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Abstract

We study a mechanism design problem where the principal can also

manipulate the agent’s information about a payoff-relevant state. Jointly

designing information and allocation rule is proved equivalent to certain

multi-dimensional screening problem. Based on this equivalence, when the

agent’s types are positively-related, full disclosure is proved optimal un-

der regularity conditions; while with negatively-related types, the optimal

disclosure policy takes the form of a bad-state alert, which is in general a

type-contingent disclosure policy. In a binary environment, we fully charac-

terize the optimal mechanisms and discuss when type-contingent disclosure

strictly benefits the principal and its welfare consequences.
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1 Introduction

Consider a retailer (a principal) of goods with various characteristics, and a po-

tential buyer (an agent) whose willingness-to-pay is his private information. As

in the standard mechanism design, the retailer desires to screen the agent’s type

and optimally allocate goods and charge payments, subject to the buyer’s incentive

compatibility constraint. However, because the goods’ characteristics are (perhaps

partially) unknown to the buyer, there is another dimension of the design variables

for the retailer in addition to the prices, namely, the information about the goods’

characteristics to the buyer.

The optimal provision of information has been an important topic in the field of

industrial organization (in particular, in the informative advertisement literature),

but the analyses are often under restrictive simplifying assumptions. For example,

Lewis and Sappington (1991, 1994) and Johnson and Myatt (2006) consider partic-

ular forms of information structures,1 and restrict attention to non-discriminatory

disclosure policies; Anderson and Renault (2006) assume the agent has no private

information, so that there is no room for discriminatory disclosure. Additionally,

the associated pricing schemes considered in these papers are limited to common

prices (i.e., no price discrimination) or non-signal-contingent prices (i.e., the price

cannot depend on the realizations of the signal).

As another example, imagine an online platform (the principal) who matches

sellers and buyers. Based on past transaction data, the platform has a good idea

1In Lewis and Sappington (1991, 1994)’s environment, the principal chooses the probability of
sending an informative signal (“accuracy” of information structure); he sends an uninformative
signal with the complementary probability. Thus, the feasible information structures can be
totally ordered according to Blackwell informativeness. Johnson and Myatt (2006) cover this
kind of information structure; moreover, they also study the case where the signal is normal-
distributed conditional on each state.
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about the connection between buyers’ demographic data and their willingness-to-

pay, which the seller (the agent) does not know. As in the previous example,

the principal again can design the information of the agent, as well as the allo-

cations and prices (e.g., registration fees, maximum allowed trade volume, etc.),

through which the principal can extract the agent’s private information (such as

the opportunity cost of selling).

In this paper, we study the principal’s problem of optimal design of information

and allocation rules. Notice that each of these tools could be useful in extracting

the agent’s private information: for example, a mechanism may potentially propose

different kinds of information to different types of the agent, in order for the agent

to self-select the best kind of information depending on his type; and similarly re-

garding the allocation rules. An important general question is how those two tools

are executed in the optimal mechanism. Another (related) question is efficiency:

It is well-known that the incentive issue often makes the optimal allocation rule

inefficient, due to some rent-efficiency tradeoff. Do we have to suffer from similar

inefficiency in terms of the optimal information design? Or, are there some cases

where the optimal mechanism is efficient in terms of the provided information or

implemented allocation? How do the answers to these questions differ from the

cases where only information or allocations are to be designed?

This paper contributes to a better understanding of the above set of important

questions as follows. The first contribution is methodological: In Theorem 1, we

show that the principal’s problem of designing both information and allocation

rule is equivalent to certain multi-dimensional screening problem (where only an

allocation rule is designed). As explained more in detail in the corresponding part

of the paper, this result (i) greatly simplifies the search of the optimal mechanism,
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(ii) shows a robustness of our results to some alternative modeling (e.g., in terms

of timing and information structures), and (iii) suggests that some known results

in multi-dimensional screening, and more generally linear-programming tools, can

be useful in identifying the optimal mechanism.

At the same time, as is well known, it is difficult in multi-dimensional screening

to obtain general analytical / closed-form results. In this sense, our equivalence

result may also be seen as (somewhat unfortunately) uncovering the limitation or

difficulty in very general analyses of the environment without parametric restric-

tions. Therefore, the later sections consider some restricted environments, in order

to illustrate some economic implications of the model.

Those substantive results in later sections (Theorems 3, 4) are our second

contribution. First, consider the case with positively related types, that is, if a

type of an agent has a higher valuation than another type in one state, then the

same ranking holds in any other states. A possible interpretation may be that

the type is a vertical characteristics of the agent. In this case, under certain

regularity conditions, it is always optimal for the principal to fully disclose the

state information to the agent. Therefore, there is no inefficiency in terms of

information provision. Accordingly, the standard results regarding the optimal

allocations hold “state by state”.

Second, consider the case with negatively related types, that is, if a type of

an agent has a higher valuation than another type in one state, the opposite

ranking holds in the other state. A possible interpretation may be that the type

is a horizontal characteristics of the agent. In this case, under certain conditions,

the optimal mechanism assigns different information structures to different types.

Roughly, those types who have low values in one state are assigned information
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structures that reveal that “bad” state (with the optimally chosen probability); and

those types whose values do not vary much across states are assigned uninformative

information structures. Inefficiency occurs for the former, and in particular, for

some non-extreme types who are assigned imprecise bad-state-alerting information

structures: With a positive probability, such a type does not receive a bad-state

alert even if the state is indeed bad for him; and in that case, this type’s ex post

payoff can be negative. Conversely, sufficiently extreme types tend to receive fuller

information, and the types whose values do not vary much with the state do not

care about the information.

The above two cases allow for an arbitrary (finite) number of types but with

parametric assumptions with which tractable analyses are possible. The other re-

sult (Theorem 2) provides a full characterization of the optimal mechanisms but

in a binary environment. There, we show that the optimal mechanism involves

either (i) full disclosure of the state information for both types, (ii) partial but

non-type-contingent (i.e., “public”) disclosure, or (iii) type-contingent disclosure.

Though admittedly restrictive, the exhaustive characterization enables us to dis-

cuss a policy-relevant question as to whether / when type-contingent information

disclosure is welfare-enhancing or not, and more importantly, the logic behind it.

The advancement of the digital technology continuously reduces the cost of indi-

vidualized / targeted advertisement and information disclosure, based on the data

accumulated by large-scale platforms. As a consequence, the mode of advertise-

ment has been experiencing some shift from the classical “public” advertisement

to individualized / targeted advertisement. Those platforms often claim that such

individualization / targeting technologies are welfare-enhancing, as each consumer

can be assigned the most valuable information for him; on the other hand, this
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raises some general concerns, including the possibility that such individualization /

targeting technologies may be new sources of consumers’ rent extraction, possibly

with inefficient information suppression. Our analysis shows that both of the ar-

guments are relevant: Under some parameter values, the optimal disclosure policy

is type-contingent, and it provides more precise information to the agent (e.g., the

optimal non-type-contingent policy is partially informative (to both types), while

the optimal type-contingent policy offers the same information structure to one of

the types, and full information to the other type). Under alternative parameter

values, the optimal disclosure policy is type-contingent, and it provides less precise

information (e.g., the optimal non-type-contingent policy is fully informative (to

both types), while the optimal type-contingent policy offers full information to

only one of the types). Although which sets of parameter values are more relevant

is an empirical question, our analysis sheds some light on this important policy

discussion.

