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This supplementary material document contains further details about our
technical conditions and an expanded discussion of the rates of pointwise
convergence of our estimators. We then provide the proofs of all theoretical
results in the main paper and a full analysis of our worked-out regression
examples, preceded by auxiliary results and their proofs. We finally provide
further details about our bias and variance correction procedures, and extra
finite-sample results.

Throughout we denote by x+ = max(x,0) and x− = max(−x,0) the positive and neg-
ative parts of a real number x. For a function f on Rp, ∇f(x), Jf(x) and Hf(x) stand
respectively for its gradient vector, Jacobian matrix, and Hessian matrix at the point x. For
a function f = f(x,y) on Rp × Rq , ∇xf and Hxf denote its partial gradient vector and
Hessian matrix with respect to x (i.e. the first p components of its gradient vector and the
submatrix made of the first p rows and columns of its Hessian matrix, respectively). The
symbols 0p and 1p denote vectors in Rp with all components equal to 0 and 1, respectively.
The symbol ∥ · ∥ denotes the Euclidean norm on Rp and we abuse notation to let it denote the
corresponding matrix norm, i.e. the spectral norm.

APPENDIX A: MATHEMATICAL CONCEPTS AND PROOFS

A.1. Further details about mixing conditions. The α−mixing (or strong mixing) as-
sumption is conveniently expressed as follows: let, for any two positive integers a≤ b≤+∞,
Fb
a = σ({(Xj , Yj), a ≤ j ≤ b}) be the σ−algebra generated by {(Xj , Yj), a ≤ j ≤ b}, and

say that ((Xt, Yt))t≥1 is α−mixing if and only if α(n)→ 0 as n→∞, where

α(n) = sup
k≥1

sup
A∈Fk

1

sup
B∈F∞

k+n

|P(A∩B)− P(A)P(B)|.

The α−mixing assumption is satisfied in a large amount of classical models including nonlin-
ear autoregressive processes [20, Section 2.4], nonlinear ARCH processes [see 37] and mul-
tivariate ARMA and GARCH models [see 8]. It has been widely used in standard regression,
see for instance [3], [36], and more recently [10] in a high-dimensional setup. [41] develops
a general theory of strong mixing stochastic processes and provides an extensive bibliogra-
phy. The β−, ρ−, ϕ− and ψ−mixing coefficients of the series ((Xt, Yt))t≥1, meanwhile, are
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respectively defined as

β(n) = sup
k≥1

E

(
sup

B∈F∞
k+n

|P(B|Fk
1 )− P(B)|

)
,

ρ(n) = sup
k≥1

sup
U∈L2(Fk

1 )

sup
V ∈L2(F∞

k+n)
|Corr(U,V )|,

ϕ(n) = sup
k≥1

sup
A∈Fk

1

P(A)>0

sup
B∈F∞

k+n

|P(B|A)− P(B)|

and ψ(n) = sup
k≥1

sup
A∈Fk

1

P(A)>0

sup
B∈F∞

k+n

P(B)>0

∣∣∣∣P(B|A)
P(B)

− 1

∣∣∣∣ .
One then says that the stochastic process ((Xt, Yt))t≥1 is β−mixing (resp. ρ−mixing,
ϕ−mixing, ψ−mixing) if β(n)→ 0 (resp. ρ(n)→ 0, ϕ(n)→ 0, ψ(n)→ 0) as n→∞. Nice
surveys of mixing conditions are provided in [6] and [20]. The implications between these
conditions can be represented as follows:

ρ-mixing

ψ-mixing ϕ-mixing α-mixing

β-mixing

There is in general no converse implication to any of the above implications.
Particular examples of β− and ρ−mixing processes are autoregressive processes whose

innovations have absolutely continuous distributions satisfying certain regularity conditions.
This fact will be used in Section 4.

A.2. Expanded discussion of technical conditions. We recall here conditions K, Lg ,
Lm, Lω , Bp, Bm, BΩ, Hδ , KS , Dg , Dm, Dω , and we give further details about their rationale,
interpretation, and position with respect to assumptions used in the literature.

Condition K The p.d.f. K is bounded with a support contained in the unit closed Euclidean
ball.

This classical assumption in nonparametric estimation ensures in particular that only those
observations (Xt, Yt) such that Xt is close to x will be taken into account. It is satisfied by
all standard compactly supported kernel functions, such as the uniform kernel over the unit
ball, or (for p= 1) the Epanechnikov, triangular and quartic kernels.

Condition Lg The p.d.f. g satisfies g(x) > 0 and is Lipschitz continuous at x: there exist
c, r > 0 such that for any x′ ∈B(x, r), |g(x)− g(x′)| ≤ c∥x−x′∥.

Due to the local nature of nonparametric estimation, assumptions such as condition Lg on
the local behavior of the marginal density of X are common in the regression literature, in-
cluding in the extremal regression setup, see for example [14], [15], [22] and in the mixing
framework, see for instance [43]. Their role is to guarantee that distributions at neighbor-
ing points x and x′ are sufficiently close for nonparametric estimators to be asymptotically
normal at standard rates of convergence.
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Condition Bp There exists an integer t0 ≥ 1 such that

1≤ t < t0 ⇒ lim
r→0

r−p P(X1 ∈B(x, r),Xt+1 ∈B(x, r)) = 0

and limsup
r→0

sup
t≥t0

r−2p P(X1 ∈B(x, r),Xt+1 ∈B(x, r))<∞.

The purpose behind this condition is to ensure that similar values of the covariate cannot
occur too often at neighboring time points. It is in particular satisfied (with t0 = 1, mean-
ing that the first half of the condition is empty and hence trivially holds) as soon as, for all
t≥ 1, the random vector (X1,Xt+1) has a joint p.d.f. gt such that supt≥1 gt is bounded on
B(x, r) × B(x, r) for some r > 0. The latter local boundedness condition has been con-
sidered in part of the nonparametric regression literature for strongly mixing data: see for
instance [3], [11], [36] and [38]. An example of stochastic process that clearly does not sat-
isfy this local boundedness condition, but does actually satisfy Bp, is a causal and invertible
AR(p) process (Yt), for p ≥ 2, with natural covariate Xt = (Yt−1, Yt−2, . . . , Yt−p)

⊤ ∈ Rp,
see our list of examples in Section 4.

Assumptions K, Lg and Bp are imposed in particular to control the asymptotic behavior of the
Parzen-Rosenblatt estimator ĝn(x). In addition, our analysis of extreme conditional expectile
estimators requires regularity assumptions about conditional moments.

Condition Hδ One has γ(x)< 1/(2 + δ) and there exists r > 0 such that

sup
x′∈B(x,r)

E(Y 2+δ
− |X = x′)<∞.

The motivation for this condition is to guarantee a finite conditional moment of order (2+ δ)
in a neighborhood of x; in the unconditional framework, Theorem 2 in [16] imposes the anal-
ogous condition E(Y 2+δ

− )<∞. This assumption is a sensible requirement for conditional ex-
pectile estimation since the asymptotic normality of empirical smoothed conditional expec-
tiles should intuitively require a bit more than a finite conditional variance for a Lyapunov-
type central limit theorem to apply (recall that expectiles extend the mean as quantiles extend
the median). A sufficient condition for Hδ to hold in terms of the conditional p.d.f. of X
given Y is established in Lemma A.1(i).

Condition Lm The response Y has a finite second moment given X = x, and the conditional
mean functions E(Y |X = ·) and E(Y 2|X = ·) are Lipschitz continuous at x: there exist
c, r > 0 such that

∀x′ ∈B(x, r), |E(Y |X = x)−E(Y |X = x′)| ≤ c∥x−x′∥

and |E(Y 2|X = x)−E(Y 2|X = x′)| ≤ c∥x−x′∥.

Condition Bm There exists r > 0 such that

sup
t≥1

sup
x1,xt+1∈B(x,r)

E(Y 2
1 + Y 2

t+1|X1 = x1,Xt+1 = xt+1)<∞.

Conditions Lm and Bm ensure that the nonparametric estimator of the regression mean will
converge at a standard rate. An alternative option to condition Bm consists in assuming a
finite unconditional second moment of Y1 and putting all the requirements on the conditional
joint p.d.f. of (X1,Xt+1) given (Y1, Yt+1): this approach is followed by [37] and [48]. We
provide a link between these two viewpoints in our Lemma A.1(ii).

Finally, to control the variation in conditional extreme value behavior and the dependence be-
tween conditional extremes at different points in time and the covariate space, we introduce,
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for any z > 1, the quantities

ωh(z|x) = sup
y≥z

sup
x′∈B(x,h)

1

log(y)

∣∣∣∣log F (y|x′)

F (y|x)

∣∣∣∣
and Ωh(z|x) = sup

t≥1
sup

y,y′≥z
sup

x′,x′′∈B(x,h)

P(Y1 > y,Yt+1 > y′|X1 = x′,Xt+1 = x′′)√
F (y|x′)F (y′|x′′)

.

The first supremum ωh(z|x) quantifies the gap between marginal conditional extremes in a
neighborhood of x. This quantity has already been introduced and used in the literature on
conditional extremes, see e.g. [25, 26], [27] and [44, 45]. Intuitively, if the focus is on the
conditional extremes of Y , say Y ≥ z = yn → ∞, based on observations Xt ∈ B(x, hn),
then ωhn

(yn|x) should be small to make consistent estimation of conditional extremes of Y
given X = x possible. This in fact true under a formal, stronger Lipschitz-type assumption
in the spirit of condition Lg that will be satisfied in all our worked-out examples in Section 4.

Condition Lω There exists r > 0 such that

limsup
y→∞

sup
x′∈B(x,r)

x′ ̸=x

1

∥x′ −x∥

∣∣∣∣ 1

log(y)
log

F (y|x′)

F (y|x)

∣∣∣∣<∞.

Condition Lω is a Lipschitz assumption on the log-tail probability logF (y|·), in an ap-
propriate, uniform sense in y large enough. Under this assumption, it is immediate that
ωhn

(yn|x) =O(hn)→ 0 for any yn →∞ and hn → 0.

The second quantity Ωh(z|x) evaluates the degree of clustering in the joint conditional ex-
tremes of (Y1, Yt+1). It is indeed instructive to note that when (Xt, Yt) = (X, Y ) for every
t, then

P(Y1 > y,Yt+1 > y′|X1 = x,Xt+1 = x)√
F (y|x)F (y′|x)

=
F (max(y, y′)|x)√
F (y|x)F (y′|x)

≤ 1

with equality when y = y′, via the Cauchy-Schwarz inequality P(A ∩ B) ≤
√
P(A)P(B).

At the opposite, when ((Xt, Yt))t≥1 is i.i.d., then the left-hand side above clearly converges
to 0 as y, y′ → ∞. The denominator in Ωh(z|x) thereby quantifies a kind of “worst-case
scenario” for conditional extreme dependence across time, and it is reasonable to assume
that Ωh(z|x) is bounded when h→ 0 and z → ∞, which corresponds to the assumption
that a joint conditional extreme value of (Y1, Yt+1) is not much more likely than a marginal
conditional extreme of Y1, uniformly across time and locally uniformly across the covariate
space. This is formalized as

Condition BΩ There exist h, z > 0 such that Ωh(z|x)<∞.

This condition should be considered as a weak assumption compared with the existence
of a conditional tail copula as assumed in e.g. [18] and [21] in the unconditional setting.
Lemma A.1(iii) provides a general conditional independence framework for BΩ to hold. The
problem of extreme conditional expectile estimation requires an extra assumption about con-
ditional tail heaviness (in which δ is a positive number).

The aforementioned conditions will ensure the pointwise asymptotic normality of our estima-
tors at rates of convergence that have hitherto been standard in the conditional extreme value
framework. Achieving optimal rates of convergence requires, similarly to classical nonpara-
metric estimation, stronger regularity conditions: when estimating, for instance, the p.d.f. g
in Rp with ĝn(x) using a symmetric p.d.f. K as kernel, it is well-known that the optimal
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rate of convergence n−2/(p+4) is obtained by solving the bias-variance tradeoff if g is twice
differentiable at x. This motivates the following additional assumptions.

Condition KS The p.d.f. K is bounded and symmetric (i.e. K(u) =K(−u)) with a support
contained in the unit closed Euclidean ball.

Condition Dg The p.d.f. g satisfies g(x)> 0, is continuously differentiable in a neighborhood
of x and its gradient is Lipschitz continuous at x.

Condition Dm The response Y has a finite second moment given X = x, and the condi-
tional mean functions E(Y |X = ·) and E(Y 2|X = ·) are continuously differentiable in a
neighborhood of x and have Lipschitz continuous gradients at x.

Condition Dω For y large enough, the function F (y|·) is differentiable at x, the function
y 7→ ∇x logF (y|x)/ log(y) has a limit µ(x) ∈Rp as y→∞, and there exists r > 0 with

limsup
y→∞

sup
x′∈B(x,r)

x′ ̸=x

1

∥x′ −x∥2

∣∣∣∣ 1

log(y)
log

F (y|x′)

F (y|x)
− (x′ −x)⊤

∇x logF (y|x)
log(y)

∣∣∣∣<∞.

Conditions KS , Dg , Dm and Dω are stronger versions of conditions K, Lg , Lm and
Lω , respectively. Condition KS is satisfied by any function K of the form K(u) =
p−p/2

∏p
j=1 κ(p

−1/2uj) (a product of independent p.d.f.s on R) or, when p≥ 2, the isotropic

kernel K(u) = κ(∥u∥)/(sp
∫ 1
0 r

p−1κ(r)dr), where sp is the surface of the unit hypersphere
in Rp, if κ is any bounded symmetric kernel on R with support [−1,1], such as the uni-
form, Epanechnikov, triangular or quartic kernel. In condition Dω , the assumption that
∇x logF (y|x)/ log(y) converges as y → ∞ is motivated by the fact that, in the setup of
conditional heavy tails,

logF (y|x)
log(y)

=− 1

γ(x)
+

logL(y|x)
log(y)

where L(·|x) is a slowly varying function. In particular, logL(y|x)/ log(y) → 0 as y →
∞, see Proposition 1.3.6(i) on p.16 of [2]. The assumption translates into supposing that
this convergence also holds when taking the gradient with respect to x, i.e. the function
L(·|x) does not vary too wildly in x when y is large. Condition Dω will hold as soon as
the heavy tails assumption is satisfied in a neighborhood V of x, with in addition γ twice
continuously differentiable on V and the existence of y0 ≥ 0 such that logL(y|·)/ log(y)
has a uniformly bounded Hessian matrix on [y0,∞)× V , see Lemma A.4. The finite limit
of ∇x logF (y|x)/ log(y) as y→∞ will then be µ(x) =∇γ(x)/γ2(x) ∈ Rp. In summary,
while condition Lω will readily be checked by showing that the tail conditional probability
is continuously differentiable with respect to the covariate value in an appropriate sense,
condition Dω essentially asks for it to be twice continuously differentiable in the same way.

A.3. On rates of pointwise convergence. Theorems 2.1, 3.1 and 3.2, and therefore The-
orems 2.3 and 3.4 (and also Theorems 2.2 and 3.3 if γ̂ = γ̂(J) and γ̂E , respectively), hold un-
der weaker bias assumptions than the corresponding results of [15] and [27] in the i.i.d. case,
although this naturally comes at the cost of the reinforced regularity conditions Dg and Dω

(and Dm for expectile estimation). An important implication is that the rates of convergence
of the estimators q̂n(τn|x), ên(τn|x) and qen(τn|x) are, under reasonably general assump-
tions, faster than what had been reported so far in the conditional extreme value literature. To
illustrate this, suppose that hn =C1n

−h and τn = 1−C2n
−τ , with C1,C2 > 0 and h, τ > 0,

and that the α−mixing coefficients of the data ((Xt, Yt))t≥1 decay geometrically fast, so that
possible choices of ln and rn are ln = ⌊C logn⌋ and rn = ⌊log2(n)⌋ for C > 0 large enough
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(where ⌊·⌋ denotes the floor function), and then the convergence rn(rn/
√
nhpn(1− τn))

δ → 0
automatically holds as soon as the numbers h, τ > 0 are such that nhpn(1 − τn) → ∞,
i.e. 1 − ph − τ > 0. In the setting where A(t|x) ∝ tρ(x), satisfied in a wide range of
heavy-tailed models used in extreme value practice [see e.g. Table 2.1 on p.59 of 1], it is
then straightforward to see that, under the conditions nhp+2

n (1− τn) log
2(1− τn)→ 0 and√

nhpn(1− τn)A((1− τn)
−1|x) = O(1), the rate of convergence 1/

√
nhpn(1− τn) is opti-

mal when the exponents h and τ solve the maximization problem

max{1− ph− τ} s.t. 1− (p+ 2)h− τ ≤ 0, 1− ph− (1− 2ρ(x))τ ≤ 0.

The solution is h=−ρ(x)/(1− (p+2)ρ(x)) and τ = 1/(1− (p+2)ρ(x)), with correspond-
ing convergence rate 1/

√
nhpn(1− τn) = nρ(x)/(1−(p+2)ρ(x)). By contrast, when condition

nhp+2
n (1 − τn) log

2(1 − τn) → 0 is replaced by
√
nhpn(1− τn) × h2n log

2(1 − τn) → ∆ ∈
[0,∞), the optimal choices of h and τ should solve

max{1− ph− τ} s.t. 1− (p+ 4)h− τ ≤ 0, 1− ph− (1− 2ρ(x))τ ≤ 0.

These optimal choices become h=−ρ(x)/(2− (p+4)ρ(x)) and τ = 2/(2− (p+4)ρ(x)),
yielding an optimal rate of convergence 1/

√
nhpn(1− τn) = n2ρ(x)/(2−(p+4)ρ(x)). In this set-

ting, it is interesting to note that p = 0 yields the optimal convergence rate nρ(x)/(1−2ρ(x))

of unconditional extreme value estimators in heavy-tailed models [see e.g. 19, p.77], and the
case ρ(x)→−∞, corresponding to the ideal but unrealistic case when all the Yt such that
Xt ∈ B(x, hn) can be used, yields the optimal convergence rate n−2/(p+4), i.e. the optimal
convergence rate of nonparametric estimators of a twice continuously differentiable central
conditional quantile, see [9].

A.4. Auxiliary results and their proofs. The first lemma discusses the validity of some
of our assumptions under criteria on certain conditional densities of the process ((Xt, Yt))t≥1

when they exist.

LEMMA A.1. Let ((Xt, Yt))t≥1 be a stationary sequence of copies of a random vector
(X, Y ).

(i) Assume that the random vector (X, Y ) has a joint p.d.f. f , and let g be the p.d.f. of X
and fX|Y (·|y) be the p.d.f. of X given Y = y. Suppose that there is a neighborhood V of
x with

inf
x′∈V

g(x′)> 0 and sup
x′∈V

sup
y∈R

fX|Y (x
′|y)<∞.

Then one has, for any p > 0,

E(|Y |p)<∞⇒ sup
x′∈V

E(|Y |p|X = x′)<∞.

(ii) Assume that for any t ≥ 1, the random vector (X1, Y1,Xt+1, Yt+1) has a joint
p.d.f. fX1,Y1,Xt+1,Yt+1

. Let gt be the joint p.d.f. of (X1,Xt+1) and fX1,Xt+1|Y1,Yt+1
(·, ·|y1, yt+1)

be the joint p.d.f. of (X1,Xt+1) given {Y1 = y1, Yt+1 = yt+1}. Suppose that there is a
neighborhood U of (x,x) with

inf
t≥1

inf
(x1,xt+1)∈U

gt(x1,xt+1)> 0

and sup
t≥1

sup
(x1,xt+1)∈U

sup
y1,yt+1∈R

fX1,Xt+1|Y1,Yt+1
(x1,xt+1|y1, yt+1)<∞.

Then, for any p > 0,

E(|Y |p)<∞⇒ sup
t≥1

sup
(x1,xt+1)∈U

E(|Y1|p + |Yt+1|p|X1 = x1,Xt+1 = xt+1)<∞.
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(iii) Suppose that there exists t0 ≥ 0 such that, for t > t0, Yt+1 is conditionally inde-
pendent of (X1, Y1) given Xt+1, and (X1, Y1,Xt+1) has a joint p.d.f fX1,Y1,Xt+1

. Let
fXt+1|X1

(·|x1) be the conditional p.d.f. of Xt+1 given {X1 = x1}, and fXt+1|X1,Y1
(·|x1, y1)

be the conditional p.d.f. of Xt+1 given {X1 = x1, Y1 = y1}. Suppose also that there exist
y0 large enough and r > 0 such that

inf
t>t0

inf
x1,xt+1∈B(x,r)

fXt+1|X1
(xt+1|x1)> 0

and sup
t>t0

sup
x1,xt+1∈B(x,r)

sup
y1≥y0

fXt+1|X1,Y1
(xt+1|x1, y1)<∞.

Then there is a finite positive constant c such that

sup
t>t0

sup
y,y′≥y0

x′,x′′∈B(x,r)

P(Y1 > y,Yt+1 > y′|X1 = x′,Xt+1 = x′′)√
F (y|x′)F (y′|x′′)

≤ c× sup
x′∈B(x,r)

F (y0|x′).

PROOF. The proofs of (i) and (ii) are similar; we only prove (ii). Take an open neighbor-
hood U of (x1,xt+1) as in the statement of the result. Then, for any (x1,xt+1) ∈ U ,

E(|Y1|p + |Yt+1|p|X1 = x1,Xt+1 = xt+1)

=

∫
R2

(|y1|p + |yt+1|p)
fX1,Y1,Xt+1,Yt+1

(x1, y1,xt+1, yt+1)

gt(x1,xt+1)
dy1 dyt+1

≤ 1

gt(x1,xt+1)
× sup

y1,yt+1∈R
fX1,Xt+1|Y1,Yt+1

(x1,xt+1|y1, yt+1)× 2E(|Y |p).

Take suprema with respect to t≥ 1 and (x1,xt+1) ∈ U to conclude the proof of (ii).

To show (iii), use first the conditional independence assumption and the stationarity property
to obtain

sup
t>t0

sup
y,y′≥y0

x′,x′′∈B(x,r)

P(Y1 > y,Yt+1 > y′|X1 = x′,Xt+1 = x′′)√
F (y|x′)F (y′|x′′)

= sup
t>t0

sup
y,y′≥y0

x′,x′′∈B(x,r)

P(Y1 > y|X1 = x′,Xt+1 = x′′)P(Yt+1 > y′|Xt+1 = x′′)√
F (y|x′)F (y′|x′′)

= sup
x′′∈B(x,r)

√
F (y0|x′′)

sup
t>t0

sup
y≥y0

x′∈B(x,r)

P(Y1 > y|X1 = x′,Xt+1 = x′′)√
F (y|x′)

 .

Now, for any y ≥ y0 and x′,x′′ ∈B(x, r),

P(Y1 > y|X1 = x′,Xt+1 = x′′) =

∫ ∞

y

fX1,Y1,Xt+1
(x′, y1,x

′′)

fX1,Xt+1
(x′,x′′)

dy1

=

∫ ∞

y

fXt+1|X1,Y1
(x′′|x′, y1)

fXt+1|X1
(x′′|x′)

×
fX1,Y1

(x′, y1)

fX1
(x′)

dy1

≤ F (y|x′)× sup
y1≥y0

x1,xt+1∈B(x,r)

fXt+1|X1,Y1
(xt+1|x1, y1)

fXt+1|X1
(xt+1|x1)

.

The result readily follows.
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Lemma A.3 and Proposition A.1 deal with the estimation of the p.d.f. and regression func-
tion. Before stating these results, we collect in Lemma A.2 below two elementary results of
multivariate calculus that we will extensively use in our subsequent proofs and in the analysis
of our examples in Section B.

LEMMA A.2. (i) Let f : Rp → R be continuously differentiable in a neighborhood of
x and assume that its gradient ∇f is Lipschitz continuous at x, that is,

∃c, r > 0, ∀x′ ∈B(x, r), ∥∇f(x′)−∇f(x)∥ ≤ c∥x′ −x∥.

Then

sup
∥u∥≤1

|f(x− hu)− f(x) + hu⊤∇f(x)|=O(h2) as h→ 0.

(ii) Suppose that, for a function ϕ : (x, y) ∈ Rp × R 7→ ϕ(x, y) ∈ R, there exist r > 0,
x ∈Rp and a nonempty set Y ⊂R such that, for any y ∈ Y , ϕ(·, y) is twice continuously
differentiable on B(x, r) and supy∈Y supx′∈B(x,r) ∥Hxϕ(x

′, y)∥<∞. Then

sup
y∈Y

sup
x′∈B(x,r)

x′ ̸=x

1

∥x′ −x∥2
|ϕ(x′, y)− ϕ(x, y)− (x′ −x)⊤∇xϕ(x, y)|<∞.

