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Abstract

Scatter matrices generalize the covariance matrix and are useful in many multivariate data
analysis methods, including well-known principal component analysis (PCA), which is based on
the diagonalization of the covariance matrix. The simultaneous diagonalization of two or more
scatter matrices goes beyond PCA and is used more and more often. In this paper, we offer an
overview of many methods that are based on a joint diagonalization. These methods range from
the unsupervised context with invariant coordinate selection and blind source separation, which
includes independent component analysis, to the supervised context with discriminant analysis
and sliced inverse regression. They also encompass methods that handle dependent data such
as time series or spatial data.

Keywords: Blind Source Separation, Dimension Reduction, Independent Component Analysis,
Invariant Component Selection, Scatter Matrices, Supervised Dimension Reduction.

1 Introduction

Classical multivariate analysis, such as that presented in [Anderson, 2003] assumes that the data at
hand follow a multivariate normal model. This is very convenient as the multivariate normal distri-
bution is fully specified by its mean vector and covariance matrix and these two statistics suffice to
develop tractable and optimal inference tools for this model. Early on, it was known that statistical
methods based on the mean vector and covariance matrix are very sensitive to atypical observations
in the data and are not very efficient for observations coming from a heavy-tailed distribution. To
alleviate these problems, the normal model is commonly broadened to the elliptical model, which
keeps the shape of the probability contours but allows for one additional kurtosis parameter, thus
allowing heavier and lighter tails than the normal model. For robustness and optimality reasons,
alternative location measures for the mean vector and alternative dispersion measures for the covari-
ance matrix were developed in the elliptical framework. These measures are often expected to have
certain properties under affine transformations of the data, in which case they are called location
functionals T and scatter functionals S. It can then be shown that in an elliptical model, all loca-
tion functionals, including the mean vector, correspond to the symmetry center and that all scatter
functionals are proportional to the covariance matrix, if they exist Oja [2010], Nordhausen and Tyler
[2015]. Thus, scatter functionals measure the same population quantity in the elliptical model, and
it is sufficient to use one location functional and one scatter functional for inference purposes (A
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slightly larger model where location and scatter functionals measure the same population quantities
is also discussed in Oja [2010], Nordhausen and Tyler [2015].) Since approximately the turn of the
last century, interest in the simultaneous use of two or more scatter matrices, which is of course most
interesting when these functionals do not measure the same population quantities, has increased.

In the present paper we will show how two or more scatter functionals are jointly used in multi-
variate statistics and in which models this is of interest. For this purpose we recall first in Section 2
the concept of scatter functionals in detail and discuss some of their properties. Section 3 gives de-
tails on the simultaneous and joint diagonalization of scatter functionals which is the main tool used
in our context. Invariant coordinate selection (ICS) is discussed in Section 4, blind source separa-
tion (BSS) is discussed in Section 5 and the use of joint diagonalization in the context of supervised
dimension reduction (SDR) methods is discussed in Section 6. Finally, the paper is concluded in
Section 7.

2 Scatter matrices

Joint diagonalization has been used in unsupervised and supervised contexts and for independent
and dependent data.

In the unsupervised case with independent data, the definition of a scatter matrix, sometimes
also called pseudo-covariance, is a generalization of the covariance matrix definition [see Huber
and Ronchetti, 2011, Maronna and Yohai, 2016, Croux and Haesbroeck, 2000, Tyler et al., 2009,
Nordhausen and Tyler, 2015, among others].

Following Nordhausen and Tyler [2015], let us first define the functional version of a scatter
estimator. For a p-dimensional vector X with distribution function FX , a functional S(FX) also
denoted by S(X) is called a scatter functional if it is a p × p symmetric positive semidefinite and
affine equivariant matrix. Note that in Tyler et al. [2009], the definition is more stringent than that
in Nordhausen and Tyler [2015], and assumes that a scatter matrix is positive definite. We recall
that an affine equivariant matrix S(X) is such that

S(AX + b) = AS(X)A>,

where > denotes the transpose operator, A is a full rank p× p matrix and b a p-vector.
For distributions FX with finite second moments, the covariance functional is defined by:

Cov(X) = E
[
(X − E(X))(X − E(X))>

]
and is affine equivariant.

Let us now consider the empirical version of a scatter functional. This means that we have a p-
variate dataset Xn = (x1, . . . ,xn)> and the scatter functional S(Fn) for the empirical distribution
Fn. A scatter matrix statistic or estimator is thus a p× p symmetric positive semidefinite and affine
equivariant matrix. In this framework, an affine equivariant matrix S(Xn) is such that

S(XnA+ 1nb
>) = A>S(Xn)A,

where A is a full rank p× p matrix, b a p-vector and 1n an n-vector full of ones.
The empirical covariance matrix is defined by:

Cov(Xn) =
1

n

n∑
i=1

(xi − x̄n)(xi − x̄n)>
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where x̄n = 1/n
∑n
i=1 xi is the empirical mean. The mean is an affine equivariant location estimator

T such that:
T (AX + b) = AT (X) + b,

for the functional version and

T (XnA
> + 1nb

>) = AT (Xn) + b,

for the empirical version where A is a full rank p× p matrix and b a p-vector.

For elliptical distributions with second moments, scatter functionals are proportional to the co-
variance matrix [see, e.g., Bilodeau and Brenner, 2008].

Many scatter matrices have been defined with the objective of making the covariance matrix
estimator more robust [see, e.g., Huber and Ronchetti, 2011, Maronna et al., 2019]. Tyler et al.
[2009] divide the scatter matrices in three classes depending on their robustness properties. The
first class includes scatter estimators with a zero breakdown point such as the usual covariance
matrix but also the one-step M-estimators with a functional defined by:

Covw(X) = E
[
w(D2(X))(X − E(X))(X − E(X))>

]
,

where w is a non-negative and continuous weight function andD2(X) = (X−E(X))>Cov(X)−1(X−
E(X)) is the Mahalanobis distance. The sample version of the one-step M-estimator is:

Covw(Xn) =
1

n

n∑
i=1

w(D2(xi))(xi − x̄n)(xi − x̄n)>,

where D2(xi) = (xi − x̄n)>Cov(Xn)−1(xi − x̄n).
The covariance matrix is obtained with w(d) = 1 while we get the Cov−1 matrix defined by

Critchley et al. [2006] when w(d) = 1/d. As noticed by Nordhausen [2014], when w(d) = dα with
α < 0, such estimators down-weight values with large Mahalanobis distance and so have a robust
flavour even if they have a zero breakdown point. From the same class, the fourth-moment based
estimator Cov4 obtained with w(d) = d is widely used in the blind source separation literature [see,
e.g., Theis and Inouye, 2006, Nordhausen and Virta, 2019]. It is highly nonrobust since it up-weights
values with large Mahalanobis distances but it proves to be useful in particular situations.

The second class of estimators contains scatter matrices with a moderate breakdown point such
as the class (T ,S) of M-estimators that are defined [see, e.g., Maronna, 1976] as solutions of systems
of equations of the following form:

E
[
u1
[
(X − T (X))>S(X)−1(X − T (X))

]
(X − T (X))

]
= 0 (1)

E
[
u2
[
(X − T (X))>S(X)−1(X − T (X))

]
(X − T (X))(X − T (X))>

]
= S(X) (2)

where u1 and u2 are appropriate weight functions. The sampling version of M-estimators is easily
derived from the previous equations.

