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Abstract

In the framework of spatial econometric interaction models for origin-destination flows, we
develop an estimation method for the case when the list of origins may be distinct from the
list of destinations, and when the origin-destination matrix may be sparse. The proposed
model resembles a weighted version of the one of LeSage and Pace (2008) and we are able
to retain most of the efficiency gains associated with the matrix form estimation, which we
illustrate for the maximum likelihood estimator. We also derive computationally feasible
tests for the coherence of the estimation results and present an efficient approximation of
the conditional expectation of the flows.
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1 Introduction
Spatial interaction models describe interaction behavior that occurs between a set of origins and a
set of destinations. Some typical applications for this model are international trade flows between
countries, passenger flows between cities, or geomarketing flows of customers who reside in the
districts of a city and who visit the stores of a brand. Traditionally, this type of problem has
been formulated in terms of the gravity equation, which assumes the size of the flow to increase
in proportion to the mass of the origins and destinations and to decrease in proportion to the
distance. Some examples for mass variables are the size of the population, or the surface area of
a store. The success of the gravity equation can be explained by its intuitive simplicity and its
high ability to explain the observed data in empirical applications. Also the criticism that these
models describe macro-level behavior without foundation in individual actions has been overcome
(see for example Wilson 1967; Bergstrand 1985). One legitimate concern, however, arises from
the fact that most gravity models rely on independently distributed data to provide efficient
and unbiased parameter estimates and predictions. In the context of interaction behavior, this
independence assumption is usually untenable and has been refuted by empirical evidence in
very diverse applications, such as public transport Kerkman, Martens, and Meurs (2018), air-
passengers transport Margaretic, Thomas‐Agnan, and Doucet (2017), home-to-work commuting
Dargel (2021), international trade Fischer and LeSage (2020), remittances Laurent, Margaretic,
and Thomas-Agnan (2020), migration Chun and Griffith (2011), or social interactions Wang
et al. (2018).

LeSage and Pace (2008) propose a spatial econometric interaction model that explicitly mod-
els spatial dependence in origin-destination (OD) flows. Their model is particularly appealing
because it can be estimated using a matrix representation of the flows, which reduces the di-
mension of most objects we need to manipulate during the estimation from N to

√
N , where

N represents the number of OD pairs. For spatial econometric models this reduction may be
critical in making the difference whether the model is computationally feasible in large data sets
or not. However, to attain this efficiency gains the model of LeSage and Pace (2008) relies on
two conditions that reduce its applicability to real-world data. The first condition requires that
the set of origins coincides with the set of destinations and excludes, for example, geomarketing
applications. The second condition requires that we actually observe interaction behavior for all
possible OD pairs, which is unlikely in practice, as data sets with high spatial resolutions are
increasingly frequent. In this article we present a generalization to the spatial econometric inter-
action models that relaxes both of the previously mentioned constraints, while maintaining most
of the efficiency gains linked to the matrix form estimation. To do so, we develop a framework
that treats flows as interactions between the nodes of spatial networks and derive new properties
of Kronecker product that allow to include weights in the previous version of the matrix based
estimator.

The previously mentioned issue of missing entries in the OD matrix is linked to the well
known zero flow problem, as unobserved flows may be considered as implicitly reflecting zero
values. When the number of such zeros is large the data is clearly not normally distributed,
and alternative models, such as Tobit or zero inflated Poisson regression, have been proposed
to accommodate the excess zeros. Burger, Oort, and Linders (2009), reviews and compares
such methods in the context of international trade flows, but without specific focus on spatial
dependence. Krisztin and Fischer (2015) extend the zero inflated Poisson model of trade flows
by spatial filtering (Griffith 2003), which addresses the problem of biases in the parameter esti-
mates due to spatial correlation. However, the main drawback of spatial filtering is that spatial
dependence is treated as a nuisance, which means that we loose the ability to quantify spillover
effects (Pace, Lesage, and Zhu 2013). There exist models that simultaneously account for excess
zeros and explicitly model spatial dependence, such as the Tobit models put forward by LeSage

2



and Pace (2009) and Xu and Lee (2015) or the family of models for spatially correlated limited
dependent variables developed in Liesenfeld, Richard, and Vogler (2016), but it is clear that
computational constraints make these approaches less feasible for big data environments. Unlike
the previous methods, the model presented here maintains the hypotheses of gaussian data by
only considering the subsample of OD pairs related to observed flows. It is easy to appreciate the
computational advantage of this procedure, but we have to be aware that the obtained results
do not generalize to the unobserved OD pairs. This would only be possible if the flows were
missing at random, which is hard to justify in our context as unobserved flows are most often
linked with high distances. While, this is certainly a drawback of the model here, it might be
the better compromise if the alternative is ignoring spatial dependence altogether. Moreover,
Linders and Groot (2006) find that the omission of zero flows yields results surprisingly similar
to those of a model that accounts for sample selection, and much better than Tobit models or
gaussian models in which the unobserved values are imputed by a constant.

The structure of the article is as follows: the next section introduces the origin-destination
flow problem from the perspective of interactions between networks and develops the generalized
version of the model. Section 3 presents the matrix form estimation for the MLE. The final
section concludes.

2 A generalized framework for spatial interaction models
In this section we present origin-destination flows from the perspective of pairwise interactions
between the nodes of an origin network and those of a destination network. Our framework uses
the generalizations of Laurent, Margaretic, and Thomas-Agnan (2020) to cover both: the case
of interactions within the same network, henceforth the square case, and the case of interactions
between two distinct networks, labeled the rectangular case. An example of the square case is
international trade, where the origin network as well as the destination network correspond to
the countries of the world. In addition to the distinction between rectangular and square, we
differentiate the cartesian from the non-cartesian case. The former applies when all possible in-
teractions are actually observed, implying that the number OD pairs correspond to the cartesian
product of all origins with all destinations. When some of the possible OD pairs are unobserved
we are in the non-cartesian case.

