin or destination zone. We also use the free-flow
duration as in Almagro et al. (2024). In Appendix D.1, we provide details on the control
function approach and the underlying assumptions.

3.3 Utility specification and variable constructions

We specify the utility as a linear function of the following variables: transportation mode-and-
departure-time-specific intercepts, the trip monetary cost, the trip duration and some public
transport characteristics. We consider a flexible functional form for the trip duration by
interacting it with the trip distance using a local linear functional form. More specifically, we
split the trip distance into five intervals and allow the parameters of the interaction between
duration and distance to vary on each segment of the interval. Spending one additional
minute might be different depending on the trip distance. We also allow the sensitivities to
the trip duration and cost to vary with six age classes and nine income brackets.

We add some controls to represent the characteristics of public transport. We use the
overcrowding level in the metro and suburb trains, a dummy if the public transport itinerary
relies on the railway system only (instead of using the bus or tramway), and the number
of layovers. Following the literature on public transport congestion, such as De Palma
et al. (2017) and Haywood and Koning (2015), we assume the utility is linear in the level of
overcrowding on public transit.

Except for the mode and departure time dummies, none of the variables in the utility
function are readily available in the EGT data and need to be constructed. We rely on the
self-constructed dataset on expected trip durations for driving and public transport. To
estimate trip durations for walking and bicycle trips, we compute the average speed for
individuals who chose to bike or walk using their declared trip durations and distances. We
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find a walking speed of 3.4 km/hr and 8.2 km/hr for biking.14 These average speeds are
combined with distance to compute trip durations for the two modes. Finally, we use the
predicted car durations at off-peak hours for motorcycles, assuming they can bypass traffic.

The EGT data contains information on some characteristics of cars and motorcycles: vintage,
fuel type, and horsepower. Using additional data, we estimate the fuel consumption and
emissions per kilometer driven for the vehicles from these characteristics (see Appendix C.4).
Fuel consumption is essential to estimate the cost of driving, while the emissions are used in
counterfactual simulations to predict the environmental benefits of reducing traffic. For the
cost of driving, we follow a similar approach as the American Automobile Association and
construct a per-kilometer cost that includes fuel consumption, car depreciation, maintenance,
and insurance. Car prices are not observed in the EGT data, so we predict them from
the vintage, fuel type, and horsepower using additional proprietary data on car sales. The
EGT contains household-level data on the annual maintenance and insurance costs and
information on the number of kilometers driven annually. The precise methodology and
related assumptions to estimate the driving costs are provided in Appendix C.5.1.

The survey also records whether individuals own a public transport pass and the type of
subscription. Since public transit users are more likely to own a subscription and thus to pay
a cheaper price, we control for the selection into public transport subscription by predicting
the cost of the trip net of the subscription rebate. We present our methodology in Appendix
C.5.2.

Walking is always free, while biking is free only for households owning bicycles. If the
individual has an annual bike-sharing subscription, we consider the per-trip cost of the
subscription is the annual cost divided by twice the number of working days. In other cases,
we consider biking to have the price of a single bike-sharing ticket, e1.7. Our final cost
estimates are trip and individual-specific and account for the public transport subscription
rebates, vehicle characteristics, and trip distances. Finally, we deflate the cost of the 2020
trips to 2010 euros.15

We construct a measure of overcrowding for all the subway and urban railway transit
lines to capture the potential disutility of overcrowding in public railway transport. We use
publicly available data from 2015 on passenger flows (the oldest year available) combined
with historical data on hourly public transit schedules and train capacities. A train’s capacity

14Speeds are computed using the reported duration and trip distances. We check that the speeds are not
sensitive to rounding errors in the reported trip durations by excluding observations reporting a multiple of
five minutes.

15The value of the deflator comes from the French National Institute of Statistics and Economic Studies.
See https://www.insee.fr/fr/statistiques/2122401.
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is the number of passengers in a train for a density of four persons per square meter. We
approximate the overcrowding level by the hourly number of passengers divided by the
line’s capacity. A line’s capacity is a function of two factors: train frequencies and train
physical capacities. Since different lines operate different trains and have different frequencies,
we obtain important heterogeneity in capacities across metro and train lines. We obtain
individual overcrowding levels from the urban railway line-level overcrowding estimates by
weighting the line-level overcrowding measures by the percentage of the trip duration spent
on the line. We provide details on the data used and the construction of the overcrowding
variable in Appendix C.6. Table 20 on the same Appendix C.6 provides the time-specific
overcrowding measures for each line. On average, across metro and train lines, public railway
transport is at 73% capacity at off-peak hours and reaches 180% at peak hours.

The EGT provides the household monthly income in ten brackets. We follow the approach
of the French National Institute of Statistics and Economic Studies to calculate consumption
units in a household. We count the first individual in a household as one consumption unit,
other adults represent half a consumption unit, and children represent 0.3 consumption units.
We divide the midpoint of each income bracket by the number of consumption units to
obtain an estimate of income at the individual level. We then reclassify the individuals into
the initial income categories. Taking into account the household size is important as only
19.9% of the sample remains in their initial income category. Finally, we aggregate the two
highest income classes (between e4,500 and e5,500 and above e5,500) because there are few
observations in the highest income bracket (0.5% of the sample).

Table 1 shows the distribution of trip characteristics and mode shares across the different
demographic categories. We see that the youngest category (below 18 years old) have, on
average, trip distances three to four times lower than the rest of the population. This can be
explained by the proximity of schools to their residences. Car usage increases with age, while
public transport usage decreases with it. Trip duration also monotonically decreases with
age from 18 onwards. This could be related to older individuals having higher sensitivity to
travel time.

Car usage is at least ten percentage points lower for the two lowest income categories
than for the rest of the population. Meanwhile, public transport is popular across low and
middle-level income categories. The lowest public transport usage corresponds to individuals
with an income between e3,500 and e4,500. Across SPC, we see large heterogeneity in the
share of trips made during peak hours, with less than half of qualified workers traveling at
peak, while almost all students at high school or below travel during peak hours.
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Table 1: Summary statistics by demographic groups
Mean Mode & period shares

Freq. Dist. Duration Car Pub. trans. Peak
Age
Age ≤ 18 31.6 4.1 24.4 19.9 35.1 90.6
Age ∈ ]18, 30] 17.3 15.3 39.7 22.4 67.4 70.7
Age ∈ ]30, 40] 17.2 16.1 37.3 37.5 49.5 66.5
Age ∈ ]40, 50] 17.6 16 36.3 41.4 46.6 70.7
Age ∈ ]50, 60] 14 15.7 35.1 43.6 43.8 71.8
Age > 60 2.27 12.8 32.7 44.5 41.7 72.3
Income
Income ≤ 800 10.5 8.08 32.1 16.9 47.1 77.3
Income ∈ [800, 1,200[ 12.69 10.05 32.53 23.84 48.72 75.76
Income ∈ [1200, 1,600[ 15.6 11.8 31.8 35.5 41.5 74.2
Income ∈ [1600, 2,000[ 15.3 13.4 33.5 36.3 46.4 73.6
Income ∈ [2000, 2,400[ 14.2 13.5 34.6 33.4 47.1 75.1
Income ∈ [2400, 3,000[ 11.4 13.6 34.6 32.1 51.5 75.7
Income ∈ [3000, 3,500[ 8.62 12.3 33 29.1 50.6 79.9
Income ∈ [3500, 4,500[ 7.56 13 32.8 35.5 43.8 81.6
Income > 4,500 4.18 14.5 34.5 37.9 48.3 77.6
Socio-professional category
Farmers 0.11 14.2 32.7 36.4 29.4 82.3
Craftspeople 0.698 19.8 31 81.2 12.3 54.1
Shopkeepers 0.517 15.7 34.6 46.7 30.9 50.2
Entrepreneurs 1.45 13.4 32.6 36.2 37.8 66.9
Public executives 6.96 13.8 35.6 31.2 53.8 72.7
Private executives 12.9 17.2 38.9 31.8 58.3 76.7
Education, health 8.25 13.3 33 42 43.1 76.6
Administrative professions 7.21 17.1 38.8 32.5 59.6 74.8
Technicians 3.54 18.3 38.1 48 41.4 62.3
First-line supervisors 1.24 19.1 40.5 50.8 40.8 61.3
Public employees 5.55 13.3 35.6 37.6 45.2 71.1
Private employees 4.69 18.7 38.8 34.9 58.5 80.3
Retail employees 1.16 15.3 36.6 38.2 49.7 59.9
Services 1.71 9.76 33.2 17.4 59.6 60.3
Qualified workers 5.27 15.8 34.4 55.6 36.2 47.3
Unqualified workers 1.6 12.8 34.4 37.3 48.9 48.1
Students in high school or below 31.6 3.89 23.9 20.4 33.6 91
Students in higher education 5.59 15.1 43.7 9.73 80.7 73.5
Average 12.1 33.2 30.9 47.1 76.2

Note: Durations in minutes, distances in km, monthly income in e per consumption unit. Frequencies and
mode shares are in %. Distances and durations are those of the chosen transportation modes. All statistics are
for the pooled 2010-2020 sample and are computed using survey weights.

Across socio-professional categories, we see a large variation in the usage of cars and public
transport. We also observe large variation in the share of trips done at peak hours. Workers
(qualified and unqualified), and individuals working in services have a lower rates of departure
at peak hours than the average. By contrast, executives and individuals working in health
have higher rates of departure during peak hours. We take this as evidence of differences
in schedule flexibility across socio-professional categories. Mode availability, as well as the
distribution of durations and costs by mode, are given in Appendix C.7.
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One possible concern with using the 2010 and 2020 waves of the EGT survey is that
transportation patterns could have changed in the ten years between the surveys. The last
panel of Table 21 in Appendix C.7 provides the availability and mode shares. We do not
observe major changes across the two survey waves, with the difference between shares being
less than 2.5 percentage points.

3.4 Estimation results

We estimate the transportation choice model by maximizing the log-likelihood defined by
Equation (10). Only differences in utilities are identified in this discrete choice model. Thus,
we consider walking at peak hours as the baseline option and normalize its intercept to 0. The
mean utility of an individual walking at peak hours is not normalized to 0 because the utility
contains the trip duration. In the estimation, we impose that the sensitivities to duration
and trip cost are always negative.

We present in Table 2 the results from four different specifications. The first corresponds
to our main specification with stochastic schedule constraints governing departure time
substitution. The second specification uses a control function approach to deal with duration
endogeneity. In the third one, all individuals can substitute across departure periods. Finally,
in the last specification, individuals cannot substitute across departure periods. The last two
specifications make extreme assumptions regarding the ability of individuals to substitute
across periods. The differences between them and our preferred model inform us about the
role of incorporating stochastic schedule constraints. All specifications include a rich set of
fixed effects: the zones of origin and destination interacted with driving.

The table also provides the median value of travel time (or opportunity cost of time) in
e/hr. The VOT represents how much an individual should receive (in e) to compensate for
the decrease in utility related to an increase in travel time by an hour. Given our functional
form assumptions and the unit for duration (ten minutes), the VOT is simply the ratio
between the sensitivity to duration and the sensitivity to the trip monetary cost multiplied
by six. The sensitivity to duration depends on individual specific demographic characteristics
and trip distance.

22



Table 2: Estimation results for the utility parameters
Coefficients (1) (2) (3) (4)
Duration -0.538∗∗ (0.033) -0.537∗∗ (0.033) -0.9∗∗ (0.089) -0.531∗∗ (0.033)
Cost -0.53∗∗ (0.049) -0.533∗∗ (0.049) -0.871∗∗ (0.102) -0.533∗∗ (0.049)
Bicycle, peak -3.47∗∗ (0.075) -3.46∗∗ (0.076) -5.8∗∗ (0.429) -3.47∗∗ (0.076)
Public transport, peak -1∗∗ (0.062) -0.995∗∗ (0.063) -1.79∗∗ (0.157) -0.994∗∗ (0.062)
Motorcycle, peak -3.43∗∗ (0.112) -3.43∗∗ (0.113) -5.66∗∗ (0.406) -3.49∗∗ (0.113)
Car, peak -2.68∗∗ (0.527) -2.71∗∗ (0.528) -4.54∗∗ (0.935) -2.72∗∗ (0.528)
Car, off-peak -3.88∗∗ (0.544) -3.95∗∗ (0.563) -6.27∗∗ (0.95) -3∗∗ (0.535)
Public transport, off-peak -1.9∗∗ (0.174) -1.94∗∗ (0.221) -2.96∗∗ (0.164) -1.16∗∗ (0.098)
Walking, off-peak -0.737∗∗ (0.154) -0.779∗∗ (0.195) -1.81∗∗ (0.055) 0 (0)
Bicycle, off-peak -4.15∗∗ (0.16) -4.18∗∗ (0.188) -7∗∗ (0.438) -3.37∗∗ (0.133)
Motorcycle, off-peak -3.73∗∗ (0.162) -3.75∗∗ (0.18) -6.31∗∗ (0.412) -2.74∗∗ (0.164)
Duration × income ∈ [800, 1,200[ -0.03 (0.03) -0.03 (0.03) -0.036 (0.05) -0.036 (0.03)
Duration × income ∈ [1,200, 1,600[ -0.115∗∗ (0.032) -0.115∗∗ (0.032) -0.158∗∗ (0.053) -0.116∗∗ (0.032)
Duration × income ∈ [1,600, 2,000[ -0.072∗ (0.031) -0.071∗ (0.031) -0.083 (0.051) -0.073∗ (0.031)
Duration × income ∈ [2,000, 2,400[ -0.075∗ (0.032) -0.075∗ (0.032) -0.1† (0.052) -0.08∗ (0.032)
Duration × income ∈ [2,400, 3,000[ -0.083∗ (0.034) -0.084∗ (0.034) -0.09† (0.054) -0.088∗∗ (0.034)
Duration × income ∈ [3,000, 3,500[ -0.102∗∗ (0.035) -0.103∗∗ (0.036) -0.102† (0.057) -0.118∗∗ (0.036)
Duration × income ∈ [3,500, 4,500[ -0.141∗∗ (0.041) -0.143∗∗ (0.042) -0.134∗ (0.063) -0.169∗∗ (0.042)
Duration × income ≥ 4,500 -0.169∗∗ (0.058) -0.174∗∗ (0.06) -0.139† (0.082) -0.241∗∗ (0.061)
Duration × age ∈ [18, 30] -0.138∗∗ (0.025) -0.137∗∗ (0.025) -0.257∗∗ (0.046) -0.136∗∗ (0.025)
Duration × age ∈ ]30, 40] -0.311∗∗ (0.029) -0.308∗∗ (0.03) -0.54∗∗ (0.058) -0.291∗∗ (0.03)
Duration × age ∈ ]40, 50] -0.26∗∗ (0.029) -0.259∗∗ (0.029) -0.446∗∗ (0.054) -0.262∗∗ (0.03)
Duration × age ∈ ]50, 60] -0.327∗∗ (0.033) -0.326∗∗ (0.033) -0.532∗∗ (0.06) -0.322∗∗ (0.034)
Duration × age > 60 -0.38∗∗ (0.073) -0.38∗∗ (0.074) -0.598∗∗ (0.113) -0.35∗∗ (0.074)
Duration × distance 0.223∗∗ (0.023) 0.223∗∗ (0.023) 0.356∗∗ (0.048) 0.22∗∗ (0.023)
Duration × (dist-d2) × (dist≥d2) -0.265∗∗ (0.041) -0.262∗∗ (0.041) -0.426∗∗ (0.071) -0.239∗∗ (0.042)
Duration × (dist-d3) × (dist≥d3) -0.031 (0.062) -0.035 (0.063) -0.048 (0.092) -0.042 (0.064)
Duration × (dist-d4) × (dist≥d4) 0.099 (0.114) 0.105 (0.115) 0.104 (0.171) 0.118 (0.113)
No. layovers in Pub. transport -0.486∗∗ (0.041) -0.488∗∗ (0.041) -0.778∗∗ (0.09) -0.49∗∗ (0.041)
Railway only 0.015 (0.063) 0.011 (0.063) 0.143 (0.095) -0.011 (0.065)
Pub. transport overcrowding -0.066∗ (0.033) -0.064† (0.033) -0.199∗∗ (0.041) -0.046 (0.036)
Cost × income ∈ [800, 1,200[ -0.013 (0.036) -0.014 (0.036) -0.016 (0.059) -0.012 (0.036)
Cost × income ∈ [1,200, 1,600[ -0.059† (0.036) -0.059† (0.036) -0.085 (0.06) -0.055 (0.036)
Cost × income ∈ [1,600, 2,000[ -0.023 (0.034) -0.024 (0.034) -0.025 (0.057) -0.015 (0.034)
Cost × income ∈ [2,000, 2,400[ -0.093∗∗ (0.036) -0.094∗∗ (0.036) -0.146∗ (0.06) -0.088∗ (0.036)
Cost × income ∈ [2,400, 3,000[ -0.085∗ (0.037) -0.086∗ (0.037) -0.126∗ (0.062) -0.079∗ (0.037)
Cost × income ∈ [3,000, 3,500[ -0.07† (0.039) -0.071† (0.039) -0.095 (0.064) -0.061 (0.039)
Cost × income ∈ [3,500, 4,500[ -0.059 (0.04) -0.06 (0.04) -0.065 (0.066) -0.056 (0.04)
Cost × income ≥ 4,500 0.017 (0.043) 0.016 (0.043) 0.064 (0.07) 0.016 (0.043)
Cost × age ∈ [18, 30] 0.301∗∗ (0.044) 0.304∗∗ (0.044) 0.459∗∗ (0.078) 0.306∗∗ (0.044)
Cost × age ∈ ]30, 40] 0.384∗∗ (0.043) 0.389∗∗ (0.044) 0.606∗∗ (0.083) 0.391∗∗ (0.044)
Cost × age ∈ ]40, 50] 0.45∗∗ (0.043) 0.455∗∗ (0.044) 0.717∗∗ (0.088) 0.451∗∗ (0.044)
Cost × age ∈ ]50, 60] 0.408∗∗ (0.044) 0.412∗∗ (0.045) 0.655∗∗ (0.087) 0.407∗∗ (0.045)
Cost × age > 60 0.385∗∗ (0.063) 0.389∗∗ (0.064) 0.616∗∗ (0.113) 0.398∗∗ (0.063)
σ 0.816∗∗ (0.16) 0.87∗∗ (0.217) 0.603∗∗ (0.043)
Residual control function duration peak -0.006 (0.008)
Residual control function duration off-peak -0.013 (0.016)
Log-likelihood -17,441 -9,664 -17,923 -14,513
Median VOT (in e/hr) 15.6 15.7 15.2 15.6
Notes: (1): Baseline specification, with stochastic schedule constraints. (2): Stochastic schedule constraints and control function for duration.
(3): Full flexibility, all individuals can substitute across departure periods. (4): No substitution across departure periods. In this specification the
mode dummies are identical across periods. Walking at peak hours is the baseline alternative. “income” represents the monthly individual income,
“dist” is the distance, in 10 km and d2, d3 and d4 are the inner values that split the distance interval equally in five. The reference categories are
individuals with age < 18, with an income below e800. Duration measured in 10 minutes. Cost in e. Significance levels: ∗∗: 1%, ∗: 5%, †: 10%.
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Baseline sensitivities to duration and cost are very similar across specifications (1), (2)
and (4). In specification (3), individuals in the base category appear to be more sensitive
to price and travel time. This is intuitive because the model, without schedule constraints,
rationalizes the fact that only 76.2% of individuals choose to commute during peak hours
with a high sensitivity to duration. We take the results from specification (3) as evidence of
a possible bias from assigning the option to substitute across departure times to individuals
who cannot. However, the median VOT remains very close to our baseline estimate.

Furthermore, all four specifications suggest qualitatively the same heterogeneity in pref-
erences. When looking at the estimates from our preferred specification, the interactions
between the trip duration and individual characteristics reveal that the sensitivity to trip
duration is more heterogeneous across age than across income categories. Older and higher
income individuals are more sensitive to trip duration. Older individuals are also less sensitive
to trip cost. We find little heterogeneity across income brackets on the cost sensitivity and the
heterogeneity suggests a u-shaped curve: individuals with middle incomes (e2,000-e3,000)
are the most sensitive to trip cost.

Our baseline specification suggests a preference shock correlation between periods of 0.82,
indicating that leaving at peak and off-peak hours are subject to relatively independent shocks
and thus constitute imperfect substitutes. Yet, the coefficient is lower than one, confirming
the relevance of the nest to represent substitution patterns between different transportation
modes and departure times. With the control function, the estimated σ is slightly higher
(0.87). Under the assumption of full schedule flexibility, σ equals 0.60, suggesting a greater
correlation of preferences within modes.

Finally, the included residuals from the first stage of the control function are not significant.
Due to these factors, we prefer to use specification (1) as our main specification for the
remaining analysis. Overall, the results from the different specifications are reassuring that
our assumptions about the presence or absence of schedule constraints, as well as the control
function, do not have large impacts on the estimated coefficients.

The transportation mode dummies reveal significant differences in the stand-alone prefer-
ences for different transportation alternatives. Consistently across transportation modes, we
find that peak hours are always preferred to off-peak hours. The public transport controls
have the expected signs: the number of layovers and overcrowding reduce the utility of public
transport. The railway dummy is positive but not significant. Overcrowding has a small
impact on choices. Indeed, the average willingness to pay to decrease the overcrowding level
by 10% during peak hours is e0.064. By contrast, the average willingness to pay to reduce
the trip duration by 10% is e0.97.
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Table 3 presents the estimated probabilities of being schedule-constrained (obtained from the
workforce survey) and those of commuting during peak-hour only when schedule-constrained
(calculated from the estimated parameters according to Equation (9)). The least schedule-
constrained socio-professional categories are craftspeople, entrepreneurs, and private sector
executives. The most schedule-constrained workers are public and retail employees and
unqualified workers. When workers are schedule-constrained, we find that 78% of the time,
they have to commute during peak hours. However, craftspeople and shopkeepers always
have to make their trip during off-peak hours when schedule-constrained. Entrepreneurs,
self-employed, qualified and unqualified workers also tend to be constrained to off-peak hours
when they are schedule-constrained. By contrast, schedule-constrained private executives
always have to commute during peak hours. We also find that farmers, private employees,
and students in high school or below are most likely to have only peak-hour travel available
if they are schedule-constrained.

Table 3: Estimated probabilities of being schedule-constrained and having to commute at peak-hours
Socio-professional Prob. of being Std. error Prob. of being Std. error
category schedule-constrained constrained to

(ϕ̂c) peak-hour commute (π̂∗
c )

Farmers 0.302 0.011 0.991 0.031
Craftspeople 0.109 0.007 0 0
Shopkeepers 0.143 0.009 0 0
Entrepreneurs, self-employed 0.13 0.008 0.338 0.075
Public executives 0.382 0.008 0.732 0.017
Private executives 0.135 0.004 1 0
Education, health 0.636 0.006 0.785 0.006
Administrative professions 0.447 0.008 0.784 0.013
Technicians 0.473 0.01 0.515 0.013
First-line supervisors 0.527 0.014 0.519 0.011
Public employees 0.849 0.004 0.707 0.002
Private employees 0.624 0.009 0.852 0.007
Retail employees 0.884 0.006 0.581 0.002
Services 0.738 0.007 0.556 0.004
Qualified workers 0.793 0.005 0.406 0.003
Unqualified workers 0.869 0.006 0.444 0.003
Students ≤ high school 0.884 0.006 0.932 0.002
Students in higher education 0.109 0.007 0.748 0.088
Average 0.579 0.779
Notes: ϕ̂c corresponds to the empirical share of respondents with constrained work schedules according to the workforce survey. π̂∗

c

are estimates from our preferred specification, specification (1). Standard-errors for ϕ̂c correspond to the standard-error for the
mean. Standard-errors for π̂∗

c computed using the delta-method and takes into account the variance of ϕ̂c.