The third class contains high breakdown point estimators such as S-estimators or minimum co-
variance determinant estimators (see Maronna et al. [2019] for details and other scatter estimators
from the same class).
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In some statistical methods, such as independent component analysis, a scatter matrix is also
expected to verify the joint independence property or the block independence property. A scatter
functional S(X) has the joint independence property if for a vector with mutually independent
components S(X) is diagonal. In the class of one-step M-estimators with nonnegative and contin-
uous weight function, Virta [2016] proves that the only scatter functionals with the independence
property are the Cov and Cov4 estimators and their nonnegative linear combinations. In the case
where all components of X are not necessarily independent but consist of independent blocks of
components, the block dependence property states that the mutually independent subvectors of X
correspond to diagonal submatrices leading to a block diagonal scatter matrix (see Nordhausen and
Tyler [2015], Tyler et al. [2009] for more details).

Note that it is also possible to define some symmetrized version of the previous scatter matrices
by considering S(U − V ), where U and V are independent copies of X [see Tyler et al., 2009,
Nordhausen and Tyler, 2015]. In other words, the symmetrisation is obtained by applying the scat-
ter functional to pairwise differences. The symmetrized scatter matrices possess the joint and block
independence property [see Oja et al., 2006, Nordhausen and Tyler, 2015].

In Liski et al. [2014], the definition of a scatter matrix is extended to the context of supervised
methods. In this context, in addition to the p-vector X, a response variable Y is available. Following
Liski et al. [2014], a supervised scatter functional S is a function of the joint distribution FX,Y of
(X, Y ) which is affine equivariant in the sense that

S(FAX+b,Y ) = AS(FX,Y )A>,

for all full rank matrices A and all p-vectors b. One example of such a supervised scatter functional
is:

SSIR(FX,Y ) = Cov(E(X|Y )).

Note that in the case of a discrete response variable, SSIR corresponds to the between covariance
matrix CovB.

Thus far, we have focused on samples of independent data but as will be detailed below, joint
diagonalization is also widely used in the context of time series and spatial data. In such contexts,
affine equivariant estimators that are not necessarily positive semidefinite are considered and go
beyond the scatter matrix definition above.

In the context of p-variate time series, let us consider a stochastic process XT = (x1, . . . ,xT )
measured at time t ∈ {1, . . . , T}. For a given lag τ ∈ {0, 1, . . .}, the sample version of the cross-
autocovariance matrix ACovτ (XT ) is given by

ACovτ (XT ) =
1

T − τ

T−τ∑
t=1

(xt − x̄T )(xt+τ − x̄T )>

where x̄T = 1/T
∑T
t=1 xt. Note that ACov0(XT ) = Cov(XT ).

The ACovτ matrix is not necessarily symmetric and is sometimes symmetrized when it is expected
to be symmetric for the model under consideration [see Tong et al., 1990, Miettinen et al., 2012]. A
symmetrized version of ACovτ is defined by

ACovSτ =
1

2
(ACovτ + ACov>τ ).
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Let us now consider multivariate data measured at spatial locations s1, . . . , sn in a domain
S ⊆ Rd. Xn = (x(s1), . . . ,x(sn)), Bachoc et al. [2020] define local covariance, or scatter, matrices,
by:

LCovf (Xn) =
1

n

n∑
i=1

n∑
j=1

f(si − sj)(x(si)− x̄n)(x(sj)− x̄n)>, (3)

where x̄n = 1/n
∑n
i=1 x(si) and f : Rd → R is called the kernel function. Examples of kernels f are

the ball and ring kernels B(h)(s) = I(‖s‖ ≤ h) with fixed h ≥ 0 and R(h1, h2)(s) = I(h1 ≤ ‖s‖ ≤
h2) with fixed h2 ≥ h1 ≥ 0 where ‖.‖ denotes the euclidian norm and I(·) denotes the indicator
function.

Note that the ACov and LCov are considered as scatter matrices but may not be semipositive
definite.

3 Simultaneous and joint diagonalization

In PCA [see, e.g., Jolliffe, 2002], the covariance Cov(Xn) (or correlation) matrix, which is a sym-
metric real valued matrix, is diagonalized. It means that the following transformation is calculated:

U(Xn) Cov(Xn)U(Xn)> = Λ(Xn)

where Λ(Xn) = diag(λ1 ≥ · · · ≥ λp) is the diagonal matrix containing the ordered eigenvalues of
Cov(Xn) and U(Xn) = (u1, . . . ,up)

> contains its corresponding orthonormal eigenvectors as rows.
Because the matrix Cov(Xn) is symmetric, the matrix U(Xn) is orthogonal with respect to the
usual inner-product and can be chosen such that U(Xn)U(Xn)> = U(Xn)>U(Xn) = Ip. This
procedure is also called the spectral or the eigenvalue-eigenvector decomposition or eigendecompo-
sition of Cov(Xn).

When considering two scatter matrices S1(Xn) and S2(Xn), it is possible to find a matrix
W (Xn) such that both matrices are transformed into diagonal matrices:

W (Xn)S1(Xn)W (Xn)> = Λ1(Xn) and W (Xn)S2(Xn)W (Xn)> = Λ2(Xn) (4)

where Λ1(Xn) and Λ2(Xn) are diagonal matrices (see e.g., Tyler et al. [2009]).
This procedure is called simultaneous diagonalization [see, e.g., Schott, 2005]. It leads to the

diagonalization of S1(Xn)−1S2(Xn) which is not necessarily symmetric:

S1(Xn)−1S2(Xn) = W (Xn)>Λ(Xn)W (Xn)−1

with Λ(Xn) = Λ−11 (Xn)Λ2(Xn).
Generally, Λ1(Xn) is taken as the identity matrix and we focus on this particular case from

now on. In this case, Problem (4) is equivalent to the diagonalization of S2(Xn) with a matrix
of eigenvectors W (Xn) that is orthogonal with respect to the inner product induced by S1(Xn)
instead of the canonical inner product.

It is easy to see that Problem (4) is equivalent to the usual diagonalization of S1(Xn)−1/2S2(Xn)S1(Xn)−1/2

which is a symmetric matrix with ordered eigenvalues given by Λ2(Xn) and orthonormal eigenvec-
tors given by S1(Xn)1/2W (Xn).

Finally, Problem (4) is also equivalent to the problem of finding values λi(X) and vectors wi(X),
i ∈ {1, . . . , p}, such that

S2(Xn)wi(X) = λi(X)S1(Xn)wi(X)
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which is called the generalized eigendecomposition problem.
This simultaneous diagonalisation procedure is used in different contexts and takes different

names depending on the context. For instance, when using the scatter matrices Cov and Cov4, the
method is called FOBI in the signal processing literature (see e.g., Nordhausen and Virta [2019] and
Subsection 5.1 below). When considering the usual covariance matrix and one autocovariance ma-
trix ACov, it is called AMUSE in the time series context (see e.g., Pan et al. [2021] and Subsection
5.2 below).

Going beyond two scatter matrices is more challenging but has also been studied in the literature.
We will call the procedure “joint diagonalization” as soon as the number of scatter matrices is larger
than two. Let us consider S0(X),S1(X), . . . ,SK(X), i.e., K + 1 scatter matrices associated with
a random vector X. It is known that, for such a collection of symmetric matrices, there exists a
matrix P (X), such that P (X)Sk(X)P (X)> is diagonal, for each k ∈ {0, . . . ,K}, if and only if all
pairs of scatter matrices commute [see Schott, 2005].

