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Abstract: We consider the problem of identifying the parameters of a time-homogeneous

bivariate Markov chain when only one of the two variables is observable. We show that,

subject to conditions that we spell out, the transition kernel and the distribution of the

initial condition are uniquely recoverable (up to an arbitrary relabelling of the state space

of the latent variable) from the joint distribution of four (or more) consecutive time-series

observations. The result is, therefore, applicable to (short) panel data as well as to (sta-

tionary) time series data.
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1 Introduction

Let Y0, Y1, . . . , YT be a bivariate random process on a finite state space. Once the random

variable Y0 has been drawn from an initial distribution, the sequence Y1, . . . , YT evolves

according to a time-homogeneous Markov chain. Partition Yt as (Xt, Zt). The random

variables X0, X1, . . . , XT can take on r values and are observable. The random variables

Z0, Z1, . . . , ZT can take on q values and are latent. We complete the model with the

assumption that the transition probability

P(Xt = x′, Zt = z′|Xt−1 = x, Zt−1 = z)

factors as

P(Xt = x′|Xt−1 = x, Zt = z′)× P(Zt = z′|Xt−1 = x, Zt−1 = z). (1)

This is a redundancy statement on further lags of the latent variable and is intuitive.

Our aim is to recover the distribution of the initial condition Y0 and the (time-invariant)

transition probabilities from Yt−1 to Yt from the distribution of X0, X1, . . . , XT alone. We

show that, subject to conditions that are spelled out below, this is possible as soon as

three (consecutive) transitions are observed, i.e., T ≥ 3. Here, identification is to be

understood as being up to an arbitrary relabeling of the state space of the Zt. Such a

permutational ambiguity is standard in models with latent variables and is harmless for

our current purposes.

The state space of the Xt is taken to be the set of positive integers up to r and the state

space of the Zt is normalized to the set of positive integers up to q. The former restriction
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is imposed for notational convenience—translation to a general set is immediate—while

the latter normalization, given that the process in question is unobserved, is without loss

of generality. Also, given that the state spaces are finite, restricting attention to scalar

random variables is innocuous.1

While we focus on identification, our results justify estimation from short panel data

with non-stationary initial conditions as well as from a single long time series, provided

that the initial condition is drawn from the steady state distribution. In either case, given

the discreteness of the variables involved, estimation can be done by maximum likelihood,

typically using a version of the EM algorithm.2 This is well understood; see, for example,

Ailliot and Pène (2015) and Pouzo, Psaradakis and Sola (2022) for details. Procedures to

recover parameters of structural dynamic discrete-choice models that fit our framework are

1Suppose that we observe k-dimensional vectors Xt whose entries can take on, respectively, r1, . . . , rk

values. Enumerate all values in the state space of Xt and define a scalar random variable Xt on this set of

numbers as a known one-to-one transformation of Xt. Such a construction is always possible. The state

space of the inducedXt consists of r = r1×· · ·×rk values. Identification of the Markov process Yt = (Xt, Zt)

then implies identification of the corresponding process (Xt, Zt). Similarly, if we are interested in a scalar

outcome in the presence of a (possibly vector valued) discrete covariate, we may define Xt to be the vector

containing both the outcome of interest and the covariate and proceed to identify the Markovian dynamics

of (Xt, Zt) in the manner just described. From this identification of the conditional law then follows

readily.
2Alternatively, as our identification argument is constructive, an estimator based on it can be developed.

Computationally this can be achieved by working with the algorithm put forth in Higgins and Jochmans

(2021). Asymptotics for such an estimator could be derived by following arguments along the lines of those

in Bonhomme, Jochmans and Robin (2016a).
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given in Hotz and Miller (1993), Bajari, Benkard and Levin (2007), Arcidiacono and Miller

(2011), and Connault (2016), among others.

Versions of the model that we study have been used in applied work, an early example

is Miller (1984), and the question of identification has been investigated by Hu and Shum

(2012).3 While their result has a flavor that is similar to ours, their approach and the

assumptions underlying it are different in several respects. We detail these differences

below.

