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Abstract Invariant Coordinate Selection (ICS) is a multivariate statistical method
introduced by Tyler et al. (2009) and based on the simultaneous diagonalization of
two scatter matrices. A model based approach of ICS, called Invariant Coordinate
Analysis, has already been adapted for compositional data in Muehlmann et al.
(2021). In amodel free context, ICS is also helpful at identifying outliers (Nordhausen
and Ruiz-Gazen, 2022). We propose to develop a version of ICS for outlier detection
in compositional data. This version is first introduced in coordinate space for a
specific choice of ilr coordinate system associated to a contrast matrix and follows
the outlier detection procedure proposed by Archimbaud et al. (2018a). We then
show that the procedure is independent of the choice of contrast matrix and can be
defined directly in the simplex. To do so, we first establish some properties of the
set of matrices satisfying the zero-sum property and introduce a simplex definition
of the Mahalanobis distance and the one-step M-estimators class of scatter matrices.
We also need to define the family of elliptical distributions in the simplex. We then
show how to interpret the results directly in the simplex using two artificial datasets
and a real dataset of market shares in the automobile industry.
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1 Introduction

Compositional data are by nature multivariate. Indeed, vectors with positive com-
ponents are considered as compositional data when the interest lies in the relative
information between their components: this last fact implies that they can be repre-
sented by a unique element in a simplex by dividing the components by their sum.
Classical statistical techniques need to be adapted to deal with these constraints
(positivity, sum equal to one). A common approach consists in transforming the
data using the centered log-ratio (clr) or the isometric log-ratio (ilr) transformations
(see Egozcue et al. (2011)), and apply standard techniques in this coordinate space.
Filzmoser et al. (2012)) propose to use the ilr transformation and detect outliers
with the usual or the robust version of the Mahalanobis distance. Because of the
affine invariance property of the Mahalanobis distance, the authors notice that the
identified outliers do not depend on the choice of the ilr transformation. Moreoever,
they propose some graphical tools in the coordinate space based on robust Princi-
pal Component Analysis (PCA) and biplots representation in order to interpret the
outliers. Their interpretation is only done in coordinate space. In the present work,
we consider adapting the Invariant Coordinate Selection (ICS) technique for outlier
detection to compositional data. ICS is a multivariate statistics method based on the
joint diagonalization of two scatter matrices and aimed at detecting interesting fea-
tures in multivariate data sets such as outliers or clusters (see, e.g., Tyler et al. (2009)
and Archimbaud et al. (2018a)). Compared to the Mahalanobis distance criterion,
ICS includes a dimension reduction step. Compared to PCA, the components of ICS
are invariant under affine transformations. We first propose to introduce ICS in co-
ordinate space using an ilr transformation. Following Archimbaud et al. (2018a), we
focus on the case of a small proportion of outliers and use the invariant components
associated with the largest eigenvalues of the joint diagonalization of two particular
scatter matrices. As with theMahalanobis distance, the identification of outliers with
ICS does not depend on the choice of the ilr (see also Muehlmann et al. (2021)).
In order to go beyond the coordinate space and interpret the outliers in the simplex,
we introduce new algebra tools and define eigen-elements of endomorphisms of the
simplex. We also introduce a class of one-step M-scatter estimators in the simplex.
Thanks to these tools we are able to write a reconstruction formula of the data
in the simplex that decompose the data in a proper way for outlier identification
and interpretation using ternary diagrams. In Section 2, we recall some facts about
the ICS method and its application to outlier detection. Section 3 is a reminder
about compositional data analysis. In Section 4, we develop some tools necessary
for Section 5. First comes some properties of the algebra of � × � matrices with
the zero-sum property: in particular, their rank, their inverses, their eigen-elements.
Then Section 4.2 defines one-step M-scatter functionals for simplex-valued random
variables together with an adapted version of Mahalanobis distance. Finally, Section
4.3 introduces the family of elliptical distributions in the simplex. Section 5 first
introduces ICS in coordinate space, then reformulates ICS directly in the simplex.
In subsection 5.3, we present a formula for reconstructing the data from ICS in co-
ordinate space and in the simplex. Section 6 is dedicated to three applications, with
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two toy datasets (with small and large dimensions) and a real marketing application
from the automobile industry.

2 Reminder about ICS and outlier detection

Invariant Coordinate Selection is a multivariate statistical method based on the
simultaneous diagonalization of two scatter matrices. As detailed in Nordhausen and
Ruiz-Gazen (2022), the method belongs to a large family of multivariate statistics
methods and is useful in particular for outlier detection as described below.

2.1 Scatter matrices

The family of scatter matrices generalizes the notion of covariance matrix (see Tyler
et al., 2009; Nordhausen and Tyler, 2015, among others) and it has the following
functional definition. For a ?-dimensional vector X with distribution function �X, a
functional S(�X), also denoted by S(X), is called a scatter functional if it is a ? × ?
symmetric positive definite and affine equivariant matrix. Note that in Nordhausen
and Tyler (2015), the definition is less stringent than that in Tyler et al. (2009), and
assumes that a scatter matrix is only semipositive definite. We recall that an affine
equivariant matrix S(X) is such that

S(AX + b) = AS(X)A) ,

where ) denotes the transpose operator,A is a full rank ?×?matrix and b a ?-vector.
For a ?-variate dataset X= = (x1, . . . , x=)) , the empirical version S(X=) of a

scatter functional is the scatter functional S(�=) where �= is the empirical distri-
bution. A scatter matrix estimator is a ? × ? symmetric positive definite and affine
equivariant matrix such that

S(X=A + 1=b) ) = A) S(X=)A,

where A is a full rank ? × ? matrix, b a ?-vector and 1= an =-dimensional vector of
ones.