In the blind source separation model (see Section 5), the assumption that the scatter matrices
commute is true, and the joint diagonalization is possible. However, when considering the sampling
versions of the scatter matrices, the property is lost. In such a situation, we can try to make
the matrices jointly “as diagonal as possible” [see, e.g., Flury and Gautschi, 1986, Clarkson, 1988,
Miettinen, 2015].

One idea is to take one of the scatter matrices, let us say S0(Xn), as a reference and to
find a transformation W (Xn) such that S0(Xn) is diagonalized while the other scatter matri-
ces, S1(Xn), . . . ,SK(Xn) are only approximately diagonalized. A popular criterion is based on a
least squares approach. More precisely, the criterion consists in looking for W (Xn) which minimises
the sum of squares of the off-diagonal elements of all possible scatter matrices after transformation,
and under the constraint that W (Xn)S0(Xn)W (Xn)> is the identity

min

K∑
k=1

|| off(W (Xn)Sk(Xn)W (Xn)>)||2, subject to W (Xn)S0(Xn)W (Xn)> = Ip

where off(A) = A− diag(A), for a square matrix A, and || · || denotes the matrix Frobenius norm.
This criterion is equivalent to maximizing the following sum

K∑
k=1

||diag(W (Xn)Sk(Xn)W (Xn)>)||2, subject to W (Xn)S0(Xn)W (Xn)> = Ip. (5)

Popular algorithms for this approximate joint diagonalization are based on Jacobi rotations [see,
e.g., Clarkson, 1988, Cardoso and Souloumiac, 1996, Miettinen, 2015]. In the multivariate time
series context, with S0(Xn) = Cov(Xn) and, for S1(Xn), . . . ,SK(Xn), autocovariance matrices
with different lags, this algorithm is called SOBI [Miettinen et al., 2016]. Other possible algorithms
are also discussed in Illner et al. [2015]. In particular, Miettinen et al. [2014] introduced a deflation-
based algorithm such that the single rows of the matrix W (Xn) are calculated one after the other
by looking at a maximization problem similar to (5) but for each row of W (Xn). The existence
and the uniqueness of the solution are discussed.

There exist also several other proposals [see, e.g., Miettinen, 2015, Illner et al., 2015]. If there is no
reason that S0(Xn) plays a special role, it is possible to replace the constraintW (Xn)S0(Xn)W (Xn)> =
Ip by other constraints [see, e.g., Ziehe et al., 2004, Yeredor, 2002]. Moreover, the square in the
maximisation criterion can be replaced by other functions allowing to weight differently the involved
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scatter matrices [see Miettinen et al., 2014, Miettinen, 2015, for details].

In the rest of this article, we present many existing multivariate data analysis methods that use
a simultaneous or approximate joint diagonalisation of scatter matrices.

4 Invariant coordinate selection

There are two popular data transformations based on a single scatter matrix. The first one is
principal component analysis, which uses the transformation matrix as the orthogonal matrix U
obtained via the eigenvalue-eigenvector decomposition of S(Xn) = U(Xn)>D(Xn)U(Xn) where
the ith row of U(Xn) contains the ith eigenvector of S(Xn) and the diagonal matrix D(Xn)
contains on its diagonal the corresponding eigenvalues for which we assume that they are ordered
in descending order. The principal components are the observations projected along the principal
vectors, i.e. zi = U(Xn)xi, i ∈ {1, . . . , n}, where it is often assumed that the observations are
centered. The principal components then have the property that they are uncorrelated with respect
to S(Xn), i.e., S(Zn) = D(Xn). Traditional PCA is based on the regular covariance matrix
[see, e.g., Jolliffe, 2002, for details]; however, within an elliptical distribution framework any scatter
matrix can be used for the same purpose.

Another transformation is the so-called whitening transformation which, besides the scatter
S(Xn), needs a location T (Xn). Whitened observations are obtained as

xsti = S(Xn)−1/2(xi − T (Xn)),

i ∈ {1, . . . , n}. These observations have the properties that T (Xst
n ) = 0 and S(Xst

n ) = Ip which
means that compared to PCA, whitened transformations not only uncorrelate the components but
also give them equal scales. Note however, that the whitened components are not necessarily just the
scaled principle components but might have undergone an additional rotation. Actually, Ilmonen
et al. [2012] mention five alternative ways to compute S(Xn)−1/2 which might all differ by an
orthogonal rotation. If not specified otherwise, we consider the symmetric variant S(Xn)−1/2 =
U(Xn)D(Xn)−1/2U(Xn)> with U(Xn) and D(Xn) as above. Again, this transformation usually
uses the regular mean vector and the covariance matrix but other locations and scatter functionals
can also be used, in which case an elliptical model is tacitly assumed.

One of the first ideas regarding the use of two scatter matrices was then based on performing
these two transformations one after the other, but using a different scatter matrix for each one.
The idea is then, ignoring the location for a moment, that the data are first whitened with respect
to a scatter S1 and then PCA is performed on the whitened data using another scatter S2. This
can be formulated as the simultaneous diagonalization problem of finding the transformation matrix
W (Xn) such that

W (Xn)S1(Xn)W (Xn)> = Ip, W (Xn)S2(Xn)W (Xn)> = D(Xn),

where D(Xn) is a diagonal matrix with decreasing elements. Note that in the following, when
the context is clear, we drop the dependence on Xn for W ,D,S1 and S2. Based on Section 3, it
is clear that this is a generalized eigenvalue-eigenvector problem and W and D can be computed
accordingly.

Thus, in a model-free context, this transformation can be considered as an investigation if, after
removing the second order information as measured by S1, S2 can still find any structure in the
data, which is, for example, not the case when the observations follow an elliptical distribution.
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This transformation was first denoted generalized PCA in Caussinus and Ruiz [1990], Caussinus
and Ruiz-Gazen [2007], Caussinus et al. [2003] but the more commonly acknowledged name at present
is invariant coordinate selection (ICS) as established in Tyler et al. [2009]. Note that some special
scatter combinations are considered under specific names. For example the combination S1 = Cov
and S2 = Cov−1 is known as principal axis analysis [Critchley et al., 2006] and the combination
S1 = Cov and S2 = Cov4 is known as fourth order blind identification (FOBI) [Cardoso, 1989]
which may be one of the most popular combinations.

The name ICS is motivated based on the following equivariance property which holds when the
elements of D are all distinct:

W (Xn)A−1 = JW (XnA
> + 1nb

>),

where A is a p× p matrix and b a p-vector. J denotes a sign change matrix, i.e., a diagonal matrix
with ±1 on its diagonal. Thus, in connection with a location functional T ,

W (Xn) (xi − T (Xn)) = JW (XnA
> + 1nb

>)
(

(Axi + b)− T (XnA
> + 1nb

>)
)
,

which means that the so called ICS-components zi = W (Xn) (xi − T (Xn)) are affine invariant
under linear transformations up to their signs. Therefore one can argue that the ICS components
show the intrinsic structure of the data independent of the coordinate system in which the data
were originally presented. This is quite different from the principal components and the whitened
observations which do not have this type of invariance property. The differences between the trans-
formations are illustrated in Fig. 1 where the observable 4-variate data are shown together with the
corresponding principal components, whitened components and invariant coordinates, which are in
this case based on FOBI. In this artificial example, the two latent clusters are best visible in the
invariant coordinates (see the two modes of the density estimator on the 4th plot of the diagonal of
panel D).