We further test the sensitivity of our estimation results to alternative model assumptions.
These additional robustness checks and their results are presented and discussed in Appendix
D.2. To account for the possible role of unobservables correlated with trip duration, we check
that adding weather variables or a measurement of travel time reliability as controls do not
affect our estimates. We also study the effect of using a different cost definition for motorized
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vehicles and the impact of not including the correction to the public transport cost. We also
provide the estimation results when we use the two periods as nests, and check that our
estimates are robust to alternative choice set definitions. Finally, we validate our assumption
that schedule flexibility is only related to professional activity by showing that additional
individual controls do not provide significant extra explanatory power.

3.5 Values of travel time and substitution across modes and periods

Table 4 presents detailed information about the distribution of the VOT across individuals.
We present the VOT distribution for the 2010 sample, which is used for the policy analysis.
Due to the low number of observations in the 2020 survey, we limit counterfactual analysis
to the 2010 data.16 We obtain an average value of travel time of e17.9/hr, which is slightly
higher than the median value of e16.4/hr. The mean value represents 75% of the mean wage
in 2012 in the Paris metropolitan area (e23.9/hr).17 This is equal to the ratio found by
Goldszmidt et al. (2020) of 75% using natural field experiments on 13 U.S. cities. Barwick
et al. (2024) find a ratio of 95.6% for commuters in Beijing. Buchholz et al. (2024) estimate
an average VOT of $13.2/hr which represents 139% of the hourly wage in Prague.18 Finally,
our estimate aligns with Almagro et al. (2024), who find an average of $15/hr for Chicago,
and with Kilani et al. (2012), who estimate an average of e17/hr for a working father in
Paris.

We observe substantial heterogeneity in how individuals value their time in transport,
reflected by the extreme minimum and maximum opportunity costs of time (e1.58/hr and
e90.3/hr). Figure 10 of Appendix D.3 shows the distributions of VOT as functions of age,
income, and distance. We find important heterogeneity in terms of age. Young individuals
have the lowest VOT, and the VOT rapidly increases until 45. Regarding income, we see
little heterogeneity for incomes below e3,000. Then, the VOT increases quickly with income
due to the low sensitivity to the trip cost. Finally, the VOT is not monotonic in distance;
the lowest VOTs are for very short and middle-length trips (20 km).

We compute the own and cross elasticities to driving duration and cost to better understand
the substitution across departure periods for driving. These elasticities are crucial to predict
individual reactions to tolls. Table 4 presents the distributions of these elasticities in the
population for 2010. The duration elasticities for driving are highly heterogeneous across
individuals. For instance, the duration elasticity at peak hours is between -7.1 and -0.01. The

16This explains why we obtain different median VOT in Tables 2 and 4.
17Source for the average hourly wage in Paris: https://www.lemonde.fr/les-decodeurs/article/2016/

11/28/en-ile-de-france-le-salaire-horaire-depasse-de-41-celui-des-autres-regions_5039717
_4355770.html.

18This study is rather specific because the VOT is estimated on a sample of cab riders.
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heterogeneity partly reflects the differences in the trip distance, which is highly correlated to
duration. It is also the consequence of the heterogeneity in preferences, schedule constraints,
availability and characteristics of the substitutes for driving. We obtain an average of -1.01,
slightly lower than the value obtained by Almagro et al. (2024) (-1.44 for peak hours). The
driving cost elasticities at peak hours are even more dispersed, between -13 and -0.004. The
cost elasticities with values close to zero correspond to individuals with electric cars, who
pay zero fuel costs, and thus only pay for depreciation, maintenance, and insurance costs.
The cost elasticities are, on average, -0.58 at peak hours, very similar to the -0.55 found by
Almagro et al. (2024).

In the bottom panel, we provide the cross elasticities with and without conditioning on the
ability to do intertemporal substitution. Individuals are more elastic to changes in duration
at peak hours than at off-peak hours, indicating strong preferences for driving at peak hours.
The cross elasticities of driving at peak hours to the trip duration at off-peak hours are very
low (0.1 on average), indicating low inter-temporal substitution. This is the consequence of
important schedule constraints that limit inter-temporal substitution. We obtain average
elasticities almost three times larger when conditioning on the ability to substitute across
departure times. This highlights the critical role of schedule constraints in limiting individual
responses to duration and cost changes.

Table 4: Distributions of values of travel time and elasticities to driving duration and cost
Min p1% Mean Median p99% Max

Value of travel time 1.58 2.74 17.9 16.4 52.8 90.3
Own elasticities
Eduration

t1,t1 -7.13 -4.93 -1.01 -0.54 -0.07 -0.01
Eduration

t2,t2 -6.07 -3.74 -0.84 -0.57 -0.1 -0.03
Ecost

t1,t1 -12.99 -3.97 -0.58 -0.28 -0.02 -0.004
Ecost

t2,t2 -12.82 -4.12 -0.65 -0.35 -0.03 -0.005
Cross elasticities
Eduration

t1,t2 0.0004 0.0008 0.1 0.05 0.71 2.23
Eduration

t2,t1 0.005 0.01 0.28 0.15 1.54 3
Ecost

t1,t2 0.0001 0.0007 0.06 0.02 0.45 1.36
Ecost

t2,t1 0.0004 0.003 0.15 0.07 0.93 3.33
Cross elasticities, conditional on T12
Eduration

t1,t2 0.004 0.009 0.24 0.18 1.32 2.63
Eduration

t2,t1 0.03 0.08 0.68 0.55 2.49 5.55
Ecost

t1,t2 0.0009 0.004 0.15 0.11 0.8 1.76
Ecost

t2,t1 0.003 0.01 0.36 0.25 1.93 7.72
Note: Value of travel time in e/ hr. Elasticities in %. “t1” represents peak hours and “t2” off-peak hours. All
statistics computed using survey weights for 2010 sample. Cross elasticities, conditional on T12 correspond to
individuals who can substitute across departure periods.
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3.6 Individual speed shocks

The last primitives of the transportation mode choice model to recover are the individual and
time-specific driving speed shocks represented by ρnt in Equation (5). We take the logarithm
of Equation (5):

log(durationndt) = log
(

A∑
a=1

ka
n

va
t

)
+ ρ̃nt.

where ρ̃nt = log(ρnt). We use the TomTom durations and trip distances by area to estimate
the inverse of the initial speeds, ṽa

t = 1/va
t . We use the non-linear least squares method,

which amounts to solving for each period t:

min
(ṽat )a=1,...,A

N∑
n=1

(ρ̃nt(ṽa
t ))2 . (11)

This regression provides us with the individual speed shocks ρ̃nt, considered policy-invariant
parameters. We also obtain the initial speeds by area and period reported in Table 5. Speeds
are always higher during off-peak hours than peak hours. The difference is the largest on
the highways, followed by the ring roads, far suburbs, close suburbs, and finally, in the city
center.

Table 5: Estimated average speeds from TomTom data
Peak hours Off-peak hours

Area Average speed Std. error Average speed Std. error
Highways 58.6 0.82 84.6 1.06
City center 13.2 0.13 17.4 0.148
Ring roads 28.5 0.565 48.8 0.899
Close suburb 15.9 0.101 20.1 0.11
Far suburb 24.6 0.126 28.6 0.127
Note: Speeds in km/hr. Standard errors are computed using the delta-method from the estimates
of the inverse of speeds.

4 Estimation of the road traffic congestion technologies

4.1 Overview of the data

We split the Paris area into five areas: the city center, the ring roads, the close suburb, the
far suburb, and the main highways that connect the city center to the suburbs. We estimate
the congestion technology for the city center, ring roads, and highways. Due to the absence
of data, we cannot directly estimate a congestion technology for the suburbs. However, we
still allow for adjustment of the equilibrium speeds in the suburbs by making additional
functional form assumptions on their congestion technologies. More specifically, we assume
the congestion technology in the suburbs is a convex combination of those on the highways
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and the city center. We provide the map that shows the areas and the locations of road
traffic sensors in Appendix D.4.1.

To estimate the road congestion technologies, we rely on hourly data on traffic conditions
from 1,359 road traffic sensors for 2016 and 2017. We use 2016 and 2017 data from traffic
sensors since it is the earliest year available for highways.19 The road traffic sensors typically
record up to four variables: the traffic flow (in vehicles per hour), the traffic density (in
vehicles per kilometer), the occupancy rate, i.e., the percentage of time during which the
traffic sensor detects a car (in percentage per hour), and the speed (in km/hr). We provide
more details about these variables and their theoretical relationships in Appendix D.4.2. We
rely on two key variables: speed (in km/hr) and road occupancy rate. We use the occupancy
rate to represent the traffic level since it seems more appropriate because we aggregate
different roads. We use these two variables to estimate the relationship between speed and
occupancy rate denoted f̃a. This function differs from the speed function fa defined in
Equation (7) because the latter requires the number of kilometers driven as an argument.
Section 4.4 defines a mapping between the occupancy rate and the number of kilometers
driven Ka

t .

4.2 Speed-occupancy rate relationship

For the estimation, we observe a sample of i = 1, ..., I independent observations of speed
va

i and occupancy rate τa
i . There are unobserved speed shocks νa

i , so that we can write the
speed as:

va
i = f̃a(τa

i ) + νa
i .

We make minimal functional form assumptions on f̃a by relying on basis polynomials. More
specifically, we use Bernstein basis polynomials of degree Qa:

va
i =

Qa∑
q=0

ca
qBq(τa

i ) + νa
i . (12)

The coefficients ca
q are the parameters of interest, and Bq are the Bernstein basis polynomials

given by:

Bq(τ) =
(
Qa

q

)
τ q(1 − τ)Qa−q.

Since the occupancy rate τa
i and speeds are simultaneously determined in equilibrium, τ is

19We use data from 2010 for the city center and the ring roads to evaluate the differences in traffic between
the two periods. We find that the average speed decreased by only 5.5% and 5.1% at peak and off-peak hours
in the city center between 2010 and 2016. In the ring roads, we find an increase of 0.7% at peak hours and a
decrease of 3.7% during off-peak hours.
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correlated to the speed shock ν. We thus rely on instruments and use the general method of
moments to estimate the parameters ca = (ca

q)q=0,...,Qa in Equation 12. We rely on the matrix
of P instruments Z = (z1, ..., zP ) to form empirical counterparts of moment conditions:

m(ca)p =
I∑

i=1
νi(ca)zp

i .

We estimate ca by minimizing:
m(ca)′Wm(ca), (13)

where m(ca) = (m(ca)1, ...,m(ca)P )′ is the vector of moments and W is a weighting matrix.
We implement the two-step GMM to use the efficient weighting matrix, starting with the
identity matrix. In addition, we impose that the speed functions are weakly decreasing. This
can be imposed by restricting that ca

q ≥ 0 and ca
q+1 ≤ ca

q ∀q ∈ {0, ..., Qa − 1}.

The relationship between speed and traffic is identified from the local variation in traffic
conditions in the data, conditional on the instruments. Since our instruments are all dummy
variables, interpreting the orthogonality conditions is straightforward. We exploit several
dimensions of variation between observations in the traffic data. We observe data for different
roads, at different hours, on different days, and with different exogenous shifters of traffic
level.

The order of the Bernstein polynomial approximation, Qa, is selected to minimize the mean
squared forecast error (MSFE). We follow Hansen (2014) and use the leave-one-out estimator
of the MSFE, which can be summarized by the following cross-validation criteria:

Qa = arg min
1≤p≤Q̄

 1
Ia

Ia∑
i=1

ê2
ip(

1 − ha
ip

)2

 ,
where Q̄ is the maximum degree of the polynomial considered and Ia is number of observations
in area a. ê2

ip is the squared prediction error for observation i under a polynomial basis of
order p. ha

ip is the leverage value for observation i given by the ith diagonal element of the
projection matrix Ba

p

(
Ba′

p Ba
p

)−1
Ba′

p where Ba
p = (Ba

0 , ..., B
a
p) is a matrix containing the values

of the Bernstein basis polynomials Bp(τ) for all observations.

To mitigate concern about speed shocks affecting simultaneously traffic level and speed, we
exclude from our sample the observations with extreme weather conditions. For instance,
snow may discourage individuals from driving and reduce their speed. Extreme weather
conditions are defined by either snow, temperatures below the 5th percentile or above the
95th percentile of the entire temperature distribution, or wind or rain intensity above the
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95th percentile of the entire wind or rain distribution. To be conservative, we drop the
observations with an extreme weather event during the hour or up to three hours before and
after.

Then, we construct instruments to estimate the parameters of the Bernstein polynomial.
Valid instruments are variables uncorrelated with speed shocks but affect the traffic level.
We use the following dummies: hour, day-of-the-week, school holidays, bank holidays, low
public transport (number of daily passengers below the 25th percentile), days with a driving
restriction in place, an accident in a donut of 1 to 1.5 km radius (3 to 5 km on the highways), an
accident in a 1.5 km radius (5 km on the highways) during the previous hour, a temperature
between 19 and 25◦ celsius, temperatures between 4 and 9◦ celsius. All these variables
presumably shift the traffic level exogenously and are not correlated with speed shocks. For
instance, cold weather is likely to increase car usage. However, driving speeds are affected
only by changes in the level of traffic and not directly by low temperatures. Kreindler (2024)
also uses hour of the day dummies. In the same spirit, we use bank holidays and school
holidays. The low number of public transport passengers represents a proxy for a strike event.
An accident close to the traffic sensor is likely to affect traffic level and speed simultaneously.
This is why we use a donut around the traffic sensor to capture changes in traffic due to
re-routing and accidents in the previous hour. Finally, we also use the interactions between
the dummies if there are more than 500 observations with positive values. Ultimately, we use
391 instruments for the highways, 380 for the ring roads and 390 for the city center.

We make several assumptions to estimate the congestion technologies in the close and
far suburbs, where we do not have detailed traffic data. First, we assume the close and far
suburbs share the same congestion technology. Second, we assume this technology is a convex
combination of the congestion technologies of the city center and highways. We pin down
the parameter of the convex combination by relying on a limited dataset we obtained from
the Seine-Saint-Denis department, one of the four departments composing the close suburbs.
The data contains one week of hourly observations for road traffic sensors in 2023. Instead of
providing speed measurements, the data assigns each car to intervals such as 0 to 30 km/hr.
These large intervals do not allow us to estimate a speed-traffic curve like in the other areas.
We still use this dataset to compute peak and off-peak hours average speeds and occupancy
rates. We calibrate the parameter of the convex combination to be the closest to the two
speed-occupancy rate data points. The parameter reflects a weight of 17.7% for the highways
technology and 82.3% for the city center technology.
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4.3 Summary statistics and estimation results

We explain how we construct the final sample to estimate the congestion technologies in
Appendix D.4.3. It contains 3.84 million hourly observations from 643 traffic sensors for the
highways, 1.2 million observations from 117 traffic sensors for the ring roads, and 5.12 million
observations from 599 traffic sensors for the city center.

Table 6 provides the summary statistics for the speeds and occupancy rates in the different
areas. We focus on 8:00 to 8:59 a.m. for peak hours and on 6:00 to 6:59 a.m. for off-peak
hours to be comparable with the TomTom queries. We observe significant heterogeneity
across areas, suggesting that our partition is relevant. Speeds at peak and off-peak hours
significantly differ, supporting our differentiation across periods. In addition to providing
evidence of heterogeneity across areas, the traffic speeds and occupancy rates are highly
variable; we leverage these forms variation to estimate flexible road congestion technologies,
given that the variability is still important after conditioning on the instruments.

Table 6: Road traffic conditions by area
Peak Off-peak All sample

Area Mean Mean Mean Median Std. dev.
Speed Highways 41.7 66.7 67.7 76 33.3

City center 19.8 29.4 22.8 17.8 17.7
Ring roads 30.5 56.7 44.1 44.6 21.1

Occupancy Highways 24.6 14 15 10.7 11
rate City center 18.9 6.7 14.2 10.1 11.6

Ring roads 32.5 15.6 22.6 20.6 12.1
Note: Speed is in km/hr, and occupancy rate is in %. Averages at peak and off-peak hours are
computed using our final sample and weighted by the average traffic flow of the traffic sensor. Peak
hours are between 8:00 and 8:59 a.m., and off-peak hours are between 6:00 and 6:59 a.m.

In Figure 1, we provide the congestion technologies for the different areas (the close and
far suburbs have the same technology, but they do not have the same equilibrium traffic
conditions). The initial traffic conditions are obtained from the average speeds obtained
from TomTom trip durations (see Table 5). From the initial speeds, we back out the initial
occupancy rates by inverting the congestion technologies:

τa
t =

(
f̃a
)−1

(va
t ).

τa
t is unique since f̃a is monotonically decreasing in speed at the initial speed value. Un-

derstanding which occupancy rates reflect a congested road helps interpret the congestion
technology graph. The authorities consider the traffic fluid if the occupancy rate is below
15%, pre-saturated if between 15% and 30%, and saturated if above. According to this
definition, the traffic is pre-saturated during peak and off-peak hours in all areas except on
the highways (fluid during off-peak hours) and the ring roads (saturated at peak hours).
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Figure 1: Estimated congestion technologies and initial traffic conditions
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Note: Initial conditions are average speeds at peak and off-peak hours from TomTom predicted durations.
We provide the initial conditions in the close suburbs on the suburbs congestion technology curve.

As Figure 1 shows, the estimated values of the maximum speeds are consistent with the
speed limits in each area. We estimate it to be 97.5 km/hr for highways compared to speed
limits that vary between 90 and 130 km/hr depending on the road and the location. The
speed limit is typically 70 km/hr on the ring roads, which is close to our 68.8 km/hr estimate.
Lastly, the speed limit is usually between 30 and 50 km/hr in the city center, close to our
estimate of 47.7 km/hr. In the suburbs, the maximum speed is 56.5 km/hr. We provide the
R2 and the polynomial degrees of the models for each area in Appendix D.4.4. The fits are
particularly good for the highways and ring roads (with R2 of 0.63 and 0.65, respectively),
and the degrees of the polynomial are high (8 and 7, respectively). By contrast, we select a
polynomial of degree 3 in the city center and explain only 18% of the variance.

Our congestion technologies show heterogeneity across areas. Clearly, our estimates
reject the assumption of a single, city-wide congestion technology and show that congestion
technologies do not follow simple functional forms. We have a high speed for low traffic levels
on highways, but it becomes slower than ring roads for occupancy rates above 19.7%, and
slower than any other area for occupancy rates above 32.9%. This can be explained by the
role of interchanges, entries, and exits on highways, which may slow down driving speeds
quickly when the traffic increases.

The congestion curve for ring roads remains flat initially: the slope remains higher than
-0.72 until an occupancy rate of 10%. By contrast, the speed in the city center displays a
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convex relation, with speeds decreasing faster for lower occupancy rates than for larger ones.
In the suburbs, speeds are higher than in the city center for occupancy rates below 32.9%.
Then, suburb speeds become only slightly below those in the city center.

4.4 Mapping between occupancy rate and kilometers driven

To estimate fa, we need a mapping from the number of kilometers driven to the occupancy
rate τa

t in each area. We assume an affine relation between the occupancy rate and the total
number of kilometers driven. Formally, we introduce a scale parameter ϕa such that :

τa
t = ϕa × (Ka

t +Ka
0t). (14)

where Ka
t is the number of kilometers driven in the area a at time t predicted by our

transportation choice model and Ka
0t represents the rest of traffic that we do not model

(irreducible traffic). We can thus obtain fa as:

fa = f̃a (ϕa × (Ka
t +Ka

0t)) .

We can only identify two parameters per area because we observe individual choices and
speeds for only two periods.20 We impose that the irreducible traffic level is identical at peak
and off-peak hours: Ka

0t = Ka
0 . We could, alternatively, impose some restrictions across areas

and let the irreducible traffic level vary with the period. However, given that the areas have
very different sizes and may be subject to different levels of irreducible traffic, our assumption
seems more appropriate.

With two linear equations and two unknowns, we can find a unique pair of parameters for
each area. We further impose that the irreducible traffic implies occupancy rates between 0
and 50% and use the constrained least-squares method that minimizes the sum of square
deviations from Equation 14:

min
ϕa,Ka

0

∑
t=t1,t2

[τa
t − ϕa × (Ka

t +Ka
0 )]2

s.t. ϕa ×Ka
0 ≤ 50

ϕa ×Ka
0 ≥ 0.

(15)

The calibrated parameters are presented in Table 7. We obtain a relatively sizeable irreducible
share of traffic in the suburbs (76.6% and 78.7% of traffic for the close and far suburbs,

20We only use the 2010 EGT sample. The 2020 EGT sample has too few observations, which compromises
the sample representativity at the area level.
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respectively). At the same time, we estimate lower levels of irreducible traffic for the city
center and the ring roads (36.6% and 33.4%, respectively). Finally, we estimate a tiny share
of 1.11% on the highways.

Table 7: Calibrated parameters of the mapping between road occupancy rates and driven distances
Area Scale parameter Irreducible traffic Irreducible traffic share (%)

(ϕa×10,000) (Ka
0/10, 000) (Ka

0/(Ka
0 +Ka

t1) × 100)
Highways 0.036 5.57 1.11
City center 0.426 23 36.6
Ring roads 0.361 28.2 33.4
Close suburb 0.043 465 76.6
Far suburb 0.01 1,491 78.7
Notes: The share of irreducible traffic is in % of the distance driven at peak hours.

4.5 Fit of the model

By construction, our model almost exactly predicts the average speeds that rationalize
TomTom’s expected trip durations. The imperfect prediction comes from the constraint of
bounding the traffic below 50% when estimating the parameters of the mappings between
road occupancy rates and the distances driven. This implies that the equilibrium speeds
differ slightly from those obtained in Table 5. The individual trip durations are thus slightly
different from TomTom. We see negligible differences between Columns 2 and 3 of Table
8. This table also suggests that the model delivers good predictions of aggregate shares.
Indeed, all the differences between observed and predicted shares are at most 0.7 percentage
points. These results give us confidence in the ability of the model to predict equilibrium
transportation mode shares.

Table 8: Shares of transportation modes observed and predicted by the model
Observed Predicted with Predicted with

TomTom durations Equilibrium speeds
Pub. transport, peak 34 33.9 33.7
Car, peak 24.4 23.9 24
Walk, peak 15.2 14.9 14.9
Bicycle, peak 1.59 1.89 1.88
Motorcycle, peak 1.35 1.29 1.28
Pub. transport, off-peak 11.7 11.7 11.6
Car, off-peak 8.46 8.35 8.48
Walk, off-peak 2.11 2.77 2.77
Bicycle, off-peak 0.446 0.568 0.566
Motorcycle, off-peak 0.644 0.763 0.756
Note: in %. All shares computed using survey weights for 2010.

We further assess the fit of our model by comparing the distances driven in each area. If our
model predicts the number of individuals driving well, the distance analysis reveals whether
we can also predict who is driving. Table 9 shows that we get very close estimates across all
areas during peak hours, with the difference being smaller than 4.1% in all locations. We
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obtain slightly more extensive differences during off-peak hours. In particular, we underpredict
distances driven on the highways and the city center but overpredict the amount driven
through the ring roads. We do not consider these differences large enough to signal the
model’s inability to predict counterfactual equilibrium outcomes.

Table 9: Observed and predicted distances driven
Peak hours Off-peak hours

Area Observed Predicted Observed Predicted
Highways 502 497 307 270
City center 39.7 39.9 26.2 21.9
Ring roads 57.1 56.3 31.3 33.8
Close suburbs 148 142 67.9 65.5
Far suburbs 418 405 170 162
Note: in 10,000 of kilometers.

Table 10 compares the average speeds from road traffic sensor data and those predicted
from the model equilibrium (for the highways, city center, and ring roads where we have the
data). This comparison constitutes an external validity check since the average speed data
from road traffic sensors are not directly used in the estimation. We find that our estimates
are not perfectly aligned with the average speeds but are fairly similar. Our estimates are
optimistic for the highways but conservative for ring roads and the city center, particularly
during off-peak hours. Nevertheless, we predict speeds in the same order of magnitude as
those recorded by the sensor data, and we correctly predict the speed ranking between areas
for both periods.

