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Abstract

This paper provides new identification results for finite mixtures of Markov processes.
Our arguments yield identification from knowledge of the cross-sectional distribution
of three (or more) effective time-series observations under simple conditions. We
explain how our approach and results are different from those in previous work by
Kasahara and Shimotsu (2009) and Hu and Shum (2012). Most notably, outside
information, such as monotonicity restrictions that link conditional distributions to
latent types, is not needed.
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Introduction

The analysis of dynamic discrete choices from short panel data is fundamental in applied

work. Allowing for unobserved heterogeneity in such a setting is recognized to be important

(Heckman 1981) but doing so in a flexible manner is known to be difficult. A leading

paradigm is to presume that the population of agents is composed of a finite number of

(latent) types, implying that the (marginal) distribution of the data takes the form of
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a finite mixture. Keane and Wolpin (1997), Eckstein and Wolpin (1999), Crawford and

Schum (2005), Wang (2014), Nevo, Turner and Williams (2016), and Rossi (2017) are

examples of papers that have taken this route.

In earlier work, Kasahara and Shimotsu (2009) have studied the identifiability of finite

mixtures of first-order Markov processes. Their result is commonly invoked in the literature

to claim identification; see, e.g., Arcidiacono and Miller (2011), Baum-Snow and Pavan

(2012), Norets and Tang (2014), Chen (2017), Kalouptsidi, Scott and Souza-Rodrigues

(2020), Kalouptsidi, Kitamura, Lima and Souza-Rodrigues (2021). The approach taken in

Kasahara and Shimotsu (2009) closely follows work on (static) multivariate models with

latent variables (in particular Anderson 1954 and Hall and Zhou 2003). Moreover, they

exploit implications of the dynamic model to which the machinery for identification in the

static case can be applied. These restrictions are, however, not sufficient to recover the

type-specific distributions or the mixing distribution. This issue does not seem to be well

appreciated and is a subtle consequence of the fact that the labelling of types is arbitrary,

and can be changed without observable implications. We discuss this in more detail below.

Hu and Shum (2012) follow a similar strategy to Kasahara and Shimotsu (2009), relying on

restrictions inspired by the approach of Hu (2008). These restrictions again do not suffice

to obtain identification. To resolve the issue, Hu and Shum (2012) supplement the model

with outside information in the form of a set of monotonicity restrictions that link latent

types to observable choices. Aside from practical issues that arise when taking such an

approach to the data, monotonicity conditions may be difficult to justify or may simply

not be available in many applications.

We develop a new identification argument that shows that the type-specific transition

kernels, the type-specific distributions of the initial condition, and the mixing distribution

are all recoverable from knowledge of the cross-sectional distribution of as little as four

time-series observations under three simple conditions which ensure that the type-specific

Markov processes are sufficiently different. Like Kasahara and Shimotsu (2009) and Hu

and Shum (2012), we, too, exploit (different) multilinear restrictions that are reminiscent

of those employed in the literature on multivariate mixtures (Bonhomme, Jochmans and
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Robin 2016). However, these are only a subset of a larger set of restrictions implied by

the Markovian structure of the model. While the subset of restrictions alone does not fully

identify the unknown distributions, the full set of restrictions does. Identification is achieved

without the need to impose additional structure, such as monotonicity restrictions. Our

arguments also extend naturally to models with higher-order Markovian dependence. The

general conclusion, then, is that mixtures of p-th order Markov processes can be identified

from the cross-sectional distribution of 3 + p time-series observations.

The model is introduced in Section 1. Our assumptions and identification argument

are presented in Section 2. A detailed comparison with the assumptions and approaches of

Kasahara and Shimotsu (2009) and Hu and Shum (2012) is made in Section 3. We illustrate

our assumptions in specific examples in Section 4. We show how our approach extends to

models with higher-order Markovian dependence in Section 5. A short conclusion ends

the paper. Appendices collect an auxiliary lemma and details on maximum-likelihood

estimation via the EM algorithm.

1 Mixtures of dynamic discrete choices

Suppose that Z is a latent random variable that can take on q values, where q is a known

integer. We normalize its support to the set of integers up to q, which is without loss of

generality, and write µ1, . . . , µq for its probability mass function. So, µz := P(Z = z) > 0

for 1 ≤ z ≤ q and zero otherwise. Next let {Xt} be a sequence of observable random

variables that can take on r values. We presume that its support constitutes the set of

integers up to r. This is merely for notational convenience in what is to follow; translation

of the support to a general set is straightforward. Conditional on Z = z, the sequence

{Xt} follows a first-order Markov process. The process is initialized with a draw from the

distribution

sz(x) := P(X1 = x|Z = z),
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and subsequently evolves according to the time-homogeneous transition kernel

kz(x, x
′) := P(Xt = x′|Xt−1 = x, Z = z).

This delivers a dynamic model of discrete choice with unobserved heterogeneity captured

by a mixture over q latent types. The dynamic processes are allowed to be non-stationary

in that the initial conditions are not assumed to have been drawn from the steady-state

distribution.

Our goal is to recover the distribution of the latent types, µ1, . . . , µq, the distributions

of the initial conditions, s1, . . . , sq, and the transition kernels, k1, . . . , kq, from knowledge of

the joint distribution of X1, X2, X3, X4. Our arguments to follow can be generalized to the

case where additional time-series observations are available and we discuss how to do so

below. As latent types can be relabelled without any observable implications, identification

here is to be understood as being up to an arbitrary re-ordering of types.

Before turning to the identification analysis it is useful to point out that restricting

attention to univariate variables is without loss of generality. To see this, suppose that

we are interested in a sequence of k-dimensional vectors Vt whose entries can take on,

respectively, r1, . . . , rk values. Then we can always enumerate all values in the state space

of Vt and define a scalar random variable Xt on this set of numbers that is a (known)

one-to-one transformation of Vt. This random variable can take on r = r1× . . .×rk values.