Notations and definition of cases

πo: origin network
πd: destination network
no: number of nodes in the origin network
nd: number of nodes in the destination network

OW : no × no neighborhood matrix of the origin network
DW : nd × nd neighborhood matrix of the destination network

F : set of all potential OD pairs F = {(oj → di) : j = 1, 2, ..., no, i = 1, 2, ..., nd}
Γ: the subset of OD pairs for which we observe interaction data Γ ⊆ F
N : total number of OD pairs N = no · nd = card(F),where card is the cardinality of a set
N∗: number of OD pairs included in the model N∗ = card(Γ)
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Using the above notations we formalize the distinction if our cases. The square case treats flows
within the same network πo = πd, which implies no = nd and OW = DW . In the rectangular
case we treat flows between two distinct networks πo ̸= πd. The cartesian case applies when
we model all theoretically possible OD pairs Γ = F , yielding N∗ = no · nd = N . In contrast, the
non-cartesian case, applies when we model a strict subset of all potential OD pairs Γ ⊂ F ,
which leads to N∗ < no · nd = N .

An illustrative example

To illustrate the different cases let us consider two networks π1 and π2, whose number of nodes
are n1 and n2. The matrix Y⋄, with dimensions (n2 + n1) × (n2 + n1), represents all possible
pairwise interactions between nodes that belong to any of the two networks. We may then group
these interactions into four sub-matrices

Y⋄ =

(
Y11 Y12

Y21 Y22

)
, (1)

where the flows within the network π1 are represented by Y11(n1 × n1) and those within the
network π2 by Y22(n2 × n2). Similarly, flows that connect the nodes of π2 with those of π1

are contained in Y12(n1 × n2), and the flows connecting the nodes both networks in the other
direction in Y21(n2 × n1). Hence, if we model a diagonal blocks in (1) we are in the square case
and for the off-diagonal ones we are in the rectangular case. Whether we observe all values in
the sub-matrix then defines if the case is cartesian or not .

Differentiating the square from the rectangular case is trivial when the separation of nodes
into two distinct networks is already given, but in practice such considerations may be up to
the definition of the researcher. Our advise regarding this issue is to consider the potential
neighborhood links between all of the observations. Separating origins and destinations into two
networks is appropriate if neighborhood relations within each subset are conceivable but not
between the two. Hence, in our example, the neighborhood matrix of all observations should
have the form

W⋄ =

(
W1 0
0 W2

)
, (2)

where the matrices W1(n1 × n1) and W2(n2 × n2) capture the neighborhood relations between
the nodes the networks π1 and π2. When it is not possible to defend the zero matrices on the off-
diagonal blocks in (2) we should probably treat all observations as part of the same network and
consider the case as square. In geomarketing applications the separation is apparent from the
fact that the origins (residential areas) are conceptually different from the destinations (stores).
When this conceptual distinction is not possible we could also use geographical arguments for
such a separation as for example when modeling investment flows from the United States to the
Chinese provinces.

2.1 The cartesian model
To define the spatial econometric interaction model we need to fix the role of the origin and
destination networks. Within the formalism of the previous example this choice corresponds to
setting πo = πj and πd = πi for one pair of i, j = 1, 2. Given the roles of each network we may
extract the part of the interaction matrix we want to model Y = Yij and define the neighborhood
matrix of the origins OW = Wj and that of the destinations DW = Wi. These neighborhood
matrices OW and DW should have only non-negative entries, a zero diagonal, be similar to a
symmetric matrix and have spectral radius of one. In practice, these conditions are met if we use
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matrices based on pairwise distances or contiguity, and normalize them by row or with respect
to their spectral radius. When all OD pairs are included in the model we may use the Kronecker
product ⊗ to derive three OD neighborhood matrices from the node-level neighborhood matrices.

Wd
N×N

= Ino
⊗DW Wo

N×N

= OW ⊗ Ind
Ww
N×N

= OW ⊗DW (3)

In the model Wo represents origin-based dependence, Wd represents destination-based depen-
dence and Ww represents origin-to-destination dependence. Definition (3) of these three matri-
ces makes clear that if we model interaction within the same network (πo = πd), we find that
OW = DW := W , which recovers the traditional framework of LeSage and Pace (2008). We use
these three matrices in conjunction with the three autoregression parameters ρ =

(
ρd ρo ρw

)
to define the spatial filter matrix (A = IN − ρdWd − ρoWo − ρwWw). This matrix can be used
to remove spatial autocorrelation from the flow vector y = Vec(Y ), which we obtain by stacking
the columns of the flow matrix. If we relate the spatially filtered flows to linear combination of
some exogenous variables Z(N ×K) and a gaussian error ε ∼ N (0, σ2IN )

Ay = Zδ + ε (4)

we obtain a spatial lag (LAG) model. In Section 3 we present the Z matrix in details, but for
the introduction of the model in its vectorized form the current definition suffices. It is also
important to note that the above model is only well defined if the inverse of the filter matrix
exists, an issue that will be treated in Section 3.3.

2.2 The non-cartesian model
Model (4) has the disadvantage that we can only use it when we actually observe all values in
the flow matrix. In practice, this condition is rarely fulfilled, especially if we want to model flow
data with a high spatial resolution. To clarify this issue let us consider an origin network with
three nodes πo = {o1, o2, o3} and a destination network with two nodes πd = {d1, d2}, where
flows from o1 to d2 and from o3 to d1 are theoretically possible but unobserved.

