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Abstract
The sizing of aircraft electrical generators mainly depends on the electrical

loads installed in the aircraft. Currently, the generator capacity is estimated by
summing the critical loads, but this method tends to overestimate the genera-
tor capacity. A new method to challenge this approach is to use the electrical
consumption recorded during flights and study the distribution of operational
ratios between the actual consumption and the theoretical maximum consump-
tion then size the future aircraft generators by applying a ratio to the theoretical
value. This paper focuses on the application of extreme value theory on these
operational ratios to estimate the maximal capacity utilization of a generator.
A real data example is provided to illustrate the approach and estimate extreme
quantiles and the right endpoint of the distribution of the ratios together with
their approximate confidence interval in the nominal configuration. In all situ-
ations the right endpoint is proven to be finite and does not depend on the use
procedures. This approach shows that ELA overestimates the maximal perma-
nent consumption by 20% with error level of 10−3 in the nominal configuration.

Keywords: Electrical load analysis; Aeronautic electrical system; Generalized
Pareto distribution; Quantile estimation; Endpoint estimation; Diagnostics for
threshold selection.

1 Introduction

Driven by the demand to reduce emissions, the aviation industry pushes toward
the concept of more electrical aircraft and, ultimately, an all-electrical aircraft
[11]. Thus, the electrical network will be more in demand. A new network
should be designed, and a new electrical-intensive architecture implemented.
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Figure 1: Example of the consumption in percentage of the capacity of genera-
tors as a function of time for a given flight

The Electrical Load Analysis (ELA) is an airworthiness requirement. For a
given aircraft, it describes the electrical network and shows the total theoretical
electrical consumption by generators for the different flight phases and different
operational modes. In the ELA, the electrical consumption is computed by
summing the component loads under the most unfavourable conditions to get
the maximal consumption and under normal operating conditions to get the
operational consumption.

The ELA is provided to the airline at the time of aircraft delivery. The
airline must use this report to evaluate the effects of equipment changes on the
electrical network to avoid electrical overload.

To avoid oversizing the future electrical network, aircraft manufacturer has
to assess the current network and re-evaluate the needs based on operational
measurements. According to recent internal measurements of electrical networks
recorded during the flight by aircraft manufacturers, the theoretical power con-
sumption appears to be overestimated as illustrated in Figure 1. This figure
shows the proportion of electrical consumption with respect to electrical ca-
pacities over time for one generator during a given flight. A large difference is
observed between the theoretical maximum consumption given by ELA and the
real consumption.

Using operational measurements, we want to justify that the maximal ob-
served consumption is smaller than the maximal consumption given by ELA.
The main reason is that the electrical loads do not operate all at the same time
whereas they are considered simultaneously in the ELA.

A preliminary work has been done by [10] using Monte Carlo algorithms to
simulate the electrical load behavior. This approach is based on simulations
and differs from ours as our objective is focused on the extreme behavior of the
observed electrical consumption. The approach developed hereafter is based
on the Extreme Value Theory (EVT). EVT provides statistical tools to esti-
mate extreme quantiles and right endpoints under two hypotheses. First, the
observations are considered as independent and identically distributed (i.i.d.)
realizations of random variables. Second, the probability distribution belongs
to the domain of attraction of some extreme value distribution. Under these
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hypotheses, we derive extreme quantiles and endpoints together with their con-
fidence interval. Note that extreme quantiles (resp. endpoints) are values such
that the probability of getting a larger value is extremely small (resp. equal to
zero).

The distribution assumption is not restrictive and can be checked for many
well known distributions including the uniform on interval and the normal ones
(see [6]). The results are asymptotic in the sense that they are valid for large
sample size. The parametric extreme value distribution is obtained by looking
at the limit distribution of standardized maxima. This result is comparable to
the central limit theorem that considers the asymptotic behavior of the sum of
random variables and leads to a normal distribution.

EVT has already been used to estimate very high quantiles for electrical
systems (see [13] and [7]). Among recent applications of the EVT in the aero-
nautical field, the authors of [9] estimate the probability of occurrence of the
position, velocity or altitude errors for the navigation systems, while [12] designs
the load spectrum for aircraft hydraulic pumps.

The present paper illustrates the application of EVT to aeronautic electrical
systems consumption to challenge the ELA assumption approach in the nominal
mode only. The approach presented below can also be applied to the degraded
and emergency modes. Nevertheless, the few amount of data available in these
modes implies a specific statistical pre-treatment and is beyond the scope of the
present paper.