There exist many scatter matrices as detailed for example in Tyler et al. (2009).
The most well-known scatter matrix is the covariance matrix. As many other scatter
matrices, the covariance involves the mean which is an affine equivariant location
estimator. We recall that an affine equivariant location estimator T is such that:

T(AX + b) = AT(X) + b,

for the functional version and
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T(X=A) + 1=b) ) = AT(X=) + b,

for the empirical version where A is a full rank ? × ? matrix and b a ?-vector.

A general class of scatter matrices is the class of one-step M-estimators with a
functional defined by:

COVF (X) = E
[
F("2 (X)) (X − E(X)) (X − E(X)))

]
,

where F is a non-negative and continuous weight function and

"2 (X) = (X − E(X)))COV(X)−1 (X − E(X)) (1)

is the square Mahalanobis distance with E(X) the expectation of X and COV(X) its
covariance matrix. The sample version of one-step M-estimators is:

COVF (X=) =
1
=

=∑
8=1

F("2 (x8)) (x8 − x̄=) (x8 − x̄=)) ,

where x̄= = 1/=∑=
8=1 x8 is the empirical mean and

"2 (x8) = (x8 − x̄=))COV(X=)−1 (x8 − x̄=)

is the empirical version of the square Mahalanobis distance.
Note that the covariance matrix COV is obtained with F(3) = 1, while the

fourth-moment based estimator COV4 is obtained with F(3) = 3/(? + 2) which is
widely used in the blind source separation literature (see, e.g., Theis and Inouye,
2006; Nordhausen and Virta, 2019) but also in the context of outlier detection (see
Archimbaud et al., 2018a).

For elliptical distributions with second moments, scatter functionals are all pro-
portional to the covariance matrix (see, e.g., Bilodeau and Brenner, 2008). We recall
that an elliptical distribution is obtained as an affine transformation of a spherical dis-
tribution which is a distribution invariant by orthogonal transformation. Multivariate
normal and Student distribution belong to this family of distributions.

2.2 ICS principle

Let S1 (X) and S2 (X) be two scatter functionals. ICS consists of the simultaneous
diagonalization of S1 (X) and S2 (X). If the random vector X follows an elliptical
distribution, the two scatter matrices will be proportional and the result will be
useless. However, as mentioned in Tyler et al. (2009), comparing two different scatter
functionals may help to reveal interesting departures from an elliptical distribution.
This is the case in particular for anomaly detection. The method searches for a ? × ?
matrix H(X) and a diagonal matrix �(X) such that:
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H(X)) S1 (X)H(X) = I? and H(X)) S2 (X)H(X) = �(X), (2)

where I? denotes the ?×? identitymatrix. Thematrix�(X) contains the eigenvalues
of S1 (X)−1S2 (X) in decreasing order, while the columns of the matrix H(X) =
(h1, . . . , h?) contain the corresponding eigenvectors such that:

S2 (X)H(X) = S1 (X)H(X)�(X)

or else S1 (X)−1S2 (X)H(X) = H(X)�(X).

These eigenvalues and eigenvectors can also be derived through the spectral decom-
position of the following symmetric matrix:

S1 (X)−1/2S2 (X)S1 (X)−1/2 = U(X)�(X)U(X)) . (3)

with U(X) a ? × ? orthogonal matrix and the same eigenvalues in the diagonal
matrix �(X). We have:

H(X) = S1 (X)−1/2U(X).

We also have:

H(X)H(X)) = S1 (X)−1 and H(X)−1 = U(X)) S1 (X)1/2.

Tyler et al. (2009) give an interesting interpretation of the eigenvalues _1, . . . , _?
in terms of kurtosis. Using the optimality property of eigen-elements, we have that
h1 maximizes the ratio:

h) S2 (X)h
h) S1 (X)h

over all possible vectors h in R? and that _1 is equal to the maximum. This ratio of
two scale measures can be viewed as a generalized measure of kurtosis and _1 can
thus be interpreted as a maximum kurtosis. The other eigenvalues and eigenvectors
can be defined is a similar way by maximizing the same ratio over vectors h that
verify additional orthogonality conditions (see Tyler et al. (2009) for details).

Using any affine equivariant location estimator T(X), the ICS scores Z =

(I1, . . . , I?)) are defined by:

Z = H(X)) (X − T(X)), (4)

or equivalently by I: =< h: ,X − T(X) > where < ., . > denotes the usual scalar
product. The scores define the affine invariant coordinates. The square Euclidian
norm of these coordinates is given by:

Z)Z = (X − T(X)))H(X)H(X)) (X − T(X))
= (X − T(X))) S1 (X)−1 (X − T(X))

The last expression is a generalization of the Mahalanobis distance (1) of X with the
location parameter T(X) (instead of E(X)) and with respect to the scatter matrix
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S1 (X) (instead of COV(X)). In the special case where T(X) = E(X) and S1 (X) =
COV(X), we have:

Z)Z =

?∑
:=1

I2
: = "

2 (X). (5)

The empirical version of ICS consists of the joint diagonalization of a scatter pair
of estimators S1 (X=) and S2 (X=). For a ? × ? matrix H(X=) and a diagonal matrix
�(X=) we have:

H(X=)) S1 (X=)H(X=) = I? and H(X=)) S2 (X=)H(X=) = �(X=).

Using any affine equivariant location estimator T(X=), the ICS scores are given by:

Z= = (z1, . . . , z=)) = (X= − 1=T(X=)) )H(X=) (6)

and are affine invariant. Similar to (5), if ) (X=) = x̄= and S1 (X=) = COV(X=), we
have:

"2 (x8) = z)8 z8 .

