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Abstract

In this paper, we investigate how a big non-probability database can be used to
improve estimates from a small probability sample through data integration techniques.
In the situation where the study variable is observed in both data sources, Kim and
Tam (2021) proposed two design-consistent estimators that can be justified through
dual frame survey theory. First, we provide conditions ensuring that these estimators
are more efficient than the Horvitz-Thompson estimator when the probability sample is
selected using either Poisson sampling or simple random sampling without replacement.
Then, we study the class of QR predictors, proposed by Särndal and Wright (1984) to
handle the case where the non-probability database contains auxiliary variables but no
study variable. We provide conditions ensuring that the QR predictor is asymptotically
design-unbiased. Assuming the probability sampling design is not informative, the QR
predictor is also model-unbiased regardless of the validity of those conditions. We
compare the design properties of different predictors, in the class of QR predictors,
through a simulation study. They include a model-based predictor, a model-assisted
estimator and a cosmetic estimator. In our simulation setups, the cosmetic estimator
performed slightly better than the model-assisted estimator. As expected, the model-
based predictor did not perform well when the underlying model was misspecified.

Keyword: cosmetic estimator, dual-frame, GREG estimator, non-probability sample, prob-
ability sample.

1 Introduction
In the field of economics and social sciences, surveys are usually based on probability sampling
methods. At the French postal service (La Poste) for example, the postal traffic is estimated
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through monthly probability surveys. Controlling the sampling design allows design-based
inference without resorting to modeling of the study variables, and therefore is particularly
attractive to survey statisticians. Neyman (1934) is usually known as the founding paper of
probability sampling theory. Since then, the literature on this topic has grown rapidly with an
interplay between theory and practice (see Rao (2005) for the most important contributions).

Recently, survey statisticians have observed a decline in response rates together with an
increase of the survey costs, which make probability sampling more challenging. In addition,
large non-probability samples, such as administrative data or web-based surveys, become
available often at low cost (see, e.g., Beaumont (2020) and Rao (2021) for more details). These
observations are also true at La Poste where, for cost reasons, the size of probability samples
is bound to decrease while a big database containing the automatically processed postal
mail is available. Even if non-probability samples are associated with unknown selection
mechanisms and may suffer from selection bias and measurement errors, they provide timely
information on the population of interest. This context leads survey statisticians to study
the integration or combination of data from probability and non-probability samples.

The literature on data integration in survey sampling has grown rapidly recently, and
the reader may refer to several reviews on the subject (see Beaumont (2020), Yang and Kim
(2020), Rao (2021), and Kim (2022)). If we focus on the problem of combining probability
and non-probability samples, the different data integration methods can be divided into three
groups depending on whether the study variable is observed in the probability sample only,
in the non-probability sample only, or in both samples (see e.g. Rao (2021)). Most methods
tackle the problem of the study variable observed in the non-probability sample only, e.g.
Kim (2022). In this context, the objective is to address the selection bias by combining data
from the non-probability sample with auxiliary data available in a probability sample.

At La Poste, the problem is rather that the study variables (the different types of mails
sent) are only available in the probability sample whereas auxiliary information is only avail-
able in the non-probability database. The aim of the present paper is to study this particular
context thoroughly.

In the situation where the study variables are measured in both samples, Kim and Tam
(2021) propose a design-based dual frame approach to improve the efficiency of the Horvitz-
Thompson estimator (Horvitz and Thompson (1952)), which uses the probability sample only.
The total of the study variable over the whole population is estimated by summing the true
total over the non-probability sample and an estimator of the total over the complementary
of the non-probability sample. Kim and Tam (2021) propose several estimators that can be
deduced from a calibration perspective.

In Section 2, we revisit the approach of Kim and Tam (2021) and derive general results
on the efficiency of their proposed dual frame estimators. In the situation where the study
variable is not measured in the non-probability sample, we propose to replace the true un-
known total over the non-probability sample by some prediction. In Section 3, we adapt the
general class of QR predictors, introduced in Wright (1983), to data integration. This class of
estimators includes the well-known model-assisted (GREG) and model-based estimators, but
also the cosmetic estimator (Särndal and Wright (1984)). We first exhibit a condition under
which the QR predictors can be written in a projection form. We then derive a condition
such that these predictors are asymptotically design-unbiased. We also show that they are
unbiased under the model and sampling design. In Section 4, we use Monte Carlo simulations
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to compare several QR predictors and show that the cosmetic estimator is a good compromise
for several setups. Finally we conclude and give perspectives in Section 5.

2 Study variable observed in both samples
We are interested in estimating the population total T =

∑
k∈U yk, where yk is the value of

the variable of interest Y for unit k of the population U . A probability sample sP is drawn
from U using a sampling design p(sP |Z), where the population matrix Z contains design
information such as strata identifiers. The sample inclusion indicator, Ik, k ∈ U , takes the
value 1 if unit k is selected in sP , and 0 otherwise. The probability that a given population
unit k is selected in the sample sP is πk = Ep(Ik|Z). We assume in the present section that
the variable of interest Y is observed for each unit of the probability sample but also for each
unit in the non-probability sample sNP ⊂ U . The inclusion indicator in sNP for population
unit k ∈ U is denoted as δk (i.e., δk = 1, if k ∈ sNP , and δk = 0, otherwise). We assume
that δk is available for each unit of the probability sample sP . Let us denote N (resp. NNP )
the size of U (resp. sNP ) and by n the expected size of sP . Let T̂HT =

∑
k∈sP dkyk be the

well-known expansion or Horvitz-Thompson estimator with the sampling weights dk = 1/πk.
If πk > 0, for all k ∈ U , T̂HT is a design-unbiased estimator of T .

