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Abstract

The maximum-likelihood estimator of nonlinear panel data models with fixed effects
is asymptotically biased under rectangular-array asymptotics. The literature has
devoted substantial effort to devising methods that correct for this bias as a means
to salvage standard inferential procedures. The chief purpose of this paper is to show
that the (recursive, parametric) bootstrap replicates the asymptotic distribution of
the (uncorrected) maximum-likelihood estimator and of the likelihood-ratio statistic.
This justifies the use of confidence sets and decision rules for hypothesis testing
constructed via conventional bootstrap methods. No modification for the presence of
bias needs to be made.
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Introduction

The maximum-likelihood estimator of models for panel data is well known to perform poorly

when fixed effects are included. The estimator is generally inconsistent under asymptotics
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where the number of individuals, n, grows large while the number of time periods, m,

is held fixed (Neyman and Scott 1948). In fact, many parameters of interest are simply

not (point) identified in such a setting (see, e.g., Honoré and Tamer 2006). Maximum

likelihood is consistent when m grows large with n. Under rectangular-array asymptotics,

where n and m grow at the same rate, it is asymptotically biased, however, in general.

Therefore, inference based on a naive normal approximation to the distribution of the

maximum-likelihood estimator is incorrect, even in large samples.

Over the last two decades substantial effort has been devoted to devising procedures

that remove the asymptotic bias, thereby recentering the limit distribution around zero

and restoring the validity of conventional inference procedures based on it; see Arellano

and Hahn (2007) for a discussion and many references. Theoretical guidelines on which

bias-correction method to use and on how to select their respective tuning parameters

are largely absent. This is inconvenient because, even though all the proposals lead to

estimators with the same (first-order) asymptotic properties, they vary greatly in their ease

of implementation and in how effective they are at salvaging inference in finite samples (see

the simulations in Dhaene and Jochmans 2015, for example).

The current paper shows that, under rectangular-array asymptotics, the parametric

bootstrap consistently estimates the distribution of the (uncorrected) maximum-likelihood

estimator of the model’s common parameters, including its asymptotic bias. This implies

that confidence sets and hypothesis tests constructed using either the basic bootstrap (or

centered percentile bootstrap or the reverse-percentile bootstrap; we follow the terminology

of Davison and Hinkley 1997, p. 194) or its studentized version have correct coverage

and size, respectively, in large samples. Thus, bias correction is not needed. The same

conclusion is true for averages over the fixed effects, such as average marginal effects, and

for the size of the likelihood-ratio test and the score test. We stress that our bootstrap

schemes are different from Efron’s (1982, p. 87) percentile bootstrap (Davison and Hinkley

1997, p. 203). The latter bootstrap uses quantiles of uncentered statistics, which does not

produce confidence sets with correct coverage in our setting.

In Section 1 we present the setting and state our main objectives. In Section 2 we
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describe our bootstrap procedure and give examples of its use. In Section 3 we give an

empirical illustration and simulation results. In Section 4 we collect all the formal results

that underlie our claims about the validity of the bootstrap in our setting. Concluding

remarks end the paper. The Appendix contains the proofs. The Online Supplement gathers

auxiliary results used in the proofs.

1 Maximum-likelihood estimation

Suppose that we have data on n independent stratified observations {yi, yi−, xi}, with yi :=

(yi1, . . . , yim), yi− := (yi(1−p), . . . , yi0), and xi := (xi1, . . . , xim). We consider parametric

fixed-effect models where the conditional density of yi given yi− and xi (relative to some

dominating measure) is given by

m∏
t=1

f(yit|yit−p, . . . , yit−1, xit;ϕ0, ηi0),

and f is known up to the finite-dimensional parameters ϕ0 and ηi0. This framework covers

autoregressive processes (of order p), for which yi− serves as the initial condition, and allows

for exogenous covariates, xi. In what follows we will treat both the initial condition and

the covariates as fixed.

It is convenient to introduce the shorthand

`(ϕ, ηi|zit) := log f(yit|yit−p, . . . , yit−1, xit;ϕ, ηi),

where zit := (yit−p, . . . , yit−1, yit, xit). The maximum-likelihood estimator is

(ϕ̂, η̂1, . . . , η̂n) := arg max
ϕ,η1,...,ηn

n∑
i=1

m∑
t=1

`(ϕ, ηi|zit).

In sufficiently-regular models we have, as n,m → ∞ with n/m → γ2 for some 0 < γ < ∞,

that
√
nm(ϕ̂− ϕ0)

L→ N(γβ,Σ), (1.1)
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where β is a non-random (asymptotic) bias term and the variance isΣ := (limn,m→∞Ωnm)−1

for

Ωnm := − 1

nm

n∑
i=1

m∑
t=1

E
(
∂2`(ϕ0, ηi0|zit)

∂ϕ∂ϕ′
− ρi,m

∂2`(ϕ0, ηi0|zit)
∂ηi∂ϕ′

)
, (1.2)

with

ρi,m :=

(
1

m

m∑
t=1

E
(
∂2`(ϕ0, ηi0|zit)

∂ϕ∂η′i

))(
1

m

m∑
t=1

E
(
∂2`(ϕ0, ηi0|zit)

∂ηi∂η′i

))−1

.

See Hahn and Newey (2004) and Hahn and Kuersteiner (2011) for early derivations of this

result in static and dynamic models, respectively.

The presence of asymptotic bias in (1.1) implies that confidence regions and hypothesis

tests based on the limit distribution of the maximum-likelihood estimator have to account

for it in order to have correct coverage and size unless n/m is close to zero, which is not

usually the case. A standard approach to do so is to correct ϕ̂ for its (first-order) bias.