2.3 ICS for outlier detection

As already stated in Tyler et al. (2009), one possible application of ICS is outlier
detection. The Mahalanobis distance is a well-known tool to detect outliers (see
Rousseeuw and Van Zomeren (1990)) but it does not offer the possibility of dimen-
sion reduction. ICS gives the possibility of selecting components that are helpful
in detecting anomalies (see Archimbaud et al. (2018a) for details). In the case of a
small proportion of outliers, the theoretical properties of ICS (see Archimbaud et al.
(2018a) for details) lead us to only focus on the invariant components associated with
the largest kurtosis and thus the largest eigenvalues. In this context, Archimbaud et al.
(2018a) show that the scatter pair S1 (X) = COV(X) and S2 (X) = COV4 (X) is not
only simple and fast to compute but also effective in detecting outliers when com-
pared to other pairs that involve robust scatter estimators. Archimbaud et al. (2018a)
propose different automatic procedures for invariant components selection based on
hypothesis testing. Details can be found in Archimbaud et al. (2018a) but in short the
idea is to test sequentially the normality of each of the invariant components using
some classical tests like the D’Agostino test. After selecting : invariant components
among ?, the last step of the procedure is the outlier identification. Let us consider
the empirical version of ICS. For each observation 8 = 1, . . . , =, the square “ICS
distance” is the square Euclidian norm in the invariant coordinate system accounting
for the : first coordinates:

(ICS distance)28,: =
:∑
9=1

(
I
9

8

)2
, (7)
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where I 9
8
denotes the 9 th coordinate of the score z8 . In Archimbaud et al. (2018a),

an observation is flagged as an outlier when its ICS distance using : components is
larger than a cutoff based on Monte Carlo simulations from the standard Gaussian
distribution. Given a data dimension, a scatter pair and a number : of selected com-
ponents, many Gaussian samples are generated and the ICS distances are computed.
A cutoff is derived for a fixed level W as the 1 − W quantile of these distances. The
whole ICS procedure for outlier detection is available in the R package ICSOutlier
described in Archimbaud et al. (2018b) and used in Section 6 below.

3 Reminder about compositional data analysis

A �-composition u is a vector of � parts (or shares) of some whole which carries
relative information. There exists a unique representation of this vector in the unit
simplex space

S� =

{
u = (D1, . . . , D�)) : D< > 0, < = 1, ..., �;

�∑
<=1

D< = 1

}
.

For any vector w ∈ R+� , its representer in the simplex is obtained by the closure
operation

C(w) =
(

F1∑�
<=1 F<

, · · · , F�∑�
<=1 F<

)
.

The following operations endow the unit simplex with a vector space structure

1. ⊕ is the perturbation operation, corresponding to the addition in R�:

For u, v ∈ S� , u ⊕ v = C(D1E1, . . . , D�E�),

2. � is the power operation, corresponding to the scalar multiplication in R�:

For _ ∈ R, u ∈ S� _ � u = C(D_1 , . . . , D
_
�).

Compositional data analysis uses log-ratio transformations such as the centered
log-ratio (clr) and the isometric log-ratio (ilr) transformations. The clr transformation
of a vector u ∈ S� is defined by

clr(u) = G� ln u

where G� = I� − 1
�

1�1�) , I� is a � × � identity matrix, 1� is the �-vector of
ones and where the logarithm of u ∈ S� is understood componentwise.

For a vector u in the orthogonal space 1⊥
�
(orthogonality with respect to the usual

scalar product of R�), the inverse clr transformation is defined by

clr−1 (u) = C(exp(u)).
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The simplex S� of dimension � − 1 can be equipped with the Aitchison scalar
product

< u, v >�=< clr(u), clr(v) >,

where the right hand side scalar product is the usual scalar product in R� .
For any given orthonormal basis (e1, · · · , e�−1) of S� , orthonormality being

understood with respect to the Aitchison scalar product here, one can define a so-
called contrast matrix V of dimension � × (� − 1) (e.g. Pawlowsky-Glahn et al.,
2015) given by V = clr(e1, · · · , e�−1), where clr is understood columnwise. To each
such matrix V is associated an isometric log-ratio transformation by:

ilr+ (u) = V) ln(u).

The inverse transformation is given by:

u = ilr−1
+ (u∗) = C(exp(Vu∗)).

The link between the ilr and clr transformations is clr(u) = Vilr+ (u).

4 Multivariate tools for compositional data

4.1 Algebra of endomorphisms of the simplex and eigendecomposition

Let A be the set of � × � matrices such that A1� = 000� and A) 1� = 000� where
000� denotes the �-dimensional column vector of zeros: this condition is called the
zero-sum property. Egozcue et al. (2011) define endomorphisms of the simplex
using the ilr transformation and prove that their corresponding matrix belongs toA.
The linearity here refers to the vector space structure of the simplex based on the
perturbation and powering operations. Let us introduce an equivalent formulation
based on the clr transformation: for u ∈ S� and A ∈ A, endomorphisms of the
simplex are defined by maps u ↦→ A � u := clr−1 (Aclr(D)).

The composition of endomorphisms corresponds to the ordinary matrix product
since it is clear that A� (B�u) = AB�u and thereforeA is an algebra with neutral
element G� . We are now going to extend the definition of the ilr transformation to
matrices of A.

Theorem 1 Let V be a � × (� − 1) contrast matrix and let P+ be the � × � block
matrix [V 1√

�
1�] . For a � × � matrix A ∈ A, the (� − 1) × (� − 1) matrix

A∗ := ilr+ (A) = V)AV is such that A = VA∗V) = P+
(
A∗ 0
0 0

)
P)
+
and satisfies the

following properties

1. the rank of A is equal to the rank of ilr+ (A)
2. if ilr+ (A) is invertible then A is invertible in A and we have the following

expressions for its Moore-Penrose pseudo-inverse
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A−1 = (A + 1
�

1�1)�)−1 − 1
�

1�1)� = V(V)AV)−1V) = P+
(
A∗−1 0

0 0

)
P)+ .