1.1 Related literature

Most papers in the mechanism design literature focus on the design of allocation

rules but without the design of information; and most papers in the information

design literature focus on the design of information but without the design of

allocation rules. Our paper belongs to the small yet important intersection of

those two strands of literature. Most of the papers in this intersection study the

“sequential screening” problem, where the allocation (in particular the monetary

transfer) cannot depend directly on the information disclosed by the principal to
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the agent.2 See, for example, Bergemann and Pesendorfer (2007), Eső and Szentes

(2007a), Krähmer and Strausz (2015), Li and Shi (2017), Bergemann, Bonatti,

and Smolin (2018), Guo, Li, and Shi (2020), Wei and Green (2020), Zhu (2021).

In our case, the allocation can be contingent on that disclosed information (in

other words, that disclosed information is contractible). A possible interpretation

is that the principal observes the same disclosed information as the agent, which

is perhaps reasonable in certain applications such as informative advertisement

and certification.3 Note, however, that Proposition 1 in Eső and Szentes (2007b)

is for the case where disclosed information is contractible. Another related paper

is Yamashita (2018) who considers the same problem as ours but restricting at-

tention to public / non-type-contingent disclosure policies. We show that some

results in that paper carries over even if the principal can potentially offer pri-

vate / type-contingent disclosure policies. Wei and Green (2020) show that their

optimal mechanism continues to be optimal even when the disclosed information

is contractible. That case (i.e., their original setting except with contractible dis-

closed information) is mathematically equivalent to ours with positively related

information (Section 5.1), where full disclosure is shown to be optimal.4

Another potential application is a pricing problem of information (“data” or

“advice”), as recently studied by Eső and Szentes (2007b), Babaioff, Kleinberg,

and Paes Leme (2012), Bergemann and Bonatti (2015), Bergemann, Bonatti, and

2In other words, the information revealed to the agent cannot be observed by the principal,
so that it becomes the agent’s private information and can only be elicited through incentive
compatible allocation rules.

3On the other hand, the sequential-screening modeling would be more appropriate in the
context of experience goods, where the principal’s information disclosure is through allowing the
agent to “experience” the good before the final purchase decision.

4Thus, the mechanism we show optimal is different from what Wei and Green (2020) show
optimal. This is not a contradiction, as those two mechanisms are both optimal in that case.
Indeed, the realized allocations are equivalent in these two mechanisms.

7



Smolin (2018), and Yang (2020). These papers consider the situation where the

principal is a revenue-maximizing seller of information and the agent is a potential

user of that information (such as a retailer planning targeted advertisement based

on consumer data). The difference from our environment is two-folds. First, they

consider a rich set of actions that the agent takes after buying (or not buying)

information. For example, Yang (2020) assumes that the agent is a seller who

chooses a monopoly price given data about the demand function. Babaioff, Klein-

berg, and Paes Leme (2012) and Bergemann, Bonatti, and Smolin (2018) consider

general action spaces. Our model can be interpreted as a model with a binary

action space (for example, our agent may be a retailer in a market with exoge-

nously given price, who decides simply whether to serve the market or not, given

data about the demand function). Second, in these papers, the agent’s action is

not contractible, that is, the price of information cannot depend on the agent’s

action. In our model, the agent’s action is contractible: in the above interpretation

that the agent is a retailer, the price of data may be paid if and only if he serves

the market in the end (for example, as a result of ex post individual rationality

or limited liability). In addition, these papers, except for Babaioff, Kleinberg,

and Paes Leme (2012), assume that the price of information cannot vary with the

content of information itself, and in this sense, those papers are more closely re-

lated to the sequential-screening literature (see above).5 Bergemann, Bonatti, and

5The difference is crucial in the sense that the first-best outcome is possible in Bergemann,
Bonatti, and Smolin (2018) if such contingent contracts are allowed in their setting. Yang
(2020), on the other hand, shows that the optimal non-contingent mechanism in his setting
remains to be optimal even among contingent ones. His setting with contingent mechanisms is
essentially equivalent (modulo technical differences such as finite and continuous types) to ours
with positively related information (Section 5.1), where full disclosure is shown to be optimal, a
different mechanism from what Yang (2020) shows optimal. This is not a contradiction, as those
two mechanisms are both optimal in that case.

8



Smolin (2018) explain that their non-contingent model would be more appropriate

for some types of data selling practices such as data appends, while our contingent

model would be more appropriate for other types of data selling practices such as

marketing lists.6

2 The Model

We consider a single-good environment with one principal (seller) and one agent

(buyer). The agent has a privately-known type t ∈ T , where |T | < ∞ and F (t)

denotes the probability of each type t. The information controlled by the principal,

called the state, is denoted by θ ∈ Θ, where |Θ| < ∞ and F0(θ) denotes the

probability of each state θ. We assume that t and θ are independently distributed.

The agent’s valuation for the object is given by v(θ, t), while the principal’s

valuation is zero. Let q ∈ [0, 1] be the probability of assigning the object to the

agent, and p ∈ R be the transfer from the agent to the principal. Then, the

principal’s payoff is p, and the agent’s payoff is q · v(θ, t)− p.

An information disclosure policy is defined as (M,G), where M collects all

possible signals that the agent can receive, and G(θ)[m] : Θ → ∆(M) is a mea-

surable mapping which specifies the probability of sending signal m under state

θ. Let Λ ∈ ∆(M) be the unconditional distribution of m induced by (M,G),

where Λ(m) =
∑

θ′∈Θ F0(θ′)G(θ′)[m]. Then, on observing any m (which occurs

with strictly positive probability), one can form a posterior belief Ψm(θ) ∈ ∆(Θ)

6Marketing lists is a type of data selling practices, which, for example, allows a retailer
planning targeted advertisement to obtain a list of consumers who belong to a specific category.
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about the state through Bayesian updating:

Ψm(θ) =
F0(θ)G(θ)[m]∑

θ′∈Θ F0(θ′)G(θ′)[m]
, ∀θ ∈ Θ.

The principal selects, and can commit to, different disclosure policies and al-

location rules for different types of the agent, without knowing the state. The

timing is as follows:

1. The principal commits to
(
(Mt, Gt), (qt(m), pt(m))m∈Mt

)
t∈T .

2. The agent learns his own type t, and reports t̂ ∈ T .

3. The agent observes a signal m ∈ Mt̂ with probability Λt̂(m), and is offered

(qt̂(m), pt̂(m)).

4. The agent decides to accept or reject the offer.

Thus, the principal’s problem, denoted by (P ), is defined by:

(P ) max
M,G,q,p

∑
t

∑
θ

(∫
m∈Mt

pt(m)dGt(θ)[m]

)
F0(θ)F (t)

s.t. ∀t, t′ :∫
m∈Mt

∑
θ

(
qt(m)v(θ, t)− pt(m)

)
Ψm|t(θ)dΛt(m)

≥
∫
m∈Mt′

max

{∑
θ

(
qt′(m)v(θ, t)− pt′(m)

)
Ψm|t′(θ), 0

}
dΛt′(m).

For t 6= t′, the constraint is called BICt→t′ . Note that the constraint with t′ = t

corresponds to the (post-each-m) participation constraint. We denote the value of

the problem by V (P ).
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We underline that, in this problem, the agent’s posterior belief about θ is

conditional on both his report t̂ and the realized signal m ∈ Mt̂. On observing

m ∈ Mt ∩Mt′ , Ψm|t could be different from Ψm|t′ . This is because Ψm|t̂ is jointly

determined by F0 and Gt̂.

3 Equivalence to a Multi-Dimensional Screening

Problem

One of our main theoretical findings is that the above problem is equivalent to a

multi-dimensional screening problem (with |T | types of the agent, where each type

is a |Θ|-dimensional vector).