This amounts to constructing the bias-corrected estimator ϕ̂− β̂/m, where β̂ is an estimator

of β. Such an approach recenters the estimator’s limit distribution around zero, restoring

the validity of inference procedures based on the usual normal approximation.

We may also be interested in parameters of the form

∆ := lim
n,m→∞

1

nm

n∑
i=1

m∑
t=1

E(µ(zit, ϕ0, ηi0)),

for a chosen function µ. Average marginal effects (as discussed in Chamberlain 1984) or

moments of the fixed effects are typical examples. The maximum-likelihood estimator of ∆

is ∆̂ := 1/nm
∑n

i=1

∑m
t=1 µ(zit, ϕ̂, η̂i) which, similar to ϕ̂, also suffers from asymptotic bias.

This would be true even if ϕ̂ would be replaced by a bias-corrected estimator (or, indeed,

by ϕ0). The asymptotic bias and variance of ∆̂ are complicated and are not given here.

Expressions for them (and estimators of them) can be found in Hahn and Newey (2004)

and Dhaene and Jochmans (2015).

Finally, we may wish to test a null hypothesis of the form φ(ϕ0) = 0 by means of either

a likelihood-ratio or a Lagrange-multiplier test. We focus on the former approach here. Let

η̂i(ϕ) := arg max
ηi

m∑
t=1

`(ϕ, ηi|zit).
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Note that ϕ̂ = arg max
ϕ

∑n
i=1

∑m
t=1 `(ϕ, η̂i(ϕ)|zit). The maximum-likelihood estimator of ϕ0

under the null is

ϕ̌ := arg max
ϕ:φ(ϕ)=0

n∑
i=1

m∑
t=1

`(ϕ, η̂i(ϕ)|zit),

and the likelihood-ratio statistic equals

ŵ := 2
n∑
i=1

m∑
t=1

(
`(ϕ̂, η̂i(ϕ̂)|zit)− `(ϕ̌, η̂i(ϕ̌)|zit)

)
.

The fixed effects introduce bias in the profile likelihood, which implies that (under the

null) ŵ converges to a non-central χ2-distribution. Hence, conventional decision rules for

hypothesis testing that are based on comparing ŵ to critical values from a χ2- distribution

do not lead to size-correct inference.

2 Bootstrap inference

The (parametric) bootstrap we consider imposes the data generating process implied by the

maximum-likelihood estimator. A bootstrap observation y∗i := (y∗i1, . . . , y
∗
im) is generated

recursively by drawing y∗it from the fitted transition density obtained from the original data,

f(y∗it|y∗it−p, . . . , y∗it−1, xit; ϕ̂, η̂i).

The initial condition, like the covariates, is held fixed, i.e., y∗i− = yi−. The associated

maximum-likelihood estimator is

(ϕ̂∗, η̂∗1, . . . , η̂
∗
n) := arg max

ϕ,η1,...,ηn

n∑
i=1

m∑
t=1

`(ϕ, ηi|z∗it),

with z∗it := (y∗it−p, . . . , y
∗
it−1, y

∗
it, xit). We now illustrate how this bootstrap procedure can be

used in the construction of confidence intervals, bias-corrected estimators, and hypothesis

tests.

Confidence intervals The main observation of this paper is that, in regular situations,

√
nm(ϕ̂∗ − ϕ̂)

L∗→ N(γβ,Σ), (2.3)
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as n,m → ∞ with n/m → γ2. Throughout, we use
L∗→ to denote weak convergence of

the bootstrap measure. Equations (1.1) and (2.3) reveal that the bootstrap distribution

is consistent for the distribution of the maximum-likelihood estimator. Importantly, the

bootstrap mimics the asymptotic bias.

Equation (2.3) implies that asymptotically-valid confidence intervals can be constructed

by means of the basic bootstrap without correcting the maximum-likelihood estimator (or,

indeed, its bootstrap counterpart) for its bias. As an example, let

F ∗(a) := P∗(c′(ϕ̂∗ − ϕ̂) ≤ a),

for a chosen vector of conformable dimension c. The notation P∗ refers to a probability

computed with respect to the bootstrap measure, i.e, conditional on the original sample.

Let

Q∗(α) := inf {q : α ≤ F ∗(q)}

be the implied quantile function. Then

{c′ϕ : c′ϕ̂−Q∗(α) ≤ c′ϕ} , {c′ϕ : c′ϕ̂−Q∗(1+α/2) ≤ c′ϕ ≤ c′ϕ̂−Q∗(1−α/2)}

are, respectively, an upper one-sided confidence interval and a two-sided (equal-tailed)

confidence interval for the linear combination c′ϕ0 with confidence level equal to α (in large

samples). We reiterate that working with the α quantile of the distribution of the centered

c′(ϕ̂∗−ϕ̂) instead of the (1−α) quantile of the uncentered c′ϕ̂∗, as in Efron’s (1982) original

proposal, is important for this to be the case.

The conditions under which we establish (1.1) and (2.3) equally imply the consistency

of the plug-in estimator Σ̂ and of its bootstrap counterpart Σ̂∗ for the inverse Fisher

information Σ. This, then, equally validates the construction of confidence intervals by

means of the studentized bootstrap. Again for inference on c′ϕ0, we would proceed in the

same way as with the basic bootstrap, only now using the quantiles of the distribution of

(c′Σ̂∗ c)−
1/2c′(ϕ̂∗ − ϕ̂),

scaled by (c′Σ̂ c)1/2, as critical values.
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Conventional bootstrap theory advocates the use of the studentized bootstrap over the

basic bootstrap when the studentized quantity has a (limit) distribution that is pivotal.

The presence of bias, however, renders the relevant limit distribution non-pivotal even

after studentization. As an alternative we can use the double bootstrap (as in Beran 1988).

