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Abstract  

Using a large representative dataset of 4,428 maize farmers from Burkina Faso with information on 

over 7,800 plots, we study the role of risk and farmers’ risk preferences in their use of nitrogen 

fertilizers. After characterizing the role of nitrogen on the moments of the maize yield distribution, we 

plug the plot-specific distributions into a structural model that allows for both risk preferences and 

probability distortion to elicit farmers’ underlying behavioural model. We found farmers to be only 

moderately risk averse and to distort probabilities; i.e., farmers overweight the small probabilities of 

getting high yields. Finally, running simulations, we find that prices are a more important driver of the 

quantity of nitrogen used on maize plots than farmers’ risk preferences. Our results suggest that input 

subsidy programs in this context, if well implemented, may have the potential to increase fertilizer use.  
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Fertilizer use and risk: New evidence from Sub-Saharan Africa 

 

 

1. Introduction 

Agricultural productivity is one important driver of economic growth (Fuglie and Wang, 2012). In a 

number of countries, agricultural productivity has been enhanced by the increasing adoption of 

modern inputs and improved technologies. However, and despite subsidization policies put in place in 

several countries to encourage the use of fertilizers, Sub-Saharan Africa is lagging behind.1 We observe 

a relatively slow adoption of modern inputs and improved practices, and low agricultural productivity, 

which raises serious concern for future generations, especially considering the rapid demographic 

growth on the continent.  

For many years economists have tried identifying reasons for what seems to be sub-optimal use of 

modern inputs and technologies or practices by farmers. A number of possible impediments have been 

listed, including: difficult access to credit, aversion to risk and downside risk (Dercon and Christiaensen, 

2011; De Brauw and Eozenou, 2014; Emerick et al., 2016), procrastination and time preferences (Duflo, 

Kremer and Robinson, 2011; Le Cotty et al., 2018), low profitability of fertilizers (Duflo, Kremer and 

Robinson, 2008; Suri, 2011; Beaman et al., 2013), insecure property rights (Jacoby, Li and Rozelle, 

2002), and lack of formal insurance markets (Mobarak and Rosenzweig, 2013; Cole et al., 2013; Karlan 

et al., 2014).  

In this article we focus more specifically on the relationship between risk and farmers’ use of fertilizers. 

We use a large nationally representative dataset of maize farmers with information on over 7,800 plots 

 
1 Recent work by Carter, Laajaj and Yang (2021) finds a large, sustained over time impact on input use and crop 
yields of a temporary input subsidy program offered to maize farmers in Mozambique. The subsidy benefited to 
both the targeted farmers and their social networks, suggesting that the program was highly cost effective. 
Although the results may not be generalizable to other contexts, they point to the potential of subsidies to fuel 
a green revolution in the African context.  
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managed by 4,428 individual farmers across 12 out of 13 administrative regions of Burkina Faso.2 We 

study the role of risk and farmers’ risk preferences in their application of nitrogen on maize plots. 

Observations of nitrogen applications and yields at the plot level, along with plot characteristics, allow 

a detailed investigation of risk-related properties of nitrogen.  

Our work makes several contributions: first, using detailed plot-level information over a large sample 

of plots, we are able to characterize the impact of nitrogen use on the mean, variance, and skewness 

of the maize yield distribution while controlling for environmental conditions and plot characteristics. 

Estimating the impact of nitrogen on yield distribution is an important step towards our understanding 

of farmers’ incentives to use fertilizers in a context of uncertainty. This step is often overlooked in 

studies on the impact of risk preferences on input use. We find evidence of non-linear relationships 

between nitrogen use and the first three moments of the maize yield distribution. The mean and 

variance of yield are found to be concave functions of nitrogen use, with nitrogen being a risk-

increasing input for a relatively wide range of nitrogen levels. The maize yield distribution is found to 

be positively skewed with skewness being a convex function of nitrogen quantity.  

Second, we plug the plot-specific yield distributions into a structural model that allows for both risk 

preferences and probability distortion to elicit farmers’ underlying behavioural model. We test various 

forms of utility functions to determine the one that best fits the observed behaviour of farmers in 

terms of nitrogen application. Our searching procedure indicates that farmers are moderately risk 

averse (the relative risk aversion coefficient is estimated at 0.5) and that they distort probabilities (the 

probability weighting function is found to be inverse-S-shaped).  

Finally, we use the structural model that best explains farmers’ behaviour to simulate changes in 

economic conditions (nitrogen and maize prices) and changes in risk aversion on the optimal quantity 

of nitrogen used. Our simulation results suggest that prices are a more important driver of the quantity 

 
2 Burkina Faso is divided into 13 administrative regions and 45 provinces. We exclude the Sahel region (the driest 
region in the country) from the forthcoming analysis for the main reason that nitrogen has been applied only on 
one plot in this region.  
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of nitrogen used on maize plots than farmers’ risk preferences. Therefore, fertilizer subsidies, if well 

implemented and well targeted, may have the potential to increase fertilizer use. 

For the most part, our empirical study focuses on the Sudan-Sahelian zone, which is one of three main 

agro-ecological zones in Burkina Faso. This zone was chosen after checking for possible selection 

effects regarding the choice of plots on which nitrogen is applied. The Sudan-Sahelian zone appeared 

to be free from selection effects. It covers 24 out of the 45 provinces with significant heterogeneity in 

plot and farmer characteristics which we control for. 

The rest of this paper is organized as follows. In Section 2 we review studies of the risk-related 

properties of inputs and the literature that covers the modelling of farmers’ behaviour under risk. In 

Section 3, we describe the context for smallholder family farms operating in Burkina Faso and we 

provide some details on the data and main variables of interest. The structural model describing 

farmers’ optimal production choices is presented in Section 4. In Section 5 we discuss the methodology 

and present the results. Section 6 concludes. 

 

2. Related literature 

Our work relates to literatures aiming at assessing the risks associated with the use of agricultural 

inputs and especially fertilizers, the measure of farmer risk preferences, and the impact of risk 

preferences on farmer input use.  

Risk-related properties of fertilizers 

It is now well admitted that chemical inputs such as fertilizers and pesticides impact not only the mean 

but also higher moments of crop yield distributions (variance and skewness in particular). Different 

approaches have been used in the literature to study the risk-related properties of chemical inputs.  



 

5 

Just and Pope (1979) proposed to condition the mean and variance of output on inputs by specifying 

a production function made of two additive components: ( ) ( , )y f x h x v= + , combining a 

deterministic mean function ( )f x  with a risk function ( , )h x v  that depends on the input vector 𝑥 and 

a random shock 𝑣.  

Noticing that the above approach to production function estimation (i.e. parameterising a 

deterministic relationship between inputs and output and appending an error term to it) imposes 

restrictions on the relationship between inputs and the moments of the output distribution,3 Antle 

(1983) proposed a more flexible representation of the output distribution by specifying the moments 

of the output distribution as explicit functions of inputs 𝑥 and other controls 𝑧 :  ( ) ,   i i im m x z = +  

with i representing moment order (mean, variance, skewness etc.). This non-parametric approach 

improves flexibility in terms of the representation of the output distribution but creates an incidental 

parameter problem since each moment function depends on a distinct set of parameters.4 Antle’s 

moment-based framework has been applied in a number of studies to assess the role of various 

covariates (including practices or technologies) on the moments of the output distribution (e.g., Di 

Falco and Chavas, 2009; Di Falco and Veronesi, 2014, and Huang, Wang and Wang, 2015).  

Nelson and Preckel (1989) proposed to use a conditional beta distribution to study the role of inputs 

on the distribution of output, arguing that “if information for specifying a parametric probability 

distribution is available, then estimation of the parametric function is likely more efficient than 

estimation of a non-parametric model” (referring here to Antle’s non-parametric moment-based 

approach). The beta distribution appears to be well suited to model crop yield distributions: a beta 

 
3 In the Just-Pope model described above, the elasticity of the third moment with respect to an input is directly 
proportional to the elasticity of the second moment with respect to that input (see equation 4 in Antle, 1983). 
4 Antle (2010) went a step further in terms of the flexibility in the representation of output distribution by 
considering that inputs may have different effects on the negative and positive tails of the distribution. He 
estimated partial moment functions which are based on deviations above and below a reference point and tested 
whether inputs play the same role on positive and negative partial moments. Tack, Harri and Coble (2012) 
proposed to combine Antle’s moment-based approach and maximum entropy techniques to estimate 
conditional crop yield distributions. 