Theorem 1. Let V (P+) denote the value of the following multi-dimensional

screening problem:

(P+) max
x,τ

∑
t∈T

τ(t)F (t)

s.t. ∀t, ∀t′ 6= t :

ICt→t′
∑
θ

(
x(θ, t)w(θ, t)

)
− τ(t) ≥

∑
θ

(
x(θ, t′)w(θ, t)

)
− τ(t′);

IRt

∑
θ

(
x(θ, t)w(θ, t)

)
− τ(t) ≥ 0;

0 ≤ x(θ, t) ≤ 1, τ(t) ∈ R,

where w(θ, t) = F0(θ)v(θ, t). Then, we have V (P+) = V (P ).

This result greatly simplifies problem (P ). In the original problem, we are to

decide (i) an information disclosure policy for each type, and (ii) an allocation
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for each type and each signal realization. Potentially, a signal space may be very

complicated so that the choice of allocations in (ii) could be a daunting problem.

Our equivalence result shows that the dimension of the problem is much lim-

ited. The joint choice problem of (i) and (ii) reduces to a problem of assigning a

single probability of buying for each type and each state, and the constraints are

also standard-looking incentive compatibility, participation, and feasibility con-

straints. In particular, known useful techniques in the literature of (linear) multi-

dimensional screening can be useful (Rochet, 1987; Vohra, 2011; Kos and Messner,

2013; Daskalakis, Deckelbaum, and Tzamos, 2013), and more generally, those in

(finite-dimensional) linear programming.

Besides, as emphasized in the proof, Theorem 1 says that the principal can

achieve the best possible payoff in terms of the agent’s information structure with

respect to θ. More specifically, the principal’s expected payoff in the optimal

mechanism coincides with the case where the allocation fully contingent on θ with-

out disclosing it to the agent. This implies robustness of the optimal allocation

with respect to some variations in timing/information structure, such as in the or-

der/amount of communication before the buyer’s purchase decision (e.g.: What if

the principal can first disclose some public information and then the agent reports

his type, which is followed by further type-contingent disclosure? Or more general

dynamic communication schemes?), or in the timing of the buyer’s purchase de-

cision (e.g.: What if the principal can ask the agent to make partial commitment

before disclosing information? What if the principal can ask some advance pay-

ment before signal realization?). The theorem states that they do not matter, as

far as the principal’s objective is concerned.7

7Of course, the practical implementation of the optimal mechanism may depend on those
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On the other hand, this equivalence result shows a limit in the problem of

jointly designing information disclosure and allocation rules: As is well-known for

multi-dimensional screening, unless restrictive assumptions are made (such as small

number of types (Armstrong and Rochet, 1999) or certain homogeneity structures

(Armstrong, 1996)), obtaining closed-form solutions is in general prohibitive. In

Section 4, we focus on a binary environment and fully characterize the optimal

mechanism. Arguably it is a significant restriction, but nevertheless the results

we obtain provide a rich set of economic insights in terms of optimal disclosure

policies (in particular, whether/why it is optimal to disclose different information

depending on reported types), optimal mechanisms (in particular, how it changes

with the disclosed information), and economic welfare (in particular, under what

conditions type-contingency is welfare-improving).

We finish this section by providing the proof of our equivalence result, followed

by the remark explaining that Theorem 1 is not a mere consequence of some known

“revelation principle” results. In particular, through an example we emphasize the

role of independence between θ and t for Theorem 1.

Proof of Theorem 1. To show V (P+) ≥ V (P ), we consider a relaxed problem of

(P ) where the agent’s participation constraints are at the interim stage (more

precisely, at the stage where the agent knows t but the signal has not been realized

yet). Then, type-t agent’s expected payoff by pretending to be type t′ can be

timing and information structures.
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written as

∑
θ

(∫
m∈Mt′

(
qt′(m)v(θ, t)− pt′(m)

)
dGt′(θ)[m]

)
F0(θ)

=
∑
θ

(
v(θ, t)

∫
m∈Mt′

qt′(m)dGt′(θ)[m]−
∫
m∈Mt′

pt′(m)dGt′(θ)[m]
)
F0(θ).

We can see that, based on the agent’s reported type t′, the principal effectively

chooses a probability of selling x(θ, t′) :=
∫
m∈Mt′

qt′(m)dGt′(θ)[m] ∈ [0, 1] and

payment τ(θ, t′) :=
∫
m∈Mt′

pt′(m)dGt′(θ)[m] for each realization of θ. Thus, the

relaxed problem is defined as follows:

max
x,τ

∑
θ,t

τ(θ, t)F0(θ)F (t)

s.t. ∀t, ∀t′ 6= t :

ICt→t′
∑
θ

(
x(θ, t)v(θ, t)− τ(θ, t)

)
F0(θ) ≥

∑
θ

(
x(θ, t′)v(θ, t)− τ(θ, t′)

)
F0(θ);

IRt

∑
θ

(
x(θ, t)v(θ, t)− τ(θ, t)

)
F0(θ) ≥ 0;

0 ≤ x(θ, t) ≤ 1, τ(θ, t) ∈ R.

Clearly, the value of this problem is an upper bound of the original problem.

Moreover, this relaxed problem is equivalent to the problem (P+) by simply setting

τ(t) =
∑

θ τ(θ, t)F0(θ): Because of quasi-linearity, it is enough to only consider

the expected (in θ) payment.

To show V (P+) ≤ V (P ), we first examine Problem (P ) more in detail, and

obtain an equivalent problem (which we call Problem (P ∗) below).

Suppose that in the solution to (P ) we have qt(m) ∈ (0, 1) for some t ∈ T and
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some m ∈Mt. We replace m by two signals m0 and m1 such that: for all θ ∈ Θ,

Gt(θ)[m
0] = (1− qt(m))Gt(θ)[m], Gt(θ)[m

1] = qt(m)Gt(θ)[m].

Then, we have (i) Ψm0|t = Ψm1|t = Ψm|t, and (ii) Λt(m
0) = (1 − qt(m))Λt(m),

Λt(m
1) = qt(m)Λt(m). Let qt(m

0) = 0, pt(m
0) = 0, qt(m

1) = 1, pt(m
1) = pt(m)

qt(m)
.

One can easily check that this modification satisfies all constraints in (P ), and

achieves the same expected revenue. Thus, without loss of generality, we only

need to consider the solution to (P ) satisfying qt(m) ∈ {0, 1} for any t and any m.

Let M1
t and M0

t collect all such m1 and m0, respectively.

The next step is to show that, for each t, we only need one “buy” signal,

denoted by m1
t , to induce q = 1, and one “not buy” signal, denoted by m0

t , to

induce q = 0. Particularly, fixed arbitrary t, we define the following information

disclosure policy: for all θ ∈ Θ,

Gt(θ)[m
1
t ] =

∫
m1∈M1

t

dGt(θ)[m
1], Gt(θ)[m

0
t ] =

∫
m0∈M0

t

dGt(θ)[m
0].

Then, we have

Λt(m
1
t ) =

∫
m1∈M1

t

dΛt(m
1), Λt(m

0
t ) =

∫
m0∈M0

t

dΛt(m
0);

Ψm1
t |t =

1

Λt(m1
t )

∫
m1∈M1

t

Ψm1|tdΛt(m
1), Ψm0

t |t =
1

Λt(m0
t )

∫
m0∈M0

t

Ψm0|tdΛt(m
0).