To describe it, observe that, given ϕ̂∗ and η̂∗i , we can generate y∗∗i := (y∗∗i1 , . . . , y
∗∗
im) using

the density f(y∗∗it |y∗∗it−p, . . . , y∗∗it−1, xit; ϕ̂
∗, η̂∗i ) for all strata, and subsequently apply maximum

likelihood to obtain the estimators ϕ̂∗∗ and η̂∗∗i of ϕ̂∗ and η̂∗i . Consider the quantile function

Q∗∗(α) := inf {q : α ≤ F ∗∗(q)}

associated with F ∗∗(a) := P∗∗(c′(ϕ̂∗∗ − ϕ̂∗) ≤ a) where, now, the notation P∗∗ indicates

probabilities taken conditional on both the original sample and the (first layer) bootstrap

sample. Suppose we again wish to construct an upper one-sided confidence interval for c′ϕ0

with confidence level α. We can mimic this process via the double bootstrap. For a given

a ∈ (0, 1),

α̂∗(a) := P∗(c′ϕ̂ ∈ {c′ϕ : c′ϕ̂∗ −Q∗∗(a) ≤ c′ϕ})

is the (actual) coverage probability of an upper one-sided confidence interval for c′ϕ̂ with

(theoretical) level a using the bootstrap. Let α∗ be such that α̂∗(α∗) = α. Then the double

bootstrap constructs its one-sided confidence interval with (theoretical) level α for c′ϕ0 as

{c′ϕ : c′ϕ̂−Q∗(α∗) ≤ c′ϕ} .

Two-sided confidence intervals and studentized versions can be constructed in a similar

manner. In several examples (not reported on here) we found that iterating the bootstrap

typically yielded confidence intervals with improved coverage, although we do not formally

establish that iterating yields any asymptotic refinements in this paper.

Confidence intervals for ∆ are obtained in the same way. Given a bootstrap sample and

the associated maximum-likelihood estimator, we construct the implied plug-in estimator

∆̂∗ :=
1

nm

n∑
i=1

m∑
t=1

µ(z∗it, ϕ̂
∗, η̂∗i ).
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The bootstrap distribution of
√
nm(∆̂∗ − ∆̂) mimics the distribution of

√
nm(∆̂ − ∆) in

large samples. The construction of confidence intervals for ∆ is then completely analogous

to before.

Point estimation It may be of interest to report a bias-corrected point estimator of

c′ϕ0, say (the developments for average effects are similar to what follows). Equation (2.3)

implies that the median of the bootstrap distribution F ∗ is a valid estimator of c′β/m. Hence,

c′ϕ̂−Q∗(1/2)

is a bias-corrected estimator. Kim and Sun (2016) proposed estimating the bias by a

winsorized mean of F ∗. The winsorization involves the choice of a cut-off parameter and

is needed, in general, because the mean of F ∗ need not exist. Using the median is a simple

alternative that enjoys some robustness.

As correcting for bias leaves the estimator’s (first-order) variance unchanged, c′Σ̂ c/nm

is a valid estimator of the variance of c′ϕ̂ − Q∗(1/2). An alternative estimator would be

the variance of the bootstrap distribution F ∗ (subjected to suitable winsorization). Our

theoretical results below, like most in the literature, concern distributional approximations.

They do not imply consistency of the bootstrap variance (see, e.g., Hahn and Liao 2021). A

separate proof is needed that includes, among other things, conditions on the winsorization.

Hypothesis testing Because confidence intervals can be obtained by inverting a test,

the validity of confidence intervals based on the studentized bootstrap justifies the use of

bootstrap critical values for conventional t-tests. Furthermore, bootstrap p-values for such

tests will be asymptotically uniformly distributed. For example, the decision rule that

rejects the null that c′ϕ0 ≤ c′ϕ in favor of the alternative hypothesis that c′ϕ0 > c′ϕ when

(c′Σ̂ c)−
1/2 c′(ϕ̂− ϕ)

exceeds the (1− α) quantile of the distribution of (c′Σ̂∗ c)−1/2 c′(ϕ̂∗− ϕ̂) gives a test of size

α in large samples.
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We can equally bootstrap the likelihood-ratio statistic. To describe how, consider again

the null hypothesis that φ(ϕ0) = 0 for a chosen function φ. For data generated according

to our parametric bootstrap the associated constrained maximum-likelihood estimator is

equal to

ϕ̌∗ := arg max
ϕ:φ(ϕ)=φ(ϕ̂)

n∑
i=1

m∑
t=1

`(ϕ, η̂∗i (ϕ)|z∗it), η̂∗i (ϕ) := arg max
ηi

m∑
t=1

`(ϕ, ηi|z∗it).

The corresponding likelihood-ratio statistic is

ŵ∗ := 2
n∑
i=1

m∑
t=1

(
`(ϕ̂∗, η̂∗i (ϕ̂

∗)|z∗it)− `(ϕ̌∗, η̂∗i (ϕ̌∗)|z∗it)
)
.

Redefine F ∗(a) := P∗(ŵ∗ ≤ a). Then Q∗ becomes the bootstrap quantile function of the

likelihood-ratio statistic. The decision rule to reject the null if

ŵ > Q∗(1− α)

yields a test with size α in large samples. In the same way, the use of p∗ := 1 − F ∗(ŵ) as

p-value is asymptotically justified.

The double bootstrap can equally be used for testing purposes. If we let ŵ∗∗ denote the

likelihood-ratio statistic computed on data generated using parameters ϕ̂∗ and η̂∗1, . . . , η̂
∗
n

and let Q∗∗ be the quantile function of F ∗∗(a) := P∗∗(ŵ∗∗ ≤ a), then a likelihood-ratio test

of theoretical size α based on the double bootstrap is the decision rule to reject the null if

ŵ > Q∗(1− α∗),

for α∗ a solution to α̂∗(α∗) = α with α̂∗(a) := 1− F ∗(Q∗∗(1− a)).