 

6 

random variable varies from 0 to a maximum upper bound and the distribution of a beta random 

variable can be skewed on either side. The beta distribution (and its moments) is characterised by two 

shape parameters which can be expressed as functions of inputs. This approach was used by Nelson 

and Preckel (1989) to study the response of maize yield distributions to fertilizer application using data 

from farms in Iowa and later by Babcock and Hennessy (1996).5,6 In these articles, fertilizers were found 

to impact the mean, variance, and skewness of maize yield but directions of the impact varied 

depending on the sites.  

Empirical evidence regarding the risk-related properties of chemical inputs is mixed and is often site-

specific since crop growth conditions usually matter (Horowitz and Lichtenberg, 1994) but also 

different types of measurement indicators have been used (for the case of pesticides application, see 

e.g., Möhring et al., 2020). As far as we know, evidence on risk-related properties of inputs is coming 

primarily from agricultural fields from the US and Europe and is still rare for Sub-Saharan Africa. We 

contribute to this literature by estimating conditional beta distributions of maize yield using detailed 

plot-level data from Burkina Faso, along the lines of Nelson and Preckel (1989) and Babcock and 

Hennessy (1996).  

Eliciting farmers’ risk preferences  

The literature on farmers’ risk aversion is vast and studies assessing farmers’ risk preferences are found 

worldwide. Methodologies to elicit farmers’ risk preferences have evolved over time, with authors now 

showing a preference for experimental approaches. The elicitation of risk preferences from actual data 

on farmers’ production choices has been put into question by Lence (2009) and Just and Just (2011). 

Simultaneous estimation of production technology and risk preferences was quite popular in the 1990s 

 
5 There is a large literature on the distribution of crop yields in general (outside the question of its relationship 
with inputs), with a pioneering and often-cited work by Day (1965), including debates around the validity of the 
normality assumption and the consequence of using aggregated data (e.g., Just and Weninger, 1999; Ramirez, 
Misra and Field, 2003).  
6 Another possible approach to estimate the distribution of crop yield conditional on input is conditional quantile 
regression. See Du, Hennessy and Yu (2012) and Chavas and Shi (2015), among others. 
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(e.g., Love and Buccola, 1991; Saha, Shumway and Talpaz, 1994; Chavas and Holt, 1996) but a number 

of authors including Lence, and Just and Just, have expressed reservations regarding the separate 

identification of farmers’ risk preferences and input-output relationships with the farm data usually 

available to researchers.  

Over the last decade and inspired by the pioneering work of Binswanger (1980), researchers rather 

used incentive-compatible experimental techniques commonly based on risk games (often involving 

choices between lotteries) to elicit farmers’ risk preferences. Risk preferences are commonly 

measured by fitting the data to theoretical utility models proposed in the literature, such as expected 

utility (EU), rank-dependent utility (RDU), and cumulative prospect theory (CPT) models.7 In some cases 

the elicited risk preferences are used in a second stage of the analysis to study their relationship with 

farmers’ observed (real) production choices (adoption of innovative practices or technologies, input 

use etc.). We focus here on studies from Africa, in particular: studies by Humphrey and Verschoor 

(2004), Wik et al. (2004), Yesuk and Bluffstone (2009), Liebenehm and Waibel (2014) and De Brauw 

and Eozenou (2014) that use incentivized lottery choices, and Le Cotty et al. (2018) using hypothetical 

lottery choices. All in all African farmers are generally found to be risk averse, with risk aversion varying 

with wealth. When several theories are tested and compared, the findings almost always lead to the 

rejection of the EU model in favour of theories allowing for probability distortion (such as RDU or CPT). 

Using experimental data gathered from surveys of east Ugandan farmers, Humphrey and Verschoor 

(2004) showed that the EU theory fails at describing farmers’ decisions. Their results call for the use of 

generalised EU theory which involves a non-linear transformation of probabilities (such as RDU or CPT).  

Yesuf and Bluffstone (2009) applied Binswanger (1980)’s experimental design to study risk aversion of 

households living in the Ethiopian highlands (but here choice sets were framed to reflect real farming 

decisions). Across the different games played by the households, one-third to two-third of households 

were found severely or extremely risk-averse and the level of risk aversion was found to depend on 

 
7 A difficult issue with cumulative prospect theory is the definition of the reference point (Barberis, 2013).  
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wealth and on whether farmers played gain-only games or games that involved both gains and losses. 

Wik et al. (2004) also applied Binswanger (1980)’s experimental design on a sample of Zambian 

households. They found that individuals are risk-averse and tend to get more risk averse when the size 

of the gamble increases. 

Using field experiments with small‐scale farmers from Mali and Burkina Faso, Liebenehm and Waibel 

(2014) found that the average farmer in their sample tends to overweight small probabilities and to 

underweight large probabilities (i.e. she is characterized by an inverted S-shaped probability weighting 

function). The average farmer was also found to be more risk averse in the gain domain and to have 

lower levels of loss aversion than its Asian counterparts (as reported in Tanaka, Camerer and Nguyen, 

2010, and Nguyen and Leung, 2010, for Vietnam; and Liu, 2013, for Chinese farmers). The authors also 

found a negative correlation between wealth and risk aversion, with wealthier farmers being 

associated with lower levels of risk aversion. 

De Brauw and Eozenou (2014) implemented a lab-in-the-field experiment involving farmers from 

northern Mozambique to test and compare several models of risk preferences. The experiment was 

contextualized (referring to the adoption of sweet potato varieties) and was presented in the form of 

lottery choices over hypothetical gains. They found that RDU models explain farmers’ choices better 

than EU models, and that relative risk aversion is not constant.  

Using experiments involving hypothetical payoffs, Le Cotty et al. (2018) measured risk attitudes of 

maize growers from Burkina Faso. They collected data from a representative sample of households in 

the Tuy and Mouhoun provinces in the Sudan-Sahelian agro-ecological zone. Under the assumption 

that their underlying model of risk preferences was a Constant Relative Risk Aversion (CRRA) utility 

function, they found that most farmers were risk averse, with a relative risk aversion coefficient around 

0.3-0.4. 
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Impact of risk preferences on input use 

Our work contributes also to the literature assessing the impact of risk preferences on farmers’ 

production decisions. We restrict our attention to the articles using data from developing countries. 

Le Cotty et al. (2018), which is directly relevant to our purposes, found no statistically significant 

relationship between risk aversion and fertilizer use. Combining experimental field study and survey 

data, Liu and Huang (2013) showed that Chinese farmers who are more risk averse use greater 

quantities of pesticides. The findings regarding the relationship between risk preferences and input 

use are mixed and, when such a relationship is found, the magnitude of the impact of risk aversion on 

input use is rarely documented.8  

 

3. Context and data 

We first describe the context regarding fertilizer use for maize production in Burkina Faso (Section 

3.1.). A description of the data follows in Section 3.2. 

