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Abstract 

Downside risk aversion (downside RA) and decreasing absolute risk aversion (DARA) are different 

concepts that describe preferences for which the harm from bearing risk is lessened by an increase 

in wealth. This note presents some intuitive explanations of the difference between the two 

concepts using simple lotteries and graphical analysis. All risk-averse utility functions exhibit 

downside risk aversion, except those that exhibit sufficiently strong increasing absolute risk aversion 

(IARA). In a sense, downside RA is to be expected: adding downside risk to a baseline lottery is 

analogous to increasing risk while adding upside risk is analogous to decreasing risk. The difference 

between the two concepts can be attributed to the use of different measures of the harm from risk 

bearing: downside RA measures harm using the utility premium and DARA measures harm using the 

risk premium. The two premia can change at different rates and even in different directions as 

wealth increases.  
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1. Introduction 

What is the relationship between downside risk aversion (downside RA) and decreasing absolute risk 

aversion (DARA)? Under expected utility, both properties imply the harm from risk bearing is smaller 

when the individual has greater wealth, but they are not equivalent. Downside RA (Menezes et al. 

1980) is equivalent to prudence (Kimball 1990); it is characterized by a positive third derivative of 

the utility function.1 DARA is characterized by the property that the risk premium for a lottery is a 

decreasing function of baseline wealth (Pratt 1964). DARA implies downside RA but the converse is 

not true. The difference between the concepts arises because they measure the harm from risk 

bearing differently. Downside RA measures the harm using the utility premium and DARA measures 

it using the risk premium.  

To strengthen intuition about the two concepts, I compare downside RA and DARA from several 

perspectives. My analysis builds on the work of Eeckhoudt and Schlesinger (2006), who showed that 

downside RA can be described as a preference for adding risk to the better outcome rather than to 

the worse outcome of a binary, equal-probability lottery. The first perspective is a graphical 

derivation of the utility and risk premia, clarifying how the change in these premia with wealth 

depends on the rate of change of the curvature of the utility function, and hence on the third 

derivative of utility. The second perspective shows how adding risk to the better or worse branch of 

an equal-probability binary lottery is analogous to a mean-decreasing contraction or a mean-

decreasing spread of the initial lottery, respectively. Since risk aversion is equivalent to a preference 

for mean-preserving contractions over spreads, adding risk to the upper branch will tend to be 

preferred.  

The paper is organized as follows. Section 2 defines and graphically derives the utility premium and 

the risk premium. Section 3 illustrates how the utility and risk premia change with baseline wealth 

for some simple utility functions that differ in their third derivatives. Section 4 shows how adding 

risk to the better or worse outcomes of a binary lottery is analogous to contracting or spreading the 

outcomes of the lottery, and hence downside RA is related to an aversion to mean-preserving 

spreads. Section 5 applies the probability premium introduced by Jindapon et al. (2021) as a 

measure of the strength of downside RA. Conclusions are presented in Section 5. 

 
1 More generally, downside RA is an aversion to increasing the concordance between two risks, one of which is 
first-order stochastically dominated (a shift of probability from better to worse outcomes) and the other is 
second-order stochastically dominated (a mean-preserving spread) (Gollier 2021).  
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2. Utility premium and risk premium 

Let u(x) denote an individual’s utility of wealth x with u’ > 0, u” < 0, and u’’’ exists. He faces a 

baseline lottery P that yields wealth levels x0 and x1 (x0 < x1) with equal probability. He must add a 

mean-zero risk 𝜀𝜀̃ to one of the two outcomes. Assume the risk 𝜀𝜀̃ is small enough that changes in 

expected utility can be adequately approximated using second-order Taylor series. 