Identification of a mixture on Xt then implies identification of the corresponding mixture

on Vt. As will become apparent below, a larger r can only make the identification problem

easier, and so observing more variables is helpful for identification. This connects to the

discussion in Hall and Zhou (2003) and Hall, Neeman, Pakyari and Elmore (2005) on the

identification power of multivariate mixtures. It might be the case that, for a partitioning

of Vt into Yt and Wt, the ultimate goal is to recover the (type-specific) distribution of the

initial condition and the transition kernel of Yt conditional on Wt. Here, Yt is the outcome

of interest while Wt plays the role of covariates. This corresponds to the point of view

in Kasahara and Shimotsu (2009). Such conditional distributions are, of course, identified

once the joint distribution is.
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2 Identification

Assumptions. Our constructive identification approach employs three assumptions. We

first introduce notation for probabilities that involve only observable variables. We will use

the shorthands px1,x2 := P(X1 = x1, X2 = x2) and px1,x2,x3 := P(X1 = x1, X2 = x2, X3 = x3)

as well as px1,x2,x3,x4 := P(X1 = x1, X2 = x2, X3 = x3, X4 = x4). First, we collect all the

bivariate probabilities into the two sets of r-vectors p1, . . . ,pr and p∗1, . . . ,p
∗
r, where we

write

px := (p1,x, . . . , pr,x)
>, p∗x := (px,1, . . . , px,r)

>.

Note that px 6= p∗x, in general. Similarly, we construct r×r matrices P 1, . . . ,P r containing

trivariate probabilities, letting

(P x)i,j := pj,x,i.

Finally, we do the same for probabilities involving all four periods, by introducing the r× r

matrices

(P x,x′)i,j := pj,x,x′,i,

with (x, x′) ranging over all the r2 possibilities. The probabilities involved here are all

nonparametrically identified and these matrices may thus all be considered known for our

purposes.

Our first assumption is a rank condition that is directly testable from the data.

Assumption 1. For each x the r × r matrix P x has rank q.

A necessary condition for this assumption to hold is that r ≥ q. The decomposition in

Equation (2.1) below shows that the main implication of Assumption 1 is that, for each x,

the conditional distributions of Xt given Xt−1 = x and Z = z (seen as a function of z) are

linearly independent.

To state our remaining assumptions we let

kmz (x;x1, . . . , xm;x′) := kz(x, x1)

(
m−1×
i=1

kz(xi, xi+1)

)
kz(xm, x

′),
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be the probability of the walk from x to x′ via the m intermediate stops x1, . . . , xm through

the Markov chain of type z. To cover walks that go directly from x to x′, that is, without

passing through any intermediate points, we adopt the convention that k0
z(x;x′) = kz(x, x

′).

So, m can be any non-negative integer.

Our second assumption involves walks from x back to x. For each triplet (z, x,m), let

f z,x,m be the vector that contains the probabilities kmz (x;x1, . . . , xm;x) across all possible

sequences x1, . . . , xm. Next collect these vectors across the q different types in the matrix

F x,m := (f 1,x,m, . . . ,f q,x,m).

For example, F x,0 = (k1(x, x), . . . , kq(x, x)). For m > 0 F x,m has as many rows as there

are unique sequences x1, . . . , xm.

Assumption 2. For each x there exists an integer m̄ such that the columns of the matrix

F x := (F>x,0, . . . ,F
>
x,m̄)>

are all distinct.

This requirement is quite weak. A simple sufficient (but substantially too strong) condition

for Assumption 2 to go through is that, for each x, there exists a walk from x going back

to x that occurs with a different probability for each type.

Our last assumption concerns a point x0 and walks between it and all other points x.

Assumption 3. There exists a value x0 such that for each x 6= x0 there exists a finite

non-negative integer m such that

(i) kmz (x0;x1, . . . , xm;x) or (ii) kmz (x;x1, . . . , xm;x0)

is non-zero for some sequence x1, . . . , xm for each z. The sequence x1, . . . , xm and its length

m may be different for the different x.

Assumption 3 requires that we can connect the value x0 to all other values x 6= x0 by

some walk for all types. Only a single such x0 is required. The developments to follow will

make it apparent that evaluating whether any particular sequence of values satisfies this

assumption can be done by testing whether a collection of q × q matrices have maximal

rank.
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Identification. We now proceed to establish identification. The proof can be broken

down into four logical steps. In the first step we show that the model gives rise to a set

of multilinear restrictions. In this format it becomes apparent that model parameters are

identified if we are able to recover a collection of matrices up to a common permutation of

their columns. In the second step we show that a subset of these multilinear restrictions can

be used to recover each of these matrices up to an arbitrary permutation of their columns.

In the third step we use the remaining multilinear restrictions to enforce an ordering on

the columns that is common across matrices. In the fourth and final step we back out the

parameters of our model.

1) Multilinear restrictions. We begin by constructing, for each x, the r × q matrices Kx

and Lx as

(Kx)x′,z := kz(x, x
′), (Lx)x′,z := µz sz(x

′) kz(x
′, x).

Next, we appeal to the Markovian structure of our model to see that, for each x, the

factorization

P x = KxL
>
x (2.1)

holds. Assumption 1 states that each r × r matrix P x has rank equal to q. Hence, it has

the singular-value decomposition

P x = UxExV
>
x ,

for unitary r× q matrices of, respectively, left and right singular vectors, Ux and V x, and

q×q diagonal matrices Ex of singular values. It then follows that, if we use the shorthands

Ax := E−1/2
x U>x and Bx := E−1/2

x V >x ,

AxP xB
>
x = Iq, (2.2)

with Iq being the q × q identity matrix. Now introduce the q × q matrix Qx := AxKx.

Combining Equation (2.1) with Equation (2.2) reveals that

Iq = AxP xB
>
x = (AxKx)(BxLx)

> = QxQ
−1
x ,
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and so Q−>x = BxLx must hold. Here, and later we use the superscript −> as a notational

shorthand for the inverse of a matrix transpose, i.e., Q−>x = (Q>x )−1.

We now turn to the distribution of all four observable variables. Notice that, in the

same way as before,

P x,x′ = Kx′Dx,x′L
>
x ,

where Dx,x′ := diag(k1(x, x′), . . . , kq(x, x
′)) collects the transition probabilities from state

x to x′ for each of the different types z. Hence,

Cx,x′ := Ax′P x,x′B
>
x = Qx′Dx,x′Q

−1
x (2.3)

for all (x, x′). If we can recover the matrices Qx for all x we can invert the above system

for each pair (x, x′) to identify the matrix Dx,x′ and, consequently the transition kernel kz

for each z. Identification of the remaining parameters of the model then follows readily.