Y =

(
yo1→d1

yo2→d1
×

× yo2→d2 yo2→d2

)
, (5)

It may be tempting to replace missing entries in the flow matrix by zeros and go on with
model (4), but this would introduce a point-mass at zero, invalidating the normality assumption.
To avoid this inconsistency, we prefer to drop the unobserved flows and create a truncated flow
vector of the form

y∗ =
(
yo1→d1

yo2→d1
yo2→d2

yo3→d2

)′
. (6)

This truncated flow vector only contains the subset of OD pairs we want to include in the model.
We then define the part of the spatial filter matrix A∗(N∗ ×N∗) and the explanatory variables
Z∗(N∗×K) that correspond to the same subset of OD pairs to define a model for the truncated
sample

A∗y∗ = Z∗δ + ε∗, (7)

where the error is supposed to be gaussian ε∗ ∼ N (0, σ2IN∗). We can link the matrices of the
above, non-cartesian model, to those of the cartesian model in (4), by means of the selection
operator SΓ(N ×N∗). The effect of this operator on a matrix or vector is to drop the columns
or rows at the position of the OD pairs, for which we do not observe interaction data.
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A∗ = S′
ΓASΓ Z∗ = S′

ΓZ y∗ = S′
Γy (8)

For the example considered in (5) and (6) the selection operator and the flow vector y = Vec(Y )
would be

SΓ =


1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

 y =


yo1→d1

×
yo2→d1

yo2→d2

×
yo2→d2

 .

It is easy to verify that the selection operator satisfies S′
ΓSΓ = I∗N and SΓS

′
Γ = RΓ, where RΓ

replaces the unobserved flows in y with zeros instead of removing them. We can derive this
replacement operator explicitly from a binary matrix of the observed flows, which is equal to one
if a flow is observed and zero if it is not. Denoting this flow indicator matrix IΓ the relationship
is RΓ = Diag(Vec(IΓ)), where the Diag operator places a vector on the main diagonal of a zero
matrix. Below we illustrate these matrices for our previous example.

IΓ =

(
1 1 0
0 1 1

)
Vec(IΓ) =


1
0
1
1
0
1

 RΓ =


1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 .

3 Matrix form estimation in the general case
This section derives the matrix form estimator for the non-Cartesian model in (7). We focus
on the maximum likelihood estimator (MLE), noting that extensions to the Bayesian Markov-
Chain Monte-Carlo or spatial two-stage least squares estimators could be derived without much
difficulty, using the arguments of Dargel (2021). The likelihood of the non-Cartesian model is

L(ρ, δ, σ2) =

(
1

2πσ2

)N∗/2

exp

{
1

2σ2
(A∗y∗ − Z∗δ)′(A∗y∗ − Z∗δ)

}
|A∗|. (9)

In the following four subsections we treat different parts of the estimation problem. The
first one deals with methods that allow to efficiently evaluate the quadratic term RSS(ρ, δ) =
(A∗y∗ −Z∗δ)′(A∗y∗ −Z∗δ). The next section deals with the log-determinant term log |A∗| that
appears in the log-likelihood function. In the third subsection we discuss the issue of the feasible
parameter space and in the last one we present a computationally efficient way to approximate
the conditional expectation of the flows.

3.1 Moment calculation in matrix form
One key to the efficient estimation of the spatial econometric interaction model is to express
the quadratic term in the likelihood function in terms of low dimensional moment matrices that
are independent of the parameters. In what follows we first present some well-known and some
new properties of Kronecker products, that allow to avoid computations with high-dimensional
objects. Afterwards, we will treat the three moments that appear after expanding the quadratic
term

6



RSS(ρ, δ) = y∗′A∗′A∗y∗ + δ′Z∗′Z∗δ − 2δ′Z∗′A∗y∗. (10)

3.1.1 Kronecker products, the Vec operator and the Diag operator

The following four properties are well known (Harville 1998) and have already been used to
increase the efficiency of estimators for the cartesian spatial interaction model (see for example
LeSage and Pace 2008; LeSage and Pace 2009): For three matrices A,B and C, whose dimen-
sions allow to compute the matrix product ABC, and for two matrices D and E with identical
dimensions (na × nb) we have the following relations:

K1 : (C ′ ⊗A)Vec(B) = Vec(ABC).

K2 : Diag(Vec(D))Vec(E) = Vec(D)⊙Vec(E) = Vec(D ⊙ E)

K3 : Vec(D) + Vec(E) = Vec(D + E)

K4 : Vec(D)′ Vec(E) = ι′na
(D ⊙ E)ιnb

To improve the estimation efficiency in the non-Cartesian case we use three additional properties,
which we formally derive in Appendix A. Proposition: Given four matrices A(na×ka), B(nb×
ka), C(na × nb), D(na × nb) we have the following relations:

K5 : (ι′nb
⊗A′)Diag(Vec(D))(B ⊗ ιna) = A′DB

K6 : (ι′nb
⊗A′)Diag(Vec(D))(ιnb

⊗A) = A′ Diag(ιnb
D′)A

K7 : (B′ ⊗ ι′na
)Diag(Vec(D))(B ⊗ ιna) = B′ Diag(ιnaD)B

3.1.2 The TSS moment

We refer to the first part of the RSS term in (10) as TSS-moment because it offers an anal-
ogy to the analysis of variance formula. Using τ(ρ)′ =

(
1 −ρd −ρo −ρw

)
, and y• =(

RΓy WdRΓy WoRΓy WwRΓy
)
, we can factorize its expression into

y∗′A∗′A∗y∗ = τ(ρ)′y′•RΓy•τ(ρ). (11)

The 4 × 4 matrix in the middle of the factorization TSS• = y′•RΓy• only depends on the data.
Hence, it needs to be computed once and can then be used to quickly reevaluate the term for
changing values of ρ. Based on the definition of the OD-level neighborhood matrices in (3) and
the properties K1, K2, K4 we compute the elements of the TSS• matrix for l, k = 1, 2, 3, 4 as

TSS•kl = ι′nd
(Y (k) ⊙ IΓ ⊙ Y (l))ιno , (12)

where Y (1) = (IΓ⊙Y ), Y (2) = DW (IΓ⊙Y ), Y (3) = (IΓ⊙Y )OW ′ and Y (4) = DW (IΓ⊙Y )OW ′.