If the individual is downside RA, he will prefer to add the risk to the better outcome x1 rather than to 

x0 (Eeckhoudt and Schlesinger 2006). At baseline, the individual’s expected utility is Eu(P) = 1/2 u(x0) 

+ 1/2 u(x1). If he adds the risk 𝜀𝜀̃ to the outcome x, his expected utility decreases by 1/2 θ(x), where 

θ(x) = u(x) – Eu(x + 𝜀𝜀̃) > 0 is the utility premium for the risk 𝜀𝜀̃ when added to x (Friedman and Savage 

1948, Hanson and Menezes 1971). Using a second-order Taylor-series approximation, θ(x) ≈ – (σ2/2) 

u”(x), where σ2 is the variance of 𝜀𝜀̃. If u”(x) is constant (utility is quadratic), the utility premium is 

independent of the branch of the baseline lottery to which 𝜀𝜀̃ is added; if u’’’(x) > 0 (downside RA), 

the utility premium is smaller if 𝜀𝜀̃ is added to the branch yielding the larger wealth x1. 

The risk premium for 𝜀𝜀̃ is a monetary measure of the harm from bearing risk (it is the equivalent 

surplus of 𝜀𝜀̃ when added to x). It is defined as the difference between the expected value and the 

certainty equivalent. When 𝜀𝜀̃ is added to x, the risk premium π(x) = x – 𝑥𝑥� > 0, where the certainty 

equivalent 𝑥𝑥� is defined by u(𝑥𝑥�) = Eu(x + 𝜀𝜀̃).  

Using a second-order Taylor-series approximation, the risk premium is π(x) ≈ (σ2/2) r(x) where r(x) = 

– u”(x)/u’(x) is the Arrow-Pratt measure of risk aversion at x (Pratt 1964). It decreases with wealth if 

and only if u is DARA, i.e., r’(x) < 0. Noting that r’(x) = r(x) [r(x) – ρ(x)], DARA is equivalent to ρ(x) > 

r(x), where ρ(x) = – u’’’(x)/u”(x) is the measure of absolute prudence (Kimball 1990). Hence DARA 

implies downside RA, but the converse is not true; a utility function can be downside RA without 

being DARA.2 For example, for exponential (constant absolute risk aversion, CARA) utility, u’’’ > 0 but 

ρ(x) = r(x). 

Because the risk premium is measured in units of wealth, it is the same for all strategically 

equivalent utility functions; i.e., for all utility functions representing the same preference ordering 

over lotteries.3 In contrast, the utility premium is measured in utility units and so its value can differ 

 
2 Note also that downside RA is equivalent to u’(x) is convex and DARA is equivalent to log[u’(x)] is convex. 
Because log(∙) is concave, DARA is a sufficient but not a necessary condition for downside RA. 
3 Strategically equivalent utility functions are related as positive affine transformations, i.e., u and v are 
strategically equivalent if and only if v(x) = h u(x) + j where h > 0 and j are constants. 
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among strategically equivalent utility functions (although the sign of its change as x increases 

cannot). 

The relationship between downside RA and DARA can be illustrated using Figure 1. Let the risk 𝜀𝜀̃ be a 

binary lottery with payoffs ε and -ε with equal probability (ε > 0). The expected utility of 𝜀𝜀̃ added to x 

equals 1/2 u(x – ε) + 1/2 u(x + ε). Graphically, it is the utility at the midpoint of the arc between the 

points (x – ε, u(x – ε)) and (x + ε, u(x + ε)), i.e., the utility where the arc intersects a vertical line at x, 

illustrated by the dotted lines (for x0 and x1). 

The risk premium is the change in wealth that has the same effect on utility as the utility premium. 

Hence the two premia are related by the marginal utility of wealth u’; specifically, π(x) ≈ θ(x)/u’(x). 

Equivalently, the difference in utility associated with a small difference in wealth equals the wealth 

difference multiplied by the marginal utility of wealth (θ(x) ≈ π(x) · u’(x)). Although the utility 

premium depends only on u”(x), the risk premium depends on both u”(x) and u’(x). The risk premia 

of the risk 𝜀𝜀̃ added alternatively to x0 and to x1 are illustrated by the dashed lines in Figure 1. 