The non-probability sample sNP is usually a cheap and large source of data. Its selection
mechanism is unknown, and its selection bias cannot be ignored when making inference.
On the other hand, the probability sample sP is assumed representative (without selection
bias), yet often expensive and of (rather) small size. By combining information from the
two samples, we can expect to find an estimator more precise than the expansion estimator
obtained using sP .

Kim and Tam (2021) propose two estimators using combined data from sP and sNP and
we propose to revisit the properties of these estimators. The total can be decomposed as:

T = TNP + TC

where TNP =
∑

k∈sNP
yk =

∑
k∈U δkyk and TC =

∑
k∈U−sNP

yk =
∑

k∈U(1 − δk)yk. Since yk
is measured for all units of sNP , TNP is known, and we only have to estimate TC . Kim and
Tam (2021) propose the following estimator:

T̂DI = TNP +
∑
k∈sP

dk(1− δk)yk, (1)

where TC is estimated using the expansion estimator. As pointed out by Beaumont (2020),
this can be viewed as a dual frame problem, with frames U and sNP , where the sample sP is
randomly selected from U and a census is taken from sNP . In this context of two sampling
frames, T̂DI is an estimator already proposed in Bankier (1986). One may think that T̂DI
is more efficient than T̂HT , especially if the size of the non-probability sample is large, but
this is not true in general. The following proposition shows that, while the variance of T̂DI
is always smaller than the variance of T̂HT for Poisson sampling, the property is only true
under a condition on the study variable for simple random sampling without replacement.

Proposition 2.1. (i) For Poisson sampling, the variance of T̂DI is less than or equal to
the variance of T̂HT .
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(ii) For simple random sampling without replacement, the variance of T̂DI is less than or
equal to the variance of T̂HT if and only if

CV 2
NP ≥ −

NNP

NNP − 1

(
1 +

NNP

N
− 2

ȲU
ȲNP

)
,

where ȲU =
1

N

∑
k∈U

yk is the mean of Y over U , ȲNP =
1

NNP

∑
k∈U

δkyk is the mean of

Y over sNP , and CVNP =
√
S2
Y,NP/ȲNP the coefficient of variation of Y in sNP , with

S2
Y,NP =

1

NNP − 1

∑
k∈U

δk(yk − ȲNP )2.

The proof of Proposition 2.1 is given in the appendix. Intuitively, the result of Proposition
2.1 (ii) can be explained by the fact that the size of sP is fixed for simple random sampling
without replacement in the expression of T̂HT while the size of sP ∩ U − sNP is random for
T̂DI . In other words, the estimator T̂DI is calibrated on NNP and TNP , but not on N while
T̂HT is calibrated on N . If the size of the population U is known, Kim and Tam (2021)
propose to improve T̂DI by using the following estimator:

T̂PDI = TNP + T̂
(Ha)
C ,

where

T̂
(Ha)
C = (N −NNP )

∑
sP
dk(1− δk)yk∑

sP
dk(1− δk)

is a Hájek-type estimator of the total TC . Kim and Tam (2021) proved that T̂PDI is a
Generalized Regression (GREG) estimator calibrated on N , NNP and TNP . Its expression
can be further generalized by including additional auxiliary variables available on sNP in the
calibration equation.

Following Kim and Tam (2021), it is possible to use the linearization approach and de-
rive the approximate variance of T̂PDI , denoted as AVar(T̂PDI). For Poisson sampling, the
independence of the inclusion indicators reduces the comparison of T̂PDI and T̂DI to the com-
parison of Horvitz-Thompson and Hájek estimators of the total TC =

∑
U(1 − δk)yk. The

gain in efficiency when using Hájek is not true in general (see, e.g., Särndal et al. (1992))
but it can be substantial in some contexts as illustrated in the simulation setups of Section 4
when comparing T̂HT and T̂PDI for Poisson sampling. For simple random sampling without
replacement, the approximate variance of T̂PDI can be compared to the variance of T̂HT in
more general conditions than in Kim and Tam (2021). Proposition 2.2 below shows that
the approximate variance of T̂PDI is smaller than the variance of T̂HT for simple random
sampling without replacement, and gives the precise expression of the difference between the
variances.

Proposition 2.2. For simple random sampling without replacement,

Var(T̂HT )− AVar(T̂PDI) =
N2(1− f)

(N − 1)n

(∑
k∈U

δk(yk − ȲU)2 +
∑
k∈U

(1− δk)(ȲC − ȲU)2

)
,
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where ȲU =
1

N

∑
k∈U

yk is the mean of Y over U , and ȲC =
1

N −NNP

∑
k∈U

(1 − δk)yk is the

mean of Y over U − sNP .