3.1.3 The variance moment

The variance moment Z∗′Z∗ = Z ′RΓZ is proportional to the empirical variance of the explana-
tory variables. To exploit the benefits of the matrix form estimation we have to pay attention
to the structure of the variables that are contained in the matrix Z. For our model we suppose
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that Z =
(
ιN Xd Xo g

)
is composed of four sets of variables 1, where ιN is a constant, Xd

contains the characteristics of the origins, Xo those of the destinations and g is a vector charac-
teristics for OD-pairs. In classical gravity models, this g vector reflects the geographic distance,
but we could use much broader and also multiple measures of separation between origins and
destinations. The variable in Z variables can be expressed as functions of the network-level data
OX(no × ko), DX(nd × kd) and a matrix representation of the OD-characteristics G(nd × no).

ιN = ιno ⊗ ιnd

g = Vec(G)

Xd = ιno ⊗DX

Xo = OX ⊗ ιnd

(13)

Given the above structure of the matrices in Z and the definition of the replacement operator
RΓ = Diag(Vec(IΓ)), we can use the Kronecker product properties of Section 3.1.1 to derive the
elements of the variance moment as

Z∗′Z∗ =


N∗ ι′no

I ′
ΓDX ι′nd

IΓOX ι′nd
(IΓ ⊙G)ιno

• DX ′ Diag(ι′no
I ′
Γ)DX DX ′IΓOX DX ′(IΓ ⊙G)ιno

• • OX ′ Diag(ιnd
IΓ)OX OX ′(I ′

Γ ⊙G′)ιnd

• • • ι′nd
(G⊙ IΓ ⊙G)ιno

 . (14)

3.1.4 The covariance moments

The covariance moment Z ′RΓy• is proportional to the empirical covariances of the explanatory
variables and the spatial lags of the flow vector. This moment appears when we use the notations
in (11) to factor out the autocorrelation parameters from the third part of the RSS term in (10).

2δ′Z∗′A∗y∗ = 2δ′Z ′RΓy•τ(ρ)

In the following we reuse definition (12) of Y (t), for t = 1, 2, 3, 4 to derive y(t) = Vec(Y (t)), and
to compute the elements of each column of the moment Z ′RΓy• as

Z ′RΓy
(t) =


ιnd

(IΓ ⊙ Y (t))ιno

DX ′(IΓ ⊙ Y (t))ιno

OX ′(I ′
Γ ⊙ Y ∗(t)′)ιnd

ι′nd
(G⊙ IΓ ⊙ Y (t))ιno

 . (15)

3.2 Determinant calculation
In this section we treat the problem of evaluating the determinant term that appears in the likeli-
hood function in (9). Evaluating this term based on classical decomposition methods such as the
LU, QR, or Cholesky factorization would require O(N∗3) operations, which may be prohibitive
in large sample applications. This issue is well known in the spatial econometrics literature, and
to address it we adapt an existing approximation method to model (7). The underlying idea
was first proposed by Martin (1992) and later adjusted to the spatial econometric interaction
model by LeSage and Pace (2008) and Fischer and LeSage (2020), who use it in the quadratic
and Cartesian cases. We will first generalize this method to rectangular flows and then treat the
non-cartesian case.

1Many extensions to the spatial econometric interaction model correspond to additional sets of variables in
the matrix Z. We may, for example, use the spatial lags WdXd and WoXo as additional variables, to extend the
LAG model considered in this article to a Spatial Durbin model.
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The general form of the approximation is based on a Taylor series expression of the term
ln |A∗| = ln |IN∗ − W ∗

F |, where for the model considered in this article W ∗
F = S′

ΓWFSΓ and
WF = ρdWd + ρoWo + ρwWw.

ln |A∗| = −
∞∑
t=1

tr (W ∗t
F )

t
, (16)

If all eigenvalues of W ∗
F are less then one in magnitude the series in (16) converges and we can use

the first m terms to approximate the log-determinant. One big advantage of this approximation
results from the linearity of the trace operator, as we can factor out the parameters of the
large matrix products required to compute tr(W ∗t

F ). This means that repeated evaluation of the
log-determinant do not impact the computation time much when the traces have been already
computed. To speed up the computation of the trace values we may further use the fact that
the three matrices Wd, Wo and Ww represent a commuting family. In other words, the order of
the matrices in the product is irrelevant and we can use a multinomial expansion to compute
the values of the traces of W t

F for t = 1, 2, ..,m by

tr(W t
F ) =

∑
kd+ko+kw=t

(
t

kd + ko + kw

)(
ρkd

d ρko
o ρkw

w

)
tr
(
W kd

d W ko
o W kw

w

)
. (17)

By exploiting the fact that WoWd = WdWo = Ww we can further simplify the expression of the
trace of the matrix product

tr(W kd

d W ko
o W kw

w ) = tr(W kd+kw

d W ko+kw
o ). (18)

The Kronecker product structures of Wd = (Ino
⊗DW ) and Wo = (OW ⊗ Ind

) then allows to
express the above trace in terms of the the traces of powers of the site neighborhood matrices.

tr(W kd+kw

d W ko+kw
o ) = tr(OW ko+kw) tr(DW kd+kw) (19)

Unfortunately, the matrices W ∗
d ,W

∗
o , and W ∗

w lose their Kronecker products structure and gen-
erally do not commute W ∗

dW
∗
o ̸= W ∗

dW
∗
o in the non-Cartesian case. Consequently, we cannot

apply the developments presented in the last three formulas and we are obliged to develop the
terms tr(W ∗t

F ) = tr((ρdW
∗
d +ρoW

∗
o +ρwW

∗
w)

t) for t = 1, 2, ...,m, explicitly. The direct expansion
would lead to 13 + 23 + ... + m3 products of N∗ × N∗ matrices, which is problematic as these
matrices become increasingly dense. In Appendix B we develop some simplifications for the ex-
pansion required for the forth order approximation. These reduce the number matrix products
to compute from 120 to 10 and remains more feasible in high dimensional applications.