3. Special cases: quadratic, cubic, and exponential utility 

Consider some special cases. First, let u(x) be quadratic.4 Then u”(x) and the utility premium θ(x) are 

independent of x and u’’’(x) = 0. Quadratic utility is downside risk neutral; the utility premia are 

equal (θ(x0) = θ(x1)) and the individual is indifferent between adding 𝜀𝜀̃ to x0 or to x1. Because u’(x) 

decreases with x, the risk premium is increasing (π(x0) < π(x1)). Quadratic utility is increasing absolute 

risk averse (IARA), not DARA. 

Second, let u(x) be exponential with constant absolute risk aversion (CARA); specifically, u(x) = – e–kx 

with k > 0. Then u”(x) = – k2 e–kx = k2 u(x) is decreasing in absolute value as x increases, so the utility 

premium θ(x) decreases with x. The marginal utility u’(x) = k e–kx = – k u(x) is proportional to u”(x), 

and hence both the measure of risk aversion r(x) and the risk premium π(x) are independent of x. 

CARA utility is downside RA but not DARA. 

For CARA utility, absolute prudence equals absolute risk aversion, ρ(x) = r(x). Hence if a CARA utility 

function is modified by slightly increasing u’’’(x) for all values of x, prudence will exceed risk aversion 

and the modified utility function will be DARA.  

To strengthen intuition, consider a risk-averse utility function u(x) (with u’ > 0 and u” < 0). Without 

changing the function at x0, increase u’’’(x) for all values of x > x0 by a small amount. This has the 

 
4 Quadratic utility is the upward sloping half of a concave (downward-opening) parabola. The criterion u’(x) > 0 
implies that x must be restricted to values less than some threshold. 
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effect (for all x > x0) of increasing u”(x) (making it smaller in absolute value and making u(x) 

straighter) and increasing u’(x) (making u(x) steeper and larger). At x1, these changes decrease the 

utility premium θ(x1) (because u”(x1) is smaller in absolute value). Moreover, they decrease the risk 

premium π(x1) because the utility premium θ(x1) is smaller and is divided by a larger marginal utility 

u’(x1). Hence increasing u’’’(x) increases both the degree of downside RA (measured by θ(x0) – θ(x1)) 

and the degree of DARA (measured by π(x0) – π(x1)). 

To illustrate, consider x < 0 and let u(x) = – b x2 + c x + (b + c) with b > 0 and c > 0. Marginal utility 

u’(x) = – 2 b x + c (> 0), u”(x) = – 2 b (< 0), and u’’’ = 0. Let x0 = – 1. Construct a new utility function 

v(x) such that v(x0) = u(x0), v’(x0) = u’(x0), and v”(x0) = u”(x0), but v’’’(x) = a > 0 for all x. The (cubic) 

utility function v is tangent and osculatory to u at x0, but its third derivative is larger than u’’’(x) for 

all x. Solve sequentially for v”(x), v’(x), and v(x) using the formula 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥0) + ∫ 𝑓𝑓′(𝑡𝑡)𝑑𝑑𝑑𝑑𝑥𝑥
𝑥𝑥0

 (by 

setting f(x) = v”(x), v’(x), and v(x), respectively). This yields v”(x) = a x + (a – 2 b), v’(x) = a/2 x2 + (a – 2 

b) x + (a/2 + c), and v(x) = a/6 x3 + (a/2 – b) x2 + (a/2 + c) x + (a/6 + b + c).  