3. ilr+ (AB) = ilr+ (A)ilr+ (B). If A is invertible, then ilr+ (A−1) = (ilr+ (A))−1. If
(ilr+ (A))1/2 exists then ilr+ (A1/2) = (ilr+ (A))1/2.

The matrix ilr+ (A) is simply the matrix corresponding to A in coordinate space
when the coordinates are defined by ilr+ . We also extend the definition of the clr
transformations to matrices.

Theorem 2 For a � × � matrix B, let us define its clr transformation by

clr(B) = G�BG� . (8)

We then have the following properties

1. if A ∈ A, then clr(A) = A
2. if B ∉ A, then clr(B) ∈ A and for any x ∈ SD

B � x := clr−1 (clr(B)clr(G)) = clr(B) � x (9)

3. if B ∉ A, then the unique element A ∈ A such that ilr+ (A) = ilr+ (B) is
A = clr(B).

4. for any contrast matrix V and any A ∈ A we have clr(A) = Vilr+ (A)V)

Note that thematrix product� can be defined evenwhen thematrixB does not belong
to A but in that case it is not linear. Note also that the ilr and clr transformations
preserve symmetry.

The next proposition links the eigen-elements of A to those of ilr(A). Let us first
define the notion of A-diagonalizable for a matrix of A.

Definition 1 A matrix A ∈ A is said A-diagonalizable if there exists a basis
e1, . . . , e�−1 of SD and � − 1 reals _ 9 ( 9 = 1, . . . � − 1) such that

A � e 9 = _ 9 � e 9 ∀ 9 = 1, . . . � − 1 (10)

We will say that e 9 is an A-eigenvector of A. It is clear that clr(e 9 ) is then
an eigenvector of clr(A) = A, and that for any contrast matrix V, ilr+ (e 9 ) is an
eigenvector of ilr+ (A). Note that 1� is an eigenvector of A associated to the
eigenvalue 0. It is natural to say that a matrix A ∈ A is diagonal in a given basis
e1, . . . , e�−1 of SD if equation (10) is satisfied for these vectors.

Theorem 3 Let V be a � × (� − 1) contrast matrix. For a � × � matrix A ∈ A,
we have the following properties:

1. if e∗
9
∈ R�−1 is an eigenvector of ilr+ (A), then e 9 = ilr−1 (e∗

9
) ∈ SD is an

A-eigenvector of A and w 9 = clr(e 9 ) ∈ R� an eigenvector of A.
2. the set of eigenvalues of A contain the eigenvalue 0. The other � − 1 eigenvalues

of A coincide with the eigenvalues of ilr+ (A) for any contrast matrix V.
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3. ilr+ (A) is diagonalizable if and only if A is diagonalizable, and if and only if A
is A-diagonalizable.

All symmetric matrices in A are A-diagonalizable. Note that the vectors e 9 =
clr−1 (e∗

9
) are independent of the contrast matrix V. Let A be a symmetric matrix of

A. Since the vector 1� is an eigenvector of A, A cannot be diagonal in the canonical
basis ofR� but it can be diagonal in a basis obtained by completingw� = 1

�
1� with

� − 1 orthogonal eigenvectors in 1⊥
�
, say w1, . . .w�−1. Then e 9 = clr−1 (w 9 ) ∈ SD

( 9 = 1, . . . � − 1), is an orthonormal basis of SD for the Aitchison metric since
< e8 , e 9 >�=< w8 ,w 9 >�= X8 9 where X8 9 = 1 if 8 = 9 and 0 otherwise, and these
vectors areA-eigenvectors ofA. IfW = [w1 . . .w�−1] is the corresponding contrast
matrix, then ilr, (A)8 9 = w)

8
Aw 9 = _ 9w)8 w 9 = _8X8 9 which shows that ilrW (A) is

the (� − 1) × (� − 1) diagonal matrix � with the _8 as diagonal elements. Then

using Theorem 1, we can write that A = P,
(
� 0
0 0

)
P)
,

showing that A is similar

to the diagonal matrix
(
� 0
0 0

)
. This last result gives us the general form of diagonal

matrices of A with the corresponding spectral representation A =
∑�−1
8=1 _8w8w)8 .

4.2 One-step M-scatter functionals of a compositional random vector

For a simplex valued random vector X (see Pawlowsky-Glahn et al. (2015)) , let us
recall the following definition of expectation

E⊕X := clr−1 (EclrX)

and the following definition of the (clr-)covariance matrix COV⊕X (see Aitchison
(1982)) given by the � × � matrix

COV⊕X := COV(clrX).

Using the same principles, let us now introduce a simplex adapted definition of
the square Mahalanobis distance as being the square Mahalanobis distance in the
usual sense of the clr coordinates of X

"2 (X) = (clrX − E⊕X)) (COV⊕X)−1 (clrX − E⊕X).