3.1. Fertilizer use in Burkina Faso 

With estimated 80% of the population employed in the agricultural sector, agriculture is a crucial sector 

for the Burkinabé economy (World Bank, 2018). Despite policies to promote fertilizer adoption, 

chemical fertilizer use in Burkina Faso remains low. In 2018, average fertilizer use was around 18 

kilograms per hectare of arable land in Burkina Faso, below the average in Sub-Saharan Africa 

(20 kg/ha), but increasing from an average of 9.5 kg/ha in 2008, year when the government launched 

 
8 Using simulated data, Bontemps, Bougherara and Nauges (2021) showed that, in most situations, risk aversion 
is expected to have a moderate impact on the optimal quantity of a risk-increasing or risk-decreasing input a 
farmer should use. 
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a large input subsidy program.9 In comparison, average fertilizer use in Latin America & Caribbean and 

East Asia & Pacific was 171 kg/ha and 294 kg/ha respectively in 2018.10  

With its production expanding rapidly for decades – an expansion mostly driven by an increase in 

cultivated areas –, maize is currently the second main staple crop produced in Burkina Faso (after 

sorghum). In 2019, maize production accounted for around 35% of total cereal production, up from 

around 19% of cereal production in the year 2000.11 However, maize yields have been stagnating 

reflecting in part the low use of improved agricultural inputs. This is regardless of the input subsidy 

program launched by the government in 2008, and that is still ongoing. The subsidy program, which 

targets both food crops, mainly rice and maize, and cash crops such as cotton (Burkina’s main cash 

crop), aims to increase modern input use, i.e., chemical fertilizers and improved seed use, and crop 

yields through a decrease in inputs prices (Wanzala-Mlobela, Fuentes and Mkumbwa, 2013). A recent 

study of the characteristics of the fertilizer supply in Burkina Faso found however that although the 

subsidy program benefited a considerable number of farmers,12 fertilizer market prices in Burkina Faso 

remain high in comparison to prices in other neighbouring countries, and in comparison to resources 

available to Burkinabé farmers (Maître d’Hôtel and Porgo, 2018). Also, even at subsidized fertilizer 

prices, farmers in Burkina Faso – maize farmers for instance – have been found to use sub-optimal 

levels of fertilizer given its estimated profitability (Koussoubé and Nauges, 2017). Using the same 

dataset as in this paper, Koussoubé and Nauges (2017) show that at observed (2008/2009) level of 

maize and fertilizer prices, the lack of profitability (measured by a marginal value cost ratio) does not 

explain the low use of fertilizers by maize farmers. The authors hypothesize that other factors, 

 
9 For more details on the input subsidy programme, see MAFAP (2013).  
10 Word Development Indicators https://data.worldbank.org/indicator/AG.CON.FERT.ZS; accessed April 21, 
2021.  
11 FAOSTAT http://www.fao.org/faostat/en/#data/QC/; accessed April 21, 2021. 
12 Inefficiencies in terms of the targeting of farmers and the distribution of the subsidized inputs remain however 
some of main impediments of the program (Maître d’Hôtel and Porgo, 2018; Siri, 2013; Wanzala-Mlobela, 
Fuentes and Mkumbwa, 2013).  

https://data.worldbank.org/indicator/AG.CON.FERT.ZS
http://www.fao.org/faostat/en/#data/QC/
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including the shortage of chemical fertilizers (at crucial application time) and risks, may play a role in 

explaining maize farmers low use of fertilizers. 

Now the question of what explains the low use of fertilizers by Burkinabé farmers remains crucial for 

policy makers in the country13 and in other similar contexts. Although addressing supply constraints to 

fertilizer use is “a staple” of policy recommendations based on the available evidence (e.g., Maître 

d’Hôtel and Porgo, 2018), the lack of evidence on other important and highly contextual factors 

continue to impede policy making. In this paper, we explore one often overlooked explanation for the 

low use of fertilizers in African countries, i.e. risks associated with the use of fertilizers and the effects 

of risk preferences on fertilizer use.  

To the best of our knowledge, only one previous study has explored the relationship between risk 

preferences and fertilizer use in the context of Burkina Faso. Le Cotty et al. (2018) rely on field 

experiments to measure farmers risk and time preferences in two cotton producing regions. 

Combining these experimental data with survey data, the study does not find any statistically 

significant association between risk aversion and fertilizer use. The contribution of our study with 

respect to Le Cotty et al. (2018) is threefold: first, our sample has a wider geographical coverage; 

second, we make a detailed analysis of the impact of nitrogen use on the distribution of maize yield 

(up to the third moment) while controlling for heterogeneity and selection effects, and third, we assess 

the role of risk preferences on nitrogen use using a structural model of farmers’ behaviour. 

3.2. Data and descriptive statistics 

In this study, we use a large nationally representative dataset of maize farmers in Burkina Faso, 

collected during the second phase of Burkina Faso’s Agricultural Census (Recensement Général 

Agricole 2008/2009). The survey, described in Koussoubé and Nauges (2017), provides detailed 

 
13 See Burkina Faso’s National Economic and Social Development Plan (Plan National de Développement 
Economique et Social – PNDES 2016-2020). 
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information on agricultural inputs, soil conditions, characteristics of individual farmers and their 

households, access to infrastructure and markets, and other key variables.  

In the data, average maize yield was around 1,300 kg/ha, with nitrogen applied to around one-third of 

the plots. For those plots, the average nitrogen application was 34 kg/ha and the median was 26 kg/ha. 

Table 1 shows the distribution of our sample of plots across Burkina’s thirteen regions, along with 

statistics on maize yields, with and without nitrogen application, at the region level. 

Table 1. Share of plots with (w/) and without (w/o) nitrogen (N) and average yield in each region 

Region Rainfall 
(mm) 

Total # of 
plots 

% Plots 
w/N 

Yield 
w/N 

(kg/ha) 

% Plots 
w/o N 

Yield 
w/o N 
(kg/ha) 

       

BOUCLE DU MOUHOUN 779 935 58% 1,495 42% 1,122 

CASCADES 1061 441 68% 1,833 32% 1,435 

CENTRE 656 180 20% 1,383 80% 919 

CENTRE EST 737 825 27% 1,498 73% 1,357 

CENTRE NORD 583 464 11% 1,128 89% 1,065 

CENTRE OUEST 740 595 47% 1,699 53% 1,143 

CENTRE SUD 693 640 29% 1,340 71% 1,173 

EST 663 911 17% 1,429 83% 1,426 

HAUTS-BASSINS 953 854 75% 1,926 25% 1,717 

NORD 607 268 30% 1,040 70% 1,015 

PLATEAU CENTRAL 633 605 11% 1,326 89% 1,056 

SAHEL 482 78 1% 800 99% 658 

SUD OUEST 853 1,083 18% 1,197 82% 764 
Notes: N stands for Nitrogen. In the Sahel region, only one plot received nitrogen. 

 

The heterogeneity in environmental conditions partly explains the variation in average yield across the 

13 regions. For plots on which no nitrogen was applied, the average yield varies from 658 kg/ha in the 

Sahel region to 1,717 kg/ha in the Hauts-Bassins region. For plots on which some nitrogen was applied 

and if we exclude the Sahel region where only one plot in our sample received nitrogen, the average 

yield varies from 1,040 kg/ha in the Nord to 1,926 kg/ha in the Hauts-Bassins. Practices also vary 

significantly since the proportion of maize plots on which some nitrogen is applied varies from 11% in 

the Centre Nord and Plateau Central, to 75% in the Hauts-Bassins.  
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To account for heterogeneity in environmental conditions, we distinguish the three main agro-

ecological zones (see Appendix A for a map and the classification of all the provinces into the three 

zones): the Sahelian zone (arid land in the north), the Sudan-Sahelian zone (arid savannah which 

extends through much of the central part of the country), and the Sudanese zone (savannah in the 

south and west). The Sahelian zone receives less rainfall than the other two zones on average: over 

the growing season in 2008/2009, the maize parcels in the Sahelian zone received 1,586 mm, while 

average rainfall was 2,069 mm in the Sudanese zone and 1,828 mm in the Sudan-Sahelian zone. The 

average plot characteristics (sample mean over all plots within each zone) are reported in Table 2. 