The setup under study here also encompasses the hidden Markov model (see, e.g.,

Cappé, Moulines and Rydén 2005, Gassiat, Cleynen and Robin 2016, and Bonhomme,

Jochmans and Robin 2016a) and the multivariate mixture model (Anderson 1954, Hall

and Zhou 2003, Hu 2008, Kasahara and Shimotsu 2009, Bonhomme, Jochmans and Robin

2016a,b, Vandermeulen and Scott 2020, Higgins and Jochmans 2023). Even though our

arguments bear some similarity with some of the approaches to identification taken there,

the fact that the observed and unobserved variables are allowed to be jointly Markovian

makes the key restrictions used there inapplicable here.

For the main part of the paper we will be concerned with the question of identification

from knowledge of the joint distribution of four time-series observations. In Section 2 we set

3They look at the case where r = q, also allowing for the variables Xt and Zt to both be continuous.

In addition, Hu and Shum (2012) also consider the situation where the transition kernel is time-varying, in

which case they obtain identification results only for the transitions between a subset of the available time

periods. Although we do not focus on this here, the arguments we develop in this paper could equally be

used in that extended setup.
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up notation for what is directly identified from data and for the primitive parameters of the

model. In Section 3 we state the assumptions under which we will work, provide discussion,

and state our main result. In Section 4 we then present a detailed proof. In Section 5 we

discuss how our assumptions and approach differ from Hu and Shum (2012). In Section 6

we show how our approach can be adjusted when additional time-series observations are

available. In Section 7 we conclude.

2 Observables and model primitives

We will work with decompositions of the joint distribution of X0, X1, X2, X3 and subsets

thereof. These distributions only involve observable variables and may, thus, be considered

known for our purposes. It will be convenient to collect the various probability distributions

in the form of a set of matrices. First, the two-way table of (X0, X1) is given by the r × r

matrix

(P )x1,x0
:= P(X1 = x1, X0 = x0).

Next, the three-way table of (X0, X1, X2) is contained in the set of r matrices

(P x1)x2,x0
:= P(X2 = x2, X1 = x1, X0 = x0),

indexed by 1 ≤ x1 ≤ r, each of which is r × r. Finally, the distribution of all observable

variables (X0, X1, X2, X3) is collected in the set of r2 matrices of size r × r, indexed by

1 ≤ x1 ≤ r and 1 ≤ x2 ≤ r,

(P x2,x1)x3,x0
:= P(X3 = x3, X2 = x2, X1 = x1, X0 = x0).
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Throughout we use x0, x1, x2, x3 to denote particular values that X0, X1, X2, X3 may take.

We note that, because (X0, Z0) need not be drawn from any steady-state distribution, the

time-series process is not stationary, in general, and so, on occasion, it is important to be

explicit on how certain matrices depend on the different time periods. We also recall that

the state space of the observable variables is the set of integers up to r so that the values

x0, x1, x2, x3 all range across that set; they are, thus, indices that can be used to indicate

matrix entries.

The primitive parameters that we aim to identify are the q×r matrix of initial conditions

(Ω)z0,x0
:= P(Z0 = z0, X0 = x0)

and the collection of r2 matrices of size q× q, doubly-indexed by 1 ≤ x ≤ r and 1 ≤ x′ ≤ r,

(Θx′,x)z′,z := P(Xt = x′, Zt = z′|Xt−1 = x, Zt−1 = z),

that, together, make up the transition kernel of Yt = (Xt, Zt). Given these parameters, the

distribution of Yt = (Xt, Zt) for any t > 0 can be recovered by starting at the distribution

of the initial condition and iterating on the transition kernel.

Because the Zt are unobservable the elements of their state space, already normalized

to be 1, . . . , q, can be permuted without any observable implications. This is an ambiguity

that is inherent in our specification that can only be resolved by assigning empirical content

to the latent variables. For our purposes it does imply that we can only hope to recover Ω

and the Θx′,x for 1 ≤ x ≤ r and 1 ≤ x′ ≤ r up to suitable re-arrangement. Moreover, we
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will aim to learn

∆−1Ω and ∆−1Θx′,x∆

for 1 ≤ x ≤ r and 1 ≤ x′ ≤ r, where ∆ is an arbitrary (but common) permutation matrix.