In the same line, let us define the following one-stepM-scatter matrix of a simplex
valued random vector as the corresponding scatter of its clr coordinates

COV⊕FX := COVF (clrX) = E[F(" (X)) (clrX − EclrX) (clrX − EclrX)) ]

For F(3) = 3/(� + 2), we get the fourth-moment based scatter matrix COV⊕4 X:
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COV⊕4 X := COV4 (clrX) =
1

� + 2
E["2 (X) (clrX − EclrX) (clrX − EclrX)) ]

All these characteristics can also be expressed using the ilr coordinates associated
to any contrast matrix V by the following formulas

E⊕X = ilr−1
+ (Eilr+ (X))

COV⊕X = COV(clrX) = COV(Vilr+ (X))

and thus

COV⊕X = VCOV(ilr+ (X))V) = ilr−1
+ (COV(ilr+ (X))),

"2 (X) = "2 (ilr+ (X)),

and
COV⊕FX = VCOVF (ilr+ (X))V) = ilr−1

+ (COVF (ilr+ (X)))

Note that the scatter functionals COV⊕FX belong to the algebra A and thus we
also have:

COV⊕FX = clr−1 (COVF (clrX)).

Given a sample of size =, the empirical versions of the previous scatter matrices can
be derived easily.

4.3 Elliptical distribution in the simplex

Mateu-Figueras et al. (2021) review some distributions in the simplex including the
multivariate Student distribution. We define a new family of elliptical distributions
in the simplex. A random vector X with values in SD is said to follow an elliptical
distribution if any of its ilr coordinates follows an elliptical distribution in R�−1.
This definition makes sense due to the following theorem.

Theorem 4 Given two contrast matrices V1 and V2, if X∗1 = 8;A+1 (X) follows an
elliptical distribution with parameters (`∗1,�

∗
1), then X∗2 = 8;AV2 (X) follows an

elliptical distribution with parameters (`∗2,Σ
∗
2) with

V2`
∗
2 = V1`

∗
1

V2�
∗
2V)2 = V1�

∗
1V)1 ,

V2�
∗
2
−1V)2 = V1�

∗
1
−1V)1

From this theorem, we can say that ` = V`∗ is an invariant which characterizes the
location parameter in the simplex of the elliptical distribution, Σ = VΣ∗V) is an
invariant that characterizes the scatter matrix in the simplex and Q = VΣ∗−1V) is an
invariant that characterizes the precision matrix of this distribution in the simplex.
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As in Comas-Cufí et al. (2016), we can extend this definition to a mixture of
elliptical distributions.

5 ICS for compositional data

5.1 ICS in coordinate space

With the definitions introduced in Section 4.2, we can now define ICS for a
compositional random vector X. For a given choice of contrast matrix V, let
X∗ = ilr+ (X). In the ilr coordinate space, ICS consists of the joint diagonaliza-
tion of two scatter matrices S1 (X∗) and S2 (X∗). Let us focus on S1 (X∗) = COV(X∗)
and S2 (X∗) = COV4 (X∗). From equation (3) in Subsection 2.2, we can derive the
affine invariant coordinates by diagonalizing the (�−1) × (�−1) symmetric matrix

L∗ = COV(X∗)−1/2COV4 (X∗)COV(X∗)−1/2. (11)

Let _1 ≥ . . . ≥ _�−1 be the eigenvalues of L∗ in descending order, and � be the
(� − 1) × (� − 1) diagonal matrix with the vector of eigenvalues on its diagonal.
Let u∗

:
, : ranging from 1 to � − 1, be the � − 1 corresponding eigenvectors of L∗

and U∗ = [u∗1 . . . u
∗
�−1] be the matrix whose columns are these eigenvectors. By

cnstruction, the matrix U∗ is orthogonal (with respect to the usual scalar product in
R�−1). We have for all : = 1, . . . , � − 1:

L∗u∗: = _:u
∗
: .

Let us denote byh∗
:
, : = 1, . . . , �−1 the columnvectors ofH∗ = COV(X∗)−1/2U∗.

We have

H∗)COV(X∗)H∗ = I�−1 (12)
H∗)COV4 (X∗)H∗ = ΛΛΛ. (13)

Equations (12) and (13) correspond to the joint diagonalization of COV(X∗) and
COV4 (X∗). As for equation (2), we also have:

COV4 (X∗)H(X∗) = COV(X∗)H(X∗)�(X) (14)

The scores or invariant coordinates of X∗ are given by:

Z∗ = H∗) (X∗ − EX∗) (15)

or equivalently by I∗
:
=< h∗

:
,X∗ − EX∗ >, : = 1, . . . , � − 1.
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5.2 ICS in the simplex

Let us now use Section 4 to obtain a formulation of the previous results back in the
simplex. This presentation of ICS involves elements (scatter matrices, eigenvalues
and eigenvectors) which are independent of the particular choice of contrast matrix,
thus justifying this approach. Let us denote

L = (COV⊕X)−1/2COV⊕4 X(COV⊕X)−1/2. (16)

By Theorem 1, we have that
ilrV (L) = L∗ (17)

and by Theorem 3, we have that, for : = 1, . . . , �,

L � u: = _: � u:

where u: = ilr−1 (u∗
:
) for : = 1, . . . , � − 1, and u� = 1�/

√
� corresponding to

_� = 0. We have < u: , u; >� = X:; , for :, ; = 1, . . . , �. The vectors u: are the
A-eigenvectors of L. We can write the following spectral representation of L:

L =

�−1∑
:=1

_:clr(u: )clr(u: ))

If we denote by h: = ilr−1 (h∗
:
) = (COV⊕X)−1/2 � u: , : = 1, . . . , �, we get:

COV⊕4 X � h: = _: � COV⊕X � h:
and

(COV⊕X)−1COV⊕4 X � h: = _: � h: .

The scores Z∗ = (I∗1, . . . , I�−1) defined by (15) do not depend on the constrast
matrix as already mentioned in Muehlmann et al. (2021), and are given by

I∗: =< h∗: ,X
∗ − EX∗ > =< h: ,X 	 E⊕X >� . (18)

This equation shows that the scores can be used for outlier detection independently
of the contrast matrix.