Table 2. Key summary statistics by agro-ecological zone 

 Sahelian 
Zone 

 
mean (sd) 

Sudan-
Sahelian 

Zone 
mean (sd) 

Sudanese 
Zone 

 
mean (sd) 

    
Average yield on all plots (kg/ha) 1,082 (603) 1,348 (691) 1,305 (872) 
Average yield on plots with N (kg/ha) 1,115 (633) 1,549 (673) 1,721 (882) 
Average yield on plots with no N (kg/ha) 1,076 (597) 1,245 (677) 972 (705) 
    
Average N on all plots (kg/ha) 3 (13) 11 (24) 14 (24) 
Average N on plots with N (kg/ha) 18 (26) 34 (31) 32 (26) 
    
Maize was grown on the plot the year before (0/1) 0.93 (0.25) 0.72 (0.45) 0.60 (0.49) 
Only maize on plot (0/1) 0.91 (0.29) 0.87 (0.34) 0.63 (0.48) 
Plot was borrowed or rented (0/1) 0.32 (0.47) 0.42 (0.49) 0.45 (0.50) 
Plot is located in the plains (0/1) 0.91 (0.29) 0.92 (0.27) 0.87 (0.33) 
Soil of his/her parcel is of low quality (0/1) 0.26 (0.44) 0.27 (0.44) 0.30 (0.46) 
Manure on plot (0/1) 0.78 (0.41) 0.51 (0.50) 0.25 (0.43) 
Rainfall over the growing season (mm) 1,586 (75) 1,828 (153) 2,069 (215) 
    
Total number of plots 842 4,618 2,341 
Number of plots with N (% of total plots) 142 (17%) 1,568 (34%) 1,042 (45%) 
Number of plots with no N (% of total plots) 700 (83%) 3,050 (66%) 1,299 (55%) 

 

The average yield on parcels with no (chemical) nitrogen varies between 972 and 1,245 kg/ha across 

the three zones, with the highest average being observed in the Sudan-Sahelian zone. The latter is 

probably explained by the combination of relatively abundant rainfall (compared to the Sahelian zone) 

and the use of manure on about half of the plots. When nitrogen is applied, the highest average yield 
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is recorded in the Sudanese zone (1,721 kg/ha) followed by the Sudan-Sahelian zone (1,549 kg/ha). 

The Sahelian zone has the least favourable agro-climatic conditions for maize growing. Even when 

nitrogen is applied, the average yield remains much lower (1,115 kg/ha on average) than in the other 

two agro-ecological zones.14 In the Sahelian zone, nitrogen is used on 17% of the plots only, but manure 

is spread over close to 80% of the plots (this is the zone where animal farming is the most common). 

Crop rotation and intercropping are also quite rare in this zone. Crop rotation and intercropping are 

more often practiced in the other two zones. In the Sudanese zone, nitrogen and manure are applied 

on 45% and 25% of the plots, respectively. In the Sudan-Sahelian zone, one-third of the plots received 

nitrogen and 51% received manure. Figures 1 and 2 show the average quantity of nitrogen (kg/ha) 

applied on plots (for those plots which received nitrogen) and the average maize yield (kg/ha) for each 

of the 45 provinces, as computed from the data.15  

 

Figure 1: Weighted average of nitrogen quantity used on plots (kg/ha)   

 
14 The average quantity of nitrogen used on plots in the Sahelian region remains also much lower than the 
quantity of nitrogen used on plots in the other agro-ecological zones. See Figure 1.  
15 When computing the average quantity of nitrogen and average maize yield, weights corresponding to each 
plot size have been used. 
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Figure 2: Weighted average of maize yield (kg/ha) 

 

4. Farmers’ optimal choice of nitrogen: conceptual model  

After defining the plot-specific profit function (section 4.1.), we present in section 4.2 the structural 

model of farmers’ preferences and behaviour that describes their optimal choice of nitrogen quantity 

on each plot. We assume the uncertainty faced by farmers is attached to maize yield only. Since our 

main variable of interest is the quantity of nitrogen used on maize plots, it is important to first 

characterize the relationship between nitrogen quantity and the moments of the maize yield 

distribution. If farmers are not risk-neutral and if nitrogen impacts the variance and skewness of the 

maize yield distribution, then farmers will choose nitrogen not only to increase mean yield but also to 

manage production risk (i.e., to reduce variance if farmers are risk averse). 

 4.1. Assumptions and definition of plot-specific profit 

We assume that farmers make a plot-by-plot decision in terms of N application, i.e. that the decision 

on how much N to apply is made separately for each plot and does not depend on how much N is used 

on the other plots. We do as if households are unconstrained in terms of how much N they can get, 
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which may be a strong assumption for some farmers.16 We also assume that the price of nitrogen and 

the maize price are known to the farmers and non-random,17 so that households face production risk 

only. If we denote by si
 the size of plot i, yp  the price of output and C(N,L) the cost of production 

which depends on nitrogen (N) and labour (L), then the (random) profit on plot i is written as follows:  

( )s , ( , )y

i i i i i i ip y N z C N L  = − 
, with zi , the vector of plot characteristics. The ~ sign on y and 

indicates that these two variables are uncertain due to production risk. Under the assumption of non-

random input and output prices, each moment of profit is proportional to the corresponding moment 

of output.  

We assume that the labour costs are primarily made of the time the household spends ploughing, 

sowing and harvesting, and that the time spent applying nitrogen does not represent a major share of 

total labour. Hence we assume total labour spent on the plot (L) does not depend on N. Under this 

assumption, the cost of production is assumed to depend only on how much N is applied on the plot. 

We believe this assumption is reasonable in the context of our study.18 Hence the (restricted) profit is 

written as: 

( ),y N

i i i i i i i is p y N z p N  = − 
, where pN is the unit price of N.  

4.2. Farmers’ model of risk preferences 

We assume farmers maximize the utility of profit, as defined in the previous section. Farmers’ risk 

preferences are modelled as a CRRA utility function. CRRA utility functions imply Decreasing Absolute 

Risk Aversion (DARA) and aversion to downside risk, some characteristics which are commonly 

observed in farmers’ populations (Chavas, 2004). The CRRA utility function is specified as follows: 

 
16 For close to 50% of the parcels in our sample, farmers report difficulties in accessing agricultural inputs. 
17 A possible extension would be to assume that nitrogen and/or maize prices are random and drawn from some 
specific distribution. This is beyond the scope of this paper. 
18 The database records labour (in men per day) used for ploughing/tilling, sowing, maintenance, harvesting, and 
transportation. Nitrogen application is included in the maintenance category which, as a whole, represents 
around 40% of total working time (average on the entire sample). 
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11
( )

1
rr

r

U w w
r

−
=

−
 when rr  is different from 1, with w  representing wealth ( 0w  ) and rr  the 

coefficient of relative risk aversion; ( )( ) lnU w w=  when rr = 1 the logarithmic function, with w > 0. 

Wealth in the following is defined as the sum of the (household) initial wealth w0 and the profit on the 

plot.19 The above utility function can accommodate risk aversion (corresponding to the coefficient of 

relative risk aversion rr  being strictly positive), risk-loving behaviour (rr  < 0) and risk-neutrality (rr  = 

0).20  

In recent literature using data from Africa, utility models that allow for probability distortion have been 

shown to explain farmers’ choices better than Expected Utility (EU) models (e.g., field experiments 

with small-scale farmers from Mali and Burkina Faso in Liebenehm and Waibel, 2014; and lab-in-the-

field experiment involving farmers from northern Mozambique in De Brauw and Eozenou, 2014). In 

order to allow for probability distortion, the utility function over all possible outcomes (or states) j is 

defined as follows: ( ) ( ) j ij

j

p U  , with 
jp  the objective probability of realization of profit j, 

and ( )jp  the decision weights that are generated using the following probability weighting 

function: 𝑝𝜇 [𝑝𝜇 + (1 − 𝑝)𝜇]
1

𝜇⁄⁄ . When 1 = , subjective and objective probabilities are equal and the 

utility model reduces to the EU model. When 1  , the subjective and objective probabilities differ. 

This is the so-called Rank-Dependent Utility or RDU model. In summary, farmers are assumed to 

choose the level of nitrogen N for plot i that maximizes their utility ( ) ( ) j ij

j

p U   over all 

possible states or realizations of profit j, with ( ),y N

ij i i ij i i i is p y N z p N  = − 
.  