We thus next set out to recover Qx for all x. Note that we can at best hope to recover

these matrices up to a common permutation of their columns, as Equation (2.3) is invariant

to such a permutation. Also note that it does not suffice to recover Qx and Qx′ up to a

different permutation of their columns, as this is insufficient to be able to solve Equation

(2.3) for the transition kernels.

2) Identification of Q1, . . . ,Qr up to arbitrary permutation matrices. A first implication

of Equation (2.3) is that Cx,x = QxDx,xQ
−1
x , so that Qx is a matrix of eigenvectors.

Furthermore, we also have that, for each x and all x1,

Cx1,xCx,x1 = (QxDx1,x
Q−1
x1

) (Qx1Dx,x1
Q−1
x ) = Qx(Dx,x1

Dx1,x
)Q−1

x

and, more generally, that for each x and for any sequence of m values x1, . . . , xm,

Cxm,xCxm−1,xm · · ·Cx1,x2Cx,x1 = Qx(Dx,x1
Dx1,x2

· · ·Dxm−1,xm
Dxm,x)Q

−1
x .

That is, Qx is a joint diagonalizer of a set of matrices. Notice that the z-th diagonal

entry of Dx,x1
Dx1,x2

· · ·Dxm−1,xm
Dxm,x is kmz (x;x1, . . . , xm;x). Moreover, the eigenvalues

of the set of matrices Cxm,xCxm−1,xm · · ·Cx1,x2Cx,x1 (as a function of x1, . . . , xm) are the

rows of the matrix F x,m. Further, because the joint diagonalizer is independent of m, the
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same Qx equally diagonalizes the matrices Cx′
m′ ,x
Cx′

m′−1
,x′

m′
· · ·Cx′1,x

′
2
Cx,x′1

(as a function

of x′1, . . . , x
′
m′) for any different walk length m′. Take the set of all walk lengths from

zero to m̄. This delivers a joint diagonalization problem whose eigenvalues are the rows

of the matrix F x. By Assumption 2 there exists an m̄ for which the columns of F x are

all distinct. It then follows from Theorem 6.1 of De Lathauwer, De Moor and Vandewalle

(2004) that the matrix Qx is unique up to the scale and ordering of its columns. That is, a

joint diagonalization problem identifies the matrix Q̃x := QxΩx∆x, where Ωx is a diagonal

scaling matrix and ∆x is a permutation matrix.

The diagonal matrix Ωx can be recovered, up to permutation of the entries on its

diagonal, from the observation that

ux := Bx px = BxLx ιq = Q−>x ιq,

where the first transition uses the model structure, the second follows from the definition

of Qx, and ιq denotes the q-vector of ones. Moreover,

Q̃
>
xux = ∆−1

x Ωxιq = ∆−1
x Ωx∆xιq,

using that each row of any permutation matrix sums to unity. It is easy to see that the

matrix ∆−1
x Ωx∆x on the right-hand side is diagonal; a proof is provided in Lemma A.1 in

the Appendix. We, therefore, indeed recover

Ω̃x := ∆−1
x Ωx∆x

for all x.

3) Identification of the joint eigenvectors up to a common permutation. Moving on, take

a particular x and let the value x0 and the sequence x1, . . . , xm be such that Condition (i)

in Assumption 3 is satisfied for this x; working with Condition (ii) instead of Condition (i)

is analogous and is, therefore, not dealt with further. Using the same argument as before

it is easy to see that a second implication of Equation (2.3) is that

D̃x0,x := Q̃
−1

x (Cxm,xCxm−1,xm · · ·Cx0,x1) Q̃x0 = ∆−1
x Ḋx0,x∆x0

,
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where the matrices Ḋx0,x := Ωx0
(Dx0,x1

Dx1,x2
· · ·Dxm,x) Ω−1

x are diagonal. We can write

D̃x0,x = ∆−1
x Ḋx0,x∆x0

= ∆−1
x ∆x0

(∆−1
x0
Ḋx0,x∆x0

). (2.4)

Note that the matrix ∆−1
x ∆x0

is a product of permutation matrices and, hence, is itself a

permutation matrix. Therefore, D̃x0,x is equal to ∆−1
x0
Ḋx0,x∆x0

up to ordering of the rows.

The latter matrix is diagonal. The diagonal entries of ∆−1
x0
Ḋx0,x∆x0

are thus identified by

the column sums of the matrix D̃x0,x. From Equation (2.4), coupled with Assumption 3,

it follows that

Hx,x0 := ∆−1
x ∆x0

= D̃x0,x(∆
−1
x0
Ḋx0,x∆x0

)−1

is identified for all x. With these matrices in hand we may re-arrange the diagonal entries

of the scaling matrices in a common order, as

H−1
x,x0

Ω̃xHx,x0 = ∆−1
x0

Ωx∆x0 =: Ω̄x,

and subsequently recover

Q̄x := Q̃xHx,x0Ω̄
−1
x = Qx∆x0 .

Now, because Assumption 3 is satisfied for each x 6= x0 we can repeat the same argument

for each x 6= x0. Thus, we have identified the matrices of joint eigenvectors Q1, . . . ,Qr up

to a common permutation of their columns. We can now recover the parameters of our

mixture model, up to the permutation ∆x0 .

4) Identification of the model parameters. First, from Equation (2.3) we recover the

transition kernels as

Q̄
−1
x′ Cx,x′Q̄x = ∆−1

x0
Dx,x′∆x0 =: D̄x,x′ .