We have a sample of 60 000 flight hours from 18 operational aircraft that we
split into 8 groups based on conditions of use of the aircraft. One main goal
of our study is to use a limited amount of aircraft records to compute proba-
bilities beyond the observed measurements. The EVT answers this challenge
by estimating extreme quantiles and right endpoints. Probabilities associated
with extreme quantiles are then converted into probabilities by flight hours.
Confidence intervals are built to encompass the non observed aircraft.

As each aircraft has its own configuration, the ELA value may vary. Thus
we choose to estimate the maximum ratios between the electrical consumption
and the theoretical maximum values given by the ELA rather than estimating
the maximal electrical consumption. Applying EVT on these ratios will help us
to evaluate a maximal ratio irrespective of the electrical aircraft configuration.

First, we apply EVT to each group separately. Then we compare the results
between the different groups by using a statistical test. The null assumption is
the equality of the endpoints between groups. Using our sample we do not reject
the null assumption at usual error level of 5%. From this result we can suggest
a generalized maximal ratio to all operational aircraft and to the future aircraft
model. Multiplying the ELA values by the maximal ratio leads to adjusted ELA
value that could be used for sizing future generators or adding more loads to
operational aircraft.

This paper is organized as follows. Section 2 presents the aircraft electrical
network and details the dataset used to assess the electrical network. Section 3
recalls the EVT procedure and the model selection method used to estimate the
extreme quantiles and endpoints. Section 4 illustrates this model selection pro-
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cedure on a given group example. It also shows the results obtained using data
from the 8 groups separately and globally after testing the endpoints equality of
the ratios between groups. Finally, Section 5 concludes the study and proposes
possible extensions.

2 Context and data presentation

We are interested in evaluating the extreme electrical consumption with respect
to the theoretical ELA value of the generators based on operational measure-
ments.

An aircraft flight is segmented into several phases depending on the altitude
and the electrical source used. In our study we consider the flight phase, i.e.
where the landing gear is no longer compressed and the altitude is greater than
1.500 feet, and the onground phase and we first analyse these phases separately.

2.1 Aircraft electrical network

Different electrical sources power the electrical network of an aircraft:

• AC (Alternating Current) generators are supplied by the engines. De-
pending on the aircraft family, the number of AC generators is two or
four. Each generator has a capacity of 90 Kilo-Volt-Ampere (KVA) for
medium range and 100 KVA for long range.

• APU Generator (Auxiliary Power Unit) is an additional generator that
supplies energy. It is used during the onground phase and as a backup in
the flight phase to replace one or more AC generators at any time.

• RAT (Ram Air Turbine) is a wind turbine and a power source in case of
loss of all electrical sources.

• Batteries have a limited capacity of electric power and are used for tem-
porary actions.

In this paper, we focus the analysis on one of the AC generators.

Table 1: Percentage of acceptable overload for an AC generator

under 5 sec under5 min > 5 min

AC loads 160% to 183% 120% to 125% 100%

The generators can support an overload that depends on the load duration.
For the AC generator, the percentages of acceptable overload are shown in
Table 1. The loads are classified as intermittent or permanent: the loads with
a duration less than 5 minutes are called intermittent loads; otherwise, they are
called permanent loads. In what follows we focus the analysis on the permanent
loads only. Moreover, when there is no failure, the electrical network is in the
nominal mode and we consider this mode only.
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Table 2: Groups description. # stands for the quantity available

Group # of aircraft # of flight hours Continent destinations

1 2 10 263 Asia
2 1 1 675 America - Europe
3 4 10 694 Europe
4 2 5 589 Asia
5 5 22 480 Asia
6 2 5 726 America - Europe - Oceania
7 1 1 825 North America
8 1 1 793 Europe - North America

Total 18 60 045 -

2.2 Data details

We have 8 groups for which we consider 18 operational low-cost aircraft from
the same family. Their characteristics are given in Table 2.

For each aircraft, we observe at every second the ratio defined by the elec-
trical consumption divided by the maximal electrical load given by the ELA
for the corresponding aircraft and phase. Let Y be a random variable which
represents these ratios. The ratios are expressed in percentage but this has no
impact on the EVT analysis.

We split the observations into the flight phase and onground phase and
independently apply the EVT to each of the two phases.

To remove the intermittent loads, we average Y in a time window of length
T by

Xk =
1

T

T∑
i=1

Y(k−1)T+i, k ∈ {1, . . . , τ} (1)

where τ = bn/T c and b·c denotes the floor part function. The i.i.d. variables
Xk distributed as a variable X are positive and can be greater than 1 if the con-
sumption exceeds the ELA value. On top of that, a special load that generates
high peaks for less than 200 milliseconds is removed.