3 Assumptions and main result

Our identification argument makes use of a set of three assumptions, which we provide

next.

Our first assumption involves the matrices P x, 1 ≤ x ≤ r, which are directly observable.

To interpret the restrictions it is, nonetheless, useful to connect them to the primitive

parameters of the model. To do so we do need to introduce some additional notation. First

consider the r × q matrices

(Ξx)x′,z := P(Xt = x′|Xt−1 = x, Zt = z)

and the q × q matrices

(Σx)z′,z := P(Zt = z′|Xt−1 = x, Zt−1 = z)

where, in each case, 1 ≤ x ≤ r. All of these matrices are time-invariant. From (1) they

may be seen to contain the components of the transition kernel of our Markov process.

Furthermore, the product ΞxΣx marginalizes with respect to the latent state Zt, yielding

(ΞxΣx)x′,z = P(Xt = x′|Xt−1 = x, Zt−1 = z). (2)
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Next we introduce two other sets of matrices, again for 1 ≤ x1 ≤ r, but on this occasion

time-dependent. These are, first, the r × q matrices

(Φx1)x0,z1 := P(X0 = x0|X1 = x1, Z1 = z1), (3)

and, second, the q × q diagonal matrices

(Πx1)z1,z1 := P(X1 = x1, Z1 = z1). (4)

The matrix Φx1 is a transition matrix for the time-reversed process. The matrices Πx1

for 1 ≤ x1 ≤ r, in turn, contain the joint distribution of Y1 = (X1, Z1). We remark that

(Φx1Πx1)x0,z1 = P(X0 = x0, X1 = x1, Z1 = z1). A small calculation reveals that we have

the factorization

P x1 = (Ξx1Σx1)Πx1 Φ
⊤
x1

(5)

for 1 ≤ x1 ≤ r. This decomposition is a consequence of the fact that X0 and X2 are

independent conditional on (X1, Z1).

Our first assumption reads as follows.

Assumption 1. For each 1 ≤ x1 ≤ r, (i) the r× r matrix P x1 has rank q or, equivalently,

(ii) the columns of the r× q matrices Ξx1 and Φx1 are linearly independent, and the q× q

matrices Σx1 and Πx1 are invertible.

The formulation in (i) is convenient as it reveals that Assumption 1 is easily testable from

the data by means of any of a number of procedures; one example is the rank test of

Kleibergen and Paap (2006).
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The formulation in (ii) is useful to see what is needed from the underlying Markov

process. The decomposition in (5) is similar to factorizations encountered in the analysis

of multivariate mixtures (Hall and Zhou 2003; Bonhomme, Jochmans and Robin 2016a),

with conditional distributions corresponding to the columns of the r × q matrices Ξx1Σx1

and Φx1 , and mixing distribution Πx1 .

Assumption 1 demands that the time-invariant matrices ΞxΣx for 1 ≤ x ≤ r have

full column rank, meaning that changes in the latent state at period t − 1 have sufficient

implication on the observable state in period t. This, in turn, can be seen to require that

the transition matrix of the latent state, Σx, is invertible for all 1 ≤ x ≤ r and that

the conditional distributions of the observed state—i.e., the columns of Ξx—are linearly

independent for all 1 ≤ x ≤ r. These conditions are familiar from the literature on

hidden Markov models (Gassiat, Cleynen and Robin 2016; Bonhomme, Jochmans and

Robin 2016a). At the same time, Assumption 1 imposes that Φx1Πx1 for 1 ≤ x1 ≤ r have

maximal column rank. This can be interpreted as a restriction on the initial condition; the

variable (X1, Z1) needs to have full support over the state space {1, . . . , r} × {1, . . . , q},

and changes in Z1 need to have a sufficient impact on the conditional distribution of X0

given (X1, Z1). Taken together, the conditions in Assumption 1(ii) ensure that the mixture

factorization in (5) is irreducibe, that is, that it cannot be written as a mixture of fewer

than q components. The need for this is intuitive, and it is a standard requirement in

the analysis of multivariate latent-variable models (Hall and Zhou 2003, Hu 2008, Allman,

Matias and Rhodes 2009, Kasahara and Shimotsu 2009, Hu and Shum 2012, Bonhomme,
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Jochmans and Robin 2016a,b, Vandermeulen and Scott 2020, Higgins and Jochmans 2023).