In the present section, the study variable Y is assumed to be measured in both samples,
sP and sNP . In the next section, we alleviate this assumption by considering that the study
variable is not known in the non-probability sample. This situation is the one encountered
at La Poste where not all variables of interest are measured in the automatically processed
postal mail. The big non-probability database is based on an image recognition process and
concerns around 80% of the postal mails. This database contains some relevant auxiliary
information such as the departure dates from the sending post office. However, such data are
subject to selection bias (e.g., mails with atypical shape are not automatically processed),
and measurement errors (e.g., errors in barcode scanning during the image recognition pro-
cess). In such a situation, we propose to use the intersection between the big database and
the probability sample, where the auxiliary variables together with the study variable are
available, and predict the unknown yk for k ∈ sNP − sP .

3 Prediction estimators for study variable unobserved in
the non-probability sample

Recall that the finite population total of Y can be decomposed as T = TNP+TC . The total TC
is estimated as in Section 2 by the Hájek-type estimator T̂ (Ha)

C . In the present section, yk in
unknown for k ∈ sNP , and contrarily to Section 2, the total TNP has to be estimated. In order
to do so, we introduce a working model for Y and the general QR class of predictors of TNP
that does not require yk to be known for units in sNP . We study bias properties of the QR
predictor under the design as well as under the joint distribution induced by the model and
the sampling design. We assume that a vector of auxiliary variables xk = (Xk1, . . . , Xkp)

> is
available for each unit k of a non-probability sample sNP ⊂ U . We also assume that δk and
δkxk are available for each unit k of the probability sample sP . Table 1 gives a summary of
the characteristics of the data we consider in the remainder of this paper.

Sample yk mea-
sured δk available

known
selection
mechanism

Auxiliary
variables
available

sP Yes Yes Yes No
sNP No Yes No Yes

Table 1: Data characteristics in the data integration context of Section 3.

3.1 QR predictors

The variable Y is not available in sNP and we cannot use anymore T̂PDI since the sum
TNP =

∑
k∈U

δkyk is unknown. The idea behind the class of estimators introduced in this
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section is to predict yk for k ∈ sNP by using regression modelling between Y and the auxiliary
variables, and then predict TNP . We assume the following working model between the study
variable Y and the vector of auxiliary variables xk:

yk = x>k β + εk, k ∈ sNP , (2)

where the errors εk are independent with expectation Em(εk) = 0 and variance Varm(εk)
proportional to ν(xk) = vk for some known positive constants vk. The subscript m indicates
that the expectation and variance are taken with respect to model (2) conditionally on
observed auxiliary variables xk, k ∈ sNP . Note that model (2) only needs to hold for units in
the non-probability sample. A model for Y does not need to be explicitly specified for units
k ∈ U − sNP as we always make inferences conditional on yk, k ∈ U − sNP .

We define a predictor ŷk of yk for k ∈ sNP by ŷk = x>k β̂ with

β̂ =

(∑
k∈sP

qkδkxkx
>
k

)−1(∑
k∈sP

qkδkxkyk

)
, (3)

where qk are known positive constants for k ∈ sNP . We assume that the p × p dimensional
matrix

∑
k∈sP qkδkxkx

>
k and

∑
k∈U πkqkδkxkx

>
k are nonsingular for all possible samples sP .

We propose to estimate TNP =
∑

k∈U δkyk by a QR predictor as suggested in Wright
(1983):

T̂
(QR)
NP =

∑
k∈U

δkŷk +
∑
k∈sP

rkδk(yk − ŷk)

=
∑
k∈U

δkx
>
k β̂ +

∑
k∈sP

rkδk(yk − x>k β̂), (4)

where rk ≥ 0 are predefined constants. The initials Q and R refer to the constants qk and
rk. The final estimator of T is then given by

T̂ (QR) = T̂
(QR)
NP + T̂

(Ha)
C . (5)

Various choices of qk and rk yield predictors T̂ (QR)
NP with familiar forms as detailed below.

1. For qk = dkv
−1
k and rk = dk, we obtain the model-assisted or GREG-type estimator:

T̂
(MA)
NP =

∑
k∈U

δkŷ
(MA)
k +

∑
k∈sP

δkdk(yk − ŷ(MA)
k ),

where ŷ(MA)
k = x>k β̂

(MA) with β̂(MA) =
(∑

k∈sP dkv
−1
k δkxkx

>
k

)−1 (∑
k∈sP dkv

−1
k δkxkyk

)
.

2. For qk = v−1k and rk = 1, we obtain the model-based type estimator:

T̂
(MB)
NP =

∑
k∈U

δkŷ
(MB)
k +

∑
k∈sP

δk(yk − ŷ(MB)
k ),

where ŷ(MB)
k = x>k β̂

(MB) with β̂(MB) =
(∑

k∈sP δkv
−1
k xkx

>
k

)−1 (∑
k∈sP δkv

−1
k xkyk

)
.
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3. For qk = (dk − 1)v−1k and rk = 1, we obtain the cosmetic-type estimator (Särndal and
Wright, 1984; Brewer, 1999):

T̂
(Cos)
NP =

∑
k∈U

δkŷ
(Cos)
k +

∑
k∈sP

δk(yk − ŷ(Cos)
k ),

where ŷ(Cos)
k = x>k β̂

(Cos) with

β̂(Cos) =

(∑
k∈sP

(dk − 1)v−1k δkxkx
>
k

)−1(∑
k∈sP

(dk − 1)v−1k δkxkyk

)
.

Let us derive some properties for this class of QR predictors. Proposition 3.1 gives a general
condition on the constants qk and rk such that the QR predictor can be defined as a sum
of predictions over the population. Proposition 3.2 gives another general condition on the
constants qk and rk such that the QR predictor is a model-assisted type estimator. The
proofs are given in the Appendix.