Table 10: Predicted equilibrium speeds and average speeds from traffic data
Peak hours Off-peak hours

Area Traffic Eq. speeds Traffic Eq. speeds
data data

Highways 46.9 59.3 68.4 88.2
City center 22.5 13.1 31.4 19.1
Ring roads 31.8 29 57.5 46.8
Close suburbs 16.2 20.3
Far suburbs 24.8 28.8
Note: in km/hr.

4.6 Equilibrium uniqueness check

We now apply the method developed in Section 2.3 to verify that our algorithm is a contraction.
Given the estimated model parameters, we check that the model has a unique equilibrium.
We provide in Appendix D.5.1 the analytical formula for the Jacobian of g(.).

We compute the Lipschitz coefficients for values of the algorithm tuning parameter κ
between 0 and 0.99 with a step of 0.01. We solve for these coefficients at the equilibrium
speeds without policy and under different policy environments we consider in section 5. We
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calculate:
max
a∈A

max
t∈T

max
a′∈A

max
t′∈T

∣∣∣∣∣∂ga
t (v∗, κ)
∂va′

t′

∣∣∣∣∣ ,
where v∗ denotes the vector of equilibrium speeds. Panel (a) of Figure 2 shows that only
when κ is equal to 0, i.e., when we only iterate on the speed function, the algorithm is not a
contraction. We also find that the policies decrease the Lipschitz coefficients of the algorithm
so that the no-policy environment requires the highest κ to have a contraction.

We also check for which values of the tuning parameters our algorithm is a contraction in
the entire set of possible speed values. This time we calculate:

max
a∈1,...,A

max
t∈1,...,T

max
a′∈1,...,A

max
t′∈1,...,T

max
v∈[v,v]

∣∣∣∣∣∂ga
t (v, κ)
∂va′

t′

∣∣∣∣∣ ,
where [v,v] denotes the speed interval for the speed vector v. Due to the computational
intensity of the optimization, we do a coarser grid search over the values of κ between 0.5
and 0.95, with a step of 0.05. We use 20 random speed vectors as initial values to avoid
local minima. Panel (b) of Figure 2 shows that from κ = 0.9, the algorithm is a contraction
under any environment. The no-policy environment is associated with the smallest set of κ
that ensures our algorithm is a contraction. This can be explained by the policies making
individuals less reactive to speed changes. We use the value 0.9 to solve the equilibrium
speeds. The resulting algorithm takes on average 160 iterations and converge in 2.3 seconds
(see Figure 12 in Appendix D.5.2).

Figure 2: Lipschitz coefficients at the equilibrium speed and for any speed
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5 Quantifying the welfare consequences of the regula-
tions

Our model predicts individual probabilities of choosing each transportation mode and the
equilibrium driving speeds at peak and off-peak hours in the five areas. Thus, we do not
predict counterfactual choices but individual choice probabilities, which we use to compute
the expected number of individuals choosing each transportation mode and departure period.
First, we evaluate how severe congestion problems are and study the role of scheduling
constraints on congestion. Second, we compare the effects of simple policies across all
stringency levels. Third, we compare the performance of these instruments relative to
personalized tolls designed to maximize either welfare or consumer surplus. Finally, we study
the differences across policy instruments for distributional effects and emissions reduction.

5.1 Value of driving and marginal costs of congestion

We measure the value of driving at the initial equilibrium speeds by relying on consumer
surplus changes when we remove the driving option or modify speeds. We provide the formula
for consumer surplus in Appendix E.1. We measure the value of driving at peak hours under
the maximum speeds possible given the irreducible portion of traffic. The speed improvements
lead to a total surplus increase of e10 million, e3.3 per potential driver. Relaxing congestion
generates a total reduction in expected travel time of 203,000 hours, equivalent to an average
of four minutes per individual.

We define the marginal costs of congestion for an area at a given period as the total
consumer surplus losses associated with one additional kilometer driven or an extra driver in
that area. For the case of an extra driver, we add the average number of kilometers driven by
a potential driver in that area. Table 11 shows area-specific marginal costs for an additional
kilometer are between e0.16 and e1.3 during peak hours. Highways and suburbs have the
lowest marginal costs. This is the effect of large area size, as one additional kilometer has a
tiny impact on the traffic level. The costs associated with an extra driver are between e0.32
(for far suburbs during off-peak hours) and e4.4 (for highways at peak hours). The existence
of preferences and constraints for driving at peak hours explains why the costs of congestion
are higher at peak hours than off-peak hours. Finally, we also compute the marginal cost of
congestion by adding an individual with the average itinerary (i.e., distance traveled in each
area) among car owners. The average costs are e6.4 at peak hours and e1.8 during off-peak
hours.

Our estimates of the marginal costs of congestion are higher than Couture et al., 2018
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($0.035 for several U.S. cities). Our marginal cost estimates are, however, similar to Yang
et al., 2020 (3 yuan or approximately e0.36 for Beijing) and Koch et al. (2023) (between
e0.45 and e0.73 for Berlin between 6 and 10 a.m.).21 Koch et al. (2023) also estimate
the marginal cost of an additional average driver to be e4.5 in Berlin, close to the average
between our values of e1.8 for the off-peak period and e6.4 during peak hours.

Table 11: Estimated initial marginal costs of congestion by area
One kilometer One average driver

Area Peak Off-peak Peak Off-peak
Highways 0.418 0.065 4.39 0.683
City center 1.3 0.553 4.26 1.81
Ring roads 0.983 0.28 4.24 1.2
Close suburbs 0.513 0.195 1.57 0.599
Far suburbs 0.155 0.056 0.893 0.323
Average 6.38 1.84

Note: in e. “Average” is the marginal cost for the average driver
itinerary across areas.

Finally, to assess the importance of schedule constraints, we compute the new equilibrium
if individuals are always or never able to choose their departure time. Removing the schedule
constraints increases the average individual surplus by e1.2. The share of individuals
commuting during off-peak hours increases by 2.9 percentage points. By contrast, if individuals
can never substitute inter-temporally, the average surplus decreases by e1, and the share of
individuals choosing peak hours increases by 1.8 percentage points.

5.2 Main outcomes of interest and policy overview

We measure policy impacts on consumer surplus, toll revenue, and emissions. We define an
aggregate welfare measure W that is the sum of the change in aggregate consumer surplus,
toll revenues and the benefits from avoided emissions valued at standard levels. Our estimated
welfare effects are for one trip per person for the entire population of commuters in the Paris
area.22

We rely on a 2019 report from the European Commission (Van Essen et al., 2019) for the
social costs of emissions that provides the values specific to urban areas in France. Table 12
contains the social costs of the different pollutants. On average, in our sample, the social
cost of emissions per km for a gasoline car is e0.34, while for a diesel car it corresponds to
e0.45. Additional details on the emissions costs are provided in Appendix E.2.

21We use the average 2014 CNY-EUR exchange rate from https://www.exchangerates.org.uk/CNY-EUR
-spot-exchange-rates-history-2014.html.

22There are, on average, 224 working days annually and two commuting trips per day. We should multiply
the welfare effects by 448 to convert them into annual terms.
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Table 12: Social costs of emissions
CO2 NOX HC PM

Social cost (e/ton) 189 27,200 1,500 407,000

We study the welfare effects of three policies: (1) driving restrictions banning a fraction
of cars randomly, (2) uniform tolls, and (3) variable tolls linear in the trip distance (or
per-kilometer toll).23 We focus on policies applicable at peak hours only so that driving
during off-peak hours is never constrained or charged.24 We focus on peak-hour policies in
the main analysis for three reasons. First, congestion is most severe at peak hours, leading to
high pollution levels and exacerbated congestion effects. Second, our model allows individuals
to substitute across periods. This model feature is rarely covered in the literature and is
particularly relevant when regulations are period-specific. Finally, several real-life examples
of congestion charges have greater tolls during peak hours.25

We also study the importance of accounting for speed adjustments to accurately predict
the transportation policies’ effects. In Appendix E.3.1 we compare the congestion levels
and driving rates predicted by our model against those obtained under a simpler model
with constant speeds. The comparison highlights the importance of considering the policies’
effects on speeds, as they influence substitution patterns between transportation modes and
departure periods.

5.3 Comparison of simple instruments across policy levels

First, we compare policies that achieve the same traffic reduction during peak hours to make
a fair comparison. We interpret the traffic reduction as the policy stringency level, which
is directly comparable across policies. The regulator may seek to reduce traffic beyond the
emissions concern, or the emissions avoided may have much higher benefits than standard
values because of severe local pollution (e.g., during a pollution peak episode). The comparison
results would be very similar if we considered policies that generate the same reduction in
emissions costs instead of considering the traffic reduction outcome.26

Figure 3 presents the welfare changes, consumer surplus changes, and toll revenues associated
with the three simple instruments. Panel (a) shows that the two types of tolls have positive

230.068% of the individuals in our sample do not have an alternative to cars. To avoid an empty choice
set when simulating driving restrictions under schedule constraints, we assign to these individuals a public
transport option using the fifth percentile of the distribution of public transport speeds (8.5 km/hr).

24Appendix E.5.1 presents the same analysis for policies applicable across all periods. The results are
qualitatively similar.

25Santiago, Stockholm, Oslo, Bergen and Singapore are examples of cities with congestion pricing schemes
that include a specific peak-hour price.

26Panel (a) of Figure 4 below shows that the policies have very similar effects on the emissions cost
reductions.
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impacts on welfare for moderate stringency levels. By contrast, driving restrictions always
generate welfare losses. The variable toll is always better than the uniform toll for welfare,
and has a broader range of welfare-enhancing policy stringency levels. We obtain welfare
gains for traffic reductions below 30.6% with a uniform toll. The corresponding tolls are
below e5.4. With a variable toll, we can improve welfare by reducing traffic up to 51.6%,
with per-km tolls below e0.455/km.

Panel (b) provides the changes in consumer surplus. All policy instruments generate
consumer surplus losses across all policy stringency levels. Even if the policies relax congestion
problems, the speed improvements for individuals who drive never compensate for the
consumer surplus losses from tolls or driving restrictions. This is due to two main reasons.
First, the speed improvements at peak hours are modest, particularly in the city center and
the suburbs, as shown by Figure 15 in Appendix E.3.2. In addition, speeds during off-peak
hours decrease. Second, the value of travel time savings does not compensate for the toll cost
or the cost of being restricted a fraction of the time. Indeed, as Figure 16 in Appendix E.3.2
suggests, the gains from speed changes cover at most 44.7% of the consumer surplus losses
from the policies. For the uniform tolls and the driving restrictions, the speed gains are lower
than 31.1% and 27.2%, respectively. The gains, in relative terms, always decrease with the
policy stringency level. Speed changes negatively affect consumer surplus at very stringent
policy levels because individuals drive predominantly during off-peak hours when the speeds
are lower than in the absence of policy.

Policy rankings by consumer surplus change are different than ranking by welfare. The
uniform toll always generates the largest consumer surplus losses, followed by the driving
restrictions and the variable tolls. This is the consequence of needing to impose very high
uniform tolls to trigger traffic reductions. Panel (a) of Figure 4 shows that the average
variable toll is always significantly lower than the uniform toll.

Panel (c) of Figure 3 shows that the welfare gains come from the ability of the tolls to
generate extensive revenues and the assumption that toll revenues can be redistributed. We
obtain Laffer curves as the total toll revenue decreases from certain policy stringency levels.
The maximum toll revenues occur under fairly stringent policies, indicating that it takes high
toll values to discourage individuals from driving at peak hours. Finally, for most policy
levels, the uniform toll is better at generating revenue than the variable toll. This can be
explained by the higher average toll paid by individuals under the uniform toll than the
variable toll (see Panel (a) of Figure 4 below).

Under the optimal uniform and variable tolls, the toll revenues cover 117% and 135% of
the total consumer surplus losses, respectively. With the value of emissions avoided, the
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excess toll revenue implies that these optimal tolls are welfare-improving with shadow costs
of public funds below 18.2% and 31% for the uniform and variable tolls, respectively.27

Panel (b) of Figure 4 shows the average distances driven at peak hours under the regulations
are quite different. The average distance only slightly increases under driving restrictions,
while it increases under the uniform toll and decreases under the variable toll. This is helpful
to understand who is targeted by each policy. Driving restrictions force all individuals to
contribute to traffic reductions. However, since this policy targets individuals randomly, we
observe a relatively constant average trip distance across stringency levels. The uniform
toll discourages short-distance trips, making this policy inefficient at reducing traffic. The
regulator must set high uniform tolls to trigger a response from individuals and traffic
reduction. By contrast, by pricing based on distance, the variable toll discourages long-
distance trips and thus efficiently decreases traffic.

Finally, Panel (c) of Figure 4 shows that the emissions gains are modest across policies.
They are always below e343,000, while the consumer surplus losses are up to e7.2 million.
Across policy levels, the emissions gains cover at most 6.8% of the consumer surplus losses as
shown by Panel (b) of Figure 16 in Appendix E.3.2. At the optimal variable toll, the emissions
gains only cover 6.6% of the consumer surplus losses. The results imply that emissions should
be valued 15.2 times more to justify the optimal variable toll if we do not include toll revenue
in the welfare computation.

Figure 3: Change in welfare, consumer surplus, and toll revenue
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27The maximum shadow costs λ̃ are the solutions to: ∆CS + ∆E + (1 − λ̃)T = 0, where T denotes the toll

revenue.
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Figure 4: Additional policy outcomes
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Figure 5 presents the total consumer surplus losses using distributional weights (the inverse
of income) and the difference in consumer surplus changes between the top and bottom 10%
of the income distribution. First, we see that using distributional weights does not affect the
policy ranking nor the consumer surplus change magnitudes, as seen in Panel (a).

Panel (b) indicates that all policies are always progressive as they generate more consumer
surplus losses to high-income individuals. We also notice that the progressivity increases
with the policy stringency level. Finally, driving restrictions generate the largest differences
between low and high-income individuals. Since wealthy individuals are the least sensitive to
trip cost, they are less vulnerable to price instruments and have lower consumer surplus losses
from paying tolls. By forcing individuals to reduce their driving habits, driving restrictions
hurt more high-income individuals who rely more on their cars than low-income individuals.

Figure 5: Distributional outcomes
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Figure 6 presents how the welfare changes of each policy are distributed across individual
residential location. Panel (a) shows that the far suburbs are the most affected by driving
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restrictions, followed by the close suburbs, and finally, the city center. The ranking remains
constant across stringency levels.

Panel (b) shows the distribution of welfare under uniform tolls. For mild stringency levels,
the welfare gains are higher in the far and close suburbs than in the city center. When traffic
reduction becomes larger than 26%, the ranking reverts, and individuals living in the city
center are the least affected. Large speed gains compensate for the toll costs for long-distance
drivers under mild stringency levels. Under higher toll values, the speed gains are insufficient
to compensate for the toll cost. By contrast, the uniform toll is welfare-improving in the city
center for traffic reduction below 55.2%.

Finally, Panel (c) shows the results for the variable toll. As for the uniform toll, for moderate
policy stringency levels, welfare gains are higher in the far and close suburbs than in the
city center. This highlights that the speed improvements are more valuable for individuals
living in the suburbs, with typically longer commutes. However, when the policy stringency
becomes very high, individuals in the suburbs experience high welfare losses since they do
not have good alternatives to driving. By contrast, in the city center, individuals are almost
always better off since substituting for other modes is not very costly in terms of consumer
surplus loss.

Figure 6: Change in welfare by area
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5.4 Measuring the efficiency of simple instruments

We analyze the performance of simple policy instruments by comparing them with the optimal
policies. We first characterize optimal policies, and then we quantify the performance of
simple policy instruments.

5.4.1 First-best personalized tolls

We define the optimal policy as the personalized tolls the social planner sets to maximize
welfare. This is equivalent to imposing Pigouvian tolls that charge individuals their marginal
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social costs.28 We solve for welfare-maximizing tolls associated with every traffic reduction
level. This is introduced through a constraint on the social planner problem. By comparing
the welfare across policy stringency levels, we can find the traffic reduction level that achieves
the highest welfare. We write the problem of a social planner maximizing welfare as:

maxp W(p,v(p))
such that ∑Nd

n=1 ωnknsndt1(pn) = K̄t1 ,

where p = (p1, ..., pNd
) is the vector of personalized tolls for the Nd drivers in our sample.

K̄t1 is the total number of kilometers driven at peak hours that the policy must achieve.
The welfare function is composed by the consumer surplus, the toll revenue and the value of
emissions avoided:

W(p,v(p)) =
∑

n

ωnCSn(pn,v(p)) +
∑

n

ωnpnsndt1(pn,v(p)) −
∑

t=t1,t2

∑
n

ωnenknsndt(pn,v(p)),

where en denotes the emissions costs (in e/km) of individual n’s car. We provide the
Lagrangian of the problem and interpret the optimality conditions in Appendix E.3.3.

Because tolls influence individual decisions to drive and thus equilibrium speeds, we need
to recompute traffic equilibrium for each toll vector along the optimization procedure. The
traffic equilibrium creates links between an individual’s utility and the other individuals’ tolls.
We overcome this challenge by rewriting the problem. The new formulation considers speeds
as parameters and introduces the congestion technologies as additional non-linear constraints
(in the spirit of the MPEC formulation of the BLP estimation of Dubé et al., 2012).29 This
leads to the following problem to solve:

max{v,p} W(v,p)
such that ∑Nd

n=1 ωnknsndt1(v, pn) = K̄t1

va
t = fa (Ka

t (v,p) +Ka
0 ) ∀a = 1, ..., A, t = t1, t2.

This problem is still a high-dimension non-linear optimization problem. However, the depen-
dencies across individuals occur only through the equilibrium speed constraints. Additionally,
we put some bounds on the toll values: tolls must be positive and below or equal e100.

28It is simple to calculate the Pigouvian tolls at the initial traffic equilibrium. However, these tolls would
not be optimal since their implementation changes the traffic equilibrium and, thus, the value of the optimal
Pigouvian tolls. Our method allows us to solve for equilibrium-consistent Pigouvian tolls.

29It is standard to use market-clearing conditions as constraints to the social planner optimization program
when solving spatial equilibrium models, as noted by Fajgelbaum and Gaubert (2024).
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5.4.2 Efficiency of variable tolls

Figure 7 compares the variable tolls and the welfare-maximizing policy. We restrict the set of
policy stringency levels to those that generate positive welfare effects under variable tolls.
These are policies reducing traffic up to 51.6%. Panel (a) provides the changes in welfare due
to the policies. On average across policy stringency levels, the variable toll achieves 77.2% of
the gains from personalized tolls and a maximum of 86.4%.30 The variable toll has, therefore,
very good performances.

Figure 7: Changes in welfare, consumer surplus, toll revenues and emissions avoided from variable
tolls and welfare-maximizing personalized tolls
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(b) Consumer surplus
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(c) Toll revenue
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When the policy stringency level becomes high, the shadow cost of the traffic constraint
is very high, making the optimal individual toll almost equal to the shadow cost multiplied
by the individual trip distance. This is why the personalized tolls converge to a toll scheme

30To calculate the difference in welfare across policy instruments, we need the same policy outcome grid.
We approximate the welfare curves by Bernstein polynomials of degree eight.
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linear in distance. By contrast, under a low policy stringency level, the shadow cost of the
traffic constraint is low, and the individual-specific terms that define the optimal personalized
tolls have more importance. This is apparent in the first-order condition associated with
the optimality of tolls presented in Appendix E.3.3. The social planner sets lower tolls for
individuals with the lowest emissions costs, who are more likely to be constrained to peak
hour commutes, and lowest contributions to traffic in areas with high potential gains from
speed improvements.

As in the previous section, we decompose welfare into its main components. Panel (b)
shows that the welfare-maximizing tolls do not improve consumer surplus. Panel (c) indicates
that the two types of tolls raise similar revenues, with the revenue being only slightly higher
under personalized tolls. Panel (d) compares the policy instruments in terms of emissions
avoided. We find small but significant improvements in emissions from personalized tolls.
We can increase the gains from emissions avoided by 15.9% on average across policy levels.

5.4.3 Characteristics of the optimal policy

We further analyze the policy stringency level that achieves the best welfare outcome. First,
we analyze the heterogeneity across personalized tolls to understand which dimensions of
heterogeneity are taken into account by the social planner setting the personalized tolls. To
do so, we regress the value of the toll on individual characteristics. Column (1) of Table 13
shows that individuals between 50 and 60 have slightly higher tolls than other age categories.
Tolls increase with income for income below e2,400 and then decrease after e3,500. Tolls
also increase with distance but the marginal effect of distance is decreasing. Individuals with
high public transport speeds are offered higher tolls, while tolls are cheaper for individuals
living further away from the city center. We find a positive association between the emissions
costs and the tolls, reflecting that the social planner cares about reducing emissions. Finally,
tolls significantly decrease with the probability of being flexible, reflecting that the social
planner wants to limit inter-temporal substitution. However, we do not obtain a significant
correlation with the probability of being constrained to peak-hour commutes. Overall, these
characteristics explain 81% of the variance in personalized tolls. In Appendix E.3.4, we provide
graphs of the relationships between personalized tolls and the main individual characteristics.
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Table 13: Regression of personalized tolls on individual characteristics
(1) (2)

W-maximizing tolls CS-maximizing tolls
Estimate Std-err Estimate Std-err

Intercept 0.32† 0.166 -9.66∗∗ 2.73
Age ∈ ]18, 30] -0.036 0.067 -0.988 1.02
Age ∈ ]30, 40] -0.051 0.065 2.02† 1.04
Age ∈ ]40, 50] 0.097 0.07 0.642 1.08
Age ∈ ]50, 60] 0.174∗ 0.072 6.18∗∗ 1.14
Age > 60 0.032 0.075 4.96∗∗ 1.22
Income ∈ [800, 1,200[ 0.133 0.089 4.72∗∗ 1.3
Income ∈ [1,200, 1,600[ 0.159† 0.09 4.42∗∗ 1.51
Income ∈ [1,600, 2,000[ 0.235∗ 0.118 -10.7∗∗ 1.86
Income ∈ [2,000, 2,400[ 0.362∗∗ 0.08 -2.39∗ 1.16
Income ∈ [2,400, 3,000[ 0.247∗∗ 0.071 -7.89∗∗ 1.13
Income ∈ [3,000, 3,500[ 0.296∗∗ 0.074 -17∗∗ 1.1
Income ∈ [3,500, 4,500[ 0.158∗ 0.078 -9.82∗∗ 1.22
Income ≥ 4,500 0.118 0.142 -5.61∗ 2.31
Distance 1.77∗∗ 0.06 2.74∗∗ 0.895
Dist-d2 × (dist≥d2) -0.442∗∗ 0.108 7.01∗∗ 1.67
Dist-d3 × (dist≥d3) -0.287 0.186 -11.8∗∗ 2.97
Dist-d4 × (dist≥d4) 0.129 0.395 3.19 5.89
Speed public transport 0.115∗∗ 0.005 1.51∗∗ 0.075
Close suburbs -0.806∗∗ 0.061 -1.75 1.09
Far suburbs -2.24∗∗ 0.061 -7.88∗∗ 1.1
Emissions cost (cent/km) 0.123∗∗ 0.018 0.57∗ 0.287
Proba of being flexible -0.549∗∗ 0.103 2.65† 1.54
Proba of being constrained to peak hour 0.116 0.128 0.804 2.02
R2 0.807 0.428

Notes: tolls in e, distance in 10 km, speed in public transport in km/hr and emissions cost in cent/km.
The reference category is individuals below 18 with an income below e800 living in the city center.

Finally, we compare policy instruments without fixing the traffic reduction. For each policy
instrument, we find the stringency level that maximizes welfare and thus compare the best
outcome achievable by each policy instrument. To enrich the analysis we consider additional
two-part tolls: with a fixed and a variable part, different values in the city center and the
suburbs, and different values at peak and off-peak hours. We exclude driving restrictions
from this analysis since they never improve welfare.