Our remaining assumptions further restrict the matrices Θx′,x. To motivate why they

are needed we note that, under Assumption 1 we can (as we will show in the proof below),

for each 1 ≤ x ≤ r, construct r × q matrices Ux and V x from P x for which we have that

Ṗ x′,x := U⊤
x′,xP x′,xV x = Qx′ Θx′,xQ−1

x (6)

for an unobserved q× q matrix Qx and for all 1 ≤ x ≤ r and 1 ≤ x′ ≤ r. This suggests the

possibility to recover the components of the transition kernel by solving the above equation,

Q−1
x′ Ṗ x′,x Qx = Θx′,x.

As such, the task of learning the transition kernel of our Markov process has been recast

into identifying the collection of matrices Qx for 1 ≤ x ≤ r. Under Assumptions 2 and

3 this can be achieved up to a common permutation of their columns. That is, we may

recover

Qx := Qx∆, 1 ≤ x ≤ r,

for some q × q permutation matrix ∆ that does not depend on x. With the transition

kernel recovered, identification of the distribution of the initial condition, the only other

primitive parameter, will follow readily.

Assumption 2 will permit us to characterize the Qx for 1 ≤ x ≤ r as eigenvectors

of certain matrices, and to recover Qx∆x for 1 ≤ x ≤ r, where the ∆x are unknown

permutation matrices that, in general, will depend on the value x in question in an arbitrary

manner. Assumption 3, then, will allow us to obtain an ordering that is independent of
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x, and thus to learn Qx for 1 ≤ x ≤ r. The remaining permutational ambiguity is due

to the inherent invariance of an eigendecomposition to the ordering of eigenvalues and

eigenvectors and, in the current exercise, reflects the fact that the state space of the latent

Zt can be relabelled without observable implications.

To facilitate the exposition we state Assumption 2 in two parts.

Assumption 2. (i) For each 1 ≤ x′ ≤ r there exists at least one 1 ≤ x ≤ r so that

P(Xt = x′|Xt−1 = x, Zt = z) > 0 for all 1 ≤ z ≤ q. Let Xx′ be the set of values x for which

this holds for a given x′. (ii) For each 1 ≤ x′ ≤ r there exists at least one 1 ≤ x′′ ≤ r so

that Xx′ ̸= Xx′′.

As will become apparent on inspection of the proof below, (i) is verifiable for a given pair

(x′, x) by checking that the q×q matrix Ṗ x′,x is invertible. Again, this may be done by using

a standard rank test. Similarly, (ii) is testable via a collection of such tests. Together, (i)

and (ii) ensure that, for each 1 ≤ x ≤ r, matrix Qx can be cast as a matrix of eigenvectors.

Assumption 2 (Continued). (iii) For each 1 ≤ x′ ≤ r and for all pairs 1 ≤ z < z′ ≤ q

there exist an x′′ as in (ii) so that, for some ẋ ∈ Xx′ and ẍ ∈ Xx′′ with ẋ ̸= ẍ, it holds that

P(Xt = x′′|Xt−1 = ẋ, Zt = z)

P(Xt = x′ |Xt−1 = ẋ, Zt = z)

P(Xt = x′ |Xt−1 = ẍ, Zt = z)

P(Xt = x′′|Xt−1 = ẍ, Zt = z)

is different from

P(Xt = x′′|Xt−1 = ẋ, Zt = z′)

P(Xt = x′ |Xt−1 = ẋ, Zt = z′)

P(Xt = x′ |Xt−1 = ẍ, Zt = z′)

P(Xt = x′′|Xt−1 = ẍ, Zt = z′)
.
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Part (iii) is a necessary and sufficient condition for Qx, 1 ≤ x ≤ r, to be unique up to

permutation and scaling of their columns (De Lathauwer, De Moor and Vandewalle 2004,

Theorem 6.1).