Proposition 3.1. (projection form) Consider the QR predictor T̂ (QR)
NP given by (4). Under

the condition that there exists a vector µ ∈ Rp such that

(Proj) : µ>xkqk = rk for all k ∈ sNP ∩ sP , (6)

we have
∑

k∈sP rkδk(yk − ŷk) = 0. In this case, T̂ (QR)
NP can be written in the projection form:

T̂
(QR)
NP =

∑
k∈U

δkŷk.

The model-assisted estimator T̂ (MA)
NP and model-based estimator T̂ (MB)

NP satisfy Condition
(Proj) if there exists a vector µ ∈ Rp such that µ>xk = vk for all k ∈ sNP ∩ sP . This
condition is satisfied when vk is one of the auxiliary variables in the model. If vk = 1, it is
satisfied provided an intercept is included in the model. Condition (Proj) holds for T̂ (Cos)

NP

if µ>xk = vk(dk − 1)−1 for all k ∈ sNP ∩ sP . A consequence of Proposition 3.1 is that, for
equal probability sampling design such as simple random sampling without replacement, the
model-assisted, the model-based and the cosmetic estimators are all equal.

Using Theorem 2 from Wright (1983), we derive the following proposition. For rk satis-
fying Condition (QR) below and any given qk, the QR predictor of TNP is identical to the
model-assisted predictor of TNP with the same qk.

Proposition 3.2. Suppose that the constants rk and qk are such that there exists some vector
λ ∈ Rp such that

(QR) : 1− πkrk = πkqkx
>
k λ for all k ∈ sNP . (7)

Then:
T̂

(QR)
NP = T̂

(Qπ)
NP ,

where

T̂
(Qπ)
NP =

∑
k∈U

δkx
>
k β̂ +

∑
k∈sP

dkδk(yk − x>k β̂) (8)

is the model-assisted type predictor of TNP with β̂ given by (3).
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Following Wright (1983), we note that the (QR) condition always holds for T̂ (MA)
NP . This

condition also holds for the model-based estimator T̂ (MB)
NP if and only if there exists a vector

λ ∈ Rp such that vk(dk−1) = x>k λ, for all k ∈ sNP . This condition is true if we take vk(dk−1)

among the auxiliary variables xk. Condition (QR) holds for the cosmetic estimator T̂ (Cos)
NP if

and only if there exists a vector λ ∈ Rp such that vk = x>k λ, for all k ∈ sNP . This condition
is true if vk is included in the vector of auxiliary variables.

3.2 Bias properties

Let us consider the QR class of predictors that satisfy the (QR) condition given by (7). For
this class of predictors, the final estimator of T is

T̂ (Qπ) = T̂
(Qπ)
NP + T̂

(Ha)
C .

The total error is given by:

T̂ (Qπ) − T = (T̂
(Qπ)
NP − TNP ) + (T̂

(Ha)
C − TC).

The estimator T̂ (Qπ) is not exactly design-unbiased because of the nonlinearity of β̂ and
of the Hajek estimator T̂ (Ha)

C . Following Särndal (1980), we rather look at the asymptotic
design-unbiasedness of the estimators.

Let us consider the asymptotic framework from Isaki and Fuller (1982), which allows
for the population and the sample sizes to grow to infinity. A predictor T̂ is said to be
asymptotically design-unbiased for the finite population total T if limN→∞N

−1[Ep(T̂ ) −
T ] = 0, where Ep is the expectation under the design. Wright (1983) proved that the (QR)
condition given in proposition 3.2 is a sufficient condition for T̂ (Qπ)

NP to be asymptotically
design-unbiased for TNP , provided that

lim
N→∞

1

N
Ep

(∑
k∈U

δkxk −
∑
k∈sP

dkδkxk

)>
(β̂ − β̃)

 = 0, (9)

where β̃ = (
∑

k∈U πkqkδkxkx
>
k )−1

∑
k∈U πkqkδkxkyk. Following Breidt and Opsomer (2000), if

the sampling fraction n/N converges to a constant different from 0, assuming mild conditions
on the second-order inclusion probabilities of the sampling design, and on the auxiliary
information vectors xk for all k ∈ SNP , it can be shown that:

lim
N→∞

Ep||N−1(
∑
k∈U

δkxk −
∑
k∈sP

dkδkxk)||2 = 0,

where || · || is the usual Euclidian norm. Equation (9) follows by assuming that the regression
coefficient estimator satisfies limN→∞ Ep||β̂ − β̃||2 = 0. The estimator T̂ (Ha)

C is a Hájek-type
estimator of TC . Assuming that the probability of the intersection set sP ∩sNP to be empty is
negligible, then T̂ (Ha)

C is asymptotically design-unbiased for TC . From the above, we conclude
that the (QR) predictor is asymptotically design-unbiased for T .