We apply the EVT on these datasets to calculate Qp the (1 − p)-quantile
associated to a small probability p, i.e. such that P (X > Qp) = p, and the
right endpoint x∗ of the distribution support. The endpoint is defined by x∗ :=
sup{x : P (X ≤ x) < 1} and can be finite or not. If it is finite, this corresponds
to the 1-quantile and P (X > x∗) = 0.

3 Extreme value theory reminder

EVT is widely used in applied fields such as hydrology, meteorology and insur-
ance (see [1]). The objective is to estimate the probability distributions of the
maxima and compute the probabilities associated with rare events.
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In this paper, we want to estimate extreme quantiles and endpoint for the
observed ratios x1, . . . , xn which are considered as realizations of i.i.d. random
variables X1, . . . , Xn with distribution function F . Let Qp be the (1−p)-quantile
and x∗ the right endpoint of F . Since

P(max(X1, . . . , Xn) ≤ x) = P(X1 ≤ x, . . . ,Xn ≤ x)

= Fn(x),

max(X1, . . . , Xn) converges in probability to x∗ as n tends to infinity. To obtain
a nondegenerate limit distribution we need to normalize max(X1, . . . , Xn). To
this end, we assume that there exist deterministic sequences an > 0 and bn ∈ R
such that

max(X1, . . . , Xn)− bn
an

has a nondegenerate limit distribution as n→∞ given by

lim
n→∞

Fn(anx+ bn) = G(x). (2)

G is called extreme value cumulative distribution function and F is in the do-
main of attraction of G.

The previous assumption is fulfilled under regularity assumption on right
endpoint of F . It can be checked for many absolutely continuous distribution
functions such as uniform on an interval, normal, log-normal, gamma, beta, etc.
(see details in [6], pages 153-157).

EVT is a powerful statistical asymptotic theory that allows us to calcu-
late extreme quantiles and endpoints without parametric assumptions on the
distribution F of the data. Thanks to EVT we get a parametrized extreme dis-
tribution G. The parameters of G can be estimated using statistical methods
such as the maximum likelihood or the moment method as discussed in [5].

The EVT is usually divided into two main approaches. The first approach
is the Generalized Extreme Value (GEV) based on the study of the asymptotic
distribution of a series of maxima. Under some conditions, this distribution is
known to converge to Gumbel, Fréchet, or Weibull distributions. The second
approach is the Generalized Pareto distribution (GPD) based on the study of
the distribution of excess over a given high threshold.

The two approaches can be used to build an extreme value model for maxima
and estimate the parameters. In the GEV approach the selection of the blocks
size is a difficult task in practice. From our experience on the flight series
data (see Figure 2), the results strongly depend on the block size and flight
length, which makes the fitting difficult. This approach is more adapted to an
uninterrupted series of data but is not relevant for flight data. Therefore, we
only focus on the GPD approach which better captures all the maxima but
recall both approaches in what follows.

3.1 Generalized Extreme Value approach

The GEV approach consists in dividing the series into non overlapping blocks
of identical lengths and taking the maximum of each block. Let X1, . . . , Xn, . . .
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Figure 2: Record of X for one day for a given aircraft; 7 flights were observed
during this day

be i.i.d. random variables with unknown cumulative distribution. We define a
block maximum

Mn = max {X1, . . . , Xn}

as the observed maximum of the process over n time units. If n is the number of
observations in one hour, then Mn corresponds to the maximum over one hour.

As stated in [2], the asymptotic cumulative distribution function of block
maximum Mn is given by

H(x) = exp

{
−(1 + ξ

x− µ
σ

)−1/ξ
}

where 1+ξ
x− µ
σ

> 0. The parameters µ ∈ R and σ > 0 correspond to location

and scale, respectively. The third parameter ξ ∈ R is a shape parameter, which
corresponds to the thickness of the tail of the distribution:

• ξ > 0 corresponds to the heavy-tailed case, and the corresponding distri-
bution converges to Fréchet;

• ξ = 0 corresponds to the light-tailed case, and the corresponding distri-
bution converges to Gumbel;

• ξ < 0 corresponds to the short-tailed case, and the corresponding distri-
bution converges to Weibull.

The asymptotic distribution of the maximum is always one of these three
distributions regardless of the original distribution. The asymptotic distribution
of the maximum can be estimated assuming condition (2) but without any
parametric assumptions on the distribution of the observations.