Table 14 provides the welfare gains achieved by the different tolls. The two-part toll with a
fixed and variable part achieves 86.4% of welfare gains obtained under the welfare-maximizing
personalized tolls. The simple variable toll reaches similar results, generating 85.4% of the
maximum welfare gains. Between variable and two-part tolls, welfare is improved mainly
through a raise in toll revenue that more than compensates for the extra losses in consumer
surplus. Indeed, the two-part toll has a lower variable fee (e0.18 instead of e0.20), plus a
fixed part of e0.39.

The location-specific toll is less efficient, generating 65.8% of potential welfare gains.
This policy sets a much lower toll in the suburbs than in the city center (e1.65 and e4.4,
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respectively). Consequently, traffic is reduced by only 15.2%, 9.1 percentage points less than
the optimal policy, leading to more modest gains from emissions avoided. The relatively
good performance of the location-specific toll comes from not reducing too much consumer
surplus, which is achieved by considerably lowering the toll burden on individuals driving in
the suburbs.

Finally, we explore the benefits of setting different tolls during peak and off-peak hours. The
best time-specific tolls set a higher value at peak hours than the uniform toll (e2.61 against
e2.25) and a toll of e1.37 during off-peak hours. By setting a toll during off-peak hours,
the regulator reduces the incentives to substitute towards driving at off-peak hours. The
regulator can then increase the toll at peak hours and raise a large toll revenue. Indeed, we
see that the toll revenue is 37.8% higher than under the uniform toll. Additionally, this policy
is efficient at reducing emissions by discouraging individuals from driving during off-peak
hours; the gains from emissions reductions are 49.4% higher than under the uniform toll.
The time-specific toll achieves 52.7% of the potential welfare gains, while the uniform toll
generates only 46.1%.

Table 14: Comparison across optimal policies (conditional on a policy instrument)
Traffic ∆W ∆CS Toll Emissions %∆W w.r.t.

reduction (%) revenue avoided personalized tolls
(1) Personalized 24.3 0.615 -1.17 1.7 0.088 100
(2) Fixed and per-km 25.5 0.532 -1.37 1.82 0.083 86.4
(3) Per-km 25.6 0.525 -1.25 1.7 0.082 85.4
(4) Location-based 15.2 0.405 -1.22 1.57 0.057 65.8
(5) Time-specific 14 0.325 -1.9 2.15 0.078 52.7
(6) Uniform 14 0.284 -1.33 1.56 0.052 46.1
Note: (2) Fixed toll = 0.385, per-km toll = 0.18, (3) per-km toll = 0.205, (4) city-center toll = 4.4, suburb toll
= 1.65, (5) peak hour toll = 2.61, off-peak hour toll = 1.37, (6) fixed toll = 2.25, all in e. Changes in welfare,
consumer surplus, toll revenue and value of emissions avoided in million e.

5.4.4 Consumer surplus-maximizing policies

We study whether any policy can increase the aggregate consumer surplus by solving for
consumer surplus-maximizing personalized tolls.31 Figure 8 shows that a significant range of
policy stringency levels can raise aggregate consumer surplus. These are policies reducing
traffic up to 23.4%. However, the aggregate gains are relatively small, below e150,500, or
e0.05 per driver. Under consumer surplus-maximizing tolls, the toll revenue is always zero.
Since the social planner has no incentive to raise revenue, the consumer surplus-maximizing
tolls are prohibitively high and never paid. A fraction of individuals receive zero tolls; these
are individuals with the highest utility from driving. This consumer surplus-maximizing

31We could consider more objectives for the social planner, such as the sum of consumer surplus with
redistributive weights or assigning different weights to the different components of the welfare. We leave this
for future research.
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policy is similar to imposing driving restrictions since, in the end, only a fraction of individuals
drive for free. The critical difference with standard driving restrictions is that the social
planner efficiently targets those individuals allowed to drive rather than randomly affecting
individuals. The policy generates consumer surplus gains for individuals allowed to drive
freely, more than compensating the consumer surplus losses from those assigned to high tolls.

Figure 8: Change in consumer surplus from variable and consumer surplus-maximizing tolls
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Column (2) of Table 13 shows the results of the regression of consumer surplus-maximizing
tolls on individual characteristics. First, we see that individuals above 50 have higher tolls.
Tolls are, however, non-monotonic with income. Wealthy individuals, with an income between
e3,000 and e3,500, have the lowest tolls, while individuals with an income between e800 and
e1,600 are offered the highest toll values. We also see that tolls increase with distance until
35 kilometers (d3). The public transport speed significantly raises the toll while the distance
to the city center decreases it. Individuals living in the far suburbs have a toll that is e7.9
lower than individuals living in the city center. Indeed, the social planner wants to reduce
the consumer surplus losses of the individuals with the highest disutility from substituting
away from driving. The emissions costs appear significant at the 5% level, which is related to
the correlation between individual emission cost and other individual characteristics since
emission reduction is not part of the social planner’s objective. Finally, the social planner
sets higher tolls for individuals that are more likely to be able to choose the departure
time. Overall, the individual characteristics explain only 43% of the variation in personalized
tolls. We complement this analysis with the graphs representing the relationships between
personalized tolls and demographic characteristics in Appendix E.3.5.
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5.5 Distributional effects

We set a benchmark policy stringency level to characterize the winners and losers and the
location of environmental benefits under each type of policy. Because our model includes
many layers of heterogeneity (in preferences, schedule constraints, availability and quality of
public transport, trip characteristics, and congestion technologies), and as all these dimensions
of heterogeneity interact, it is difficult to predict which policy instrument is favorable to
which individuals. As in Section 5.3, we compare policy instruments holding fixed the traffic
reduction achieved.

We use the policy stringency level that generates the highest welfare gains with welfare-
maximizing personalized tolls as the benchmark. This generates a reduction of 24.3% of
the traffic. We calibrate the fraction of cars banned, the uniform toll, and the variable road
toll to achieve the same traffic reduction at peak hours. Table 15 below provides the policy
parameters.32 The variable toll of e0.19/km implies an average value of e2.47, much lower
than the uniform toll. The maximum variable toll reaches e13.2 for the longest distance
driven.

Table 15: Policy parameters for the benchmark stringency level
Outcome matched Driving Uniform Variable Av. pers. toll

restriction toll toll max W
Distance, peak hours 34.9% 4.17 0.190 3.46
Note: Uniform and average personalized tolls in e, and variable tolls in e/km.

Heterogeneity in policy effects In Table 16, we provide the changes in consumer surplus
at the individual level. We do not take into account the potential redistribution of the
toll revenue since it would require important assumptions on how it is redistributed. We
also ignore the benefits of the emissions avoided. We focus on individuals who own a car
because they are the only ones affected by the policies. All policies lead to a small fraction of
winners. The driving restriction improves individual consumer surplus for 8.5% of individuals.
However, we see the maximum individual consumer surplus gain is small (e1.6) while the
individual consumer surplus loss can be as high as e34.7. The second policy generating
the largest number of winners is the variable toll, which increases the individual consumer
surplus of 7.6% of individuals. The uniform toll increases the individual consumer surplus
of only 4.3% of individuals. This policy instrument also appears to split the policy burden
more equally across individuals as the individual consumer surplus losses are below e3.5.
The personalized tolls generate the lowest share of winners across individuals (2.4%) and

32With two trips per day, the uniform toll implies a total cost of e8.2 per day, close to the London
congestion charge between 2005 and 2011. The London toll implemented in 2003 was initially £5/day and
increased to £8 in 2005, £10 in 2011, £11.5 in 2011, and £15 in 2020.
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cause high individual consumer surplus losses (up to e7.6). But it also generates the highest
consumer surplus gains (up to e8.4).

We finally focus on policy popularity and support from car owners. Assuming a policy is
implemented, we ask which is most popular among car owners? For each potential driver, we
select the policy that generates the largest individual consumer surplus change. The variable
toll is most popular and is the favorite policy for 35.9% of the car owners. But this is far
from the majority. Driving restriction is the second most preferred policy with 31.2% of the
drivers in favor. Finally, personalized tolls are preferred by 28.6% of drivers. The uniform
toll is the least preferred policy instrument, preferred by only 4.3% of drivers.

Table 16: Winners and losers across policies
Driving Uniform Variable Personalized

restriction toll toll tolls
% ∆CS > 0 8.48 4.3 7.62 2.36
% ∆CS < 0 91.5 95.7 92.4 97.6
Min ∆CS (e) -34.7 -3.51 -7.43 -7.57
Max ∆CS (e) 1.61 7.85 3.25 8.44
Policy support (in % potential drivers) 31.2 4.32 35.9 28.6

Who are the winners and losers? We characterize winners and losers by analyzing the
association between consumer surplus changes and demographic characteristics. Figure 9
shows average consumer surplus with respect to income, age, and trip distance under each
policy.33 These graphs are helpful to understand who is the most negatively affected by the
policies and whether different policies target different individuals.

Panel (a) of Figure 9 presents the distribution of average surplus loses across income levels.
Under all four policies, we obtain slightly u-shaped curves, indicating that middle-income
individuals are the most affected by traffic-reducing policies. However, the inflexion point is
at a higher income level for variable and personalized tolls. Replacing driving restrictions
or the uniform toll by optimal personalized tolls benefits the lowest-income individuals. In
addition, the gains from personalized tolls relative to the variable toll increase with income.

Panel (b) shows the average consumer surplus change by age. The uniform toll has
relatively homogeneous effects, while the per-kilometer and personalized tolls hurt middle-
aged individuals the most. Finally, the driving restriction generates very high consumer
surplus losses for middle-aged individuals. The gains from personalized tolls relative to the
variable toll are mainly for individuals over 30 years old.

In Panel (c) we observe more heterogeneity of the policy effects on consumer surplus with
respect to distance. The driving restriction and uniform toll have similar effects and favor

33We use local quadratic polynomials to smooth the curves.
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very short and very long distance commuters. The driving restriction is better than the
uniform toll for individuals with trip distances below 14 km but it is worse for those with
longer trips. By contrast, under the variable and personalized tolls, the average consumer
surplus change decreases with distance. This is to be expected due to the link between the
value of these tolls and the distance driven.

Figure 9: Average surplus change and demographic characteristics
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(b) Age

10 20 30 40 50 60
Distance (km)

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

A
ve

ra
ge

 in
di

vi
du

al
 

C
S

Driving restriction
Uniform toll
Variable toll
Personalized tolls

(c) Trip distance
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(d) Public transport speed

Finally, Panel (d) presents the average change in consumer surplus as function of the
primary quality dimension for public transport, which is its speed. Individuals with the
lowest public transport speed are the most affected by the uniform toll and driving restriction.
By contrast, those with speeds between 20 and 30 km/hr are the most affected under the
variable and personalized tolls.

In Appendix E.4.1, we examine the link between the change in consumer surplus, schedule
constraints, and professional activity. We find that the driving restriction and the uniform
toll hurt more individuals with a low probability of being able to choose a departure time, in
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particular those with a high likelihood of being constrained to a peak hour commute. Among
employed individuals, workers in education, health, public, retail, and private employees are
the most affected by the policies.

Table 17: Changes in emissions under different policies
Driving Uniform Variable Personalized

restriction toll toll tolls
Main emissions estimates
∆CO2 -314 -330 -292 -328

%Far suburbs 88.8 85.3 86.7 76.5
%City center 7.31 9.94 8.16 15.1
%Close suburbs 3.92 4.75 5.1 8.44

∆NOX -0.417 -0.417 -0.376 -0.418
∆HC -0.105 -0.112 -0.098 -0.112
∆PM -0.035 -0.034 -0.031 -0.035
∆Eq. NOX -0.945 -0.939 -0.849 -0.943

%Far suburbs 91.2 88.3 88.6 80
%City center 5.64 7.92 7.04 12.8
%Close suburbs 3.15 3.77 4.33 7.23

Alternative emissions estimates (Copert)
∆NOX -1.15 -1.21 -0.997 -1.12
∆HC -0.075 -0.083 -0.063 -0.077
∆PM -0.052 -0.054 -0.046 -0.051
∆Eq. NOX -1.93 -2.02 -1.69 -1.89

%Far suburbs 76.5 71 77.5 66.3
%City center 7.3 9.24 9.62 16
%Close suburbs 16.2 19.8 12.8 17.7

Relative importance of speed changes (Copert)
NOX 11 11.7 11 10.6
HC 20.4 20 23.2 21.5
PM 7.41 8.14 6.99 6.89
Eq. NOX 9.56 10.3 9.41 9.1
Note: ∆ emissions in tons. “Eq. NOX” aggregates local pollutants into equivalent
NOX emissions. Relative importance in %.

Environmental impacts Table 17 presents the differences between policy instruments’
efficiency in reducing carbon and local pollutant emissions. The four policies have roughly
the same impact: they reduce carbon emissions by 292 to 330 tons of CO2 emissions and
local pollutant emissions decrease by 0.85 to 0.95 tons of equivalent NOX emissions.34 We
decompose citywide emissions by computing the share emitted in each area of the city (close,
far suburbs, and city center). Most of the gains come from traffic reduction in the far suburbs
(between 76.5% and 88.8% for CO2 emissions and 80% and 91.2% for local pollutants).
Moreover, there is a large difference between the distribution of emissions gains between the
personalized tolls and the other policy instruments. The personalized tolls generate more
emissions reductions in the city center and the close suburbs since it allows individuals with
long-distance commutes and inefficient public transport alternatives to drive more.

34We group NOX, HC and PM into an equivalent NOX emissions measure using the social costs as weights.
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As a robustness check, we measure policy effects on emissions using our alternative estimates
of car local pollutant emissions that depend on driving speeds (see Appendix C.4.2). We
obtain a larger reduction in emissions, but the heterogeneity patterns across pollutants and
policies remain identical. However, we find that the gains from the emissions reduction in
the far suburbs are lower. By increasing speeds in the far suburbs, the emissions increase.
Overall, the speed improvements are responsible for a small share of the total decrease in
emissions, representing at most 23.2% for HC emission changes and 10.3% for equivalent
NOX emissions. In Appendix E.4.2, we analyze additional aggregate policy outcomes: the
substitution patterns across transportation modes, travel time changes, speed changes, and the
marginal costs of congestion. The marginal costs of congestion at peak hours are lower under
the policies than initially, illustrating the importance of calculating equilibrium-consistent
Pigouvian tolls.

5.6 Robustness and additional policy instruments

We also study welfare consequences of implementing policies across both periods and provide
the results in Appendix E.5.1. Policy rankings remain the same, but the regulations generate
larger consumer surplus losses for individuals since inter-temporal substitution is no longer
possible. Consequently, we find a lower set of uniform and variable toll levels that are
welfare-improving.

In Appendix E.5.2, we check the sensitivity of the results to changes in overcrowding
levels on public transport. We consider the benchmark variable toll and two scenarios where
overcrowding levels increase by 15% and 30%. These assumptions are rather extreme since
public transport usage at peak hours increases by 5.9% in our benchmark. We find minimal
changes in the transportation mode shares and equilibrium speeds. The total consumer
surplus loss would be 9.2% and 18.4% higher in the two scenarios, but the policy would still
be welfare-improving.

In Appendix E.5.3, we modify the schedule constraints by either allowing all individuals to
choose their departure time or restricting them to fixed (but stochastic) departure times. The
results show that removing schedule constraints lowers welfare gains from the policies, while
the gains increase with more schedule constraints. The results may seem counter-intuitive,
but reinforcing schedule constraints raises the toll revenue more than it decreases consumer
surplus. We also notice that reinforcing schedule constraints implies a lower traffic reduction
at peak hours but generates higher gains from emissions avoided. This is due to a smaller
increase in the distance driven during off-peak hours.

Finally, in Appendix E.5.4, we check the sensitivity of the results to changes in the
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unobserved part of traffic. As expected, if policies reduce unobserved traffic, we see lower
consumer surplus losses and higher welfare gains. This suggests that our welfare gains
estimates can be interpreted as lower bounds.

We choose to focus on three simple policy instruments that have been implemented in
practice. However, our model could analyze more policies or changes in the transportation
environment. We outline a few additional counterfactual results, where a detailed analysis is
provided in Appendix F. In Appendix F.1, we study an auction resembling Shanghai’s vehicle
license regulation (see Li, 2018). Using this policy to achieve the same traffic reduction would
not lead to welfare gains. In Appendix F.2, we compare the standard driving restrictions
with two attribute-based policies: one banning older vehicles and one banning diesel cars.
The diesel-based policy generates the highest welfare gains between the three policies. This
is because diesel cars are owned by individuals more likely to pay the toll, raising the toll
revenue. In Appendix F.3, we briefly study changes to public transport. Finally, additional
scenarios are discussed in Appendix F.4.

6 Conclusion
Combining data from two waves of a detailed transportation survey, Google Directions,
TomTom, and passenger flow in railway public transit, we estimate a nested logit model
to represent the transportation decisions of individuals for their daily trips to work or
places of study in the Paris metropolitan area. The estimated parameters confirm the
importance of trip duration for individual decisions and reveal a large degree of schedule
inflexibility, making it challenging to discourage individuals from driving at peak hours.
We combine this transportation mode choice model with a flexible reduced-form congestion
model that predicts how road speeds vary when the number of drivers changes in different
parts of the city. We simulate the effects of simple transportation policies on welfare and its
different components and find that all the regulations decrease consumer surplus. Simple
driving restrictions decrease consumer surplus less than uniform road tolls because they force
everyone to contribute to traffic reduction. Meanwhile, variable tolls are always the best
policy instruments for welfare and consumer surplus because they target long distance drivers,
which makes them efficient at reducing traffic. Variable tolls achieve 85.4% of the potential
welfare gains from the optimal policies, suggesting it is an efficient policy instrument.
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Appendix (for online publication only)

A Index of mathematical notation
Table 18: Index of the mathematical notations used in the paper

Symbol Description
Indices

n ∈ N Individual
t ∈ T Departure time period
t1, t2 ∈ T Peak hours and off-peak hours
Tn ⊆ T Set of all periods accessible by n
T1,T2,T12 Combinations of period available (peak hours, off-peak hours, both)
j ∈ J Transportation mode
Jn ⊆ J Set of all transportation modes accessible by n
d Index for driving
c, c(n) ∈ C Socio-professional category (for an individual n)
C Set of individuals with socio-professional category c
k(n) Type of fuel of individual n’s car
a ∈ A Area (Highways, city center, ring roads, close suburbs, far suburbs)
q ∈ Q Bernstein basis polynomials index
p Polynomial index selected to minimise MSFE
i ∈ I Observation of speed, occupancy rate and instruments
l Public transit line

Variables
Xnjt Mode and departure period characteristics
unjt Utility
ϵnjt Preference shock
ϵ̃njt Period-specific preference shock
ζnj Mode-specific preference shock
snjt Probability of choosing mode j and period t for individual n
Dnj Expected utility of the mode (nest) j
ωn Weight of individual n
πnl Probability of being able to access combination of periods Tl
ka

n Trip distance in area a for individual n
kn Trip distance for individual n
Ka

t Kilometers driven from our sample in area a and time t
Ka

0t Unobserved kilometers driven in area a and time t
f Congestion technology
κ Tuning parameter for the equilibrium speed algorithm
va

t Speed in area a and period t
v Speed vector
g Contraction function
K Lipschitz coefficient
ϕc(n) Probability of being schedule-constrained for individual n with SPC c(n)
πc(n) Probability to be constrained to peak hours for individual n with SPC c(n), conditional on being schedule-constrained
π Vector of probabilities to be constrained to peak hours, conditional on being schedule-constrained
µc Fraction of individuals with SPC c commuting during peak hours
ynjt Indicator when mode j and period t are chosen by n
duration Trip duration
ρnt Individual and period-specific speed shocks
νi Unobserved speed shock from road traffic data
τi Occupancy rate for road traffic data
τa

t Occupancy rate at period t in area a
Bq Bernstein basis polynomials
êi Prediction error for estimating congestion technology
h Leverage value for estimating congestion technology
B Matrix containing Bernstein polynomials
p Vector of personalized tolls (for all individuals)
fc Fuel consumption of car in litres/km
ft CO2 emissions per litre of fuel
CO2 CO2 emissions
c Overcrowding level
Υ Train capacity
ψ Hourly number of passengers
ns Number of train stations
ξndt Mode-specific preference shock for driving (for the control function specification)
ϵ̂ Residual independent of duration (for the control function specification)
Zndt Instruments for the control function specification
ηnt Duration shock after projecting duration on the instruments for the control function specification
M Mean effective car length
h Length of traffic sensor
W Welfare = consumer surplus + toll revenue + value of emissions avoided
CSn Individual consumer surplus
∆CSn Change in individual consumer surplus
∆CS Change in aggregate consumer surplus
Nd Number of potential drivers
ent Emissions per kilometer for individual n at period t

Parameters
βn Mode and departure period characteristics
αn Sensitivity to trip cost
σ Nest parameter
γ Instrument parameter for the control function specification
θ Set of parameters for demographic characteristics and the nest parameter
ca

q Coefficients of estimated congestion technology
ϕa Scale parameter for the mapping between distance and road occupancy rate
σϵ̂ Variance of ϵ̂ for the control function specification
λ Lagrange multipliers vector for road speed constraint
µ Lagrange multiplier for total distance driven constraint
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B Additional details on the model

B.1 Uniqueness of the model equilibrium case with one period
and one area

We consider here the case of only one endogenous speed in the model. The equilibrium speed
v is given by:

v − f

(
N∑

n=1
ωnknsnd(v) +K0

)
= 0

We define g(v) := v−f
(∑N

n=1 ωnknsnd(v) +K0
)
. If the non-linear equation admits a solution,

the solution is unique if the function is monotonic, i.e., if |g′(v)| > 0 ∀v ∈ [v, v]. The derivative
is:

g′(v) = 1 − f ′
(

N∑
n=1

ωnknsnd(v) +K0

)
︸ ︷︷ ︸

≤0

×
N∑

n=1
ωnkn

∂snd(v)
∂v︸ ︷︷ ︸
≥0

,

which is always positive for v ∈ [v, v] as long as the speed function is weakly decreasing in
the occupancy rate and the probability of driving increases with speed. The assumption that
K0 is fixed is not crucial, the result is still valid as long as K0 increases in speed.

B.2 Uniqueness of the model equilibrium case with multiple peri-
ods and one area

Now, we consider a model with a single area but multiple time periods which are substitutes
for individuals. In this setting we have a system of T non-linear equations, g(v) = 0, where:

gt(v) := vt − f

(
N∑

n=1
ωnknsndt(v) +K0t

)

We want to show that the Jacobian of the system is a Leontieff matrix, i.e. the diagonal
terms are positive and the off-diagonal terms are non-positive. First we compute the diagonal
terms, which is the same as the previous derivative and is always greater than 1:

∂gt

∂vt

= 1 − f ′
(

N∑
n=1

ωnknsndt(v) +K0t

)
︸ ︷︷ ︸

≤0

×
N∑

n=1
ωnkn

∂sndt(v)
∂vt︸ ︷︷ ︸

≥0

.
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Then, we compute the off-diagonal terms, which are always negative due to the substitutability
between the different time periods:

∂gt

∂vt′
= − f ′

(
N∑

n=1
ωnknsndt(v) +K0t

)
︸ ︷︷ ︸

≤0

×
N∑

n=1
ωnkn

∂sndt(v)
∂vt′︸ ︷︷ ︸

≤0

.

The Jacobian of g(v) is thus a Leontieff matrix and by Theorem 5 from Gale and Nikaido
(1965) it is a P-matrix. We then apply the main theorem of Gale and Nikaido (1965) (Theorem
1) that states that if the Jacobian of a system of non-linear equations is a P-matrix, the
system has a unique solution in its bounded support.