3 Numerical illustrations

Empirical example We look at the determinants of labor-force participation decisions

of married woman using data from the Panel Study of Income Dynamics (PSID). We follow

Hyslop (1999) and specify the participation decision as a first-order dynamic probit model
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Table 1: Female labor-force participation, autoregressive coefficient: Empirical results.

Coefficient Standard error Confidence interval

Maximum likelihood 0.756 0.043 [0.672, 0.840]

Hahn and Kuersteiner (2011) 0.992 0.043 [0.908, 1.075]

Fernández-Val (2009) 1.031 0.043 [0.948, 1.115]

Bootstrap-based bias correction 1.162 0.045 [1.073, 1.251]

Basic bootstrap — — [1.073, 1.250]

Double basic bootstrap — — [1.101, 1.263]

Studentized bootstrap — — [1.049, 1.210]

Double studentized bootstrap — — [1.100, 1.340]

The corrections of Hahn and Kuersteiner (2011) and Fernández-Val (2009) were implemented

with a bandwidth set to one, and the bootstrap with 9,999 replications and no winsorization.

The bootstrap-based confidence intervals are based on 9,999 replications in the outer loop

and (for the iterated bootstrap) 999 replications in the inner loop, following Booth and Hall

(1994).

with unit-specific intercepts. As covariates we include the number of children of at most

two years of age, between 3 and 5 years of age, and between 6 and 17 years of age, as

well as the log of the husband’s earnings and a quadratic function of age. Carro (2007),

Fernández-Val (2009), and Dhaene and Jochmans (2015) have previously estimated the

same specification. For comparability we use the same data, which concern 1461 women

and span the period 1979–1988 (available from Fernández-Val 2022).

We focus on the autoregressive coefficient of the participation decision. In the top

panel of Table 1 we first report point estimates and standard errors, along with the implied

95% confidence intervals based on a conventional normal approximation, for four different

approaches. The first approach is standard maximum likelihood. The second and third

approaches are the proposals of Hahn and Kuersteiner (2011) and Fernández-Val (2009) for

bias correction, which consist of shifting the maximum-likelihood estimate by an estimate
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of its leading bias. For each of these the standard error is calculated from the Hessian

of the log-likelihood evaluated at the maximum-likelihood estimates. The final approach

reported on uses the bootstrap distribution of the maximum-likelihood estimator to correct

for bias and to estimate the asymptotic variance, as described above. Here, the point

estimate is calculated by subtracting the median of the bootstrap distribution from the

maximum-likelihood estimate (using the mean instead gives essentially the same result) and

the standard error as the standard deviation of the same bootstrap distribution (without

winsorization). Adjusting the maximum-likelihood point estimate for bias leads to an

upward revision in the amount of state dependence for all approaches considered. The

bootstrap-based revision is larger than those of the analytical corrections. The plug-in

estimate of the standard error is very similar to the standard deviation of the bootstrap

distribution. It is apparent that the maximum-likelihood point estimate is well outside of

any of the bias-corrected confidence intervals.

In the second panel of Table 1 we provide 95% confidence intervals obtained via the basic

bootstrap and via the studentized bootstrap applied to the maximum-likelihood estimator,

and also via their iterated versions. The basic bootstrap yields a confidence interval that

is close to the one obtained by fitting a normal approximation to the bootstrap bias-

corrected estimator. Iterating the basic bootstrap narrows the interval by adjusting its left

endpoint upward. The interval based on the studentized bootstrap is located more to the

left; iterating yields an interval that is similar to that of the (iterated) basic bootstrap,

although it is somewhat wider. We remark that these intervals are not symmetric around

the bootstrap-based point estimate.

Simulation We now provide results from a simulation exercise built around our data. We

fix initial conditions and covariates to their observed values and generate outcomes from a

dynamic probit specification. For the autoregressive coefficient we consider four different

values; 0, 1/2, 1, and 3/2. The remaining parameters, including the fixed effects, are set to

their maximum-likelihood estimates. In Table 2 we report bias, standard deviation, and

coverage rates for 95% confidence intervals (computed over 2,500 Monte Carlo replications).
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We consider the same estimators as before and use a normal approximation to construct

confidence intervals for all but the bootstrap, where we rely on the basic bootstrap instead.

The corrections of Hahn and Kuersteiner (2011) and Fernández-Val (2009) reduce bias

relative to maximum likelihood in all designs. The latter is more successful in doing so; this

can be explained by the fact that it exploits the model structure to implement a refined

correction of the former by replacing certain sample averages by expected quantities. The

extent to which bias is reduced decreases as the state-dependence parameter gets larger.

In all but one case, and then only for the approach of Fernández-Val (2009), the bias

remains important relative to the standard deviation, implying that the coverage rates for

the analytical corrections are dramatically lower than the desired level of 95%. As such,

these methods are not effective in our setup.

Use of the (median of the) bootstrap distribution leads to considerably more reduction

of the bias in all four cases. The state-dependence coefficient is, on average, estimated to

be larger compared to the other corrections. This is fully in line with what was observed

in the estimation results in Table 1. The (basic) bootstrap-based confidence intervals also

display far better coverage. Only in the most challenging design does the coverage rate fall

short in a substantial manner. The coverage properties for the studentized bootstrap (not

reported) are inferior to those of the basic bootstrap, although this can be alleviated to a

certain extent by iterating the bootstrap. This is a pattern we observed in a further set of

simulation experiments.