Because the diagonal of Dx,x′ constitutes the x′-th row of matrix Kx, knowledge of D̄x,x′

for all (x, x′) allows us to construct the matrix K̄x := Kx∆x0 for each x. Next, the Markov

structure of the model implies that

p∗x = Kxλx,

where λx := (s1(x)µ1, . . . , sq(x)µq)
>. By consequence of Assumption 1, each Kx has

maximal column rank. Letting a + superscript on a matrix indicate its left inverse, we
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may thus calculate

K̄
+
x p
∗
x = ∆−1

x0
K+

x p
∗
x = ∆−1

x0
λx =: λ̄x,

for each x. Collecting Λ̄ := (λ̄1, . . . , λ̄r)
> yields the joint distribution of types and initial

conditions. Indeed, with Λ := (λ1, . . . ,λr)
>, we see that Λ̄ = Λ∆x0 . Finally, letting

µ := (µ1, . . . , µq)
> and S := (s1, . . . , sq), where sz := (sz(1), . . . , sz(r))

> is the distribution

of the initial condition for type z, we first recover the distribution of latent types by

averaging-out the initial condition, as in

Λ̄
>
ιr = ∆−1

x0
Λ>ιr = ∆−1

x0
µ =: µ̄,

and then recover the type-specific distributions of the initial condition as

Λ̄ diag(µ̄)−1 = Λ∆x0 ∆−1
x0

diag(µ)−1∆x0 = Λ diag(µ)−1 ∆x0 = S∆x0 =: S̄,

which uses the fact that Λ = S diag(µ) by definition and diag(µ̄) = ∆−1
x0

diag(µ)∆x0 .

We have shown the following result.

Theorem 1. Let Assumptions 1–3 hold. Then the distributions of the initial condition,

sz, the transition kernels, kz, and the type probabilities, µz, may all be identified, up to a

common permutation of the latent types, from the distribution of four consecutive observa-

tions.

Remark. Having access to longer time series allows to weaken Assumption 1. Say we have

access to the joint distribution ofX1, . . . , XT . Let b·c denote the floor function. Redefine the

matrixKx to let its z-th column be the (vectorized) distribution ofXbT/2c+1, . . . , XT−1 given

XbT/2c = x and Z = z. A typical entry of this matrix in column z has the multiplicative

structure

kz(x, x1)
b(T−1)/2c−1

×
i=1

kz(xi, xi+1)

and depends only on the number of time periods involved. Conformably redefine the

matrix Lx so that its z-th column reflects the joint distribution of X1, . . . , XbT/2c and Z at

XbT/2c = x and Z = z. Then we can mimic the proof of Theorem 1 with P x being the
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joint distribution of X1, . . . , XT−1 at XbT/2c = x and P x,x′ being the joint distribution of

X1, . . . , XT at XbT/2c = x and XbT/2c+1 = x′, both arranged as two-way tables. Indeed, we

again have that

P x = KxL
>
x , P x,x′ = Kx′Dx,x′L

>
x .

Assumption 1 now involves matrices that are of dimension r(T−2)/2 × r(T−2)/2 when T is

even and of dimension r(T−1)/2 × r(T−3)/2 when T is odd. Assumptions 2 and 3 require no

modification.

The above discussion yields the following corollary

Corollary 1. The maximum number of types that can be accommodated in our framework

equals r(T−2)/2 when T is even and r(T−3)/2 when T is odd.

It is also useful to note that under Assumption 1 the number of types is identified as the

rank of P x.

3 Comparison to prior work

Kasahara and Shimotsu (2009). Identification of mixtures of dynamic discrete choices

has previously been considered by Kasahara and Shimotsu (2009). Their Proposition 6

provides an identification result for the matrix of transition probabilitiesKx and the vector

of joint probabilities λx for a fixed value x from the joint distribution of six outcomes. The

conditions under which this result is obtained are (in our notation) that (i) the vector λx

only has positive entries; (ii) there exists a collection of points x1, . . . , xq−1 such that the

q × q matrix Mx with

(Mx)z,i :=

 1 if i = 1

kz(x, xi−1) kz(xi−1, x) if i > 1

is invertible; and (iii) for some x′, kz(x, x
′) > 0 for all z and kz(x, x

′) 6= kz′(x, x
′) for all

z′ 6= z.

The approach of Kasahara and Shimotsu (2009) is built around the observation that

the joint distribution of X2, X4, X6, conditional on the fact that X1, X3, X5 all take on the
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value x, factors as a static tri-variate mixture. This argument works around the Markovian

dependence, whereas ours exploits it. It also makes clear why they require six time-series

observations as opposed to our four.

The difference between the approach of Kasahara and Shimotsu (2009) and ours makes

a precise comparison between the requirements underlying them difficult. Still, in the

argument of Kasahara and Shimotsu (2009), Conditions (i) and (ii) play a similar role to

does our Assumption 1, although we do not require Condition (i) and our techniques avoid

the need to work with only a subset of the support points to ensure that the resulting

matrix is square. Condition (iii), in turn, is used by Kasahara and Shimotsu (2009) to

ensure uniqueness of an eigendecomposition. As such it fulfills the role of our Assumption

2 in their context. Condition (iii) is too strong for that purpose, however. Indeed, a look at

their proof shows that their result continues to go through under the weaker requirement

that the columns of Kx are all distinct. This follows from an application of Theorem 6.1

of De Lathauwer, De Moor and Vandewalle (2004) to their set of multilinear restrictions.

Kasahara and Shimotsu (2009) have no analog of our Assumption 3 as their argument is

for a given value x.

If Conditions (i)–(iii) hold for all x Proposition 6 of Kasahara and Shimotsu (2009)

can be applied to each of them (see, e.g., the discussion in Kasahara and Shimotsu (2009,

Remark 5(iii))). Identification here is up to an arbitrary ordering of the latent types,

however, and separate application of their Proposition 6 does not ensure that the same

ordering of latent types is recovered in all of the cases. Hence, this argument only identifies

K1∆1, . . . ,Kr∆r and ∆−1
1 λ1, . . . ,∆

−1
r λr, where ∆1, . . . ,∆r are arbitrary permutation

matrices. This does not suffice to reconstruct the transition kernels, nor does it lead to

identification of the distributions of the initial condition or the distribution of the latent

types.

Hu and Shum (2012). In related work, Hu and Shum (2012) entertain a framework

where, in addition to the observable variables, the latent types themselves, too, may follow a

first-order Markov process. This nests our specification. On the other hand, their approach
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requires that r = q, i.e., that the observable variables cannot take on more values than

there are latent types. This is a substantial restriction that, together with Assumption

1, implies that the matrices P 1, . . . ,P r are invertible, which is crucial in the argument

of Hu and Shum (2012). Their technique could be applied after binning the r support

points into q bins, but this would not yield identification of the model on the original data.

The requirement that r = q is not imposed here. Moreover, our derivations highlight the

identifying power of having r > q.