In their seminal paper Tyler et al. [2009] also provide an interpretation of the eigenvalues con-
tained in the diagonal of D. Let w be a p-vector. Then, one can consider w>S1(X)w as a squared
measure of the scale of X in the direction of w. As the ratio of two squared scale measures can be
seen as a kurtosis measure [Radojicic et al., 2020],

κ(w>X) =
w>S1(X)w

w>S2(X)w

is therefore the kurtosis measured in the S1 − S2-sense of w>X. Hence, the diagonal elements
in D are the (ordered) kurtosis values of the invariant coordinates. Tyler et al. [2009] show that
the maximal/minimal kurtosis in the S1 − S2-sense that can be obtained for X, corresponds to
the first/last eigenvalue. Thus Tyler et al. [2009] state ICS can be “viewed as a projection pursuit
without the pursuit effort”. If S1 and S2 are normalized for the Gaussian distribution, then an
eigenvalue dj = 1, j ∈ {1, . . . , p}, can be taken as an indicator that the component zj follows a
Gaussian distribution.

Based on the invariance property of ICS and the properties of the eigenvalues ICS has been used
for many purposes, mainly in an exploratory data analysis way.

4.1 ICS for descriptive statistics

As the ICS components show the intrinsic nature of the data, they are a natural start to describe the
basic data features. Nordhausen et al. [2011a] actually suggest using an additional second location
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Fig. 1: Comparison of different data transformations. Panel A shows a matrix scatterplot with
density estimators on the diagonal and correlations for the original data with p = 4, Panel B the
corresponding principal components, Panel C the whitened components and Panel D the invariant
coordinates where S1 = Cov and S2 = Cov4. Therefore all four panels give different views of the
same dataset where in the ICS representation the two groups are best visible.
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T 2 and fixing the sign of the jth component of zi so that (T 2(Zn))j ≥ 0, which means that the
difference in the locations is a measure of skewness of the components. Thus, if T 2(Zn) ≈ 0 the data
are symmetric and if all eigenvalues of D are the same, it is an indication of ellipticity. Similarly the
eigenvalues can give indications, together with the skewness measure, for other multivariate models
such as skew-elliptical models as discussed, for example, in Nordhausen et al. [2011a], Loperfido
[2021]. A more formal inference framework is given in Ilmonen et al. [2010] where the limiting
distributions of W , D and T 1 − T 2 are derived, based on the location and scatter functionals,
especially when they are moment based. Kankainen et al. [2007] developed tests for multivariate
normality based on these ideas when using the pair of scatter matrices Cov and Cov4 (FOBI).

4.2 ICS for dimension reduction and outlier detection

Recently, data sets have been increasing in dimension and in sample size. Standard assumptions
in modern multivariate statistics are such that data sets containing considerable noise and relevant
features can be concentrated in a much smaller signal subspace. The goal of dimension reduction is
then to estimate the signal subspace whose dimension is usually unknown. The question is how to
define what makes a signal. For example, PCA says that the signal subspace is the one that contains
most variation in the data, and there are many rules how to choose the subspace dimension [see for
example Jolliffe, 2002]. PCA is likely the most commonly used dimension reduction method and
seems to be quite successful in practice. It is from a theoretical point, however difficult, to argue
why the directions in which, for example, groups are to be separated or outliers are to be identified,
should be those with large variation. The construction of counterexamples is quite easy. Kurtosis, on
the other hand, is a natural indicator of non-Gaussianity and, is one of the most popular projection
pursuit indices [Huber, 1985]. In a mixture model framework, the classical kurtosis measure depends
on the mixing proportion. If the group sizes are approximately equal, the kurtosis is small, while
for unbalanced groups, with the extreme case of outliers, the kurtosis will be large. Thus, the
eigenvalues contained in the matrix D give an indicator of interestingness of the components and
allow, for example, the search for groups. In the above example, as shown in Fig. 1, the last
invariant coordinate is most interesting as the groups in this example are of equal size. This makes
component selection slightly more challenging, as first and last components might be of interest.
This is different from PCA where usually only the first few components are of interest. Tyler et al.
[2009] show that in a general framework with a mixture of elliptical distributions, ICS will find
Fisher’s linear discriminant without knowing the class labels, and ICS was considered a method for
dimension reduction prior to group identification, for example, in Tyler et al. [2009], Peña et al.
[2010], Alashwali and Kent [2016], Fekri and Ruiz-Gazen [2015], Fischer et al. [2017].

Similarly, the reduction of the dimension to make outlier detection easier via ICS was considered
in Nordhausen et al. [2008b], Archimbaud et al. [2018], Archimbaud et al. [2018], especially in the
context of reliability when it is known that the proportion of outliers is small. Archimbaud et al.
[2018] show that it is easier to identify the outliers when they can be captured in a few invariant
coordinates. If all invariant coordinates need to be selected for outlier detection, then the method
corresponds to Mahalanobis-type outlier detection approach where the Malahanobis distances are
computed with respect to S1.

The determination of which and how many components to retain is still often done visually
or based on heuristics. However, when assuming a non-Gaussian component analysis framework
where it is assumed that the data can be decomposed into a non-Gaussian (signal) subspace that
is independent of the remaining (noise) Gaussian subspace, formal inference about the subspace
dimensions was discussed in the context of FOBI in Luo and Li [2016], Nordhausen et al. [2017,
2021c], Luo and Li [2021], and for general scatter combinations, it was discussed in Radojicic and
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Nordhausen [2020].

4.3 ICS as a transformation-retransformation method

As discussed above, in multivariate statistics, it is of key interest that the results of the analysis do
not depend on the coordinate system used. Thus, estimates should have an appropriate equivariance
property under affine transformations, and tests, for example, should be invariant. However, there
are multivariate methods that are not affine equivariant/invariant, which is considered a major
flaw. For example, multivariate methods based on marginal signs and ranks [see, for example, Puri
and Sen, 1971] suffer from this disadvantage. ICS can help in this context as a transformation-
retransformation approach. This means that multivariate methods are applied to the invariant
coordinates and, if required, retransformed to the original scale. This was discussed, for example,
in Nordhausen et al. [2006, 2008b].

As ICS is used with very different purposes in mind, Tyler et al. [2009] argued that there is no
general best scatter combination for S1 and S2. Depending on the problem and data at hand, the
scatter matrices might require different properties. In general, however, Tyler et al. [2009] argued
that it would be advisable not to use two highly robust scatter matrices, as interesting features
will not be detected when both scatter matrices focus too much on the same “inner” part of the
data. Alashwali and Kent [2016] argued that it might be advisable that both scatter matrices are
computed with respect to the same location functional, especially when subsequent clustering is the
goal. Which scatter functional is used first and which second is also of minor consequence. The
effect of changing the order is to invert the eigenvalues and reversing the order of the components,
which then also have different scales. A common convention is, for example, to choose the order
so that S1 is more robust than S2 and that the ICS components are centered with respect to the
location functional which goes most naturally with S1. For further discussions regarding invariant
transformations, we refer to Serfling [2010], Ilmonen et al. [2012], Serfling [2015].