5.3 Reconstruction formula

From (15), it is easy to derive the reconstruction formula in coordinate space:

X∗ = EX∗ + (H∗) )−1Z∗ (19)
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Let a∗
:
denote the column vectors of the matrix (H∗) )−1 = COV(X∗)1/2U∗

for : = 1, . . . , � − 1. Let us define the scalar product with respect to the metric
COV(X∗)−1 by:

< u∗, v∗ >COV(X∗)−1= u∗)COV(X∗)−1v∗.

Equation (12) shows that the vectors a∗
:
, : = 1, . . . , � − 1 are orthonormal in the

sense of this scalar product since the equation can be rewritten

(H∗)−1COV(X∗)−1 (H∗) )−1 = I�−1. (20)

This orthogonality implies that the reconstruction formula can also be obtained by

X∗ − EX∗ =
�−1∑
:=1

< a∗: ,X
∗ − EX∗ >COV(X∗)−1 a∗: . (21)

Denoting the coordinates of Z∗ by (I∗1, . . . , I
∗
�−1), the coordinates of the (� − 1)

vector:
(H∗)−1COV(X∗)−1 (X∗ − EX∗)

are < a∗
:
,X∗ − EX∗ >COV(X∗)−1 .

Using (19), this vector can be written:

(H∗)−1COV(X∗)−1 (X∗ − EX∗) = (H∗)−1COV(X∗)−1 (H∗) )−1Z∗ (22)

Using (22) and (20), we get:

(H∗)−1COV(X∗)−1 (X∗ − EX∗) = Z∗ (23)

and thus
< a∗: ,X

∗ − EX∗ >COV(X∗)−1= I∗: .

Combining with (21), we get the final reconstruction formula in coordinate space

X∗ = EX∗ +
�−1∑
:=1

I∗:a
∗
: . (24)

Applying ilr−1
V to equation (24) we get the following simplex version of the

reconstruction formula

X = E⊕X
�−1⊕
:=1

I∗: � a: (25)

where
a: = ilr−1

V (a
∗
: ) = (COV⊕X)1/2 � u: . (26)
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The vectors a: are related to the A-eigenvectors of L by (26). They generate
simplex-lines called ICS-axes which are the sets of vectors U � a1, for U ∈ R. In
the next section, we use the empirical version of the reconstruction formula (25) in
order to plot the projection of the data on the vector a1 in some ternary diagrams in
situations where the number of selected invariant components is one.

We can also write (25) in terms of the vectors h: :

X = E⊕X
�−1⊕
:=1

< h: ,X 	 E⊕X >� �COV⊕X � h: . (27)

6 Examples of application

We first consider two artificial data sets following a mixture of two normal distribu-
tions with 10% of observations that differ from the 90% constituting the main bulk
of the data. The dimension is � = 3 for the first example and � = 20 for the second
one. The contrasts matrices we use for the ilr transformations in this section are
triangular Helmert matrices corresponding to the original ilr transformation defined
by Egozcue et al. (2003).

6.1 Toy examples

For the first example, the contrast matrix is given by V) = ©«
1√
2
− 1√

2
0

− 1
2

√
2
3 −

1
2

√
2
3

√
2
3

ª®¬ .
In this toy example, = = 100 observations are generated in the ilr space with � − 1 =
2 dimensions from a mixture of two Gaussian distributions. The mean and the
covariance matrix of the first 90% of the observations (sample 1) are respectively

`∗1 = (0, 0)
) and �∗1 = 0.02I2 + 0.02121)2 ,

while the mean vector and the covariance matrix of the remaining 10% (sample 2)
are

`∗2 =

(
2
√

2
log 2,

−1
√

6
log 2

))
and Σ∗2 = 0.05I2.

Figure 1 on the left (resp. in the middle) shows the data set in the simplex S3

(resp. in the ilr space). The points in cyan (resp. magenta) belong to sample 1 (resp.
sample 2) and we can see that component G2 has higher values in sample 2 than
in sample 1, to the detriment of G1 and G3. We perform the ICS method in the ilr
space using the ICSOutlier package (Archimbaud et al., 2018a). The eigenvalues
are 1.57 and 0.81 and the D’Agostino test for normality leads to the selection of a
single invariant component. Note that this test is based on the ICS scores and thus
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does not depend on the ilr transformation (see Archimbaud et al. (2018a) for more
details). Figure 1 on the right reports the ICS distances as in Equation (7) for each
observation. The horizontal line represents a cut-off value based on Monte Carlo
simulations and a 90% quantile. The choice of the quantile order can be done with
respect to the expected percentage of outliers in the data. The ICS distances and the
cutoff are also independent of the ilr transformation since they depend on the ICS
scores only. Figure 1 on the right allows us to identify outliers represented by filled
circles. On this example, all 10 observations from sample 2 are identified as outliers
whereas only 1 out of the 90 observations from sample 1 is incorrectly identified (at
the limit of the cutoff value).
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Fig. 1 First toy example: data in the simplex (left), data in the ilr space (middle), identification of
the outlying observations using ICS (right).

The two vectors generating the ICS-axes (dashed lines on Figure 2) are equal to
0∗1 = (0.31,−0.1) and 0∗2 = (0.12, 0.22) in the ilr space and 01 = (0.27, 0.43, 0.30)
and 02 = (0.28, 0.33, 0.39) in the simplex space. To better understand the role of
the ICS components and how they discriminate the observations, we represent on
Figure 2, the projections of the observations on the first ICS axis (left plots) and the
second ICS axis (right plots) in the ilr space (top plots) and in the simplex space
(bottom plots). The first ICS axis allows to discriminate the observations with a high
value of G2 relatively to the other shares, and results in a good discrimination of the
two groups. On the contrary, the second axis which seems to separate observations
with high values of G1 against observations with high values of G3, does not allow to
discriminate the two groups.