3.2 Generalized Pareto distribution approach

The GPD approach consists in selecting a given (sufficiently high) threshold and
considering the observations that exceed this threshold. Let (X1, . . . , Xn) be a
sequence of independent random variables with identical distribution as X that
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satisfies condition (2). The random variables Xi − u, for i ∈ {1, . . . , n}, are the
exceedances over threshold u if this threshold has been exceeded.

For some µ, σ > 0 and ξ, for u sufficiently large, the cumulative distribution
function of X−u conditional on X > u can be approximated by the distribution

H(x) =


1−

(
1 + ξ

x

β

)−1/ξ
if ξ 6= 0,

1− exp

(
−x
β

)
if ξ = 0,

where x > 0, and β = σ + ξ(u− µ) > 0 is the reparametrized scale.
Note that multiplying the random variable by a positive constant c keeps

the parameter ξ unchanged while β is multiplied by c. This means that EVT
is equivariant by scale transformation. Estimation of parameters µ, σ and ξ
for extreme quantiles and endpoint of the distribution F , with their confidence
intervals, are derived from an asymptotic framework where u is replaced by a
sequence of upper order statistics depending on n (see [3] for technical details).
In order to use these asymptotic results in practice, we have to ensure that the
number of observations n is large but also that the ratio between the number nu
of observations larger than u and n is small (see [4] for a detailed application).

The threshold selection involves balancing bias and variance. The threshold
u must be sufficiently high to ensure that the asymptotic underlying the GPD
approximation is reliable and thus reduce the bias. However, a reduced sample
size for high thresholds increases the variance of the parameter estimators.

As discussed in [1], the common graphical diagnostics for threshold selection
are the mean residual life, the threshold stability plots and the fitting diagnostic
plots. These plots are described below with some guide-lines to use them for
threshold selection:

• Mean residual life plot: the empirical mean of the exceedances above
threshold u is plotted against u. Above threshold u0, where the gener-
alized Pareto distribution provides a valid approximation to the excess
distribution, the mean residual life plot should be approximately linear in
u.

• Threshold stability plots: ξ and β are plotted against a range of thresholds
u. For u0 selected using the mean residual life plot, we look at the stability
of the parameter estimates for values of u > u0 and possibly refine the
choice of the threshold.

• Fitting diagnostic plots: the Probability-Probability plot and Quantile-
Quantile plots, which are named PP-plot and QQ-plot, respectively, are
the usual diagnostics tools. If the model fits the data, the points pattern
should exhibit a 45-degree straight line for both plots. Once the threshold
is selected using the mean residual life and threshold stability plots, the
PP and QQ-plots are used to validate our choice.
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We propose to estimate the GPD parameters using the maximum likelihood
method. The log-likelihood function is given by

l(ξ, β) =



−n log(β)−
(

1
ξ + 1

) n∑
i=1

log

(
1− ξ xi

β

)
,

if ξ 6= 0,

−n log(β)− 1

β

n∑
i=1

xi,

if ξ = 0.

In practice, the values ξ̂ and β̂ that maximize l(ξ, β) are found by using a
gradient descent method (see [5]).

Let X be a random variable that follows a GPD(ξ,β), the quantile Qp is
estimated by

Q̂p =


u+

β̂

ξ̂

[(
nu
np

)ξ̂
− 1

]
, if ξ̂ 6= 0,

u+ β̂ log

(
nu
np

)
, if ξ̂ = 0.

(3)

It is possible to build a (1 − α) asymptotic confidence interval (CI) for Q̂p
(see page 150 of [3]). The upper confidence interval (UCI) limit is given by

Qp < Q̂p + Zα/2 β̂ qξ̂

(
nu
np

) √
Var(ξ̂)

nu
, (4)

where Zα/2 is the (1 − α/2) quantile of the standard normal distribution, an
approximation of qξ for large t (see [3] page 135) is given by

qξ(t) ≈


tξ log t/ξ, if ξ > 0,

(log t)2/2, if ξ = 0,

1/ξ2, if ξ < 0,

and Var(ξ̂) is the variance of ξ̂ defined by{
(1 + ξ)2, if ξ ≥ 0,

1 + 4ξ + 5ξ2 + 2ξ3 + 2ξ4, if ξ < 0.

Let x∗ be the right endpoint or the upper limit of the distribution. If the end-
point is known to be finite then ξ < 0 and an estimator of x∗ can be calculated
by letting p→ 0 in (3), which leads to

X̂∗ = u− β̂

ξ̂
, for ξ̂ < 0. (5)

Replacing qξ by 1/ξ2 in (4), we get (1− α) one sided asymptotic CI

x∗ < X̂∗ + Zα
β̂

ξ̂2

√
Var(ξ̂)

nu
, (6)
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where Zα is the (1 − α) quantile of the standard normal distribution. In the
next section α is called the error level.