8



Assuming the sampling design is not informative with respect to model (2), we can prove
that the the QR predictor T̂ (QR)

NP is model-unbiased for TNP . The model bias of T̂ (QR)
NP is given

by:

Em(T̂
(QR)
NP − TNP ) =

∑
k∈U δkEm(x>k β̂ − yk) +

∑
k∈sP rkδkEm(yk − x>k β̂), (10)

with β̂ =
(∑

k∈sP qkδkxkx
>
k

)−1 (∑
k∈sP qkδkxkyk

)
. Under model (2), Em(yk) = x>k β for all

k ∈ sNP , Em(β̂) = β and Em(x>k β̂−yk) = 0. Thus, T̂ (QR)
NP is model-unbiased for TNP without

requiring the QR condition. As a result, under non-informative sampling and conditioning
on yk, k ∈ U − sNP , T̂ (QR) is asymptotically mp-unbiased for T .

4 Simulations
In this section, we conduct a Monte-Carlo study to compare the efficiency of some of the QR
predictors, T̂ (QR) = T̂

(QR)
NP +T̂

(Ha)
C from Section 3, namely the model-assisted, the model-based

and the cosmetic estimators, assuming that vk = 1 in model (2). We are also interested in
comparing these estimators with the expansion estimator and the PDI estimator defined in
Section 2. To illustrate that the superiority of some estimators compared to others depend
on the data, we define three different setups based on different artificial populations. As
mentioned in Subsection 3.1, if the probability samples are drawn using simple random
sampling without replacement, the three QR estimators are all equal. Therefore, we focus
on Poisson sampling with inclusion probabilities proportional to an auxiliary variable.

4.1 Populations and setups

The variables are generated using Gamma distributions to ensure their positiveness. Similar
simulation results were obtained with Gaussian distributions but are not reported below. All
populations have a size N = 1, 000. We generate two auxiliary variables X1 and X2, where
X1 (resp X2) follows a Gamma distribution with mean ν1 = 20 (resp ν2 = 30) and standard
deviation (Std) σ1 = 15 (resp σ2 = 20). We use different models to generate the variable Y
for all population units. For each model, the conditional variable Y |X1, X2 follows a Gamma
distribution with mean µY |X1,X2 and constant variance σ2

Y |X1,X2
, which depend on the model.

1. For Model 1, µY |X1,X2 is a linear function of X1 and X2:

µY |X1,X2 = a0 + a1X1 + a2X2.

2. For Model 2, µY |X1,X2 is a quadratic function of X1 and a linear function of X2:

µY |X1,X2 = b0 + b1(X1 − X̄1)
2 + b2X2 with X̄1 the mean of X1 over U.

3. For Model 3, µY |X1,X2 is a linear function of X2:

µY |X1,X2 = c0 + c2X2.
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To compare the results between the three models, we determine the constants a0, a1, a2, b0,
b1, b2, c0,c2, and σ2

Y |X1,X2
in such a way that the following characteristics are the same:

• the unconditional mean µ and variance σ2 of the variable Y ,

• the coefficient of determination of the model, denoted as R2,

• the ratio of variances for the explanatory variables:

γ = Var(a1X1)/Var(a2X2) = Var(b1(X1 − X̄1)
2)/Var(b2X2).

This ratio is only relevant for models 1 and 2 since X1 is not included in Model 3.

In the following, we set µ = 100, σ2 = 100, and γ = 0.5. In Subsection 4.2, the R2 value
is either fixed to 0.8 or varies between 0.1 and 0.96. The main characteristics of the three
population models are summarized in Table 2. A non-probability sample of size 900 is drawn

Model Mean of (X1, X2) Std of (X1, X2) Mean of Y |X1, X2 R2

1
(20,30) (15,20)

µY = a0 + a1X1 + a2X2 equal
between
populations

2 µY = b0+b1(X1−X̄1)
2+b2X2

3 µY = c0 + c2X2

Table 2: Population models with µ = 100, σ2=100, and γ = 0.5.

using simple random sampling without replacement and is the same for all populations.
The probability samples are drawn using Poisson sampling with expected size 200 or 50
and probabilities proportional to X1. We consider three setups. In each setup, we generate
Y |X1, X2 using one of the three different population models, and we compute ŷk, k ∈ sNP
for different QR predictors. The variables used as explanatory variables in the prediction
models differ between setups as follows:

1. Setup 1: Informative case. Population Model 1 is used to generate population Y values
and only X2 is used as explanatory variable in the prediction model along with the
intercept.

2. Setup 2: Quadratic case. Population Model 2 is used to generate population Y val-
ues and both auxiliary variables X1 and X2 are used as explanatory variables in the
prediction model along with the intercept.

3. Setup 3: non-informative case. Population Model 3 is used to generate population Y
values and only X2 is used as explanatory variable in the prediction model along with
the intercept.

For the informative and quadratic setups, the prediction model differs from the population
model for Y , while the correct model is used in the non-informative setup. Table 3 gives a
summary of the three setups.
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Setup Population Variables used in
prediction

Model cor-
rectly speci-
fied

Informative µY = a0 + a1X1 + a2X2 x>k = (1, x2k) No
Quadratic µY = b0 + b1(X1− X̄1)

2 + b2X2 x>k = (1, x1k, x2k) No
non-informative µY = c0 + c2X2 x>k = (1, x2k) Yes

Table 3: Three studied setups.