Let qt(m
0
t ) = 0, pt(m

0
t ) = 0, qt(m

1
t ) = 1, pt(m

1
t ) = 1

Λt(m1
t )

∫
m1∈M1

t
pt(m

1)dΛt(m
1).
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Immediately, this modification doesn’t change the total expected revenue. Because

∫
m∈Mt

∑
θ

(
qt(m)v(θ, t)− pt(m)

)
Ψm|t(θ)dΛt(m)

=

∫
m1∈M1

t

∑
θ

(
1 · v(θ, t)− pt(m1)

)
Ψm1|t(θ)dΛt(m

1)

=

(∑
θ

1 · v(θ, t)Ψm1
t |t(θ)− pt(m

1
t )

)
Λt(m

1
t ),

the modified solution satisfies all BICt→t′ such that t′ 6= t. The remaining is to

show that agent with each t′ 6= t won’t pretend to have type t in the modified

solution. If
∑

θ 1 · v(θ, t′)Ψm1
t |t(θ)− pt(m

1
t ) < 0, then we have

max

{∑
θ

1 · v(θ, t′)Ψm1
t |t(θ)− pt(m

1
t ), 0

}
Λt(m

1
t ) = 0,

which means BICt′→t is satisfied. If
∑

θ 1 · v(θ, t′)Ψm1
t |t(θ)− pt(m

1
t ) ≥ 0, because

∫
m∈Mt′

∑
θ

(
qt′(m)v(θ, t′)− pt′(m)

)
Ψm|t′(θ)dΛt′(m)

≥
∫
m∈Mt

max

{∑
θ

(
qt(m)v(θ, t′)− pt(m)

)
Ψm|t(θ), 0

}
dΛt(m)

≥
∫
m∈Mt

∑
θ

(
qt(m)v(θ, t′)− pt(m)

)
Ψm|t(θ)dΛt(m)

=

(∑
θ

1 · v(θ, t′)Ψm1
t |t(θ)− pt(m

1
t )

)
Λt(m

1
t )

= max

{∑
θ

1 · v(θ, t′)Ψm1
t |t(θ)− pt(m

1
t ), 0

}
Λt(m

1
t ),

the modified solution also satisfies BICt′→t. We conclude that it is without loss

of generality to only consider a subset of candidate solutions where (i) each type t
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is offered an information structure with two signals {m1
t ,m

0
t}, inducing posterior

beliefs µ1
t := Ψm1

t |t and µ0
t := Ψm0

t |t, respectively8; (ii) the allocation rule satisfies

qt(m
1
t ) = 1 and qt(m

0
t ) = 0. Let v(µ, t) =

∑
θ v(θ, t)µ(θ) for any µ ∈ ∆(Θ). Then,

problem (P ) can be written as:

max
p,Λ,(µ1t ,µ

0
t )t∈T

∑
t∈T

pt(µ
1
t )Λt(µ

1
t )F (t)

s.t. ∀t,∀t′ 6= t :[
v(µ1

t , t)− pt(µ1
t )
]
Λt(µ

1
t ) ≥ max

{
v(µ1

t′ , t)− pt′(µ1
t′), 0

}
Λt′(µ

1
t′);

v(µ1
t , t)− pt(µ1

t ) ≥ 0;

Λt(µ
1
t ) + Λt(µ

0
t ) = 1, Λt(µ

1
t ),Λt(µ

0
t ) ≥ 0;

µ1
tΛt(µ

1
t ) + µ0

tΛt(µ
0
t ) = F0, µ1

t , µ
0
t ∈ ∆(Θ).

Notice that the “max” function can be removed, and we get an equivalent problem:

(P ∗) max
p, Λ,

(µ1t ,µ
0
t )t∈T

∑
t∈T

pt(µ
1
t )Λt(µ

1
t )F (t)

s.t. ∀t, ∀t′ 6= t :

BICt→t′
[
v(µ1

t , t)− pt(µ1
t )
]
Λt(µ

1
t ) ≥

[
v(µ1

t′ , t)− pt′(µ1
t′)
]
Λt′(µ

1
t′);

EPIRt v(µ1
t , t)− pt(µ1

t ) ≥ 0;

Λt(µ
1
t ) + Λt(µ

0
t ) = 1, Λt(µ

1
t ),Λt(µ

0
t ) ≥ 0;

µ1
tΛt(µ

1
t ) + µ0

tΛt(µ
0
t ) = F0, µ1

t , µ
0
t ∈ ∆(Θ).

Now, we show that the value of this problem (P ∗) is weakly higher than that of

8It is possible to have µ1
t = µ0

t .
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Problem (P+). To see this, let (x, τ) be a solution to (P+). For any t ∈ T , we define

Λt(µ
1
t ) =

∑
θ∈Θ F0(θ)x(θ, t), which belongs to [0, 1]. Let Λt(µ

0
t ) = 1 − Λt(µ

1
t ). If

Λt(µ
1
t ) ∈ (0, 1), then for any t ∈ T and θ ∈ Θ, we define µ1

t (θ) = F0(θ)x(θ,t)

Λt(µ1t )
, µ0

t (θ) =

F0(θ)[1−x(θ,t)]

Λt(µ0t )
. It is easy to check that µ1

t , µ
0
t ∈ ∆(Θ) and µ1

tΛt(µ
1
t ) +µ0

tΛt(µ
0
t ) = F0.

We also define pt(µ
1
t ) = τ(t)

Λt(µ1t )
. If Λt(µ

1
t ) = 1 (or 0), type t receives no additional

information about θ, and gets the object with probability 1 (or 0) and pays the

price τ(t) (or 0). Notice that for any t, t̂ we have

[
v(µ1

t̂ , t)− pt̂(µ
1
t̂ )
]
Λt̂(µ

1
t̂ )

=
[∑
θ∈Θ

µ1
t̂ (θ)v(θ, t)− pt̂(µ1

t̂ )
]
Λt̂(µ

1
t̂ )

=
[∑
θ∈Θ

F0(θ)x(θ, t̂)

Λt̂(µ
1
t̂
)

v(θ, t)− τ(t̂)

Λt̂(µ
1
t̂
)

]
Λt̂(µ

1
t̂ )

=
∑
θ∈Θ

x(θ, t̂)w(θ, t)− τ(t̂).

Then, due to ICt→t′ and IRt in (P+), the way we construct p,Λ, (µ1
t , µ

0
t )t∈T satisfies

all BICt→t′ and EPIRt in (P ∗). Thus, the value of (P ∗) is weakly higher than

the value of (P+).

Remark 1. From the proof of Theorem 1, we know that, under the independence

assumption between θ and t, it is innocuous to focus on (1) restrictive disclosure

policies with a single “buy” signal, and (2) interim participation constraints which

are more tractable. It is worth noting that these “ideal” properties hinge on the

independence assumption. Consider the following example:

Example 1. Assume θ, t ∈ {1, 2}, and θ is almost (but not fully) perfectly corre-

lated with t: Pr(θ = k | t = k) = 1 − ε for k = 1, 2, for some positive ε. Assume
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v(θ, t) = 1 if θ = t = 1; otherwise v(θ, t) = 2.

We can prove that with sufficiently small ε, the solution to (P ) in this payoff

environment extracts almost full surplus. Consider the following mechanism: if the

agent reports t = 1, then for each realized θ, the agent observes a fully-revealing

signal θ, and is offered the allocation (q1(θ), p1(θ)) = (1, θ) (i.e., the mechanism

has two signal realizations at which the agent buys (at different prices)); if the

agent reports t = 2, then he observes no signal and is assigned (q2, p2) = (1, 2− ε).

By reporting t = 2, type 1 will be offered a price (2− ε) which is higher than his

expected valuation (1 + ε), and thus will not buy and get zero payoff, which is the

same as truth-telling. Type 2 gets ε by telling the truth, while gets ε(2 − 1) +

(1 − ε)(2 − 2) = ε by reporting t = 1. As a result, the mechanism is incentive

compatible and achieves full-surplus extraction as ε vanishes.