4 Asymptotic theory

Our results hold under a set of assumptions that are standard in the literature. The way

we formulate them is mostly borrowed from Kim and Sun (2016). It differs from Hahn and

Kuersteiner (2011) in two respects that are worth noting. The first difference is that the

individual time series need not be stationary. This is important because the requirement

that the initial condition is a draw from the steady-state distribution, for example, is

often hard to justify. The second difference is that certain requirements are imposed to
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Table 2: Female labor-force participation, autoregressive coefficient: Simulation results

Bias Standard deviation Coverage rate

true parameter value 0

Maximum likelihood -0.350 0.043 0.000

Hahn and Kuersteiner (2011) -0.066 0.041 0.678

Fernández-Val (2009) 0.007 0.039 0.967

(Basic) bootstrap 0.008 0.042 0.972

true parameter value 1/2

Maximum likelihood -0.381 0.043 0.000

Hahn and Kuersteiner (2011) -0.123 0.041 0.191

Fernández-Val (2009) -0.056 0.039 0.787

(Basic) bootstrap -0.010 0.044 0.970

true parameter value 1

Maximum likelihood -0.434 0.046 0.000

Hahn and Kuersteiner (2011) -0.233 0.044 0.002

Fernández-Val (2009) -0.149 0.040 0.091

(Basic) bootstrap -0.038 0.047 0.921

true parameter value 3/2

Maximum likelihood -0.501 0.054 0.000

Hahn and Kuersteiner (2011) -0.385 0.059 0.000

Fernández-Val (2009) -0.270 0.045 0.000

(Basic) bootstrap -0.077 0.056 0.782

The corrections of Hahn and Kuersteiner (2011) and Fernández-Val (2009) were implemented

with a bandwidth set to one, and the bootstrap with 999 replications. Results are based on

2,500 Monte Carlo replications.
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hold uniformly over a neighborhood of the true parameter value. Doing so allows us to

adopt a technique introduced in Andrews (2005). This technique is to first demonstrate

a convergence result for the maximum-likelihood estimator uniformly over a set around

the true parameter value. Then, because consistency implies that the maximum-likelihood

estimator lies in this set with probability approaching one, this allows us the establish the

corresponding property for the bootstrap estimator.

In the assumptions (and in the proofs) it is important to make clear under which data

generating process certain expectations and probabilities are being computed. We will

write Eθ and Pθ for expectations and probabilities involving data that were generated

using parameters θ := (ϕ, η1, . . . , ηn). Note that some objects, such as Eθ(zit), for example,

only depend on a subset of the elements of θ. For simplicity, however, we do not make this

explicit in the notation.

Denote by Vϕ and Vη the parameter space for ϕ and ηi, respectively. Then the parameter

space for θ is the Cartesian product Θ := Vϕ × Vη × · · · × Vη. We let Θ0 be a subset of Θ.

Assumption 1.

(i) The density f is a continuous function in ϕ ∈ Vϕ and ηi ∈ Vη.

(ii) The true parameter value lies in the interior of Θ0, a subset of the compact set Θ.

For our next assumption, consider the mixing coefficients

ai(θ, h) := sup
1≤t≤m

sup
A∈Ait(θ)

sup
B∈Bit+h(θ)

|Pθ(A ∩B)− Pθ(A)Pθ(B)|,

where Ait(θ) and Bit(θ) are the sigma algebras generated by the sequences zit, zit−1, . . . and

zit, zit+1, . . . when these sequences were generated from our model with the parameter equal

to θ.

We will also make use of an open set that covers Θ0. This set is of the form

Θ1 := {θ ∈ Θ : d(θ, Θ0) < δ}

for some δ > 0, where d(θ, Θ0) := inf{‖θ − ϑ‖2 : ϑ ∈ Θ0}, i.e., the distance between the

point θ and the set Θ0.
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Assumption 2. sup1≤i≤n supθ∈Θ1
ai(θ, h) = O(rh) for some constant 0 < r < 1.

The next assumption collects smoothness conditions and moment requirements.

Assumption 3.

(i) The function `(ϕ, ηi|zit) is almost surely four times continuously-differentiable in ϕ and

ηi.

(ii) The function `(ϕ, ηi|zit) and all its cross-derivatives up to fourth order are almost surely

bounded by a function b(zit) for which

sup
1≤i≤n

sup
1≤t≤m

sup
θ∈Θ1

Eθ(|b(zit)|q) <∞

for some q such that 3 + (dim(ϕ)+dim(ηi))/2 < qs with 0 < s < 1/10.

(iii) As m→∞, 1/m
∑m

t=1 Eθ(b(zit)) converges to limm→∞ 1/m
∑m

t=1 Eθ(b(zit)) uniformly in

i and θ ∈ Θ1.

Let

Hi(ϕ, ηi|ϑ) := lim
m→∞

1

m

m∑
t=1

Eϑ(`(ϕ, ηi|zit)).

The next assumption ensures that our parameters are identified from time series variation.

Assumption 4. For each ε > 0 there exists a δε > 0 such that

inf
1≤i≤n

inf
θ∈Θ1

(
Hi(ϕ, ηi|θ) − sup

{(ϕ̄,η̄i):‖(ϕ̄,η̄i)−(ϕ,ηi)‖2>ε}
Hi(ϕ̄, η̄i|θ)

)
> δε.

Assumption 5 states that we are working under rectangular-array asymptotics.

Assumption 5. As n,m→∞, n/m→ γ2 for some 0 < γ <∞.