For specificity, let b = 1, c = 2, and consider alternative values a = 1/2 and a = 1. The functions and 

their Arrow-Pratt measures of risk aversion r(x) are plotted in Figure 2. For all x > x0 = – 1,  the utility 

v(x) is straighter, steeper, and larger than the utility u(x). For this example, u is IARA (r(x) increases 

with x). With a = 1/2, v is IARA but with a = 1, v is DARA (r(x) decreases with x).5 

To evaluate the utility and risk premia, consider a small risk 𝜀𝜀̃ with variance σ2 = 1/10,000.6 If 𝜀𝜀̃ is 

added to x0, the utility premium θ(x0) and the risk premium π(x0) are approximately the same for u 

and for v (because the functions have the same slope and curvature at x0). As shown in Table 1, for 

both u and for v, θ(x0) = 10 · 10-5 and π(x0) = 2.5 · 10-5. In contrast, if 𝜀𝜀̃ is added to a larger value of x, 

e.g., x1 = – 0.1, then the utility and risk premia differ between the utility functions.  For u, the utility 

premium is the same as at x0, because u is quadratic and downside risk neutral. For v, the utility 

premium at x1 is smaller than at x0 and decreases as v’’’ = a increases; it equals 7.8 · 10-5 for a = 1/2 

and 5.5 · 10-5 for a = 1. In contrast, the risk premia change when moving from x0 to x1, but not 

necessarily in the same direction. For u, π(x1) = 4.5 · 10-5, larger than π(x0) because u is IARA. With a = 

1/2, v is IARA (but less so than u) and π(x1) = 3.2 · 10-5, larger than π(x0). With a = 1, v is DARA 

and π(x1) = 2.1 · 10-5, smaller than π(x0). 

 
5 A cubic utility function can be DARA over some values of x and IARA over other values. The statements about 
v are valid for the values of x considered here, between -1 and 0. 
6 For example, if 𝜀𝜀̃ is a binary lottery with equal chances of gaining or losing 1/100, its variance is 1/10,000. 
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4. Equivalent lotteries between certainty equivalents 

For another perspective on how downside RA implies a preference for adding a risk to the better 

rather than the worse outcome, consider the (equal-probability) lotteries illustrated in Figure 3. Let 

P0 denote the lottery formed by adding 𝜀𝜀̃ to the lower payoff x0 of the baseline lottery P and P1 

denote the lottery formed by adding 𝜀𝜀̃ to the higher payoff x1. The expected utility of the lower 

branch of P0, Eu(x0 + 𝜀𝜀̃), equals the utility of its certainty equivalent, u(x0 – π(x0)). Hence the 

individual is indifferent between P0 and Q0, a binary, equal-probability lottery between x0 – π(x0) and 

x1. Similarly, the expected utility of the upper branch of P1, Eu(x1 + 𝜀𝜀̃), equals the utility of its 

certainty equivalent, u(x1 – π(x1)). Hence the individual is indifferent between P1 and Q1, a binary, 

equal-probability lottery between x0 and x1 – π(x1). The lotteries Q0 and Q1 are equal-probability 

lotteries between the certainty equivalents of the upper and lower branches of P0 and P1, 

respectively. 

Note that Q0 can be obtained from P by combining a mean-preserving spread (shifting the two 

endpoints away from each other) with a decrease in mean. In contrast, Q1 can be obtained from P by 

combining a mean-preserving contraction (shifting the two endpoints toward each other) with a 

decrease in the mean.7  

Substituting Q0 for P harms the individual in two ways: it decreases the mean payoff and increases 

risk. In contrast, substituting Q1 for P decreases the mean payoff but decreases risk. Because risk 

aversion is equivalent to a preference for mean-preserving contractions (Rothschild and Stiglitz 

1970), this suggests that Q1 is preferred to Q0 unless the decrease in mean payoff with Q1 is enough 

larger than the decrease in mean payoff with Q0 to offset the difference in risk. The decrease in 

mean payoff (from P to Qi) equals one-half the risk premium from adding 𝜀𝜀̃ to xi, i.e., E(P) – E(Qi) = 

1/2 π(xi) for i = 1, 2. With CARA utility, π(x0) = π(x1), the decreases in mean payoff are equal, Q0 is a 

mean-preserving spread of Q1, and Q1 is preferred to Q0. With DARA utility, π(x0) > π(x1), the 

decrease in mean payoff is larger for Q0 than for Q1, and Q1 is preferred to Q0 because it is both less 

risky and has a higher mean payoff.  