3.3 Considerations about the feasible parameter space
The issue of the feasible parameter space is recurrent in the spatial econometrics literature and
relates to the fact that model (7) is incoherent when the spatial filter matrix A∗ is singular.
This condition imposes constraints on the autoregression parameters. Dargel (2021) discusses
this issue in the context of the cartesian and square flows and develops an efficient method to
check the coherence of the model. In the following paragraphs we extend this method first to
the rectangular and then to the non-cartesian model.

For the cartesian and rectangular cases, the filter matrix is given by A = IN − WF , with
WF = ρd(Ino ⊗DW ) + ρo(OX ⊗ Ind

) + ρw(OW ⊗DW ). The necessary and sufficient condition
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for A to be non singular is that all its eigenvalues are different from zero. As this condition is
to hard to work with in practice, we use the sufficient, but more restrictive alternative that the
spectral radius r(WF ) is smaller than one. Using the developments in Appendix C we can write
the eigenvalues vector of λ(WF ) of WF as

λ(WF ) = ρd(ιno ⊗ λ(DW )) + ρo(λ(OW )⊗ ιnd
) + ρw(λ(OW )⊗ λ(DW )). (20)

This representation clearly shows that we can test the condition r(WF ) < 1 without having
to construct WF explicitly. Furthermore, to infer r(WF ), we do not require to compute the full
spectrum of OW and DW , but only their smallest and largest eigenvalue. We refer to these
two extreme eigenvalues as λmax and λmin. When OW and DW are sparse these eigenvalues
can be computed with only O(nd)+O(no) operations, using for example the implicitly restarted
Arnoldi method of Sorensen (1992) or the Krylow-Schur algorithm of Stewart (2002).

It is obvious that equation (20) does not hold in the non-cartesian case, as we lose the
Kronecker product structure of the spatial filter matrix A∗. Consequently, the eigenvalues of
A∗ cannot be directly expressed as a function of those of the matrices OW and DW . However,
we can show that the previous test for non-singularity of A still allows to conclude that the
non-cartesian model is coherent. To do so, let us first recall the definition of the spatial filter
matrix in the non-cartesian case A∗ = IN∗ −W ∗

F , where W ∗
F = S′

ΓWFSΓ is clearly a principal
sub-matrix of WF , which allows to conclude that

λmin(WF ) ≤ λmin(W
∗
F ) and λmax(W

∗
F ) ≤ λmax(WF ). (21)

When WF is symmetric we may recursively apply Cauchy’s interlacing theorem (Horn and John-
son 2012, page 242) to derive the above results. In Appendix C.2, we demonstrate that the same
can also be shown for the more general form of the WF matrix that was introduced in Section
2.1. The inequalities (21) clearly show that constraints placed on the spectral radius of WF are
more binding than those placed on the spectral radius of W ∗

F . Hence, a condition that ensures
the coherence of the cartesian model remains sufficient for the coherence of non-cartesian model.

3.4 Approximating the conditional expectation
Another practical concern is the computation of the conditional expectation of the value of the
flows E[y∗|Z∗] = A∗−1Z∗δ. We require this expectation to compute predictions (see for example
Goulard, Laurent, and Thomas-Agnan 2017) and to evaluate the impact measures of LeSage and
Thomas‐Agnan (2015). Since the direct computation of A∗−1 is often not feasible we will use an
approximation based on a series expression of the inverse matrix. For a standard spatial model
this approximation is already suggested by LeSage and Pace (2009, page 111) and we will adapt
it to the spatial interaction model and derive is matrix form expression.

Let us first recall that the inverse of a matrix may be derived as A∗−1 =
∑∞

t=0(I − A∗)t,
which is a converging series if the spectral radius of A∗ is inferior to one. This expression allows
to approximate the conditional expectation without the need to compute an inverse.

E[y∗|Z∗] ≈
m∑
t=1

(W ∗
F )

tZ∗δ

With some further restructuring we can also bypass computing the powers of W ∗
F . This is done

based on the recursive expression zo = Zδ and zt+1 = WFR
′
Γzt, for t = 0, 1, ...,m− 1, which we

find by developing

10



E[y∗|Z∗] ≈
m∑
t=0

(S′
ΓWFSΓ)

tS′
ΓZδ = S′

Γ

m∑
t=0

zt,

We then denote by Zt the matrix version of zt = Vec(Zt), which allows further dimension
reduction of our calculations.

Vec(Zt+1) = WFRΓ Vec(Zt)

= (ρdWd + ρoWo + ρwWw)Diag(Vec(IΓ))Vec(Zt)

= Vec(ρdDW (IΓ ⊙Zt) + ρo(IΓ ⊙Zt)OW ′ + ρdDW (IΓ ⊙Zt)OW ′)

The final approximation is then E[y∗|Z∗] ≈
∑m

t=0 S
′
Γ Vec(Zt) and for a fixed order m its quality

depends on the values of the autoregressive parameters. When their magnitude is small the
terms of the series will quickly tend to zero and for stronger autocorrelation the higher order
terms become more important.