Below we show that the matrix P contains sufficient information to resolve the scaling

indeterminacy. To be able to recover the Qx for 1 ≤ x ≤ r up to a common (across

1 ≤ x ≤ r) column permutation, however, we need an additional restriction. We use the

following.

Assumption 3. There exists a value 1 ≤ ẋ ≤ r such that for each 1 ≤ x′ ≤ r we can find

an 1 ≤ x ≤ r (which may change with x′) so that P(Xt = x′|Xt−1 = x, Zt = z) > 0 and

P(Xt = ẋ|Xt−1 = x, Zt = z) > 0 both hold for all 1 ≤ z ≤ q.

Together, Assumptions 2 and 3 restrict the distributions that make up the columns of

Ξx for 1 ≤ x ≤ r beyond what is imposed by the linear-independence requirement in

Assumption 1. For example, Assumption 2(i) demands that for each 1 ≤ x′ ≤ r there is

a matrix Ξx for which row x′ contains no zeros. Similarly, Assumption 3 needs there to

exist an integer ẋ so that for each 1 ≤ x′ ≤ r there is a matrix Ξx whose ẋth and x′th row

contain no zeros.

In the next section we prove Theorem 1.

Theorem 1. Let Assumptions 1–3 hold. Then the distribution of Y0 = (X0, Z0) and

the transition matrix of the Markov process Yt = (Xt, Zt) are identified from the joint

distribution of X0, X1, X2, X3, up to an arbitrary relabelling of the state space of the latent

Zt.
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4 Proof of Theorem 1

We proceed in three steps. First we use the model restrictions together with Assumption

1 to arrive at (6). Next, we use (1) and Assumptions 2-3 to recover the Qx for 1 ≤ x ≤ r.

Finally, with these matrices in hand, we complete the argument by identifying our primitive

parameters.

Step 1 (Multilinear restrictions). By Assumption 1, for each 1 ≤ x ≤ r, the r × r

matrix P x has rank q. Hence, it admits the singular-value decomposition P x = ŪxSxV̄
⊤
x

for r × q matrices Ūx and V̄ x that satisfy Ū
⊤
x Ūx = Iq and V̄

⊤
x V̄ x = Iq, and invertible

q × q diagonal matrix Sx. Here, and later, Iq is the q × q identity matrix. It follows that,

with Ux := S−1/2
x Ū

⊤
x and V x := S−1/2

x V̄
⊤
x , we have UxP xV

⊤
x = Iq. When combined with

(5), this implies that

Iq = UxP xV
⊤
x = Ux(ΞxΣx Πx Φ

⊤
x )V

⊤
x = (UxΞxΣx) (V xΦxΠx)

⊤ = QxQ−1
x

where the q × q matrix Qx := (UxΞxΣx) is full rank by Assumption 1 and the fact that

the equality (V xΦxΠx)
⊤ = Q−1

x holds as a consequence of the construction in the above

display.

Now, in the same way as (5), we have, for all 1 ≤ x ≤ r and 1 ≤ x′ ≤ r, the factorization

P x′,x = (Ξx′Σx′)Θx′,x (ΠxΦ
⊤
x ). (7)

Therefore,

Ux′P x′,xV
⊤
x = Ṗ x′,x = (Ux′Ξx′Σx′)Θx′,x(V xΦxΠx)

⊤ = Qx′Θx′,xQ−1
x ,
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which corresponds to (6).

Step 2 (Matrix diagonalization). Note that, by (1), for all 1 ≤ x ≤ r and 1 ≤ x′ ≤ r,

Θx′,x = Υ x′,x Σx,

for the q×q diagonal matrix (Υ x′,x)z,z := (Ξx)x′,z containing the x
′th row of Ξx. Therefore,

(6) gives

Ṗ x′,x = Qx′Υ x′,x ΣxQ−1
x

for all 1 ≤ x ≤ r and 1 ≤ x′ ≤ r.

Now, fix x′ and let ẋ be so that Assumption 2(i) holds, i.e., ẋ ∈ Xx′ . Then Ṗ x′,ẋ is

invertible and

Ṗ
−1

x′,ẋ = QẋΣ
−1
ẋ Υ−1

x′,ẋQ
−1
x′ .