The upper confidence interval values for the quantiles of order p and the
endpoint are based on approximations that are valid under certain conditions.
These conditions involve that the total number of observations n together with
the number of observations that exceed the threshold u are large while the
proportion nu/n is small. Moreover, concerning the UCI of an extreme quantile,
the probability p has to be small enough so that np/nu is small but not too small
in order to have a small value for |log(np)|/√nu (see Remark 4.3.4, page 135 in
[3]). Interested readers could find more details about the CI building in Chapter
4 of [3].

4 Extreme value application on electrical loads

4.1 Illustration of the GPD procedure for one group

In this section, we select one group, apply the GPD approach on the data and
compute upper confidence interval values for extreme quantiles and endpoint.

The group under study was observed during more than 10 000 flights between
2016 and 2018. To illustrate the results of the methodology, we select one
generator in the permanent mode during the onground phase. For each flight,
we apply a mean time window of T = 150 seconds as detailed in Equation (1).
We apply the GPD approach using the package extRemes [8] in the R software
with the maximum likelihood estimation method.

In the first step, we set threshold u using the graphical diagnostics from
section 3.2. The mean residual life plot is represented by a solid line in Figure
3. We look for a linear trend at the extreme right of this curve. For u between
50% and 63%, the data exhibit such a linear trend. This choice is refined using
Figure 4, where we focus on u between 50% and 63%. According to these plots,
β̂ and ξ̂ reach stability when u > 57.5%, which indicates that the assumption
of GPD is reasonable for u ∈ [57.5%, 60%].

10



0 10 20 30 40 50 60

0
10

30

Threshold

M
ea

n 
E

xc
es

s

Figure 3: Mean residual life plot. We plot u against the mean excess for a range
of threshold values. A linear trend is observed for u > 50% represented by the
dashed line

Table 3 gives the maximum likelihood estimates of β̂ and ξ̂ and confirms the
stability of the estimates for this range of values. Then, we set u = 59.5% and
check whether the model fits the data by using the fitting diagnostic PP-plot
and QQ-plot in Figures 5 and 6, respectively.
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Figure 4: Threshold stability plots for a threshold between 50% and 63% (top
plot for β and bottom plot for ξ). For each value of u the vertical bar represents
the confidence interval of the estimators. Stability of estimators is observed for
u ∈ [57.5%, 60%]
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Table 3: Maximum likelihood estimates of β and ξ for different thresholds u

u(%) β̂ ξ̂

57.5 3 -0.3
58 2.9 -0.2

58.5 2.7 -0.2
59 2.3 -0.2

59.5 2.3 -0.2
60 2.2 -0.2

In both Figures 5 and 6, the point pattern exhibits a 45-degree linear trend.
So the GPD assumption appears reasonable for u = 59.5% and we obtain nu =
150 from n = 18 319.

To align with the safety assumption study, we have to convert our probabil-
ities into probabilities by flight hour. In our case, we recall that the data are
preprocessed by taking the mean of the consumption during a time window of
T = 150 seconds (see Section 2). Therefore, we have 24 observations per hour.
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Figure 5: PP-plot obtained from fitting the GPD using the maximum likeli-
hood method for u = 59.5%. The point pattern falls along the 45-degree line
represented by the black line
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Figure 6: QQ-plot obtained from fitting the GPD using the maximum likelihood
method for u = 59.5%. The point pattern falls along the 45-degree line. The
dashed lines represent the 95% confidence bands based on the Kolmogorov-
Smirnov statistics

Let X1, ..., X24 be the variables observed during a given hour, we want to
compute the probability that their maximum is above the quantile Qp. For a
given probability p to exceed Qp during a period of length T and assuming that
X1, ..., X24 are i.i.d. with the same distribution as X, we can write

P
(

max
i
Xi > Qp

)
= 1− P

(
max
i
Xi ≤ Qp

)
= 1− P (X ≤ Qp)24

= 1− [1− P (X > Qp)]
24

(7)

Let Phour be the probability to exceed Qp in one hour. Then Equation (7)

becomes Phour = 1 − (1− p)24, and we can compute p for a target probabil-
ity Phour. Table 4 shows the results obtained using Equations (3) and (7) to
estimate quantiles associated to the target probabilities.