Hu and Shum (2012) recover the unknown probabilities from the distribution of only

four outcomes, as do we. To do so they impose, along with Assumption 1, the requirement

that, for each x, there exists an x′ and a pair (x1, x2) 6= (x′, x) such that kz(x
′, x), kz(x1, x),

kz(x
′, x2), and kz(x1, x2) are all strictly positive for all z, and that, in addition, it holds

that
kz(x

′, x) kz(x1, x2)

kz(x′, x2) kz(x1, x)
6= kz′(x

′, x) kz′(x1, x2)

kz′(x′, x2) kz′(x1, x)

for all z 6= z′. The first of these two conditions is used to set up a matrix-diagonalization

problem. It states that, for every x, there exist two states, x′ and x1, from which x can

be reached by all types, and that there exists another state, x2, which is equally reachable

from these starting points by all types. Our results here reveal that such restrictions are

unnecessary to achieve identification in our setup. The second condition further requires

the transition probabilities along these states to be sufficiently different for different latent

types. This condition is used by Hu and Shum (2012) to ensure uniqueness (up to scale

and permutation) of the eigenvectors in their diagonalization problem. As such, it plays a

similar role as our Assumption 2. However, our Assumption 2 is arguably weaker in that

it only requires there to exist (collections of) walks along the type-specific Markov chains

that occur with different probability for the different types. Moreover, we use different

multilinear restrictions and exploit many of them through a joint diagonalization system,

which demands weaker restrictions on the associated eigenvalues.

Under these conditions, Hu and Shum (2012, Lemma 3 and Corollary 2) establish an

analog of Kasahara and Shimotsu (2009, Proposition 6), recovering K1∆1, . . . ,Kr∆r and

∆−1
1 λ1, . . . ,∆

−1
r λr for unknown permutation matrices ∆1, . . . ,∆r. To be able to proceed
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further, they additionally assume that, for each x, there exists a functional, say the mean,

δx,z :=
r∑

x′=1

kz(x, x
′)x′,

for which it is known that δx,1 < · · · < δx,q. This assigns empirical content to the types.

Moreover, it allows to recover the matrices K1, . . . ,Kr with their columns arranged in a

common order, thereby resolving the remaining ambiguity and establishing identification.

Our Theorem 1 shows that, under Assumption 3, a common (albeit arbitrary) ordering is

identified from the data. Therefore, monotonicity restrictions that link types to outcomes

can be dispensed with.

4 Illustrations

Dynamic binary choice. The most basic situation that fits our setup has both binary

observables and binary type heterogeneity. Given adding-up constraints, the model depends

on the success probabilities ωz := kz(1, 2), $z := kz(2, 2), and πz = sz(1) for z ∈ {1, 2},

and the single mixing proportion µ1.

With four times periods we have

P 1 =

 (1− ω1) (1− ω2)

ω1 ω2

 µ1 0

0 1− µ1

 π1 (1− ω1) π2 (1− ω2)

(1− π1) (1−$1) (1− π2) (1−$2)

>

and

P 2 =

 (1−$1) (1−$2)

$1 $2

 µ1 0

0 1− µ1

 π1 ω1 π2 ω2

(1− π1)$1 (1− π2)$2

> .
Assumption 1 requires these matrices to have full rank. Equivalently, all matrices on the

right-hand side need to be invertible. Given that 0 < µ1 < 1, P 1 is invertible if and only if

ω1 6= ω2, π1 (1− ω1) (1− π2) (1−$2) 6= π2 (1− ω2) (1− π1) (1−$1) (4.5)

Similarly, P 2 is invertible if and only if

$1 6= $2, π1 ω1 (1− π2)$2 6= π2 ω2 (1− π1)$1 (4.6)
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The two conditions ω1 6= ω2 and $1 6= $2 simply state that the transition probabilities of

the Markov chain differ across types. The other two conditions further involve the initial

conditions π1 and π2. They state that the ratio of the type-specific probabilities of the event

(X1 = 1, X2 = x) to the event (X1 = 2, X2 = x) must be different across the two types,

for x ∈ {1, 2}. They can equally be interpreted as restrictions on the initial conditions.

Rearrangement yields the equivalent statements that

1−π1/1−π2
π1/π2

6=
1−ω1/1−ω2

1−$1/1−$2

,
1−π1/1−π2
π1/π2

6=
$2/$1

ω2/ω1

,

where we presume for a moment that the probabilities showing up in denominators are

non-zero.

Assumption 2 is implied by Assumption 1. Indeed, setting m̄ = 0, Assumption 2

requires that direct walks from 1 to 1 and from 2 to 2 occur with different probabilities

across types. This means that we require that (1 − ω1) 6= (1 − ω2) and that $1 6= $2.

These conditions already appeared in (4.5) and (4.6), respectively, where they were shown

to validate Assumption 1.

For Assumption 3 we need that either ωz > 0 or $z < 1 for both types. One implication

is that Assumption 3 allows for a state to be absorbent for one type; if it were absorbant

for both types Assumption 1 would fail.

In this example r = q and so the approach of Hu and Shum (2012) could equally be

followed. In addition to Assumption 1 they require, in place of Assumption 2, that either

ωz
(1− ωz)

(1−$z)

$z

, or
(1− ωz)
ωz

$z

(1−$z)
,

is known to be well defined for both z and is different for different z. Next, they need a

monotonicity condition. Here, this condition boils down to imposing that ω1 < ω2 (where

the direction of the inequality is without loss of generality because types are arbitrary)

together with either $1 < $2 or $1 > $2. The choice between the two amounts to taking

a stand on the difference in magnitude of state dependence across types. To illustrate

consider a standard random-coefficient model (e.g., Browning and Carro 2007, 2014) with

parametrization

ωz = F (αz), $z = F (αz + ρz),
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for some specified strictly-increasing continuous distribution function F and type-specific

parameters (αz, ρz). Here, Assumption 1 demands that α1 6= α2 and α1 + ρ1 6= α2 + ρ2.

With α1 < α2 the monotonicity requirement then further requires a choice to be made as

to whether ρ1 > ρ2 + (α2−α1) or ρ1 < ρ2 + (α2−α1). With the transition probabilities in

hand identification follows from

αz = F−1(ωz), ρz = F−1($z)− F−1(ωz).