We now see why we cannot restrict attention to mechanisms with a single

“buy” signal in Example 1. In such a mechanism, in order to achieve the revenue

not lower than the above, the agent who reports t must be recommended “buy” at

price τ(t) with some large-enough probability. It follows that τ(1) = τ(2) ≤ 1 + ε

in order to satisfy the incentive compatibility and post-each-signal participation

constraints. As ε vanishes, the surplus left to type 2 converges to 1, making it

impossible for the principal to achieve the same revenue as above.

To see why post-each-signal participation constraints cannot be moved to the

interim stage when θ and t are correlated, let ε = 0.1 in Example 1. With interim

participation constraints, the principal can extract full surplus by fully revealing

the state and applying the Crémer-McLean mechanism. While with post-each-

signal participation constraints, in any mechanism which extracts the surplus from
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type 1, there must be some signal m̃ which recommends “buy” at a price strictly

less than 2. This means type 2 will earn some rent; otherwise pretending to be

t = 1 and buying only at signal m̃ would be a profitable deviation.

To conclude, the coincidence of V (P ) and V (P+) holds under independence of

θ and t, but not necessarily under their correlation.

4 Binary Case

In this section, we consider a binary environment, where T = Θ = {0, 1}. To

slightly simplify the notation, let f = F (1) and f0 = F0(1). Thanks to the sim-

plicity brought by this assumption, we can fully characterize the optimal mecha-

nism.9 We also characterize the optimal mechanism with non-type-contingent (or

“public”) disclosure, and compare those mechanisms, especially in terms of the

welfare.

Even in the binary case, the structure of the optimal mechanism is quite rich. In

order to better understand it, we first consider two benchmark mechanisms. First,

we characterize the optimal mechanism with full disclosure. With full disclosure,

the problem essentially reduces to a mechanism design problem, separately for each

realized θ. The optimal mechanism for each θ is given based on a standard ar-

gument. Next, we characterize the optimal mechanisms with non-type-contingent

disclosure. The difference from the full-disclosure benchmark highlights the prin-

cipal’s motif of controlling information, in order to attain higher expected revenue.

However, at least for certain parameters, we explain that the principal’s power is

9In this section, we use the linear programming approach to characterize the optimal mech-
anism due to the equivalence result in Theorem 1. In the Online Appendix, we provide a
generalized concavification approach to characterize the solution to (P ), which is closely related
to the graphical approach for solving the standard Bayesian persuasion model.
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limited if he only consider non-type-contingent mechanisms: It may be better to

disclose more information for some type, while less information for the other. Then,

we would be ready to explain how the optimal mechanism with type-contingent

disclosure can leverage the power of controlling individual information.

In what follows, we focus on the case where v(θ, 1) > v(θ, 0) if θ = 1 and

v(θ, 1) < v(θ, 0) if θ = 0 (i.e., type t is the higher type in state θ = t). That

is, depending on θ, the order of types reverses. Without this order reversion, the

optimal mechanism is always with full disclosure (Theorem 3 in Section 5.1).

4.1 Benchmark 1: Optimal mechanism with full disclosure

To explain the optimal mechanism we obtain later in Section 4.3, it is useful to first

consider two benchmark cases. The first benchmark is the optimal mechanism with

full disclosure, in the following sense. Imagine that the principal fully discloses θ,

and then designs the optimal mechanism for each θ. This benchmark helps us

understand some intuition in the optimal mechanism without the full-disclosure

assumption.

The principal’s optimal mechanism within this class is given as follows:10

ΠF = max
(qt(θ),pt(θ))θ,t

f0[fp1(1) + (1− f)p0(1)] + (1− f0)[fp1(0) + (1− f)p0(0)]

sub. to v(θ, t)qt(θ)− pt(θ) ≥ max{0, v(θ, t)qt′(θ)− pt′(θ)}, ∀θ, t, t′.

Clearly, the problem is fully separable with respect to θ. Thus, the solution is

10Note that, because of the restriction, the equivalence result in the previous section (Theo-
rem 1) does not generally hold in this context. The same remark applies to the next benchmark
case.
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(qFt (θ), pFt (θ))θ,t, where for each θ, (qFt (θ), pFt (θ))t solves:

ΠF (θ) = max
(qt,pt)t

fp1 + (1− f)p0

sub. to v(θ, t)qt − pt ≥ max{0, v(θ, t)qt′ − pt′}, ∀t, t′,

and ΠF = f0ΠF (1) + (1− f0)ΠF (1).

If θ = 1, then t = 1 is the higher type, and thus, the optimal allocation is either

(i) (q1, p1) = (q0, p0) = (1, v(1, 0)), (ii) (q1, p1) = (1, v(1, 1)) and (q0, p0) = (0, 0),

or (iii) (q1, p1) = (q0, p0) = (0, 0).

If θ = 0, then t = 0 is the higher type, and thus, the optimal allocation is either

(i) (q1, p1) = (q0, p0) = (1, v(0, 1)), (ii) (q0, p0) = (1, v(0, 0)) and (q1, p1) = (0, 0),

or (iii) (q1, p1) = (q0, p0) = (0, 0).

Thus, we obtain the following.

Proposition 1. The optimal mechanism with full disclosure attains:

ΠF = f0 max{v(1, 0), fv(1, 1), 0}+ (1− f0) max{v(0, 1), (1− f)v(0, 0), 0}.

4.2 Benchmark 2: Optimal mechanism with non-type-contingent

disclosure

Next, consider another benchmark case where the principal discloses some (not

necessarily full) information about θ, regardless of the agent’s type. Then, the

principal assigns an allocation as a function of the agent’s type report and the

disclosed information. A full-disclosure policy is a special case. We provide an

example in the appendix (Example 4) where the principal can save the agent’s
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information rent by only partially disclosing information about θ.

The optimal mechanism with non-type-contingent disclosure is more compli-

cated than the full-disclosure case. Still, it has the same kind of simplicity in the

sense that the allocation part of the mechanism is fully separable with respect to

the (non-type-contingent) information disclosed to the agent.

More specifically, fix an arbitrary non-type-contingent disclosure policy, de-

noted by Λ ∈ ∆([0, 1]). A signal realization µ ∼ Λ is observed by the agent of any

type. It is well-known that it is without loss to identify µ with the posterior belief

for θ = 1 given that signal µ. Moreover, with this identification, any feasible Λ

can be represented as a distribution over [0, 1] such that
∫
µdΛ(µ) = f0.

For each µ, the optimal allocation given µ solves:

V N(µ) = max
(qt(µ),pt(µ))t

fp1(µ) + (1− f)p0(µ)

sub. to v(µ, t)qt(µ)− pt(µ) ≥ max{0, v(µ, t)qt′ − pt′}, ∀t, t′,

where v(µ, t) = µv(1, t) + (1− µ)v(0, t), and the optimal Λ is given by:

V N = max
Λ

∫
V N(µ)dΛ(µ),

sub. to

∫
µdΛ(µ) = f0.

Let µ∗ ∈ (0, 1) be such that v(µ∗, 1) = v(µ∗, 0) ≡ v∗, that is, µ∗ is the agent’s

belief with which both types have the same expected valuation. In what follows,

we only consider the case with µ∗ > f0, but a similar result holds with µ∗ < f0. Let

ΛF denote the full-disclosure signal distribution (i.e., Λ(1) = f0 and Λ(0) = 1−f0),

and let Λ∗ denote a binary-support distribution on {0, µ∗} with Λ(µ∗) = f0
µ∗

and
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Λ(0) = 1− f0
µ∗

.

Proposition 2. The optimal Λ is either ΛF or Λ∗.

In case the optimal Λ is ΛF , the optimal allocation coincides with the case

under full disclosure, attaining ΠF .

In case the optimal Λ is Λ∗, the optimal allocation is as follows. (i) Given

posterior µ = 0, the optimal allocation coincides with the case under full disclosure

with θ = 0. (ii) Given posterior µ = µ∗, the optimal allocation is (q1, p1) =

(q0, p0) = (1, v∗).11

Proof. See Appendix A.2.