Table 4: Quantile estimation for different values of Phour

Phour p Qp

10−3 10−5 67.1
10−5 10−7 69.4
10−7 10−9 70.3
10−9 10−11 70.7
10−12 10−14 70.9
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Figure 7: UCI for the quantile associated to the probability 10−7 by flight hour
with respect to the error levels. The green dashed line (resp. blue dotted line)
represent 100% (resp. 90%) of the ELA value

From Table 4 we select the result corresponding to Phour = 10−7 to respect
the aeronautic safety procedure and not increase the probability of losing one
generator.

At the probability 10−7 by flight hour, the maximum ratio for the selected
generator is 70.3%. Using the results from Equation (4) we build UCI at error
levels α = 5×10−2, 10−2, 10−3, 10−5, 10−7, 10−9, 10−12 and plot these UCI with
respect to the error levels. Figure 7 shows a trend from 70.2% to 88.3%.

From Table 3 we see that ξ̂ is always negative and so we can assume that the
endpoint exists and, from Equation (5), is estimated at 71%. Using Equation (6)
we can build a CI around the endpoint estimate. Figure 8 gives the endpoint CI
with respect to the error levels α = 5×10−2, 10−2, 10−3, 10−5, 10−7, 10−9, 10−12.
It shows a trend between 75% and 90%.
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The results from the quantile at Phour = 10−7 and the endpoint are close.
For the group under study, with a reasonable risk error (α = 10−3) and to
remain in accordance with the aeronautic safety procedures (Phour = 10−7), we
can consider a ratio of 80% which means that the ELA is overestimating the
electrical network by 20% with an error level of 10−3 for this group.

Concerning the assumptions advocated at the end of Section 3.2, most are
clearly fulfilled in our context, namely that n = 18 319 and nu = 150 are large
while nu/n = 8 × 10−3 and np/nu = 5 × 10−5 are small. It is not as clear
when it comes to the assumption that |log(np)|/√nu is small since it equals
0.77. It means that the extrapolation should not be pushed further and results
concerning the UCI of extreme quantiles with smaller Phour than 10−7 may not
be valid anymore.

4.2 Global results

Using the EVT on the sampled groups we want to demonstrate that the ELA
is overestimating maximal consumption for all groups. For that, we apply sep-
arately the same procedure to the 8 groups for the flight and onground phases
to estimate extreme quantile, endpoint and their confidence intervals.

We use the same procedure as described in Section 4.1 to set the threshold
and fit the GDP. Table 5 shows the parameter estimates for each group by phase.
We see that the number of observations for the onground phase is smaller than
for the flight phase which is coherent given the length of the two phases. All ξ̂
are negative which implies a finite endpoint for all groups in both phases.

To compare the maximal electrical consumption between groups we need
to compute the extreme quantiles and endpoint ratios by groups. Let Q̂10−7

be the estimated extreme quantile associated to Phour = 10−7 and UCI10−3 its
UCI at error level α = 10−3. Let CI10−3 be the CI at error level α = 10−3 for
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Table 5: Maximum likelihood estimates β̂ and ξ̂ by group for the flight and
onground phases

Group
Flight phase Onground phase

n nu nu/n β̂ ξ̂ n nu nu/n β̂ ξ̂

1 227 988 316 0.001 2.23 -0.18 18 319 150 0.008 2.47 -0.24
2 35 504 150 0.004 3.46 -0.41 4 701 150 0.032 1.96 -0.24
3 232 296 150 0.001 2.2 -0.33 24 349 13 0.001 2.75 -0.34
4 113 787 200 0.002 1.64 -0.16 20 355 637 0.031 2.19 -0.16
5 455 263 430 0.001 1.91 -0.23 84 267 26 0.000 3.64 -0.44
6 123 430 600 0.005 3.19 -0.24 13 987 500 0.036 2.05 -0.21
7 38 063 150 0.004 2.1 -0.3 5 728 80 0.014 1.76 -0.35
8 40 104 120 0.003 3.15 -0.28 2 935 50 0.017 1.19 -0.22

the estimated endpoint X̂∗. The quantiles and endpoints estimates are given in
Tables 6 and 7. Concerning the assumptions advocated at the end of Section
3.2, we can see that not all of them are fulfilled for all groups. The size n is
large and the ratios nu/n and np/nu are small in all situations. But the size
nu is quite small and |log(np)|/√nu is quite large for the groups 3, 5, 7 and 8
for the onground phase. It means that the results concerning the UCI of the
quantiles and the endpoints for these three groups during the onground phase
have to be interpreted with caution. It also justifies the interest of gathering
the different groups and phases if the results are sufficiently similar.