 

 
19 We consider as initial (certain) wealth the estimated value of the herd based on average prices in each province 
and ownership of six types of animals: beef, draft oxen, donkey, sheep, goat and pig, and poultry (source: 
Ministère de l’Agriculture et de l’Hydraulique, 2011). This source of revenues can be assumed non-random in the 
sense that it is insensitive to production risk that may affect maize growing.  
20 In Anderson and Dillon (1992)’s terminology: rr  = 1 for somewhat risk averse; rr  = 2 for rather risk averse; rr  = 
3 for very risk averse; and rr  = 4 for extremely risk averse. 
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5. Methodology and estimation results  

We proceed in two stages. First, we characterize the uncertainty in maize yield as represented by the 

random variable iy  and we assess how nitrogen impacts the first three moments of the yield 

distribution.  For that purpose, we estimate the conditional yield distribution (section 5.1). Second, we 

elicit farmers’ underlying model of risk preferences by testing various competing utility models 

allowing for both risk aversion and probability distortion (section 5.2). 

5.1. How does nitrogen impact the maize yield distribution  

We assume maize yield follows a beta distribution with shape parameters   and   ( 0    and 

0  ).  

5.1.1. Estimation of the conditional yield distribution 

We allow these shape parameters to be parametric functions of a set of covariates including the 

quantity of nitrogen (N) used per hectare (see Babcock and Hennessy, 1996, for a similar approach). In 

all that follows the shape parameters are estimated by Maximum Likelihood (ML) and we control for 

the fact that observations from plots belonging to the same household may not be independent. For 

a (standardized) random variable ys belonging to the [0,1] interval, the Probability Density Function 

(PDF) of the beta distribution is as follows: 

( )

( )

11 1

B ,

s sy y


 

−− −
 where ( )

( ) ( )

( )
B ,

 
 

 

 
=

 +
 and ( ).  is the gamma function. 

Note that in the following the shape parameter estimates are always for the standard beta distribution, 

that is the distribution on the [0,1] interval. Maize yield varies in our sample from 112 to 3,960 kg/ha 

so the variable y measuring yield has been normalized as follows: 
112

3960 112
s

y
y

−
=

−
. 
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We condition   and   on covariates, with primary interest for the quantity of nitrogen used on each 

plot. The estimation of various specifications showed the importance of controlling for heterogeneity 

across regions, most likely due to varying environmental conditions (soil type and quality, plot 

exposure, weather conditions), so we condition the two shape parameters with dummy variables for 

the three agro-ecological zones. Other binary covariates include whether maize was grown on the plot 

the year before; whether there is only maize on plot; whether the plot was borrowed or rented; 

whether the plot is located in the plains; whether the household head believes that the soil of his/her 

parcel is of low quality, and whether some manure was used on plot.  

The model was estimated on the full sample of plots, which amounts to a total of 7,801 parcels 

belonging to 4,428 households. Results are shown in Table 3. 

Table 3. Estimated parameters of conditional beta distribution of yields 

 Coeff Std. Err. P value 
    

Parameter alpha    

Sahelian zone (0/1) -0.191 0.104 0.065 

Sudan-sahelian zone Ref. Ref. Ref. 

Sudanese zone (0/1) -0.730 0.058 0.000 
    

Quantity of N/ha 0.005 0.002 0.016 

Squared quantity of N/ha 0.000 0.000 0.144 
    

Maize grown on plot the year before (0/1) 0.174 0.041 0.000 

Only maize on plot (0/1) 0.002 0.060 0.969 

Plot borrowed or rented (0/1) 0.445 0.048 0.000 

Plot located in the plains (0/1) -0.306 0.082 0.000 

Soil perceived as low quality (0/1) 0.118 0.054 0.029 

Some manure used on plot (0/1) 0.086 0.034 0.013 
    

Constant 1.745 0.103 0.000 
    

Parameter beta    

Sahelian zone (0/1) 0.757 0.310 0.015 

Sudan-sahelian zone Ref. Ref. Ref. 

Sudanese zone (0/1) -1.633 0.122 0.000 
    

Quantity of N/ha -0.049 0.004 0.000 

Squared quantity of N/ha 0.000 0.000 0.000 
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Maize grown on plot the year before (0/1) 0.598 0.083 0.000 

Only maize on plot (0/1) -1.301 0.222 0.000 

Plot borrowed or rented (0/1) 0.880 0.089 0.000 

Plot located in the plains (0/1) -1.027 0.202 0.000 

Soil perceived as low quality (0/1) 0.694 0.139 0.000 

Some manure used on plot (0/1) -0.089 0.020 0.000 
    

Constant 5.561 0.300 0.000 
    

Log L  2,770.49 

#Observations 7,801 

#Households 4,428 

 

We find evidence of a quadratic relationship between nitrogen per hectare and the shape parameters 

  and  . Most of the covariates are statistically significant.  

5.1.2. Testing for heterogeneity and selection effects  

To separate the effects of heterogeneity in conditions from the effect of nitrogen use, we first calculate 

the estimates of the shape parameters within each agro-ecological zone by setting the nitrogen 

quantity at 0 and replacing the other covariates by their zone-specific mean. The estimated shape 

parameters are reported in Table 4, along with the first three empirical moments of the maize yield 

distribution.21 

 

 

 

 

 

 
21 The mean, variance and skewness are all functions of the shape parameters: the mean of the beta distribution 

is equal to ( )  + ; the variance is ( ) ( )
2

1     + + +
 

, and the skewness is 

( ) ( )2 1 2         − + + + +
   

 . 



 

21 

Table 4. Conditional beta distribution – Estimated moments and estimated shape parameters at 

zone means and for N = 0 

 Estimated shape parameters and 95% confidence intervals 

 Sahelian 
zone 

Sudan-Sahelian 
zone 

Sudanese 
zone 

    

  and 95% CI 1.68 [1.51;1.85] 1.86 [1.74;1.97] 1.11 [1.03;1.19] 

  and 95% CI 5.15 [4.61;5.69] 4.12 [3.81;4.44] 3.15 [2.88;3.41] 

    
Mean yield (kg/ha) 1,058 1,305 1,114 
Variance of yield 350,644 453,491 541,997 
Skewness of yield 0.748 0.544 0.800 
    

# of plots 842 4,618 2,341 
Note: CI is for Confidence Interval. 

 
  

 

The estimated beta distribution is positively skewed in each zone since    and   . The 

estimated shape parameter   shows significant heterogeneity, varying from 1.11 in the Sudanese 

zone to 1.86 in the Sudan-Sahelian zone and this parameter is statistically different between the three 

zones. The estimated shape parameter   varies from 3.15 in the Sudanese zone to 5.15 in the Sahelian 

zone, and is statistically different between the three zones. The estimated mean yield (with N set at 0) 

varies from 1,058 kg/ha in the Sahelian zone to 1,305 kg/ha in the Sudan-Sahelian zone. In the 

Sudanese zone, the yield distribution is the most right-skewed and has the largest variance. From the 

above estimates of the shape parameters we can draw the estimated distributions of yields for the 

three zones (see Figure 3).22  

 
22 In each case, the density is computed at 100 equally-spaced points over the [0,1] scale. 
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Figure 3. Estimated conditional beta distributions of maize yield for the three zones at zone means 

and for N = 0 

 

Since a number of plots did not receive any nitrogen, our estimates of the shape parameters may suffer 

from selection bias. Selection bias would occur if the decision to apply nitrogen on a specific plot 

depends on unobservable characteristics which may also impact the shape parameters of the yield 

distribution. Several plot characteristics are used as controls in our model but there may remain 

unobservable characteristics (for example plot exposure) which explain both the decision to use 

nitrogen and the yield distribution.  