PROOF. (i) This is a straightforward consequence of the identity

f(x− hu)− f(x) =−hu⊤∇f(x)− h

∫ 1

0
u⊤[∇f(x− thu)−∇f(x)]dt

valid for |h| ≤ r and ∥u∥ ≤ 1.

(ii) Fix y ∈ Y and x′ ∈B(x, r) and write similarly

ϕ(x′, y)−ϕ(x, y)−(x′−x)⊤∇xϕ(x, y) = (x′−x)⊤
∫ 1

0
[∇xϕ(x+t(x

′−x), y)−∇xϕ(x, y)]dt.

By the mean value theorem, for any t ∈ [0,1],

∥∇xϕ(x+ t(x′ −x), y)−∇xϕ(x, y)∥ ≤ t∥x′ −x∥ × sup
y∈Y

sup
x′∈B(x,r)

∥Hxϕ(x
′, y)∥.

The conclusion readily follows.

Lemma A.3 collects useful asymptotic expansions about smoothed conditional moments.

LEMMA A.3. Suppose that conditions K and Lg hold. Assume that hn → 0 as n→∞.

(i) Then, for any b > 0,

E
(
Kb

(
x−X

hn

))
− hpn

(∫
Rp

Kb

)
g(x) =O(hp+1

n ).

(ii) If in fact conditions KS and Dg hold then, for any b > 0,

E
(
Kb

(
x−X

hn

))
− hpn

(∫
Rp

Kb

)
g(x) =O(hp+2

n ).

(iii) Suppose moreover that condition Lm holds. Then, for any a ∈ {1,2} and b > 0,

E
(
Y aKb

(
x−X

hn

))
− hpn

(∫
Rp

Kb

)
E(Y a|X = x)g(x) =O(hp+1

n ).
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(iv) If in fact conditions KS , Dg and Dm hold then, for any a ∈ {1,2} and b > 0,

E
(
Y aKb

(
x−X

hn

))
− hpn

(∫
Rp

Kb

)
E(Y a|X = x)g(x) =O(hp+2

n ).

PROOF. Note, for a= 0,1,2, the identity

E
(
Y aKb

(
x−X

hn

))
= hpn

∫
∥u∥≤1

Kb(u)E(Y a|X = x− hnu)g(x− hnu)du

(under condition Lm when a ∈ {1,2}). Statements (i) and (iii) then immediately follow
by Lipschitz continuity. To show (ii) and (iv), apply Lemma A.2(i) and use the identity∫
∥u∥≤1K

b(u)udu= 0p due to the symmetry of K .

Proposition A.1 below is a version, tailored to our needs, of the variance approximation result
in Theorem 1 of [36], under a weaker condition on the mixing rate.

PROPOSITION A.1. Suppose that ((Xt, Yt))t≥1 is stationary and α−mixing, and that
conditions K, Lg and Bp hold. Assume that hn → 0 and nhpn →∞ as n→∞.

(i) If there exists η > 1 with
∑∞

j=1 j
ηα(j)<∞, then

Var(ĝn(x)) =O

(
1

nhpn

)
.

If ((Xt, Yt))t≥1 is in fact ρ−mixing, condition Bp can be dropped and assumption∑∞
j=1 j

ηα(j)<∞ may be replaced by
∑∞

j=1 ρ(j)<∞.
(ii) If moreover conditions Lm and Bm hold, and if there exists δ > 0 with supx′∈B(x,r)E(|Y |2+δ|X =

x′)<∞ for a certain r > 0 and
∑∞

j=1 j
η[α(j)]δ/(2+δ) <∞ for some η > δ/(2+ δ), then

Var(m̂n(x)ĝn(x)) =O

(
1

nhpn

)
.

If ((Xt, Yt))t≥1 is in fact ρ−mixing, conditions Bp, Bm and supx′∈B(x,r)E(|Y |2+δ|X =

x′)<∞ can be dropped and assumption
∑∞

j=1 j
η[α(j)]δ/(2+δ) <∞ may be replaced by∑∞

j=1 ρ(j)<∞.

It is worth noting that in the above proposition, the condition on the rate of convergence to
0 of the strong mixing coefficient is stronger than in the non-regression case. For instance, if
the random average

1

n

n∑
t=1

Yt1{Xt∈A}

is considered for a fixed A, with E(|Y |2+δ) < ∞, then a central limit theorem holds as
soon as

∑∞
j=1[α(j)]

δ/(2+δ) < ∞. In our regression framework where A = An has prob-
ability converging to 0, this criterion becomes

∑∞
j=1 j

η[α(j)]δ/(2+δ) < ∞ for a certain
η > δ/(2 + δ). That assumption on the strong mixing rate is standard, see for example the
remark below condition A2 in [35]. Note also that assumption (

∑∞
j=1 j

η[α(j)]δ/(2+δ) <∞
for some η > δ/(2 + δ)) is stronger than assumption (

∑∞
j=1 j

ηα(j) <∞ for some η > 1)
since

∑∞
j=1 j

η[α(j)]δ/(2+δ) =
∑∞

j=1[j
η(2+δ)/δα(j)]δ/(2+δ).
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PROOF. We start by showing (i). Obviously

Var(ĝn(x)) =
1

nh2pn
×Var

(
K

(
x−X

hn

))

+
1

nh2pn
× 2

n−1∑
j=1

n− j

n
Cov

(
K

(
x−X1

hn

)
,K

(
x−Xj+1

hn

))
.

Note that, by Lemma A.3(i), Var
(
K
(
x−X
hn

))
=O(hpn), and for n large enough,∣∣∣∣Cov(K(x−X1

hn

)
,K

(
x−Xj+1

hn

))∣∣∣∣
≤ E

(
K

(
x−X1

hn

)
K

(
x−Xj+1

hn

))
+E

(
K

(
x−X1

hn

))
E
(
K

(
x−Xj+1

hn

))
≤
(
sup
Rp

K2

)
P(X1 ∈B(x, hn),Xj+1 ∈B(x, hn)) + (2g(x)hpn)

2

where conditions K and Lg were used. Using condition Bp, we find, for any j ≥ 1,

(1)
∣∣∣∣Cov(K(x−X1

hn

)
,K

(
x−Xj+1

hn

))∣∣∣∣≤ hpnε(hn)1{j<t0} +Ch2pn 1{j≥t0},

where ε(h)→ 0 as h→ 0 and C is a positive constant (not depending on j; throughout this
proof the expressions of the function ε and of the constant C may change from line to line).
Besides, the fact that K is bounded makes it possible to apply Ibragimov’s inequality [34] to
the α−mixing sequence (Xt), yielding

(2)
∣∣∣∣Cov(K(x−X1

hn

)
,K

(
x−Xj+1

hn

))∣∣∣∣≤C α(j).

Combine (1) and (2) to get, for any sequence vn < n− 1 tending to infinity,

1

nh2pn
× 2

n−1∑
j=1

n− j

n
Cov

(
K

(
x−X1

hn

)
,K

(
x−Xj+1

hn

))

=O

 1

nhpn

ε(hn) + vnh
p
n + h−p

n

n−1∑
j=vn+1

α(j)

 (splitting the sum at t0 and vn)

=O

 1

nhpn

ε(hn) + vnh
p
n + (vnh

p
n)

−1v1−η
n

n−1∑
j=vn+1

jηα(j)


=O

(
1

nhpn

[
1 + vnh

p
n + (vnh

p
n)

−1
])

(because η > 1).

Choosing vn = h−p
n →∞ (which indeed satisfies vn < n−1 for n large enough since nhpn →

∞) entails

1

nh2pn
× 2

n−1∑
j=1

n− j

n
Cov

(
K

(
x−X1

hn

)
,K

(
x−Xj+1

hn

))
=O

(
1

nhpn

)
and concludes the proof of (i).
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We now prove (ii). The arguments are inspired by the proof of Theorem 2(b) in [36], with a
couple of crucial modifications due to the fact that we do not assume that (X1,Xj+1) has a
p.d.f. with respect to the Lebesgue measure on R2p. Write

Var(m̂n(x)ĝn(x)) =
1

nh2pn
×Var

(
Y K

(
x−X

hn

))

+
1

nh2pn
× 2

n−1∑
j=1

n− j

n
Cov

(
Y1K

(
x−X1

hn

)
, Yj+1K

(
x−Xj+1

hn

))
.

Note that, by Lemma A.3(iii), Var
(
Y K

(
x−X
hn

))
=O(hpn), and also, for n large enough,∣∣∣∣Cov(Y1K(x−X1

hn

)
, Yj+1K

(
x−Xj+1

hn

))∣∣∣∣
≤ E

(
|Y1Yj+1|K

(
x−X1

hn

)
K

(
x−Xj+1

hn

))
+ (|m(x)|g(x) + 1)2h2pn

≤ 1

2
E
(
(Y 2

1 + Y 2
j+1)K

(
x−X1

hn

)
K

(
x−Xj+1

hn

))
+ (|m(x)|g(x) + 1)2h2pn

≤C P(X1 ∈B(x, hn),Xj+1 ∈B(x, hn)) + (|m(x)|g(x) + 1)2h2pn

thanks to assumptions K and Bm. It follows that, for any j ≥ 1,

(3)
∣∣∣∣Cov(Y1K(x−X1

hn

)
, Yj+1K

(
x−Xj+1

hn

))∣∣∣∣≤ hpnε(hn)1{j<t0} +Ch2pn 1{j≥t0}.

Besides, a straightforward adaptation of the proof of (2.17) in [36] in dimension p (by replac-
ing Ch(u) therein by h−pK(u/h), and noting the typo one line before (2.17) therein, where
the expression in full should read M3

∫ +∞
−∞ |Ch(u− x)|δf(u)du) leads to

(4)
∣∣∣∣Cov(Y1K(x−X1

hn

)
, Yj+1K

(
x−Xj+1

hn

))∣∣∣∣≤Ch2p/(2+δ)
n [α(j)]δ/(2+δ).

Combining (3) and (4) and arguing as in the final stages of the proof of (i) with vn = h−p
n

yields

1

nh2pn
× 2

n−1∑
j=1

n− j

n
Cov

(
Y1K

(
x−X1

hn

)
, Yj+1K

(
x−Xj+1

hn

))

=O

 1

nhpn

ε(hn) + vnh
p
n + h−pδ/(2+δ)

n

n−1∑
j=vn+1

[α(j)]δ/(2+δ)


=O

 1

nhpn

ε(hn) + vnh
p
n + (vnh

p
n)

−δ/(2+δ)vδ/(2+δ)−η
n

n−1∑
j=vn+1

jη[α(j)]δ/(2+δ)


=O

(
1

nhpn

[
1 + vnh

p
n + (vnh

p
n)

−δ/(2+δ)
])

=O

(
1

nhpn

)
and concludes the proof in this case.
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For both (i) and (ii), the results under the ρ−mixing assumption follow from writing, for
a= 0,1, ∣∣∣∣Cov(Y a

1 K

(
x−X1

hn

)
, Y a

j+1K

(
x−Xj+1

hn

))∣∣∣∣
≤ ρ(j)

{
E
(
Y 2a
1 K2

(
x−X1

hn

))
−
(
E
(
Y a
1 K

(
x−X1

hn

)))2
}

and using Lemma A.3.

Our next objective is to quantify the bias of our nonparametric estimators, under the regu-
larity conditions provided in Sections 2 and 3. Because condition Dω is somewhat involved,
we first give in Lemma A.4 below simple sufficient conditions ensuring that this regular-
ity assumption is met. We shall extensively use this result for working out our examples in
Section B.

LEMMA A.4. Assume that, for some r > 0, one has, for any x′ ∈B(x, r),

∀y > 0, lim
t→∞

F (ty|x′)

F (t|x′)
= y−1/γ(x′)

for a certain (strictly) positive function γ. Set L(y|x′) = y1/γ(x
′)F (y|x′) for such x′.

(i) Suppose that there exists y0 ≥ 0 such that the functions ∇x logL(y|·)/ log(y), for y ≥
y0, are well-defined, continuous on B(x, r), and define an equicontinuous family at x,
namely:

∀y ≥ y0, ∀ε > 0, ∃δ > 0, x′ ∈B(x, δ)⇒
∥∥∥∥∇x logL(y|x′)

log(y)
− ∇x logL(y|x)

log(y)

∥∥∥∥≤ ε.

Then limy→∞∇x logL(y|x)/ log(y) = 0.
(ii) Suppose that γ is twice continuously differentiable on B(x, r). If the partial Hessian

matrix Hx logL(y|x′)/ log(y) (or equivalently Hx logF (y|x′)/ log(y)) is well-defined
and uniformly bounded in x′ ∈B(x, r) and y large enough, then condition Dω holds with
µ(x) = limy→∞∇x logF (y|x)/ log(y) =∇γ(x)/γ2(x).

PROOF. We start by proving (i). The function L(·|x′) is slowly varying, and as such,
logL(y|x′)/ log(y)→ 0 as y→∞ by Proposition 1.3.6(i) on p.16 of [2]. It follows that the
function ϕ :Rp ×R→R defined as ϕ(x, y) = logL(y|x)/ log(y) satisfies:

• ϕ(x′, y)→ 0 as y→∞ for any x′ ∈B(x, r),
• For any y ≥ y0, ϕ(·, y) is continuously differentiable on B(x, r),
• The family of functions ∇xϕ(·, y), for y ≥ y0, is equicontinuous at x.

It is enough to prove then that ∇xϕ(x, y)→ 0 as y→∞.

Suppose not. Then there is j ∈ {1, . . . , p} such that (∂ϕ/∂xj)(x, y) does not converge to 0
as y → ∞. Up to reordering the variables xj , we may and will assume that j = 1, so that
there exists ε > 0 and a sequence yn → ∞ such that |(∂ϕ/∂x1)(x, yn)| > 2ε for any n.
Equicontinuity of ∇xϕ(·, y) obviously implies equicontinuity of each partial derivative, so
we can choose δ ∈ (0, r) such that

x′ ∈B(x, δ)⇒
∣∣∣∣ ∂ϕ∂x1 (x′, yn)−

∂ϕ

∂x1
(x, yn)

∣∣∣∣≤ ε for any n.
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Let e= (1,0, . . . ,0)⊤ ∈Rp. Write

ϕ(x+ δe, yn)− ϕ(x, yn) = δ
∂ϕ

∂x1
(x, yn) +

∫ δ

0

(
∂ϕ

∂x1
(x+ te, yn)−

∂ϕ

∂x1
(x, yn)

)
dt

and apply the reverse triangle inequality to obtain

|ϕ(x+ δe, yn)− ϕ(x, yn)| ≥ δ

∣∣∣∣ ∂ϕ∂x1 (x, yn)
∣∣∣∣− δε≥ δε > 0.

The left-hand side converges to 0 as n→∞, which is a contradiction. This completes the
proof of (i).

To prove (ii), let y0 ≥ 0 be such that ∥Hx logL(y|x′)/ log(y)∥ ≤ c, a finite constant, for
x′ ∈B(x, r) and y ≥ y0. Then, by the mean value theorem,

∀y ≥ y0, x
′ ∈B(x, r)⇒

∥∥∥∥∇x logL(y|x′)

log(y)
− ∇x logL(y|x)

log(y)

∥∥∥∥≤ c∥x′ −x∥.

This equi-Lipschitz property at x guarantees in particular that the equicontinuity assumption
in (i) is satisfied and therefore that

∇x logF (y|x)
log(y)

=
∇γ(x)
γ2(x)

+
∇x logL(y|x)

log(y)
→ ∇γ(x)

γ2(x)
as y→∞.

Besides, the bound

limsup
y→∞

sup
x′∈B(x,r/2)

x′ ̸=x

1

∥x′ −x∥2

∣∣∣∣ 1

log(y)
log

F (y|x′)

F (y|x)
− (x′ −x)⊤

∇x logF (y|x)
log(y)

∣∣∣∣<∞

is an immediate consequence of Lemma A.2(ii). Conclude that condition Dω holds, which is
the desired result.

We will repeatedly use the following lemma in the evaluation of the bias of our nonparametric
estimators under conditions KS , Dg , Dm and Dω .

LEMMA A.5. Assume that

∀y > 0, lim
t→∞

F (ty|x)
F (t|x)

= y−1/γ(x)

for some γ(x)> 0, and let a ∈ (0,1/γ(x)). Assume further that ωhn
(yn|x) log(yn)→ 0 for

some sequences yn →∞ and hn → 0. Then, for any s > 0,∫ ∞

yn

(z − yn)
a−1F (z|x) logs(z)(1 + zωhn (yn|x))dz <∞

and sup
∥u∥≤1

∫ ∞

yn

(z − yn)
a−1F (z|x)

∣∣∣∣log(F (z|x− hnu)

F (z|x)

)∣∣∣∣s dz <∞

for n large enough. Moreover,∫∞
yn

(z − yn)
a−1F (z|x) logs(z)(1 + zωhn (yn|x))dz∫∞
yn

(z − yn)a−1F (z|x)dz
=O(logs(yn)).
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PROOF. Pick an arbitrary δ > 0. Proposition B.1.9.1 on p.366 of [19] and the conver-
gences ωhn

(yn|x)→ 0 and yn →∞ yield, for n large enough,

∀z ≥ yn, F (z|x)zωhn (yn|x) logs(z)≤ z−1/γ(x)+δ.

Since a < 1/γ(x), the finiteness of the integral
∫∞
yn

(z−yn)a−1F (z|x) logs(z)(1+zωhn (yn|x))dz
for n large enough follows. Noting that

∀z ≥ yn, sup
∥u∥≤1

1

logs(z)

∣∣∣∣log(F (z|x− hnu)

F (z|x)

)∣∣∣∣s ≤ ωs
hn
(yn|x)→ 0

the finiteness of sup∥u∥≤1

∫∞
yn

(z − yn)
a−1F (z|x)

∣∣log(F (z|x− hnu)/F (z|x))
∣∣s dz for n

large enough follows as well. Write then∫∞
yn

(z − yn)
a−1F (z|x) logs(z)(1 + zωhn (yn|x))dz∫∞
yn

(z − yn)a−1F (z|x)dz

= logs(yn)

∫∞
1 (t− 1)a−1 F (tyn|x) logs(tyn)

F (yn|x) logs(yn)
(1 + y

ωhn (yn|x)
n tωhn (yn|x))dt∫∞

1 (t− 1)a−1 F (tyn|x)
F (yn|x)

dt

≤ 2yωhn (yn|x)
n logs(yn)

∫∞
1 (t− 1)a−1 F (tyn|x) logs(tyn)

F (yn|x) logs(yn)
tωhn (yn|x) dt∫∞

1 (t− 1)a−1 F (tyn|x)
F (yn|x)

dt
.

Use Potter bounds [see Proposition B.1.9.5 in 19, p.367] and the convergence ωhn
(yn|x) log(yn)→

0 to get, for any δ > 0 such that a− 1/γ(x) + δ < 0,∫∞
yn

(z − yn)
a−1F (z|x) logs(z)(1 + zωhn (yn|x))dz∫∞
yn

(z − yn)a−1F (z|x)dz
≤ 4 logs(yn)

∫∞
1 (t− 1)a−1t−1/γ(x)+δ dt∫∞
1 (t− 1)a−1t−1/γ(x)−δ dt

when n is large enough. Both integrals in the ratio on the second line are finite, and therefore∫∞
yn

(z − yn)
a−1F (z|x) logs(z)(1 + zωhn (yn|x))dz∫∞
yn

(z − yn)a−1F (z|x)dz
=O(logs(yn)).

This completes the proof.

We are now in position to state and prove our next key result about the bias of our nonpara-
metric estimators. This lemma extends results of [27] (see Lemmas 2 and 5 therein). These
were originally stated under a more restrictive condition than the standard conditional heavy
tails condition. In particular, we give a precise quantification of the bias appearing as a result
of our kernel smoothing procedures. Throughout the rest of this section we use the notation

ψ̂(a)
n (y|x) = φ̂(a)

n (y|x)ĝn(x) and ψ(a)(y|x) = φ(a)(y|x)g(x),
where

φ̂(a)
n (y|x) = 1

ĝn(x)
× 1

nhpn

n∑
t=1

(Yt − y)a1{Yt>y}K

(
x−Xt

hn

)
.

LEMMA A.6. Let x ∈Rp be such that g(x)> 0. Assume that

∀y > 0, lim
t→∞

F (ty|x)
F (t|x)

= y−1/γ(x)

for some γ(x)> 0, and let a ∈ [0,1/γ(x)).



EXTREMAL INFERENCE WITH DEPENDENT HEAVY-TAILED DATA 15

(i) Then ψ(a)(y|x) = B(a+ 1,1/γ(x)− a)

γ(x)
g(x)yaF (y|x)(1 + o(1)) as y→∞.

(ii) Assume further that conditions K, Lg and Lω hold. Let yn →∞, hn → 0 be such that
hn log(yn)→ 0. Then one has, for any b > 0,

E
(
(Y − yn)

a
1{Y >yn}K

b

(
x−X

hn

))
= hpnψ

(a)(yn|x)
(∫

Rp

Kb

)
(1 +O(hn log(yn))) .

(iii) If moreover conditions KS , Dg and Dω hold then

E
(
(Y − yn)

a
1{Y >yn}K

b

(
x−X

hn

))
= hpnψ

(a)(yn|x)
(∫

Rp

Kb

)
×
(
1 +

h2n log
2(yn)

2

∫
Rp

Kb(u)∫
Rp Kb

(u⊤µ(x))2 du+ o(h2n log
2(yn))

)
where µ(x) = limy→∞∇x logF (y|x)/ log(y) as defined in condition Dω .

In particular, for b= 1 and under the assumptions of Lemma A.6(ii),

hpnE(ψ̂(a)
n (yn|x)) = hpnψ

(a)(yn|x) (1 +O(hn log(yn))) .

Under the assumptions of Lemma A.6(iii),

hpnE(ψ̂(a)
n (yn|x)) = hpnψ

(a)(yn|x)

×
(
1 +

h2n log
2(yn)

2

∫
Rp

K(u)(u⊤µ(x))2 du+ o(h2n log
2(yn))

)
.

PROOF. Statement (i) is proven exactly like Lemma 2 in [27], noting that the differentia-
bility condition therein on the conditional survival function is unnecessary. To show state-
ments (ii) and (iii), the fundamental identity is, using condition K,
(5)
E
(
(Y − yn)

a
1{Y >yn}K

b
(
x−X
hn

))
hpnψ(a)(yn|x)

∫
Rp Kb

− 1 =

∫
∥u∥≤1

Kb(u)∫
Rp Kb

(
ψ(a)(yn|x− hnu)

ψ(a)(yn|x)
− 1

)
du.

The identity ab− 1 = (a− 1) + (b− 1) + (a− 1)(b− 1) yields

ψ(a)(yn|x− hnu)

ψ(a)(yn|x)
− 1 =

[
g(x− hnu)

g(x)
− 1

]
+

[
φ(a)(yn|x− hnu)

φ(a)(yn|x)
− 1

]
+

[
g(x− hnu)

g(x)
− 1

]
×
[
φ(a)(yn|x− hnu)

φ(a)(yn|x)
− 1

]
.(6)

Obviously

(7) sup
∥u∥≤1

∣∣∣∣g(x− hnu)

g(x)
− 1

∣∣∣∣=O(hn)

and following the proof of Lemma 3 in [27],

(8) sup
∥u∥≤1

∣∣∣∣φ(a)(yn|x− hnu)

φ(a)(yn|x)
− 1

∣∣∣∣=O(ωhn
(yn|x) log(yn)).

Combining Equations (5)–(8) with the fact that ωhn
(yn|x) = O(hn) (by condition Lω) im-

mediately provides (ii).
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To prove (iii), note that by condition Dg and Lemma A.2(i),

(9) sup
∥u∥≤1

∣∣∣∣g(x− hnu)

g(x)
− 1 + hnu

⊤∇g(x)
g(x)

∣∣∣∣=O(h2n).

We then first treat the case a= 0, when φ(0)(·|·) = F (·|·). Set, for any t, t′ > 0,

∆(t, t′) =
t

t′
− 1− log(t/t′)− log2(t/t′)

2
= exp(log(t/t′))− 1− log(t/t′)− log2(t/t′)

2
.