Table 6: Quantiles associated to the probability 10−7 by flight hour and its UCI
at error level of 10−3 by group for the flight and onground phases

Group
Flight phase Onground phase

X̂10−7 UCI10−3 X̂10−7 UCI10−3

1 67.3 75.2 69.5 75.7
2 70.3 72.2 68.5 73.5
3 69.5 71.8 74.2 83.0
4 65.3 75.4 69.5 77.2
5 69.1 72.2 72.6 76.8
6 70.9 75.2 72.1 76.0
7 67.4 70.4 70.3 72.3
8 71.9 77.7 66.0 73.0
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Table 7: Endpoints and its CI at error level 10−3 by group for the flight and
onground phases

Group
Flight phase Onground phase

X̂∗ CI10−3 X̂∗ CI10−3

1 68.5 75.9 69.8 75.6
2 70.3 72.1 68.7 73.4
3 69.7 71.8 74.4 82.6
4 66.6 76.1 70.6 77.8
5 69.6 72.5 72.7 76.6
6 71.4 75.5 72.4 76.1
7 67.5 70.3 70.3 72.2
8 72.2 77.5 66.2 72.8

We observe that Q̂10−7 and X̂∗ are close. This can be explained by the
fact that we are computing quantiles associated to p = 10−9 to get the target
probability 10−7 by flight hours and this probability is so small that we almost
reach the endpoint. We see that the CI of the endpoint ratios by groups are
aligned in a range of 70%− 83% which confirms our assumptions that the ELA
overestimates the electrical consumption for permanent loads in nominal mode
for the observed groups.

The largest endpoint ratio observed is 78% and 83% respectively for flight
and onground phases but the ratio varies from one group to another. The final
aim of this work is to generalize the observed ratio to all operational aircraft and
to size the future aircraft generator. For that, we need to test if the endpoints
can be considered the same for the different groups.

To this end we use an asymptotic chi-square test developed in [4]. This
test checks the equality of the endpoints for independent random samples. We
apply this test to check the equality of the group endpoints. We can consider
that the assumption of independence between groups is satisfied as the electrical
consumption of one group does not depend on the consumption of another. Let
x∗j be the endpoint of the jth group with j = 1, . . . , 8. We consider the following
hypotheses {

H0 : x∗1 = · · · = x∗8
H1 : the x∗j are not all equal.

The test statistic is

S = d

8∑
j=1

rj(X̂
∗
j − X̃)2

where X̃ =
8∑
j=1

rjX̂
∗
j , with rj =

dj
d

, d =
8∑
j=1

dj , dj =
nju

β̂2
j τ(ξ̂2j )

and τ(ξ̂j)
2 =

2 + 2ξ−1j + 5ξ−2j + 4ξ−3j + ξ−4j , where nju (resp. ξ̂j and β̂j) are the number of
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observations that exceed threshold u (resp. the shape and the scale estimators)
for group j.

Under H0, [4] demonstrates that the test statistic S follows a chi-square
distribution with 7 degrees of freedom. We reject H0 at level α if S > qχ2

7(1−α)
where qχ2

7(1−α) stand for the (1−α)-quantile of the chi-square distribution with
7 degrees of freedom.

The result of this statistical test is given in Table 8. The p-values for both
phases are greater than 0.05 hence the hypothesis that the endpoints are equal
is not rejected with a 5% risk error.

Table 8: Chi-square test for groups endpoint equality in flight and onground
phases

Group X̂∗ flight X̂∗ onground

1 68.5 69.8
2 70.3 68.7
3 69.7 74.4
4 66.6 70.6
5 69.6 72.7
6 71.4 72.4
7 67.5 70.3
8 72.2 66.2
S 11.7 13.1

p-value 0.11 0.07
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Figure 9: Endpoints and their CI by group for the flight phase represented by
the dashed bars
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Table 9: Parameters, quantiles, endpoint estimates and their confidence interval
for gathered group by phase

Phase n nu nu/n β̂ ξ̂ X̂10−7 UCI10−3 X̂∗ CI10−3

Flight 1 266 435 335 0.000 1.84 -0.24 71.5 74.7 71.6 74.6
Onground 174 640 120 0.001 1.45 -0.2 73.3 79.7 73.5 79.6
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Figure 10: Endpoints and their CI by group for the onground phase represented
by the dashed bars

We do not reject that group endpoints are equal (for both phases) which
means that the largest possible value of the maximum of electrical network
consumption divided by the ELA value does not depend on the groups. This
result can also be deduced from Figures 9 and 10 where the endpoints estimates
are represented by dots and the corresponding CI by dashed bars. These figures
are graphical representations in connection with the chi-square test results and
help us to check the equality of endpoints. We confirm graphically the equality
of endpoints for both phases since the CI intersect with each other on the two
figures.