C Additional information on data and sample construc-
tion

C.1 Information about the EGT data

The EGT constitutes publicly available data upon request on ADISP.35 The 2010 survey was
conducted from 2009 to 2011 between October and May, excluding school holidays. Due to
the Covid crisis, the 2020 survey was stopped and only contains observations collected in
2019. Instead of relying on a trip diary where surveyed individuals self-report their trips, the
EGT relies on pollsters visiting households and recording the information about trips from
the previous day.

The 2010 survey initially contains 35,175 individuals and 124,262 trips, while the 2020
survey contains 10,470 individuals and 35,656 trips. In our final sample, we keep the first
work or study-related trip. We drop trips if one of the variables we need for the model
is missing (origin, destination, departure time, professional activity, residence location, or
income class). We also drop trips using less common transportation modes that are not
included in our choice set (e.g., taxis, boats). We also drop individuals who took their first
work or study trip outside the morning time window (defined as 5:45-10:15 a.m.). Finally, we
exclude trips with distances lower than 700 meters or higher than the 99th percentile of the
distance distribution (72.7 km). Our final sample consists of 15,480 individuals, of which
12,359 are from the 2010 survey and 3,121 from the 2020 survey.

The 2010 survey maps the Paris region into a grid with 1,489,347 squares to locate individual
trips’ origins and destinations. The size of the square edge is 100 meters. Thus, we use the

35Enquête Globale Transport (EGT) - 2010 and Enquête Globale Transport (EGT) - 2020, DRIEA, ADISP,
see http://www.progedo-adisp.fr/.
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GPS coordinates of the centroids of the grid squares. This approach limits any trip geocoding
inaccuracy to a maximum of 70 meters. The 2020 survey provides GPS coordinates with
three decimals, equivalent to an accuracy of 100 meters. The 2010 survey divides the region
into 112 zones, where 400 to 500 individuals are interviewed to have representativity at the
zone level. However, such zones are not used in the 2020 survey, leading to some zones with
very few trips. We regroup some zones according to the following algorithm. In each iteration,
we aggregate the zone with the smallest number of observations with the neighboring zone
with the smallest number of observations. We iterate until no zone has less than 50 departing
trips (pooling both survey waves). After this process, the region is divided into 93 zones.

C.2 Details about TomTom and Google Directions queries

Google Directions and TomTom Directions APIs provide directions and expected travel times
associated with a given origin and destination pair of GPS coordinates at a specified departure
time. The data from these API services have been used previously in the transportation
literature (see Kreindler, 2024, Hanna et al., 2017, Akbar and Duranton, 2017, Tarduno, 2022,
and Almagro et al., 2024). The public transport queries were done on November 9th, 2023,
setting all trips to take place on Tuesday, November 21st, 2023, with a departure time at 9:30
a.m. We use TomTom data for driving times because this API gives 2,500 free queries daily.
The car queries were done in November 2023, setting the trips to take place on Thursday
19th of September 2024 at 8:30 a.m. for peak hours and 6:30 a.m. for off-peak hours. For
both modes, we winsorize the top and bottom 1% of the implied speeds from the queries.
This allows us to avoid situations where the returned information from the APIs implies
unrealistic speeds for the transportation modes.

TomTom queries for future dates use historical trip data and not live conditions. We may
worry that TomTom modified its prediction algorithm after Covid. To address concerns
regarding the impact of Covid on traffic and TomTom’s predictions, we examine a subsample
of queries that we also did before Covid, in August 2019 (for the future date of 11/19/2020)
with Google Directions. On average, TomTom predicts trip speeds 8.5% lower than Google.
These differences translate into TomTom queries having on average speeds lower than Google
by 4.2 km/hr. This suggests that the Covid crisis did not significantly decrease trip duration
predictions. Furthermore, the mild difference between the two APIs is reassuring about
TomTom’s reliability.
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C.3 Additional information on the workforce survey

The workforce survey data is publicly available upon request on ADISP.36 For the 2019
data, the information regarding employment starting and ending time flexibility comes in the
additional survey module “Organisation du travail et Aménagement du temps de travail”. For
the 2022 survey, the information regarding work-hour flexibility appears in the primary survey
data. We consider individuals to have a flexible starting time if they state that they fully
decide their working hours or if they can decide their working hours within a specific time
interval. We regroup several SPCs to have larger samples to estimate the probability of being
flexible by SPC. In particular, we regroup farmers with agricultural workers, public executives
with professors and information professions, intermediate professions across public and private
sectors, civil employees with police and army officers, qualified workers across public and
private sectors, unqualified workers across public and private sectors, and entrepreneurs
with self-employed. This procedure reduces the number of SPCs from 32 to 16. We also
have students in high school or below and students in higher education, so our final sample
contains 18 SPCs.

C.4 Car fuel consumption and emissions

C.4.1 Baseline estimation method

The EGT data does not include the information for car fuel consumption. Fuel consumption
and car emissions are linked through the formula:

fcn = CO2n

ftk(n)
,

where fcn is the fuel consumption (in liter/km) for car n and ftk(n) reflects the quantity of
CO2 emissions (in gram) in a liter of fuel k (diesel or gasoline).37 We thus estimate CO2

emissions as well as local pollutants of each car in the EGT data with a prediction model.
We rely on additional car registration data in the Paris metropolitan area from 2003 to
2018 that contains the main car characteristics, sales, and the value of CO2 emissions.38

We complement the car registration data with local pollutant emissions data by car model
from the UK Vehicle Certification Agency.39 All the emissions datasets are from official car

36“Module ad-hoc de l’enquête Emploi: organisation du travail et aménagement du temps de travail - 2019,
INSEE, ADISP” and “Enquête Emploi en continu (version FPR) - 2022, INSEE, ADISP”.

37It is equal to 2,287 g/L for gasoline cars and 2,686 g/L for diesel cars.
38These are proprietary data obtained from the French Car Manufacturers syndicate “CCFA” (for 2003-2008)

and AAAData (for 2009-2018).
39Source: https://carfueldata.vehicle-certification-agency.gov.uk/downloads/archive.aspx.
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manufacturer tests and may be different from real-time driving emissions, as pointed out by
Reynaert and Sallee (2021).

We first match the French car registration data to the UK emissions data so that we can
weigh each car model in the UK emissions data by their sales in the Paris metropolitan area
in the prediction model. We rely on the following matching algorithm. (1) We aggregate
the French car data by the year, brand, model name, fuel type, and CO2 emissions. (2) We
merge it with the UK emissions data by year, brand, model name, and fuel type. Since there
are several versions for the same combination in the UK data, we select the closest neighbor
based on cylinder capacity and CO2 emissions. We drop observations for which either the
percentage difference in CO2 emissions or cylinder capacity between the two matches is larger
than 10%. (3) For each pollutant, we drop car models for which the emission levels are above
the corresponding Euro standard limit. We also drop cars whose emissions are lower than a
tenth of the Euro norm value.

For hybrid cars and other fuel types (liquefied petroleum or natural gas), we observe that
the top-selling models in France are not available in the UK emissions data. Thus, we rely on
another dataset that provides car emissions data from 2012 to 2015. The data comes from the
French environment agency (“ADEME”).40 We follow the same procedure described above
but allow for more discrepancy between the potential matches by dropping observations only
if the percentage difference in CO2 emissions or cylinder capacity between the two matches is
above 30%. We also rely on these ADEME data to obtain estimates of PM emissions for
gasoline cars since the UK data only provides PM emissions for diesel cars.

With the final sample of car models with their corresponding sales and emissions, we
estimate the prediction model. We specify the emissions level of a specific pollutant as a
linear function of the horsepower, a linear time trend, and dummies for the years of changes in
the emissions standard of this particular pollutant. We allow all the parameters to be different
by fuel type. Finally, we regress the logarithm of the emission levels on car characteristics
for PM emissions because PM data has more outliers. All regressions are weighted by the
car model sales in Paris metropolitan area. Given the small sample size (91 observations)
for hybrid cars and other fuels, we do not estimate a prediction model and instead use the
sales-weighted average emission levels by fuel type. Emissions for electric vehicles are set to
zero for all pollutants. For some individuals in EGT data, the car vintage and horsepower is
missing. In such cases, we attribute the average vintage or horsepower values in the EGT
sample conditional on the fuel type.

40Source: https://www.data.gouv.fr/fr/datasets/emissions-de-co2-et-de-polluants-des
-vehicules-commercialises-en-france/. We prefer not to use it for conventional fuel cars because the
sample period is limited.
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C.4.2 Alternative method for emissions estimates

We follow an alternative method to estimate car emissions of local pollutants that depend
on driving speed. We rely on Copert emissions factors for cars published in the COPERT
methodology report (2020).41 This report provides emission functions that link a car’s
emissions of local pollutants with its speed depending on fuel type, emission standard, and
car segment (in four categories: mini, small, medium, and large).

The EGT data does not directly provide the car segments, so we predict them from the
fiscal horsepower. We use our proprietary car data containing the horsepower and segment
from 2003 to 2018. We specify and estimate an ordered logit model to predict the car segment
from its horsepower.

Finally, we assign cars to an emission standard from their vintage: cars with a vintage
before 2000 are under Euro 2 standards. From 2000 to 2005 they are under Euro 3 standards.
From 2005 onward, they are subject to Euro 4 standards. Since both the Copert emissions
data and the EGT data includes information on fuel types, we can directly match survey cars
to the correct set of emission function parameters by fuel type. The Copert methodology
also assumes electric vehicles do not emit pollutants.

Table 19 compares average observed and predicted emissions under both prediction methods.
Our baseline method finds similar average CO2 values to the observed ones. We find higher
values for PM than observed, but this might be because the observations are for much more
recent car models than in the EGT data. However, our baseline method and the Copert
methodology provide similar estimates. Our method predicts lower NOX than observed, while
the alternative Copert method predicts higher values. It is the reverse for HC. Despite some
differences at the pollutant level related to the emission prediction method, we do not think
the benefits of reducing emissions will drastically differ.

41See https://www.emisia.com/utilities/copert/documentation/.
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Table 19: Fit of the prediction models and comparison between average observed and predicted
emissions

Gasoline Diesel
Pollutant R2 Observed Predicted Predicted Observed Predicted Predicted

Copert Copert
CO2 0.84 203 167 171 148
NOX 0.91 100 53 87.8 369 278 568
HC 0.47 100 81.1 29.3 110 36 14.2
CO 0.35 617 525 441 223 223 104
PM 0.9 0.4 2.2 1.9 3.2 23.9 30.1

Note: We obtain the same R2 for diesel and gasoline since the estimation is performed on pooled data. ”Observed”
emissions are calculated on the CCFA data for the year 2003 (the average car vintage in the EGT sample) except for
PM. We use the earliest years with available data for PM emissions: 2012 for gasoline and 2005 for diesel. For the
Copert methodology, we assume a 45 km/hr speed. CO2 in g/km. NOX, HC, and PM in mg/km. All predicted values
correspond to the weighted average of the final sample’s observations from the 2010 survey.

C.5 Cost estimation

C.5.1 Driving costs for cars and motorcycles

We estimate the cost of using a car or a motorcycle by combining the trip distance from the
itinerary provided by TomTom, estimates of the fuel consumption of household vehicles, and
average fuel prices in 2011 from the National Survey Institute (“Insee”).42 For motorcycles, we
assign the average fuel consumption by the number of cylinders, which is the only motorcycle
characteristic we observe in the EGT data.43 When a household has multiple vehicles, we
assume the trip uses the most fuel-efficient one. We also assume each individual pays the
total cost of the trip, regardless of the number of passengers.

Both for cars and motorcycles, we estimate additional costs related to vehicle depreciation,
insurance, and maintenance. To decide which element to include and how, we follow the
methodology from the American Automobile Association (AAA), which produces annual
reports on the cost of driving for several countries, including France. While their estimates
have been directly used in other studies (Almagro et al., 2024), we leverage the detailed
information we have on individuals’ cars, costs, and driving intensity to build our own
estimates. This allows us to have more precise costs that are heterogeneous across individuals.
From the list of non-fuel-related driving expenses suggested by the AAA, we account for car
depreciation, maintenance, and insurance.44 To estimate the depreciation cost, we exploit
the same data used for emissions predictions to estimate the price of each car in the EGT
sample. For cars, we follow Hang et al. (2016) and assume a 12-year, uniform depreciation

42Source for fuel prices: https://www.prix-carburants.developpement-durable.gouv.fr/petrole/
se_cons_fr.htm.

43Source: French Energy Agency (“ADEME”). See https://www.statistiques.developpement-durable
.gouv.fr/les-deux-roues-motorises-au-1er-janvier-2012.

44In the EGT, individuals report their “additional expenses including maintenance and insurance”.
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rate to obtain the yearly depreciation cost. For motorcycles, we assume a price of e1,500 and
the same depreciation length and rate.45 For the yearly maintenance and insurance costs, the
EGT only provides six cost intervals at the household fleet level. We divide the values of the
middle of the intervals by the size of the household’s vehicle fleet.46

The EGT data contains the annual number of kilometers driven. To control for misreporting
and extreme values, we assign each household to three possible values for cars: 7,500 km
driven if the reported distance is below that value, 12,000 km if the reported distance is
between 7,500 km and 17,500 km, and 17,500 km if the reported distance is larger than 17,500
km.47 Since the average reported yearly distance driven with motorcycles is roughly half the
distance driven with cars, we divide these thresholds by two for motorcycles. Finally, we
divide the sum of the yearly depreciation, maintenance, and insurance costs by the assigned
number of kilometers driven to obtain a cost per kilometer. We winsorize the top and bottom
one percent of this cost per kilometer distribution. We obtain an average cost of depreciation,
maintenance and insurance of e0.22 for 2010 and e0.27 for 2020. Finally, we obtain the
total cost of driving by adding the fuel costs. We find an average cost per-kilometer of e0.31
in 2010 and e0.34 in 2020. For comparison, the 2010 AAA report finds a per-kilometer cost
before taxes of e0.45 for gasoline cars. Our estimate is slightly below the AAA estimate
because we do not include potential loan repayments and parking costs (we do not have
the information in the EGT data). Our average is also likely to be lower than the national
average since Parisians tend to drive smaller cars that are cheaper.

C.5.2 Public transport cost

The public transport network in Paris is operated by two companies: “RATP” mainly covers
public transport inside Paris and close suburbs, while “SNCF” operates trains connecting
Paris to suburban areas. During the period of the 2010 survey, the RATP pricing system
relies on five pricing zones of trip origin and destination. We use the prices stated in the price
guide of RATP for July 2011 and April 2020.48 The ticket price using the SNCF network

45The average ownership length of a motorcycle in France is 12.2 years: https://www.onisr.securite
-routiere.gouv.fr/etudes-et-recherches/vehicules/parc-des-vehicules/le-parc-deux-roues
-motorises-des-menages#:~:text=L’%C3%A2ge%20moyen%20du%20parc,6%2C5%20ans%20en%202020.

46For households than own both cars and motorcycles, we count motorcycles as 0.8 cars, the value of the
ratio between the reported cost for owners of a single motorcycle and a single car.

47In the 2010 report for France, the AAA uses an average of 9,363 km per year for conven-
tional fuel cars. See https://www.automobile-club.org/actualites/la-vie-de-l-aca/budget-de-l
-automobiliste-juin-2010.

48Source: “Guide tarifaire”, July 2011, https://www.slideshare.net/quoimaligne/guide-tarifaire
-ratp-sncf-ile-de-france-2011 and April 2020, https://www.iledefrance-mobilites.fr/medias/
portail-idfm/9ae5b132-467f-404c-ac33-a6a5ffa679a8_16340_IDFM_guide_tarifaire_10x21_WEB
.pdf.
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depends on the exact stations of origin and destination rather than zones. Since there is no
exhaustive data on the prices for all combinations of origin and destination train stations, we
rely on a sample of ticket prices for 36 origin and destination pairs and estimate the train
ticket price as a square function of the distance between stations. This regression has a good
fit with an R2 of 0.77. We use this function to predict prices for all origin-destinations pairs
in the SNCF network. For 186 individuals, Google Directions API does not provide a public
transport route, yet they report using public transport. We impute the driving distance to
compute their train ticket cost and use their reported travel times in the survey. For all
train tickets, if the distance is larger than the maximum trip distance in the sample of SNCF
tickets, we cap the distance to be the same as the maximum of the ticket sample (41 km).
We thus avoid predicting the ticket price for distances that lie outside the ticket sample used
for estimation.

For individuals with a public transport subscription, we estimate a trip average cost by
dividing the daily price of the subscription (obtained by dividing the subscription price
by the relevant number of working days after accounting for holidays and bank holidays:
224) by two, which is the average number of trips taken in a day conditional on using
public transport. For individuals without a subscription, missing information about their
subscription coverage, or taking a trip outside their subscription coverage, we assume they
pay the regular ticket price. The survey includes information on whether individuals can
buy subsidized or reduced-price tickets, we use this information when computing the cost of
public transport without subscription. Some itineraries require layovers between different
services. Without a subscription, layovers between bus and tramway, as well as those between
subway and commuter trains are included within a single ticket. Meanwhile, layovers such as
bus-subway require the payment of an additional ticket. We account for these differences in
our cost imputation.

In our final sample, 40.5% have a public transport subscription. Conditional on using public
transport the share increases to 86%. There could be a selection effect on the estimation
stage due to assigning to individuals that do not use public transport a higher cost of
public transport than public transport users because of the subscription. We avoid this
issue by predicting a cost of public transport net of the potential subscription rebate. For
this, we estimate the price with potential subscription from the individual ticket price and
some individual characteristics on the subsample of public transport users. The individual
characteristics are age and distance, which are likely to affect the subscription rebate value
and the likelihood of holding a subscription. We consider the deciles of age and trip distance
distributions. The average public transport cost with subscription is e1.75 while the average
cost without subscription is e3.21.
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C.6 Public transport overcrowding

We compute a line-level measure of overcrowding in public railway transport. To do so,
we rely on data provided by SNCF and RATP on the number of passengers at the metro
or train station level. We use data for 2015, the oldest data available, and consider only
the urban railway network, where overcrowding is the most problematic. The data only
records validations from passengers that use an electronic metro card; there is no exhaustive
data on passengers using tickets. Estimates suggest that the electronic validations represent
two-thirds of the traffic for 2016; we expect the share to be even higher during morning peak
and off-peak hours.49 We exploit the variation in traffic between peak and off-peak hours
across metro lines to estimate the role of overcrowding in transportation decisions. As long
as traffic is homogeneously underestimated over the network and periods, omitting a portion
of the traffic is not a major problem.

The data we use is composed of two separate datasets. The first contains daily entry flows
of passengers at the railway station level. The second dataset contains “hourly profiles” at
the station level: the distribution of validations (in %) across hours for different periods
(business days outside holidays, business days during school holidays, and weekends).50 By
combining these datasets, we obtain daily and hourly estimates of the number of passengers
in each metro station for regular business days. We exclude weekends, school holidays, public
holidays, and two dates with a relatively low total number of entries.51 Finally, we average
traffic levels over 172 days. We use the passenger flow between 7:00-8:59 a.m. to represent
peak hours and 6:00-6.59 a.m. for off-peak hours. We observe the number of passengers
entering each station, but not the line they take. Thus, we allocate passengers to metro lines
proportionally, using the annual traffic levels by lines as weights.

We also use schedule data that provides frequencies of trains at the station level for the
second semester of 2015.52 We count the average number of scheduled trains for each line
(and direction) and for each hour. Additionally, we gather information about the passenger
capacity of the train models used on each line.53 The passenger capacity represents the
number of passengers a train can carry, assuming four passengers per square meter. We

49See https://www.iledefrance-mobilites.fr/usages-et-usagers-des-titres-de-transport.
50We use the average profiles for the business days outside holidays for the second semester of 2015 since

we noticed some problems with the data from the first semester 2015: the percentages did not sum to 100%
for 20 stations.

51These record total daily traffic levels below a million, while the average is 7.5 million according to the
official figures of the RATP. We interpreted this low number of passengers as indicating the occurrence of a
strike.

52“General Traffic Feed Specification”, see: https://transitfeeds.com/l/162-paris-france.
53We rely on Wikipedia and internal reports from the transport organization in the Paris area “STIF”

containing information about the characteristics of the fleet of trains.
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compute the total railway line capacity Υlt by multiplying the train’s physical capacity by
the number of trains per hour. Finally, the overcrowding level clt for line l, at period t is:

clt = ψlt

2 × Υlt × nsl

,

where ψlt is the hourly number of passengers in line l at time period t and nsl is the number
of stations. Since there are two directions, we multiply the total line capacity by two and use
the total number of passengers going in both directions. We assume a uniform distribution of
passengers entering and exiting each line and thus divide the measurement by each line’s
number of stations. Finally, we obtain individual overcrowding levels by weighting the
overcrowding level of each line used in a trip by the time spent in that line. Finally, we
provide in Table 20 the estimates of the overcrowding levels in the different metro and train
lines. On average, we estimate the overcrowding level to be 0.73 at off-peak hours and 1.8 at
peak hours. But these averages hide substantial heterogeneity across lines that provides key
variation for estimating the sensitivity to overcrowding in public transport.

Table 20: Estimates of overcrowding levels in the railway public transit
Metro Suburb trains

Line Off-peak Peak Line Off-peak Peak
1 0.27 1.21 A 0.78 2.08
2 0.29 1.31 B 0.52 1.12
3 0.35 1.58 C 0.39 1.2
3B 0.17 0.92 D 0.81 1.52
4 0.61 1.95 E 0.56 1
5 0.75 2.14 H 0.79 0.95
6 0.24 1.28 J 0.36 0.57
7 0.53 1.54 K 4.42 7.3
7B 0.2 1.06 L 0.7 2.19
8 0.26 1.17 N 0.79 1.42
9 0.28 1.12 P 2.17 3.63
10 0.19 1.32 R 0.8 1.1
11 0.56 2.08 U 2.08 4.59
12 0.31 1.63
13 0.54 1.8
14 0.43 1.46
Average 0.37 1.47 1.17 2.2

C.7 Additional descriptive statistics

Table 21 provides a comparison between the durations and costs for the transportation modes
available to each individual, in the final sample. Taking the car is the fastest option available
to the largest fraction of individuals. However, the relatively low initial shares suggest that
the high monetary cost dissuades many from choosing it. Public transport is not, on average,
the fastest nor the cheapest alternative, yet it is the most used mode in both periods. The
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public transport cost does not increase much with distance while the car or motorcycle costs
linearly increase with distance. For this reason, the maximum price of public transport is
lower than the maximum car and motorcycle costs.

The last panel of Table 21 presents the share of individuals with access to each transportation
mode and the share of trips done with each one of the five modes, in each period. Across
modes and periods, the differences between both years are at most two percentage points,
confirming the similarity in transportation patterns across surveys. Car usage at peak hours
in the 2020 survey has the largest decrease with respect to 2010, with a 2.47 percentage
point decrease. This small reduction seems to go towards an increase in public transport
and bicycle usage (1.39 and 0.66 percentage points respectively). This change could also be
explained by a decrease of 4.88 percentage points on car availability between the two surveys.