The last assumption ensures a well-defined asymptotic variance for ϕ̂. We write Ωnm,θ

for the matrix defined below (1.1) to highlight its dependence on θ, and $min(A) and

$max(A) for the smallest and largest eigenvalue of a square matrix A.
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Assumption 6. There exist positive finite constants ε1, ε2 and ε1, ε2 such that, for n and

m large enough,

(i) ε1 ≤ inf
1≤i≤n

inf
θ∈Θ1

$min

(
1

m

m∑
t=1

Eθ
(
∂2`(ϕ, ηi|zit)

∂ηi∂η′i

))

≤ sup
1≤i≤n

sup
θ∈Θ1

$max

(
1

m

m∑
t=1

Eθ
(
∂2`(ϕ, ηi|zit)

∂ηi∂η′i

))
≤ ε2,

(ii) ε1 < infθ∈Θ1 $min(Ωnm,θ) ≤ supθ∈Θ1
$max(Ωnm,θ) < ε2.

Our first result is stated in the following theorem.

Theorem 1. Let Assumptions 1–6 hold. Then

P
(

sup
a

∣∣P∗(√nm(ϕ̂∗ − ϕ̂) ≤ a)− P(
√
nm(ϕ̂− ϕ0) ≤ a)

∣∣ > ε

)
= o(1)

for any ε > 0.

Theorem 1, through the following corollary, justifies the use of the basic bootstrap to

conduct inference on c′ϕ0.

Corollary 1. Let Assumptions 1–6 hold. Let Q∗(α) be the smallest value Q∗ for which

P∗(c′(ϕ̂∗−ϕ̂) ≤ Q∗) ≥ α, where c is a given vector of conformable dimension with ‖c‖1 <∞.

Then

P (c′ϕ̂−Q∗(α) ≤ c′ϕ0) = α + o(1)

for any α ∈ (0, 1).

A consistency result for Σ̂ and Σ̂∗ is given in the Supplement. This leads to our next

corollary.

Corollary 2. Let Assumptions 1–6 hold. Let Q∗(α) be the smallest value Q∗ for which

P∗((c′Σ̂∗c)−1/2c′(ϕ̂∗ − ϕ̂) ≤ Q∗) ≥ α, where c is a given vector of conformable dimension

with ‖c‖1 <∞. Then

P
(
c′ϕ̂− (c′Σ̂ c)

1/2Q∗(α) ≤ c′ϕ0

)
= α + o(1)

for any α ∈ (0, 1).
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Corollary 2 implies that confidence intervals constructed via the studentized bootstrap yield

correct coverage in large samples. Another consequence is that a hypothesis test obtained

through inversion of a (1 − α) confidence interval so constructed—that is, a conventional

t-test—will have size approaching α as n,m → ∞. Furthermore, p-values for such a test

calculated from the bootstrap distribution are asymptotically uniformly distributed on

(0, 1).

Our next theorem provides a delta method for the bootstrap.

Theorem 2. Let Assumptions 1–6 hold. Let φ be a non-random vector-valued function

that is continuously-differentiable on Vϕ. Then

P
(

sup
a

∣∣P∗(√nm(φ(ϕ̂∗)− φ(ϕ̂)) ≤ a)− P(
√
nm(φ(ϕ̂)− φ(ϕ0)) ≤ a)

∣∣ > ε

)
= o(1)

for any ε > 0.

Theorem 2 allows to extend Corollaries 1 and 2 to cover inference on nonlinear parameter

transformations φ(ϕ0).

Our final result concerns the behavior of the likelihood-ratio statistic.

Theorem 3. Let Assumptions 1–6 hold. Consider testing the null hypothesis that φ(ϕ0) = 0

for a non-random function φ. Suppose that the true parameter value lies in the interior

of the set Θ ∩ {ϕ ∈ Vϕ : φ(ϕ) = 0} and that φ is five times continuously-differentiable on

Vϕ with bounded derivatives and Jacobian matrix with maximal row rank. Then, under the

null,

P
(

sup
a
|P∗(ŵ∗ ≤ a)− P(ŵ ≤ a)| > ε

)
= o(1)

for any ε > 0.

The chief implication of this result is that bootstrapping the likelihood-ratio statistic yields

size control. The same conclusion can be reached for the score statistic; we refer to the

Supplement for a derivation.
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Conclusion

The purpose of this paper has been to show that, in panel data models with fixed effects,

inference based on the likelihood remains valid under rectangular-array asymptotics when

done by means of the parametric bootstrap.

Our setup covers a broad class of nonlinear models and allows for dynamics in the

outcome of interest. Our results do rely on the likelihood being correctly specified. An

implication is that any feedback from outcomes to covariates, or any error dependence, must

be modelled. Some approaches to bias correction, in contrast, can be applied more generally.

Gonçalves and Kaffo (2015) have shown that the wild bootstrap replicates the bias of the

within-group estimator in the linear autoregressive setup of Hahn and Kuersteiner (2002).

Their approach is residual-based but is, however, tailored quite specifically to the linear

model. Nonetheless, devising a bootstrap procedure for nonlinear models that applies

outside the likelihood setting appears possible and is the topic of ongoing work.

Although our attention has been devoted to one-way models, we see no reason why our

findings could not carry over to models with two-way fixed effects. Such models are useful

to capture aggregate time effects and can be applied to estimate dyadic-interaction models.

Two-step fixed-effect estimators should also be amenable to bootstrapping.