Hence, for any 1 ≤ x′′ ≤ r we have that

Ṗ x′′,ẋṖ
−1

x′,ẋ = (Qx′′Υ x′′,ẋ ΣẋQ−1
ẋ )(QẋΣ

−1
ẋ Υ−1

x′,ẋQ
−1
x′ ) = Qx′′Υ x′′,ẋΥ

−1
x′,ẋQ

−1
x′ ,

for Υ x′′,ẋΥ
−1
x′,ẋ diagonal. Next, let ẍ ∈ Xx′′ be different from ẋ. By Assumption 2(i)–(ii)

such a pair (x′′, ẍ) exists. Then, in the same way as before,

Ṗ x′,ẍṖ
−1

x′′,ẍ = (Qx′Υ x′,ẍΣẍQ−1
ẍ )(QẍΣ

−1
ẍ Υ−1

x′′,ẍQ
−1
x′′ ) = Qx′Υ x′,ẍΥ

−1
x′′,ẍQ

−1
x′′

is well defined. Multiplying both matrices yields

(Ṗ x′,ẍṖ
−1

x′′,ẍ)(Ṗ x′′,ẋṖ
−1

x′,ẋ) = Qx′(Υ x′,ẍΥ
−1
x′′,ẍΥ x′′,ẋΥ

−1
x′,ẋ)Q

−1
x′ ; (8)
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the right-hand side of this equation constitutes an eigendecomposition. The eigenvalues

depend on all of x′, x′′, ẋ, ẍ while the eigenvectors depend only on x′. Thus, for each

1 ≤ x′ ≤ r there will, in general, be multiple matrices that are diagonalizable in the

same basis. Assumption 2(iii) concerns the eigenvalues. Moreover, it ensures that there

is sufficient distinctness in them such that the eigenvectors are unique up to scaling and

permutation. That is, for a diagonal matrix Λx and a permutation matrix ∆x, the matrix

Q̃x := QxΛx∆x

is identified for 1 ≤ x ≤ r.

Let p′
x be the xth row of the matrix P and write ιq for the q-vector of all ones. Observe

that, by (3) and (4), we have p′
x = ι⊤q (ΠxΦ

⊤
x ). Therefore, using the functional form of

Q−1
x , we have that p′

xV
⊤
x = ι⊤q Q−1

x . Thus, right-multiplying both sides of this expression

by Q̃x we obtain

p′
xV

⊤
x Q̃x = ι⊤q Λx∆x = ι⊤q (∆

−1
x Λx ∆x),

where the last equality follows from the fact that ∆−1
x is a permutation matrix and, thus,

has exactly one entry of 1 in each row and each column and all other entries equal to 0. The

above equation returns the main diagonal of a diagonal matrix and so equally the matrix

Λ̃x := ∆−1
x Λx∆x

itself. With this matrix in hand, we are then able to construct Q̃xΛ̃
−1

x = Qx∆x for all

1 ≤ x ≤ r.
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To see how we may recover all matrices up to a common permutation of their columns,

consider a value x′ and, for this value, let the pair (x, ẋ) be as in Assumption 3. Then the

matrix Ṗ x′,xṖ
−1

ẋ,x = Qx′Υ x′,xΥ
−1
ẋ,xQ−1

ẋ is well-defined. Pre- and post-multiplication with

Λ̃x′Q̃
−1

x′ and Q̃ẋΛ̃
−1

ẋ , respectively, gives

(Λ̃x′Q̃
−1

x′ )(Ṗ x′,xṖ
−1

ẋ,x)(Q̃ẋΛ̃
−1

ẋ ) = ∆−1
x′ Υ x′,xΥ

−1
ẋ,x ∆ẋ = ∆−1

x′ ∆ẋ(∆
−1
ẋ Υ x′,xΥ

−1
ẋ,x∆ẋ).