4.2 Results

Let us consider the three setups defined above and compare the following estimators:

• T̂HT =
∑
k∈sP

dkyk,

• T̂PDI = TNP + (N −NNP )

∑
k∈sP dk(1− δk)yk∑
k∈sP dk(1− δk)

,

• T̂ (MB) =
∑
k∈U

δkŷ
(MB)
k +

∑
k∈sP

δk(yk − ŷ(MB)
k ) + (N −NNP )

∑
sP
dk(1− δk)yk∑

k∈sP dk(1− δk)
,

• T̂ (MA) =
∑
k∈U

δkŷ
(MA)
k +

∑
k∈sP

δkdk(yk − ŷ(MA)
k ) + (N −NNP )

∑
k∈sP dk(1− δk)yk∑
k∈sP dk(1− δk)

,

• T̂ (Cos) =
∑
k∈U

δkŷ
(Cos)
k +

∑
k∈sP

δk(yk − ŷ(Cos)
k ) + (N −NNP )

∑
k∈sP dk(1− δk)yk∑
k∈sP dk(1− δk)

.

For each setup, L = 10 000 probability samples sP are drawn according to Poisson sam-
pling as detailed above and several Monte Carlo measures are computed. We compute the
Monte Carlo relative bias of the estimators:

RBMC(R̂) = 100× 1

L

L∑
l=1

T̂ (l) − T
T

where T̂ (l) is an estimate of T (T̂HT , T̂ (MB), T̂ (MA), T̂ (Cos) or T̂PDI), computed for the l-th
sample, l = 1, . . . , L.

As a measure of efficiency, we compute the Monte Carlo relative mean square error
(RMSE) of an estimator T̂ (relative to T̂ (Cos)):

RMSEMC(T̂ (Cos)) = 100× MSEMC(T̂ )

MSEMC(T̂ (Cos))
,

where

MSEMC(T̂ ) = L−1
L∑
l=1

(
T̂ (l) − T

)2
.
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Population
parameters Setup Monte Carlo

measures T̂HT T̂ (MB) T̂ (MA) T̂ (Cos) T̂PDI

µ = 100
σ2 = 100
R2 = 0.8
γ = 0.5

Setup 1
RBMC -0.13 3.34 0.11 0.11 0.03
RVarMC(T̂ (Cos)) 23566.93 55.62 114.06 100.00 20.97
RMSEMC(T̂ (Cos)) 22897.58 2715.21 113.91 100.00 20.65

Setup 2
RBMC -0.07 -1.65 -0.06 -0.05 0.02
RVarMC(T̂ (Cos)) 36947.99 84.94 118.21 100.00 23.17
RMSEMC(T̂ (Cos)) 36638.27 1056.44 118.42 100.00 23.15

Setup 3
RBMC 0.03 -0.01 0.01 0.01 0.01
RVarMC(T̂ (Cos)) 41088.93 58.38 100.49 100.00 33.47
RMSEMC(T̂ (Cos)) 41080.51 58.39 100.48 100.00 33.51

Table 4: Relative bias (in %), relative variance and MSE compared to the Cosmetic estimator
(in %) of the different estimators for the 3 different setups. Expected size of the probability
sample: 200. Size of the non-probability sample: 900.

We also compute the Monte Carlo relative variance (RVar) of an estimator T̂ (relative to
T̂ (Cos)):

RVarMC(T̂ (Cos)) = 100× VarMC(T̂ )

VarMC(T̂ (Cos))
,

where

VarMC(T̂ ) = L−1
L∑
l=1

(
T̂ (l)
)2
−

(
L−1

L∑
l=1

T̂ (l)

)2

.

Table 4 contains the simulation results for the three setup when R2 = 0.8. In all setups,
we confirm that both T̂PDI and T̂HT have a small Monte Carlo bias, as expected. In terms of
MSE, T̂PDI is the most precise estimator, while T̂HT is the least precise estimator among all
estimators. This result is expected since the expansion estimator does not make use of any
auxiliary information, while T̂PDI takes into account the true values of the study variable
yk for k ∈ sNP ; i.e., it takes into account the true values of Y for 900 units out of the
1,000 population units. In our context, where the study variable is not observed in sNP , the
estimator T̂PDI is however not computable and serves more as a gold standard. The Monte
Carlo bias of T̂ (MA) and T̂ (Cos) is negligible in the three setups while T̂ (MB) is biased in the
informative and quadratic setups. In these two setups, the prediction model differs from
the population model used to generate Y values. In the non-informative setup, where the
prediction model is correctly specified, the bias of T̂ (MB) is also negligible. The estimator
T̂ (MA) has the largest variance of the QR predictors in the informative and quadratic setups,
while T̂ (MB) has the smallest variance in all setups. In the quadratic setup, the variance
of T̂ (MB) is similar to the variance of T̂ (Cos) but T̂ (MB) has the highest MSE amongst the
QR predictors in both informative and quadratic setups. This means that the bias of T̂ (MB)

degrades its MSE a lot despite its small variance. In the non-informative setup, T̂ (MB) has
the lowest MSE amongst the QR predictors. We can see in Table 4 that this comes from the
absence of bias for T̂ (MB) in this setup together with its small variance. In the informative
and quadratic setups, T̂ (Cos) is more precise in term of variance than T̂ (MA). The estimators
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T̂ (MA) and T̂ (Cos) are similar in the non-informative setup. Both estimators use weighted
regression with slightly different weights (dk for T̂ (MA) and dk − 1 for T̂ (Cos)). The main
difference lies in the use of a non weighted sum of residuals for T̂ (Cos) and of a weighted sum
of residuals for T̂ (MA). When weighted regression methods are used to predict yk, k ∈ sNP ,
an unweighted sum of the residuals is recommended in the definition of the estimator when
the model is misspecified.