4.3 Optimal mechanism with type-contingent disclosure

Now we are ready to explain the optimal mechanism with type-contingent disclo-

sure. The following example shows that, in some cases, type-contingent disclosure

can attain a strictly higher expected revenue than with full or non-type-contingent

disclosure.

Example 2. Assume f0 = f = 1
2
, and v(θ, t) satisfies:

v(θ, t) θ = 1 θ = 0

t = 1 3 -3

t = 0 2 2

This is the same setting as Example 4 in the appendix. Consider the following

type-contingent disclosure policy:

� For t = 0: no disclosure, and (q, p) = (1, 2).

11As is clear from the proof, the optimal Λ is not full disclosure only if v∗ ≥ 0.
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� For t = 1: full disclosure, and (q, p) = (1, 3) if θ = 1 ((0, 0) o.w.).

In this mechanism, it is clearly optimal for the agent with t = 0 to truthfully

report his type and accepts the trade with price of 2. For t = 1, truth-telling

implies expected payoff 0, while pretending to be t = 0 yields expected payoff:

1

2
(3− 2) +

1

2
(−3− 2) = −2.

Therefore, the mechanism is also incentive compatible for t = 1.

This is the first-best mechanism for the principal, because the trade allocation

is efficient and the entire surplus is extracted by the principal (i.e., the agent does

not earn any information rent). As a comparison, in the optimal full-disclosure

mechanism, the allocation is efficient but the agent earns positive information rent;

in the optimal non-type-contingent mechanism, the agent earns zero information

rent but the allocation is not efficient (due to non-full disclosure).

Solving the optimal mechanism with type-contingent disclosure is fundamen-

tally different from the two benchmark cases, because now the problem is non-

separable. For instance, imagine that type t is assigned full disclosure. If t′ is

also assigned full disclosure, then we can separately solve the problem for each

θ. However, if t′ is assigned less disclosure (e.g., no disclosure), then his incentive

compatibility is based on his average payoff in each state, which implies a restric-

tion jointly on the two allocation rules (one for θ = 0 and the other for θ = 1).

This means that we can no longer solve each problem separately.

However, thanks to the equivalence result (Theorem 1), we can characterize

the optimal mechanism by solving a multi-dimensional screening problem.
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Interestingly, the optimal mechanism with type-contingent disclosure has cer-

tain similar features to the one with non-type-contingent disclosure. In particular,

the optimal disclosure policy Λt for each t assigns a positive probability only on

two of µ ∈ {0, µ∗, 1}. Again, we focus on the case with f0 < µ∗, which implies

that Λt must be supported on either {0, µ∗} or {0, 1}.

Theorem 2. Whether the optimal disclosure policy is type-contingent or not

depends on the parameter.

In case the optimal mechanism is non-trivially type-contingent, it is Λt = ΛF

for some t and Λt′ = Λ∗ for t′ 6= t. The allocation for type t is either (qt, pt) =

(1, v(θ, t)) or (0, 0) when θ ∈ {0, 1} is disclosed. The allocation for type t′ is (i)

(qt, pt) = (1, v(0, t)) or (0, 0) when µ = 0 is disclosed, while (ii) (qt, pt) = (1, v∗)

when µ = µ∗ is disclosed.12

In case the optimal disclosure policy is de facto non-type-contingent, it coin-

cides with what Proposition 2 describes, and so does the optimal allocation rule.

Proof. See Appendix A.3.

4.4 Welfare consequence of type contingency

An interesting applied question is the potential welfare effect of type-contingent

disclosure policies. Thanks to the advancement of the digital technology and the

data accumulated by large-scale platforms, the cost of individualized / targeted

advertisement and information disclosure is lowered. As a consequence, the mode

of advertisement has been experiencing some shift from the classical “public” ad-

vertisement to individualized / targeted advertisement. It is an important policy-

12Recall that Λ∗ has a binary support on {0, µ∗}.
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relevant question whether such individualization is welfare-enhancing. Theorem 2

suggests that it depends on the parameters, and provides a basic logic behind the

welfare comparison.

To better understand the comparison, it is useful to observe that there are

in general two kinds of inefficiency in the optimal mechanism (with or without

type-contingency). The first kind of inefficiency happens when the buyer buys the

good with a positive probability even though his ex post valuation is negative: we

call it “inefficient deal”. Such inefficiency can happen only if the buyer is assigned

non-full disclosure, because otherwise the buyer would not buy the good as long as

he is fully informed of the state where his valuation is negative. The second kind

happens when the buyer does not buy the good even though his ex post valuation is

positive (but is lower than the price), which is the standard “inefficient exclusion”

in monopoly pricing.

The following example shows that type-contingency can be beneficial or adver-

sarial to the total welfare, depending on the parameter values.

Example 3. Consider a variant of the previous example with f = f0 = 1
2

and:

v(θ, t) θ = 1 θ = 0

t = 1 3 −3

t = 0 2 x

where x ∈ (−1, 1).

The optimal type-contingent mechanism assigns full disclosure to type 1, while

partial disclosure to type 0. More precisely, this partial disclosure takes the form

of a “0-alert”, where the type-0 buyer’s posterior is made either µ = µ∗ or µ = 0.

The buyer with type 1 buys the good if and only if θ = 1. The buyer with type

27



0 buys the good given µ = µ∗, while he buys the good given µ = 0 if and only if

v(0, 0) = x ≥ 0.13 Therefore, this mechanism achieves the first-best total welfare

if x ≥ 0, but induces an inefficient deal given (θ, t) = (0, 0) if x < 0. More

specifically, when x < 0, the buyer with t = 0 buys the good with a positive

probability given (θ, t) = (0, 0) even though v(0, 0) = x < 0. On the other hand,

exclusion inefficiency does not exist.

What about the optimal mechanism in the class of non-type-contingent mecha-

nisms? If x ≥ 0, then the optimal non-type-contingent mechanism assigns the same

“0-alert” partial disclosure, but to both types. Therefore, an inefficient deal occurs

for type 1 here, while the first best efficiency is achieved under type-contingency.

If x < 0, then the optimal non-type-contingent mechanism assigns full disclo-

sure to both types, and both types buy the good if and only if θ = 1 (at price

2). Therefore, the mechanism achieves the first-best total welfare here, while an

inefficient deal occurs under type-contingency.

The parameters in Example 3 are carefully chosen so that the optimal mech-

anisms with or without type-contingency only exhibit “inefficient deals” but not

“inefficient exclusion”. More generally, with only the possibility of inefficient deals,

the total welfare can simply be compared based on the information disclosed to the

buyer: Under the parameters where the optimal non-type-contingent mechanism

involves full disclosure for both types, type-contingency is (weakly) adversarial to

the total welfare, because full disclosure happens only for one type there; while

under the other parameters where the optimal non-type-contingent mechanism

involves partial disclosure for both types, type-contingency is (weakly) welfare-

enhancing (because one of the types is assigned full disclosure there).

13See Case 1.3 in the proof of Theorem 2.
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With more general parametrization where the optimal mechanisms may exhibit

both “inefficient deals” and “inefficient exclusion”, the comparison is more subtle.

Even if one mechanism provides more information than another, it is not clear if the

total welfare is higher in the first mechanism. However, in the binary environment,

this exclusion inefficiency basically makes type-contingency more likely welfare-

enhancing. To explain this, consider the same parameter values as in Example 3

with x < 0, except that now type 1 is much more likely than type 0: f > 2
3
.