To investigate a possible selection bias, we propose to compare the shape parameters of the beta 

distribution estimated on two sub-samples: the sub-sample of plots which did not receive any nitrogen 

and the sub-sample of plots on which some nitrogen was applied. If the estimated shape parameters 

are statistically different from one sub-sample to the other, this will indicate possible selection bias. 
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The analysis is shown in Appendix B.23 The estimates raise concern in terms of a possible selection bias 

in the Sudanese zone since the estimated average yield, before any application of nitrogen, is about 

50% higher for the plots which received nitrogen (1,454 kg/ha) compared to the average yield 

estimated on the plot which did not receive any nitrogen (989 kg/ha). When comparing the 95% 

confidence intervals of the estimated shape parameters, the Sudan-Sahelian zone appears to be less 

prone to selection bias than the other two zones. It is also the zone which covers the largest number 

of plots (4,618 in total), so we focus the rest of our analysis on the Sudan-Sahelian zone. 

5.1.3. Nitrogen impact on the moments of the yield distribution  

Using the estimated shape parameters from Table 4, and setting all the covariates except N at their 

sample mean over the Sudan-Sahelian zone, Figure 4 shows the estimated distribution of maize yield 

for various levels of nitrogen per hectare: no nitrogen, 10 kg/ha, 20 kg/ha, and 40 kg/ha.  

 

Figure 4. Estimated maize yield distribution in the Sudan-Sahelian zone  
for various levels of nitrogen 

 
23 We are not aware of any earlier studies in agriculture in which selection bias has been controlled for when 
estimating distributions of crop yield. There exist papers in labour economics which estimate wage distributions 
using quantile regression and correct for selection bias (e.g., Machado and Mata, 2005; Albrecht, van Vuuren 
and Vroman, 2009). 
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As expected, the yield distribution becomes flatter and moves to the right when the level of nitrogen 

applied on the plot increases. With levels above 60 kg/ha, the impact of nitrogen on the distribution 

of yield is found to be more limited (indeed, the three distributions almost overlap and are less skewed 

to the right).24 See in Appendix C the distribution of yields with levels of nitrogen per hectare set at 60, 

80 and 100 kg. This finding seems to be in line with observed practices in the sense that we observe a 

small number of plots (fewer than 10%) on which the average use of nitrogen is above 40 kg/ha. Finally 

we check how nitrogen impacts on the three moments of the maize yield distribution. Figures 5, 6, and 

7 illustrate impact on the mean, variance, and skewness, respectively. 

 

Figure 5. Impact of nitrogen use on the mean of the maize yield distribution in the Sudan-Sahelian 

zone 

 

 
24 Interestingly, Babcock and Hennessy (1996) get something very similar when using experimental data from 
Iowa farms. 

1200

1300

1400

1500

1600

1700

1800

1900

2000

0 10 20 30 40 50 60 70 80 90 100

M
ea

n
 y

ie
ld

 (
kg

/h
a)

Nitrogen (kg/ha)



 

25 

 

Figure 6. Impact of nitrogen use on the variance of the maize yield distribution in the Sudan-

Sahelian zone 

 

 

Figure 7. Impact of nitrogen use on the skewness of the maize yield distribution in the Sudan-

Sahelian zone 

 

These graphs illustrate the complex relationship between nitrogen use and the moments of the maize 

yield distribution. Both the mean and variance functions are concave functions of N, with the mean 

yield reaching its maximum when N = 73 kg/ha and the variance of yield being at its highest when N = 

69 kg/ha. Skewness is positive, it decreases until N = 74 kg/ha and increases for values above 75 kg/ha. 

On our sample the average nitrogen quantity applied on plots is 34 kg/ha, which is much lower than 

the quantity of nitrogen that maximises mean yield. There are different possible reasons to explain 
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this finding: a first possible explanation is that farmers are risk averse. Since nitrogen is found to be 

risk-increasing for quantities of nitrogen below 69 kg/ha (Figure 6), then risk-averse farmers will tend 

to use quantities of nitrogen that are below the level that maximizes the mean yield in order to reduce 

the variability in yield. Farmers are usually found to be averse to downside risk, which means that they 

dislike the risk of facing very low yields. In our case, the skewness of yield is found to be positive so 

farmers may be inclined to reduce their use of nitrogen in order to maintain the possibility of getting 

very high yields. When faced with skewed distributions, it may also become more difficult for farmers 

to assess objective probabilities of rare outcomes and they may overweight the probability of high 

yield outcome. Another possible explanation is that farmers are constrained in how much quantity of 

nitrogen they can get, which is consistent with the observation that farmers face difficulties in 

accessing inputs for about half of the parcels in our sample.25 In this section, we assessed the impact 

of fertilizers on the moments of the distribution of yields, an important but often overlooked step 

when trying to understand farmers’ level of input use. In the next section we allow for both risk 

aversion and probability distortion when searching for the underlying model of farmers’ behaviour.  

5.2. Elicitation of farmers’ risk preferences: methodology and results  

 5.2.1. Methodology 

The estimation of risk preference parameters from observed production data raises significant 

identification challenges (Lence, 2009; Just and Just, 2011). For this reason, we decided not to estimate 

the unknown parameters of the utility function (the coefficient of relative risk aversion, rr) and of the 

decision weighting function (the distortion parameter, ), but instead to search for the pair of 

parameters (rr,  ) that provides the best fit to our data. After searching over a wide range of 

parameter values, we narrowed our selection down to three possible levels of the coefficient of 

relative risk aversion rr: 0 (risk-neutrality), 0.5 (moderate risk aversion in the range of what has been 

 
25 Around 47% farmers also reported the high cost of agricultural inputs as a difficulty to have access to 
agricultural inputs.  
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estimated by Le Cotty et al. (2018), using data from the same country), and 2 (slightly stronger risk-

aversion) and three levels for the distortion parameter (  = 0.8, 1 and 1.2). For each combination of 

the two parameters and to determine the optimal N, we proceed as follows: using the above ML 

estimates of the beta distribution parameters, we calculate the estimated maize yield distribution for 

each parcel in the Sudan-Sahelian zone (4,618 in total) and each level of nitrogen varying from 0 to 100 

(N=0, 1, 2 … 100). For each possible level of N and each plot i, the maize yield distribution is fully 

characterized by the estimated shape parameters ̂  and ̂ , which both depend on N and zi, the set 

of plot characteristics. From the plot-specific yield distributions and using information on maize and 

nitrogen prices, we easily derive plot-specific profit distributions, which also vary with how much 

nitrogen is applied on each plot. For each of the 4,618 x 101 distributions, we calculate the utility of 

profit and the corresponding probability (objective or subjective depending on the value of  )  at 

1,000 equidistant points over the [0,1] range. When   is set equal to 1, we assume farmers use 

objective probabilities. When   is different from 1, we assume farmers distort probabilities. Summing 

over the 1,000 observations [utility x probability], we get an estimate of the utility of profit for each 

parcel and each level of nitrogen from 0 to 100. For each parcel the optimal level of N is the one for 

which the utility of profit reaches its maximum. 

When available, we consider the maize price and price of nitrogen as reported by the farmers in our 

sample (after removing outliers, below the 5th percentile and above the 95th percentile of each price 

distribution).26 If the price information is missing, we use the median price in the province. If the latter 

is also missing, we use the median price in the region. Summary statistics on prices for the Sudan-

Sahelian zone are shown in Table 5. 

 

 
26 The maize price is not subsidized but the price of nitrogen can be, in particular if farmers buy from government 
agencies which supply fertilizers at subsidized prices. The latter can explain the wide range of N prices in Table 
5. 
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Table 5. Maize and nitrogen prices in the sample (CFA francs/kg) 

 Mean 1st 

quartile 

Median 3rd 

quartile 

Min Max 

Maize price (CFA francs/kg) 126 102 117 139 53 347 

N price (CFA francs/kg) 1,535 1,256 1,429 1,727 739 3,175 

 

 5.5.2. Identifying underlying parameters of farmers’ preferences 

We report in Table 6 some statistics to compare observed and predicted nitrogen (N) on plots for 

various combinations of the relative risk aversion coefficient (rr) and distortion parameter ( ). Column 

2 shows the actual number of observed plots which did not receive any nitrogen and the actual number 

of plots which received some nitrogen, along with the average quantity of nitrogen applied. The 

following three columns report the same outcomes as predicted by the RDU model for the 

corresponding pair of parameters. In each case we also report the sum of absolute differences 

between the predicted and observed quantity of nitrogen, with smaller sums indicating better fit to 

the observed data. Based on this statistic, the RDU model that provides the best fit to the data features 

a coefficient of relative risk aversion equal to 0.5 and a distortion parameter equal to 0.8. 