A Taylor formula for the exponential function on the interval linking 0 to log(t/t′) gives

|∆(t, t′)| ≤ | log3(t/t′)|
6

exp(| log(t/t′)|).

Applied to t= F (z|x− hnu) and t′ = F (z|x), this inequality yields, for n large enough,

(10) ∀z ≥ yn, sup
∥u∥≤1

|∆(F (z|x− hnu), F (z|x))| ≤
ω3
hn
(yn|x)
6

log3(z)zωhn (yn|x).

In particular, at z = yn,

sup
∥u∥≤1

∣∣∣∣F (yn|x− hnu)

F (yn|x)
− 1− log

(
F (yn|x− hnu)

F (yn|x)

)
− 1

2
log2

(
F (yn|x− hnu)

F (yn|x)

)∣∣∣∣
=O(h3n log

3(yn)) = o(h2n log
2(yn)).(11)

By condition Dω ,

(12) limsup
y→∞

sup
∥u∥≤1

1

log(y)

∣∣∣∣log(F (y|x− hnu)

F (y|x)

)
+ hnu

⊤∇x logF (y|x)
∣∣∣∣=O(h2n).

Since ∇x logF (y|x)/ log(y) is bounded for y large enough by condition Dω , we deduce
from this equation that

(13) limsup
y→∞

sup
∥u∥≤1

1

log2(y)

∣∣∣∣log2(F (y|x− hnu)

F (y|x)

)
− h2n(u

⊤∇x logF (y|x))2
∣∣∣∣= o(h2n).

Combine (11) with (12) and (13), to obtain

sup
∥u∥≤1

∣∣∣∣F (yn|x− hnu)

F (yn|x)
− 1 + hnu

⊤∇x logF (yn|x)−
h2n
2
(u⊤∇x logF (yn|x))2

∣∣∣∣
=O(h2n log(yn)) + o(h2n log

2(yn)) = o(h2n log
2(yn)).(14)

Combining (5), (6), (9) and (14) and the identity
∫
∥u∥≤1K

b(u)udu= 0p results in

E
(
1{Y >yn}K

b

(
x−X

hn

))
= hpnψ

(0)(yn|x)
(∫

Rp

Kb

)

×

(
1 +

h2n
2

∫
∥u∥≤1

Kb(u)∫
Rp Kb

(u⊤∇x logF (yn|x))2 du+ o(h2n log
2(yn))

)
.

The result immediately follows, in the case a= 0, by definition of µ(x) and our assumptions
on K . When a > 0, an integration by parts yields

φ(a)(yn|x− hnu)

φ(a)(yn|x)
− 1 =

∫∞
yn

(z − yn)
a−1F (z|x)

(
F (z|x−hnu)

F (z|x) − 1
)
dz∫∞

yn
(z − yn)a−1F (z|x)dz

.
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It then follows from this identity combined with (10) and Lemma A.5 that, for n large enough,

sup
∥u∥≤1

∣∣∣∣∣∣φ
(a)(yn|x− hnu)

φ(a)(yn|x)
− 1−

∫∞
yn

(z − yn)
a−1F (z|x) log

(
F (z|x−hnu)

F (z|x)

)
dz∫∞

yn
(z − yn)a−1F (z|x)dz

−1

2

∫∞
yn

(z − yn)
a−1F (z|x) log2

(
F (z|x−hnu)

F (z|x)

)
dz∫∞

yn
(z − yn)a−1F (z|x)dz

∣∣∣∣∣∣
=O(ω3

hn
(yn|x) log3(yn)) =O(h3n log

3(yn)) = o(h2n log
2(yn)).(15)

[Lemma A.5 ensures that the integrals within the supremum are well-defined.] By condition
Dω and Lemma A.5,

∀s > 0,

∫ ∞

yn

(z − yn)
a−1F (z|x)∥∇x logF (z|x)∥s log(z)dz <∞

for n large enough. Combine (12), (13) and (15) to get

sup
∥u∥≤1

∣∣∣∣∣φ(a)(yn|x− hnu)

φ(a)(yn|x)
− 1 + hnu

⊤

∫∞
yn

(z − yn)
a−1F (z|x)∇x logF (z|x)dz∫∞

yn
(z − yn)a−1F (z|x)dz

−h
2
n

2

∫∞
yn

(z − yn)
a−1F (z|x)(u⊤∇x logF (z|x))2 dz∫∞
yn

(z − yn)a−1F (z|x)dz

∣∣∣∣∣= o(h2n log
2(yn)).(16)

Combine now (5), (6), (9) and (16) with the identity
∫
∥u∥≤1K

b(u)udu= 0p to find

E
(
(Y − yn)

a
1{Y >yn}K

b

(
x−X

hn

))
= hpnψ

(a)(yn|x)
(∫

Rp

Kb

)

×

(
1 +

h2n
2

∫
∥u∥≤1

Kb(u)∫
Rp Kb

(∫∞
yn

(z − yn)
a−1F (z|x)(u⊤∇x logF (z|x))2 dz∫∞
yn

(z − yn)a−1F (z|x)dz

)
du+ o(h2n log

2(yn))

)
.

The final step is to write

sup
∥u∥≤1

∣∣∣∣∣ 1

log2(yn)

∫∞
yn

(z − yn)
a−1F (z|x)(u⊤∇x logF (z|x))2 dz∫∞
yn

(z − yn)a−1F (z|x)dz
− (u⊤µ(x))2

∣∣∣∣∣
≤ 1

log2(yn)
sup

∥u∥≤1

∣∣∣∣∣
∫∞
yn

(z − yn)
a−1F (z|x)[(u⊤∇x logF (z|x))2 − (u⊤µ(x))2 log2(z)]dz∫∞

yn
(z − yn)a−1F (z|x)dz

∣∣∣∣∣
+ sup

∥u∥≤1
(u⊤µ(x))2 ×

∣∣∣∣∣ 1

log2(yn)

∫∞
yn

(z − yn)
a−1F (z|x) log2(z)dz∫∞

yn
(z − yn)a−1F (z|x)dz

− 1

∣∣∣∣∣
≤ sup

∥u∥≤1
z≥yn

∣∣∣∣∣
(
u⊤∇x

logF (z|x)
log(z)

)2

− (u⊤µ(x))2

∣∣∣∣∣× 1

log2(yn)

∣∣∣∣∣
∫∞
yn

(z − yn)
a−1F (z|x) log2(z)dz∫∞

yn
(z − yn)a−1F (z|x)dz

∣∣∣∣∣
+ o(1) = o(1)

by condition Dω , the Cauchy-Schwarz inequality, Lemma A.5 and Karamata’s theorem [see
Theorem B.1.5 in 19, p.363]. Hence the asymptotic expansion
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E
(
(Y − yn)

a
1{Y >yn}K

b

(
x−X

hn

))
= hpnψ

(a)(yn|x)
(∫

Rp

Kb

)

×

(
1 +

h2n log
2(yn)

2

∫
∥u∥≤1

Kb(u)∫
Rp Kb

(u⊤µ(x))2 du+ o(h2n log
2(yn))

)
as required.

The following lemma is the key to the control of the empirical smoothed conditional tail prob-
abilities and moments. It makes use of the fact that, if z > 1 then, by definition of ωh(z|x)
and using the mean value theorem, one has

(17) ∀y ≥ z, sup
x′∈B(x,h)

∣∣∣∣F (y|x′)

F (y|x)
− 1

∣∣∣∣≤ ωh(z|x) log(y)× yωh(z|x).

LEMMA A.7. Assume that conditions M, A(ln, rn), K, Lg , Lω , Bp and BΩ hold. Sup-
pose that yn →∞ and hn → 0 as n→∞ are such that nhpnF (yn|x)→∞, hn log(yn)→ 0
and rnh

p
n → 0.

(i) Suppose that yn,j = c
−γ(x)
j yn(1 + o(1)) for all j ∈ {1, . . . , J} with 0< c1 < c2 < . . . <

cJ ≤ 1. Assume that there exists δ > 0 with r1+δ
n /[nhpnF (yn|x)]δ/2 → 0. Then√

nhpnF (yn|x)

(
ψ̂
(0)
n (yn,j |x)−E(ψ̂(0)

n (yn,j |x))
ψ(0)(yn,j |x)

)
1≤j≤J

d−→N
(
0J ,

∫
Rp K

2

g(x)
M

)
,

where M is the symmetric matrix of size J having entries Mj,l = c−1
l (for 1≤ j ≤ l≤ J ).

(ii) If moreover nhp+2
n F (yn|x) log2(yn)→ 0 then√

nhpnF (yn|x)

(
ψ̂
(0)
n (yn,j |x)

ψ(0)(yn,j |x)
− 1

)
1≤j≤J

d−→N
(
0J ,

∫
Rp K

2

g(x)
M

)
.

If furthermore conditions KS , Dg and Dω hold then condition nhp+2
n F (yn|x) log2(yn)→

0 may be replaced by the weaker bias assumption
√
nhpnF (yn|x)×h2n log2(yn)→ c(x) ∈

[0,∞), in which case

√
nhpnF (yn|x)

(
ψ̂
(0)
n (yn,j |x)

ψ(0)(yn,j |x)
− 1

)
1≤j≤J

d−→N
((

c(x)

2

∫
Rp

K(u)(u⊤µ(x))2 du

)
1J ,

∫
Rp K

2

g(x)
M

)
where 1J is the column vector in RJ having all entries equal to 1.

In (i) and (ii), if ((Xt, Yt))t≥1 is in fact ψ−mixing with
∑∞

j=1ψ(j)<∞, then all conditions
on (ln) and (rn) (including condition A(ln, rn)), conditions Bp and BΩ can be dropped.

(iii) Assume that there exists δ > 0 with γ(x) ∈ (0,1/(2+δ)) and r1+δ
n /[nhpnF (yn|x)]δ/2 →

0. Let zn = θyn(1 + o(1)) (for a certain θ > 0). Then

√
nhpnF (yn|x)

(
ψ̂
(1)
n (yn|x)−E(ψ̂(1)

n (yn|x))
ψ(1)(yn|x)

,
ψ̂
(0)
n (zn|x)−E(ψ̂(0)

n (zn|x))
ψ(0)(zn|x)

)
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d−→N
(
(0,0),

∫
Rp K

2

g(x)
V (x)

)
,

where V (x) is a 2× 2 symmetric matrix having entries

V1,1(x) = 2
1− γ(x)

1− 2γ(x)
, V2,2(x) = θ1/γ(x) and V1,2(x) =


θ+ γ(x)− 1

γ(x)
if θ ≥ 1,

θ1/γ(x) if θ < 1.

(iv) If moreover nhp+2
n F (yn|x) log2(yn)→ 0 then√

nhpnF (yn|x)

(
ψ̂
(1)
n (yn|x)

ψ(1)(yn|x)
− 1,

ψ̂
(0)
n (zn|x)

ψ(0)(zn|x)
− 1

)
d−→N

(
(0,0),

∫
Rp K

2

g(x)
V (x)

)
.

If furthermore conditions KS , Dg , Dm and Dω hold then condition nhp+2
n F (yn|x) log2(yn)→

0 may be replaced by the weaker bias assumption
√
nhpnF (yn|x)×h2n log2(yn)→ c(x) ∈

[0,∞), in which case√
nhpnF (yn|x)

(
ψ̂
(1)
n (yn|x)

ψ(1)(yn|x)
− 1,

ψ̂
(0)
n (zn|x)

ψ(0)(zn|x)
− 1

)
d−→N

((
c(x)

2

∫
Rp

K(u)(u⊤µ(x))2 du

)
× (1,1),

∫
Rp K

2

g(x)
V (x)

)
.

In (iii) and (iv), if ((Xt, Yt))t≥1 is in fact ψ−mixing with
∑∞

j=1ψ(j) <∞, then all condi-
tions on (ln) and (rn) (including condition A(ln, rn)), conditions Bp and BΩ can be dropped.
The condition on γ(x) becomes 0< γ(x)< 1/2.

Note that condition rnh
p
n → 0 is a consequence of r1+δ

n /[nhpnF (yn|x)]δ/2 → 0 (for
some δ > 0) and nhp+2

n F (yn|x) → 0, which is why this condition will not appear
in Lemma A.9 when the latter two assumptions hold. Note also that, in (i) and (ii),
condition r1+δ

n /[nhpnF (yn|x)]δ/2 → 0 for some δ > 0 is equivalent to assuming that
rn/[nh

p
nF (yn|x)]1/2−δ → 0 for some δ > 0. The latter can be viewed as a conditional version

of the condition rn/[nF (yn)]1/2−δ → 0 used in [42].

PROOF. We prove (iii) and (iv), which are similar to, but more difficult than, (i) and (ii). If
(iii) holds then (iv) is a direct consequence of Lemma A.6(ii) and (iii). We therefore concen-
trate on proving (iii). Pick β0, β1 ∈R. Using the Cramér-Wold device, it is enough to analyze
the asymptotic behavior of√
nhpnF (yn|x)

{
β1

(
ψ̂
(1)
n (yn|x)−E(ψ̂(1)

n (yn|x))
ψ(1)(yn|x)

)
+ β0

(
ψ̂
(0)
n (zn|x)−E(ψ̂(0)

n (zn|x))
ψ(0)(zn|x)

)}

=

n∑
i=1

√
F (yn|x)
nhpn

Li,n

where the centered random variable Li,n is given as

Li,n = β1
(Yi − yn)1{Yi>yn}K((x−Xi)/hn)−E((Y − yn)1{Y >yn}K((x−X)/hn))

ψ(1)(yn|x)

+ β0
1{Yi>zn}K((x−Xi)/hn)−E(1{Y >zn}K((x−X)/hn))

ψ(0)(zn|x)
.
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The aim is to use a big-block/small-block argument to obtain the desired convergence. To
do so we apply Lemma C.7(ii) in [18], which requires to analyze the asymptotic behavior
of Var(L1,n) and Cov(Li,n,Lj,n). Combine Lemma A.6(i) and A.6(ii), the regular variation
property of F (·|x) and straightforward calculations to get

Var(L1,n) =
hpn

F (yn|x)

∫
Rp K

2

g(x)

[
β21 ×

2(1− γ(x))

1− 2γ(x)
+ β20 × θ1/γ(x)

+ 2β0β1 ×
γ(x)θ1/γ(x)(max(1, θ))1−1/γ(x) + (1− γ(x))(max(1, θ)− 1)

γ(x)

]
(1 + o(1))

=
hpn

F (yn|x)

∫
Rp K

2

g(x)

[
β21V1,1(x) + β20V2,2(x) + 2β0β1V1,2(x)

]
(1 + o(1)).

(18)

We turn to the calculation of Cov(Li,n,Lj,n) = β21C
(1)
i,j,n + β20C

(2)
i,j,n + β0β1(C

(3)
i,j,n +C

(4)
i,j,n),

with

C
(1)
i,j,n =

Cov
(
(Yi − yn)1{Yi>yn}K((x−Xi)/hn), (Yj − yn)1{Yj>yn}K((x−Xj)/hn)

)
[ψ(1)(yn|x)]2

,

C
(2)
i,j,n =

Cov
(
1{Yi>zn}K((x−Xi)/hn),1{Yj>zn}K((x−Xj)/hn)

)
[ψ(0)(zn|x)]2

,

C
(3)
i,j,n =

Cov
(
(Yi − yn)1{Yi>yn}K((x−Xi)/hn),1{Yj>zn}K((x−Xj)/hn)

)
ψ(1)(yn|x)ψ(0)(zn|x)

,

and C(4)
i,j,n =

Cov
(
1{Yi>zn}K((x−Xi)/hn), (Yj − yn)1{Yj>yn}K((x−Xj)/hn)

)
ψ(1)(yn|x)ψ(0)(zn|x)

.

We bound each of the C(l)
i,j,n, for l= 1,2,3,4. We clearly have, by Lemma A.6(ii),

C
(1)
i,j,n =

1

[ψ(1)(yn|x)]2
E(E((Yi − yn)+(Yj − yn)+|Xi,Xj)K((x−Xi)/hn)K((x−Xj)/hn))

+ h2pn Rn

≤ 1

[ψ(1)(yn|x)]2
sup

∥ui∥,∥uj∥≤1
E((Yi − yn)+(Yj − yn)+|Xi = x−uihn,Xj = x−ujhn)

×
(
sup
Rp

K2

)
P(Xi ∈B(x, hn),Xj ∈B(x, hn)) + h2pn Rn

where Rn is bounded and independent of i and j. [We use this notation throughout without
further mention, with a value of Rn that can change from line to line.] An integration by parts
and a change of variables produce

E((Yi − yn)+(Yj − yn)+|Xi = x−uihn,Xj = x−ujhn)

= y2n

∫ ∞

1

∫ ∞

1
P (Yi > ayn, Yj > byn|Xi = x−uihn,Xj = x−ujhn)dadb.

Using assumption BΩ, we find

sup
i ̸=j

sup
∥ui∥,∥uj∥≤1

∫ ∞

1

∫ ∞

1
P (Yi > ayn, Yj > byn|Xi = x−uihn,Xj = x−ujhn)dadb
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=O

[ sup
x′∈B(x,hn)

∫ ∞

1

√
F (ayn|x′)da

]2 .

It then follows from Equation (17) that

sup
i ̸=j

sup
∥ui∥,∥uj∥≤1

∫ ∞

1

∫ ∞

1
P (Yi > ayn, Yj > byn|Xi = x−uihn,Xj = x−ujhn)dadb

=O

F (yn|x)[∫ ∞

1

√
F (ayn|x)
F (yn|x)

(
1 +

√
ωhn

(yn|x) log(ayn)× (ayn)ωhn (yn|x)
)
da

]2 .

Since ωhn
(yn|x) log(yn) =O(hn log(yn))→ 0 by assumption Lω , we find

sup
i ̸=j

sup
∥ui∥,∥uj∥≤1

∫ ∞

1

∫ ∞

1
P (Yi > ayn, Yj > byn|Xi = x−uihn,Xj = x−ujhn)dadb

=O

F (yn|x)[∫ ∞

1

√
F (ayn|x)
F (yn|x)

aε da

]2 for any ε > 0.

Potter bounds [see Proposition B.1.9.5 p.367 in 19] and the fact that γ(x)< 1/2 entail

sup
i ̸=j

sup
∥ui∥,∥uj∥≤1

∫ ∞

1

∫ ∞

1
P (Yi > ayn, Yj > byn|Xi = x−uihn,Xj = x−ujhn)dadb

=O(F (yn|x)).

Conclude, using condition Bp and again Lemma A.6(i), that there is a positive constant D
(whose value may change from line to line) such that for n large enough and i ̸= j,

|C(1)
i,j,n| ≤D

1

F (yn|x)
P(Xi ∈B(x, hn),Xj ∈B(x, hn)) + h2pn Rn

≤D

(
hpnεn

F (yn|x)
1{|i−j|<t0} +

h2pn

F (yn|x)
1{|i−j|≥t0}

)
where εn → 0 as n→∞. Then, combining the equality zn = θyn(1 + o(1)), conditions Lω ,
Bp, BΩ and hn log(yn)→ 0, Lemma A.6(i), Equation (17) and the regular variation property
of F (·|x), we find, for n large enough and i ̸= j, that similarly as above,

|C(2)
i,j,n| ≤D

(
hpnεn

F (yn|x)
1{|i−j|<t0} +

h2pn

F (yn|x)
1{|i−j|≥t0}

)
.

The same arguments lead to identical bounds for the C(3)
i,j,n and C

(4)
i,j,n, and we may then

conclude that, for n large enough and i ̸= j,

|Cov(Li,n,Lj,n)| ≤D

(
hpnεn

F (yn|x)
1{|i−j|<t0} +

h2pn

F (yn|x)
1{|i−j|≥t0}

)
.

As a consequence, for any sequence (un) tending to infinity and such that un ≤ n,

(19)

∣∣∣∣∣∣
∑

1≤i<j≤un

Cov(Li,n,Lj,n)

∣∣∣∣∣∣=O

(
un

hpnεn

F (yn|x)
+ u2n

h2pn

F (yn|x)

)
.
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We may now develop our big-block/small-block argument (with ln being the size of small
blocks and rn − ln being the size of big blocks) via Lemma C.7(ii) in [18], applied to the
random sum

Sn =

n∑
i=1

√
F (yn|x)
nhpn

Li,n.

Using Equations (18) and (19), it is immediate that

n

rn
Var

√F (yn|x)
nhpn

ln∑
j=1

Lj,n


=
n

rn

F (yn|x)
nhpn

lnVar(L1,n) + 2
n

rn

F (yn|x)
nhpn

∑
1≤i<j≤ln

Cov(Li,n,Lj,n)

=O(ln/rn) +O(lnεn/rn) +O(lnh
p
n × ln/rn) = o(1)

because ln = o(rn) and rnh
p
n → 0. Moreover, since rn = o(n) and n− rn⌊n/rn⌋ ≤ rn,

Var

√F (yn|x)
nhpn

n−rn⌊n/rn⌋∑
j=1

Lj,n


=
F (yn|x)
nhpn

(n− rn⌊n/rn⌋)Var(L1,n) + 2
F (yn|x)
nhpn

∑
1≤i<j≤n−rn⌊n/rn⌋

Cov(Li,n,Lj,n)

=O(rn/n) +O(rnεn/n) +O(rnh
p
n × rn/n) = o(1).

Then, using Equations (18) and (19) again,

n

rn
Var

√F (yn|x)
nhpn

rn∑
j=1

Lj,n


=
F (yn|x)
hpn

Var(L1,n) + 2
F (yn|x)
rnh

p
n

∑
1≤i<j≤rn

Cov(Li,n,Lj,n)

=

∫
Rp K

2

g(x)

[
β21V1,1(x) + β20V2,2(x) + 2β0β1V1,2(x)

]
(1 + o(1)) +O(εn) +O(rnh

p
n)

→
∫
Rp K

2

g(x)

(
β1
β0

)⊤
V (x)

(
β1
β0

)
.

Finally, it is immediately found using the Hölder inequality and Lemma A.6(ii) that

n

rn
E


√F (yn|x)

nhpn

2+δ ∣∣∣∣∣∣
rn∑
j=1

Lj,n

∣∣∣∣∣∣
2+δ
=O

rn
 rn√

nhpnF (yn|x)

δ
= o(1).

It follows that the Lindeberg condition in Lemma C.7(ii) is satisfied. Applying Lemma C.7(ii)
in [18] completes the proof.

The ψ−mixing case follows by combining the covariance inequality in Lemma 3.1 of [39]
and Lemma A.6(ii) to get

max
1≤l≤4

max
i ̸=j

|C(l)
i,j,n| ≤ 2ψ(j − i)h2pn .
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Use then the central limit theorem of [47] with jn = 1 and kn = n (with the notation therein)
to conclude. We omit the details.

The next lemma is a technical result that allows to combine Proposition A.1 and
Lemma A.7 under condition Hδ .

LEMMA A.8. Assume that

∀y > 0, lim
t→∞

F (ty|x)
F (t|x)

= y−1/γ(x)

for some 0 < γ(x) < 1/a, where a > 0. Assume further that ωhn
(yn|x) = o(1) for some

sequences yn →∞ and hn → 0. Then there exists r > 0 such that

sup
x′∈B(x,r)

E(Y a
+|X = x′)<∞.

PROOF. An integration by parts yields

E(Y a
+|X = x′)−E(Y a

+|X = x) =

∫ ∞

0
ata−1

{
F (t|x′)

F (t|x)
− 1

}
F (t|x)dt.

The conditional moment E(Y a
+|X = x) is finite because γ(x)< 1/a, see Exercise 1.16 p.35

in [19]. It therefore suffices to work on the right-hand side in the above identity. Since

sup
x′∈B(x,r)

∣∣∣∣∫ y

0
ata−1

{
F (t|x′)

F (t|x)
− 1

}
F (t|x)dt

∣∣∣∣≤ 2ya <∞

for any r, y > 0, it is in fact sufficient to show that

sup
x′∈B(x,r)

∣∣∣∣∫ ∞

y
ata−1

{
F (t|x′)

F (t|x)
− 1

}
F (t|x)dt

∣∣∣∣
is finite for some r, y > 0. Now, according to Equation (17), for any x′ ∈B(x, hn),

sup
x′∈B(x,hn)

∣∣∣∣∫ ∞

yn

ata−1

{
F (t|x′)

F (t|x)
− 1

}
F (t|x)dt

∣∣∣∣
≤ aωhn

(yn|x)
∫ ∞

yn

ta+ωhn (yn|x)−1| log(t)|F (t|x)dt.