Without monotonicity Hu and Shum’s (2012) argument is not guaranteed to yield the ωz

and the $z up to a common ordering, and so the ρz parameters cannot be point identified.

Numerical example. Next consider a numerical example with r = 3 and q = 2, and

transition kernels

k1 1 2 3

1 1 0 0

2 7/10 1/10 2/10

3 2/10 6/10 2/10

,

k2 1 2 3

1 3/10 2/10 5/10

2 0 1 0

3 6/10 2/10 2/10

.

Here both types have a terminal state (equal to their type number). Nonetheless, the

transition probabilities are linearly independent, soKx has maximal rank for all x. Further,

a simple sufficient condition for Lx to have maximal rank here is that s2(1) > 0 and that

s1(2) > 0. Then Assumption 1 is satisfied.

For Assumption 2, reading off the diagonal entries of the transition matrices we see that

F 1,0 =
(

1 3/10

)
, F 2,0 =

(
1/10 1

)
, F 3,0 =

(
2/10 2/10

)
.

The last of these row vectors does not have distinct elements. Hence, although Assumption

2 holds for x ∈ {1, 2} with m̄ = 0 it does not for x = 3. However, looking at walks over

one intermediate point yields

F 1,1 =


1 9/100

0 0

0 30/100

 , F 2,1 =


0 0

1/100 1

12/100 0

 , F 3,1 =


0 30/100

12/100 0

4/100 4/100

 .
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These matrices all have distinct columns. Hence, Assumption 2 is satisfied for all x with

m̄ = 1.

Assumption 3 is satisfied because the final row of both k1 and k2 only has non-zero

entries. Therefore, we can walk from x0 = 3 to each x ∈ {1, 2, 3}\{x0} for both types

z by taking one step through the Markov chain. This is more than enough to validate

Assumption 3.

Binary choice with a state variable. Our results are relevant for identification of

structural dynamic discrete-choice models with unobserved heterogeneity. Suppose that

we have binary variables Yt ∈ {0, 1} and Wt ∈ {0, 1}. Then we can define the new variable

Xt =



1 if (Yt,Wt) = (0, 0)

2 if (Yt,Wt) = (1, 0)

3 if (Yt,Wt) = (0, 1)

4 if (Yt,Wt) = (1, 1)

,

and apply our results to the distribution of X1, X2, X3, X4. Say that Yt is the choice variable

and that Wt is the state variable. A common assumption on the transition probability

P(Yt = yt,Wt = wt|Yt−1 = yt−1,Wt−1 = wt−1, Z = z) in empirical work is that it factors as

P(Yt = yt|Wt = wt, Z = z)× P(Wt = wt|Yt−1 = yt−1,Wt−1 = wt−1, Z = z).

We can parametrise the transition kernel in terms of the conditional success probabilities

$z(w) := P(Yt = 1|Wt = w,Z = z), ωz(y, w) := P(Wt = 1|Yt−1 = y,Wt−1 = w,Z = z).

Then the transition from (y, w) to (y′, w′) for type z takes the form

($z(w
′)y
′
(1−$z(w

′))1−y′)× (ωz(y, w)w
′
(1− ωz(y, w))1−w′).

We discuss our assumptions in the context of this model next, maintaining binary type

heterogeneity.

Assumption 1 demands the 4×2 matrices Kx and Lx to have maximal column rank for

all x ∈ {1, 2, 3, 4}. As an example, the first of these matrices, K1, contains the type-specific
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conditional transition probabilities when starting at (y, w) = (0, 0). The matrix is equal to

K1 =


(1− ω1(0, 0)) (1−$1(0)) (1− ω2(0, 0)) (1−$2(0))

(1− ω1(0, 0))$1(0) (1− ω2(0, 0))$2(0)

ω1(0, 0) (1−$1(1)) ω2(0, 0) (1−$2(1))

ω1(0, 0)$1(1) ω2(0, 0)$2(1)

 .

Clearly, the presence of two binary variables makes the rank condition easier to satisfy than

in the first example, where we had a single binary variable. For example, if ω1(0, 0) = 1

and ω2(0, 0) = 0, then both types can be perfectly separated and no restriction on $1(1)

and $2(0) is needed to ensure that K1 has maximal column rank. If, on the other hand,

ω1(0, 0) = 1 and ω2(0, 0) = 1 would hold, the first two rows of K1 would have only zeros

and we would effectively fall back to the previous example; here we would require that

$1(1) 6= $2(1).

Many other cases are possible. A case of particular interest is obtained by imposing the

additional model restriction (Magnac and Thesmar 2002) that ωz(y, w) = ω(y, w) for all z;

that is, that type heterogeneity only affects the choice variable, and not the state variable.

We can factor

K1 =


(1− ω(0, 0)) 0 0 0

0 (1− ω(0, 0)) 0 0

0 0 ω(0, 0) 0

0 0 0 ω(0, 0)




(1−$1(0)) (1−$2(0))

$1(0) $2(0)

(1−$1(1)) (1−$2(1))

$1(1) $2(1)

 .

Provided that 0 < ω(0, 0) < 1, elementary row operations reveal that the rank condition

is satisfied if $1(0) 6= $2(0) or $1(1) 6= $2(1). The matrices K2,K3,K4 have the same

structure. As the matrix Kx depends on x only through the diagonal matrix on the

right-hand side of the above equation, it suffices to replace ω(0, 0) by the relevant ω(y, w).

Further note that, if the state variable does not depend on latent type, its transition matrix

is nonparametrically identified without any restrictions. Hence, in this case, the ω(y, w)

can effectively be considered as known. The remainder of Assumption 1 involves a rank

condition on Lx, and, as before, this can again be interpreted as a restriction on the initial

conditions.
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We next verify Assumption 2 in this example. For m̄ = 0 the assumption requires that

(1−$z(0)) (1− ωz(0, 0)), $z(0) (1− ωz(1, 0)),

(1−$z(1)) ωz(0, 1), $z(1) ωz(1, 1),

all vary with z. The presence of the state variable again provides an additional source from

which such variation may arise. Under the assumption that ωz(y, w) = ω(y, w) for all z,

thus shutting down this additional channel, and considering the case where 0 < ω(y, w) < 1

the requirement is equivalent to demanding that

$1(0) 6= $2(0), and $1(1) 6= $2(1).