As the endpoints equality test suggests that there is no effect of the group
on the estimated ratio, we gather all groups and estimate a global ratio taking
into account all groups. We apply the EVT separately to the flight and the
onground phases. The parameters, extreme quantiles, endpoints estimates and
their CI are given in Table 9. It shows that we still have a negative ξ̂ and thus a
finite endpoint. The ratio estimates of extreme quantile and endpoint are close
and around 75% for the flight phase and around 80% for the onground phase.
Comparing to the ratios found in Table 7 the results are aligned.

To go further in generalizing this ratio and since the endpoints for flight and
onground phase are close we check if the endpoints are equal. Table 10 provides
the results of the chi-square test of endpoint equality between the flight and
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the onground phases. The test illustrates that we cannot reject the equality of
endpoints at 5% error level and thus the estimated ratio can be considered as
independent of the phase.

Table 10: Chi-square test for phases endpoint equality

Phase X̂∗

Flight 71.6
Onground 73.5
S 0.8
p-value 0.381

From this result we gather also the two phases and apply the EVT on the
gathered groups with no distinction between flight and onground phases. Table
11 shows the maximum likelihood estimates of the parameters β and ξ for the
gathered groups and phases, we still have ξ̂ < 0 and thus consider a finite
endpoint.

Table 11: Parameters estimates associated to the gathered groups and phases

n nu nu/n β̂ ξ̂

1 441 076 500 0.000 1.5 -0.13
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Figure 11: UCI for the quantile associated to the probability 10−7 by flight hour
with respect to the error levels for the gathered groups and phases. The dotted
line represents the maximum ratio obtained
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Figure 12: CI for the endpoint with respect to the error levels for the gathered
groups and phases. The dotted line represents the maximum endpoint ratio
obtained

The extreme quantile is estimated at 72.9% and the endpoint at 74.3%.
The UCI and CI are given in Figures 11 and 12 where we vary the error levels
α = 5 × 10−2, 10−2, 10−3, 10−5, 10−7, 10−9, 10−12 and plot the UCI of extreme
quantile and CI of the endpoint with respect to the error level. As could be
expected, we observe an increasing trend for extreme quantile and endpoint
ratios. They both vary from 75% to 87%. We see that for the error level
α = 10−3 we have a ratio of 80% which is in line with the previous results.

In all applications of the EVT, by groups and on gathered data, we get a
maximal ratio of 80% for an error level 10−3. From these results we can consider
a ratio of 80% for the generator with permanent loads in nominal mode.

5 Conclusion

In this paper, we use the extreme value theory to estimate extreme ratios as-
sociated to probability 10−7 by flight hour and endpoint ratios, we also build
confidence intervals at error level 10−3 to check whether the ELA overestimates
the maximal consumption. We detail the statistical procedure for permanent
loads of a generator in the nominal mode for a specific group. Then, we apply
the EVT to 8 groups and demonstrate that the largest ratio is around 83% for
the permanent loads in the nominal mode.

To generalize this gap to all operational aircraft and to size the future air-
craft generators, we do an asymptotic chi-square test to check that the group
endpoints are equal. The endpoints equality is not rejected for both phases
which means that there is no group effect on the ratio endpoint. Then we
gather all groups to estimate extreme quantiles and endpoint ratios for each of
the two phases and we end up with a ratio of 75% for flight phase and 80% for
the onground phase. To obtain a global ratio, we check if there is a difference
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between the flight and onground phases using the endpoint equality test. Again
the equality assumption is not rejected and after gathering the two phases, we
obtain an endpoint ratio of 80%.

Using a statistical approach, we quantify how much the ELA overestimates
the maximal electrical consumption of the generator. For instance, with an
error level of 10−3 for permanent loads in the nominal mode, our study leads to
an excess of 20% for the considered generator.

However, the study only relies on permanent loads in the nominal mode
for low-cost aircraft. To complete the electrical network assessment, we need
to incorporate also non low-cost aircraft in our analysis and extend the study
to the intermittent loads and failure modes. In particular, future work should
focus on the degraded mode (loss of generators) to size the generators.
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Abbreviations

AC Alternating Current

APU Auxiliary Power Unit

CI Confidence Interval

ELA Electrical Load Analysis

EVT Extreme Value Theory

i.i.d. independent and identically distributed

GEV Generalized Extreme Value

GPD Generalized Pareto Distribution

KVA Kilo-Volt-Ampere

min minutes

PP-plot Probability-Probability plot

QQ-plot Quantile-Quantile plot

RAT Ram Air Turbine

sec seconds

UCI Upper Confidence Interval
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