Let ε > 0 be so small that 1/γ(x)> a+ε, and n0 be an integer so large that ωhn
(yn|x)≤ ε/2

and yn ≥ 1 for n≥ n0. On the interval [1,∞), t−ε/2 log t is bounded, so there is a constant
C > 0 with

sup
x′∈B(x,hn)

∣∣∣∣∫ ∞

yn

ata−1

{
F (t|x′)

F (t|x)
− 1

}
F (t|x)dt

∣∣∣∣≤C

∫ ∞

yn

(a+ ε)ta+ε−1F (t|x)dt

≤C E(Y a+ε
+ |X = x)<∞

as soon as n≥ n0. Take y = yn0
and r = hn0

to complete the proof.

Lemma A.9 gives the required joint convergence result between the empirical smoothed
estimators of E(·|x) and F (·|x) at intermediate levels that will guarantee the joint conver-

gence of empirical smoothed quantiles and expectiles at such levels. Recall that F̂n(·|x) =
1− F̂n(·|x) and Ên(·|x) = 1− Ên(·|x).
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LEMMA A.9. Assume that conditions M, A(ln, rn), K, Lg , Lω , Bp and BΩ hold. Sup-
pose that yn →∞ and hn → 0 as n→∞. Assume further that nhpnF (yn|x)→∞.

(i) Suppose that yn,j = c
−γ(x)
j yn(1 + o(1)) for all j ∈ {1, . . . , J} with 0 < c1 < c2 <

. . . < cJ ≤ 1. Assume that nhp+2
n F (yn|x) log2(yn)→ 0, and that there exist δ > 0 with

r1+δ
n /[nhpnF (yn|x)]δ/2 → 0 and η > 1 with

∑∞
j=1 j

ηα(j)<∞. Then√
nhpnF (yn|x)

(
F̂n(yn,j |x)
F (yn,j |x)

− 1

)
1≤j≤J

d−→N
(
0J ,

∫
Rp K

2

g(x)
M

)
with the notation of Lemma A.7(i). If furthermore conditions KS , Dg and Dω hold then
condition nhp+2

n F (yn|x) log2(yn)→ 0 may be replaced by the weaker bias assumption√
nhpnF (yn|x)× h2n log

2(yn)→ c(x) ∈ [0,∞), in which case, provided rnh
p
n → 0,

√
nhpnF (yn|x)

(
F̂n(yn,j |x)
F (yn,j |x)

− 1

)
1≤j≤J

d−→N
((

c(x)

2

∫
Rp

K(u)(u⊤µ(x))2 du

)
1J ,

∫
Rp K

2

g(x)
M

)
.

If ((Xt, Yt))t≥1 is moreover ρ−mixing, then condition
∑∞

j=1 j
ηα(j) <∞ may be re-

placed by
∑∞

j=1 ρ(j)<∞.

If ((Xt, Yt))t≥1 is in fact also ψ−mixing in addition to ρ−mixing, with
∑∞

j=1ψ(j)<∞
(instead of

∑∞
j=1 j

ηα(j)<∞ for some η > 1, or
∑∞

j=1 ρ(j)<∞), then all conditions on
(ln) and (rn) (including condition A(ln, rn)), conditions Bp and BΩ can also be dropped.

(ii) Assume that conditions Hδ , Lm and Bm hold. Suppose that zn = θyn(1 + o(1)) (for
a certain θ > 0), that nhp+2

n F (yn|x) log2(yn)→ 0, that r1+δ
n /[nhpnF (yn|x)]δ/2 → 0 as

n→∞, and
∑∞

j=1 j
η[α(j)]δ/(2+δ) <∞ for some η > δ/(2 + δ). Then√

nhpnF (yn|x)

(
Ên(yn|x)
E(yn|x)

− 1,
F̂n(zn|x)
F (zn|x)

− 1

)
d−→N

(
(0,0),

∫
Rp K

2

g(x)
V (x)

)
with the notation of Lemma A.7(iii). If furthermore conditions KS , Dg , Dm and Dω hold
then condition nhp+2

n F (yn|x) log2(yn)→ 0 may be replaced by the weaker bias assump-

tion
√
nhpnF (yn|x)× h2n log

2(yn)→ c(x) ∈ [0,∞), in which case, provided rnh
p
n → 0,

√
nhpnF (yn|x)

(
Ên(yn|x)
E(yn|x)

− 1,
F̂n(zn|x)
F (zn|x)

− 1

)
d−→N

((
c(x)

2

∫
Rp

K(u)(u⊤µ(x))2 du

)
× (1,1),

∫
Rp K

2

g(x)
V (x)

)
.

If ((Xt, Yt))t≥1 is moreover ρ−mixing with
∑∞

j=1 ρ(j)<∞ (instead of
∑∞

j=1 j
η[α(j)]δ/(2+δ) <

∞ for some η > δ/(2 + δ)), then condition Bm can be dropped and condition Hδ can be
replaced by γ(x)< 1/(2 + δ).

If ((Xt, Yt))t≥1 is in fact also ψ−mixing in addition to ρ−mixing, with
∑∞

j=1ψ(j)<∞
(instead of

∑∞
j=1 j

η[α(j)]δ/(2+δ) <∞ for some η > δ/(2+ δ), or
∑∞

j=1 ρ(j)<∞), then
all conditions on (ln) and (rn) (including condition A(ln, rn)), conditions Bp and BΩ can
also be dropped. Condition Hδ can be replaced by 0< γ(x)< 1/2.
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PROOF. Again we prove (ii), which is similar to, but more difficult than, statement (i).
Follow the proof of Lemma 7 in [27] but apply Proposition A.1 and Lemma A.7 rather than
the Lemmas 4 and 6 of [27]. Note that Proposition A.1 applies because of Lemma A.8,
which combined with condition Hδ yields supx′∈B(x,r)E(|Y |2+δ|X = x′) <∞ for some
r > 0.

The following result is a refinement of Lemma 8 in [27].

LEMMA A.10. Assume that C2(γ(x), ρ(x),A(·|x)) holds. Suppose also that γ(x)< 1,
ρ(x)< 0 and E(Y− |X = x)<∞. Let τn, τ ′n → 1 be such that (1−τ ′n)/(1−τn)→ 0. Then:(

1− τn
1− τ ′n

)γ(x) e(τn|x)
e(τ ′n|x)

= 1+
γ(x)(1/γ(x)− 1)γ(x)

q(τn|x)
(E(Y |X = x) + o(1))

+
(1− γ(x))(1/γ(x)− 1)−ρ(x)

ρ(x)(1− γ(x)− ρ(x))
A((1− τn)

−1|x)(1 + o(1)).

PROOF. Combine Proposition 1(i) in [17] with(
1− τn
1− τ ′n

)γ(x) q(τn|x)
q(τ ′n|x)

= 1+
1

ρ(x)
A((1− τn)

−1|x)(1 + o(1))

(from e.g. p.139 in [19]). We omit the straightforward calculation.

A.5. Proofs of the main results. Proof of Theorems 2.1 and 3.1. The proof of Theo-
rem 2.1 goes in exactly the same way as that of Theorem 3.1, so we only prove the latter,
which is more difficult. Set σn = 1/

√
nhpn(1− τn), pick z = (z1, z2) and define

Φn(z) = P
({

σ−1
n

(
ên(τn|x)
e(τn|x)

− 1

)
≤ z1

}
∩
{
σ−1
n

(
q̂n(βn|x)
q(βn|x)

− 1

)
≤ z2

})
As in the proof of Theorem 1 in [27], we find, with yn = e(τn|x), y′n = e(τn|x)(1 + z1σn)
and z′n = q(βn|x)(1 + z2σn),

Φn(z) = P

({√
nhpnF (yn|x)

(
Ên(y

′
n|x)

E(y′n|x)
− 1

)
≤
√
nhpnF (yn|x)

(
E(e(τn|x)|x)
E(y′n|x)

− 1

)}

∩

{√
nhpnF (yn|x)

(
F̂n(z

′
n|x)

F (z′n|x)
− 1

)
≤
√
nhpnF (yn|x)

(
F (q(βn|x)|x)
F (z′n|x)

− 1

)})
.

Combine the local uniformity of condition C2(γ(x), ρ(x),A(·|x)) (see Lemma 5 in [17])
with assumption A((1− τn)

−1|x) =O(σn), the asymptotic proportionality between 1− βn
and 1− τn, and the regular variation property of A(·|x) to find

F (q(βn|x)(1 + z2σn)|x) = F (q(βn|x)|x)
(
1− z2σn

γ(x)
(1 + o(1))

)
.

Recall Lemma A.3(iv) in [46] which, for p= 2 and applied to the conditional distribution of
Y given X = x, reads

E(un(1 + εn)|x)
E(un|x)

= 1− εn
γ(x)

(1 + o(1))



26

as soon as un → ∞ and εn → 0 are such that A(1/F (un|x)|x) = O(εn). This equation
provides

E(e(τn|x)(1 + z1σn)|x) =E(e(τn|x)|x)
(
1− z1σn

γ(x)
(1 + o(1))

)
.

Here the asymptotic proportionality between e(τn|x) and q(τn|x) was used, that is,

e(τn|x)
q(τn|x)

→
(

1

γ(x)
− 1

)−γ(x)

as n→∞

[17, Proposition 1(i)], together with the regular variation property of A(·|x) and the choices
un = e(τn|x) and εn = z1σn. Therefore:

E(e(τn|x)|x)
E(e(τn|x)(1 + z1σn)|x)

− 1 =
z1
γ(x)

σn(1 + o(1)),

and
F (q(βn|x)|x)

F (q(βn|x)(1 + z2σn)|x)
− 1 =

z2
γ(x)

σn(1 + o(1)).

Continuity of the mapping

y 7→E(y|x) = 1−
E[(Y − y)1{Y >y}|X = x]

E[|Y − y||X = x]

is immediate, by the dominated convergence theorem, so that E(e(τn|x)|x) = 1 − τn.
Lemma A.3(iii) in [46] applied to the conditional distribution of Y given X = x then gives

(20)
F (yn|x)
1− τn

=
F (yn|x)
E(yn|x)

→ 1

γ(x)
− 1 as n→∞

and therefore√
nhpnF (yn|x)

(
E(e(τn|x)|x)
E(y′n|x)

− 1

)
=

z1
γ(x)

√
1− γ(x)

γ(x)
(1 + o(1))

and
√
nhpnF (yn|x)

(
F (q(βn|x)|x)
F (z′n|x)

− 1

)
=

z2
γ(x)

√
1− γ(x)

γ(x)
(1 + o(1)).

Conclude as in the end of the proof of Theorem 1 in [27], by applying Lemma A.9 to
handle the current dependent data context. [Under conditions KS , Dg , Dm and Dω , the
bias component is obtained by noting that F (yn|x)/(1− τn)→ 1/γ(x)− 1, and therefore
c(x) = ∆

√
1/γ(x)− 1 with the notation of Lemma A.9. In the proof of Theorem 2.1, one

should set instead yn = q(τn|x) and therefore F (yn|x)/(1−τn)→ 1, resulting in c(x) =∆.]
□

Proof of Theorems 2.2 and 3.3. The key is to write

log

(
q̂Wn,τn(τ

′
n|x)

q(τ ′n|x)

)
= log

(
1− τn
1− τ ′n

)
(γ̂(x)− γ(x)) + log

(
qn(τn|x)
q(τn|x)

)

+ log

([
1− τn
1− τ ′n

]γ(x) q(τn|x)
q(τ ′n|x)

)

and log

(
êWn,τn(τ

′
n|x)

e(τ ′n|x)

)
= log

(
1− τn
1− τ ′n

)
(γ̂(x)− γ(x)) + log

(
en(τn|x)
e(τn|x)

)
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+ log

([
1− τn
1− τ ′n

]γ(x) e(τn|x)
e(τ ′n|x)

)
.

The conclusion now follows from our assumptions on γ̂(x), qn(τn|x) (for Theorem 2.2) or
en(τn|x) (for Theorem 3.3), and the identity(

1− τn
1− τ ′n

)γ(x) q(τn|x)
q(τ ′n|x)

= 1+
1

ρ(x)
A
(
(1− τn)

−1|x
)
(1 + o(1))

(see p.139 in [19], for Theorem 2.2) or Lemma A.10 (for Theorem 3.3), together with a
straightforward application of the delta-method and (for Theorem 3.3) the asymptotic propor-
tionality relationship e(τ |x)/q(τ |x)→ (1/γ(x)− 1)−γ(x) (as τ ↑ 1) linking tail conditional
expectiles and quantiles. □

Proof of Theorem 2.3. For j ∈ {1, . . . , J}, set cj = 1/(J − j + 1) (in particular cJ = 1 and
log(J !) =−

∑J−1
j=1 log(cj)). Write√

nhpn(1− τn)
(
γ̂(J)τn (x)− γ(x)

)
=
√
nhpn(1− τn)

 1

log(J !)

J−1∑
j=1

log

(
q̂n(1− cj(1− τn)|x)
q(1− cj(1− τn)|x)

)

− J − 1

log(J !)
log

(
q̂n(1− cJ(1− τn)|x)
q(1− cJ(1− τn)|x)

))

+
√
nhpn(1− τn)

1

log(J !)

J−1∑
j=1

(
log

(
q(1− cj(1− τn)|x)

q(τn|x)

)
+ γ(x) log(cj)

)
=:An +Bn.

Theorem 2.3.9 in [19] yields, for any u > 0,

log

(
q(1− (1− τn)/u|x)

q(τn|x)

)
= γ(x) log(u) +A((1− τn)

−1|x)
(
uρ(x) − 1

ρ(x)
+ o(1)

)
.

Condition
√
nhpn(1− τn)A((1− τn)

−1|x)→ λ(x) then entails

lim
n→∞

Bn =
1

log(J !)

J−1∑
j=1

c
−ρ(x)
j − 1

ρ(x)

λ(x) =
1

log(J !)

 J∑
j=2

jρ(x) − 1

ρ(x)

λ(x).

Besides, combining Theorem 2.1 and a Taylor expansion of u 7→ log(1 + u) in a neighbor-
hood of 0 gives

An =
√
nhpn(1− τn)

1

log(J !)
(1, . . . ,1,−(J − 1))



q̂n(1− c1(1− τn)|x)
q(1− c1(1− τn)|x)

− 1

...

q̂n(1− cJ−1(1− τn)|x)
q(1− cJ−1(1− τn)|x)

− 1

q̂n(1− cJ(1− τn)|x)
q(1− cJ(1− τn)|x)

− 1


+ oP(1).
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Combining Theorem 2.1 and the elementary identity
∑

1≤i,j≤pmax(i, j) = p(p + 1)(4p −
1)/6 leads to the asymptotic normality of

√
nhpn(1− τn)(γ̂

(J)
τn (x) − γ(x)), with the an-

nounced asymptotic mean and variance. It is then also a consequence of Theorem 2.1 that√
nhpn(1− τn)

(
γ̂(J)τn (x)− γ(x),

q̂n(τn|x)
q(τn|x)

− 1

)
is in fact jointly asymptotically normal, with the announced asymptotic mean vector, depend-
ing on the set of regularity assumptions made. The diagonal of the asymptotic covariance ma-
trix has already been identified; according to the above representation of An, the off-diagonal
element is nothing but the last element of the row vector (1, . . . ,1,−(J − 1))M , where M
has entries Mj,l(x) = 1/max(cj , cl) = 1/cmax(j,l). This is clearly 0, which completes the
proof. □

Proof of Theorem 3.2. The key to the proof is the joint convergence in Theorem 2.3. Write

log
qen(τn|x)
e(τn|x)

= log((1/γ̂(J)τn (x)− 1)−γ̂(J)
τn

(x))− log((1/γ(x)− 1)−γ(x)) + log
q̂n(τn|x)
q(τn|x)

− log

(
(1/γ(x)− 1)γ(x)

e(τn|x)
q(τn|x)

)
.

Note that the derivative of the function z 7→ log((1/z − 1)−z) = −z log(1/z − 1) on (0,1)
is z 7→ (1− z)−1 − log(1/z − 1). The result then follows from a straightforward application
of Theorem 2.3 (for the joint convergence of the two random terms) in conjunction with
Proposition 1(i) in [17] (for the convergence of the bias term) and the delta-method.

Proof of Theorem 3.4. Set κ = 1/γ(x) − 1 and σn = 1/
√
nhpn(1− τn) and focus on the

event

An(z) =

{
σ−1
n

(
F̂n(ên(τn|x)|x)

1− τn
− κ

)
≤ z

}
=
{
F̂n(ên(τn|x)|x)≤ (1− τn)(κ+ zσn)

}
.

Equivalently An(z) = {ên(τn|x)≥ q̂n(βn|x)}, where βn = 1− (1− τn) (κ+ zσn) , and so

An(z) =

{
σ−1
n

(
ên(τn|x)
e(τn|x)

− 1

)
≥ σ−1

n

(
q̂n(βn|x)
q(βn|x)

− 1

)
q(βn|x)
e(τn|x)

+ σ−1
n

(
q(βn|x)
e(τn|x)

− 1

)}
.

According to Theorem 2.3.9 in [19], condition C2(γ(x), ρ(x),A(·|x)) provides:

q(βn|x)
q(τn|x)

= (κ+ zσn)
−γ(x)

(
1 +

(κ+ zσn)
−ρ(x) − 1

ρ(x)
A((1− τn)

−1|x)(1 + o(1))

)
= κ−γ(x)

(
1− γ(x)

zσn
κ

(1 + o(1))
)(

1 +
κ−ρ(x) − 1

ρ(x)
A((1− τn)

−1|x)(1 + o(1))

)
.

Apply Proposition 1 in [17] to get

q(βn|x)
e(τn|x)

=

(
1− γ2(x)

1− γ(x)
zσn(1 + o(1))

)

×

(
1− γ(x)(1/γ(x)− 1)γ(x)

q(τn|x)
(E(Y |X = x) + o(1))− (1/γ(x)− 1)−ρ(x)

1− γ(x)− ρ(x)
A((1− τn)

−1|x)(1 + o(1))

)
.
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Linearizing yields

σ−1
n

(
q(βn|x)
e(τn|x)

− 1

)

→− γ2(x)

1− γ(x)
z − (1/γ(x)− 1)−ρ(x)

1− γ(x)− ρ(x)
λ1(x)− γ(x)(1/γ(x)− 1)γ(x)E(Y |X = x)λ2(x)

as n→∞. Using Theorem 3.1, we can therefore rewrite An(z) as{
1− γ(x)

γ2(x)

[
−σ−1

n

(
ên(τn|x)
e(τn|x)

− 1

)
+ σ−1

n

(
q̂n(βn|x)
q(βn|x)

− 1

)]

− (1/γ(x)− 1)1−ρ(x)

γ(x)(1− γ(x)− ρ(x))
λ1(x)− (1/γ(x)− 1)γ(x)+1E(Y |X = x)λ2(x) + oP(1)≤ z

}
.

It follows that the asymptotic distribution of

σ−1
n

(
F̂n(ên(τn|x)|x)

1− τn
− κ,

ên(τn|x)
e(τn|x)

− 1

)
is that of

−1− γ(x)

γ2(x)

1− γ(x)

γ2(x)

1 0

σ−1
n


ên(τn|x)
e(τn|x)

− 1

q̂n(βn|x)
q(βn|x)

− 1



−

 (1/γ(x)− 1)−ρ(x)

γ(x)(1− γ(x)− ρ(x))
λ1(x) + (1/γ(x)− 1)γ(x)+1E(Y |X = x)λ2(x)

0

 .

The conclusion follows from an application of Theorem 3.1 with κ= 1/γ(x)− 1 and a use
of the delta-method for the function u 7→ 1/(1 + u). □

APPENDIX B: DISCUSSION OF THE EXAMPLES

Here we provide an extended discussion of the examples in Section 4. We treat each ex-
ample in turn; to enrich the discussion, we do not structure this section to include successive
formal proofs of each proposition, but we explain in detail how to prove the validity of each
of our conditions under the stated assumptions. We also provide alternative ways of checking
these conditions, as well as more general conditions, when relevant. We start by the general
case when the data are m−dependent (possibly i.i.d.), and we then give a full treatment for
the location-scale model, the nonlinear regression model, and autoregressive models.

The m−dependent case (including the case of i.i.d. data). Suppose that ((Xt, Yt))t≥1 is
an m−dependent sequence. Then condition M reduces to second-order regular variation
of the conditional survival function; numerous examples of commonly used distributions that
satisfy this assumption can be found in [1]. Assuming the validity of this second-order regular
variation condition, we check the other conditions as follows.

Checking conditions Bp, Bm and BΩ is unnecessary because an m−dependent process is
in particular ψ−mixing, and hence ρ−mixing. Condition M then reduces to second-order
regular variation of the conditional survival function; numerous examples of commonly used
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distributions that satisfy this assumption (including the Generalized Pareto, Burr, Student and
Fréchet distributions) can be found in [1].

Condition Lg is of course satisfied as soon as the p.d.f. g of X satisfies g(x)> 0 and is con-
tinuously differentiable in a neighborhood V of x, since it is then Lipschitz continuous on
any closed subset of V by the mean value theorem. Differentiability of g at x is in fact suf-
ficient for condition Lg to hold, since then ∥g(x′)− g(x)− (x′ − x)⊤∇g(x)∥ ≤ ∥x′ − x∥
for x′ sufficiently close to x, by the very definition of the differentiability property. Simi-
larly, condition Dg is satisfied as soon as ∇g is continuously differentiable on V , although
continuity of ∇g on V and its differentiability at x are sufficient.

Condition Lm is verified as soon as Y given X = x has a conditional p.d.f. fY |X(y|x) that
is sufficiently smooth with respect to x uniformly in y. Indeed, since for any a > 0,

|E(Y a|X = x)−E(Y a|X = x′)| ≤
∫
R
|y|a|fY |X(y|x)− fY |X(y|x′)|dy,

it turns out that condition Lm holds if there is a neighborhood V of x such that

∀x′ ∈ V, |fY |X(y|x)− fY |X(y|x′)| ≤ ϕx(y)∥x−x′∥, where ϕx is measurable,

bounded in a neighborhood of 0, and such that
∫
R
y2(fY |X(y|x) + ϕx(y))dy <∞.

This is nothing but a Lipschitz assumption on fY |X(y|·), with the Lipschitz coefficient be-
ing a sufficiently integrable function of y; replacing y2 by |y|2+δ ensures that the moment
restriction in condition Hδ holds also. [Alternatively, this moment condition holds if Y has a
finite unconditional moment of order (2 + δ) and the conditional density of X given Y = y
is suitably uniformly bounded, see Lemma A.1(i).] The above Lipschitz assumption can be
checked directly on the joint p.d.f. f of (X, Y ): if it is such that f(·, y) is continuously
differentiable on V for any y, then for any x′ ∈ V ,

|fY |X(y|x)− fY |X(y|x′)|=
∣∣∣∣f(x, y)g(x)

− f(x′, y)

g(x′)

∣∣∣∣
≤
∣∣∣∣ 1

g(x′)
− 1

g(x)

∣∣∣∣ sup
x′∈V

f(x′, y) +
1

g(x)

(
sup
x′∈V

∥∇xf(x
′, y)∥

)
∥x′ −x∥

by the mean value theorem. Then, if g is Lipschitz continuous at x, a possible construction
of ϕx is (up to a multiplicative term depending on x only)

ϕx(y) = sup
x′∈V

f(x′, y) + sup
x′∈V

∥∇xf(x
′, y)∥

for a sufficiently small neighborhood V of x. To check condition Dm, one possibility is to
assume that a similar Lipschitz condition also holds on the partial gradient of fY |X(y|x):

∀x′ ∈ V, |fY |X(y|x)− fY |X(y|x′)|+ ∥∇xfY |X(y|x)−∇xfY |X(y|x′)∥ ≤ ϕx(y)∥x−x′∥

where, in addition to the above regularity and integrability requirements on ϕx(y), it is
assumed that ∇xfY |X(y|·) is continuous on V for any y, and ∇xfY |X(·|x) is bounded
in a neighborhood of 0 and is such that

∫
R y

2∥∇xfY |X(y|x)∥dy < ∞. In that case,∫
R y∇xfY |X(y|x)dy and

∫
R y

2∇xfY |X(y|x)dy exist and, writing, for a= 1,2,∣∣∣∣E(Y a|X = x′)−E(Y a|X = x)− (x′ −x)⊤
∫
R
ya∇xfY |X(y|x)dy

∣∣∣∣
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≤
∫
R
|y|a|fY |X(y|x′)− fY |X(y|x)− (x′ −x)⊤∇xfY |X(y|x)|dy

≤
∫
R
|y|a

(∫ 1

0
(x′ −x)⊤∥∇xfY |X(y|x+ t(x′ −x))−∇xfY |X(y|x)∥dt

)
dy

≤ ∥x′ −x∥2

2

∫
R
|y|aϕx(y)dy,

it is clear that the gradient of E(Y a|X = ·) at x is
∫
R y

a∇xfY |X(y|x)dy, and that this
gradient is Lipschitz continuous at x, as required by condition Dm. A similar discussion as
above, at the level of the joint p.d.f. f , can be made to show that a possible construction of
ϕx is (up to a multiplicative term depending on x only)

ϕx(y) = sup
x′∈V

f(x′, y) + sup
x′∈V

∥∇xf(x
′, y)∥+ sup

x′∈V
∥Hxf(x

′, y)∥.