Finally, using the cutoff value, we represent in grey on Figure 3 the zones or areas
of the ilr space (left plot) and of the simplex (right plot) where the observations are
considered as outliers. It confirms that the observations with a large or a small value
of G2 relatively to the other shares are in the outlying zone.

For the second toy example, we generate a higher dimensional data with � = 20,
using two multivariate Gaussian distributions. The first sample is of size =1 = 90
with

`∗1 = (0, 0, . . . , 0)
) Σ∗1 = 0.02I�−1 + 0.021�−11)�−1,

and the second sample is of size =2 = 10 with
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Fig. 2 First toy example: plot of the ICS-axes and projections of the data on the ICS axes (ICS 1
on the left and ICS 2 on the right) in the ilr space (top plots) and in the simplex (bottom plots).
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Fig. 3 First toy example: outliers zones in grey in the ilr space (left) and in the simplex space
(right).
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`∗2 =

(
2
√

2
log 2,

−1
√

6
log 2, 0, . . . , 0

))
Σ∗2 =

(
0.05I2 0

0 0.02I�−1 + 0.021
�−31)

�−3

)
.

When � > 3, several options can be used for representing compositional data.
One possibility is to plot ternary diagrams using sub-compositions as described in
van den Boogaart and Tolosana-Delgado (2008). For instance, one can choose to
plot a ternary diagram with G1, G2 and the sum of the remaining parts G3 + . . . + G� .
Another possibility is to replace the sum of the remaining parts by their geometric
mean. If � > 3 is not too large, these sub-ternary diagrams can be gathered in a
square matrix of dimension � (� − 1)/2.

In order to identify the outliers, we implement the ICSmethod using ICSOutlier
in coordinate space. The procedure selects only the first invariant component. The left
plot of Figure 4 displays the ICS distances and the cutoff value as an horizontal line
to identify outliers. This plot is the same for all ilr transformations. 9 observations
out of 10 are detected as outliers in sample 2 while none of the observations from
sample 1 are identified as outliers. The plot on the right represents several sub-
ternary diagrams, but not all of them because of the large dimension � = 20. The
selected ternary diagrams plot two parts among G1 to G5 against the geometric mean
of the rest. However, the diagrams that are not shown are very similar to the ones
that focus on G3, G4 and G5 (see the rows and columns 3, 4 and 5 on the matrix
plot). Observations with the cross (resp. circle) symbol belong to sample 1 (resp.
sample 2). The sub-ternary diagrams confirm that G1 and G2 are the composition parts
playing a role in explaining the outlyingness of the red points. In fact, the sample 1
observations are clearly visible and separated from the other group when considering
the G1 and G2 components and the geometric mean of the other parts. On the contrary
when looking at the ternary diagrams that do not take G1 and G2 separately from the
other parts, the outliers are not distinct from the other observations.

We represent on Figure 5 the sub-ternary diagram (G1, G2, ∗) (where ∗ represents
the geometric mean of the rest), with small circles in cyan (resp.magenta) for sample
1 (resp. sample 2). The vector a1 is plotted together with the ICS axis represented
by a dashed line. We see that the data projected on the first ICS axis are clearly
discriminated by high values of G2 relatively to G1.

6.2 Market shares example

Thismarket share dataset has been simulated from amodel fitted on the real European
cars market in 2015 and is available in Barreiro et al. (2022). The plot on the top
of Figure 6 represents the shares in the French automobile market of 5 segments
(� = 5), from January 2003 to August 2015, denoted by A, B, C, D and E (European
cars market segments, from the cheapest cars to the most powerful and luxury ones).
We perform the ICS method in the ilr space and represent on the bottom of Figure
6 the ICS distances for each observation. The normality test of the ICS procedure
reveals that only the first component is important for outliers identification. The
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Fig. 4 Second toy example: ICS distances (left), sub-ternary diagrams of the first five composition
parts, (right) with circles for sample 2 and red for detected outliers.
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Fig. 5 Second toy example: plot of the ICS-axis a1 and projections of the data on this axis in the
ternary diagram (G1, G2, ∗) .

cut-off value is based on the quantile of order 97.5%. All the identified outliers are
concentrated in a time interval between September 2008 and May 2009. During this
period, the global automobile market was undergoing a crisis with worldwide sales
significantly down and political solutions have been provided such as the scrapping
bonus at the end of 2008.

In Figure 7 we represent the matrix of sub-ternary diagrams with detected outliers
in red. It seems that among all ternary diagrams, the ones including segment A are
the best possible in order to identify the outliers. More precisely, the sub-ternary
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Fig. 6 FrenchMarket automobile shares example: from January 2003 to August 2015 in 5 segments
(top) and identification of the outlying observations using ICS distances (bottom). The dotted
vertical lines represent the period in which outliers were identified (September 2008 to May 2009)

diagram that includes segments A, D, and the others separates the most the two
groups. Thus, we plot on Figure 8 the data in the sub-ternary diagram (�, �, ∗)
where ∗ represents now the sum of the other components. We also represent the
vector a1, the ICS axis, and the projections of the data on this axis.

The time points which are detected as outlying correspond to observations with
high values of segment �, compared to more normal values of � and low values of
� + � + � . This interpretation is confirmed when looking at the top plots of Figure
6.