Table 21: Average duration, cost and availability by transportation mode
Variable Mean Median Std. dev. Min Max
Duration
Bicycle 48.7 35.6 40.4 5.1 150
Public transport 41.9 37.8 23.6 2.58 266
Motorcycle 18.1 16.2 12.3 1.63 69.8
Walk 59.9 49 40 12.4 170
Car, peak 26.9 20.9 21.8 1.08 111
Car, non-peak 20.2 16.2 15.9 1.03 108
Cost
Bicycle 0.68 0 0.8 0 1.74
Public transport 1.77 1.64 0.73 0.43 7.69
Motorcycle 3.3 2.14 3.48 0.1 26.9
Car 4.03 2.49 4.27 0.12 41.9

Mode availability Shares
2010 2020 2010 2020

Peak
Bicycle 78.8 79.4 1.59 2.25
Public transport 86.1 87 34 35.4
Motorcycle 12.9 9.48 1.35 1.05
Walk 53.1 54.7 15.2 15.2
Car 78.8 73.9 24.4 21.9
Off-peak
Bicycle 78.8 79.4 0.446 0.71
Public transport 86.1 87 11.7 13
Motorcycle 12.9 9.48 0.644 0.605
Walk 53.1 54.7 2.11 2.9
Car 78.8 73.9 8.46 6.97

Note: Durations in minutes, costs in e. Mode availability and initial shares in %.
All statistics computed using survey weights.
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D Additional estimation results

D.1 Control function approach for car travel times

There might be some endogeneity problems for individual trip durations. To formalize this
issue, we consider that the source of endogeneity is due to unobservable individual preferences
for driving that might be correlated to trip duration. For instance, if individuals like driving,
they may locate in an area where the travel time is low. This is modeled as follows:

undt = β̃′
nX̃ndt + βduration

n durationndt + ξndt + ϵndt

where cov(ξdt,durationdt) ̸= 0, cov(X̃dt, ξdt) = 0 and cov(ϵdt,durationdt) = 0, cov(ϵdt, ξdt) =
0. In short, only car trip duration is endogenous and the preference shock for driving can be
decomposed as an exogenous iid term and another term that generates the correlation with
duration.

We specify a control function as a linear function of a matrix of instruments Z. This
matrix includes excluded instruments and individual characteristics which are also used to
parametrize the preference heterogeneity. We rely on two sets of excluded instruments. First,
we construct functions of other individual trip characteristics (other than duration), and
choice sets at the origin or destination of an individual. The intuition is that choice set and
trip characteristics should affect other individual decisions to drive, and thus, equilibrium
speeds. But these variables should not affect individuals directly because what matters for an
individual decision is only his own choice set and his own trip characteristics. We construct
six instruments for the origin and the destination of an individual. These variables are the
sum of other individual costs, overcrowding levels at peak hours and off-peak hours, trip
distances, numbers of alternatives in the choice set and the share of other individuals with
a car. The free-flow car trip duration (measured as trip duration at 3 a.m.) is the second
set of excluded instruments. Finally, we use individual characteristics that shift preferences
(income dummies, age dummies, a local linear function of distance and the socio-professional
activity).

We use the same instruments for the duration at peak and off-peak hours. Formally, we
have:

durationndt = Zndtγt + ηndt.

The important assumption is that cov(ξdt|Zdt) ̸= 0 but cov(ηdt, ξdt) = 0. In economic terms,
the assumption is that once we condition the duration of individual trip on the instruments,
the residual is uncorrelated with unobserved individual preferences. And we can express the

74



unobserved individual preference term as:

ξndt = ρtηndt + ϵ̂ndt,

with cov(ϵ̂dt, durationdt) = 0. Then, we can re-write the utility function as:

undt = β̃′
nX̃ndt + βduration

n durationndt + ρtηndt + ϵ̂ndt + ϵndt

The standard assumption would be to consider the joint distribution of the error terms to
be normal: (ηdt, ξdt) ∼ N(0,Σ) so that ϵ̂ ∼ N(0, σϵ̂). As it has been done previously in the
applied literature, we set σϵ̂ = 0 and ignore ϵ̂ndt.

Table 22 provides the results of the regressions of driving durations at peak and off-peak
hours on the instruments. The R2 are very high, indicating strong predicting power of the
instruments.
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Table 22: First-stage regressions of durations on the instruments
Peak hours Off-peak hours

Parameter Std. error Parameter Std. error
Intercept 20.9∗∗ (2.19) 9.52∗∗ (1.02)
Income ∈ [800, 1,200[ -0.057 (0.187) -0.044 (0.09)
Income ∈ [1,200, 1,600[ -0.097 (0.187) -0.059 (0.091)
Income ∈ [1,600, 2,000[ -0.157 (0.19) -0.02 (0.094)
Income ∈ [2,000, 2,400[ 0.067 (0.196) -0.012 (0.099)
Income ∈ [2,400, 3,000[ -0.29 (0.212) -0.199† (0.108)
Income ∈ [3,000, 3,500[ -0.329 (0.216) -0.238∗ (0.107)
Income ∈ [3,500, 4,500[ -0.505∗ (0.223) -0.337∗∗ (0.111)
Income ≥ 4,500 -0.185 (0.3) -0.158 (0.153)
Age ∈ ]18, 30] -0.929∗ (0.379) -0.486∗ (0.195)
Age ∈ ]30, 40] -1.08∗ (0.427) -0.693∗∗ (0.219)
Age ∈ ]40, 50] -1.26∗∗ (0.425) -0.808∗∗ (0.218)
Age ∈ ]50, 60] -1.21∗∗ (0.428) -0.718∗∗ (0.22)
Age > 60 -1.45∗∗ (0.52) -0.971∗∗ (0.261)
Distance 1.48∗∗ (0.204) -0.796∗∗ (0.103)
(Dist-d2) × (dist≥d2) 0.876∗∗ (0.277) 2.43∗∗ (0.136)
(Dist-d3) × (dist≥d3) -3.89∗∗ (0.49) -0.848∗∗ (0.293)
(Dist-d4) × (dist≥d4) -0.272 (1.01) 0.954 (0.826)
Craftspeople -0.134 (1.85) 0.125 (0.882)
Shopkeepers 0.279 (0.906) 0.13 (0.435)
Entrepreneurs, self-employed 0.001 (0.801) -0.052 (0.399)
Public executives -0.262 (0.712) -0.109 (0.343)
Private executives 0.363 (0.706) 0.079 (0.339)
Education, health -0.111 (0.705) 0.097 (0.339)
Administrative professions 1.23† (0.72) 0.561 (0.35)
Technicians 0.602 (0.743) 0.326 (0.361)
First-line supervisors 1.08 (0.848) 0.335 (0.413)
Public employees 0.194 (0.725) 0.231 (0.351)
Private employees 0.86 (0.73) 0.386 (0.356)
Retail employees -0.528 (0.87) -0.328 (0.43)
Services 1.4† (0.786) 0.704† (0.38)
Qualified workers 0.192 (0.727) 0.196 (0.35)
Unqualified workers 0.331 (0.816) 0.244 (0.379)
Students ≤ high school -0.839 (0.802) -0.381 (0.393)
Students in higher education -0.397 (0.741) -0.4 (0.364)
Sum of costs, at origin 0.261∗∗ (0.061) 0.167∗∗ (0.033)
Sum of overcrowding levels, peak, at origin -2.19∗∗ (0.454) -2.08∗∗ (0.237)
Sum of overcrowding levels, off-peak, at origin 2.45∗∗ (0.612) 2.28∗∗ (0.318)
Sum of distances, at origin -4.44∗∗ (0.581) -1.36∗∗ (0.29)
Sum of number of alternatives, at origin -3.35∗∗ (0.354) -1.67∗∗ (0.165)
Car ownership rate, at origin 15∗∗ (0.813) 6.69∗∗ (0.399)
Sum of costs, at destination 0.783∗∗ (0.061) 0.375∗∗ (0.028)
Sum of overcrowding levels, peak, at destination 10.9∗∗ (0.483) 5.23∗∗ (0.241)
Sum of overcrowding levels, off-peak, at destination -15.4∗∗ (0.783) -7.16∗∗ (0.384)
Sum of distances, at destination -6.33∗∗ (0.619) -3.15∗∗ (0.284)
Sum of number of alternatives, at destination 0.27 (0.337) 0.077 (0.153)
Car ownership rate, at destination -18.2∗∗ (1.01) -8.02∗∗ (0.49)
Free-flow duration 1.54∗∗ (0.016) 1.25∗∗ (0.009)
R2 0.948 0.975

Note: The reference categories are individuals with age < 18, with an income below e800 and farmers. Duration and free-flow
duration measured in 10 minutes. Significance levels: ∗∗: 1%, ∗: 5%, †: 10%.
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D.2 Robustness checks for the transportation mode choice model

We analyze the robustness of our estimates to several model assumptions. Table 23 provides
the estimates of the average utility parameters, while Table 24 presents the implied values of
travel time.

Weather controls We use historical hourly data from OpenWeather for the city of Paris
to control for the possible role of weather on individual choices.54 First, we match the
OpenWeather data to the exact departure hour and date provided in the survey. Then,
based on the distribution of temperatures in our sample, we construct temperature quintiles.
For rain and snow, we create four categories based on the levels (in millimeter per hour):
0, less than 0.3, between 0.3 and 0.8, and more than 0.8. The weather dummies are then
interacted with the bicycle and walk alternative constants, as these modes are the most
susceptible to being affected by the weather shocks. The inclusion of weather controls has no
significant impact on the average sensitivities to duration and cost and almost no impact on
the distribution of valuations of travel time.

Travel time reliability Recent transportation literature has focused on the importance
of the reliability of travel time for individual transportation decisions (Small et al., 2005,
Engelson and Fosgerau, 2016, Hall and Savage, 2019, Bento et al., 2020). We study the
role of preferences for travel time reliability in our model and how including this factor
affects our estimates. We build a measure of travel time reliability by collecting real-time
traffic data from TomTom for all trips in our sample that have car access, for every weekday
between February 26th, 2024, and March 22nd, 2024. We query trip itinerary and durations
at 6:30 a.m. (to represent off-peak hours) and at 8:30 a.m. (for peak hours). We construct a
proxy of reliability by taking the standard deviation of the durations for each trip at each
period.55. As seen from the estimation results, the average utility parameters remain close to
the benchmark, and the distribution of the values of travel time is marginally lower.

Alternative model assumptions First, we consider a model where we modify the nest
structure by allowing individuals to choose first between transportation modes and then
peak and off-peak hours. This model allows for correlation in the preference shocks across
departure times for a given mode. However, column (4) of Table 23 shows a high value for

54Source for weather data: https://openweathermap.org/.
55We also consider another reliability measure given by the difference between the 80th and 50th percentiles

as suggested by Small et al. (2005). We choose to rely on the standard deviation because we obtain a better
fit
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the nest parameter (σ), almost equal to 1, indicating that the options within nests are almost
independent and suggesting that our nesting structure is more relevant.

Then we consider two specifications were we modify our assumptions regarding the cost of
the trip. In column (5) of Table 23, we analyze the effect of not including the additional cost
per km driven (depreciation, maintenance, and insurance). We find larger average sensitivities
to cost, which translate into a large decrease in the mean VOT, reaching only e3.8. In the
second specification, column (6) of Table 23, we do not perform the correction for the cost of
public transport subscriptions. This implies that individuals without subscription pay the
full price, while individuals with subscription pay the average trip cost of their subscription.
We find a large decrease in the average sensitivity of cost, leading to a large increase in the
distribution of valuation of travel time, with a mean VOT of e326. Such high VOT values
are unrealistic, supporting the relevance of our correction

Finally, we consider two possible changes to our choice set definition. First, we allow every
individual to drive, even those who do not own a car. For those without a car, we attribute
the average car cost in the sample. Then, we query the TomTom service for those trips for
the travel times, as with the rest of the sample. As expected, adding a unavailable alternative
changes the results by lowering the average utility of driving. As seen in column (7) of
Table 23, this change leads to small changes in the average duration cost sensitivities. These
changes lead to a small decrease in the average VOT, as seen in Table 24. The second change
in the choice set definition corresponds to allowing only individuals who have a bicycle or
a bike-sharing pass to use this mode. We see very small changes, in particular, the mean
valuation for bicycling marginally increases. The distribution of valuations of travel time
remains increases with respect to our benchmark and there is a significant increase in the
nest parameter, implying less correlation between periods.

Table 23: Average estimated parameters under alternative model specifications
Coefficients (1) (2) (3) (4) (5) (6) (7) (8)
Duration -0.61∗∗ (0.014) -0.611∗∗ (0.014) -0.609∗∗ (0.014) -0.611∗∗ (0.02) -0.618∗∗ (0.013) -0.591∗∗ (0.013) -0.5910 (0.013) -0.6140 (0.014)
Cost -0.312∗∗ (0.016) -0.312∗∗ (0.016) -0.327∗∗ (0.017) -0.313∗∗ (0.017) -1.01∗∗ (0.043) -0.121∗∗ (0.012) -0.3290 (0.016) -0.2930 (0.016)
Bicycle, peak -3.47∗∗ (0.075) -3.47∗∗ (0.075) -3.44∗∗ (0.075) -3.47∗∗ (0.1) -3.3∗∗ (0.077) -3.53∗∗ (0.077) -3.410 (0.074) -3.340 (0.077)
Public transport, peak -1∗∗ (0.062) -0.897∗∗ (0.091) -0.973∗∗ (0.062) -0.995∗∗ (0.062) -0.332∗∗ (0.079) -1.21∗∗ (0.063) -0.9040 (0.059) -0.9880 (0.062)
Motorcycle, peak -3.43∗∗ (0.112) -3.33∗∗ (0.13) -3.33∗∗ (0.112) -3.46∗∗ (0.133) -3.49∗∗ (0.114) -3.65∗∗ (0.117) -3.440 (0.109) -3.420 (0.113)
Car, peak -2.68∗∗ (0.527) -2.59∗∗ (0.527) -2.78∗∗ (0.535) -2.68∗∗ (0.529) -3.3∗∗ (0.545) -2.99∗∗ (0.54) -3.810 (0.457) -2.550 (0.517)
Car, off-peak -3.88∗∗ (0.544) -3.79∗∗ (0.543) -3.83∗∗ (0.552) -4.02∗∗ (0.534) -4.62∗∗ (0.56) -4.3∗∗ (0.593) -5.030 (0.474) -3.850 (0.541)
Public transport, off-peak -1.9∗∗ (0.174) -1.78∗∗ (0.181) -1.8∗∗ (0.172) -2.07∗∗ (0.085) -1.16∗∗ (0.154) -2.22∗∗ (0.296) -1.760 (0.148) -1.980 (0.202)
Walking, off-peak -0.737∗∗ (0.154) -0.743∗∗ (0.152) -0.669∗∗ (0.148) -0.888∗∗ (0.092) -0.86∗∗ (0.151) -0.847∗∗ (0.255) -0.7480 (0.139) -0.8260 (0.181)
Bicycle, off-peak -4.15∗∗ (0.16) -4.17∗∗ (0.159) -4.07∗∗ (0.156) -4.27∗∗ (0.149) -4.08∗∗ (0.16) -4.32∗∗ (0.242) -4.080 (0.148) -4.060 (0.176)
Motorcycle, off-peak -3.73∗∗ (0.162) -3.62∗∗ (0.173) -3.6∗∗ (0.157) -3.83∗∗ (0.161) -3.8∗∗ (0.159) -4.02∗∗ (0.226) -3.740 (0.153) -3.760 (0.178)
No. layovers in PT -0.486∗∗ (0.041) -0.485∗∗ (0.041) -0.463∗∗ (0.041) -0.484∗∗ (0.042) -0.252∗∗ (0.039) -0.265∗∗ (0.038) -0.5110 (0.038) -0.4110 (0.039)
Railway only 0.015 (0.063) 0.014 (0.063) 0.025 (0.063) 0.014 (0.064) 0.131∗ (0.065) 0.107† (0.063) -0.0290 (0.06) 0.0420 (0.063)
PT overcrowding -0.066∗ (0.033) -0.066∗ (0.033) -0.061† (0.032) -0.065† (0.034) 0.06† (0.034) -0.004 (0.034) -0.050 (0.031) -0.0680 (0.033)
σ 0.816∗∗ (0.16) 0.807∗∗ (0.153) 0.762∗∗ (0.159) 0.999∗∗ (0.058) 0.87∗∗ (0.135) 0.978∗∗ (0.299) 0.8130 (0.136) 0.9070 (0.192)
Reliability 0.066∗∗ (0.0174)
Log-likelihood -17,441 -17,417 -17,433 -17,441 -17,130 -17,600 -18,442 -17,416
Note: (1): Baseline model. (2): Weather controls. (3): Travel time reliability. (4): Departure periods as nests. (5): Only fuel cost for cars. (6): No public transport subscription correction for cost.
(7): Car available to everyone. (8): Bicycle not widely availability. Walking at peak hours is the baseline alternative. Duration measured in 10 minutes. Cost in e. We provide the mean coefficients,
the standard-errors are computed using the delta-method. Significance levels: ∗∗: 1%, ∗: 5%, †: 10%.
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Table 24: Values of travel time for the alternative specifications
Min Q1 Mean Median Q99 Max

(1) Baseline 1.58 2.74 17.9 16.4 52.8 90.3
Alternative specifications
(2) Weather controls 1.58 2.58 17.4 15.6 54.1 91.3
(3) Reliability measure 1.54 2.52 15.9 14.6 46.4 71.2
Alternative specifications
(4)Periods as nests 1.58 2.56 17.4 15.6 53.3 86.9
(5) Only fuel costs 0 0.942 3.8 3.72 6.78 7.17
(6) No public transport subscription correction 0 8.03 326 31.8 2,841 2,887
(7) Car widely availability 1.16 2.74 16.4 14 51 111
(8) Bicycle not widely availability 2.11 3.09 18.5 16.6 57 91.4

Note: in e/hr.

Assumption for schedule constraints The central assumption in our modeling of
schedule constraints is that they are driven solely by socio-professional activity. To test this,
we examine whether other individual characteristics beyond professional activity contribute
to the likelihood of being schedule-constrained. Specifically, we regress the probability of
being schedule-constrained on socio-professional activity and a range of individual factors,
including age, education, gender, household composition, and population density. These
additional characteristics account for just 2% of the variation in schedule constraints, a very
small amount compared to the 29% explained by professional activity.
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Table 25: Regressions of the probability of being schedule-constrained on professional activity and
individual controls

Only SPC Additional controls
Parameter Std. error Parameter Std. error

Administrative professions -0.34∗∗ (0.011) -0.35∗∗ (0.012)
Education, health -0.53∗∗ (0.011) -0.56∗∗ (0.011)
Entrepreneurs -0.02 (0.014) -0.09∗∗ (0.014)
Farmers -0.19∗∗ (0.014) -0.2∗∗ (0.014)
First-line supervisors -0.42∗∗ (0.015) -0.42∗∗ (0.015)
Private employees -0.51∗∗ (0.012) -0.51∗∗ (0.012)
Private executives -0.03∗ (0.011) -0.08∗∗ (0.011)
Public employees -0.74∗∗ (0.011) -0.71∗∗ (0.011)
Public executives -0.27∗∗ (0.012) -0.33∗∗ (0.012)
Qualified workers -0.68∗∗ (0.011) -0.66∗∗ (0.011)
Retail employees -0.78∗∗ (0.013) -0.72∗∗ (0.013)
Services -0.63∗∗ (0.012) -0.58∗∗ (0.012)
Shopkeepers -0.03∗ (0.014) -0.06∗∗ (0.014)
Technicians -0.36∗∗ (0.012) -0.38∗∗ (0.012)
Unqualified workers -0.76∗∗ (0.012) -0.7∗∗ (0.012)
Age ∈ ]18-25] 0.05∗ (0.021)
Age ∈ ]25-35] 0.15∗∗ (0.021)
Age ∈ ]35-45] 0.18∗∗ (0.021)
Age ∈ ]45-60] 0.21∗∗ (0.02)
Age > 60 0.29∗∗ (0.021)
Primary school -0.005 (0.01)
Middle school 0.03∗∗ (0.009)
High school 0.05∗∗ (0.009)
Post-secondary education 0.13∗∗ (0.01)
≥ Bachelor degree 0.13∗∗ (0.01)
Male 0.03∗∗ (0.004)
Couple with children 0.001 (0.004)
Single 0.01∗ (0.003)
Population ∈ [2-4.9[ -0.01 (0.007)
Population ∈ [5-9.9[ -0.01 (0.008)
Population ∈ [10-19[ -0.01 (0.008)
Population ∈ [20-49[ -0.03∗∗ (0.008)
Population ∈ [50-99[ -0.03∗∗ (0.008)
Population ∈ [100-199[ -0.02∗ (0.008)
Population ∈ [200-2,000[ -0.02∗∗ (0.005)
Paris -0.02∗∗ (0.006)
Intercept 0.89∗∗ (0.009) 0.64∗∗ (0.024)
R2 0.29 0.31

Note: The reference group is comprised of craftspersons, individuals below 18 years old, individuals
with no diploma, females, couples without children, and individuals living in rural areas. Population
is in 1,000 inhabitants. Significance levels: ∗∗: 1%, ∗: 5%, †: 10%.

D.3 Additional results on the value of time

We present the distributions of the value of travel time by age, income, and trip distance in
Figure 10 using second-order local polynomials. Young individuals are associated with the
lowest values of the opportunity cost of time. The VOT then increases with age, reaching its
highest value around 45 years old. After that age, the VOT starts decreasing, and it becomes
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around 20% lower than the maximum at age 70. We also see some heterogeneity in the VOT
across income categories, but the heterogeneity is less pronounced. Poor individuals have
the lowest valuations of time, on average, but the opportunity cost of time increases rapidly
with income. The average VOT slightly decreases between incomes of e1,800 an income
of e3,200, and then the average VOT increases. Regarding the VOT and distance, we see
non-monotonic effects of distance. Short trips tend to be associated with a low valuation
of travel time, which is consistent with the distribution of distances by age: the shortest
commuters tend to be children in high-school or below. The VOT values rapidly increase
with distance, decrease until 20 km, and rise again but more slowly.

Figure 10: Value of travel time and individual characteristics
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D.4 Traffic sensor data and congestion technology estimates

D.4.1 Definition of the areas

Figure 11 displays the locations of the traffic sensor (black dots) as well as the definitions
of the five areas in our model: city center (light grey), ring roads (the circles around the
city center, in white), the close suburbs (dark grey), the far suburbs (the part with no color)
and the highways (the dots connecting the suburbs to the city center). As shown in Figure
11, there is no traffic sensor in the suburbs outside the highways. The data comes from two
different sources. The highway traffic data comes from the regional road maintenance agency
(DRIF). Traffic data for Paris and the ring roads comes from the city of Paris.56

56Source: https://opendata.paris.fr/explore/dataset/comptages-routiers-permanents
-historique/information/.
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Figure 11: Traffic sensor locations and area definition
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D.4.2 Fundamental equations of traffic

The traffic flow (number of vehicles passing per hour), traffic density (number of vehicles per
kilometer and hour), and speed are related through the fundamental equation of traffic flow:

traffic flow = speed × traffic density.

The road traffic density is related to the occupancy rate (the fraction of the road-lane occupied
by a vehicle) using:

traffic density = occupancy rate
M + h

× no. lanes, (16)

where M is the mean effective car length, representing the length of the car plus the space
between two vehicles. h represents the length of a traffic sensor. The data on the highways
contain all traffic variables but the data from the city center and the ring roads does not
record speeds. We reorganize the fundamental equation above to obtain the speeds from
occupancy rates and traffic flows:

speed = traffic flow
occupancy rate

M+h
× no. lanes

. (17)

D.4.3 Sample construction

For traffic observations from the highways connecting the far suburb to the city center, we
restrict the sample to sensors that record traffic going in the direction of the city center.
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We drop outliers in speed (below 0 or greater than the maximum highway speed limit,
130 km/hr) and occupancy rates (below 0% and above 50%). An occupancy rate of 50%
represents extreme traffic conditions: the traffic monitoring institute in Paris defines traffic
as pre-saturated from 15% and saturated from 30%. We follow the same approach when
cleaning the data from Seine-Saint-Denis. We also detect inconsistent observations using the
fundamental relationship between traffic flow, occupancy rates, and speed. More specifically,
we combine Equations (16) and (17) to obtain the implied average car length plus sensor
length from traffic flow, speed, and occupancy rate:

M + h = occupancy rate × speed × no. lanes
traffic flow .

We then drop observations in the top and bottom 1% of the implied length distribution,
keeping 6.1 million observations.

The data on the city center traffic and the ring roads contain sensor measurements of traffic
flows and occupancy rates only. Unfortunately, sensors cannot measure speed accurately
because of traffic lights and multiple intersections.