4 Conclusion
This article develops a new framework for estimating interaction models of spatially correlated
origin-destination flows. We extend the approach of LeSage and Pace (2008) to allow for missing
values in the OD matrix and to account for situations where the list of origins may different from
the list of destinations. Our methodology allows to estimate the generalized model efficiently
from a matrix representation of the flows, which we demonstrate for the MLE. With these gener-
alizations, it is much easier to estimate the spatial econometric interaction model for increasingly
common, high spatial resolution flow data. A limitation of the model is that the absence of a flow
is not modeled explicitly, which means that, in general, the results apply only to the sub-sample
of OD pairs with observed values for the flow. We leave extensions that simultaneously account
for the selection mechanism and spatial autocorrelation for future research.
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Appendix A Additional properties of Kronecker products
In the following we provide the proofs for properties K5, K6 and K7, presented in Section 3.1.1.
Before stepping into to these proofs it is useful to understand our indexing notation. Here we use
A[ij] to access one element, A[i·] access one row and A[·j] to access one column of the matrix A.
All three properties are defined for four matrices A(na×ka), B(nb×ka), C(na×nb), D(na×nb).
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A.1 Proof of K5
To show the property (ι′nb

⊗A′)Diag(Vec(D))(B ⊗ ιna
) = A′DB we exploit the block structure

of the two Kronecker products (ι′nb
⊗A′) = (A′ A′ . . . A′) and (B⊗ ιna

) = ((B[1·]⊗ ιna
) (B[2·]⊗

ιna
) . . . (B[nb·] ⊗ ιna

)). Since the matrix Diag(Vec(D)) is diagonal we may break it down into
blocks of size (na × na), where the diagonal blocks have the form Diag(D[·k]), for k = 1, ..., nb.
This allows rewrite the overall product in terms of the sum of matrix multiplications for the
individual blocks.

(ι′nb
⊗A′)Diag(Vec(D))(B ⊗ ιna

) =

nb∑
k=1

A′ Diag(D[·k])(B[k·] ⊗ ιna
)

= A′
nb∑
k=1

(B[k·] ⊗Diag(D[·k])ιna
)

= A′
nb∑
k=1

D[·k]B[k·]

We conclude the proof by showing that the elements of the sum in the above expression are equal
to those of the matrix product DB.

(

nb∑
k=1

D[·k]B[k·])[ij] =

nb∑
k=1

D[ik]B[kj] = (DB)[ij]

A.2 Proof of K6
This property directly follows from the following development.

(ι′nb
⊗A′)Diag(Vec(D))(ιnb

⊗A) = A′
nb∑
k=1

Diag(D[·k])A

= A′ Diag(ιnb
D′)A

A.3 Proof of K7
The property (B′⊗ι′na

)Diag(Vec(D))(B⊗ιna) = B′ Diag(ιnaD)B is also derived from a a block-
wise decomposition of the overall matrix product, but unlike before it is not possible to factor
out these blocks.

(B′ ⊗ ι′na
)Diag(Vec(D))(B ⊗ ιna

) =

nb∑
k=1

(B′
[k·] ⊗ ι′na

)Diag(D[·k])(B[k·] ⊗ ιna
)

=

nb∑
k=1

(B′
[k·]B[k·] ⊗ ι′na

Diag(D[·k])ιna
)

=

nb∑
k=1

B′
[k·]B[k·]ι

′
na
D[·k]
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We conclude the proof by showing that demonstrating the equality of all elements in the above
sum with those of B′ Diag(ιna

D)B.

(
nb∑
k=1

B′
[k·]B[k·]ι

′
na
D[·k]

)
[ij]

=

nb∑
k=1

B[ki]B[kj]ι
′
na
D[·k] =

(
B′ Diag(ι′na

D)B
)
[ij]

Appendix B Log determinant for non-cartesian flows
We want to approximate the log determinant in the non-Cartesian case based on the first four
terms of its Taylor series expression.

In the following we first recall the intuition of the Martin (1992) approximation of the log-
determinant term and then develop the terms required for the fourth-order approximation of the
general spatial econometric interaction model. We start by expressing the determinant of as the
product of the eigenvalues denoted by λ(A∗).

log |A∗| = log |IN∗ −W ∗
F | = log |ΠN∗

i=11− λ(WF )i|

For the next step we require that all eigenvalues of WF are less than one in magnitude, which
allows to remove the absolute value. We then write the log of a products as a sum of logs and
replace the logarithm in each term by an infinite Taylor series.

N∗∑
i=1

log(1− λ(WF )i) = −
N∗∑
i=1

∞∑
t=1

λ(WF )
t
i

t

By interchanging the sums we express the above series in terms of the traces of WF . With our
constraint on the eigenvalues of WF we are sure that the series converges and we can use the
first m terms as an approximation.

∞∑
t=1

N∗∑
i=1

λ(WF )
t
i

t
=

∞∑
t=1

tr(W t
F )

t
≈

m∑
t=1

tr(W t
F )

t

In Section 3.2 we have seen that the traces tr(W t
F ) may be calculated efficiently from those

of tr(OW t) and tr(DW t), when the model is cartesian. Unfortunately, this is not possible in the
non-cartesian version, and we have to expand the terms of W ∗t

F explicitly to compute the trace
values.

tr(W ∗t
F ) = tr((ρdW

∗
d + ρoW

∗
o + ρwW

∗
w)

t),

for each power t = 1, ...,m. With a direct approach this would require 120 matrix products for
the fourth order approximation, which is unpractical even for moderate sample sizes. We can do
much better if we exploit the following properties:

T1 : A well known property of the trace operator is that the trace of a product of matrices is
invariant under cyclic permutations of the multiplication order.
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T2 : For any t = 0, 1, 2, ..., we have 0 = tr(W ∗t
d W ∗

o ) = tr(W ∗t
o W ∗

d ) = tr(W ∗t
d W ∗

w) = tr(W ∗t
o W ∗

w).
This property is demonstrated in the next subsection. It follows from the zero diagonal
and the Kronecker product structure of the matrices Wo, Wd an Ww.