Table 6. Predictions from RDU model and goodness of fit 

  Predictions with RDU model 

     
Risk-neutral (rr = 0) Observed plots rr = 0 rr = 0 rr = 0 
    =  0.8   =  1   =  1.2 

# plots without N 3,059 3,153 2,986 2,933 
# plots with N 1,559 1,465 1,632 1,685 
Mean N if N>0 (kg/ha) 34 33 35 35 
Sum of absolute differences - 77,748 82,945 84,710 
     
Moderately risk averse (rr = 0.5)  rr = 0.5 rr = 0.5 rr = 0.5 
    =  0.8   =  1   =  1.2 

# plots without N 3,059 3,227 3,028 2,966 
# plots with N 1,559 1,391 1,590 1,652 
Mean N if N>0 (kg/ha) 34 32 34 35 
Sum of absolute differences - 76,816 81,878 83,835 
     
Rather risk averse (rr = 2)  rr = 2 rr = 2 rr = 2 
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    =  0.8   =  1   =  1.2 

# plots without N 3,059 3,244 3,010 2,968 
# plots with N 1,559 1,374 1,608 1,650 
Mean N if N>0 (kg/ha) 34 39 40 40 
Sum of absolute differences - 84,956 89,947 91,536 

 

A coefficient of relative risk-aversion of 0.5 is in line with estimates obtained by Le Cotty et al. (2018) 

on farmers from Burkina Faso (using experiments, they estimated the risk aversion coefficient of 

farmers to be in the range 0.3-0.4). A distortion parameter lower than 1 indicates that the probability-

weighting function is inverse S-shaped, with low probability events being over-weighted and high 

probability events being under-weighted. Inverse-S-shaped probability weighting functions are rather 

common among farmers (see Appendix 7 in Bontemps, Bougherara and Nauges, 2021 for a review). In 

the following we look more closely at the predictions from this particular model.  

 5.2.3. Assessing the role of risk aversion and economic conditions on nitrogen use 

In what follows we use the best-fitted model (RDU with relative risk aversion coefficient set at 0.5 and 

probability distortion parameter set at 0.8) to further investigate the role of risk aversion and economic 

conditions on optimal use of nitrogen.  

The role of prices 

We study how the optimal N varies with the price of nitrogen and with the maize price in the best 

performing model, identified above. We consider an increase in the price of maize (for each plot) by 

20% and 40%, compared to the actual observed price, and two other scenarios assuming a 20% and a 

40% decrease in the price of nitrogen (for each plot). These variations (20 to 40%) are within the 

observed cross-sectional variation in prices on our sample (see Table 5). Simulation results are shown 

in Tables 7 and 8.  
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Table 7. Predicted N applications with higher maize prices; RDU Model (rr = 0.5,  = 0.8) 

 
Observed prices, 

benchmark 
20% increase in 

maize price 
40% increase in 

maize price 

Range of N 
application  
(kg/ha) 

# of 
plots 

Share of 
plots 

# of 
plots 

Share of 
plots 

# of 
plots 

Share of 
plots 

       
0 3,227 70% 2,208 48% 1,441 31% 
[1 to 10] 121 3% 110 2% 124 3% 
[11 to 20] 154 3% 237 5% 355 8% 
[21 to 30] 310 7% 675 15% 437 9% 
[31 to 50] 684 15% 1,152 25% 1,765 38% 
51 and above 122 3% 236 5% 496 11% 
       
Total 4,618 100% 4,618 100% 4,618 100% 

Mean N if N>0 
(kg/ha) 

32  34  37  

 

When the price of maize increases, it becomes more profitable to use fertilizers on plot so the number 

of plots for which it is optimal to use some nitrogen increases (Table 7). In the benchmark case (RDU 

model using observed prices), it is optimal not to apply any nitrogen on 70% of the plots. If the price 

of maize increases by 20%, then it is optimal not to use any nitrogen on 48% of the plots. If the price 

of maize increases by 40%, only 31% of the plots should not receive any nitrogen. The average nitrogen 

application on plots for which the optimal N is greater than 0 increases from 32 kg/ha on average in 

the benchmark case to 34 kg/ha with a 20% increase in maize price and to 37 kg/ha with a 40% increase 

in maize price.  

We report in Table 8 the optimal N application when the price of nitrogen decreases by 20% and 40% 

compared to the actual prices, as predicted by the best-fitted RDU model. It is worth noting that a 

decrease of 20-40% corresponds roughly to the subsidy levels offered by the government of Burkina 

Faso to farmers during the agricultural season 2008/2009.27 We find that when the price of nitrogen 

decreases by 20%, the number of plots on which it is optimal not to apply any nitrogen decreases to 

 
27 Koussoubé and Nauges (2017, pp. 202-203) quote a World Bank report indicating that “the price of nitrogen 
in Burkina Faso was estimated at 1,961 CFA franc/kg without any subsidies while the subsidised price was 
estimated at 1,156 CFA franc/kg”. The difference between the two corresponds roughly to a 40% subsidy. 
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45%. With a 40% decrease in nitrogen price, the share of plots on which no nitrogen should be applied 

is 16%. Under this scenario, the optimal N lies in the range 31 to 50 kg/ha for close to 50% of the plots, 

compared to 15% in the benchmark scenario. As a consequence the average quantity of N that is 

applied increases from 32 kg/ha in the benchmark case to 41 kg/ha when the price of N decreases by 

40% (a 28% increase). Although observed average nitrogen prices in our dataset partially reflect the 

subzidized price available to some farmers of our sample, these results suggest that the government 

input subsidy program implemented in 2008/2009 had the potential to substantially increase the use 

of nitrogen among maize farmers in the study area.  

Table 8. Predicted N applications with lower nitrogen prices; RDU Model (rr = 0.5,  = 0.8) 

 
Observed prices, 

benchmark 
20% decrease in 
nitrogen price 

40% increase in 
nitrogen price 

Range of N 
application  
(kg/ha) 

# of 
plots 

Share of 
plots 

# of 
plots 

Share of 
plots 

# of 
plots 

Share of 
plots 

       
0 3,227 70% 2,066 45% 752 16% 
[1 to 10] 121 3% 92 2% 120 3% 
[11 to 20] 154 3% 224 5% 205 4% 
[21 to 30] 310 7% 507 11% 410 9% 
[31 to 50] 684 15% 1,431 31% 2,170 47% 
51 and above 122 3% 298 6% 961 21% 
       
Total 4,618 100% 4,618 100% 4,618 100% 

Mean N if N>0 
(kg/ha) 

32  36  41  

 

The role of risk aversion 

We check by how much risk aversion changes the optimal level of nitrogen by comparing predictions 

in terms of N application based on the RDU best-fitted model and a RDU model assuming risk neutrality 

(rr = 0) while keeping the distortion parameter the same ( = 0.8). Results are shown in Table 9. 
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Table 9. Predicted N applications with and without risk aversion; RDU Model (  = 0.8) 

 
RDU model, 
benchmark 

RDU model + risk 
neutrality (rr = 0) 

Range of N 
application  
(kg/ha) 

# of 
plots 

Share of 
plots 

# of 
plots 

Share of 
plots 

     
0 3,227 70% 3,153 68% 
[1 to 10] 121 3% 129 3% 
[11 to 20] 154 3% 154 3% 
[21 to 30] 310 7% 321 7% 
[31 to 50] 684 15% 735 16% 
51 and above 122 3% 126 3% 
     
Total 4,618 100% 4,618 100% 

Mean N if N>0 
(kg/ha) 

32  33  

 

The level of the relative risk aversion coefficient has a relatively small impact on the number of plots 

within each range of N application. Under risk neutrality the percentage of plots which do not receive 

any nitrogen decreases to 68%, compared to 70% in the model with risk aversion. The average N 

application is almost unchanged when assuming risk neutrality.  