Finally, a general criterion for the control of the oscillation of the log-conditional survival
function can be provided by assuming that the heavy tail assumption holds in a neighborhood
V of x and by introducing the corresponding Karamata representation of the (hence regularly
varying) conditional survival function, that is

∀x′ ∈ V, ∀y ≥ y0, F (y|x′) = y−1/γ(x′)L(y|x′),

with L(y|x′) = exp

(
η(y|x′) +

∫ y

y0

ϵ(u|x′)

u
du

)
,

for some y0 > 0 [see Theorem 1.3.1 p.12 in 2], where γ > 0 and η(·|x′) and ϵ(·|x′) are mea-
surable functions converging, respectively, to a constant and 0 at infinity. With this notation,

1

log(y)
log

F (y|x′)

F (y|x)

=−
(

1

γ(x′)
− 1

γ(x)

)
+
η(y|x′)− η(y|x)

log(y)
+

1

log(y)

∫ y

y0

ϵ(u|x′)− ϵ(u|x)
u

du.

It is then clear that if there is c > 0 such that

∀x′ ∈ V,
∣∣∣∣ 1

γ(x)
− 1

γ(x′)

∣∣∣∣+ sup
y≥y0

∣∣∣∣η(y|x)− η(y|x′)

log(y)

∣∣∣∣+ sup
y≥y0

∣∣ϵ(y|x)− ϵ(y|x′)
∣∣≤ c∥x−x′∥

then condition Lω is satisfied. This will in particular be the case provided V is a (without loss
of generality) compact neighborhood of x such that γ is continuously differentiable on V ,
and (by the mean value theorem) η(y|·)/ log(y) and ϵ(y|·) are continuously differentiable on
V for all y ≥ y0, with bounded gradients on V × [y0,∞). To check condition Dω , note that

logL(y|x′) = η(y|x′) +

∫ y

y0

ϵ(u|x′)

u
du.

If η(y|·)/ log(y) and ϵ(y|·) are twice continuously differentiable on V for any y ≥ y0 with
bounded Hessian matrices on the cylinder V × [y0,∞), then (by differentiating under the in-
tegral) it is straightforward to prove that the partial Hessian matrix Hx logL(y|x′)/ log(y) is
well-defined and bounded on V × [y0,∞). If then γ is twice continuously differentiable on V ,
Lemma A.4(ii) entails that condition Dω is satisfied, with limy→∞∇x logF (y|x)/ log(y) =
∇γ(x)/γ2(x). We summarize this discussion in the following synthetic result.
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PROPOSITION B.1 (The i.i.d. or m−dependent case). Assume that (X, Y ) has a joint
p.d.f. f . Let X denote the support of X , assumed to have nonempty interior, let x belong
to the interior of X and V ⊂ X be a neighborhood of x such that the p.d.f. g of X is
continuously differentiable on V and g(x) > 0. Then condition Lg holds; if g is also twice
continuously differentiable on V , then condition Dg holds as well.

If moreover Y given X has a conditional p.d.f. fY |X , such that

∀x′ ∈ V, |fY |X(y|x)− fY |X(y|x′)| ≤ ϕx(y)∥x−x′∥

where ϕx is measurable, bounded in a neighborhood of 0 and such that
∫
R |y|

2+δ(fY |X(y|x)+
ϕx(y))dy < ∞, then conditions Hδ and Lm hold (when γ(x) < 1/(2 + δ)). If in addi-
tion fY |X(y|·) is continuously differentiable on V for any y, the partial gradient function
∇xfY |X(·|x) is bounded in a neighborhood of 0 and satisfies also

∀x′ ∈ V, ∥∇xfY |X(y|x)−∇xfY |X(y|x′)∥ ≤ ϕx(y)∥x−x′∥

with
∫
R |y|

2+δ∥∇xfY |X(y|x)∥dy <∞, then condition Dm holds as well.

Assume finally that for any x′ in a neighborhood V of x, F (·|x′) is heavy-tailed, and recall
the Karamata representation of heavy-tailed conditional survival functions,

∀y ≥ y0, F (y|x′) = y−1/γ(x′) exp

(
η(y|x′) +

∫ y

y0

ϵ(u|x′)

u
du

)
for some y0 > 0 [see Theorem 1.3.1 on p.12 of 2], where γ > 0 and η(·|x′) and ϵ(·|x′) are
measurable functions converging, respectively, to a constant and 0 at infinity. If γ is contin-
uously differentiable on V , and η(y|·)/ log(y) and ϵ(y|·) are continuously differentiable on
V for any y ≥ y0 with bounded gradients on the cylinder V × [y0,∞), then condition Lω

holds. If moreover γ is twice continuously differentiable on V , and η(y|·)/ log(y) and ϵ(y|·)
are twice continuously differentiable on V for any y ≥ y0 with bounded Hessian matrices on
the cylinder V × [y0,∞), then condition Dω holds, with limy→∞∇x logF (y|x)/ log(y) =
∇γ(x)/γ2(x).

Location-scale model with possible temporal misspecification. In this case, strong mixing
of the sequence ((Xt, Yt))t≥1 is a consequence of the strong mixing of ((Xt, εt))t≥1. Indeed,
since

σ({(Xj , εj), a≤ j ≤ b}) = σ(σ({Xj , a≤ j ≤ b})∪ σ({εj , a≤ j ≤ b}))

with the two σ−algebras on the right-hand side being independent by assumption, Lemma 8
in [5] applied to the σ−algebras A1 = σ({Xj ,1 ≤ j ≤ k}), B1 = σ({Xj , j ≥ k + n}),
A2 = σ({εj ,1≤ j ≤ k}) and B2 = σ({εj , j ≥ k+n}) yields α(n)≤ αX(n)+αε(n), where
αX(n) and αε(n) are the strong mixing coefficients of (Xt)t≥1 and (εt)t≥1. In other words,
strong mixing of ((Xt, Yt))t≥1 holds as soon as (Xt)t≥1 and (εt)t≥1 themselves are strongly
mixing. In particular, if (εt)t≥1 is an i.i.d. sequence (meaning that the location-scale regres-
sion model is correctly specified), strong mixing of ((Xt, Yt))t≥1 reduces to strong mixing
of (Xt)t≥1 alone.

In addition, denoting by ε a random variable having the same marginal distribution as the εt,
we clearly have

Y |X = x
d
=m(x) + σ(x)ε

and (Y1, Yt+1)|{X1 = x1,Xt+1 = xt+1}
d
= (m(x1) + σ(x1)ε1,m(xt+1) + σ(xt+1)εt+1).
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This entails in particular that the conditional second-order heavy tails assumption should
essentially reduce to regular variation properties of the distribution of ε with tail index γ > 0.
However, the presence of the location and scale components m(x) and σ(x) are known to
have a substantial influence on these regular variation properties (see p.83 in [19]), so we
provide a full discussion next. Assume that

∀z > 0, lim
t→∞

1

A(1/F ε(t))

(
F ε(tz)

F ε(t)
− z−1/γ

)
=


z−1/γ z

ρ/γ − 1

γρ
if ρ < 0,

z−1/γ log(z)

γ2
if ρ= 0

where ρ≤ 0 and A is a measurable function having constant sign, or equivalently,

∀z > 0, lim
t→∞

1

A(t)

(
Uε(tz)

Uε(t)
− zγ

)
=


zγ
zρ − 1

ρ
if ρ < 0,

zγ log(z) if ρ= 0

where Uε(t) = qε(1− 1/t) = inf{z ∈ R |Fε(z)≥ 1− 1/t} is the tail quantile function of ε
(see Theorem 2.3.9 on p.48 of [19] for the equivalence between these two convergences). The
function |A| is regularly varying with index ρ. Then, for any m ∈R and σ > 0, a straightfor-
ward calculation shows that the tail quantile function m+ σUε of m+ σε satisfies

∀z > 0,
m+ σUε(tz)

m+ σUε(t)
−zγ =

(
1 +

m

σUε(t)

)−1 [(Uε(tz)

Uε(t)
− zγ

)
− mγ

σUε(t)
× zγ

z−γ − 1

−γ

]
.

As a consequence of this calculation, if γ ̸= −ρ, then assumption C2(γ(x), ρ(x),A(·|x))
holds for the conditional distribution of Y given X = x, with γ(x) = γ for any x, when:

• m(x) = 0 or γ >−ρ, in which case ρ(x) = ρ and A(·|x) =A,
• m(x) ̸= 0 and γ <−ρ, in which case ρ(x) =−γ and A(·|x) =m(x)γ/(σ(x)Uε).

[It follows that in the pure scale model where m(x) = 0, no restriction on γ and ρ is neces-
sary.] When a location component is present, this restriction on γ and ρ can be lifted if the
tail quantile function of ε satisfies an asymptotic expansion of the form

(21) Uε(z) =Czγ(1 +Dzρ +D′zρ+ρ′
(1 + o(1))) as z→∞

where C > 0, D,D′ ̸= 0 and ρ, ρ′ < 0. Indeed, note first that any tail quantile function satis-
fying the weaker expansion

(22) Uε(z) =Czγ(1 +Dzρ(1 + o(1))) as z→∞

will also satisfy the second-order regular variation condition withA(t) =Dρtρ. If (21) holds,
then

m+ σUε(z) = σCzγ
(
1 +

m

σC
z−γ +Dzρ +D′zρ+ρ′

(1 + o(1))
)

as z→∞.

In that situation, even if γ = −ρ, assumption C2(γ(x), ρ(x),A(·|x)) always holds for the
conditional distribution of Y given X = x, with

• ρ(x) = ρ=−γ and A(t|x) = (D+m/(σC))ρtρ if m+ σCD ̸= 0,
• ρ(x) = ρ+ ρ′ and A(t|x) =D′(ρ+ ρ′)tρ+ρ′

otherwise.

Assumption (21), which puts the distribution of ε into a subset of the Hall class [named after
33], is reasonable and satisfied by most of the classes of distributions used in the modeling
of heavy tails, such as:
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• The Fréchet distribution with survival function F (y) = 1− exp(−y−1/γ) (y > 0),
• The Burr distribution with survival function F (y) = (1 + y−ρ/γ)1/ρ (y > 0).

A notable exception is the Generalized Pareto distribution, for which it may happen that
m+ σUε is the tail quantile function of the pure Pareto distribution, that is, m+ σUε(z) =
zγ (z > 1). More generally, any example where m+ σUε is asymptotically equivalent to a
multiple of zγ at a rate faster than any polynomial, that is,m+σUε(z) = czγ(1+o(z−κ)) for
any κ > 0 (as z→∞). This represents the ideal case when extrapolation bias is absent, and
our results continue to hold with the convention ρ(x) =−∞ and A(·|x)≡ 0. It may happen
though that (21) is not straightforward to check directly because the quantile function is not
easy to compute and only the p.d.f. fε of ε has a simple form. In this case, a workaround is
to assume directly that fε, rather than Uε, satisfies such an asymptotic expansion, that is,

(23) fε(z) = c0z
−1/γ−1(1 + d0z

−a + d′0z
−a−b(1 + o(1))) as z→∞

where c0 > 0, d0, d′0 ̸= 0 and a, b > 0. Writing F ε(z) =
∫∞
z fε(t)dt immediately entails that

F ε itself then satisfies an analogous expansion:

(24) F ε(z) = cz−1/γ(1 + dz−a + d′z−a−b(1 + o(1))) as z→∞

where c = c0γ > 0, d = d0/(1 + aγ) ̸= 0 and d′ = d′0/(1 + (a + b)γ) ̸= 0. The identity
F ε(Uε(z)) = 1/z, valid for any z > 1 because of the continuity of Fε, now provides

Uε(z) = cγzγ(1 + d(Uε(z))
−a + d′(Uε(z))

−a−b(1 + o(1)))γ as z→∞.

We then successively obtain Uε(z) = cγzγ(1 + o(1)), Uε(z) = cγzγ(1 + γdc−aγz−aγ(1 +
o(1))) and finally

Uε(z) = cγzγ
(
1 + γdc−aγz−aγ − 1

2
γd2c−2aγ(1 + (2a− 1)γ)z−2aγ

+γd′c−(a+b)γz−(a+b)γ + o(z−2aγ) + o(z−(a+b)γ)
)

as z→∞. When a ̸= 1, (22) holds with ρ=−aγ ̸=−γ, so no further discussion is necessary.
When a = 1 and b ̸= 1, this obviously yields an asymptotic expansion of the form (21).
Otherwise, when a = b = 1, the last two terms decay at the same rate, and this will be an
asymptotic expansion of the form (21), meaning that once again C2(γ(x), ρ(x),A(·|x)) will
be satisfied, as long as 2d′ ̸= d2(1+γ), or equivalently 2d′0(1+γ) ̸= d20(1+2γ). For instance:

• Consider the Student distribution with ν > 0 degrees of freedom, with p.d.f. fε given by

fε(z) =
Γ((ν + 1)/2)√
νπΓ(ν/2)

(
1 +

z2

ν

)−(ν+1)/2

It is readily found that Assumption (23) holds with γ = 1/ν, a = b = 2, d0 = −ν(ν +
1)/2 and d′0 = ν2(ν + 1)(ν + 3)/8. Since a = 2, the related tail quantile function Uε is
second-order regularly varying with second-order parameter ρ = −2γ ̸= −γ, so condition
C2(γ(x), ρ(x),A(·|x)) will be satisfied in the location-scale regression model.
• Consider the Fisher distribution with (ν1, ν2) degrees of freedom, defined as

fε(z) =
(ν1/ν2)

ν1/2

B(ν1/2, ν2/2)
zν1/2−1

(
1 +

ν1
ν2
z

)−(ν1+ν2)/2

(where B(x, y) =
∫ 1
0 u

x−1(1 − u)y−1 du denotes the Beta function at x, y > 0). Here a
straightforward calculation gives γ = 2/ν2, a = b = 1, d0 = −ν2(ν1 + ν2)/(2ν1) and d′0 =
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ν22(ν1+ν2)(ν1+ν2+2)/(8ν21), so that the Fisher distribution also satisfies Assumption (24)
with 2d′0(1 + γ) ̸= d20(1 + 2γ) if and only if ν1 ̸= 2. Condition C2(γ(x), ρ(x),A(·|x)) will
then be satisfied in the location-scale regression model when ν1 ̸= 2. [If on the contrary
ν1 = 2, the Fisher distribution is in fact a Generalized Pareto distribution, whose relevance to
our results has already been discussed above.]

As a conclusion, condition C2(γ(x), ρ(x),A(·|x)) holds provided the p.d.f. fε satisfies an
asymptotic expansion of the form (23), with either a ̸= 1, a= 1 ̸= b, or a= b= 1 and 2d′0(1+
γ) ̸= d20(1 + 2γ).

In any of the regular variation models discussed above, since γ(x) = γ for any x, it follows
that condition Hδ holds provided γ < 1/(2 + δ), E(ε2+δ

− ) <∞ and the functions m and σ
are bounded in a neighborhood of x.

Condition Lg clearly holds if the p.d.f. of X is such that g(x)> 0 and g is continuously dif-
ferentiable in a neighborhood of x, and condition Lm reduces to assuming that ε has a finite
second moment and the location and scale components m and σ are themselves Lipschitz
continuous at x, which will happen if m and σ are in fact continuously differentiable in a
neighborhood of x (again, differentiability at x is sufficient). Under the latter conditions, con-
dition Bm is automatically satisfied; condition Bp is automatically true under condition Lg if
the random pairs (X1,Xt+1) have absolutely continuous distributions and (Xt) is actually
β−mixing (or absolutely regular), because then the p.d.f.s gt of the pairs (X1,Xt+1) are
uniformly bounded in t, see Remark 1 in [11]. It follows that conditions Lg , Lm, Bp and Bm

hold under the assumptions provided in the first two items of Proposition 4.1, in addition to
γ < 1/(2 + δ) and E(ε2+δ

− )<∞ for Lm and Bm. Conditions Dg and Dm then clearly hold
if g, m and σ have Lipschitz continuous gradients at x; this is in particular true if these three
functions are twice continuously differentiable in a neighborhood of x.

Finally, F (y|x) = F ε((y−m(x))/σ(x)) in this model, and thus

1

log(y)

∣∣∣∣log F (y|x′)

F (y|x)

∣∣∣∣= 1

log(y)

∣∣∣∣log F ε((y−m(x′))/σ(x′))

F ε((y−m(x))/σ(x))

∣∣∣∣ .
If ε has a p.d.f. fε which is continuous in a neighborhood of infinity then, for y large enough,
by the mean value theorem:∣∣∣∣log F ε((y−m(x′))/σ(x′))

F ε((y−m(x))/σ(x))

∣∣∣∣≤
∣∣∣y−m(x)

σ(x) − y−m(x′)
σ(x′)

∣∣∣
min

(
y−m(x)
σ(x) , y−m(x′)

σ(x′)

) sup
z∈Ix,x′ (y)

|z(logF ε)
′(z)|

with Ix,x′(y) =

[
y−m(x)

σ(x)
,
y−m(x′)

σ(x′)

]
.

It follows that condition Lω holds (and even ωhn
(yn|x) = o(hn) for any yn →∞) provided

m and σ are Lipschitz continuous at x and the distribution of ε satisfies the classical first-
order von Mises condition −z(logF ε)

′(z) = zfε(z)/F ε(z)→ 1/γ as z→∞ [see condition
(1.1.34) p.17 in 19]. This first-order von Mises condition is in particular a consequence of
Assumption (23). To check condition Dω , recall that the chain rule for a function ϕ : x 7→
f(u(x)), where f :R→R and u :Rp →R are twice differentiable, yields

Hϕ(x) = f ′′(u(x))∇u(x)[∇u(x)]⊤ + f ′(u(x))Hu(x).

If m and σ are twice continuously differentiable in a compact (without loss of generality)
neighborhood V of x, the gradient and Hessian matrix of x 7→ (y−m(x))/σ(x) are respec-
tively

y−m(x)

σ(x)
× σ(x)∇(1/σ)(x)− ∇m(x)

σ(x)
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and
y−m(x)

σ(x)
×σ(x)H(1/σ)(x)− 1

σ(x)
Hm(x)−∇m(x)[∇(1/σ)(x)]⊤−∇(1/σ)(x)[∇m(x)]⊤.

It follows that if the p.d.f. fε itself is continuously differentiable in a neighborhood of infin-
ity then, under the second-order von Mises condition −z(log fε)′(z) = −zf ′ε(z)/fε(z) →
1/γ + 1 as z → ∞ (in addition to its first-order version), the partial Hessian matrix
Hx logF (y|x′)/ log(y) converges to the zero matrix as y→∞ uniformly in x′ ∈ V . Then,
by Lemma A.4(ii), condition Dω is satisfied, with limy→∞∇x logF (y|x)/ log(y) = 0 (since
γ is a constant function of x here).

Finally,

P(Y1 > y,Yt+1 > y′|X1 = x′,Xt+1 = x′′)√
F (y|x′)F (y′|x′′)

=
P(ε1 > (y−m(x′))/σ(x′), εt+1 > (y′ −m(x′′))/σ(x′′))√

F ε((y−m(x′))/σ(x′))F ε((y′ −m(x′′))/σ(x′′))
≤ 1

by the Cauchy-Schwarz inequality, so that condition BΩ is satisfied under no further condition
whatsoever.

Nonlinear regression model. As in the example of the location-scale model, strong mix-
ing of the sequence ((Xt, Yt))t≥1 is a consequence of the strong mixing of ((Xt,Ut))t≥1,
which itself follows from strong mixing of (Xt)t≥1 and (Ut)t≥1. Besides, the conditional
distributions in this model are

Y |X = x
d
= q(U,θ(x))

and (Y1, Yt+1)|{X1 = x1,Xt+1 = xt+1}
d
= (q(U1,θ(x1)), q(Ut+1,θ(xt+1))).

From the first equality above, the conditional distribution function of Y given X = x is
exactly F (·,θ(x)). The conditional second-order regular variation assumption is then a direct
consequence of the second-order regular variation property of F (·,θ).
The validity of conditions Lg , Bp and Dg follows from the assumptions on the distributions of
the pairs (X1,Xt+1) and their first marginal, see the example of the location scale-regression
model for a complete discussion.

The validity of conditions Hδ , Lm and Bm depends on the particular form of the model
and how smooth the function θ(·) is. We focus throughout this example on classical heavy-
tailed distributions, such as those of Table 2.1 p.59 in [1], which are concentrated on
(0,∞). For such models, the left tail moment requirement is trivially true, so checking
condition Hδ is done by calculating the value of γ as a function of θ and ensuring that
γ(x) = γ(θ(x))< 1/(2 + δ). [Otherwise, one requires extra assumptions about the left tail
of F (·,θ), such as symmetry of the tails, or the fact that the left tail is dominated by the
right tail.] We turn to checking conditions Lm and Bm. Let m1(θ) and m2(θ) denote the ex-
pectation and second moment of the parametric model F (·,θ). Then conditions Lm and Bm

will be satisfied provided x 7→m1(θ(x)) and x 7→m2(θ(x)) exist, are finite, and are Lip-
schitz continuous at x. In practice this will hold provided θ(·) is Lipschitz continuous at x
(e.g. continuously differentiable in a neighborhood of x) and m1(·) and m2(·) are continu-
ously differentiable with respect to θ. For example:
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• The Fréchet model F (y, θ) = exp(−y−1/θ) (for y, θ > 0), is heavy-tailed with tail index
γ = θ. In this model, m1(θ) = Γ(1− θ) and m2(θ) = Γ(1− 2θ) when θ < 1/2, where Γ is
Euler’s Gamma function, and therefore the functions m1 and m2 are infinitely differentiable
functions of θ on (0,1/2). Conditions Hδ , Lm and Bm then hold together if the function θ(·)
is continuously differentiable in a neighborhood of x with θ(x)< 1/(2 + δ).
• The absolute Student (or half-t) model with θ degrees of freedom, where F (·, θ) has p.d.f.

f(y, θ) =
2Γ((θ+ 1)/2)√

θπΓ(θ/2)

(
1 +

y2

θ

)−(θ+1)/2

(for y, θ > 0),

is heavy-tailed with tail index γ = 1/θ. In this model,m1(θ) =
√
θΓ((θ−1)/2)/(

√
πΓ(θ/2))

and m2(θ) = θ/(θ − 2) when θ > 2, so that again m1 and m2 are infinitely differentiable
functions of θ on the interval (2,∞). Conditions Hδ , Lm and Bm then hold together if the
function θ(·) is continuously differentiable in a neighborhood of x with θ(x)> 2 + δ.
• The Generalized Pareto model F (y, θ) = 1−(1+θ1y/θ2)

−1/θ1 (for y, θ1, θ2 > 0), is heavy-
tailed with tail index γ = θ1. In this model, m1(θ1, θ2) = θ2/(1 − θ1) and m2(θ1, θ2) =
2θ22/((1− θ1)(1− 2θ1)) when θ1 < 1/2, from which the functions m1 and m2 are infinitely
differentiable functions of (θ1, θ2) on (0,1/2) × (0,∞). Conditions Hδ , Lm and Bm then
hold together if the function θ(·) = (θ1(·), θ2(·)) is continuously differentiable in a neighbor-
hood of x with θ1(x)< 1/(2 + δ).
• The Burr model F (y, (θ1, θ2)) = 1− (1 + yθ2/θ1)−1/θ2 (for y, θ1, θ2 > 0), is heavy-tailed
with tail index γ = θ1. In this model, m1(θ1, θ2) = θ−1

2 B((1 − θ1)/θ2,1 + θ1/θ2) and
m2(θ1, θ2) = θ−1

2 B((1− 2θ1)/θ2,1 + 2θ1/θ2) when θ1 < 1/2, where B again denotes the
Beta function. The Beta function is infinitely differentiable in both its arguments, so m1 and
m2 are infinitely differentiable functions of (θ1, θ2) on (0,1/2)× (0,∞). Conditions Hδ , Lm

and Bm will hold together if the function θ(·) = (θ1(·), θ2(·)) is continuously differentiable
in a neighborhood of x with θ1(x)< 1/(2 + δ).