T3 : For two square matrices A and B with the same size we have tr(AB) = ι(A⊙B′)ι, which
is a direct consequence of the definition of the trace and the matrix product.

The properties T1 and T2 can be used to avoid the computation of 92 out of 120 values as
they are either zero or duplicated. In the following we show the 28 unique trace values that are
required for the fourth order approximation:
For t = 1, we can use T2 to avoid any computation

tr(W ∗
F ) = ρd tr(W

∗
d )︸ ︷︷ ︸

0

+ρo tr(W
∗
o )︸ ︷︷ ︸

0

+ρw tr(W ∗
w)︸ ︷︷ ︸

0

= 0

For t = 2, we can use T2 to conclude that only 3 of the 9 required traces are different from zero.

tr(W ∗2
F ) = ρ2d tr(W

∗2
d ) + ρ2o tr(W

∗2
o ) + ρ2w tr(W ∗2

w )

For t = 3, we can use T1 and T2 to infer that 12 out of 27 traces are zero and that among the
reaming values only seven are unique.

tr(W ∗3
F ) = ρ3d tr(W

∗3
d ) + ρ3o tr(W

∗3
o ) + ρ3w tr(W ∗3

w )

+ 3ρdρ
2
w tr(W ∗

dW
∗2
w ) + 3ρoρ

2
w tr(W ∗

oW
∗2
w )

+ ρdρoρw[3 tr(W
∗
dW

∗
oW

∗
w) + 3 tr(W ∗

oW
∗
dW

∗
w)]

For t = 4, we can use T1 and T2 to infer that 16 out of 81 traces are zero and that among the
remaining 65 traces only 18 are unique.

tr(W ∗4
F ) = ρ4d tr(W

∗4
d ) + ρ4o tr(W

∗4
o ) + ρ4w tr(W ∗4

w )

+ ρ2dρ
2
o[2 tr(W

∗
dW

∗
oW

∗
dW

∗
o ) + 4 tr(W ∗2

d W ∗2
o )]

+ ρ2dρ
2
w[2 tr(W

∗
dW

∗
wW

∗
dW

∗
w) + 4 tr(W ∗2

d W ∗2
w )]

+ ρ2oρ
2
w[2 tr(W

∗
oW

∗
wW

∗
oW

∗
w) + 4 tr(W ∗2

o W ∗2
w )]

+ ρ2dρoρw[4 tr(W
∗
dW

∗
oW

∗
dW

∗
w) + 8 tr(W ∗2

d W ∗
oW

∗
w)]

+ ρdρ
2
oρw[4 tr(W

∗
dW

∗
oW

∗
wW

∗
o ) + 8 tr(W ∗

dW
∗2
o W ∗

w)]

+ ρdρoρ
2
w[4 tr(W

∗
dW

∗
oW

∗2
w ) + 4 tr(W ∗

oW
∗
dW

∗2
w ) + 4 tr(W ∗

dW
∗
wW

∗
oW

∗
w)]

+ ρdρ
3
w4 tr(W

∗
dW

∗3
w ) + ρoρ

3
w4 tr(W

∗
oW

∗3
w )

Using T3 we can derive the 28 trace values from only ten matrix products that involve at most
two of the weight matrices. An example of this calculation is tr(W ∗4

d ) = ι′N∗(W ∗2
d ⊙W ∗2′

d )ιN∗ .
This makes clear that we avoid direct computation of matrix products of third and fourth order
that become increasingly dense in comparison to the lower order products. Below are the ten
matrices that need to be computed for the fourth-order approximation.

W ∗
d W ∗

o W ∗
w W ∗

dW
∗
d W ∗

oW
∗
o

W ∗
wW

∗
w W ∗

dW
∗
o W ∗

oW
∗
d W ∗

dW
∗
w W ∗

oW
∗
w
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B.1 Proof of T2
We will demonstrate the four statements of in T2 0 = tr(W ∗t

d W ∗
o ) = tr(W ∗t

o W ∗
d ) = tr(W ∗t

d W ∗
w) =

tr(W ∗t
o W ∗

w) in two steps. At first, we focus on the statements that involve powers of the desti-
nation weight matrix W ∗t

d .

0 = tr(W ∗t
d W ∗

o ) = tr((RΓWdRΓ)
tWoRΓ)

0 = tr(W ∗t
d W ∗

w) = tr((RΓWdRΓ)
tWwRΓ)

(22)

The above development is possible because eliminating or replacing rows and columns by zero
has the same effect on the trace value tr(S′

ΓWdSΓ) = tr(R′
ΓWdRΓ). From the definition Wd =

Ino
⊗ DW it is clear that the first term inside the two traces has the following block-diagonal

structure

(R1WdR1)
t =


(R1DWR1)

t 0 · · · 0
0 (R2DWR2)

t · · · 0

0 0
. . . 0

0 0 · · · (Rno
DWRno

)t

 (23)

where Rj(nd×nd), for j = 1, ..., no are the diagonal blogs of the replacement matrix RΓ. Equation
(23) shows that we can concentrate on the diagonal blocks if we compute the traces given (22).
If we then partition the matrices Wo and Ww into the same block structure we obtains zero
matrices for the diagonal blocks, which makes clear that the traces in (22) are indeed zero.