7 Conclusion

The present contribution extends ICS for outlier detection to the context of com-
positional data. As for standard data, ICS with the scatter pair COV and COV4 is
a powerful tool to detect a small proportion of outliers. The definition of ICS in
coordinate space is straightforward and the identification of outliers does not de-
pend on the choice of the isometric log-ratio transformation. The definition of ICS
in the simplex is more challenging and some algebra tools have been introduced
to tackle the problem. Using a reconstruction formula, ICS axes can be plotted on
ternary diagrams that help interpreting the outliers. Further interpretation tools are
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work in progress. Among the perspectives, we can mention the extension of ICS to
compositional functional data (see Rieser and Filzmoser (2022)).
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8 Appendix

Proof of Theorem 1

1. Let P+ be the � × � bloc matrix [V 1√
�

1�] . Then P)
+

P+ = I� and P+ P)
+
=

VV) + 1
�

1�1)
�
= I� therefore P+ is invertible and its inverse is equal to P)

+
.

If A = V�∗V) for a (� − 1) × (� − 1) matrix A∗, then A = P+
(
A∗ 0
0 0

)
P)
+
=

P+
(
A∗ 0
0 0

)
P−1
+

therefore A is similar to A∗ and their rank is equal.

2. if A∗ is invertible, by the previous property, A = VA∗V) is also invertible. Then,
let us first prove that (A + 1

�
1�1)

�
) is invertible. We can write

P+
(
A∗ 0
0 1

)
P)+ = A + 1

�
1�1)� .

The rank of the central matrix is � therefore A + 1
�

1�1)
�

is invertible and its
inverse is given by(

P+
(
A∗ 0
0 1

)
P)+

)−1
=

(
P+

(
A∗ 0
0 1

)
P−1
+

)−1
= P+

(
A∗−1 0

0 1

)
P)+ .

Then let us check that the inverse of A inA is given by P+
(
A∗−1 0

0 0

)
P)
+
. Indeed

P+
(
A∗−1 0

0 0

)
P)
+

A = P+
(
A∗−1 0

0 0

)
P)
+

P+
(
A∗ 0
0 0

)
P)
+
= VV) = G� . Same for

the other direction. Since P+
(
0 0
0 1

)
P)
+
= 1
�

1�1)
�
, we have

A−1 = P+
(
A∗−1 0

0 0

)
P)+ = P+

(
A∗−1 0

0 1

)
P)+ − P+

(
0 0
0 1

)
P)+

and thus A−1 = (A + 1
�

1�1)
�
)−1 − 1

�
1�1)

�
. An alternative formula is

A−1 = V(V)AV)−1V)
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3. ilr+ (A)ilr+ (B) = V)AVV)BV = V)ABV = ilr+ (AB). If A is invertible, then
ilr+ (A−1) = V)V(V)AV)−1V)V = (V)AV)−1 = (ilr+ (A))−1. If (ilr+ (A))1/2
exists, let us define A1/2 = ilr−1 (

(ilr+ (A))1/2
)
= V(ilr+ (A))1/2V) . We have

A1/2A1/2 = V(ilr+ (A))1/2V)V(ilr+ (A))1/2V) = Vilr+ (A)V) = A.

Proof of Theorem 2

1. 1 is a clear consequence of the fact that G� is the neutral element of A.
2. It is clear that clr(B)clr(x) ∈ 1⊥, hence by definition clr−1 (clr(B)clr(G)) =

clr(B) � x.
3. If V)BV = V)AV, then multiplying on the left by V and on the right by V)

and using the fact that VV) = G� , we get G�BG� = G�AG� and hence
clr(A) = clr(B). Then if A ∈ A, then clr(A) = A = clr(B).

4. by Theorem 1, we have A = VilrV (A)V) and A = clr(A) by 1.

Proof of Theorem 3

A∗ is diagonalizable if there exists a basis v∗1, . . . v
∗
�−1 of R�−1 and � − 1 real

values _ 9 such that A∗v∗
9
= _ 9v∗9 . Then let e 9 = ilr−1 (v∗

9
), we get by applying ilr−1:

A � e 9 = ilr−1 (_ 9v∗9 ) = _ 9 � ilr−1 (v∗
9
) = _ 9 � e 9 so that e 9 is an A-eigenvector

of A. Now applying the clr transformation, we also get that if w 9 := clr(e 9 ), then
Aclr(e 9 ) = _ 9clr(e 9 ) so that Aw 9 = _ 9w 9 showing that w 9 is an eigenvector of A.
1�/
√
� is an eigenvector of A associated to the eigenvalue 0 when A ∈ A and this

completes the basis in R� since the vectors w 9 belong to 1⊥
�
, 9 = 1, . . . � − 1.

Proof of Theorem 4

The density of the elliptical distribution of x∗1 = ilr+1 (x) is a function of ' =

(ilr+1 (x) − `∗1)
)�∗1

−1 (ilr+1 (x) − `∗1). Since ilr+1 (x) = V)1 clr(x), an alternative for-
mulation for ' is

' = (clr(x) − clr(`)))V)1 �
∗
1
−1V1 (clr(x) − clr(`))

Now if we let `∗2 = V)2 V1`
∗
1, we have V2`

∗
2 = V1`

∗
1. Similarly let �∗2 =

V)2 V1�∗1V)1 V2,we haveV2�∗2V)2 = V1�∗1V)1 . Therefore substituting this expression
in ', we see that ' is invariant to the specification of the contrast matrix and going
backwards we can rewrite ' = (ilr+2 (x) − `∗2)

)�∗2
−1 (ilr+2 (x) − `∗2) which shows that

ilr+1 (x) follows an elliptical distribution with parameters `∗2 and �∗2. Now using the
properties of contrast matrices VV) = G� and V)V = I�−1, we have

(V)2 V1�
∗
1V)1 V2) (V)2 V1�

∗
1
−1V)1 V2) = I�−1

which proves the last part of the theorem.
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