Under the assumption that our measure of farmers’ risk aversion reflects the truth, then the simulation 

results show that the optimal quantity of nitrogen used is more sensitive to changes in prices than to 

the level of risk aversion. Consequently, input subsidization policies are likely to be more effective in 

incentivizing farmers to use more nitrogen on plots than, for example, insurance policies. Our results 

confirm those of Le Cotty et al. (2018) who found that risk aversion (elicited using experimental 

techniques) had no significant impact on farmers’ use of fertilizers in two provinces of Burkina Faso. 

They are also in line with simulation results in Bontemps, Bougherara and Nauges (2021) showing that 

prices are, in most cases, a more important driver of input use than risk preferences. 

6. Conclusion 

Using a large and representative sample of maize plots from Burkina Faso, we provide new evidence 

on the role risk may play in explaining low levels of fertilizer use in Sub-Saharan Africa. We find that 
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nitrogen use impacts the first three moments of the maize yield distribution and that nitrogen is risk-

increasing for a wide range of nitrogen levels. However, the risk aversion of maize growers is found to 

be rather moderate on our sample and input use under risk aversion is not very different from the 

predicted optimal input use if farmers were risk-neutral. Risk thus does not appear to be the main 

reason for explaining low levels of fertilizer use on maize plots.  

These findings contribute to the literature assessing the impact of risk on farmers’ production 

decisions. We provide a quantitative assessment of the expected change in fertilizer use induced by 

risk aversion, and we compare this expected impact to those induced by fertilizer and maize price 

changes. Optimal input use is found to be sensitive to changes in nitrogen and maize prices, arguing in 

favour of a continuous subsidization of fertilizer prices. Simulations of input use for prices in the range 

of subsidised prices provided by the government suggest that the government’s subsidy program could 

have the expected impacts (at least at short term) on input use and yield, provided an improvement 

in the implementation of the program. For instance, a decrease in observed nitrogen prices between 

20-40% increases the profitability of fertilizer use for both risk-neutral and moderately risk-averse 

farmers. However, farmers reports suggest that a large portion of farmers face important constraints 

in accessing agricultural inputs (at market or subsidized prices). Also, besides targeting issues that 

impede the program efficiency, important administrative and logistical costs associated with program 

implementation affect the cost-effectiveness of the program. 28  

Several caveats are in order. First, it was not possible to directly observe and control for the possible 

supply constraints farmers may face, either in relation to fertilizer quantity or quality.29 Our analysis 

was run under the assumption that prices are known to the farmers, which may be a rather strong 

assumption in some cases.  We did our best to control for heterogeneous conditions and plot 

characteristics but there may remain important omitted variables. We studied farmers’ use of nitrogen 

considering only maize plots. One reason that may explain the relative moderate role of risk aversion 

 
28 For an analysis of costs associated with the implementation of the subsidy and factors impeding the efficacity 
of the program, see for example Maître d’Hôtel and Porgo (2018) and Siri (2013).  
29 A number of farmers who reported difficulties in accessing inputs still used some nitrogen on their plots. 
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is that revenues from maize production may represent a small share of farms’ income and wealth, 

especially for those households who own animals. Finally, the elicitation of risk preferences is based 

on the estimated maize yield distribution. The distribution of maize yield that farmers perceive or have 

in mind may be different from the one that has been estimated in this paper. 
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Appendix A: The three agro-ecological zones 

 

Classification of the provinces in the three agro-ecological zones 

Sahelian Zone Sudan-Sahelian Zone Sudanese Zone 

 
Oudalan (Gorom-Gorom) 
Soum (Djibo) 
Séno (Dori) 
Yagha (Sebba) 
Loroum (Titao) 
Bam (Kongoussi) 
Sanmatenga (Kaya) 
Gnagna (Bogandé) 
Namentenga (Boulsa) 
Yatenga (Ouahigouya) 
Zondoma (Gourcy) 
Sourou (Tougan) 

 

 
Balé (Boromo) 
Mouhoun (Dédougou) 
Tuy (Houndé) 
Boulgou (Tenkodogo) 
Tapoa (Diapaga) 
Sissili (Léo) 
Banwa (Solenzo) 
Bazèga (Kombissiri) 
Boulkiemdé (Koudougou) 
Ganzourgou (Zorgho) 
Gourma (Fada N’Gourma) 
Kadiogo (Ouagadougou) 
Kompienga (Pama) 
Kossi (Nouna) 
Koulpélogo (Ouargaye) 
Kouritenga (Koupéla) 
Kourwéogo (Boussé) 
Nayala (Toma) 
Oubritenga (Ziniaré) 
Passoré (Yako) 
Sanguié (Réo) 
Ziro (Sapouy) 
Zoundwéogo (Manga) 
Komandjoari (Komondjari) 

 

 
Houet (Bobo-Dioulasso) 
Comoé (Banfora) 
Léraba (Sindou) 
Bougouriba (Diébougou) 
Poni (Gaoua) 
Noumbiel (Batié) 
Kénédougou (Orodara) 
Ioba (Dano) 
Nahouri (Pô) 
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Appendix B - Assessing the presence of selection bias  

In order to check if the plots on which some nitrogen has been applied are different from the rest of 

the plots, we compute the estimated shape parameters setting the quantity of nitrogen at zero and 

the other covariates at their (sub-)sample mean within each zone. We also report the average 

estimated mean yield in each zone for plots without any nitrogen. 

Table B1. Estimated shape parameters on two different sub-samples, at zone mean and at N=0, 
with 95% confidence intervals, and estimated average yield by zone 

 Sahelian 
zone 

Sudan-Sahelian 
zone 

Sudanese 
zone 

 
Conditional Beta distribution estimated on sub-sample of plots 
which did not receive any N (at sample mean & for N = 0) 

    

  and 95% CI 1.71 [1.52;1.89] 1.63 [1.51;1.74] 1.10 [0.99;1.21] 

  and 95% CI 5.14 [4.52;5.75] 3.50 [2.93;4.06] 3.73 [3.21;4.24] 

    
Estimated mean 1,072 kg/ha 1,334 kg/ha 989 kg/ha 
    
# of plots 700 3,050 1,299 

 
Conditional Beta distribution estimated on sub-sample of plots 
on which some N was applied (at sample mean & for N = 0) 

    

  and 95% CI 1.06 [0.63;1.49] 1.80 [1.49;2.11] 1.04 [0.74;1.35] 

  and 95% CI 3.81 [2.69;4.93] 3.64 [3.06;4.22] 1.95 [1.38;2.52] 

    
Estimated mean 949 kg/ha 1,386 kg/ha 1,454 kg/ha 
    
# of plots 142 1,568 1,042 

 

The upper part of Table B1 shows estimated shape parameters and estimated mean yield for the sub-

sample of plots which did not receive any nitrogen. The estimated means for the three agro-ecological 

zones are found to be pretty close to the observed means as shown in Table 2: the estimated mean 

yield is 1,072 kg/ha in the Sahelian zone, 989 kg/ha in the Sudanese zone, and 1,334 kg/ha in the Sudan-

Sahelian zone, while the actual average yield in the three zones is 1,076 kg/ha, 972 kg/ha and 1,245 

kg/ha, respectively. The lower part of Table B1 shows estimates on the sub-sample of plots which 
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received some nitrogen. However, since the expected mean yield is estimated at N=0, these mean 

estimates cannot be compared to the observed mean yields. 
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Appendix C: Maize yield distribution with levels of nitrogen at 60 kg/ha and above 
 
 
 

 

Figure C1. Estimated maize yield distribution on the Sudan-Sahelian zone  
for levels of nitrogen at 60 kg/ha and above 
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