Assumption 1 required only one of these two inequalities to hold. However, we can consider

larger values for m̄. With m̄ = 1, for example, we equally consider probabilities involving

walks with one intermediate stop. For x = 1, for example, we can consider the probabilities

of the walks 1, x′, 1 for x′ ∈ {1, 2, 3, 4}. The probabilities of the first two walks are equal to

(1−$z(0))2 (1− ω(0, 0))2,

and

$z(0) (1− ω(0, 0)) (1−$z(0)) (1− ω(1, 0)),

respectively. They differ across z if and only if $1(0) 6= $2(0). This permits $1(1) = $2(1).

Similarly, the probabilities of the walks over the two remaining stops are

(1−$z(1))ω(0, 0) (1−$z(0)) (1− ω(0, 1))

and

$z(1)ω(0, 0) (1−$z(0)) (1− ω(1, 1)).

They vary with type if either (1 − $1(1)) (1 − $1(0)) 6= (1 − $2(1)) (1 − $2(0)) or if

$1(1)(1 − $1(0)) 6= $2(1)(1 − $2(0)). These conditions, in turn, permit $1(0) = $2(0).

So, again, Assumption 2 is easily satisfied given Assumption 1.

Assumption 3, finally, again involves probabilities of walks and, in particular, requires

that their exists an x0 ∈ {1, 2, 3, 4} from which we can travel to x ∈ {1, 2, 3, 4}\{x0} for
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both types z. If we maintain that the evolution of the state variable does not depend on

z and the relevant probabilities are non-zero, the probability of such walks are positive if

0 < $z(0) < 1 and 0 < $z(1) < 1, that is, if the choice variable has full support for each

value of the state variable and for each of the latent types.

An alternative to Assumption 3 would be to impose monotonicity restrictions. In the

current model, such restrictions would need to be based on functionals of the variable Xt,

and so would involve the joint distribution of the choice variable and the state variable.

This may be challenging. Even if possible, they may imply sign and magnitude restrictions

that may not be desirable to impose. In addition, the formulation of any such restrictions

is not invariant to how the auxiliary variable Xt is defined. As, here, this variable is an

artificial construction, there are many possible ways to do this.

5 Higher-order Markov dependence

Our argument can be extended to models with higher-order dynamics. To see how this can

be done, take a model with second-order Markov dependence. The transition kernel is now

kz(x, x
′, x′′) := P(Xt = x′′|Xt−1 = x′, Xt−2 = x, Z = z).

For each pair (x, x′), collect the type-specific distributions in the r × q matrix Kx,x′ and,

similarly, construct the r × q matrix Lx,x′ as

(Lx,x′)x′′,z := P(X3 = x′, X2 = x,X1 = x′′, Z = z).

Then

P x,x′ = Kx,x′L
>
x,x′ .

If we have access to the joint distribution of five observations we can define the collection

of matrices

(P x,x′,x′′)i,j := pj,x,x′,x′′,i

in complete analogy to before. We see that

P x,x′,x′′ = Kx′,x′′Dx,x′,x′′L
>
x,x′
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where, now, Dx,x′,x′′ is the q × q diagonal matrix that contains the kz(x, x
′, x′′). The

factorizations in the above equations are of the same form as those obtained in Section 2,

and the arguments followed there can be modified to apply here.

The general conclusion, then, is that, under suitable modifications of Assumptions 1

to 3, identification of a mixture of Markov processes is possible from the cross-sectional

distribution of as little as three effective time-series observations. If dependence is present

up to order p, we need 3 + p observations.

Conclusion

We have derived a constructive identification result for finite mixtures of dynamic discrete

choices. Our method of proof differs from Kasahara and Shimotsu (2009) and Hu and

Shum (2012), who rely on arguments from the literature on static mixture models, and

is able to deliver full identification without the need to impose monotonicity restrictions.

The chief observation behind it is that, while the model implies a collection of multilinear

restrictions akin to those used in the analysis of multivariate mixtures, these are only a

small subset of the restrictions that arise from the dynamics in the model. This subset of

restrictions, in isolation, does not yield identification. The full set of restrictions, however,

does.

Our arguments yield identification from three effective time-series observations. Results

of Hall and Zhou (2003) and Henry, Kitamura and Salanié (2014) (in a different context)

suggest that (point) identification from shorter panels is unlikely to be possible, in general,

without imposing additional restrictions. An example of such additional restrictions is

given in Gupta, Kumar and Vassilvitskii (2016), where a specific approach to identification

of first-order Markov processes from two effective time periods is considered. A necessary

(but not sufficient) requirement for their approach to go through is that (in addition to

Assumption 1) we have that r ≥ 2q.
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Appendix A

Lemma A.1. Let P be a permutation matrix and let D be a diagonal matrix. Then

P−1DP is a diagonal matrix.

Proof. We show that PDP−1 is diagonal. Because P is a permutation matrix, P−1 = P>

and so P−1DP = PDP−1, from which the result follows. Because P is a permutation

matrix each of its rows and columns contains a single one; the other entries are all zero.

Let σ(i) be the mapping which yields the column that contains the one in the i-th row and

let σ−1 be the inverse mapping. Then

(PD)i,j =
∑
k

(P )i,k(D)k,j = (P )i,j(D)j,j =

 (D)σ(i),σ(i) if j = σ(i)

0 otherwise
,

where the first equality follows by definition, the second from the fact that D is diagonal,

and the third from the fact that P is a permutation matrix. Next, using this result yields

(PDP−1)i,j = (PD)i,σ(i) (P )j,σ(i) =

 (D)σ(i),σ(i) if j = i

0 otherwise
,

so that, indeed, PDP−1 is a diagonal matrix.

Appendix B

The proof of Theorem 1 is constructive. The key to constructing an estimator based on it

is a routine that (approximately) solves the set of equations in (2.3) based on estimators of

the matrices on the left-hand side. Such a problem is related to, but different from, joint

approximate diagonalization. An algorithm for doing so is provided in a companion paper

(Higgins and Jochmans 2021). Alternatively, maximum likelihood estimation is feasible in

our context. As it is efficient and yields estimated distributions that are easily ensured to

satisfy non-negativity and adding-up constraints it carries our preference. A natural way to

proceed with implementation is via the EM algorithm (Dempster, Laird and Rubin 1977).
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Likelihood. LetX := (X1, . . . , XT ) be a random sequence drawn from the mixture model

and let x := (x1, . . . , xT ) be a particular realization of this sequence. The probability mass

function of X at x takes the form
q∑
z=1

µz `z(x;ϑz),

where

`z(x;ϑz) := P(X = x|Z = z) =
r×

x=1

sz(x){x1=x}
r×

x′=1

kz(x, x
′)nx,x′ (x).