To apply ICS and related methods in R R Core Team [2021], packages ICSNordhausen et al.
[2008b], ICSOutlier Archimbaud et al. [2018], ICSShiny Archimbaud et al. [2018] and ICtest

Nordhausen et al. [2021d] are available.

5 Blind Source Separation

ICS is often seen as a mainly exploratory tool for multivariate analysis. A more model based
approach where joint diagonalization plays a major role is blind source separation (BSS). The basic
BSS model is

X = AZ + µ,

where X is a p-variate observable phenomenon that is seen as a linear mixture of a somewhat
standardized latent p-variate source Z, where the mixing is represented by the full rank p×p matrix
A and the location of X is specified by the p-vector µ. Standard assumptions are that E(Z) = 0
and Cov(Z) = Ip which indicates that the components of Z are at least uncorrelated. The goal in
BSS is to estimate Z based on a realized sample x1, . . . ,xn of X alone. The location µ in this case
is mainly considered as a nuisance parameter and, in the following, we assume for simplicity µ = 0.

Clearly, without further assumptions, it is not possible to solve the BSS problem, and there
must be at least one further structural component given for Z that can be exploited. Different BSS
models have been suggested in the literature, with different additional assumptions. The ones we
will consider here are: (i) The observations are independent and identically distributed (iid), and the
components of Z are independent and non-Gaussian. This case is known as independent component
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analysis (ICA). (ii) The observed data are a p-variate time series, and the components of the latent
time series are uncorrelated or independent. Then, additional information that can be exploited is
serial dependence. (iii) The observed data come from a p-variate spatial random field where the p
latent fields are again uncorrelated and independent, and the additional structure to be exploited is
the spatial dependence.

Before going into detail, we point out that general overviews for BSS are, for example, Cichocki
and Amari [2002], Comon and Jutten [2010], Adali et al. [2014], Nordhausen and Oja [2018] and
that BSS approaches that are based on joint diagonalization are often called algebraic BSS methods.

All approaches make use of the following key result Miettinen et al. [2015]. LetXst = Cov(X)−1/2(X−
E(X)) be the standardized version of X, then

Xst = U>Z,

where U is some orthogonal p× p matrix. Thus, after whitening, the BSS problem can be reduced
to the problem of finding an orthogonal matrix.

The strategy of all algebraic BSS methods described below makes use of the generalized concept
of a scatter functional which only requires affine equivariance but relaxes the positive definiteness
requirement. Then, the approach is to select K ≥ 1 scatter functionals S1, . . . ,SK for which

Si(Z) = Di, i ∈ i, . . . ,K,

holds with Di being diagonal matrices. Thus, all the scatter matrices used are diagonal when
computed for the sources. Then, the approach is to find the orthogonal matrix U such that:

USi(X
st)U> = Di, i ∈ i, . . . ,K,

which yields the unmixing matrix W = U Cov(X)−1/2. Thus, algebraic BSS methods consists of a
joint diagonalization problem, where the unmixing matrix W diagonalizes the K+1 scatter matrices
Cov(X),S1(X), . . . ,SK(X) under the constraint that W Cov(X)W> = Ip.

In the following, we will discuss the different additional structural requirements made on the
latent components and which scatter functionals are suitable.

Before this, let us discuss why we should perform BSS:

1. Often, it is assumed that the latent components have either physical meanings (BSS was
suggested first in the signal processing literature) or that they are easier to interpret than the
original components.

2. Another motivation is that often only a few components are considered interesting and the
remainder noise, thus, it can be used for dimension reduction.

3. As the latent components are assumed uncorrelated or even independent, each component
can be modelled in a univariate way, and instead of fitting a p-variate model, one could fit p
univariate models, which is often considered much simpler. For spatial data, such a benefit is
demonstrated in Muehlmann et al. [2020] in the context of prediction .

5.1 Independent component analysis

ICA is the best known BSS approach. ICA methods are designed for iid data but are also often
applied for dependent observations in which case, however, not all available information is exploited.
In the ICA, it is assumed that:
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(IC1): E(Z) = 0 and Cov(Z) = Ip

(IC2): The components of Z=(Z1, . . . , Zp), are mutually independent.

(IC3): At most one component of Z is Gaussian.

The first algebraic ICA approach is FOBI Cardoso [1989], as described above, which means that
K = 1 and S1 = Cov4 in the BSS framework. FOBI yields an unmixing matrix if all independent
components have distinct kurtosis values. The statistical properties of FOBI, in the ICA model, were
derived in Miettinen et al. [2015]. Oja et al. [2006] generalized then FOBI by showing that Cov and
S1 in FOBI can be replaced by any scatter functionals that have the independence property, which
is also further investigated in Nordhausen et al. [2008a]. Therefore, one can say, given a suitable
choice of scatter functionals, that ICS can also solve the ICA problem when kurtosis values of Z, in
the sense of the two scatter functionals involved, are distinct.

In ICA, however, assuming that the components have distinct kurtosis (in the sense of the
involved scatter matrices) is considered as a strong constraint. Therefore, Nordhausen et al. [2012]
suggested using K + 1 scatter functionals that have all the independence property, and then using
joint diagonalization as described in Section 3 to obtain the unmixing matrix. This is more flexible
in the sense that this solves the ICA problem, where for each component there is at least one scatter
combination S0,Sj , j ∈ {1, . . . ,K} with a distinct kurtosis compared with other components.
Thus, the K-Scatter (K > 1) approach is more flexible than the 2-scatter approach. However, this
approach still cannot separate components that have the same distribution. An ICA approach that
also works for identical distributed components and is based on joint diagonalization is JADE (joint
diagonalization of eigenmatrices), which uses cumulant matrices. Therefore, the method does not
fully fit in the framework presented here, as no scatter functionals are diagonalized but certain
cumulant matrices. We refer the reader to Cardoso and Souloumiac [1996], Miettinen et al. [2015]
for further details. The 2-scatter ICA approach is often not optimal and FOBI is, for example,
always less efficient than JADE Miettinen et al. [2015]. The 2-scatter ICA approach, compared to
the K-scatter approach or JADE, is usually much easier to compute, especially FOBI which is often
the start of an ICA analysis.

An extension of ICA is independent subspace analysis (ISA), which is also known as multivari-
ate ICA. In this framework Z does not have p “univariate” independent components but only c
components which may be multivariate. Thus, Z = (Z>1 , . . . ,Z

>
c )> where Zi has dimension pi,

i ∈ {1, . . . , c} with p1 + · · · + pc = p. In ISA, the individual components cannot be recovered but
only their subspaces. An approach based on joint diagonalization is first to perform 2-scatter ICA,
then compute a third scatter that has the block independence property for the obtained compo-
nents, and finally blockdiagonalize this third scatter. For details, see for example Nordhausen and
Oja [2011].

5.2 BSS for time series

In ICA, the extra feature exploited was non-Gaussianity for BSS. In time series, serial dependence
can be exploited, which in turn allows multiple Gaussian components. Different BSS approaches
imply different assumptions regarding the time series. For simplicity, we continue using X for the
stochastic process Xt.

1. Second order source separation (SOS) makes the following model assumptions:

(SOS): E(Z) = 0 and Cov(Z) = Ip.

(SOS2): ACovτ (Z) = Dτ for all τ ≥ 1 where Dτ are all diagonal matrices.
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Therefore, in the SOS model, the latent components are uncorrelated throughout time and it
is usually assumed that the latent components are linear processes.