Q0 can be preferred to Q1 only if the decrease in mean payoff for Q1 is enough larger than the 

decrease in mean payoff for Q0 to offset the difference in risk, which requires that utility is 

sufficiently IARA. Even for the degree of increasing absolute risk aversion associated with quadratic 

utility, the individual is indifferent between Q1 and Q0. For larger degrees of IARA (for which u’’’ < 0) 

 
7 To obtain Q0 from P, add π(x0)/2 to x1 and subtract it from x0, then subtract this amount from both endpoints. 
To obtain Q1 from P, subtract π(x1)/2 from x1 and add it to x0, then subtract this amount from both endpoints. 
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the harm from bearing a risk at the endpoint x1 measured by the utility premium θ(x1) will exceed 

the harm from bearing that risk at x0, θ(x0), so Q0 will be preferred to Q1 and the individual will be 

upside RA (downside risk seeking). Although a utility function can be upside RA for some values of x, 

upside RA cannot hold globally. Menegatti (2001) shows that if u’ > 0, u” < 0, and u’’’ does not 

change sign, then u’’’ > 0. Hence if u’’’ < 0 for some values of x, it must be greater than zero for other 

values. 

5. Probability premium 

The previous sections describe the conditions under which a utility function exhibits downside RA or 

DARA but not the strength of these properties. Jindapon et al. (2021) propose a probability premium 

as a measure of the strength of preference for risk apportionment of order n. In the context of 

downside RA (i.e., risk apportionment of order 3), a necessary condition for this premium to be 

larger for one utility function than another is for the first utility function to be locally more prudent 

than the other; a sufficient condition is for the first utility function to be more prudent than the 

other as characterized by a generalization of greater Ross risk aversion.8  

For measuring downside RA, the Jindapon et al. probability premium can be defined by modifying 

the lotteries P0 and P1 described in the previous section. Define P0’(s) and P1’(s) as lotteries obtained 

by shifting an amount of probability s from the lower to the higher outcomes of P0 and P1, 

respectively. The probability premium p is the value of s such that the individual is indifferent 

between P0’(s) and P1’(s). Clearly, p is between 0 and 1/2: if s = 0, P1’(0) = P1 is preferred to P0’(0) = 

P0, and if s = 1/2, P0’(1/2) = x1 is preferred to P1’(1/2) = x1 + 𝜀𝜀̃. Setting Eu[P0’(p)] = Eu[P1’(p)] implies 

�1
2

+ 𝑝𝑝�𝑢𝑢(𝑥𝑥1) + �1
2
− 𝑝𝑝�𝐸𝐸𝐸𝐸(𝑥𝑥0 + 𝜀𝜀̃) = �1

2
+ 𝑝𝑝�𝐸𝐸𝐸𝐸(𝑥𝑥1 + 𝜀𝜀̃) + �1

2
− 𝑝𝑝�𝑢𝑢(𝑥𝑥0). 

Solving for p yields 

𝑝𝑝 =
1
2
𝜃𝜃(𝑥𝑥0) − 𝜃𝜃(𝑥𝑥1)
𝜃𝜃(𝑥𝑥0) + 𝜃𝜃(𝑥𝑥1) 

where θ(x) = u(x) – Eu(x + 𝜀𝜀̃) is the utility premium defined in Section 2.  