Notice that ∆−1
x′ ∆ẋ is a permutation matrix and that ∆−1

ẋ Υ x′,xΥ
−1
ẋ,x ∆ẋ is a diagonal

matrix. This latter matrix thus corresponds to the (in general, non-diagonal) matrix on

the left-hand side up to a re-ordering of its rows. The columnwise sum of the left-hand side

matrix thus yields ∆−1
ẋ Υ x′,xΥ

−1
ẋ,x ∆ẋ. Assumption 3 ensures this matrix to be invertible.

Therefore, we can solve for

Hx′,ẋ := ∆−1
x′ ∆ẋ.

The argument can be applied for each 1 ≤ x′ ≤ r using the same ẋ. Given these matrices

we can compute

Q̃x Λ̃
−1

x Hx,ẋ = Qx∆ẋ,

which corresponds to Qx for ∆ = ∆ẋ and for all 1 ≤ x ≤ r.

Step 3 (Parameter recovery). With Qx for 1 ≤ x ≤ r in hand, from (6), we readily

obtain

Θ̌x′,x := Q−1
x′ Ṗ x′,x Qx = ∆−1Θx′,x ∆

for all 1 ≤ x ≤ r and 1 ≤ x′ ≤ r which allows to assemble a coherent transition kernel for

the Markov process of Yt = (Xt, Zt).
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Next, let ωx be the xth column of Ω and let px be the xth column of the matrix P .

The two sets of vectors are related through px = (ΞxΣx)ωx for all 1 ≤ x ≤ r. Given

that the transition kernel has been recovered up to ∆ we also know Rx := (ΞxΣx)∆

for all 1 ≤ x ≤ r. By Assumption 1 these matrices all have maximal column rank. We

can, therefore, uniquely solve the linear system px = Rx ω̌x for ω̌x := ∆−1ωx, yielding

identification of

ω̌x := (R⊤
xRx)

−1R⊤
x px

for all 1 ≤ x ≤ r. Collecting these vectors in the matrix Ω̌x identifies ∆−1Ω. With all

primitive parameters identified up to the common permutation ∆, the proof of Theorem

1 is complete.

5 Discussion

In earlier work Hu and Shum (2012) gave an identification result similar to Theorem 1.

Their argument, and the assumptions underlying it, are related to ours but differ in several

respects.

First, in their version of Assumption 1, Hu and Shum (2012) assume that the matrices

P x for 1 ≤ x ≤ r are invertible. This demands that r = q, that is, that the support of

Xt and the support of Zt have the same cardinality. Of course, the case where r < q is

outside the scope of Theorem 1 (although it is within the confines of its extension discussed

below) but it is clear from our derivations that, all else equal, a larger r cannot make the
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identification problem more complicated. As in our case, a key step in the proof of Hu and

Shum (2012) is an eigendecomposition. Moreover, similar to (8), one has, when r = q,

(P x′,ẍP
−1
x′′,ẍ)(P x′′,ẋP

−1
x′,ẋ) = (Ξx′Σx′)(Υ x′,ẍΥ

−1
x′′,ẍΥ x′′,ẋΥ

−1
x′,ẋ)(Ξx′Σx′)−1, (9)

which is well defined under Assumptions 1 and 2. A difference between (8) and (9) that

Hu and Shum (2012) exploit is that in the latter the eigenvectors are known to be valid

probability mass functions. That is, they are known to sum to one, and so their scale is

known.

Hu and Shum (2012) then recover the matrices (Ξx′Σx′)∆x′ as eigenvectors from (9) for

1 ≤ x′ ≤ r. To ensure uniqueness (up to the permutation matrix) they impose a version of

Assumption 2 that is stronger than needed. Whereas we, in (8), exploit the fact that there

are, in general, multiple matrices that are jointly diagonalizable in the same basis, they

consider the eigendecomposition in (9) for a single matrix. Although their decomposition

is not contained in (8), it is clear that its eigenvalues correspond to those of one of its

members. Their Assumption 3 thus deals with the same ratios as does our Assumption

2(iii). However, as they do not consider joint diagonalization, they require that, for each

1 ≤ x′ ≤ r in Assumption 2(iii), there exists a triple of values (x′′, ẋ, ẍ) for which all q

eigenvalues are different.