The first SOS method is known as AMUSE (algorithm for multiple unknown signals extraction)
Tong et al. [1990], which chooses K = 1 and S1 = ACovSτ for some lag τ , which is very often 1.
AMUSE can solve the SOS problem if all autocorrelations at the used lag are distinct. AMUSE
is very sensitive to the chosen lag and was extended to SOBI (second order blind identification)
in Belouchrani et al. [1997]. The method consists in choosing K symmetrized autocovariance
matrices with different lags τ1, . . . , τK , which are then jointly diagonalized. This is again more
flexible, and different autocovariance matrices can contribute to the separation of different
lags. The statistical properties of AMUSE are discussed in Miettinen et al. [2012] and those
of SOBI in Illner et al. [2015], Miettinen et al. [2014, 2016]. Note, however, that SOBI is not
always better than AMUSE but it is in most cases. The choice of lags is, however, an open
question that has a large impact in practice, where the default is often to use simply the first
12 lags. For more sophisticated considerations for lag selection, see, for example, Tang et al.
[2005], Taskinen et al. [2016]. Replacing Cov and ACov’s in AMUSE or SOBI with robust
alternatives is discussed, for example, in Ilmonen et al. [2015] but requires that the time series
be symmetric.

2. Independent component time series (IC time series) model. In this model, one makes the
assumptions:

(IC time series 1): E(Z) = 0 and Cov(Z) = Ip

(IC time series 2): The latent time series contained in Z are all independent.

Note that (IC time series 1) implies stationarity which is assumed in the methods presented in
the following. It could, however, be relaxed and there is some overlap with the BSS approach
considering nonstationary data described subsequently.

The main difference when assuming the IC time series model compared with the SOS model
is that independence between components is required, and one usually has components with
stochastic volatility, such as GARCH components. Statistics measuring second order informa-
tion do not necessarily carry information, and higher order information is therefore commonly
used. The main method, in our context, is the generalized FOBI (gFOBI) Matilainen et al.
[2015] which extends FOBI by defining the scatter functional for the mean zero process

Cov4,τ (X) = E(Xt+τX
>
t Cov(Xt)

−1XtX
>
t+τ ),

which therefore can be seen as a lagged fourth moment matrix. For gFOBI, one selects a set
of lags τ1, . . . , τK used in the joint diagonalization approach for Sj = Cov4,τj , j ∈ {1, . . . , j}.
If the set consists only of τ1 = 0 the method reduces to FOBI. gFOBI therefore can solve the
BSS problem if all fourth moments are finite and the set of lags contains a lag τ for which the
ith and jth diagonal elements of Cov4,τ (X) are distinct, for all pairs i 6= j . Note that JADE
was similarly extended for this setting to gJADE in Matilainen et al. [2015].

3. Nonstationary source separation (NSS). Thus far, stationary data are considered. In the NSS
models this is relaxed slightly and the assumptions are:

(NSS 1): E(Z) = 0 and Cov(Zt) = Dt, where Dt is a diagonal matrix depending on t.

(NSS 2): ACovτ (Zt) = Dτ,t for all τ ≥ 1 where Dτ,t are all diagonal matrices.
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In this model, the mean is stationary, but not the second moment. To make the model formu-
lation easier, it is often assumed that, for the observed time series XT , the latent components
are scaled such that Cov(ZT ) = Ip. The main idea for NSS is to divide the observed time
span T into K non-overlapping intervals T1, . . . , TK , and then compute the scatter matrices
separately for each interval, and jointly diagonalize them.

The NSS method.SD Choi and Cichocki [2000b] uses K = 2 and the unmixing matrix W
corresponds to the matrix that simultaneously diagonalizes Cov(XT1

) and Cov(XT2
). Similar

to 2-scatter ICA and AMUSE, the performance of this approach is sensitive to the division,
and requires that each component has a distinct variance in the intervals. A straightforward
extension is NSS.JD Choi and Cichocki [2000b] that chooses K > 2 and jointly diagonalizes

Cov(Xst
T1

), . . . ,Cov(Xst
TK

), where Xst = Cov(XT )−1/2(XT −1T X̄T
>

). NSS.SD and NSS.JD
only require a temporal ordering of the observations but do not otherwise exploit the serial
dependence. The approach NSS.TD.JD Choi and Cichocki [2000a] therefore chooses K inter-
vals and a set of L lags τ1, . . . , τL and jointly diagonalizes the K × L autocovariance matrices
ACovSτi(X

st
Tj

), i ∈ {1, . . . , L} j ∈ {1, . . . ,K}. Thus, for K = 1, this approach reduces to
SOBI, and the general idea is that the data follow a block stationary model. NSS was first
considered in the context of audio signals, and K was chosen such that there are sufficient
observations within an interval, so that the scatter matrices can be computed with sufficient
precision. Another framework is that, on K subjects, the same experiment was performed and
produces for each subject a p-variate time series. Then, assuming that for all subjects the same
“mixing” occurred, one can concatenate the K time series and apply an NSS approach, where
the intervals correspond to the concatenation points. Such an approach is often referred to as
groupICA. NSS with robust scatter functionals, was, for example considered in Nordhausen
[2014].

As it is not always clear which of the three time series BSS models is suitable, there exist
generalizations combining different approaches. In general, approaches such as gSOBI Miettinen
et al. [2020], cannot be expressed in a joint diagonalization framework. Nordhausen et al. [2021a]
used almost all scatter matrices, as described above, including the subdivision into intervals, for
joint diagonalization to cover all three models. This is, however, very challenging as the different
scatter functionals are of different magnitudes, and it is not very clear how to weight them. This
is still an area for further research. More details about general BSS approaches for time series are
reviewed in Comon and Jutten [2010], Pan et al. [2021].

5.3 BSS for spatial data

Most areas where BSS was applied to date produced time series data. Therefore, the focus of BSS
was mainly on time series methods. However, recently, BSS was also considered in the context of
spatial data. In that case, X = X(s) is a p-variate random field specified on the domain S, where
the domain can be 1, 2 or 3 dimensional. To estimate the latent components, one has a sample of
n points X(si), sampled at the distinct locations si ∈ S, i ∈ {1, . . . , n}. XS denotes then the data
matrix with the sampled observations.

Two spatial settings that have been considered so far in a BSS framework, can be seen as spatial
counterpart to the SOS and NSS time series models where the role of the autocovariance matrices
will be taken on by local covariance matrices (see the definition in Section 2).

1. Spatial blind source separation model (SBSS) makes the following model assumptions:

(SBSS1): E(Z) = 0 and Cov(Z) = Ip.
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(SBSS2): E(Z(s),Z(s′)>) = Dh, where h = ||s − s′|| for all s and s′ ∈ S with s 6= s′ and
the diagonal matrix Dh contains the univariate covariance functions corresponding to the
latent fields.

Thus, in SBSS, the latent fields are assumed to be uncorrelated / independent stationary
random fields.

Nordhausen et al. [2015] suggested a 2-scatter approach that jointly diagonalizes Cov and
one LCovf for SBSS. The performance of this approach depends again heavily on the chosen
kernel f . Bachoc et al. [2020] then suggested a joint diagonalization approach with Cov and
S1 = LCovf1 , . . . , SK = LCovfK , for K ≥ 2, where the so-called ring kernels, with different
radii, are the most natural kernels considered so far. The statistical properties of the two
approaches are given in Bachoc et al. [2020] in the case of latent Gaussian random fields and
show again that the joint diagonalization approach seems preferable.