To summarize, when the prediction model is incorrectly specified, as in the informative
and quadratic setups, both T̂ (MA) and T̂ (Cos) are significantly more efficient than T̂ (MB) be-
cause of the bias of T̂ (MB), even though the bias is not large. On the opposite, if the model is
correctly specified but the design weights and Y are uncorrelated, as in the non-informative
setup, T̂ (MB) is better than T̂ (MA) and T̂ (Cos) in terms of MSE. In all setups, T̂ (Cos) is more
efficient or similar to T̂ (MA) because the sum of residuals in the Cosmetic estimator is un-
weighted.

To better understand the impact of the R2 on the results, we also plot, on the y-axis
of Figures 1, 2 and 3, the RMSEMC(T̂ (Cos)) for 10 different values of R2 on the x-axis: 0.1,
0.2, . . ., 0.9, 0.96. In order to do that, we generate for each setup ten populations, one for
each R2 value. Figure 1 (resp. Figure 2 and 3) gives the results for Setup 1 (resp. 2
and 3) with the sample size equal to 200 (resp. 50) on the left (resp. right) column plots.
On all plots, the curves correspond to the different estimators with a red curve at 100 for
T̂ (Cos) (since the RMSE is relative to T̂ (Cos)) and different colors for T̂HT , T̂ (MA), T̂ (MB) and
T̂PDI . The plots on the top row of the figures include all the estimators while for the second
row (and third row for Figures 1 and 2), T̂HT (and T̂ (MB) for Figures 1 and 2) is removed
in order to zoom in and ease the comparison between T̂ (Cos), T̂ (MA), T̂ (MB) and T̂PDI . The
scale on the y-axis is kept fixed for the two columns (sample sizes). As expected, T̂PDI is
by far the best estimator with the smallest MSE in all setups. In all figures, T̂HT has a
very bad relative MSE compared to T̂ (Cos) especially when R2 is high. Note that in fact
the absolute MSE of T̂HT remains stable when R2 increases (results not reported), while the
MSE of the other estimators improves. This result is expected because T̂HT does not depend
on the distribution of Y |X1, X2, but depends on µ and σ2 which are constant across the
populations. Figure 1 (resp. 2) shows the evolution of RMSEMC(T̂Cos) with respect to the
R2 in the informative setup (resp. quadratic setup) for sample sP of expected size 200 (left
column) and 50 (right column). In these two setups, not only is T̂ (Cos) better than T̂ (MB) or
T̂ (MA), as seen in Table 4, but its gain compared to its competitors increases the most with
R2. The precision of T̂ (MA) also increases, but at a slightly slower pace. The MSE of T̂ (MB)

worsens with R2 because the prediction model differs too much from the population model
in these setups. This fact implies a larger bias of T̂ (MB) when R2 increases. For informative
and quadratic setups, a smaller size reduces the difference between RMSEMC(T̂ (Cos)) of QR
predictors. Figure 3 shows the evolution of RMSEMC(T̂ (Cos)) with respect to the R2 in the
non-informative setup. This time, T̂ (MB) does not lose precision when R2 increases because
the prediction model is the same as the population model. All QR predictors show an increase
in precision with R2, with T̂ (Cos) and T̂ (MA) having similar precision for all values of R2. In
this setup, the plots are comparable for the two sample sizes, because the model is correctly
specified for all prediction models.

To sum up, if the prediction model is misspecified, the Cosmetic estimator is the best
choice in our setups. It has the smallest MSE amongst all QR predictors, and its precision
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Figure 1: Relative MSE (in %), with the Cosmetic estimator as the baseline, versus R2 in
the informative setup
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Figure 2: Relative MSE (in %), with the Cosmetic estimator as the baseline, versus R2 in
the quadratic setup
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Figure 3: Relative MSE (in %), with the Cosmetic estimator as the baseline, versus R2 in
the non-informative setup
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increases faster with R2 than the other estimators. The advantage of T̂ (Cos) over T̂ (MA) might
disappear in a scenario where the probability sample size would be a smaller fraction of the
population size. T̂ (MB) is biased and has the largest MSE, even for smaller values of R2. If
the model is correctly specified, and Y is not correlated to X1 while the first-order inclusion
probabilities are proportional to X1, T̂ (MB) is the best choice in terms of MSE. However,
the efficiency gain achieved by choosing T̂ (MB) over T̂ (Cos) in this third setup is significantly
smaller than the efficiency loss observed when choosing T̂ (MB) over T̂ (Cos) in the first two
setups. We thus recommend the choice of the Cosmetic estimator as a good compromise in
all setups, followed closely by the model-assisted estimator.

5 Conclusion
Most of the literature on data integration in finite population tackles the problem of unob-
served study variable in the probability sample. In this paper, we have proposed to fill the
gap and considered the problem of unobserved study variable in the non-probability sample
in presence of auxiliary information. We have defined a general class of prediction estimators,
based on the already known QR class, which includes the model-assisted, model-based and
cosmetic estimators, and studied theoretically their bias properties. We have also compared
the three types of estimators with the usual Horvitz-Thompson estimator in different simu-
lation setups, both in terms of bias and MSE, and concluded that the cosmetic estimator is
a good compromise in general.