Our panel data problem is an example of the general challenge to conduct inference

when the number of parameters increases with the sample size. The performance of the

bootstrap has been investigated for linear regression models with many regressors (Bickel

and Freedman 1983) and for linear instrumental-variable estimators with many instruments

(Wang and Kaffo 2016). The bootstrap can be successfully applied there provided that the

number of parameters to estimate grows at a certain rate that is slower than the sample

size. Cattaneo, Jansson and Ma (2019) uncovered an asymptotic bias in two-step estimators

when the number of regressors in the first step grows proportionally to the square-root of

the sample size. This is precisely the rate condition implied by our rectangular-array

asymptotics. It seems plausible that a version of the bootstrap can be used to sidestep bias

correction here in the same way as in the panel problem.
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Appendix

Proof of Theorem 1. Note that

P
(

sup
a

∣∣P∗(√nm(ϕ̂∗ − ϕ̂) ≤ a)− P(
√
nm(ϕ̂− ϕ0) ≤ a)

∣∣ > ε

)
is bounded from above by

sup
θ∈Θ0

Pθ
(

sup
a

∣∣Pθ̂(√nm(ϕ̂∗ − ϕ̂) ≤ a)− Pθ(
√
nm(ϕ̂− ϕ) ≤ a)

∣∣ > ε

)
which, in turn, is below

sup
θ∈Θ0

Pθ
(

sup
a

∣∣Pθ(√nm(ϕ̂ − ϕ) ≤ a)− Pθ(vθ ≤ a)
∣∣ > ε

2

)
+ sup

θ∈Θ0

Pθ
(

sup
a

∣∣Pθ̂(√nm(ϕ̂∗ − ϕ̂) ≤ a)− Pθ(vθ ≤ a)
∣∣ > ε

2

)
.

(A.1)

Here and later, we let

vθ ∼ N(γβθ, Σθ)

for βθ and Σθ the bias and asymptotic variance of the maximum-likelihood estimator for

data generated with parameter θ. Therefore, it suffices to show that each of the terms in

(A.1) is o(1).

Theorem S.2 in the Supplement shows that

sup
θ∈Θ1

∣∣Pθ(√nm(ϕ̂ − ϕ) ≤ a)− Pθ(vθ ≤ a)
∣∣ = o(1)

for any a. Further, because the normal distribution is a continuous function, we have that

sup
θ∈Θ1

(
sup
a

∣∣Pθ(√nm(ϕ̂ − ϕ) ≤ a)− Pθ(vθ ≤ a)
∣∣) = o(1) (A.2)

by Polya’s theorem. This allows us to invoke Lemma A.1 of Andrews (2005) to establish

that

sup
θ∈Θ0

Pθ
(

sup
a

∣∣Pθ(√nm(ϕ̂ − ϕ) ≤ a)− Pθ(vθ ≤ a)
∣∣ > ε

2

)
= o(1).

This handles the first term in (A.1).
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Moving on to the second term in (A.1), note that

sup
θ∈Θ0

Pθ
(

sup
a

∣∣Pθ̂(√nm(ϕ̂∗ − ϕ̂) ≤ a)− Pθ(vθ ≤ a)
∣∣ > ε

2

)
≤ sup

θ∈Θ0

Pθ
(

sup
a

∣∣Pθ̂(√nm(ϕ̂∗ − ϕ̂) ≤ a)− Pθ̂(vθ̂ ≤ a)
∣∣ > ε

4

)
+ sup

θ∈Θ0

Pθ
(

sup
a
|Pθ̂(vθ̂ ≤ a)− Pθ(vθ ≤ a)| > ε

4

)
.

Here, using (A.2), coupled with the consistency result

sup
θ∈Θ1

Pθ(‖ϕ̂− ϕ‖2 > ε) = o(m−1), sup
θ∈Θ1

Pθ
(

max
1≤i≤n

‖η̂i − ηi‖2 > ε

)
= o(m−1), (A.3)

for any ε > 0 (which follows from a minor modification to Theorem 1 of Kim and Sun

2016), by another application of Lemma A.1 of Andrews (2005),

sup
θ∈Θ0

Pθ
(

sup
a

∣∣Pθ̂(√nm(ϕ̂∗ − ϕ̂) ≤ a)− Pθ̂(vθ̂ ≤ a)
∣∣ > ε

4

)
= o(1)

while, again using (A.3),

sup
θ∈Θ0

Pθ
(

sup
a
|Pθ̂(vθ̂ ≤ a)− Pθ(vθ ≤ a)| > ε

4

)
= o(1)

follows from the continuous mapping theorem. This takes care of the second term in (A.1)

and completes the proof of the theorem.

Proof of Corollary 1. Given Theorem 1 the proof follows from an application of Lemma

23.3 in van der Vaart (2000).

Proof of Corollary 2. From Theorems S.1 and S.3 in the Supplement it immediately

follows that

sup
θ∈Θ1

Pθ
(∥∥∥√nm Σ̂

−1/2
θ (ϕ̂− ϕ)−

√
nmΣ

−1/2
θ (ϕ̂− ϕ)

∥∥∥
2
> ε
)

= o(1)

for all ε > 0. Also, from Theorem S.2 in the Supplement and the continuous mapping

theorem,

sup
θ∈Θ1

∣∣∣Pθ(√nmΣ
−1/2
θ (ϕ̂ − ϕ) ≤ a)− Pθ(Σ−

1/2
θ vθ ≤ a)

∣∣∣ = o(1)
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for any a. Because Σ
−1/2
θ vθ ∼ N(γ Σ

−1/2
θ βθ, I) and the normal distribution is continuous we

can apply Lemma S.4 from the Supplement to obtain

sup
θ∈Θ1

∣∣∣Pθ(√nm Σ̂
−1/2
θ (ϕ̂ − ϕ) ≤ a)− Pθ(Σ−

1/2
θ vθ ≤ a)

∣∣∣ = o(1).

With this result in hand we may proceed in precisely the same way as we did in the proof

of Theorem 1 to establish that

P
(

sup
a

∣∣∣P∗(√nm Σ̂∗
−1/2

(ϕ̂∗ − ϕ̂) ≤ a)− P(
√
nm Σ̂

−1/2
(ϕ̂− ϕ0) ≤ a)

∣∣∣ > ε

)
= o(1)

for all ε > 0. An application of Lemma 23.3 in van der Vaart (2000) then yields the

result.