Here, the r + r2 vector ϑz collects the steady-state distribution sz and the transition

matrix kz, we use {·} to denote the indicator function, and write nx,x′(x) for the number

of transitions from x to x′ that appear in x.

The log-likelihood function for a random sample X1, . . . ,Xn is

n∑
i=1

log

(
q∑
z=1

µz `z(X i;ϑz)

)
.

Let Z1, . . . , Zn denote the (latent) types. The complete-data log-likelihood function equals

Ln(Θ) :=
n∑
i=1

q∑
z=1

{Zi = z} (log µz + log `z(X i;ϑz)) ,

where Θ collects all µ1, . . . , µq and ϑ1, . . . ,ϑq. The EM algorithm iterates on Ln(Θ) and,

in our case, is guaranteed to deliver a local maximizer of the log-likelihood (Wu 1983). We

defer to McLachlan and Krishnan (2008) for additional discussion and references on the

EM algorithm in a mixture context.

EM iteration. An iteration starting at Θ̂ proceeds as follows. In the E-step we compute

the expectation of Ln(Θ) given the data X1, . . . ,Xn under the distribution induced by Θ̂.

This yields the criterion

EΘ̂(Ln(Θ)|X1, . . . ,Xn) =
n∑
i=1

q∑
z=1

ωz(X i; Θ̂) (log µz + log `z(X i;ϑz)) ,

where

ωz(X i; Θ̂) :=
µ̂z `z(X i; ϑ̂z)∑
z′ µ̂z′ `z′(X i; ϑ̂z′)
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is the posterior probability that Zi = z. In the M-step we maximize the criterion with

respect to Θ to get ˆ̂Θ, say. Inspection of EΘ̂(Ln(Θ)|X1, . . . ,Xn) reveals that ˆ̂Θ can be

written in closed form. With the solution forced to consist of valid probability distributions

we find

ˆ̂µz =

∑n
i=1 ωz(X i; Θ̂)

n

and

ˆ̂sz(x) =

∑n
i=1 ωz(X i; Θ̂){Xi,1 = x}∑n

i=1 ωz(X i; Θ̂)
, ˆ̂kz(x, x

′) =

∑n
i=1 ωz(X i; Θ̂)nx,x′(X i)∑r

x′′=1

∑n
i=1 ωz(X i; Θ̂)nx,x′′(X i)

.

We subsequently replace Θ̂ by ˆ̂Θ and start a new iteration. The procedure is repeated

until convergence.

Simulations. We provide results from a Monte Carlo experiment on a two-component

mixture of binary decisions. The type-specific transition kernels, k1 and k2, are specified

as

k1 1 2

1 2/10 8/10

2 7/10 3/10

k2 1 2

1 8/10 2/10

2 3/10 7/10

,

and we mix the two types with µ1 = 4/10 and µ2 = 1− µ1 = 6/10. The type-specific Markov

chains are initialized with a draw from their steady-state distributions. In each of 10, 000

Monte Carlo replications we estimate the model by maximum likelihood, using the EM

algorithm (initiated at a range of different starting values with a terminal condition on the

improvement of the likelihood), and estimate the information as the outer-product of the

score vector, evaluated at the maximizer.

Tables B.1 and B.2 provide the mean, median, standard deviation, average standard

error, and interquartile range of the point estimator (over the Monte Carlo replications)

together with the empirical size of a two-sided t-test with a theoretical size of 5%. Table

B.1 concerns the case where we observe four outcomes for each of 500 observations (so the

minimum of the three transition needed for our results to apply). Table B.2 reports results

25



Table B.1: Descriptive statistics of simulation results for T = 4

k1(1, 2) k1(2, 2) s1(2) k2(0, 1) k2(1, 1) s2(2) µ1

value 0.800 0.300 0.533 0.200 0.700 0.400 0.400

mean 0.794 0.305 0.533 0.194 0.705 0.398 0.414

median 0.797 0.303 0.533 0.197 0.703 0.399 0.402

std dev 0.058 0.048 0.046 0.035 0.042 0.036 0.068

std error 0.067 0.051 0.046 0.039 0.045 0.036 0.079

iqr 0.078 0.065 0.061 0.046 0.054 0.048 0.096

size 0.037 0.049 0.047 0.025 0.028 0.042 0.025

Table B.2: Descriptive statistics of simulation results for T = 5

k1(1, 2) k1(2, 2) s1(2) k2(0, 1) k2(1, 1) s2(2) µ1

value 0.800 0.300 0.533 0.200 0.700 0.400 0.400

mean 0.800 0.301 0.534 0.199 0.701 0.399 0.404

median 0.801 0.301 0.534 0.199 0.701 0.400 0.401

std dev 0.040 0.035 0.042 0.024 0.029 0.033 0.046

std error 0.041 0.036 0.042 0.024 0.030 0.033 0.047

iqr 0.055 0.049 0.056 0.032 0.039 0.044 0.064

size 0.053 0.050 0.052 0.043 0.047 0.050 0.040
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Figure B.1: Studentized empirical distributions (red) together with the standard-normal

reference distribution (black) for T = 4
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for four transitions. The results show good performance of the estimator with bias being

negligible relative to the standard deviation. Inference is slightly conservative in Table B.1

due to the standard error being slightly upward biased for some of the parameters. In

Table B.2 this underrejection is virtually eliminated. The plots in Figure B.1 contain the

empirical cumulative distribution functions (in red) of the Studentized point estimators

for the different parameters associated with the simulations for the four-wave data. Each

plot also provides the standard-normal distribution as a benchmark (in black). Overall,

the normal approximation performs well. Some deviations can be observed in the upper

(lower) tail of the transition probabilities for type 1 (type 2) and in the lower tail of the

distribution of the proportion of type 1 individuals.
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