Condition Dm will similarly be satisfied if m1 and m2 are twice continuously differentiable
with respect to θ and θ(·) has a Lipschitz continuous gradient at x (a twice continuously
differentiable mapping θ(·) in a neighborhood of x will satisfy this last assumption). If m1

and/or m2 have no simple closed form, a workaround is to use their (Choquet) integral ex-
pression,

m1(θ) =

∫ ∞

0
F (y,θ)dy and m2(θ) =

∫ ∞

0
2y F (y,θ)dy.

To check condition Lm (resp. Dm), in addition to the regularity requirements on θ(·), it
is thus sufficient to ascertain whether the parameter-dependent integrals

∫∞
0 F (y,θ)dy and∫∞

0 y F (y,θ)dy exist, are finite, and continuously differentiable (resp. twice continuously
differentiable) with respect to θ. This is most easily checked using general results on differ-
entiation under the integral sign.

We finally examine the validity of conditions Lω , Dω and BΩ. Here

1

log(y)

∣∣∣∣log F (y|x′)

F (y|x)

∣∣∣∣= 1

log(y)

∣∣∣∣log F (y,θ(x′))

F (y,θ(x))

∣∣∣∣ .
Models where θ 7→ F (y,θ) is continuously differentiable are very convenient, for then

1

log(y)

∣∣∣∣log F (y|x′)

F (y|x)

∣∣∣∣≤ ∥θ(x)− θ(x′)∥ sup
t∈[θ(x),θ(x′)]

∥∥∥∥∇θ logF (y, t)

log(y)

∥∥∥∥
by the mean value theorem, where [θ(x),θ(x′)] denotes the segment in Θ linking θ(x) to
θ(x′). Condition Lω then reduces to Lipschitz continuity of the function θ at x and local
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boundedness of the above partial derivative, uniformly in y large enough, that is, there exist
y0 > 0 and a neighborhood W of θ(x) with

sup
y≥y0

sup
t∈W

∥∥∥∥∇θ logF (y, t)

log(y)

∥∥∥∥= sup
y≥y0

sup
t∈W

1

log(y)

∥∇θF (y, t)∥
F (y, t)

<∞.

This local boundedness property of course holds as soon as

∃y0 > 0, ∀θ ∈Θ, sup
y≥y0

∥∥∥∥∇θ logF (y,θ)

log(y)

∥∥∥∥= sup
y≥y0

1

log(y)

∥∇θF (y,θ)∥
F (y,θ)

≤ κ(θ)

where κ is continuous on the parameter space Θ. For instance:

• In the Fréchet model F (y, θ) = exp(−y−1/θ) (for y, θ > 0),

∀y > 1,
1

log(y)

∂ logF

∂θ
(y, θ) =

1

θ2
× y−1/θ

1− exp(−y−1/θ)
× exp(−y−1/θ)

≤
max[0,1]ψ

θ2
, with ψ(z) =

z

1− e−z
.

[The upper bound is finite because ψ is everywhere continuous.] Then condition Lω is satis-
fied as soon as θ(·) is continuously differentiable in a neighborhood of x.
• In the absolute Student model with θ degrees of freedom, that is,

F (y, θ) =

∫ ∞

y
D(θ)

(
1 +

z2

θ

)−(θ+1)/2

dz, with D(θ) =
2Γ((θ+ 1)/2)√

θπΓ(θ/2)
(for y, θ > 0),

one has, for any y > 1,

F (y, θ) = θ(θ+1)/2D(θ)

∫ ∞

y
z−θ−1

(
1 +

θ

z2

)−(θ+1)/2

dz

≤ θ(θ−1)/2D(θ)y−θ = κ1(θ)y
−θ

and F (y, θ)≥ θ(θ−1)/2D(θ)×
(
1 +

θ

y2

)−(θ+1)/2

y−θ

≥ θ(θ−1)/2D(θ)(1 + θ)−(θ+1)/2y−θ = κ2(θ)y
−θ(25)

where κ1 and κ2 are continuous and (strictly) positive on (0,∞). [Successive functions κj ,
here and in the verification of condition Dω below, will similarly be continuous without
further mention.] Moreover, the function D is infinitely differentiable, and

∂

∂θ

[(
1 +

z2

θ

)−(θ+1)/2
]
=

(
θ+ 1

2θ

z2/θ

1 + z2/θ
− 1

2
log

(
1 +

z2

θ

))(
1 +

z2

θ

)−(θ+1)/2

.

Then on any interval of the form [θ∗, θ
∗]⊂ (0,∞), and for any z > 0,∣∣∣∣∣ ∂∂θ

[(
1 +

z2

θ

)−(θ+1)/2
]∣∣∣∣∣≤

(
θ∗ + 1

2θ∗
+

1

2
log

(
1 +

z2

θ∗

))(
1 +

z2

θ∗

)−(θ∗+1)/2

.

This obviously defines an integrable function of z on (0,∞), so F (y, θ) is continuously
differentiable with respect to θ under the integral, and

∂F

∂θ
(y, θ)

=
D′(θ)

D(θ)
F (y, θ)+

∫ ∞

y

(
θ+ 1

2θ

z2/θ

1 + z2/θ
− 1

2
log

(
1 +

z2

θ

))
D(θ)

(
1 +

z2

θ

)−(θ+1)/2

dz.
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Hence the bound∣∣∣∣∂F∂θ (y, θ) + log(y)F (y, θ)

∣∣∣∣≤( |D′(θ)|
D(θ)

+
θ+ 1

2θ

)
F (y, θ)

+

∣∣∣∣∣D(θ)

2

∫ ∞

y

[
log

(
1 +

z2

θ

)
− 2 log(y)

](
1 +

z2

θ

)−(θ+1)/2

dz

∣∣∣∣∣ .(26)

Writing, for z > y > 1, | log(1+ z2/θ)− 2 log(y)|= |2 log(z/y)− log θ+ log(1+ θ/z2)| ≤
2 log(z/y) + | log θ|+ θ, it follows that, for any y > 1,

0≤ D(θ)

2

∫ ∞

y

∣∣∣∣log(1 + z2

θ

)
− 2 log(y)

∣∣∣∣(1 + z2

θ

)−(θ+1)/2

dz

≤ | log θ|+ θ

2
F (y, θ) + θ(θ+1)/2D(θ)

∫ ∞

y
log(z/y)z−θ dz

z

=
| log θ|+ θ

2
F (y, θ) + θ(θ−3)/2D(θ)× y−θ ≤ κ3(θ)F (y, θ)(27)

by (25). [Here κ3(θ) = (| log θ| + θ)/2 + θ(θ−3)/2D(θ)/κ2(θ).] Combine (26) and (27) to
find, for any y > 1,

(28)
∣∣∣∣∂F∂θ (y, θ) + log(y)F (y, θ)

∣∣∣∣≤ κ4(θ)F (y, θ).

This readily yields

sup
y>2

1

log(y)
× 1

F (y, θ)

∣∣∣∣∂F∂θ (y, θ)
∣∣∣∣≤ κ(θ)

where κ is continuous on (0,∞). Then condition Lω is satisfied as soon as θ(·) is continu-
ously differentiable in a neighborhood of x.
• In the Generalized Pareto model F (y, (θ1, θ2)) = 1− (1+ θ1y/θ2)

−1/θ1 (for y, θ1, θ2 > 0),

∇(θ1,θ2) logF (y, (θ1, θ2))

log(y)
=

1

log(y)

(
1

θ21
log(1 + θ1y/θ2)−

y

θ1(θ2 + θ1y)
,

y

θ2(θ2 + θ1y)

)⊤
.

Writing, for any y > 1, | log(1 + θ1y/θ2)| = | log(θ1/θ2) + log(y) + log(1 + θ2y
−1/θ1)| ≤

| log(θ2/θ1)|+ log(y) + θ2/θ1, we find

∃C > 0, sup
y>2

∥∇(θ1,θ2) logF (y, (θ1, θ2))∥
log(y)

≤C

(
1 + | log(θ2/θ1)|+ θ2/θ1

θ21
+

1

θ22

)
.

Then condition Lω is satisfied as soon as θ(·) = (θ1(·), θ2(·)) is continuously differentiable
in a neighborhood of x.
• In the Burr model F (y, (θ1, θ2)) = 1− (1 + yθ2/θ1)−1/θ2 (for y, θ1, θ2 > 0),

∇(θ1,θ2) logF (y, (θ1, θ2))

log(y)
=

(
1

θ21
× 1

1 + y−θ2/θ1
,
1

θ22

log(1 + yθ2/θ1)

log(y)
− 1

θ1θ2
× 1

1 + y−θ2/θ1

)⊤

.

Writing | log(1+ yθ2/θ1)|= |(θ2/θ1) log(y)+ log(1+ y−θ2/θ1)| ≤ (θ2/θ1) log(y)+1 for any
y > 1, we find

∃C > 0, sup
y>2

∥∇(θ1,θ2) logF (y, (θ1, θ2))∥
log(y)

≤C

(
1

θ21
+

1

θ22

)
.

Then condition Lω is satisfied as soon as θ(·) = (θ1(·), θ2(·)) is continuously differentiable
in a neighborhood of x.
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Checking condition Dω again requires extra regularity assumptions. Notice that the chain rule
for a function ϕ : x 7→ f(u(x)), where f : Rd → R and u : Rp → Rd are twice continuously
differentiable, yields

Hϕ(x) = [Ju(x)]⊤Hf(u(x))Ju(x) +Hu(x)×1 ∇f(u(x)).

Here Hu(x)×1 ∇f(u(x)) denotes the 1-mode product of the (third-order tensor) Hessian
of u by the gradient vector ∇f(u(x)): in other words, if u= (u1, . . . , ud) where each ui is
real-valued, this 1-mode product has (i, j)th element

[Hu(x)×1 ∇f(u(x))]i,j =
d∑

k=1

∂2uk
∂xi∂xj

(x)
∂f

∂xk
(u(x))

for any 1≤ i, j ≤ p. As a consequence, if θ 7→ γ(θ) is twice continuously differentiable on
Θ (i.e. the tail index is a twice continuously differentiable function of the parameters), θ(·) is
twice continuously differentiable in a suitable neighborhood of x and there exist y0 > 0 and
a neighborhood W of θ(x) with

sup
y≥y0

sup
t∈W

{∥∥∥∥∇θ logF (y, t)

log(y)

∥∥∥∥+ ∥∥∥∥Hθ logF (y, t)

log(y)

∥∥∥∥}<∞,

then the partial Hessian matrix Hx logF (y|x′)/ log(y) is uniformly bounded in y large
enough and x′ in a neighborhood of x. Lemma A.4(ii) then shows that condition Dω will
be satisfied, with

lim
y→∞

∇x logF (y|x)
log(y)

=
∇(x 7→ γ(θ(x)))

γ2(θ(x))
=

(
∇γ(θ(x))
γ2(θ(x))

)⊤
Jθ(x).

Again, the above boundedness assumption holds under the stronger property that

∃y0 > 0, ∀θ ∈Θ, sup
y≥y0

{
1

log(y)

(
∥∇θ logF (y,θ)∥+ ∥Hθ logF (y,θ)∥

)}
≤ κ(θ)

where κ is continuous on the parameter space Θ. In our above examples:

• In the Fréchet model F (y, θ) = exp(−y−1/θ) (for y, θ > 0), recall the notation ψ(z) =
z/(1 − e−z). The function ψ is everywhere continuously differentiable, converges to 1 as
z→ 0, and

∀y > 1,
1

log(y)

∂ logF

∂θ
(y, θ) =

ψ(y−1/θ)

θ2
exp(−y−1/θ).

∀y > 1,
1

log(y)

∂2 logF

∂θ2
(y, θ)

=
1

θ4

(
−2θψ(y−1/θ) + y−1/θ log(y)× (ψ′ −ψ)(y−1/θ)

)
exp(−y−1/θ).

Elementary calculus shows that, for any θ > 0, |y−1/θ log(y)| ≤ θ/e for any y > 1. Hence the
inequality

∀y > 1,
1

log(y)

∣∣∣∣∂2 logF∂θ2
(y, θ)

∣∣∣∣= 1

θ3

(
2max

[0,1]
ψ+

max[0,1] |ψ′ −ψ|
e

)
.

Conclude that condition Dω is satisfied as soon as θ(·) is twice continuously differentiable in
a neighborhood of x. [Here, as y→∞, (∂ logF/∂θ)(y, θ)/ log(y)→ 1/θ2 = γ′(θ)/γ2(θ),
since γ(θ) = θ.]
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• In the absolute Student model with θ degrees of freedom,

F (y, θ) =

∫ ∞

y
D(θ)

(
1 +

z2

θ

)−(θ+1)/2

dz, with D(θ) =
2Γ((θ+ 1)/2)√

θπΓ(θ/2)
(for y, θ > 0),

We may show, just as in our earlier analysis, that θ 7→ F (y, θ) is twice continuously differen-
tiable under the integral. Straightforward calculations yield

∂2F

∂θ2
(y, θ)

=

(
D′′(θ)

D(θ)
−
(
D′(θ)

D(θ)

)2
)
F (y, θ) +

D′(θ)

D(θ)

∂F

∂θ
(y, θ)

+
∂

∂θ

∫ ∞

y

(
θ+ 1

2θ

z2/θ

1 + z2/θ
− 1

2
log

(
1 +

z2

θ

))
D(θ)

(
1 +

z2

θ

)−(θ+1)/2

dz

=
D′′(θ)

D(θ)
F (y, θ) + 2

D′(θ)

D(θ)

(
∂F

∂θ
(y, θ)− D′(θ)

D(θ)
F (y, θ)

)

+

∫ ∞

y

(
θ+ 1

2θ

z2/θ

1 + z2/θ
− 1

2
log

(
1 +

z2

θ

))2

D(θ)

(
1 +

z2

θ

)−(θ+1)/2

dz

+

∫ ∞

y

(
− 1

2θ2
z2/θ

1 + z2/θ
− θ+ 1

2θ2
z2/θ

(1 + z2/θ)2
+

1

2θ

z2/θ

1 + z2/θ

)
D(θ)

(
1 +

z2

θ

)−(θ+1)/2

dz.

Then, for any y > 1,∣∣∣∣∂2F∂θ2 (y, θ)− log2(y)F (y, θ)

∣∣∣∣
≤

(
|D′′(θ)|
D(θ)

+ 2

[
D′(θ)

D(θ)

]2
+
θ+ 1

θ2

)
F (y, θ) + 2

|D′(θ)|
D(θ)

∣∣∣∣∂F∂θ (y, θ)
∣∣∣∣

+

∫ ∞

y
D(θ)

∣∣∣∣∣
(
θ+ 1

2θ

z2/θ

1 + z2/θ
− 1

2
log

(
1 +

z2

θ

))2

− log2(y)

∣∣∣∣∣
(
1 +

z2

θ

)−(θ+1)/2

dz.

Expanding the square in the last integral, we find∫ ∞

y
D(θ)

∣∣∣∣∣
(
θ+ 1

2θ

z2/θ

1 + z2/θ
− 1

2
log

(
1 +

z2

θ

))2

− log2(y)

∣∣∣∣∣
(
1 +

z2

θ

)−(θ+1)/2

dz

≤
∫ ∞

y
D(θ)

∣∣∣∣∣
(
θ+ 1

2θ

z2/θ

1 + z2/θ
− 1

2
log

(
1 +

z2

θ

))2

− log2(y)

∣∣∣∣∣
(
1 +

z2

θ

)−(θ+1)/2

dz

≤ (θ+ 1)2

4θ2
F (y, θ) +

1

4

∫ ∞

y
D(θ)

∣∣∣∣log2(1 + z2

θ

)
− 4 log2(y)

∣∣∣∣(1 + z2

θ

)−(θ+1)/2

dz

+
θ+ 1

θ
× D(θ)

2

∫ ∞

y

∣∣∣∣log(1 + z2

θ

)
− 2 log(y)

∣∣∣∣(1 + z2

θ

)−(θ+1)/2

dz +
θ+ 1

θ
log(y)F (y, θ).

Using (27) and (28), we then obtain, for any y > 1,
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∣∣∣∣≤ (κ5(θ) + κ6(θ) log(y))F (y, θ)

+
1

4

∫ ∞

y
D(θ)

∣∣∣∣log2(1 + z2

θ

)
− 4 log2(y)

∣∣∣∣(1 + z2

θ

)−(θ+1)/2

dz.

The exact same arguments that led to (27) then entail, after somewhat cumbersome calcula-
tions,

(29) ∀y > 1,

∣∣∣∣∂2F∂θ2 (y, θ)− log2(y)F (y, θ)

∣∣∣∣≤ (κ7(θ) + κ8(θ) log(y))F (y, θ).

Besides, recall (28) to get

∀y > 1,

∣∣∣∣∣
(
∂ logF

∂θ
(y, θ)

)2

− log2(y)

∣∣∣∣∣
=

1

F (y, θ)

∣∣∣∣∂F∂θ (y, θ)− log(y)F (y, θ)

∣∣∣∣× 1

F (y, θ)

∣∣∣∣∂F∂θ (y, θ) + log(y)F (y, θ)

∣∣∣∣
≤ κ9(θ) + κ10(θ) log(y).(30)

Combine (29) and (30) with the identity

∂2 logF

∂θ2
(y, θ) =

(
1

F (y, θ)

∂2F

∂θ2
(y, θ)− log2(y)

)
−

((
∂ logF

∂θ
(y, θ)

)2

− log2(y)

)
to get

sup
y>2

1

log(y)

∣∣∣∣∂2 logF∂θ2
(y, θ)

∣∣∣∣≤ κ(θ)

where κ is continuous on (0,∞). Condition Dω is then satisfied as soon as θ(·) is twice con-
tinuously differentiable in a neighborhood of x. [Here, as y→∞, (∂ logF/∂θ)(y, θ)/ log(y)→
−1 = γ′(θ)/γ2(θ), since γ(θ) = 1/θ.]
• In the Generalized Pareto model F (y, (θ1, θ2)) = 1− (1+ θ1y/θ2)

−1/θ1 (for y, θ1, θ2 > 0),

H(θ1,θ2) logF (y, (θ1, θ2))

log(y)
=

1

log(y)


− 2

θ31
log(1 + θ1y/θ2) +

y(2θ2 + 3θ1y)

θ21(θ2 + θ1y)2
− y2

θ2(θ2 + θ1y)2

− y2

θ2(θ2 + θ1y)2
− y(2θ2 + θ1y)

θ22(θ2 + θ1y)2

 .

Use again the inequality | log(1+ θ1y/θ2)| ≤ | log(θ2/θ1)|+ log(y)+ θ2/θ1 for any y > 1 to
obtain

∃C > 0, sup
y>2

∥H(θ1,θ2) logF (y, (θ1, θ2))∥
log(y)

≤ C

θ1

(
1 + | log(θ2/θ1)|+ θ2/θ1

θ21
+

1

θ22

)
.

Conclude that condition Dω holds if θ(·) = (θ1(·), θ2(·)) is twice continuously differentiable
in a neighborhood of x. [Here, as y→∞, ∇(θ1,θ2) logF (y, (θ1, θ2))/ log(y)→ (1/θ21,0)

⊤ =

∇γ((θ1, θ2))/γ2((θ1, θ2)), since γ((θ1, θ2)) = θ1.]
• In the Burr model F (y, (θ1, θ2)) = 1− (1 + yθ2/θ1)−1/θ2 (for y, θ1, θ2 > 0),

1

log(y)
× ∂2 logF

∂θ21
(y, (θ1, θ2)) =

2

θ31
× 1

1 + y−θ2/θ1
− θ2
θ41

× y−θ2/θ1 log(y)

(1 + y−θ2/θ1)2
,
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1

log(y)
× ∂2 logF

∂θ1θ2
(y, (θ1, θ2)) =

1

θ31
× y−θ2/θ1 log(y)

(1 + y−θ2/θ1)2
,

1

log(y)
× ∂2 logF

∂θ22
(y, (θ1, θ2)) =− 2

θ32

log(1 + yθ2/θ1)

log(y)
+

1

θ21θ2

1

1 + y−θ2/θ1

(
2− y−θ2/θ1 log(y)

1 + y−θ2/θ1

)
.

Recall the inequalities | log(1+yθ2/θ1)| ≤ (θ2/θ1) log(y)+1 and |y−θ2/θ1 log(y)| ≤ θ1/(eθ2)
for any y > 1 to get

∃C > 0, sup
y>2

∥H(θ1,θ2) logF (y, (θ1, θ2))∥
log(y)

≤ C

θ1

(
1

θ21
+

1

θ22

)
.

Conclude that condition Dω holds if θ(·) = (θ1(·), θ2(·)) is twice continuously differentiable
in a neighborhood of x. [Here, as y→∞, ∇(θ1,θ2) logF (y, (θ1, θ2))/ log(y)→ (1/θ21,0)

⊤ =

∇γ((θ1, θ2))/γ2((θ1, θ2)), since γ((θ1, θ2)) = θ1.]

Meanwhile, we always have

P(Y1 > y,Yt+1 > y′|X1 = x′,Xt+1 = x′′)√
F (y|x′)F (y′|x′′)

=
P(U1 >F (y,θ(x′)),Ut+1 >F (y′,θ(x′′)))√

[1− F (y,θ(x′))][1− F (y′,θ(x′′))]
≤ 1

so that condition BΩ is satisfied in this nonlinear regression model as well.

Autoregressive model. Set Xt = (Yt−1, Yt−2, . . . , Yt−p)
⊤ and fix x = (x1, x2, . . . , xp)

⊤ ∈
Rp. Then

Yt|Xt = x
d
= ε+

p∑
j=1

ϕjxj , so F (y|x) = F ε

y− p∑
j=1

ϕjxj

 .

Under our stated assumptions on ε, (Yt) is both geometrically β−mixing [20, Theorem 6
p.99] and, since the causal and invertible AR(p) process can be represented as a linear time
series with geometrically decaying coefficients [7, proof of Theorem 3.1.1 p.85], it is also ge-
ometrically ρ−mixing [3, p.18]. Hence condition M on ((Xt, Yt))t≥1 holds (for the validity
of the second-order regular variation property, see our above discussion in the location-scale
model). Condition Hδ holds when γ < 1/(2 + δ) and E(ε2+δ

− )<∞.

To check the other assumptions, it will be convenient to rewrite the AR(p) model in vector
form, more precisely as Y (p)

t =AY
(p)
t−1 + ε

(p)
t with

Y
(p)
t =


Yt
Yt−1

...
Yt−p+1

 , ε
(p)
t =


εt
0
...
0

 and A=


ϕ1 · · · · · · · · · ϕp
1 0 · · · · · · 0
0 1 · · · · · · 0
...

. . . . . . . . .
...

0 · · · · · · 1 0

 .

The previous equation is equivalently rewritten Xt+1 = AXt + ε
(p)
t , and in particular

Xp+1 =ApX1 +
∑p

j=1A
p−jε

(p)
j . Letting ej be the jth vector in the canonical basis of Rp,
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and noting that ε(p)j = εje1 and Aej = ϕje1 + ej+1 for any j ∈ {1, . . . , p− 1}, a straightfor-
ward calculation shows that there are real constants bi,j (1≤ i≤ j ≤ p− i) such that

Zp =

p∑
j=1

Ap−jε
(p)
j =


εp +

∑p−1
j=1 b1,jεj

εp−1 +
∑p−2

j=1 b2,jεj
...

ε2 + bp−1,1ε1
ε1

 .

This entails that Zp has a p.d.f. fZp
on Rp, given by

fZp
(z1, . . . , zp) =

p∏
i=1

fε

zi − p−i∑
j=1

bi,jzp−j+1

 .

Under our assumptions on fε, this defines a Lipschitz continuous, everywhere (strictly) pos-
itive and bounded function on Rp. Recall now that if Z and Z ′ are independent Rp−valued
random vectors, the joint distribution functions FZ+Z′ , FZ and FZ′ of Z +Z ′, Z and Z ′

are linked by the convolution equation

FZ+Z′(y) =

∫
Rp

FZ(y− z)dFZ′(z).