2. Spatial nonstationary source separation (SNSS). This model assumes

(SNSS 1): E(Z) = 0 and Cov(Z(s)) = Ds, where Ds is a diagonal matrix depending on
s ∈ S.

(SNSS 2): E(Z(s),Z(s′)>) = Ds,s′ or all s and s′ ∈ S with s 6= s′ and the diagonal matrix
Ds,s′ depends on the locations.

Thus, the location is stationary and all latent fields are uncorrelated or independent. However,
for all latent fields, the spatial covariance is non-stationary.

The idea for algebraic BSS in this model is quite similar to NSS in the time series case. The
domain is divided into K non-overlapping subdomains S1, . . . ,SK such that S1∪· · ·∪SK = S. Then,
analogously to the time series setting, Muehlmann et al. [2021a] suggested the methods SNSS.SD,
SNSS.JD and SNSS.SJD.

For SNSS.SD, K = 2 and the covariance matrices of the two domains are simultaneously diag-
onalized, which is again very sensitive to division into subdomains. SNSS.JD, which whitens the
data using Cov(XS) and then jointly diagonalizes the K > 2 covariance matrices obtained for the
subdomains, i.e., Cov(Xst

S1
), . . . ,Cov(Xst

SK
)), is less sensitive to division into subdomains. Both,

SNSS.SD and SNSS.JD, are based only on the spatial ordering of the points. If it is assumed that
there would be some kind of block-stationary model underlying, SNSS.SJD suggests to compute L
local covariance matrices LCovfj (Xst

Si
), i ∈ {1, . . . ,K}, j ∈ {1, . . . , L}, for all subdomains, and then

jointly diagonalizes these K × L matrices.
All the above BSS methods, either simultaneously diagonalize two scatter functionals or jointly

diagonalize K + 1 scatter matrices with one scatter playing a special role. There exist many other
BSS models or methods where joint diagonalization plays a role. Some are for example summarized
in Theis and Inouye [2006], Chabriel et al. [2014]. BSS is still an active research area, and spatial
BSS is currently actively developed. A schematic overview of the BSS models covered in the present
review and of ICS is given in Fig. 2.

Note that, as mentioned earlier, the goal of BSS is to estimate the latent components, and for
that purpose, we used simultaneous and joint diagonalization (see Section 3) to obtain an unmixing
matrix W such that

zi = W (xi − T (Xn)), i ∈ {i, . . . , n}.
This is however rather imprecise, as none of the models described above are identifiable in a strict
sense. In all the BSS models described above, one can write

X = AZ = (AJP )(P>JZ) = A∗Z∗,
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Fig. 2: Schematic overview of the different BSS models and ICS. For the definition of the models
see Section 5.

where J is p×p sign-change matrix and P a p×p permutation matrix. Thus, the signs and order of
the components cannot be fixed. Consequently, for any unmixing matrixW , the matrix JPW is also
an unmixing matrix for all permutation matrices P and all sign-change matrices J . However, these
identifiability issues are usually not considered to be a problem and the order of the components
is, for example, usually fixed based on the diagonal elements of D in the case of simultaneous
diagonalization, and based on diag(

∑K
i=1WSi(Xn)W>) in the case of joint diagonalization.

In performance studies, these indeterminancies have naturally to be taken into account and an
overview of BSS performance measures is given for example in Nordhausen et al. [2011b].

Most algebraic BSS methods described above are implemented in R via the R packages ICS,
BSSasymp, JADE Miettinen et al. [2017] , tsBSS Nordhausen et al. [2021b] and SpatialBSS Muehlmann
et al. [2021d] where JADE contains also some performance measures.

6 Joint diagonalization in the context of supervised multi-
variate methods

PCA, ICS and BSS are often used as dimension reduction methods, which means that some compo-
nents are selected and used in further modelling. However, if there is a response Y to be modelled,
no direct information is used when computing the new directions in an unsupervised manner. Such
dimension reduction methods are therefore called unsupervised dimension reduction methods. When
information about the target is used in the dimension reduction process, one refers to it as super-
vised dimension reduction (SDR). Surprisingly, many SDR methods can be seen within a joint
diagonalization framework.

For example, linear discriminant analysis (LDA) Fisher [1936] can be seen as a supervised method
in a classification context. Let us consider a data set X = (x1, . . . ,xn), with n observations and p
variables, which is partitioned into K subpopulations or groups. Fisher’s idea was to look for the
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best linear function of the p variables which maximized the ratio of the between-groups covariance to
the within-groups covariance. The intuition is that groups are more easily visible when the between-
groups variability is large in comparison with the within-groups variability. We use the index i for
the group and j for the observation in each group, so that xij denotes the jth observation in group
i, for i ∈ {1, . . . ,K}, j ∈ {1, . . . , ni}, where ni denotes the number of observations in group i. Using
the analysis of variance equation, we can decompose the total covariance matrix Cov, which does not
take into account the groups, into the between scatter matrix CovB and the within scatter matrix
CovW defined by:

CovB =
1

n

K∑
i=1

ni(x̄i − x̄)(x̄i − x̄)> (6)

CovW =
1

n

K∑
i=1

ni∑
j=1

(xij − x̄i)(xij − x̄i)> (7)

where x̄i denotes the mean of the ith group and x̄ the overall mean. The Fisher’s linear discrimi-
nant vectors are the eigenvectors of CovW

−1 CovB [see Mardia et al., 1979, for more details]. Both
CovB and CovW are scatter matrices in the sense that they are affine equivariant and semipositive
definite. Note however that the between-matrix is of rank K−1 and thus is generally singular. As a
consequence, in general, there are K−1 nontrivial linear discriminant vectors. As detailed in Section
3, the Fisher’s discriminant vectors are obtained as the solution of a generalized eigendecomposition.

Also canonical correlation analysis (CCA) Hotelling [1936] can be formulated as the simultaneous
diagonalization of two scatter functionals when using

S1(X) = Cov(X) and S2(X) = CovCCA = Cov(X,Y ) Cov(Y )−1/2 Cov(Y ,X).

Most SDR methods are developed in a regression context where, for simplicity, we assume from
now on that the response Y is univariate. In the spirit of a BSS model, we assume that:

X = AZ + µ,

where A is the p × p full rank mixing matrix and µ the p-variate location vector. For the latent

p-vector, we assume there exists a partition Z =
(
Z(1)>,Z(2)>

)>
with respective dimensions k and

p− k. The assumptions are:

(SDR 1): E(Z) = 0 and Cov(Z) = Ip.

(SDR 2): (Y,Z(1)>)> and Z(2) are independent.

Thus all information on Y is contained in Z(1). Note that there are naturally many partitions of Z
fulfilling these assumptions. But the partition of interest is the one with the smallest value k that
needs to be estimated together with the unmixing matrix W . Note also that Z(1) is only identifiable
up to an orthogonal transformation, which means that the “unmixing” matrix can only recover the
subspace of interest, which is however sufficient.