Instead of relying on an assumption for the effective car length as often done in the literature
(e.g., Geroliminis and Daganzo, 2008 or Loder et al., 2017), we rely on the highway data to
predict the average car length plus sensor length in Paris. It has been documented by Jia
et al. (2001) that the traffic composition varies over time, making the uniform car length
assumption inappropriate. We rely on a prediction model for the average car length plus
sensor length that we estimate using the highway data. Then, we use this model to predict
hourly lengths in the city center and the ring roads. Our prediction model specifies the length
as a function of the distance to the city center and day-of-the-week interacted with hour fixed
effects. Because the relationship between the length and the distance to the city center may
not be constant as we get closer to the city center, we rely on a piecewise linear specification
with six intervals. This prediction model is estimated using 4.8 million observations from
highway data, for which we observe the GPS coordinates of the traffic sensor obtain an R2

of 0.18. For predictions, we set the distance to the city center to 0. We then get expected
lengths specific to the hour and the day of the week. We do not directly observe the number
of lanes in the city center traffic data, so we rely on additional data from Open Street Map.
Finally, we exclude outliers in occupancy rate and estimated speed following the same criteria
as before for the highway data.

Additional data from Seine-Saint-Denis For the additional data used to calibrate the
linear combination technology for the close suburbs, we received data from the Directorate of
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Roads and Travel of the Seine-Saint-Denis Department. The data for Seine-Saint-Denis has
good coverage of that area of the close suburbs. However, measurements of traffic conditions
are very noisy as they are provided in the form of intervals (e.g. speed intervals such as 0 to
30 km/hr rather than exact speeds). Therefore, it is not enough reliable to directly estimate
a congestion technology, which is why we do not include those sensors in Figure 11.

The additional data covers 71 sensors across the Seine-Saint-Denis department. For each
sensor, data for one week is provided (ranging from January 25th 2023 to April 20th 2023).
For each sensor, the number of vehicles (cars and trucks) going at different speed intervals is
recorded each hour. The first speed interval is 0-30 km/hr and then each interval has a 10
km/hr range. We compute the average hourly speed of a sensor by taking the average across
the midpoints of each interval, weighted by the number of vehicles in the interval. However,
this average hourly speed is a noisy measure of the actual speed, as the intervals are fairly
large. In particular, the first interval from 0 to 30 km/hr is large enough to hide important
speed variation during the most congested periods. The data includes roads lengths, average
speeds, and flows, but no occupancy rate measure. We rearrange Equation (16) to express
occupancy rate as a function of the observed variables and we assume a mean car length of
5.9 meters (the average car length we estimated for Paris). We drop observations following
the same criteria as for the city center sensors.

Finally, we compute average speed and occupancy rates by weighting each sensor by the
average traffic flow of the sensor. We find an average speed of 34.9 km/hr and an occupancy
rate of 14.1 % at peak hours, while we find a speed of 36.6 km/hr and an occupancy rate of
11.4 % at off-peak hours.

Additional data for the instrumental variables We use data on accidents recorded
by the National interministerial road safety observatory (ONISR).57 It contains the date
and time of every accident that involved at least one vehicle and where at least one person
required medical care. The information in the dataset comes from the corresponding police
reports of the accidents. During the period 2016 to 2017, the dataset records 25,439 accidents
in the Paris metropolitan area. Additional instruments rely on weather changes. We use data
on weather conditions in Paris at the hourly level from OpenWeatherMap.58

57Source: https://www.data.gouv.fr/fr/datasets/bases-de-donnees-annuelles-des-accidents
-corporels-de-la-circulation-routiere-annees-de-2005-a-2022/.

58See https://openweathermap.org/.
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D.4.4 Fit of the congestion technology models

Table 26 represents the number of observations used to estimate the congestion technologies
for each area and the fit of the models, measured by the R2. The three congestion technologies
have good fits with R2 between 0.18 for the city center and 0.65 for the ring roads. The lower
R2 in the city center probably reflects more idiosyncrasies in traffic speed: traffic lights and
intersections generate heterogeneous traffic flows, implying heterogeneous speeds.

Table 26: Fit of the congestion technology by area
Area Number of observations R2 Degree
Highways 3,844,145 0.63 8
Ring roads 1,197,679 0.65 7
City center 5,124,452 0.18 3
Note: “Degree” represents the degree of the polynomial.

D.5 Additional results on checking the equilibrium uniqueness

D.5.1 Formula for the Jacobian

We provide here the analytical formula for the Jacobian of the contraction defined as:

ga
t (v, κ) = κva

t + (1 − κ)fa(v).

We can identify, in the Jacobian, three types of derivatives: ∂gat (v,κ)
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Given the functional form assumptions we make on the demand model, the derivatives of the
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probability of driving at period t1 with respect to speeds at period t1 and t2 are given by:
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That the factor 6 corresponds to converting speeds in km/hr into tens of minutes, which is
the unit of duration in the individual utility.

D.5.2 Additional results on the equilibrium solving algorithm

We show additional numerical results about the convergence by plotting the average number
of iterations needed to converge for the possible values of κ between 0.5 and 0.95. More
specifically, we draw ten different initial speed values from a uniform distribution over [v,v]
and solve for the speed equilibrium with different values for the tuning parameter. We always
converge to the same equilibrium speeds, suggesting that our algorithm is likely to be a
contraction for lower values of κ than the one we use. Figure 12 indicates the number of
iterations and the convergence time depending on the tuning parameter. The graphs are
very similar when we introduce any policy. The number of iterations and the time increases
exponentially with κ.

Figure 12: Average number of iterations and convergence times (across 10 simulations)
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E Additional results on the policy effects

E.1 Consumer surplus and welfare definitions

To evaluate the impacts of transportation policies on individuals, we rely on changes in
consumer surplus, which measure compensating variations. The consumer surplus per trip
for individual n is defined as the expected utility of the choice that maximizes the utility
conditional on the set of periods available Tn. It is:

CSn|Tn = 1
|αn|

log
∑

j∈Jn
exp(σ log(Dnj))

 ,
where Dnj = ∑

t∈Tn exp
(

β′
nXnjt

σ

)
is the expected utility of the best departure period within Tn

for transportation mode j. αn is the parameter of sensitivity to the trip cost, which converts
the utility into monetary terms. There is a constant utility term that cannot be identified
and is normalized to 0 in the expression above.

The variation of consumer surplus eliminates the constant and thus is identified and given
by:

∆CSn|Tn = 1
|αn|

log
∑

j∈J 1
n

exp(σ log(D1
nj))

− log
∑

j∈J 0
n

exp(σ log(D0
nj)
 .

Where J 1
n and D1

nj represent respectively the choice set and the expected utility of trans-
portation mode j under the counterfactual scenario, while J 0

n and D0
nj represent their initial

values.

In our model with stochastic constraints, the change in individual consumer surplus is thus:

∆CSn = (1 − ϕn)∆CSn|T12 + ϕnπn∆CSn|T1 + ϕn(1 − πn)∆CSn|T2.

We can further decompose the variation in consumer surplus into a partial policy effect
which measures the policy effect at constant initial speeds, and an equilibrium speed effect
under the implemented policy. To make the expression clearer, we make apparent the
dependence between the driving speeds and the utilities associated with the transportation
modes D0

nj(v0) and D1
nj(v1), where v0 and v1 represent the initial and final vectors of speeds.

87



The decomposition is given by:
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|αn|

 log
∑

j∈J 1
n

exp
(
σ log

(
D1

nj(v0)
))− log

∑
j∈J 0

n

exp
(
σ log

(
D0

nj(v0)
))

︸ ︷︷ ︸
policy effect at constant speed

+ log
∑

j∈J 1
n

exp
(
σ log

(
D1

nj(v1)
))− log

∑
j∈J 1

n

exp
(
σ log

(
D1

nj(v0)
))

︸ ︷︷ ︸
equilibrium speed effect



Our welfare change outcome is simply the sum of consumer surplus changes, the potential
toll revenue and the monetary value of emissions avoided:

∆W =
N∑

n=1
ωn

∆CSn +
∑

t={t1,t2}

(
pnts

1
ndt +

(
e1

nts
1
ndt − e0

nts
0
ndt

)
kn

) ,
where pnt is the toll for individual n and period t. e0

nt represents the cost of emissions, per
kilometer, for individual n and period t in the initial situation and e1

nt in the counterfactual
situation. The emission costs are function of the period and the policy environment because
in some specifications the emissions levels depend on the speeds. s0

ndt and s1
ndt represents

the probability to drive in period t under the initial situation, and the counterfactual policy
respectively.

E.2 Social costs of emissions

The values for the social costs of emissions come from a 2019 report from the European
Commission (Van Essen et al., 2019). The values for NOX and PM correspond to the
“transport city” and “transport metropole” values for those pollutants in Table 14 of the
report. For hydrocarbons (HC), we take the value for non-methane volatile organic compound
(NMVOC), which includes hydrocarbons. Finally, for CO2 , we use the “high” cost estimate
from Table 24 in the report.

Table 27 presents the average social cost in cents of euro per km driven for the vehicles in the
final sample (using the baseline emissions estimates). Gasoline cars have, on average, a lower
social cost from emissions than diesel cars. For gasoline cars, CO2 is the main component of
the cost of emissions with a 92.9% share. For diesel vehicles, CO2 only accounts for 62.3% of
emissions costs, while PM and NOX jointly represent 37.6%.
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Table 27: Social costs of emissions per kilometer driven
Gasoline Diesel

Average cost per km 3.4 4.53
Cost composition (in %)
CO2 92.9 62.3
NOX 4.15 16.4
HC 0.36 0.12
PM 2.63 21.2
Note: Average cost in cents of euro per km. All statistics
computed using survey weights, restricting the sample to
the 2010 EGT survey, and using the baseline estimates
of vehicles’ emissions.

E.3 Additional results on the comparison across stringency levels

E.3.1 Importance of endogenous speeds

In Figure 13, we compare our model’s predictions for the proportion of individuals driving
with those from a naive model that would consider speeds and, thus, trip durations fixed. All
scenarios and stringency levels deliver biases under exogenous speeds: we overestimate the
number of individuals substituting away from using their cars at peak hours and underestimate
those who choose to drive at off-peak hours. The improvement of equilibrium speeds indeed
dampens the incentives to stop driving.

Figure 13: Predicted car shares as function of the policy stringency level

0 20 40 60 80
Reduction in distance driven at peak hours (in %)

0

5

10

15

20

25

C
ar

 s
ha

re
 (

%
)

Peak, endogenous speed
Peak, exogenous speed
Off-peak, endogenous speed
Off-peak, exogenous speed

(a) Driving restrictions

0 20 40 60 80
Reduction in distance driven at peak hours (in %)

0

5

10

15

20

25

C
ar

 s
ha

re
 (

%
)

Peak, endogenous speed
Peak, exogenous speed
Off-peak, endogenous speed
Off-peak, exogenous speed

(b) Uniform tolls
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(c) Variable tolls

To further highlight the importance of considering the equilibrium speed adjustments, we
compare the toll revenues predicted under constant speeds with the predictions from our
model. The results in Figure 14 below suggest that not accounting for the speed changes
significantly underestimates the number of individuals paying the toll and the toll revenue.
Moreover, the magnitude of the bias increases with the policy stringency levels, reflecting the
increasing role of speed adjustments.
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Figure 14: Predicted toll revenues under endogenous and exogenous speeds
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E.3.2 Additional outcomes of the policy effects

We provide the equilibrium speeds for the city center, ring roads, and highways in Figure
15. As expected, the speeds increase with the policy stringency level at peak hours, while at
off-peak hours, they decrease. This is the consequence of important shifts towards driving at
off-peak hours. The speed at peak hours increases the most on the highways while there is
much less speed improvement in the city center. At the same time, the off-peak hour speed
in the city center is almost constant, reflecting that individuals driving in the city center
have better alternatives to cars. By contrast, those who drive on the highways and ring roads
are more likely to substitute for driving during off-peak hours.
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Figure 15: Speeds under the different policies and stringency levels
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(b) Uniform tolls
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(c) Variable tolls
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(d) Driving restrictions
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(e) Uniform tolls
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(f) Variable tolls

Off-peak hours

Lastly, we provide in Figure 16 the gains from speed improvements and emissions avoided
relative to the change in consumer surplus. We find that the gains from speed account for
44.7% of the consumer surplus losses associated with the most lenient variable toll. The
gains decrease rapidly with the policy stringency level because individuals are discouraged
from driving and do not benefit from improved speeds. The gains from speeds under uniform
tolls and driving restrictions are modest relative to the large consumer surplus losses and
account for less than 27.1%. Finally, when the policy stringency is very high, the speed
changes become negatively valued since the majority of drivers drive during off-peak hours
when speeds are lower than initially.

In Panel (b) of Figure 16, we see that the benefits of the emissions avoided are small relative
to the consumer surplus losses. The environmental benefits compensate less than 7% of the
consumer surplus losses. The relative importance decreases under the variable toll while it
increases under uniform tolls and driving restrictions. The emissions values must be between
14 and 28 times higher to justify the policies from the standpoint of consumer surplus and
environmental benefits.
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Figure 16: Relative gains from speed improvements and emissions avoided
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(b) Gains from emissions avoided relative to con-
sumer surplus losses

E.3.3 Social planner problem

The welfare function is composed by the consumer surplus (CS), the toll revenue (T ) and
the value of emissions avoided (E):

W =
∑

n

ωnCSn(pn,v(p))︸ ︷︷ ︸
CS

+
∑

n

ωnpnsndt1(pn,v(p))︸ ︷︷ ︸
T

−
∑

t=t1,t2

∑
n

ωnenknsndt(pn,v(p))︸ ︷︷ ︸
E

The following Lagrangian represents the social planner’s program:

L(p) = CS(p,v(p)) + T (p,v(p)) − E(p,v(p)) − λ

(
N∑

n=1
ωnknsndt1(pn,v(p)) − K̄t1

)

The first-order conditions associated to the Lagrangian representing the problem above are:

∂(CS + T − E)
∂pn

+
∑

t

∑
a

∂(CS + T − E)
∂va

t

∂va
t

∂pn

−λωnkn
∂sndt1

∂pn

−λ
∑

t

∑
a

∑
n′
ωn′kn′

∂sn′dt1

∂va
t

∂va
t

∂pn

= 0,

∀pn. The equation above highlights the congestion externalities: the level of pn directly
individual n’s outcomes and indirectly everyone’s outcomes through the speeds.

We can express the derivatives of the different welfare components:

dCS

dpn

= ωn
∂CSn

∂pn︸ ︷︷ ︸
mg. direct change indiv. cons. surplus

+
∑

t

∑
a

∑
n′
ωn′

∂CSn′

∂va
t

∂va
t

∂pn︸ ︷︷ ︸
mg. indirect change agg. cons. surplus

.

The first term represents the direct effect of increasing pn on consumer surplus for individual n.
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The second term reflects congestion externalities on aggregate consumer surplus: increasing
the toll for individual n affects everyone’s consumer surplus through speed changes. Speeds
at peak hours increase while speeds during off-peak hours increase. We expect the marginal
change in aggregate consumer surplus to be positive when the policy is not too strict. However,
for high policy stringency levels, individuals are more likely to drive during off-peak hours than
during peak hours, and the marginal change in aggregate consumer surplus turns negative.
The marginal individual consumer surplus change from a price increase is:

∂CSn

∂pn

= −sndt1 .

Next, we turn to the change in toll revenue:

dT

dpn

= ωn
∂Tn

∂pn︸ ︷︷ ︸
mg. direct change in toll revenue from n

+
∑

t

∑
a

∑
n′
ωn′pn′

∂sn′dt1

∂va
t

∂va
t

∂pn︸ ︷︷ ︸
mg. indirect change in total toll revenue

,

where:
∂Tn

dpn

= sndt1︸ ︷︷ ︸
positive effect on toll revenue

+ pn
∂sndt1

∂pn︸ ︷︷ ︸
negative on toll revenue through substitution

.

In the expression above, we see the standard two effects of increasing the toll: a positive effect
that increases the toll revenue by ωnsndt1 , and a negative effect that reduces the toll revenue
proportionally because individuals substitute to other modes and periods. If we consider
the sum of consumer surplus and toll revenue, the direct impact of the toll on consumer
surplus and the positive effect on the toll revenue cancel out. Since the toll revenue is entirely
redistributed, the value of the toll is neutral from the sum of consumer surplus and the toll
revenue point of view. We thus have:

∂(CSn + Tn)
∂pn

= pn
∂sndt1

∂pn

.

Finally, we look at the derivative with respect to the emissions cost:

dE

dpn

= ωnenkn
∂(sndt1 + sndt2)

∂pn︸ ︷︷ ︸
mg. direct change in emissions from n

+
∑

t

∑
a

∑
n′
ωn′en′kn′

∂(sn′dt1 + sn′dt2)
∂va

t

∂va
t

∂pn︸ ︷︷ ︸
mg. indirect change in emissions from all indiv.

In the previous equation, we see that what matters regarding emissions is how much the
total probability of driving changes from pn. If individuals only substitute inter-temporally
and keep driving, we obtain no reduction in emissions.
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We can rewrite the Lagrangian first-order condition as:

ωnpn
∂sndt1

∂pn

− ωnenkn
∂(sndt1 + sndt2)

∂pn

− λωnkn
∂sndt1

∂pn

+
∑

t

∑
a

∑
n′
ωn′

(
∂CSn′

∂va
t

+ pn′
∂sn′dt1

∂va
t

− en′kn′
∂(sn′dt1 + sn′dt2)

∂va
t

− λkn′
∂sn′dt1

∂va
t

)
∂va

t

∂pn

= 0

Intuitively, the social planner sets the toll to equalize its marginal benefits to the its marginal
costs:

−ωnenkn
∂(sndt1 + sndt2)

∂pn

− λωnkn
∂sndt1

∂pn︸ ︷︷ ︸
marginal direct benefits

+
∑

t

∑
a

∑
n′
ωn′

(
∂CSn′

∂va
t

+ pn′
∂sn′dt1

∂va
t

)
∂va

t

∂pn︸ ︷︷ ︸
marginal indirect benefits

= −ωnpn
∂sndt1

∂pn︸ ︷︷ ︸
marginal direct costs

+
∑

t

∑
a

∑
n′
ωn′

(
en′kn′

∂(sn′dt1 + sn′dt2)
∂va

t

+ λkn′
∂sn′dt1

∂va
t

)
∂va

t

∂pn︸ ︷︷ ︸
marginal indirect costs

The marginal benefits include the direct reduction in emissions, the relaxation of the traffic
level constraint, and the indirect effects on aggregate consumer surplus and toll revenue.
The marginal costs of increasing pn are related to the direct decrease in toll revenue from
substitution, the indirect increase in everyone’s emissions, and the tightening of traffic
constraints from improved speeds.

If we ignore the indirect effects from congestion externalities, we obtain the following
equation that defines the optimal toll:

pn = enkn

(
1 + ∂sndt2/∂pn

∂sndt1/∂pn

)
+ λkn,

which indicates that pn should be proportional (with the same factor λ) to the number of
kilometer driven if the emissions costs are small relative to the shadow cost of reducing traffic.

E.3.4 Welfare-maximizing personalized tolls and individual characteristics

Figure 17 shows the distribution of personalized tolls across demographics using quadratic
local linear regressions. On the same graph, we provide the average variable toll that achieves
the same traffic level as a benchmark. We see that the personalized tolls set higher values for
middle-aged individuals and high-income individuals. We notice the same pattern arising
under variable toll, indicating that most heterogeneity is related to distance heterogeneity.
When looking at the relationship between tolls and distance, we see that personalized tolls
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provide cheaper tolls to long-distance commuters. Both variable and personalized tolls increase
with speed in public transport. However, the difference between personalized and variable
tolls increases with speed, indicating that the social planner favors individuals with inefficient
public transport alternatives. When investigating the relation between the personalized tolls
and schedule constraints, we find that the social planner sets higher tolls for individuals with
a high probability of being flexible and a low probability of being constrained to peak-hour
commutes.

Figure 17: Welfare-maximizing tolls and demographic characteristics
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E.3.5 Consumer surplus-maximizing personalized tolls and individual charac-
teristics

Figure 18 shows that the tolls increase with income, but the heterogeneity across income
levels is much lower than the one related to age. The social planner sets very low tolls
for young individuals, while individuals between 20 and 30 are associated with the highest
tolls. When looking at the relationship between tolls and distance, we see that personalized
tolls rapidly increase with distance and decrease. Personalized tolls increase with speed in
public transport, the highest average tolls are for individuals with a public transport speed
above 40 km/hr. This highlights the importance of the public transport alternative for the
consumer surplus loss. When investigating the relation between the personalized tolls and
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schedule constraints, we find that the social planner sets higher tolls for individuals with a
high probability of being flexible and a low probability of being constrained to peak-hour
commutes.

Figure 18: Consumer surplus-maximizing tolls and demographic characteristics
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E.4 Additional results for the benchmark policy levels

E.4.1 Change in consumer surplus, professional activity and schedule constraints

Table 28 provides the average variation in consumer surplus by professional activity at
the benchmark stringency level across policies. Among employed individuals, workers in
education, health, public, retail, and private employees are the most affected by the policies.
Figure 19 provides the average consumer surplus variation across the range of probabilities
characterizing the schedule constraints. Panel (a) presents the variation according to the
probability of being able to choose the departure time. Panels (b) and (c) show the variation
in average consumer surplus according to the probabilities of being constrained to commute
at peak or off-peak hour respectively. We find that the driving restriction and the uniform
toll hurt more individuals with a low probability to be able to choose a departure time, in
particular those with a high probability to be constrained to peak hour commute.
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Table 28: Average consumer surplus change by professional activity
Socio-professional Driving Uniform Variable Personalized
activity restriction toll toll tolls
Farmers -2.31 -1.59 -0.624 -0.472
Craftspersons -0.587 -0.769 -0.48 -0.361
Shopkeepers -0.376 -0.523 -0.38 -0.273
Entrepreneurs, self-employed -0.415 -0.531 -0.357 -0.323
Public executives -0.48 -0.547 -0.322 -0.326
Private executives -0.452 -0.526 -0.422 -0.367
Education, health -0.959 -0.871 -0.433 -0.411
Administrative professions -0.548 -0.534 -0.396 -0.39
Technicians -0.652 -0.691 -0.529 -0.453
First-line supervisors -0.802 -0.659 -0.641 -0.503
Public employees -0.859 -0.667 -0.322 -0.367
Private employees -0.75 -0.661 -0.401 -0.427
Retail employees -0.863 -0.644 -0.355 -0.369
Services -0.515 -0.432 -0.144 -0.154
Qualified workers -0.749 -0.579 -0.403 -0.394
Unqualified workers -0.615 -0.447 -0.269 -0.291
Average -0.491 -0.568 -0.311 -0.306

Figure 19: Average surplus change and schedule constraints
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E.4.2 Additional aggregate outcomes

The aggregate shares of transportation modes are reported in Table 29. They reveal a moderate
inter-temporal modal shift towards driving at off-peak hours. The share of individuals
commuting during off-peak hours rises by at most 1.2 percentage points. The share of car
users at peak hours drops under all policies, but the magnitudes differ. For example, driving
restrictions and uniform tolls decrease the number of car users by 7 and 9.9 percentage points,
respectively. By contrast, the variable toll and personalized tolls only reduce it by 3.7 and
4.3 percentage points, respectively. The variable and personalized tolls indeed discourage
individuals with long distances from driving; therefore, the number of drivers remains relatively
high. For the same reason, we observe important differences in the modal shifts across policies:
driving restrictions and the uniform toll increase the fraction of individuals who walk and
take public transport more than the variable toll.
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Table 29: Predicted shares of the transportation modes under different policies
Initial Driving Uniform Variable Personalized

restriction toll toll tolls, max W
Pub. transport, peak 33.7 37.1 37.7 35.7 36.2
Car, peak 24 17 14.2 20.3 19.7
Walk, peak 14.9 16.4 18.3 15.3 15.4
Bicycle, peak 1.88 2.21 2.39 2 2.02
Motorcycle, peak 1.28 1.48 1.52 1.4 1.42
Pub. transport, off-peak 11.6 11.9 12 11.9 11.9
Car, off-peak 8.48 9.66 9.65 9.23 9.11
Walk, off-peak 2.77 2.83 2.9 2.78 2.79
Bicycle, off-peak 0.566 0.584 0.596 0.573 0.576
Motorcycle, off-peak 0.756 0.788 0.801 0.79 0.794
Total car 32.5 26.7 23.8 29.6 28.8
Total pub. transport 45.4 49 49.7 47.6 48.1
Total peak hours 75.8 74.2 74 74.7 74.8
Total off-peak hours 24.2 25.8 26 25.3 25.2
Note: in %.