For the transition kernel of the full Markov process to be recoverable from their results

up to this point one needs to be able to enforce a common ordering on the columns, i.e., find

a transformation ∆−1
x ∆. We used Assumption 3 to do so. Hu and Shum (2012) combine

the fact that the columns of (ΞxΣx) are probability mass functions with a monotonicity
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condition on one of their functionals to be able to re-arrange them in a common order.

Concretely, they assume that, for each 1 ≤ x ≤ r, there is a known functional, such as

the mean or median, of the distribution P(Xt = x′|Xt−1 = x, Zt−1 = z) that is strictly

monotone in z. The plausibility of such a condition depends on the context at hand. For

example, in the multivariate setting discussed in Footnote 1 it would appear difficult to

maintain.

When r > q, (9) does not go through and the above argument can no longer be applied.

While a version of (9) could be constructed after binning the support of Xt into q < r

groups, an application of the argument of Hu and Shum (2012) would only allow to recover

conditional probability distributions defined over these binned states, and not over the full

state space.

6 Generalization

Identification from the joint distribution of X0, X1, . . . , XT for larger T can be done by a

minor adaptation of our arguments. The key insight remains that, for any 0 < t < T ,

the vectors (Xt+1, Xt+2, . . . , XT ) and (X0, X1, . . . , Xt−1) are independent conditional on

(Xt, Zt). Let ⌊·⌋ be the floor function, so that ⌊a⌋ is the greatest integer less than or equal to

a. Then we can combine the probabilities P(XT−1 = xT−1, . . . , X⌊T/2⌋ = x⌊T/2⌋, . . . , X0 = x0)

into the collection of matrices

P x⌊T/2⌋
, 1 ≤ x⌊T/2⌋ ≤ r,
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where the rows vary with the values (x⌊T/2⌋−1, x⌊T/2⌋−2 . . . , x0) and the columns vary with the

values (xT−1, xT−2, . . . , x⌊T/2⌋+1); each such matrix is thus of dimension rT−⌊T/2⌋−1 × r⌊T/2⌋.

Similarly, we can collect the probabilities P(XT = xT , . . . , X⌊T/2⌋ = x⌊T/2⌋, . . . , X0 = x0) into

the matrices

P x⌊T/2⌋+1,x⌊T/2⌋
, 1 ≤ x⌊T/2⌋ ≤ r, 1 ≤ x⌊T/2⌋+1 ≤ r,

each of which is again of dimension rT−⌊T/2⌋−1×r⌊T/2⌋. These matrices admit a factorization

akin to, respectively, (5) and (7), and we may then work through the same steps of the proof

in Section 4 to obtain identification. Now that the matrices P x are larger, the demand

that rankP x = q becomes less stringent. Hence, Assumption 1 becomes less demanding.

Assumptions 2 and 3 are used in the exact same way as before and require no modification.

7 Concluding remarks

Our identification result relies on having access to (the distribution of) three consecutive

observations, along with an initial condition. There is some reason to believe that this

number cannot be improved upon. In particular, this is known to be so for the special case

of multivariate finite mixtures (Vandermeulen and Scott 2020, Theorem 4.5).4 The fact

4In their analysis the demand that the component distributions are linearly independent can be relaxed

at the expense of requiring that the number of observations is at least as large as 2q − 1 (refer to their

Theorem 4.1). Teicher (1963) provided an earlier version of this result in a more specific context and, more

recently, Alexandrovich, Holzmann and Leister (2016) obtained the equivalent in the setting of the hidden

Markov model.
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that the observations are consecutive is also important in the development of our argument.

Modifying our approach to show identification from, for example, the distribution of three

non-consecutive transitions is not immediate.

Still, there may be scope for alternative identifying restrictions when fewer than three

consecutive transitions are available. Although we are not aware of any such results at

the generality of the model we entertain here, some such alternative conditions have been

obtained in special cases. Jochmans, Henry and Salanié (2017) exploited tail restrictions

in mixture models to circumvent the partial-identification result of Hall and Zhou (2003)

and Henry, Kitamura and Salanié (2014), while Gupta, Kumar and Vassilvitskii (2016)

used excess-support requirements to learn dynamic mixture models from observing only

two (consecutive) transitions.
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