It can be shown that the optimal type-contingent mechanism is the same as in

Example 3 (with f = 1
2
). The optimal non-type-contingent mechanism still assigns

full disclosure for both types, but now, it only trades with type 1 (with price 3)

given θ = 1, rather than trading with both types (with price 2). That is, the

mechanism now induces inefficient exclusion. As a consequence, a trade happens

if and only if (θ, t) = (1, 1). The optimal type-contingent mechanism achieves

higher total welfare because v∗ > 014 despite its inefficient deal issue.

The conclusion holds more generally in the binary environment. More precisely,

if type-contingency (at least partially) addresses the inefficient exclusion issue in

the optimal non-type-contingent mechanism, then it is welfare-enhancing even

if this is achieved at the cost of causing the inefficient deal issue (as explained

above). On the other hand, (at least partially) eliminating the inefficient deal in

the optimal non-type-contingent mechanism always entitles type-contingency to

improve the total welfare (as in Example 3). The only case for type-contingency

to be welfare-reducing is when it purely causes the inefficient deal issue15

Proposition 3. Type-contingency can be adversarial to the total welfare, but

14Recall v∗ = µ∗v(1, t) + (1− µ∗)v(0, t) for both t = 0, 1.
15It is worth noting that in the binary environment, type-contingency would not cause more

severe inefficient exclusion issue than the optimal non-type-contingent mechanism.
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only when (i) the optimal type-contingent mechanism exhibits inefficient deal,

(ii) the optimal non-type-contingent mechanism eliminates it by fully-disclosing

information (for both types), and (iii) the optimal non-type-contingent mechanism

does not involve inefficient exclusion.16

The proof is by checking all the cases exhaustively, and is omitted.

5 More General Cases

As discussed before, because of the multi-dimensional screening nature, it is dif-

ficult to obtain closed-form solutions in more general environments. Some of the

results in the binary case continue to hold, however, in non-binary cases. In this

section, we summarize those results. Further investigation of general cases are

important but beyond the scope of the paper.

5.1 Positively related cases

Here, we consider the case where T is totally ordered, and t < t′ implies v(θ, t) <

v(θ, t′) for all θ. That is, there is no preference reversal: a higher type is always

associated with the higher valuation for every θ. Although mathematically it is

a restrictive assumption, many economic applications can be in this class. For

example, imagine that the agent is an intermediary who buys a good from the

principal (a seller) and sells it to end-consumers; θ represents the vertical quality

of the good (whose information is controlled by the principal / seller); and t is a

parameter representing noisy information about the end-consumers’ demand.

16Note that, in this case, the optimal non-type-contingent mechanism achieves the first-best
total welfare.
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In this case, the optimal policy is full disclosure, under a standard regularity

condition. As is clear in the proof, the argument is rather standard once we

consider the problem (P+). In this sense, the result illustrates the usefulness of

Theorem 1, connecting the original problem (P ) and the simplified problem (P+).

Theorem 3. Assume that (i) T is totally ordered (denoted by T = {1, 2, . . . , N}),

(ii) t < t′ implies v(θ, t) < v(θ, t′) for all θ, and (iii) F admits monotone virtual

values: for each θ, the agent’s virtual valuation

γ(θ, v) ≡ v(θ, t)− (v(θ, t+ 1)− v(θ, t))

∑
τ>t F (τ)

F (t)

is non-decreasing in t.

Then, full disclosure is an optimal disclosure policy. Furthermore, the optimal

allocation given each θ sets q(θ, t) = 1 if γ(θ, v) > 0, while q(θ, t) = 0 if γ(θ, v) < 0.

Proof. See Appendix A.4.

5.2 Negatively related cases

Here, we consider the case with binary Θ = {0, 1} (with f0 = F0(1)), and totally

ordered T : v(0, t) is strictly increasing in t, and v(1, t) is strictly decreasing in

t. Furthermore, we assume that they are “concavely” related: There is a concave

function f : R→ R such that v(1, t) = f(v(0, t)) for all t.

For example, imagine that a product seller (the agent) sells through a platform

(the principal). The platform can provide some information about the consumers’

horizontal characteristics (parameterized by θ ∈ {0, 1}) to the seller. For simplic-

ity, let R be the seller’s (sufficiently large, exogenously fixed) revenue in case a
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trade happens. However, to make the trade happen, the seller must make some

pre-trade investment in order to, for example, customize the product to meet the

consumers’ needs. Assume that such investment incurs a cost c(|θ− t|), where c is

non-negative, increasing and convex, t ∈ [0, 1] denotes the seller’s pre-investment

position, and |θ − t| measures the amount of required adjustment. Then the net

profit to the seller is v(θ, t) = R− c(|θ − t|).

This negatively-related and concave structure of the payoff environment guar-

antees that, the solution to problem (P+) possesses what we called a “rotating”

property. Based on this observation, again thanks to Theorem 1, we can show that

the resulting optimal disclosure policy exhibits some intuitive property.

Let Λ be a binary distribution over [0, 1] such that
∑

µ µΛ(µ) = f0. As before,

we say that Λ is a θ-alert information structure if θ ∈ suppΛ. Note that any

two θ-alert information structures can be ordered with respect to its Blackwell

informativeness: the one with a higher probability of signal θ is more informative

(and also, obviously, more informative than the fully uninformative one, identified

by Λ with Λ(f0) = 1).17

Theorem 4. Assume that Θ = {0, 1}, T = {1, . . . , N}, v(0, t) is strictly increasing

in t, v(1, t) is strictly decreasing in t, and that there is a concave function f such

that v(1, t) = f(v(0, t)) for all t.

In the optimal mechanism, (i) every t is assigned either a 0-alert, 1-alert, or

fully-uninformative information structure, and there exists t∗ such that (ii) for

t < t′ ≤ t∗, t is assigned more informative information structure than t′ is; and

(iii) for t > t′ ≥ t∗, t is assigned more informative information structure than t′ is.

17An information structure is more (Blackwell-)informative than another information structure
if the latter is obtained by adding some noise (“garbling”) to the former.
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In the associated allocation, if type t is assigned a fully-uninformative informa-

tion structure, then he always buys; while if assigned a 0-alert (1-alert) information

structure, then he buys if and only if the signal based on Λt is not µ = 0 (µ = 1).

Proof. See Appendix A.5.

The key first step of the proof examines the simplified problem (P+), and shows

that (i) only local incentive compatibility constraints are relevant (i.e, the non-local

incentive constraints can be ignored without loss); and (ii) in the solution, either

x(0, t) or x(1, t) (or both) is 1 (Lemma 1). Once this step is established, the rest

is to verify that the information disclosure policies and allocations in Theorem 4

can be constructed from the solution to (P+). For example, if x(0, t) = 1 and

x(1, t) < 1 for some t, then that type is assigned a 1-alert; while x(0, t) = x(1, t) =

1 corresponds to a fully-uninformative information structure.

6 Conclusion

We study a mechanism design problem where the principal can also control the

agent’s knowledge about a payoff relevant state. We analyze how the revenue-

maximizing principal can properly manipulate the information disclosure policy

and the allocation rule so as to screen the agent’s type and extract the surplus

as best possible. We show that the principal’s problem is equivalent to a multi-

dimensional screening problem (where only an allocation rule is designed), which

contributes methodologically to the literature by greatly simplifying the search for

optimal mechanisms, and, at the same time, sheds light on the essence of joint

design of information and allocation.
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We also study the features of optimal disclosure policies in more restrictive but

economically interesting payoff environments. With positively-related types (such

as vertical characteristics of the agent), full disclosure is optimal under regularity

conditions; while with negatively-related types (such as horizontal characteristics

of the agent), the optimal disclosure policies take the form of bad-state alerts which

are type-contingent in general. Furthermore, we provides a full characterization of

the optimal mechanisms in a binary environment, which facilitates the analyses as

to when type-contingent disclosure strictly benefits the principal, and the welfare

consequences of jointly using information structure and allocation rule as screening

tools.