Impacts on individual trip durations We complement the analysis by looking at how
the policies impact expected travel times in Table 30 below. First, there is a large difference
in the total travel time increase across policies: under the variable and personalized toll, it is
only 11.7 and 12.5 thousand hours against 58 and 85.7 thousand hours under the driving
restriction and the uniform toll, respectively. This reflects the more extensive substitution for
driving at off-peak hours for long-distance commuters under the variable and personalized
tolls. Indeed, driving during off-peak hours remains relatively fast but it generates consumer
surplus losses because of the disutility for commuting during off-peak hours. In addition,
individuals drive faster due to speed improvements.

All policies increase the average travel time; driving at peak hours becomes faster, but
individuals rely less on this mode. We observe important dispersion in travel time change
and a skewed distribution. Travel time increases are as high as more than 1.5 hours under
variable and personalized tolls. Under all policies, some individuals reduce their expected
trip durations. The variable toll has the largest share of individuals with reduced travel
times, with 53.6% of the individuals, followed by personalized tolls with 50.2%. The driving
restriction and uniform toll reduce travel time for 34.5 and 38.8% of individuals, respectively.
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Table 30: Change in trip duration under the policies
Driving Uniform Variable Personalized

restriction toll toll tolls, max W
Total ∆duration (in 1,000 hrs) 58 85.7 11.7 12.5
Min ∆duration -4.78 -8.13 -8.5 -11.4
Mean ∆duration 1.15 1.7 0.233 0.249
Max ∆duration 60 91.3 115.8 118.8
% ∆duration > 0 65.5 61.2 46.4 49.8
% ∆duration < 0 34.5 38.8 53.6 50.2
Note: ∆duration are in minutes, except “Total ∆ duration”. The shares of individuals with an
increase/decrease in trip duration are for potential drivers.

Speed changes We analyze the speed changes by area in Table 31. The variable toll most
improves the speed on the highways at peak hours (+19.7 km/hr). The variable toll is also
better than the driving restriction and uniform toll at improving the speed on the ring roads
at peak hours. However, it raises speeds in the city center and the suburbs at peak hours
less than these alternative policy instruments. This occurs because the individuals who drive
on the highways and ring roads tend to drive long distances and are discouraged from using
their cars at peak hours. However, they do not have good transportation alternatives, so they
drive during off-peak hours. Personalized tolls have different effects on speeds than variable
tolls: they most enhance the speeds at peak hours in the city center and the ring roads.

Across the regulations, the areas with the smallest improvements are the city center and
the suburbs, revealing the low scope for speed improvements from the congestion technologies
in these areas. The speeds at off-peak hours decrease in all areas but remain much higher
than the initial levels at peak hours. This reflects the imperfect substitution between driving
at peak and off-peak hours as individuals face important schedule constraints.

Table 31: Predicted speeds under the different policies
Area Initial Driving Uniform Variable Personalized

restriction toll toll tolls, max W
Peak hours Highways 59.3 74.7 72.4 79 77.7

City center 13.1 15 16.1 14.8 17.6
Ring roads 29 35.4 36.4 37.1 44.1
Close suburbs 16.2 18 18.5 17.4 18.1
Far suburbs 24.8 26.8 26.8 26.4 26.1

Off-peak hours Highways 88.2 85.6 86.1 83.9 85.3
City center 19.1 18.7 18.7 18.8 18.5
Ring roads 46.8 45.7 46 45.8 45
Close suburbs 20.3 19.9 19.9 20 19.9
Far suburbs 28.8 28.3 28.3 28.3 28.5

Note: in km/hr.

Marginal costs of congestion Table 32 presents the marginal congestion costs for each
area and period under the different policies. We provide the marginal costs associated
with adding one average driver in each area to account for differences in area sizes. All
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policies reduce the marginal costs of congestion at peak hours and increase the marginal
costs during off-peak hours. The reductions are quite large and heterogeneous across policies.
The personalized tolls are particularly efficient at reducing the marginal congestion costs on
the highways and ring roads (-60.8% and -60.5%). The marginal costs at off-peak hours are
always lower than at peak hours, reflecting the mild intertemporal substitution of drivers.

Table 32: Marginal costs of congestion under the different policies
Area Initial Driving Uniform Variable Personalized

restriction toll toll tolls, max W2
Peak hours Highways 4.39 1.96 2.39 1.58 1.72

City center 4.26 3.28 3.11 3.64 2.6
Ring roads 4.24 2.81 2.82 2.68 1.67
Close suburb 1.57 1.06 1.06 1.29 1.14
Far suburb 0.893 0.569 0.637 0.681 0.724

Off-peak hours Highways 0.683 0.888 0.83 1.01 0.894
City center 1.81 1.9 1.86 1.84 1.91
Ring roads 1.2 1.32 1.26 1.28 1.36
Close suburb 0.599 0.668 0.654 0.633 0.643
Far suburb 0.323 0.388 0.369 0.375 0.353

Note: marginal costs associated to adding an average driver, in e.

E.5 Robustness checks for the policy simulations

E.5.1 All-day policies

In this section, we analyze the impacts of policies applied during the entire morning across
all stringency levels as in Section 5.3. For this exercise, the traffic reduction is computed
from the sum of kilometers driven at peak and off-peak hours. Figure 20 presents the main
outcomes of interest across the three policies for all stringency levels. Panel (a) shows that
the ranking between policies regarding welfare remains the same as before. However, policies
enhance welfare for a smaller set of stringency levels. Indeed, we obtain welfare gains for
traffic reductions below 26% with the uniform toll and 45% with the variable toll.

Panel (b) reveals that, as before, no policy increases the aggregate consumer surplus.
Additionally, we see that consumer surplus losses are much higher than those of the peak-hour
policies. For instance, with a variable toll and for a traffic reduction of 20%, consumer surplus
loss is e2 million if the policy is applied all day against e0.98 million if it is only applied at
peak hours. This highlights the role of departure time substitution in mitigating consumer
surplus losses.

Finally, Panel (c) shows similar trends in terms of toll revenue between peak and all-day
policies. The toll revenues are much higher with policies applicable to all day, as we obtain
e1.4 million for a variable toll at peak hour that reduces traffic by 20% and e2.4 million
under a variable toll applied all day that reduces traffic by the same percentage.
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Figure 20: Change in welfare, consumer surplus, and toll revenue under all-day policies
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Figure 21 presents the change in emissions, average tolls, and average distance driven across
stringency levels for the all-day policies. We find graphs similar to those for the peak-only
policies presented in Figure 4. Panels (a) and (b) show that gains from emissions reductions
almost double, while the average toll is a bit higher for all-day policies than for peak-hour
policies. From Panel (c), the average number of kilometers driven per trip remains similar
between all-day and peak-only policies across all stringency levels. This result signals that
the individuals targeted by the policies do not vary depending on whether the policy applies
only at peak hours or all day. We take these results as evidence that the main results from
our analysis of peak policies apply to all-day policies.

Figure 21: Additional policy outcomes under all-day policies
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E.5.2 Increase in public transport overcrowding

We analyze how the welfare effects of the benchmark variable toll are modified when over-
crowding in railway public transit increases. We consider the policy to be followed by a 15%
and 30% increase in the overcrowding levels in public transport. These factors are much
higher than what we should realistically expect since the benchmark variable toll raises the
average probability of using public transport by only 5.9% at peak hours and 2.3% during
off-peak hours. Table 33 shows that the toll revenue remains almost constant under the
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three scenarios since the share of individuals driving is barely affected by the change in the
overcrowding level. However, the consumer surplus decreases by 9.2% and 18.4% more than
in the baseline setting. Yet, we still obtain that the variable toll is a welfare-enhancing policy.

Table 33: Effects of the variable toll with overcrowding level changes in public transit
Baseline Overcrowding Overcrowding

+15% +30%
Total ∆CS (Me) -1.19 -1.3 -1.41

∆CS at constant speed -1.74 -1.84 -1.95
∆CS from speed 0.55 0.543 0.536

Total ∆wCS (Me) -1.04 -1.14 -1.24
Tax revenue (Me) 1.64 1.64 1.65
Value emissions avoided (Me) 0.078 0.077 0.075
∆W = ∆CS + Tax rev. - ∆E (Me) 0.525 0.418 0.311
% ∆CS = 0 21.2 9.19 9.19
% ∆CS > 0 6 3.16 2.28
% ∆CS < 0 72.8 87.7 88.5
Note: The share of individuals with positive/negative/no consumer surplus change are relative to
the entire population.

E.5.3 Removing schedule constraints

In this robustness check, we analyze the incidence of our estimated schedule constraints
on the policy effects. We keep the same model parameters except that the probabilities of
being schedule-constrained are set to zero for everyone and then to one for everyone. We
solve the equilibrium without policy and with the benchmark variable toll for each scenario
regarding the ability to choose the departure time. Table 34 shows that the toll generates
lower consumer surplus losses when we remove the schedule constraints. This is intuitive
because consumers are able to do more inter-temporal substitution to avoid paying the road
toll. As a consequence, the toll revenue is lower, which makes the change in welfare lower
than with our estimated schedule constraints.

Under full schedule constraints, we find the reverse. The variable toll generates more
consumer surplus losses and more toll revenue than in the baseline situation, resulting in
higher welfare gains. However, we see that the policy efficiency, in terms of traffic reduction,
is lower under full schedule constraints than with less schedule constraints. These results
show that the schedule constraints matter for the policy efficiency but not so much for the
magnitude of the welfare gains.
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Table 34: Welfare effects of the variable toll under different schedule constraints
Baseline No schedule Full schedule

constraints constraints
Total ∆CS (Me) -1.19 -1.15 -1.25

∆CS at constant speed -1.74 -1.66 -1.89
∆CS from speed 0.55 0.514 0.639

Total ∆wCS (Me) -1.04 -1.01 -1.06
Toll revenue (Me) 1.64 1.59 1.78
Value emissions avoided (∆E, Me) 0.078 0.072 0.087
∆W = ∆CS + Tax rev. - ∆E (Me) 0.525 0.51 0.622
Dist. driven at peak hours (10,000 km) 8.63 8.38 9.39

E.5.4 Change in unobserved traffic

We now measure the welfare consequences of the benchmark variable toll when considering
the unobserved part of the traffic changes. More specifically, we assume the unobserved part
of the traffic homogeneously decreases by 24% at peak hours and increases by 14% during
off-peak hours. These factors correspond to the average changes in traffic under the variable
toll. Table 35 shows that the value of the speed improvements is 80.5% higher when we
consider the change in the unobserved traffic. Despite that, the variable toll still reduces
aggregate consumer surplus by e749,000. The toll revenue increases by 12.1%: speed gains
are larger, so individuals are willing to pay more to drive. Ultimately, the welfare gains are
much higher than without adjustment of the unobserved traffic despite a lower gain from
emissions reductions.

Table 35: Welfare effects of the variable toll with changes in unobserved traffic levels
Baseline Change in Ka

0
Total ∆CS (Me) -1.19 -0.749

∆CS at constant speed -1.74 -1.74
∆CS from speed 0.55 0.992

Total ∆wCS (Me) -1.04 -0.671
Tax revenue (Me) 1.64 1.84
Value emissions avoided (Me) 0.078 0.065
∆W = ∆CS + Tax rev. - ∆E (Me) 0.525 1.15
% ∆CS > 0 7.62 24.6
% ∆CS < 0 92.4 75.4

F Additional policy instruments

F.1 Auctioned driving license

We consider a simple uniform second-price auction to allocate a fixed number of driving
licenses. The equilibrium price is the highest rejected bid. This auction format implies that
individuals bid their true license valuation, which is determined by the difference between
their expected utility with and without the right to drive. We assume individuals perfectly
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anticipate the speed improvements, but they do not know their preference shocks before
submitting their bids.

The uniform toll is well-suited to a comparison with the auction as they both put a price on
the right to drive. However, there is an essential difference from the perspective of individuals.
Under the toll, individuals decide to drive after their schedule, mode, and departure time
preference shocks are realized. While under the auction, individuals have to submit their bid
for the license before receiving their preference shocks and lose the ability to react in case of
extreme preference shocks.

We use an iterative algorithm to solve for the license price together with the equilibrium
speeds for a given quota of driving licenses. Our algorithm cannot find a stable equilibrium for
some values of the quota of driving licenses. We thus select the quota of driving licenses that
implies the closest outcome to the one obtained in our main policies. Then, we re-calibrate
the uniform toll to match the traffic reduction exactly across policies. We find that the
uniform toll of e4.2 achieves the same traffic reduction (24.4%) as introducing a quota of
driving licenses that allow 28.8% of the cars on the road. The equilibrium license price is e3.

Since individuals who get the license pay for it regardless of how often they decide to drive
at peak hours, the policy generates considerably higher consumer surplus losses. Individuals
can no longer react to good or bad realisations of their preference shocks for driving. Indeed,
the driving license regulation causes 70.6% more consumer surplus losses than the uniform
toll. The license generates 17.7% more revenue and 24.6% more values from emissions avoided.
However, these benefits are insufficient to compensate for the large consumer surplus loss,
causing a net welfare loss of e0.95 million, while the uniform toll enhances welfare. Finally,
this policy generates only two percent of winners, indicating that the cost of a driving license
is too high relative to the gains from speed for most individuals.

Table 36: Welfare effects of a uniform toll and auctioned driving license
Uniform toll License

Total ∆CS (Me) -2.18 -3.72
∆CS at constant speed -2.8 -4.45
∆CS from speed 0.616 0.732

Total ∆wCS (Me) -2.01 -3.42
Toll/license revenue (Me) 2.27 2.67
Value emissions avoided (Me) 0.088 0.11
∆W = ∆CS + Tax rev. + ∆E (Me) 0.173 -0.945
% ∆CS > 0 4.29 2.04
% ∆CS < 0 95.7 98
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F.2 Attribute-based driving restrictions

Low emission zone policies are widely used in Europe.59 They impose driving restrictions
based on fuel type and vintage combinations to remove the most pollutant cars from the roads.
Attribute-based policies are thus more cost-efficient at reducing emissions but generate greater
heterogeneity across individuals than simple driving restrictions. We study the trade-off
policymakers face by comparing the standard driving restrictions against two attribute-based
policies: one banning all vehicles below a particular vintage and one banning diesel cars
with a certain probability. While individuals are likely to change their cars in response to
such policy, as shown by Barahona et al. (2020), we abstract from any effect on the fleet’s
composition.

As before, we calibrate the policies to reach the same traffic reduction. Since car vintage is
a discrete variable, we cannot precisely match the expected number of kilometers at peak
hours with only this parameter. We use the strictest vintage and assume that individuals
are subject to the policy with a probability lower than one. This technical assumption can
be interpreted as the frequency at which the policy is implemented. The policy parameter
for diesel-based restriction is the probability of being restricted for a diesel-car owner. The
calibrated parameters are as follows: the vintage cut-off is 2004, and the policy should be
applied 87.6% of the time. This regulation restricts 48.5% of the population. The diesel-based
restriction should be applied 52.8% of the time and affects 59.4% of the people.

As Table 37 suggests, the vintage-based policy generates e2.09 million of consumer surplus
losses versus e1.85 million for the untargeted driving restriction. The diesel-based restriction
causes lower consumer surplus losses than the vintage one (e1.78 million). Under the vintage-
and diesel-based regulations, 51.5% and 41% of the potential drivers experience a consumer
surplus increase, respectively. Targeted driving restrictions put the traffic reduction burden
on only a fraction of the potential drivers. By contrast, standard restrictions share the traffic
reduction burden on a larger number of individuals. We see that the vintage-based driving
restriction can generate a consumer surplus loss of up to e90 while the maximal surplus loss
is e34 under standard driving restrictions.

The vintage-based restriction is more efficient at reducing emissions. This is not the case
for diesel-based driving restrictions that generate lower gains from emissions avoided. Indeed,
diesel cars emit more harmful local pollutants but less carbon emissions. However, since the
emissions value is small relative to the consumer surplus loss, the diesel-based policy remains

59For instance, in 2024, 66 German cites and 16 French cities are under low emission zone restrictions.
Madrid, Barcelona, Milan, Rome, and Naples are additional examples of large cities with this type of policy.
Source: https://urbanaccessregulations.eu/countries-mainmenu-147. Last accessed: 09/18/2024.
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the best policy for welfare.

Table 37: Welfare effects of standard and attribute-based driving restrictions
Standard Vintage-based Diesel-based

Total ∆CS (Me) -1.88 -2.12 -1.81
∆CS at constant speed -2.42 -2.7 -2.31
∆CS from speed 0.538 0.574 0.508

Total ∆wCS (Me) -1.78 -2.47 -1.71
Value emissions avoided (Me) 0.085 0.11 0.096
∆W = ∆CS + ∆E (Me) -1.79 -2.01 -1.71
% ∆CS > 0 8.48 51.5 41
% ∆CS < 0 91.5 48.5 59
Min ∆CS (e) -34.7 -91.1 -53.8
Max ∆CS (e) 1.61 7.2 5.88

F.3 Improving public transport

The main analysis of the paper focuses on policies targeting drivers. Our model can also
provide insights into how improvements to public transport can mitigate consumer surplus
losses related to traffic-reducing policies. However, we do not evaluate public transport
improvements and their effects at the same level of detail as Almagro et al. (2024), who have
a micro-founded model that determines bus trip durations from bus frequencies and traffic.

We consider four scenarios. First, we improve public transport coverage by allowing the
13.8% of individuals who initially do not have access to public transport to use a hypothetical
public transport service.60 In the second scenario, we target improvement in public transport
by assigning the median public transport speed to individuals below that value. In the third
scenario, we consider a homogeneous improvement that raises all individual speeds by 23.2%.
This speed improvement factor is such that the targeted and homogenous speed improvements
generate the same average speeds. Finally, in the last scenario, we make public transport free.

For each scenario, we measure the changes in outcomes by comparing the traffic equilibria
with and without the benchmark variable toll, both under the new public transport environ-
ment. The welfare effects from the variable toll under different public transport environments
are provided in Table 38. Public transport improvements reduce consumer surplus losses
from the toll. The consumer surplus losses are the lowest under the homogeneous speed
improvement. However, because public transport has become more attractive, individuals
are less likely to pay the toll, considerably reducing the revenue raised. Moreover, reducing
consumer surplus losses does not compensate for the lower toll revenue, generating lower
welfare gains. Nevertheless, we obtain positive welfare effects from the toll, indicating that
even after the public transport environment improvement, there is a gain from road pricing.

60We use the median characteristics of public transport: a speed of 15.1 km/hr, a price of e1.63, overcrowding
levels of 120% at peak hours and 36% at off-peak hours, one layover, and not using the railway system only.
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Note also that this welfare measure does not include public transport revenue, which would
increase in the first three scenarios. Across scenarios, the share of winners from the toll
decreases after improvements to public transport have been implemented. Changing the
public transport environment does not reduce the magnitudes of the largest consumer surplus
losses but reduces the maximum gains. This is because the gains from speeds are lower under
an improved public transport environment, not compensating for the toll paid.

Table 38: Welfare effects of the benchmark variable toll under public transport improvements
Baseline (1) (2) (3) (4)

Total ∆CS (Me) -1.19 -1.19 -1.15 -1.13 -1.14
∆CS at constant speed -1.74 -1.74 -1.68 -1.53 -1.6
∆CS from speed 0.55 0.548 0.522 0.409 0.454

Toll revenue (Me) 1.64 1.63 1.57 1.39 1.47
Value emissions avoided (∆ E, Me) 0.078 0.078 0.079 0.084 0.078
∆W = ∆CS + Toll rev. + ∆E (Me) 0.525 0.524 0.498 0.346 0.404
% ∆CS > 0 7.62 7.61 7.46 6.03 5.93
% ∆CS < 0 92.4 92.4 92.5 94 94.1
Min ∆CS (e) -7.43 -7.43 -7.42 -6.61 -7.48
Max ∆CS (e) 3.25 3.26 3.37 1.32 1.81
Note: (1): Coverage improvement. (2): Targeted speed improvement. (3): Homogeneous
speed improvement. (4): Free access.

F.4 Discussion about the scope of the model

Change in road congestion technology Recent urban policies consist of pedestrianization
of specific roads, as well as their conversion into bike lanes. By reducing the road capacity
for cars, such policies reduce speed for the same level of traffic. We can model such
policies as changes in the congestion technologies, either through parallel shifts of the curves
or a proportional decrease in speed along the curve. Alternatively, we could also model
improvements to road congestion technology, such as a road capacity increase or autonomous
vehicles that would make traffic smoother.

Pricing a fraction of the road Hall (2018) and Hall (2021) suggest that setting a toll on
a fraction of the roads is efficient because it induces self-selection of individuals according
to their sensitivity to travel time against price. We could consider introducing a toll on a
fraction of 1/h of the roads in area a. We denote by a1 the tolled road and a2 the free one.
Conditional on driving, individual n chooses the tolled road if βduration

n durationnda1 +αnpa1 ≥
βduration

n durationnda2 (abstracting from the departure time choice). Once we know the chosen
road conditional on driving, we can also calculate the probabilities of driving and the
expected traffic level on each road. Since capacity is divided by h, the speed on road a1

is va1 = fa(hϕaKa1 + Ka
0 ), where Ka1 is the traffic level on road a1. The factor h reflects

the road capacity reduction: the same number of kilometers driven implies a higher level of
traffic.
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Carpooling We have recently seen some initiatives to encourage carpooling. The U.S. has,
for instance, a long tradition with high occupancy lanes in 27 metropolitan areas. While
our model cannot predict the impacts of dedicating special lanes to carpooling and how
individuals decide whether or not to carpool, we can still evaluate the benefits of carpooling
under some simple assumptions. For instance, assuming that everyone has to carpool with
three other people, a carpooling requirement amounts to considering that individuals are
only driving one-fourth of their kilometers. Thus, it is equivalent to modifying the mapping
parameter between the number of kilometers driven and the occupancy rate in Equation (14)
to ϕ̃a = ϕa/4. The model can easily accommodate different cost-sharing assumptions and
include detours that increase driving times. However, endogeneizing the decision to carpool
is beyond the scope of the model.

Modifying work conditions We could consider policies incentivizing working from home
a fraction of the time. We can model this similarly to carpooling. For instance, if we assume
individuals work from home one (random) day per week, it reduces the expected number
of kilometers driven by 20%. This is equivalent to modifying the mapping parameter in
equation (14) between the number of kilometers driven and the occupancy rate to ϕ̃a = 4

5ϕ
a.

We can also deal with heterogeneous individual-specific remote work propensity. We would
consider the number of kilometers of individual n to be k̃n = (1 − δn)kn, where δn represents
the fraction of the time individuals work from home. However, endogeneizing the choice of
working from home is outside the scope of the model.

Parking cost and availability Recent literature shows the importance of parking prices
and availability on traffic levels (Ostermeijer et al., 2022). The model can easily evaluate
the effect of increasing parking prices through targeted increases in the costs of car trips.
However, it would be more challenging to predict the impacts of policies affecting parking
availability since we do not model the parking choice and we ignore the potential parking
time in the car trip durations.
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