If Z moreover has a p.d.f. fZ on Rp, writing

FZ(y− z) =

∫
t≤y−z

fZ(t)dt=

∫
u≤y

fZ(u− z)du

(where the inequalities are to be understood componentwise) entails, by the Tonelli theorem,
that Z +Z ′ also has a p.d.f. fZ+Z′ on Rp, given by

(31) fZ+Z′(u) =

∫
Rp

fZ(u− z)dFZ′(z).

Applying this to Z =Zp and Z ′ =ApX1, it follows that Z+Z ′ =Xp+1
d
=X1 has a p.d.f. g

on Rp, given by

g(u) = fX1
(u) =

∫
Rp

fZp
(u− z)dFApX1

(z).

As a consequence, g is continuous and everywhere (strictly) positive because fZp
is so, is

bounded by supRp fZp
≤ (supR fε)

p <∞, and, if c is the Lipschitz constant of fZp
, then g is

Lipschitz continuous with this same constant c, and therefore condition Lg holds. To verify
condition Dg , note that if fε has a uniformly bounded derivative, then fZp

has a uniformly
bounded gradient, and so one may differentiate under the integral to obtain

∇g(u) =
∫
Rp

∇fZp
(u− z)dFApX1

(z).

Conclude similarly that ∇g is Lipschitz continuous as soon as ∇fZp
has a uniformly bounded

gradient that is itself Lipschitz continuous, which follows immediately from assuming that
fε has a uniformly bounded and Lipschitz continuous derivative.

Condition Dm automatically follows from the square integrability of ε and the linearity of
the regression function.
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We next check condition Bp with t0 = p. We start by checking the first half of the condition,
for which there is nothing to be done if p= 1. Otherwise, note that for any t

{Xt+1 ∈B(x, r)} ⊂
p⋂

j=1

{Yt−j+1 ∈ [xj − r,xj + r]}.

Then, for any integer t with 1≤ t < t0 = p,

{X1 ∈B(x, r),Xt+1 ∈B(x, r)} ⊂ {X1 ∈B(x, r), Y1 ∈ [xt − r,xt + r]}.

It follows that

P(X1 ∈B(x, r),Xt+1 ∈B(x, r))≤
∫
B(x,r)

∫ xt+r

xt−r
fε

y− p∑
j=1

ϕjzj

dy

g(z)dz

and so

P(X1 ∈B(x, r),Xt+1 ∈B(x, r))≤ 2 sup
R
fε × r

∫
B(x,r)

g(z)dz =O(rp+1)

as r→ 0. This shows that the first part of condition Bp indeed holds. To check the second
part of this condition, the key point is to note that, for t≥ t0 = p,

Xt+1 =AtX1 +

t∑
j=1

At−jε
(p)
j =AtX1 +

t−p∑
j=1

At−jε
(p)
j +

t∑
j=t−p+1

At−jε
(p)
j .

As a consequence, Xt+1|X1 = x1
d
= Atx1 +

∑t−p
j=1A

t−jε
(p)
j +

∑t
j=t−p+1A

t−jε
(p)
j . The

random vector
∑t

j=t−p+1A
t−jε

(p)
j

d
= Zp has p.d.f. g and is independent of Z ′

t,p =∑t−p
j=1A

t−jε
(p)
j , so that Xt+1|X1 = x1 has, by (31), the p.d.f.

(32) fXt+1|X1
(xt+1|x1) =

∫
Rp

g(xt+1 −Atx1 − z)dFZ′
t,p
(z).

In particular, the conditional p.d.f.s fXt+1|X1
are uniformly bounded (in both variables and

in t≥ t0 = p) by supRp g <∞. Conclude that

P(X1 ∈B(x, r),Xt+1 ∈B(x, r)) =

∫
B(x,r)×B(x,r)

fXt+1|X1
(xt+1|x1)g(x1)dx1 dxt+1

≤
(
sup
Rp

g

)2 ∫
B(x,r)×B(x,r)

dx1 dxt+1

so that

limsup
r→0

sup
t≥t0

1

r2p
P(X1 ∈B(x, r),Xt+1 ∈B(x, r))<∞

which shows that assumption Bp is satisfied.

Condition Bm is unnecessary since (Yt) is ρ−mixing.

To check condition Lω , note that

1

log(y)

∣∣∣∣log F (y|x′)

F (y|x)

∣∣∣∣= 1

log(y)

∣∣∣∣∣log F ε(y−
∑p

j=1 ϕjx
′
j)

F ε(y−
∑p

j=1 ϕjxj)

∣∣∣∣∣ .
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This is handled exactly as in the example of the location-scale regression model, and it fol-
lows that condition Lω is satisfied (and even that ωhn

(yn|x) = o(hn)), or that condition Dω

is satisfied with limy→∞∇x logF (y|x)/ log(y) = 0 under the relevant assumptions stated in
the result.

Checking condition BΩ is harder than in our other examples, because the covariate corre-
sponds to a lagged value of the response, and therefore the sequence (Xt) is not inde-
pendent from the sequence (εt), contrary to what is found in the previous examples. To
control Ωh(z|x), since (Yt) is a Markov chain of order p, we check all assumptions of
Lemma A.1(iii). It is sufficient to do so with t0 = p, since for t ≤ t0 = p, the conditional
probability in the numerator of Ωh(z|x) is equal to 0 for z large enough and h small enough.
We then start by proving that there exists r > 0 with

(33) inf
t>p

inf
x1,xt+1∈B(x,r)

fXt+1|X1
(xt+1|x1)> 0.

Our argument is based on Equation (32). Note first thatA is essentially the companion matrix
of the polynomial P (z) = 1−

∑p
j=1 ϕjz

j , and it is a standard exercise to show that

det(λIp −A) = λp

1−
p∑

j=1

ϕjλ
−j

= λpP (1/λ).

Our basic assumption on the AR(p) model is that the polynomial P has all its roots outside
the closed unit disk in C, meaning that the above characteristic polynomial has all its roots
inside the open unit disk in C, that is, the spectral radius ρ(A) of A is smaller than 1. In
particular, for any u ∈Rp,

∥Atu∥ ≤ ∥At∥∥u∥= (ρ(A) + o(1))t∥u∥
as t→ ∞, owing to the well-known convergence ∥At∥1/t → ρ(A) as t→ ∞. This means
that for any bounded subset C of Rp, the sequence of iterates (AtC) = ({Atu,u ∈ C}) is
itself contained in a bounded subset C ′ of Rp. Fix then r > 0. Thanks to the above argument,
there is a bounded set I such that

∀t≥ 1, (x1,xt+1 ∈B(x, r)⇒ xt+1 −Atx1 ∈ I).
Using Equation (32), we find that (33) shall be proven provided we show that

(34) inf
t>p

inf
u∈I

∫
Rp

g(u− z)dFZ′
t,p
(z)> 0.

Observe now that

Z ′
t,p =

t−p∑
j=1

At−jε
(p)
j

d
=Ap

t−p−1∑
j=0

Ajε
(p)
j →Ap

∞∑
j=0

Ajε
(p)
j =Z ′

p in L2, as t→∞.

It follows that Z ′
t,p

d−→Z ′
p as t→∞, and as such the family of probability measures induced

by the Z ′
t,p (for t > p) is tight. Choose then R > 0 such that P(Z ′

t,p ∈ BR) ≥ 1/2 for any
t > p, where BR is the closed ball centered at the origin with radius R. We have, by (32),

inf
t>p

inf
u∈I

∫
Rp

g(u− z)dFZ′
t,p
(z)≥ 1

2
inf

v∈I−BR

g(v)

where I −BR = {v− v′, (v,v′) ∈ I ×BR}. Clearly I −BR is bounded and g is continuous
and (strictly) positive on Rp, so that infI−BR

g > 0, which means in particular that (34) is
indeed satisfied. It only remains to check that

sup
t>p

sup
x1,xt+1∈B(x,r)

sup
y1≥y0

fXt+1|X1,Y1
(xt+1|x1, y1)<∞
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for some large y0. Here though Xt+1 = (Yt, Yt−1, . . . , Yt−p+1)
⊤, X1 = (Y0, Y−1, . . . , Y−p+1)

⊤

and (Yt) is a Markov chain of order p, so that the distribution of

Xt+1|{X1 = (y0, y−1, . . . , y−p+1)
⊤, Y1 = y1}

is nothing but the distribution of

Xt+1|{(Y1, Y0, . . . , Y−p+2)
⊤ = (y1, y0, . . . , y−p+2)

⊤}

=Xt+1|{X2 = (y1, y0, . . . , y−p+2)
⊤}

d
=X(t−1)+1|{X1 = (y1, y0, . . . , y−p+2)

⊤}.

We already know that the p.d.f. of this conditional distribution is uniformly bounded in t by
supRp g, see (32). Conclude that condition BΩ holds by Lemma A.1(iii).

APPENDIX C: FURTHER IMPLEMENTATION DETAILS AND FINITE-SAMPLE
RESULTS

C.1. Explicit formulations of the estimators used as part of tuning parameter selec-
tion, bias and variance correction. We explain here how we estimate the second-order pa-
rameters ρ and b, using estimators inspired by those of [23] and [31]. We describe first the es-
timators in the unconditional setting, and we then explain how we adapt them to our nonpara-
metric regression context. We start by the estimation of ρ. For a given sample Z1, . . . ,ZN ,
define

M (j)
κN

=
1

κN

κN∑
i=1

(logZN−i+1,N − logZN−κN ,N )j , for j = 1,2,3.

Taking j = 1 yields the Hill estimator. The quantities M (j)
κN are the building blocks for the

quantity T (τ)
κN defined as

T (τ)
κN

=



(
M

(1)
κN

)τ
−
(
M

(2)
κN /2

)τ/2
(
M

(2)
κN /2

)τ/2
−
(
M

(3)
κN /6

)τ/3 if τ > 0,

log
(
M

(1)
κN

)
− 1

2 log
(
M

(2)
κN /2

)
1
2 log

(
M

(2)
κN /2

)
− 1

3 log
(
M

(3)
κN /6

) if τ = 0.

The considered estimator of ρ is the following function of T (τ)
κN :

ρ̂(τ)κN
=−

∣∣∣∣∣3(T (τ)
κN − 1)

T
(τ)
κN − 3

∣∣∣∣∣ .
This estimator is implemented in the R function mop available as part of the Expectrem
package (with credit due to B.G. Manjunath and F. Caeiro, who originally implemented this
function in the now defunct R package evt0), with κN = ⌊N0.999⌋, and a choice of τ ∈
{0,1} is made based on a stability criterion for κ 7→ ρ̂

(τ)
κ for large κ (see Section 3.2 in [30]

for more details). An estimator of b is then

b̂κN
=
(κN
N

)ρ
(

1
κN

∑κN

i=1

(
i

κN

)−ρ
)(

1
κN

∑κN

i=1Ui

)
−
(

1
κN

∑κN

i=1

(
i

κN

)−ρ
Ui

)
(

1
κN

∑κN

i=1

(
i

κN

)−ρ
)(

1
κN

∑κN

i=1

(
i

κN

)−ρ
Ui

)
−
(

1
κN

∑κN

i=1

(
i

κN

)−2ρ
Ui

) ,
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where ρ = ρ̂
(τ)
κN and the Ui = i log(ZN−i+1,N/ZN−i,N ) are the weighted log-spacings. This

estimator is also available from the R function mop.

To adapt these estimators to the regression setting, we choose a smoothing parameter h (in
our case, h = hn,⋆), we compute N = Nh(x) =

∑n
t=1 1{∥Xt−x∥≤h} and we construct the

sample {Z1, . . . ,ZN} made of those Yt such that Xt ∈ B(x, h). Our estimators ρ(x) and
b(x) are then given by ρ(x) = ρ̂

(τ)
κN and b(x) = b̂κN

. We also compute γ(x) =M
(1)
⌊N/4⌋ as a

preliminary estimator of γ(x), used in the estimation of the bias and variance components
during tuning parameter selection only.

C.2. Expression of the bias-reduced extreme expectile estimators. The full expres-
sion of the bias-reduced extrapolated estimator êW,BR

n,τn (τ ′n|x) is

êW,BR
n,τn (τ ′n|x) =

(
1− τ ′n
1− τn

)−γ̂E,BR
τn

(x)

êWn,τn(τ
′
n|x)(1 +B1,n(x))(1 +B2,n(x))(1 +B3,n(x))

where

1 +B1,n(x) = 1+

(
1−τ ′

n

1−τn

)−ρ(x)
− 1

ρ(x)
b(x)γ̂E,BR

τn (x)(1− τn)
−ρ(x),

1 +B2,n(x)

= (1 + r̂(τn|x))γ̂
E,BR
τn

(x)

1 +

(1/γ̂E,BR
τn

(x)−1)
−ρ(x)

(1+r̂(τn|x))ρ(x) − 1

ρ(x)
b(x)γ̂E,BR

τn (x)(1− τn)
−ρ(x)


−1

,

1 +B3,n(x)

= (1 + r̂⋆(τ ′n|x))−γ̂E,BR
τn

(x)

1 +

(1/γ̂E,BR
τn

(x)−1)
−ρ(x)

(1+r̂⋆(τ ′
n|x))ρ(x) − 1

ρ(x)
b(x)γ̂E,BR

τn (x)(1− τ ′n)
−ρ(x)


and, in B3,n(x),

1 + r̂⋆(τ ′n|x)

=

(
1− m̂n(x)

êWn,τn(τ
′
n|x)

)
1

2τ ′n − 1

1 +
b(x)

(
1/γ̂E,BR

τn (x)− 1
)−ρ(x)

1− γ̂E,BR
τn (x)− ρ(x)

(1− τ ′n)
−ρ(x)


−1

.

Meanwhile, the bias-reduced version of the extrapolated quantile-based estimator

qeWn,τn(τ
′
n|x) =

(
1− τ ′n
1− τn

)−γ̂(J)
τn

(x)

qen(τn|x)

is

qeW,BR
n,τn (τ ′n|x) = qeWn,τn(τ

′
n|x)(1 + qB1,n(x))(1 + qB3,n(x)).

Here qB1,n(x) and qB3,n(x) are defined as B1,n(x) and B3,n(x) above, only with γ̂(J,BR)
τn (x)

in place of γ̂E,BR
τn (x). These bias-corrected versions are obtained by adapting the bias correc-

tion methodology of [28], developed for the unconditional extrapolated expectile estimators,
to the nonparametric regression setting.
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C.3. Construction of the corrected asymptotic variance estimator for extreme expec-
tiles. We provide further details regarding the design of the variance correction for extreme
conditional expectile estimators. The proof of Theorem 3.4 seeks, as an intermediate step,
the asymptotic distribution of√

nhpn(1− τn)

(
F̂n(ên(τn|x)|x)

1− τn
− (1/γ(x)− 1),

ên(τn|x)
e(τn|x)

− 1

)
.

It partly relies on the convergence q(1 − (1 − τn)(1/γ(x) − 1)|x)/e(τn|x) → 1. A more
accurate approximation, due to Proposition 1 in [17], is

q(1− (1− τn)(1/γ(x)− 1)|x)
e(τn|x)

≈ 1− γ(x)m(x)

e(τn|x)
.

Retracing the steps of the proof of Theorem 3.4, we find that the asymptotic distribution of√
nhpn(1− τn)

(
F̂n(ên(τn|x)|x)

1− τn
− (1/γ(x)− 1),

ên(τn|x)
e(τn|x)

− 1

)
can be more accurately approximated by that of−1− γ(x)

γ2(x)

1

1− γ(x)m(x)
e(τn|x)

1− γ(x)

γ2(x)

1 0

√nhpn(1− τn)


ên(τn|x)
e(τn|x)

− 1

q̂n(1− (1− τn)(1/γ(x)− 1)|x)
q(1− (1− τn)(1/γ(x)− 1)|x)

− 1

 .

Moreover, the key approximation in Equation (20) (part of the proof of Theorem 3.1) is an
approximation of F (e(τn|x)|x) by (1− τn)(1/γ(x)− 1). This can be refined as

F (e(τn|x)|x)≈ (1− τn)

(
1

γ(x)
− 1

)
(1 + r(τn|x))

instead, where

r(τ |x) =
(
1− m(x)

e(τ |x)

)
1

2τ − 1
− 1.

This refined approximation is motivated by an inspection of the proof of Proposition 1 in [16].
Then, the distribution of√

nhpn(1− τn)

(
ên(τn|x)
e(τn|x)

− 1,
q̂n(1− (1− τn)(1/γ(x)− 1)|x)
q(1− (1− τn)(1/γ(x)− 1)|x)

− 1

)
may also be more accurately approximated by a zero-mean Gaussian distribution with co-
variance matrix

∫
Rp K

2

g(x)


2γ3(x)

1− 2γ(x)

2τn − 1

1− m(x)
e(τn|x)

γ3(x)

1− γ(x)

√
2τn − 1

1− m(x)
e(τn|x)

γ3(x)

1− γ(x)

√
2τn − 1

1− m(x)
e(τn|x)

γ3(x)

1− γ(x)

 .

Using the delta method, it is then straightforward that the desired distribution may then be
better approximated by a Gaussian distribution with covariance matrix (

∫
Rp K

2/g(x))Tn(x),
with Tn(x) given in Section 5.3.2.
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C.4. Full set of finite-sample results. We provide here a full set of finite-sample results
linked to our simulation study. We consider the following models spanning our list of worked-
out examples:

(LS) The location-scale model Yt = m(Xt) + σ(Xt)εt, with m(x) = 1 + sin(2πx)/5,
σ(x) = (5 + x)/(4(1 + x)) (for x ∈ [0,1]). Here:

– Xt = Φ(Zt), where Φ is the standard Gaussian distribution function and (Zt) is a
GARCH(1,1) process with ω = 0.25, α = 0.75, β = 0.2, i.e. Zt+1 = Σt+1δt+1, where
the δt are i.i.d. standard Gaussian and Σt+1 is defined recursively as Σt+1 = (ω + αZ2

t +
βΣ2

t )
1/2. The process (Xt) is geometrically β−mixing because (Zt) (simulated using the

garch.sim routine from the R package TSA) is so, see Theorem 3.4 on p.66 of [24].
– εt = Φ−1

ν (Ut), where Φν is the Student distribution function with ν = 10/3 degrees
of freedom, and (Ut) is defined recursively as U0 ∼ Uniform[0,1] and, for t ≥ 1, Ut =
1
rUt−1+ηt, where the ηt are i.i.d. uniform over

{
0, 1r , . . . ,

r−1
r

}
(for a fixed integer r ≥ 2).

The uniform AR(1) process (Ut), in the terminology of [12], is stationary with standard
uniform margins and satisfies

E(|x/r+ η0|)≤
|x|
r

+
r− 1

2r
≤

{
3|x|/4 if |x|> (2r− 2)/(3r− 4),

3/2<∞ otherwise.

As such, it is geometrically α−mixing, see p.xvi of [41]. We take r = 5.
Here γ(x) = 0.3 and ρ(x) =−2γ(x) =−0.6 for any x, and q(τ |x) =m(x) + σ(x)Φ−1

ν (τ).
The theoretical conditional expectile e(τ |x) is similarly computed by replacing Φ−1

ν (τ) by
the τ -expectile of the Student distribution with ν degrees of freedom, computed using the R
function et from the R package Expectrem.

(NL) A nonlinear Burr process Yt = ((1 − Ut)
ρ(Xt) − 1)−γ(Xt)/ρ(Xt), with (Xt) and (Ut)

generated as in model (LS). We fix ρ(x) =−1 for all x ∈ [0,1] and consider three different
models for γ(x), x ∈ [0,1]:

(NL-P) The polynomial model γ(x) = 0.15 + 0.5x(1− x);
(NL-S) The sinusoidal model γ(x) = 0.2 + 0.05 sin(2πx);
(NL-C) The constant model γ(x) = 0.2.

In these three cases, γ(x) ∈ (0,1/2) for any x ∈ [0,1]. The true value of the conditional
quantile is q(τ |x) = ((1− τ)−1 − 1)γ(x). To specifically assess the effect of a stronger bias
component on the estimation and inference, we also consider the model

(NL-CB) The constant model γ(x) = 0.2 with ρ(x) =−1/2.
In this model, q(τ |x) = ((1−τ)−1/2−1)2γ(x), and again the theoretical conditional expectile
e(τ |x) can be computed numerically using the R function eburr.

(AR) The autoregressive process Yt = ϕYt−1 + εt, where ϕ = 0.1 and (εt) is an i.i.d. se-
quence of realizations of a random variable whose distribution is the following mixture:

– With probability 3/4, a uniform distribution over [−1,1];
– With probability 1/4, a symmetrized Pareto distribution, i.e. having density f(x) =
|x|−1/γ−1/(2γ) for |x|> 1, with tail index γ = 0.4.

In this time series example, the natural covariate for the response Yt is Xt = Yt−1, and we
have γ(x) = 0.4 for any x. The theoretical conditional extreme quantile for tomorrow’s
unobserved value Yt+1 given our knowledge Yt = x of today is, for τ > 7/8, q(τ |x) =
ϕx + (1 − 8(τ − 7/8))−γ , i.e. q(1 − 1/t|x) = 8tγ for t large enough. Therefore, strictly
speaking, the second-order regular variation condition C2(γ(x), ρ(x),A(·|x)) is not satisfied,
but we are in the case when the conditional right tail is pure Pareto, which is usually under-
stood as ρ(x) =−∞ and A(·|x) = 0. Besides, the theoretical conditional extreme expectile
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e(τ |x) is numerically computed as ϕx+ eτ , where eτ satisfies, for τ large enough,∫∞
eτ

1
8z

−1/γ dz

2
∫∞
eτ

1
8z

−1/γ dz + eτ
= 1− τ,

and is determined by making use of the R functions integrate and uniroot.

The covariate in all these models is one-dimensional. We also consider the following two-
dimensional example:

(NL-S-2) A nonlinear Burr process Yt = ((1 − Ut)
ρ(X1,t,X2,t) − 1)−γ(X1,t,X2,t)/ρ(X1,t,X2,t),

where we take ρ(x1, x2)≡−1 and γ(x1, x2) = 0.2 + 0.05 sin(2πx1) cos(2πx2). The co-
variate (X1,t,X2,t) is generated as (X1,t,X2,t) = (Φ(Z1,t),Φ(Z2,t)), where Φ is the stan-
dard Gaussian distribution function, and (Z1,t,Z2,t) are observations from the bivariate
GARCH(1,1) process Zj,t+1 = Σj,t+1δj,t+1, Σ

2
j,t+1 = ω + αZ2

j,t + βΣ2
j,t (j = 1,2) with

ω = 0.25, α = 0.75, β = 0.2 and (δ1,t, δ2,t) are i.i.d. bivariate standard Gaussian with
correlation 0.5. The true value of the conditional quantile is q(τ |x1, x2) = ((1− τ)−1 −
1)γ(x1,x2).

In this final model, in line with the univariate examples,K is the uniform kernel over [−1,1]2,
that is, K(u1, u2) = 0.251{|u1|≤1}1{|u2|≤1}, and the bandwidth is chosen as hn,⋆ = σn−1/6

where σ = 1/
√
12 (the standard deviation of a uniform distribution), in accordance with [4].

Due to the difficulty of estimating the second-order parameters ρ and b in the situation p= 2
where local effective sample sizes tend to be low, we fix the values of their estimates at −1
and 1, respectively. These (misspecified) choices constitute ad hoc compromises between
bias reduction and variability of the estimators; in particular, misspecifying the estimate of ρ
as −1 has been recommended on p.117 of Section 4.5.1 in [1], on p.212-215 in [29] and on
p.195 of Section 6.6 in [40].