The main conclusion of our experiments is that significant efficiency gains can be achieved
by leveraging a big non-probability database that contains auxiliary information associated
with the main study variables. For large domains, the efficiency gains obtained from using
model-assisted estimators, including the Cosmetic estimator, may be sufficient to obtain
high-quality estimates of the population parameters of interest. For smaller domains, these
estimators may not achieve precision targets. However, they could be used as direct estimates
in a small area estimation model, such as the well-known Fay-Herriot area level model. This
model requires area level auxiliary information. The big non-probability database would be
a natural candidate for providing the auxiliary information required for producing small area
estimates. Small area estimation methods often yield significant precision gains over direct
estimators at the expense of introducing model assumptions.
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Appendix

Proof of Proposition 2.1

We recall that T̂DI =
∑

k∈U δkyk +
∑

k∈s(1− δk)dkyk and T̂HT =
∑

k∈s dkyk =
∑

k∈s δkdkyk +∑
k∈s(1− δk)dkyk. Thus, we have:

Var(T̂HT )− Var(T̂DI) = Var

(∑
k∈s

δkdkyk

)
+ 2Cov

(∑
k∈s

δkdkyk,
∑
k∈s

(1− δk)dkyk

)
.

(i) For Poisson sampling, we have:

Cov

(∑
k∈s

δkdkyk,
∑
k∈s

(1− δk)dkyk

)
=
∑
k∈s

δk(1− δk)dky2k = 0

and

Var(T̂HT )− Var(T̂DI) = Var

(∑
k∈s

δkdkyk

)
=
∑
k∈U

δk(dk − 1)y2k ≥ 0,

which proves the first part of the proposition.
(ii) For simple random sampling without replacement, let ȲU =

∑
k∈U yk/N , ȲNP =

∑
k∈U δkyk/NNP ,

S2
Y,NP =

∑
k∈U δk(yk− ȲNP )2/(NNP − 1) and CV 2

NP = S2
Y,NP/Ȳ

2
NP . Using some simple calcu-

lus, we have:

Var

(∑
k∈s

δkdkyk

)
=
N

n

N − n
N(N − 1)

(
N(NNP − 1)S2

y,NP +NNP Ȳ
2
NP (N −NNP )

)
,

Cov

(∑
k∈s

δkdkyk,
∑
k∈s

(1− δk)dkyk

)
= −N

n

N − n
N(N − 1)

NNP ȲNP
(
NȲU −NNP ȲNP

)
,

and thus

Var(T̂HT )−Var(T̂DI) =
N

n

N − n
N(N − 1)

(
N(NNP − 1)S2

y,NP +NNP ȲNP
(
(N +NNP )ȲNP − 2NȲU

))
.

We conclude that Var(T̂HT ) is larger than or equal to Var(T̂DI) if and only if

N(NNP − 1)S2
y,NP +NNP ȲNP

(
(N +NNP )ȲNP − 2NȲU

)
≥ 0,

which is equivalent to:

CV 2
NP ≥ −

NNP

NNP − 1

(
1 +

NNP

N
− 2

ȲU
ȲNP

)
,

and proves the second part of the proposition.
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Proof of Proposition 2.2

We have:

Var(T̂HT ) = Var

(∑
k∈s

dkyk

)
= N2(1− f)

S2
y

n
,

AVar(T̂PDI) = Var

(∑
k∈s

(1− δk)dk(yk − ȲC)

)
= Var

(∑
k∈s

dkỹk

)
= N2(1− f)

S2
ỹ

n

where
S2
y =

1

N − 1

∑
k∈U

(yk − ȲU)2,

ỹk = (1− δk)(yk − ȲC),

S2
ỹ =

1

N − 1

∑
k∈U

(ỹk − ¯̃YC)2 =
1

N − 1

∑
k∈U

ỹ2k.

Using some basic but tedious calculus, we obtain:

Var(T̂HT )− AVar(T̂PDI) = N2(1− f)
S2
y − S2

ỹ

n

= N2(1− f)
1

n

1

N − 1

(∑
k∈U

δk(yk − ȲU)2 + (N −NNP )(ȲC − ȲU)2

)

= N2(1− f)
1

n

1

N − 1

(
S2
NP (NNP − 1) +NNP

N

N −NNP

(ȲNP − ȲU)2
).

Proof of Proposition 3.1

Let RsP = diag(rkδk)k∈sP , XsP = (x>k )k∈sP , ysP = (yk)k∈sP and Q>xsP = X>sP diag(qkδk)k∈sP .

Then β̂ = (Q>xsPXs)
−1Q>xsPysP . We can write the sum

∑
k∈sP rkδk(yk − ŷk) in a matrix form

as follows: ∑
k∈sP

rkδk(yk − ŷk) = 1>sPRsP (ysP −Xsβ̂),

where 1sP is a vector of ones with dimension the size of sP . Then, 1>sPRsP (ys −XsP β̂) = 0
when 1>sPRsP spans the row space of Q>xsP , namely if there exists µ ∈ Rn such that µ>Q>xsP =
1>sPRsP , which is equivalent to µ>xkqk − rk = 0 for all k ∈ sNP ∩ sP .

Proof of Proposition 3.2

We have

T̂
(QR)
NP − T̂ (Qπ)

NP =
∑
k∈sP

(rk − dk)δk(yk − x>k β̂)

= λ>
∑
k∈sP

qkδkxk(yk − x>k β̂) = 0.
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