Proof of Theorem 2. Without loss of generality we take φ to be scalar valued. We let

Φϕ̄ :=
∂φ(ϕ)

∂ϕ′

∣∣∣∣
ϕ=ϕ̄

.

As in the proof of Theorem 1 it suffices to show that

sup
θ∈Θ0

Pθ
(

sup
a

∣∣Pθ̂(√nm(φ(ϕ̂∗)− φ(ϕ̂)) ≤ a)− Pθ(
√
nm(φ(ϕ̂)− φ(ϕ)) ≤ a)

∣∣ > ε

)
= o(1)

for all ε > 0. An upper bound on this probability is

sup
θ∈Θ0

Pθ
(

sup
a

∣∣Pθ(√nm(φ(ϕ̂) − φ(ϕ)) ≤ a)− Pθ(Φϕvθ ≤ a)
∣∣ > ε

2

)
+ sup

θ∈Θ0

Pθ
(

sup
a

∣∣Pθ̂(√nm(φ(ϕ̂∗)− φ(ϕ̂)) ≤ a)− Pθ(Φϕvθ ≤ a)
∣∣ > ε

2

)
,

(A.4)

where vθ is as in the proof of Theorem 1. We handle each of these terms, in turn, showing

that they are o(1) for all ε > 0.

Following the proof of Theorem 3.8 in van der Vaart (2000) by using Theorem S.2 in

the Supplement gives

sup
θ∈Θ1

Pθ(‖
√
nm(φ(ϕ̂)− φ(ϕ))− Φϕ

√
nm(ϕ̂− ϕ)‖2 > ε) = o(1)
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for all ε > 0. The continuous mapping theorem, again combined with Theorem S.2 in the

Supplement, yields

sup
θ∈Θ1

|Pθ(Φϕ
√
nm(ϕ̂− ϕ) ≤ a)− Pθ(Φϕvθ ≤ a)| = o(1)

for any a. Because vθ is a normal random variable its distribution function is continuous.

We may thus apply Lemma S.4 from the Supplement to obtain

sup
θ∈Θ1

|Pθ(
√
nm(φ(ϕ̂)− φ(ϕ)) ≤ a)− Pθ(Φϕvθ ≤ a)| = o(1),

and, next, invoke Polya’s theorem to establish that

sup
θ∈Θ1

(
sup
a
|Pθ(
√
nm(φ(ϕ̂)− φ(ϕ)) ≤ a)− Pθ(Φϕvθ ≤ a)|

)
= o(1). (A.5)

This allows us to apply Lemma A.1 of Andrews (2005) and conclude that

sup
θ∈Θ0

Pθ
(

sup
a

∣∣Pθ(√nm(φ(ϕ̂) − φ(ϕ)) ≤ a)− Pθ(Φϕvθ ≤ a)
∣∣ > ε

2

)
= o(1)

for all ε > 0. This handles the first term in (A.4).

Moving on, to see that

sup
θ∈Θ0

Pθ
(

sup
a

∣∣Pθ̂(√nm(φ(ϕ̂∗)− φ(ϕ̂)) ≤ a)− Pθ(Φϕvθ ≤ a)
∣∣ > ε

2

)
= o(1)

for all ε > 0, we first note that it is bounded from above by

sup
θ∈Θ0

Pθ
(

sup
a

∣∣Pθ̂(√nm(φ(ϕ̂∗)− φ(ϕ̂)) ≤ a)− Pθ(Φϕ̂vθ ≤ a)
∣∣ > ε

4

)
+ sup

θ∈Θ0

Pθ
(

sup
a
|Pθ(Φϕ̂vθ ≤ a)− Pθ(Φϕvθ ≤ a)| > ε

4

)
.

The first term converges to zero by an application of Lemma A.1 of Andrews (2005), using

(A.3) and (A.5). The second term converges to zero by an application of the continuous

mapping theorem. This completes the proof.

Proof of Theorem 3. In Theorem S.4 in the Supplement we show that

sup
θ∈Θ1

|Pθ(ŵ ≤ a)− Pθ(wθ ≤ a)| = o(1)
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where the random variable wθ has a non-central χ2-distribution with dimφ degrees of

freedom and non-centrality parameter

γ β′θΦ
′
ϕ(ΦϕΣθΦ

′
ϕ)−1Φϕβθ.

With this result in hand we may proceed in exactly the same way as in the proof of Theorem

1 to establish the result.
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Honoré, B. E. and E. Tamer (2006). Bounds on parameters in panel dynamic discrete

choice models. Econometrica 74, 611–629.

Hyslop, D. R. (1999). State dependence, serial correlation and heterogeneity in intertem-

poral labor force participation of married women. Econometrica 67, 1255–1294.

24



Kim, M. S. and Y. Sun (2016). Bootstrap and k-step bootstrap bias corrections for the fixed

effects estimator in nonlinear panel data models. Econometric Theory 32, 1523–1568.

Neyman, J. and E. L. Scott (1948). Consistent estimates based on partially consistent

observations. Econometrica 16, 1–32.

PSID. Panel Study of Income Dynamics, public use dataset. Produced and distributed by

the Survey Research Center, Institute for Social Research, University of Michigan, Ann

Arbor, MI.

van der Vaart, A. W. (2000). Asymptotic Statistics. Cambridge University Press.

Wang, W. and M. Kaffo (2016). Bootstrap inference for instrumental variable models with

many weak instruments. Journal of Econometrics 192, 231–268.

25


	Maximum-likelihood estimation
	Bootstrap inference
	Numerical illustrations
	Asymptotic theory