We illustrate the performance of the extreme quantile and asymmetric least squares expectile
estimators and the pertaining confidence intervals in models (LS), (NL-P), (NL-S), (NL-
C), (NL-CB) and (AR), with n ∈ {1,000,5,000,10,000}. In model (NL-S-2), we consider
n= 10,000. We represent boxplots of the extreme conditional log-quantile and log-expectile
estimates as well as the coverage probabilities and pointwise median lengths of the intervals
Îq,j(τ

′
n|x) and ÎE,j(τ

′
n|x), 1≤ j ≤ 4, for τ ′n = 1− 10/n ∈ {0.99,0.998,0.999}.
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FIG C.1. Simulation results in the nonlinear Burr model for τ ′n = 1 − 10/n, with n = 5,000. Boxplots
of log(ê

W,BR
1−kn,⋆/n

(τ ′n|x)/e(τ ′n|x)) (green), log(êW1−kn,⋆/n
(τ ′n|x)/e(τ ′n|x)) (blue), log(ên(τ

′
n|x)/e(τ ′n|x))

(brown), log(qeW,BR
1−kn,⋆/n

(τ ′n|x)/e(τ ′n|x)) (green, grayed out), log(qeW1−kn,⋆/n
(τ ′n|x)/e(τ ′n|x)) (blue, grayed

out) and log(qen(τ
′
n|x)/e(τ ′n|x)) (brown, grayed out). Top left: model (NL-P), top right: model (NL-S), bottom

left: model (NL-C), bottom right: model (NL-CB). In each panel, the boxplots on the left correspond to x= 1/4,
those in the middle to x= 1/2, and those on the right to x= 3/4.
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FIG C.2. Simulation results in the location-scale model (LS) for τ ′n = 1−10/n, with n= 1,000 (left panels), n=

5,000 (middle panels), and n = 10,000 (right panels). First row: boxplots of log(q̂W,BR
1−kn,⋆/n

(τ ′n|x)/q(τ ′n|x))

(green), log(q̂W1−kn,⋆/n
(τ ′n|x)/q(τ ′n|x)) (blue) and log(q̂n(τ

′
n|x)/q(τ ′n|x)) (brown). Second row: boxplots of

log(ê
W,BR
1−kn,⋆/n

(τ ′n|x)/e(τ ′n|x)) (green), log(êW1−kn,⋆/n
(τ ′n|x)/e(τ ′n|x)) (blue) and log(ên(τ

′
n|x)/e(τ ′n|x))

(brown). Third row: empirical pointwise coverage probabilities of the asymptotic 95% confidence intervals
Îq,1(τ

′
n|x) (full black line), Îq,2(τ

′
n|x) (full green line), Îq,3(τ

′
n|x) (full blue line), Îq,4(τ

′
n|x) (full brown line),

ÎE,1(τ
′
n|x) (dashed black line), ÎE,2(τ

′
n|x) (dashed green line), ÎE,3(τ

′
n|x) (dashed blue line) and ÎE,4(τ

′
n|x)

(dashed brown line), with the 95% nominal level in full red line. Fourth row: pointwise median length of these
confidence intervals, with the same color code, on the log-scale.
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FIG C.3. Simulation results in the nonlinear Burr model (NL-P) for τ ′n = 1 − 10/n, with n =
1,000 (left panels), n = 5,000 (middle panels), and n = 10,000 (right panels). First row: boxplots of
log(q̂

W,BR
1−kn,⋆/n

(τ ′n|x)/q(τ ′n|x)) (green), log(q̂W1−kn,⋆/n
(τ ′n|x)/q(τ ′n|x)) (blue) and log(q̂n(τ

′
n|x)/q(τ ′n|x))

(brown). Second row: boxplots of log(ê
W,BR
1−kn,⋆/n

(τ ′n|x)/e(τ ′n|x)) (green), log(êW1−kn,⋆/n
(τ ′n|x)/e(τ ′n|x))

(blue) and log(ên(τ
′
n|x)/e(τ ′n|x)) (brown). Third row: empirical pointwise coverage probabilities of the asymp-

totic 95% confidence intervals Îq,1(τ
′
n|x) (full black line), Îq,2(τ

′
n|x) (full green line), Îq,3(τ

′
n|x) (full blue

line), Îq,4(τ
′
n|x) (full brown line), ÎE,1(τ

′
n|x) (dashed black line), ÎE,2(τ

′
n|x) (dashed green line), ÎE,3(τ

′
n|x)

(dashed blue line) and ÎE,4(τ
′
n|x) (dashed brown line), with the 95% nominal level in full red line. Fourth row:

pointwise median length of these confidence intervals, with the same color code, on the log-scale.
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FIG C.4. Simulation results in the nonlinear Burr model (NL-S) for τ ′n = 1 − 10/n, with n =
1,000 (left panels), n = 5,000 (middle panels), and n = 10,000 (right panels). First row: boxplots of
log(q̂

W,BR
1−kn,⋆/n

(τ ′n|x)/q(τ ′n|x)) (green), log(q̂W1−kn,⋆/n
(τ ′n|x)/q(τ ′n|x)) (blue) and log(q̂n(τ

′
n|x)/q(τ ′n|x))

(brown). Second row: boxplots of log(ê
W,BR
1−kn,⋆/n

(τ ′n|x)/e(τ ′n|x)) (green), log(êW1−kn,⋆/n
(τ ′n|x)/e(τ ′n|x))

(blue) and log(ên(τ
′
n|x)/e(τ ′n|x)) (brown). Third row: empirical pointwise coverage probabilities of the asymp-

totic 95% confidence intervals Îq,1(τ
′
n|x) (full black line), Îq,2(τ

′
n|x) (full green line), Îq,3(τ

′
n|x) (full blue

line), Îq,4(τ
′
n|x) (full brown line), ÎE,1(τ

′
n|x) (dashed black line), ÎE,2(τ

′
n|x) (dashed green line), ÎE,3(τ

′
n|x)

(dashed blue line) and ÎE,4(τ
′
n|x) (dashed brown line), with the 95% nominal level in full red line. Fourth row:

pointwise median length of these confidence intervals, with the same color code, on the log-scale.
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FIG C.5. Simulation results in the nonlinear Burr model (NL-C) for τ ′n = 1 − 10/n, with n =
1,000 (left panels), n = 5,000 (middle panels), and n = 10,000 (right panels). First row: boxplots of
log(q̂

W,BR
1−kn,⋆/n

(τ ′n|x)/q(τ ′n|x)) (green), log(q̂W1−kn,⋆/n
(τ ′n|x)/q(τ ′n|x)) (blue) and log(q̂n(τ

′
n|x)/q(τ ′n|x))

(brown). Second row: boxplots of log(ê
W,BR
1−kn,⋆/n

(τ ′n|x)/e(τ ′n|x)) (green), log(êW1−kn,⋆/n
(τ ′n|x)/e(τ ′n|x))

(blue) and log(ên(τ
′
n|x)/e(τ ′n|x)) (brown). Third row: empirical pointwise coverage probabilities of the asymp-

totic 95% confidence intervals Îq,1(τ
′
n|x) (full black line), Îq,2(τ

′
n|x) (full green line), Îq,3(τ

′
n|x) (full blue

line), Îq,4(τ
′
n|x) (full brown line), ÎE,1(τ

′
n|x) (dashed black line), ÎE,2(τ

′
n|x) (dashed green line), ÎE,3(τ

′
n|x)

(dashed blue line) and ÎE,4(τ
′
n|x) (dashed brown line), with the 95% nominal level in full red line. Fourth row:

pointwise median length of these confidence intervals, with the same color code, on the log-scale.
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FIG C.6. Simulation results in the nonlinear Burr model (NL-CB) for τ ′n = 1 − 10/n, with n =
1,000 (left panels), n = 5,000 (middle panels), and n = 10,000 (right panels). First row: boxplots of
log(q̂

W,BR
1−kn,⋆/n

(τ ′n|x)/q(τ ′n|x)) (green), log(q̂W1−kn,⋆/n
(τ ′n|x)/q(τ ′n|x)) (blue) and log(q̂n(τ

′
n|x)/q(τ ′n|x))

(brown). Second row: boxplots of log(ê
W,BR
1−kn,⋆/n

(τ ′n|x)/e(τ ′n|x)) (green), log(êW1−kn,⋆/n
(τ ′n|x)/e(τ ′n|x))

(blue) and log(ên(τ
′
n|x)/e(τ ′n|x)) (brown). Third row: empirical pointwise coverage probabilities of the asymp-

totic 95% confidence intervals Îq,1(τ
′
n|x) (full black line), Îq,2(τ

′
n|x) (full green line), Îq,3(τ

′
n|x) (full blue

line), Îq,4(τ
′
n|x) (full brown line), ÎE,1(τ

′
n|x) (dashed black line), ÎE,2(τ

′
n|x) (dashed green line), ÎE,3(τ

′
n|x)

(dashed blue line) and ÎE,4(τ
′
n|x) (dashed brown line), with the 95% nominal level in full red line. Fourth row:

pointwise median length of these confidence intervals, with the same color code, on the log-scale.
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FIG C.7. Simulation results in the autoregressive model (AR) for τ ′n = 1−10/n, with n= 1,000 (left panels), n=

5,000 (middle panels), and n = 10,000 (right panels). First row: boxplots of log(q̂W,BR
1−kn,⋆/n

(τ ′n|x)/q(τ ′n|x))

(green), log(q̂W1−kn,⋆/n
(τ ′n|x)/q(τ ′n|x)) (blue) and log(q̂n(τ

′
n|x)/q(τ ′n|x)) (brown). Second row: boxplots of

log(ê
W,BR
1−kn,⋆/n

(τ ′n|x)/e(τ ′n|x)) (green), log(êW1−kn,⋆/n
(τ ′n|x)/e(τ ′n|x)) (blue) and log(ên(τ

′
n|x)/e(τ ′n|x))

(brown). Third row: empirical pointwise coverage probabilities of the asymptotic 95% confidence intervals
Îq,1(τ

′
n|x) (full black line), Îq,2(τ

′
n|x) (full green line), Îq,3(τ

′
n|x) (full blue line), Îq,4(τ

′
n|x) (full brown line),

ÎE,1(τ
′
n|x) (dashed black line), ÎE,2(τ

′
n|x) (dashed green line), ÎE,3(τ

′
n|x) (dashed blue line) and ÎE,4(τ

′
n|x)

(dashed brown line), with the 95% nominal level in full red line. Fourth row: pointwise median length of these
confidence intervals, with the same color code, on the log-scale.
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,Î

E
,2
(τ

′ n
|x
)

(d
as

he
d

gr
ee

n
lin

e)
,Î
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(ê
W
,B

R
1
−
k
n
,⋆
/
n
(τ

′ n
|x
)/
e(
τ
′ n
|x
))

(f
ul

l
re

d
lin

e)
,

th
e

po
in

t-

w
is

e
m

ed
ia

n
of

th
e

co
rr

ec
te

d
va

ri
an

ce
es

tim
at

es
(∫ R

2
K

2
/
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x= 0.1 Estimate Bias Variance MSE C.I. Med. est. var. Cov.

NL-P

q̂ −2.87 · 10−2 2.07 · 10−2 2.16 · 10−2 Iq,4 3.09 · 10−2 0.983
q̂W 3.35 · 10−2 9.57 · 10−3 1.07 · 10−2 Iq,3 8.11 · 10−3 0.904

q̂W,BR −4.96 · 10−3 9.23 · 10−3 9.25 · 10−3 Iq,1 6.91 · 10−3 0.886
Iq,2 7.18 · 10−3 0.894

ê 1.45 · 10−2 2.13 · 10−2 2.15 · 10−2 IE,4 3.11 · 10−1 1.000
êW 6.36 · 10−1 6.24 · 10−2 4.66 · 10−1 IE,3 3.35 · 10−2 0.006

êW,BR 9.71 · 10−3 1.05 · 10−2 1.05 · 10−2 IE,1 2.94 · 10−3 0.711
IE,2 1.38 · 10−2 0.959

NL-S

q̂ −6.01 · 10−2 2.68 · 10−2 3.05 · 10−2 Iq,4 4.07 · 10−2 0.974
q̂W 1.79 · 10−2 1.24 · 10−2 1.27 · 10−2 Iq,3 1.09 · 10−2 0.926

q̂W,BR −2.74 · 10−2 1.17 · 10−2 1.25 · 10−2 Iq,1 9.32 · 10−3 0.890
Iq,2 9.69 · 10−3 0.892

ê −1.58 · 10−2 2.96 · 10−2 2.98 · 10−2 IE,4 2.24 · 10−1 1.000
êW 6.19 · 10−1 5.11 · 10−2 4.35 · 10−1 IE,3 4.23 · 10−2 0.026

êW,BR −1.12 · 10−2 1.49 · 10−2 1.50 · 10−2 IE,1 4.44 · 10−3 0.723
IE,2 1.98 · 10−2 0.946

NL-C

q̂ −5.43 · 10−2 2.07 · 10−2 2.37 · 10−2 Iq,4 3.09 · 10−2 0.979
q̂W 1.64 · 10−2 8.91 · 10−3 9.17 · 10−3 Iq,3 8.30 · 10−3 0.934

q̂W,BR −2.33 · 10−2 8.39 · 10−3 8.93 · 10−3 Iq,1 7.10 · 10−3 0.903
Iq,2 7.38 · 10−3 0.906

ê −1.40 · 10−2 1.98 · 10−2 2.00 · 10−2 IE,4 1.71 · 10−1 1.000
êW 5.84 · 10−1 3.70 · 10−2 3.78 · 10−1 IE,3 3.22 · 10−2 0.006

êW,BR −9.17 · 10−3 1.05 · 10−2 1.06 · 10−2 IE,1 2.99 · 10−3 0.710
IE,2 1.37 · 10−2 0.947

x= 0.3 Estimate Bias Variance MSE C.I. Med. est. var. Cov.

NL-P

q̂ −6.51 · 10−2 3.17 · 10−2 3.59 · 10−2 Iq,4 4.11 · 10−2 0.964
q̂W 1.58 · 10−2 1.33 · 10−2 1.35 · 10−2 Iq,3 1.15 · 10−2 0.922

q̂W,BR −3.00 · 10−2 1.26 · 10−2 1.35 · 10−2 Iq,1 9.93 · 10−3 0.887
Iq,2 1.03 · 10−2 0.896

ê −2.62 · 10−2 3.94 · 10−2 4.01 · 10−2 IE,4 2.56 · 10−1 1.000
êW 5.94 · 10−1 5.05 · 10−2 4.04 · 10−1 IE,3 4.03 · 10−2 0.048

êW,BR −2.14 · 10−2 1.82 · 10−2 1.87 · 10−2 IE,1 4.99 · 10−3 0.691
IE,2 2.12 · 10−2 0.935

NL-S

q̂ −7.53 · 10−2 3.02 · 10−2 3.59 · 10−2 Iq,4 3.81 · 10−2 0.954
q̂W 1.10 · 10−3 1.24 · 10−2 1.24 · 10−2 Iq,3 1.07 · 10−2 0.924

q̂W,BR −4.30 · 10−2 1.18 · 10−2 1.36 · 10−2 Iq,1 9.23 · 10−3 0.861
Iq,2 9.61 · 10−3 0.867

ê −3.85 · 10−2 3.55 · 10−2 3.70 · 10−2 IE,4 1.84 · 10−1 1.000
êW 5.71 · 10−1 4.70 · 10−2 3.73 · 10−1 IE,3 3.69 · 10−2 0.044

êW,BR −3.54 · 10−2 1.66 · 10−2 1.78 · 10−2 IE,1 4.36 · 10−3 0.667
IE,2 1.86 · 10−2 0.913

NL-C

q̂ −5.09 · 10−2 1.95 · 10−2 2.21 · 10−2 Iq,4 2.52 · 10−2 0.961
q̂W 1.37 · 10−2 8.12 · 10−3 8.31 · 10−3 Iq,3 7.12 · 10−3 0.930

q̂W,BR −2.21 · 10−2 7.71 · 10−3 8.20 · 10−3 Iq,1 6.14 · 10−3 0.882
Iq,2 6.38 · 10−3 0.890

ê −1.47 · 10−2 1.99 · 10−2 2.01 · 10−2 IE,4 1.39 · 10−1 1.000
êW 5.49 · 10−1 3.54 · 10−2 3.36 · 10−1 IE,3 2.47 · 10−2 0.004

êW,BR −1.63 · 10−2 9.79 · 10−3 1.01 · 10−2 IE,1 2.39 · 10−3 0.665
IE,2 1.08 · 10−2 0.924

TABLE C.1
Estimation and inference results related to the models considered in Figure 3, at x= 0.1 and 0.3. Biases,

variances and MSEs are reported for the log-estimates. The median estimated variance reported in the
penultimate column is the median of the estimated asymptotic variance for each estimator divided by the square

of its convergence rate. The last column gives the empirical coverage of each confidence interval.
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x= 0.5 Estimate Bias Variance MSE C.I. Med. est. var. Cov.

NL-P

q̂ −7.57 · 10−2 3.69 · 10−2 4.26 · 10−2 Iq,4 4.32 · 10−2 0.946
q̂W 9.08 · 10−3 1.37 · 10−2 1.38 · 10−2 Iq,3 1.23 · 10−2 0.918

q̂W,BR −3.81 · 10−2 1.30 · 10−2 1.44 · 10−2 Iq,1 1.07 · 10−2 0.883
Iq,2 1.11 · 10−2 0.888

ê −3.97 · 10−2 5.00 · 10−2 5.16 · 10−2 IE,4 2.37 · 10−1 1.000
êW 5.80 · 10−1 4.91 · 10−2 3.86 · 10−1 IE,3 4.31 · 10−2 0.113

êW,BR −3.15 · 10−2 2.16 · 10−2 2.26 · 10−2 IE,1 5.60 · 10−3 0.667
IE,2 2.31 · 10−2 0.920

NL-S

q̂ −3.19 · 10−2 2.03 · 10−2 2.13 · 10−2 Iq,4 2.36 · 10−2 0.961
q̂W 2.54 · 10−2 7.93 · 10−3 8.58 · 10−3 Iq,3 6.76 · 10−3 0.915

q̂W,BR −9.36 · 10−3 7.53 · 10−3 7.62 · 10−3 Iq,1 5.85 · 10−3 0.888
Iq,2 6.09 · 10−3 0.902

ê 3.75 · 10−3 2.19 · 10−2 2.19 · 10−2 IE,4 1.71 · 10−1 1.000
êW 5.60 · 10−1 3.66 · 10−2 3.50 · 10−1 IE,3 2.37 · 10−2 0.002

êW,BR −1.03 · 10−3 9.84 · 10−3 9.84 · 10−3 IE,1 2.37 · 10−3 0.681
IE,2 1.07 · 10−2 0.932

NL-C

q̂ −4.98 · 10−2 1.95 · 10−2 2.20 · 10−2 Iq,4 2.30 · 10−2 0.948
q̂W 1.27 · 10−2 7.32 · 10−3 7.48 · 10−3 Iq,3 6.60 · 10−3 0.920

q̂W,BR −2.16 · 10−2 6.96 · 10−3 7.42 · 10−3 Iq,1 5.70 · 10−3 0.890
Iq,2 5.94 · 10−3 0.894

ê −1.44 · 10−2 2.05 · 10−2 2.07 · 10−2 IE,4 1.28 · 10−1 1.000
êW 5.39 · 10−1 3.43 · 10−2 3.25 · 10−1 IE,3 2.24 · 10−2 0.003

êW,BR −1.57 · 10−2 9.31 · 10−3 9.56 · 10−3 IE,1 2.24 · 10−3 0.648
IE,2 1.00 · 10−2 0.920

x= 0.7 Estimate Bias Variance MSE C.I. Med. est. var. Cov.

NL-P

q̂ −4.67 · 10−2 3.38 · 10−2 3.60 · 10−2 Iq,4 4.09 · 10−2 0.964
q̂W 1.75 · 10−2 1.27 · 10−2 1.30 · 10−2 Iq,3 1.15 · 10−2 0.931

q̂W,BR −2.85 · 10−2 1.20 · 10−2 1.28 · 10−2 Iq,1 9.97 · 10−3 0.895
Iq,2 1.04 · 10−2 0.898

ê −1.18 · 10−2 4.03 · 10−2 4.05 · 10−2 IE,4 2.57 · 10−1 1.000
êW 6.02 · 10−1 4.71 · 10−2 4.09 · 10−1 IE,3 4.17 · 10−2 0.050

êW,BR −1.27 · 10−2 1.80 · 10−2 1.82 · 10−2 IE,1 5.10 · 10−3 0.711
IE,2 2.17 · 10−2 0.948

NL-S

q̂ −1.00 · 10−2 1.23 · 10−2 1.24 · 10−2 Iq,4 1.53 · 10−2 0.975
q̂W 3.06 · 10−2 4.72 · 10−3 5.66 · 10−3 Iq,3 4.29 · 10−3 0.925

q̂W,BR 2.75 · 10−3 4.47 · 10−3 4.48 · 10−3 Iq,1 3.70 · 10−3 0.915
Iq,2 3.85 · 10−3 0.920

ê 1.60 · 10−2 1.03 · 10−2 1.05 · 10−2 IE,4 1.86 · 10−2 1.000
êW 5.23 · 10−1 2.69 · 10−2 3.01 · 10−1 IE,3 1.70 · 10−2 0.000

êW,BR 1.02 · 10−2 5.33 · 10−3 5.43 · 10−3 IE,1 1.19 · 10−3 0.663
IE,2 5.81 · 10−3 0.952

NL-C

q̂ −3.67 · 10−2 2.03 · 10−2 2.16 · 10−2 Iq,4 2.52 · 10−2 0.967
q̂W 1.55 · 10−2 7.77 · 10−3 8.01 · 10−3 Iq,3 7.10 · 10−3 0.930

q̂W,BR −2.04 · 10−2 7.38 · 10−3 7.80 · 10−3 Iq,1 6.13 · 10−3 0.896
Iq,2 6.38 · 10−3 0.902

ê −4.02 · 10−3 2.08 · 10−2 2.08 · 10−2 IE,4 1.40 · 10−1 1.000
êW 5.59 · 10−1 3.64 · 10−2 3.49 · 10−1 IE,3 2.55 · 10−2 0.004

êW,BR −9.14 · 10−3 9.64 · 10−3 9.72 · 10−3 IE,1 2.47 · 10−3 0.680
IE,2 1.12 · 10−2 0.949

TABLE C.2
As in Table C.1, at x= 0.5 and 0.7.



62

x= 0.9 Estimate Bias Variance MSE C.I. Med. est. var. Cov.

NL-P

q̂ −2.88 · 10−2 2.29 · 10−2 2.37 · 10−2 Iq,4 3.08 · 10−2 0.970
q̂W 3.47 · 10−2 9.58 · 10−3 1.08 · 10−2 Iq,3 8.13 · 10−3 0.895

q̂W,BR −3.98 · 10−3 9.24 · 10−3 9.26 · 10−3 Iq,1 6.94 · 10−3 0.888
Iq,2 7.21 · 10−3 0.893

ê 1.57 · 10−2 2.52 · 10−2 2.55 · 10−2 IE,4 3.19 · 10−1 1.000
êW 6.23 · 10−1 6.03 · 10−2 4.49 · 10−1 IE,3 3.22 · 10−2 0.005

êW,BR 5.31 · 10−3 1.05 · 10−2 1.06 · 10−2 IE,1 2.86 · 10−3 0.706
IE,2 1.34 · 10−2 0.956

NL-S

q̂ −2.31 · 10−2 1.84 · 10−2 1.89 · 10−2 Iq,4 2.37 · 10−2 0.974
q̂W 3.64 · 10−2 6.77 · 10−3 8.10 · 10−3 Iq,3 6.30 · 10−3 0.914

q̂W,BR 2.22 · 10−3 6.48 · 10−3 6.49 · 10−3 Iq,1 5.39 · 10−3 0.902
Iq,2 5.59 · 10−3 0.909

ê 1.46 · 10−2 1.65 · 10−2 1.67 · 10−2 IE,4 2.31 · 10−1 1.000
êW 5.84 · 10−1 4.45 · 10−2 3.86 · 10−1 IE,3 2.52 · 10−2 0.000

êW,BR 8.75 · 10−3 7.57 · 10−3 7.65 · 10−3 IE,1 1.95 · 10−3 0.689
IE,2 9.44 · 10−3 0.960

NL-C

q̂ −5.37 · 10−2 2.26 · 10−2 2.55 · 10−2 Iq,4 3.11 · 10−2 0.967
q̂W 1.89 · 10−2 8.97 · 10−3 9.33 · 10−3 Iq,3 8.40 · 10−3 0.921

q̂W,BR −2.06 · 10−2 8.54 · 10−3 8.97 · 10−3 Iq,1 7.16 · 10−3 0.891
Iq,2 7.44 · 10−3 0.897

ê −1.21 · 10−2 2.25 · 10−2 2.26 · 10−2 IE,4 1.72 · 10−1 1.000
êW 5.81 · 10−1 4.38 · 10−2 3.82 · 10−1 IE,3 3.08 · 10−2 0.008

êW,BR −1.37 · 10−2 1.06 · 10−2 1.07 · 10−2 IE,1 2.86 · 10−3 0.683
IE,2 1.32 · 10−2 0.942

TABLE C.3
As in Table C.1, at x= 0.9.
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