 
8 Let u(x) and v(x) be utility functions with strictly positive first and third derivatives and strictly negative 
second derivatives for all x ∈ [a, b]. Let pu and pv be the probability premiums for u and v, respectively (which 
depend on baseline wealth, sure losses, and mean-zero risks). Then, for all x, y ∈ [a, b], baseline wealth, sure 
losses, and mean-zero risks, –u’’’(x)/u”(y) ≥ –v’’’(x)/v”(y) implies pu ≥ pv, which implies –u’’’(x)/u”(x) ≥ –
v’’’(x)/v”(x). See Jindapon et al. (2001), Theorem 2. 
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The values of the probability premium for the example introduced at the end of Section 3 are 

reported in Table 1. Because the utility function u is downside risk neutral, the probability premium 

is 0. For v, the probability premium is positive and increases with the degree of downside risk 

aversion, which increases with the value of the parameter a. For a = 1/2, the probability premium is 

0.063, which is smaller than the probability premium with a = 1, which is 0.145. 

6. Conclusion 

Though downside RA and DARA both describe conditions under which the harm from risk bearing is 

lessened by an increase in wealth, the concepts differ. The difference can be understood as arising 

from the use of alternative measures of harm. Downside RA measures harm by the utility premium 

and DARA measures harm by the risk premium. The Jindapon et al. (2021) probability premium 

measures the strength of downside RA as a normalized difference between the utility premia 

associated with adding a risk to different wealth levels. The utility premium depends on the 

curvature of u (measured by its second derivative u”) while the risk premium depends on the ratio of 

the curvature to the slope (the marginal utility u’). If u’’’ > 0, then u” increases (becomes smaller in 

absolute value) as x increases, hence the utility premium decreases with wealth and the utility 

function is downside RA. The risk premium may decrease, remain constant, or even increase with 

wealth depending on how quickly the marginal utility decreases with wealth. If u’’’ is very small, the 

marginal utility decreases rapidly with wealth, the risk premium increases, and u is IARA. If u’’’ is 

large, the marginal utility decreases slowly with wealth, the risk premium decreases, and u is DARA.9 

For the intermediate case where u” is proportional to u’, the marginal utility decreases at the same 

rate as u” so the risk premium is independent of wealth and u is CARA. Hence downside RA is a 

necessary but not sufficient condition for DARA.  

Downside RA can be understood as closely related to risk aversion, characterized as aversion to 

mean-preserving spreads. Adding risk to the worse outcome of a binary lottery is equivalent to 

decreasing the certainty equivalent of the worse outcome, which spreads the certainty equivalents 

of the two outcomes apart and increases risk. In contrast, adding risk to the better outcome 

contracts the distance between the certainty equivalents of the two outcomes and decreases risk. 

The less risky lottery between certainty equivalents that results from adding the risk to the better 

outcome is preferred, except when the decrease in expected value is large enough to offset the 

 
9 The effect of an increase in u’’’ on the rate at which the risk premium π(x) declines is reinforced by the fact 
that the utility premium θ(x) decreases more rapidly with x when u’’’ is larger. 
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greater risk that results from adding the risk to the worse outcome; this requires that utility is upside 

RA (u’’’ < 0), which is a sufficient (but not necessary) condition for the utility function to be IARA. 
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Figure 1. Utility premia (vertical axis) and risk premia (horizontal axis) for adding risk to x0 and x1. 
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Figure 2. Utility u(x) (top left), marginal utility u’(x) (top right), curvature u”(x) (bottom left), and 

absolute risk aversion r(x) = – u”(x)/u’(x) (bottom right) for utility function u (solid lines), v (with a = 

1/2, dotted lines), and v (with a = 1, dashed lines). 
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Figure 3. Baseline and modified lotteries. 

 

 

Table 1. Utility, risk, and probability premia for alternative utility functions 
 u v (a = 1/2)  v (a = 1) 
Utility premium     
θ(x0) 10 · 10-5 10 · 10-5 10 · 10-5 
θ(x1) 10 · 10-5 7.8 · 10-5 5.5 · 10-5 
Risk premium     
π(x0) 2.5 · 10-5 2.5 · 10-5 2.5 · 10-5 
π(x1) 
 

4.5 · 10-5 3.2 · 10-5 2.1 · 10-5 

Probability premium 0 0.063 0.145 
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