Liski et al. [2014] defined supervised invariant coordinate selection (SICS) as the joint diago-
nalization of one unsupervised scatter functional (S1) and one supervised scatter functional (S2).
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Many well established supervised dimension reduction methods, like sliced inverse regression (SIR)
Li [1991], sliced average variance estimation (SAVE) Cook [2000], principal Hessian directions (pHd)
Li [1992], or directional regression (DR) Li and Wang [2007], can be seen as special cases of SICS.
All these methods use S1 = Cov and differ regarding S2. SIR, for example, uses SSIR as defined in
Section 2. For the exact forms of SSAV E , SpHd and SDR we refer to Liski et al. [2014], where many
other possibilities for supervised scatter functionals are listed. The advantage of an SDR approach
over unsupervised methods is demonstrated in Fig. 3, where there is a response Y which is to be
explained by four possible predictors. Panel A gives the original data where no clear relationship
between any of the predictors and Y is visible. The PCs based on X given in panel B are not more
informative regrding their relationship with Y . The invariant coordinates in panel C give some idea
about the relationship when looking at IC.3. But the relationship is very clearly visible in panel D
where SICS is displayed.

The performance of the SDR methods depends a lot on the true relationship between response
and predictors, and different methods are more suitable to recognize certain types of dependencies
than others. For detailed discussions about SDR methods, we refer, for example, to Li [2018], Ma
and Zhu [2013]. Note that many of these methods also can make weaker assumptions than (SDR2).

In the example in Fig. 3, the true k is 1. In practice this needs to estimated. In SDR, depending
on the scatter used, the theoretical value of eigenvalues which correspond to Z(2), i.e., the values in
D, are known, and therefore tests and estimators can be based on these eigenvalues, as for example
discussed in Bura and Cook [2001], Bura and Yang [2011], Luo and Li [2016, 2021], Nordhausen
et al. [2021c].

Supervised dimension reduction methods are of course also of interest in the context of time
series and spatial data. The effect of the predictors on the response might, for example, be delayed
in the time series case, or depend on neighbouring values in the spatial setting. However, it is
straightforward to adjust the SDR assumptions from above, and to formulate an appropriate BSS-
SDR framework for dependent data. To take the temporal delay and spatial proximity into account,
supervised temporal and spatial scatter functionals should be used, and more than two scatter
matrices might be used. Matilainen et al. [2017] define time series SIR (TSIR), which is based on
STSIR,τ (X) = Cov(E(Xt|Yt+τ )), where τ is some lag. Then, TSIR whitens the data using Cov and
jointly diagonalizes STSIR,τi(X

st) with τi ∈ {τ1, . . . , τK}. Time series SAVE (TSAVE) is suggested
in Matilainen et al. [2019], and jointly diagonalizes Cov, and K so-called time series SAVE matrices
STSAV E,τi , using K different lags. Spatial SIR (SSIR) was so far only considered for lattice data
in Muehlmann et al. [2021c], and jointly diagonalizes Cov and SSSIR,τ (X) = Cov(E(Xs|Ys+τ )),
where τ is now a d-dimensional lag. These approaches are all fairly new and inference tools are still
missing.

Various SDR approaches discussed here are, for example, implemented in R in the packages dr

Weisberg [2002], ICS and tsBSS.

7 Conclusions

Many multivariate statistical methods make use of the joint diagonalization of several scatter ma-
trices as illustrated in the previous sections. Table 1 summarizes the different models, methods and
scatter functionals that are jointly diagonalized. However, the overview we propose in this paper is
far from exhaustive. For example, Theis and Inouye [2006], Chabriel et al. [2014] give an overview
of algebraic BSS methods that contains models and approaches not mentioned here. Then, there
are also completely different multivariate statistical methods that use joint diagonalization, but that
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Fig. 3: Comparison of different data transformations. Panel A shows a matrix scatterplot with
density estimators on the diagonal and correlations for the original data and where Y is the response
to be modeled by the 4 predictors, Panel B the principal components based on Xn, Panel C the
invariant coordinates (FOBI) based on Xn and Panel D the supervised invariant coordinates based
on Xn and Y . Clearly the supervised components make it easiest to see a relationship between
reponse and predictors.
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Table 1: Multivariate methods which are based on the joint diagonalization of two or more scatter
matrices.

Name Family Primary data type Scatters used
ICS Tyler et al. [2009] ICS non-elliptical iid data two different scatter matrices
PAA Critchley et al. [2006] ICS non-elliptical iid data S1 = Cov, S2 = Cov−1
LDA Fisher [1936] SDR multigroup iid data S1 = CovW , S2 = CovB
CCA Hotelling [1936] SDR two group data S1 = Cov, S2 = CovCCA.
FOBI Cardoso [1989], Nordhausen and Virta [2019] ICS, ICA non-elliptical / ICA iid

data
S1 = Cov, S2 = Cov4

2-Scatter-ICA Oja et al. [2006] ICA ICA iid data Two scatters with independence prop-
erty

k-Scatter-ICA Nordhausen et al. [2012] ICA ICA iid data k scatters with independence property
3-scatter-ISA Nordhausen and Oja [2011] ISA ISA iid data Three different scatter matrices with

(block) independence property
SICS Liski et al. [2014] SDR regression data a unsupervised and a supervised scatter

functional
SIR Li [1991] SDR regression data S1 = Cov, S2 = SSIR
SAVE Cook [2000] SDR regression data S1 = Cov, S2 = SSAV E
pHd Li [1992] SDR regression data S1 = Cov, S2 = SpHd
DR Li and Wang [2007] SDR regression data S1 = Cov, S2 = SDR
TSIR Matilainen et al. [2017] SDR time series regression data S1 = Cov, and K STSIR,τ s
TSAVE Matilainen et al. [2019] SDR time series regression data S1 = Cov, and K STSAV E,τ s
SSIR Muehlmann et al. [2021c] SDR spatial regression data S1 = Cov, and K SSIR,τ s

AMUSE Miettinen et al. [2012], Tong et al. [1990] SOS stationary time series S1 = Cov, S2 = ACovSτ
SOBI Belouchrani et al. [1997], Miettinen et al. [2015, 2016] SOS stationary time series S1 = Cov, K ≥ 2 ACovSτ s
gFOBI Matilainen et al. [2015] IC-time series time series with for exam-

ple stochastic volatilty
S1 = Cov, k lagged 4th moment matri-
ces

NSS.SD Choi and Cichocki [2000b] NSS non-stationary time series 2 Covs
NSS.JD Choi and Cichocki [2000b] NSS non-stationary time series K+1 Covs

NSS.TD.JD Choi and Cichocki [2000a] NSS block stationary time se-
ries

K × L ACovSτ s

SBSS Bachoc et al. [2020], Nordhausen et al. [2015] SBSS stationary spatial data Cov and K LCovf s
SNSS.SD Muehlmann et al. [2021a] SNSS non-stationary spatial

data
2 Covs

SNSS.JD Muehlmann et al. [2021a] SNSS non-stationary spatial
data

K+1 Covs

SNSS.TD.JD Muehlmann et al. [2021a] SNSS block stationary spatial
data

K × L LCovf s
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were not considered here, such as for example common principal component analysis Flury [1988].
Additionally, the methods have been extended in several directions to tackle more complex data, such
as tensors, functional data or composition data [see for example Virta et al., 2017, 2020, Muehlmann
et al., 2021b], and similarities and different approaches are discussed in Cook [2021], Nordhausen
et al. [2021c], Fischer et al. [2020]. Finally, let us mention the problem of high-dimensional data and
the sparsity question that needs further development.
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