To demonstrate the remaining two statements

0 = tr(W ∗t
o W ∗

d ) = tr((RΓWoRΓ)
tWdRΓ)

0 = tr(W ∗t
o W ∗

w) = tr((RΓWoRΓ)
tWwRΓ),

(24)

we again partition the matrix (RΓWoRΓ)
t into n2

o blocks of size nd ×nd. This leads to a matrix,
for which all blocks Dij(t) for i, j = 1, ..., no are diagonal matrices, whose entries vary with the
powers t = 1, ...,m.

(RΓWoRΓ)
t =


D11(t) D12(t) · · · D1no(t)
D21(t) D22(t) · · · · · ·

· · · · · ·
. . . · · ·

Dno1(t) · · · · · · Dnono
(t)

 , (25)

Hence, if we compute the trace of a matrix product that involves (RΓWoRΓ)
t we know that

values off the main diagonal of the blocks will not play a role. For the matrices Wd and Ww the
same partition leads to blocks that have zero diagonal, which confirms the statements in (24).

Appendix C Parameter space
In the following we derive the two results that were used to handle the issue of the feasible
parameter space presented in Section 3.3. The first one is formulated as a general theorem and
the second one is derived in the specific context of model (7).
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C.1 Eigenvalues of a sum of Kronecker products
Proposition: Let A(na × na) and B(nb × nb) be two square matrices and denote M = a(A ⊗
Inb

)+b(Ina
⊗B)+c(A⊗B), where a, b and c are scalar values. The eigenvalue vector λM (na·nb×1)

of M and those of the matrices A and B denoted λA and λB are linked by the relation

λM = a(λA ⊗ ιnb
) + b(ιna ⊗ λB) + c(λA ⊗ λB). (26)

Proof : By Schurs Lemma we know that for any square matrix X there exists a factorization
X = QXUXQ−1

X such that UX is upper triangular with the main diagonal equal to the eigenvalues
vector λX of X. Additionally, we may infer the Schur decomposition of a Kronecker product of
two matrices (A⊗B) from the Schur decompositions of A and B.

(A⊗B) = Q(A⊗B)U(A⊗B)Q
−1
(A⊗B)

= (QA ⊗QB)(UA ⊗ UB)(QA ⊗QB)
−1

= (QAUAQ
−1
A ⊗QBUBQ

−1
B )

Next, we may start Schur factorization M = QMUMQ−1
M , which is solved for UM . If we replace

QM by (QA ⊗QB) and develop the resulting expression we obtain the following result.

UM = Q−1
M MQM

= (QA ⊗QB)
−1[a(A⊗ Inb

) + b(Ina
⊗B) + c(A⊗B)](QA ⊗QB)

= a(Q−1
A AQA ⊗Q−1

B Inb
QB + b(Q−1

A Ina
QA ⊗Q−1

B BQB) + c(Q−1
A AQA ⊗Q−1

B BQB)

= a(UA ⊗ Inb
) + b(Ina

⊗ UB) + c(UA ⊗ UB)

Since UA and UB are upper triangular matrices we conclude that UM is upper triangular too,
which confirms that we have indeed found a Schur decomposition of M . This triangular structure
also allows to conclude that the eigenvalues of UM are given by equation (26). Since M and UM

have the same spectrum the proof is finished.

C.2 Similarity and the selection operator
In Section 3.3 we rely on the fact that all eigenvalues of W ∗

F are contained in the interval
[λmin(WF ), λmax(WF )]. When WF is symmetric this follows directly from Cauchy’s interlacing
theorem. Here we show that this argument also hold for the more general form of WF we have
considered in this article.

The properties of WF = ρd(Ino ⊗ DW ) + ρo(OW ⊗ Ind) + ρw(OW ⊗ DW ) depend on the
characteristics of the two node-level neighborhood matrices DW and OW . If these are symmetric,
so is WF and Cauchy’s theorem applies. When they are row-normalized they are no longer
symmetric, but we may still apply Cauchy’s theorem if they were symmetric before the row-
normalization. Let OW and DW to symmetric neighborhood matrices. Their row-normalized
counterparts are given by

DW = DdDW OW = DoOW,

where Dd and Do are diagonal matrices whose entries correspond to the inverse of the row-sums
of DW and OW . It is clear that DW is similar to the symmetric matrix D

1/2
d DWD

1/2
d and that
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OW is similar to D
1/2
o OWD

1/2
o . We may use the same argument to show that WF is similar a

symmetric matrix

WF = DFWF = D
1/2
F (D

1/2
F WFD

1/2
F )D

−1/2
F ,

where DF = Do ⊗Dd and WF = ρd(Ino ⊗DW ) + ρo(OW ⊗ Ind) + ρw(OW ⊗DW ). The next
step is to show that the same holds in the non-cartesian version, where we use the selection
operator to obtain W ∗

F = S′
ΓDFWFSΓ. Since replacing rows with zero before dropping them

does not change the result we may write S′
ΓDF = S′

ΓD
1/2
F RΓD

1/2
F . Using this argument and the

link RΓ = SΓS
′
Γ we obtain

W ∗
F = (S′

ΓD
1/2
F SΓ)(S

′
ΓD

1/2
F WFD

1/2
F SΓ)(S

′
ΓD

1/2
F SΓ)

−1.

The above equation clearly shows the similarity of W ∗
F to the symmetric matrix S′

ΓD
1/2
F WFD

1/2
F SΓ.

Since this result does not depend on the specific subset selected by the operator SΓ we are sure
that the row-normalization of OW and DW does not compromise the applicability of Cauchy’s
interlacing theorem. Hence, we may conclude that the extreme eigenvalues of W ∗

F are bounded
by those of WF .
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