A Omitted materials

A.1 Example in Section 4.2

Example 4. Assume f0 = f = 1
2
, and v(θ, t) satisfies:

v(θ, t) θ = 1 θ = 0

t = 1 3 -3

t = 0 2 2

Assuming full disclosure, the optimal allocation for θ = 0 is (q0, p0) = (1, 2)

and (q1, p1) = (0, 0), yielding ΠF (0) = 1; and the optimal allocation for θ = 1 is

(qt, pt) = (1, 2) for both t, yielding ΠF (1) = 2. Thus, the principal’s expected rev-

enue is 3
2
. Note that the allocation is efficient (i.e., maximizing the total surplus),

and the agent earns some information rent (when (θ, t) = (1, 1)).

Now consider the following “partial” non-type-contingent disclosure. If θ = 1,
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then the principal discloses µ = 5
6

to the agent, regardless of the agent’s type t;

if θ = 0, then the principal discloses either µ = 0 (with probability 4
5
) or µ = 5

6

(with probability 1
5
), regardless of the agent’s type t. Note that µ can interpreted

as the buyer’s posterior for θ = 1 given the principal’s message µ: If µ = 0 is sent,

then it must be that θ = 0; while if µ = 5
6

is sent, then the posterior for θ = 1 is
1
2
·1

1
2
·1+ 1

2
· 1
5

= 5
6
.

Given µ = 0, the principal offers (q0, p0) = (1, 2) and (q1, p1) = (0, 0), yielding

ΠF (0) = 1. Given µ = 5
6
, the principal offers (qt, pt) = (1, 2) for both t, yielding

revenue 2. Notice that, with µ = 5
6
, the agent’s expected valuation for the good is 2

regardless of his type t. Non-full disclosure is useful for the principal to extract the

agent’s rent. Indeed, the agent loses all the information rent in this mechanism.

The ex ante expected revenue is:

1

2

4

5
· 1 + (1− 1

2

4

5
) · 2 =

8

5
(>

3

2
).

In return to this higher revenue, the allocation becomes inefficient, as the agent

buys the good with a strictly positive probability given (θ, t) = (0, 1) even though

v(0, 1) < 0.

A.2 Proof of Proposition 2

Proof. For µ < µ∗, we have v(µ, 0) > v(µ, 1), and in this sense, t = 0 is the

higher type. Thus, the optimal allocation given µ is either (i) (q0, p0) = (q1, p1) =

(1, v(µ, 1)), (ii) (q0, p0) = (1, v(µ, 0)) and (q1, p1) = (0, 0), or (iii) (q0, p0) =
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(q1, p1) = (0, 0). The expected revenue given µ is thus:

V N(µ) = max{v(µ, 1), (1− f)v(µ, 0), 0}.

For µ > µ∗, t = 1 is the higher type, and the optimal allocation given µ is either

(i) (q0, p0) = (q1, p1) = (1, v(µ, 0)), (ii) (q1, p1) = (1, v(µ, 1)) and (q0, p0) = (0, 0),

or (iii) (q0, p0) = (q1, p1) = (0, 0). The expected revenue given µ is thus:

V N(µ) = max{v(µ, 0), fv(µ, 1), 0}.

What is the optimal Λ? As this is essentially a Bayesian persuasion problem,

the solution is given by the concavification of V N(µ). However, notice that V N(µ)

is convex on µ ∈ (0, µ∗), and then on µ ∈ (µ∗, 1), possibly kinked at µ = µ∗.

Therefore, it is enough to consider Λ which has a binary support on {0, µ∗, 1}.

Given the condition that µ∗ > f0, the support of Λ must be {0, µ∗} or {0, 1}.

A.3 Proof of Theorem 2

Proof. Recall that the principal’s expected payoff in the optimal disclosure policy

is given by:

max
x,τ

fτ1 + (1− f)τ0

sub. to xt(1)w(1, t) + xt(0)w(0, t)− τt

≥ max{0, xt′(1)w(1, t) + xt′(0)w(0, t)− τt′}, ∀t, t′

xt(θ) ∈ [0, 1], ∀t, θ,
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where w(θ, t) = F0(θ)v(θ, t).

We only consider the case with µ∗ > f0, or equivalently, w(1, 1) − w(1, 0) <

w(0, 0)− w(0, 1). The other case is similar.

Let λt,t′(≥ 0) be the multiplier for the incentive constraint for type t (not to

pretend to be type t′), λt(≥ 0) be the multiplier for the participation constraint

for type t, and φt(θ)(≥ 0) be the multiplier for xt(θ) ≤ 1.

Then, the dual problem is given by:

min
λ,φ≥0

∑
t,θ

φt(θ)

sub. to λ1 = f − λ10 + λ01

λ0 = 1− λ1

φ1(1) ≥ (λ10 + λ1)w(1, 1)− λ01w(1, 0)

φ1(0) ≥ (λ10 + λ1)w(0, 1)− λ01w(0, 0)

φ0(1) ≥ (λ01 + λ0)w(1, 0)− λ10w(1, 1)

φ0(0) ≥ (λ01 + λ0)w(0, 0)− λ10w(0, 1).

In the solution, we have

φ1(1) = max{0, fw(1, 1) + λ01(w(1, 1)− w(1, 0))}

φ1(0) = max{0, fw(0, 1)− λ01(w(0, 0)− w(0, 1))}

φ0(1) = max{0, (1− f)w(1, 0)− λ10(w(1, 1)− w(1, 0))}

φ0(0) = max{0, (1− f)w(0, 0) + λ10(w(0, 0)− w(0, 1))},
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and therefore, the problem reduces to:

min
λ01,λ10

max{0, fw(1, 1) + λ01(w(1, 1)− w(1, 0))}

+ max{0, fw(0, 1)− λ01(w(0, 0)− w(0, 1))}

+ max{0, (1− f)w(1, 0)− λ10(w(1, 1)− w(1, 0))}

+ max{0, (1− f)w(0, 0) + λ10(w(0, 0)− w(0, 1))}

sub. to λ10, λ01 ≥ 0, λ01 − λ10 ∈ [−f, 1− f ].

In what follows, we characterize the solution to all the parameters under three

assumptions. First, w(1, 1) > w(1, 0) and w(0, 0) > w(0, 1), that is, type t = θ is

the high type given state θ. Second, for each t, there is some θ such that w(θ, t) > 0.

Otherwise, the problem becomes trivial. Finally, µ∗ > f0 (⇔ w(1, 1) − w(1, 0) <

w(0, 0)− w(0, 1)). The analyses of the other cases are similar.

Case 1: w(0, 0) < 0 (hence w(0, 1) < 0): Note that our parameter assumption

above implies w(1, 1) > w(1, 0) > 0. Thus, fw(1, 1) + λ01(w(1, 1) − w(1, 0)) > 0

and fw(0, 1)− λ01(w(0, 0)− w(0, 1)) < 0, implying x1(1) = 1 and x1(0) = 0. The

problem becomes:

min
λ01,λ10

fw(1, 1) + λ01(w(1, 1)− w(1, 0))

+ max{0, (1− f)w(1, 0)− λ10(w(1, 1)− w(1, 0))}

+ max{0, (1− f)w(0, 0) + λ10(w(0, 0)− w(0, 1))}

sub. to λ10, λ01 ≥ 0, λ01 − λ10 ∈ [−f, 1− f ].
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It is optimal to set λ01 = max{0, λ10 − f}, implying:

min
λ01

fw(1, 1) + max{0, (λ10 − f)(w(1, 1)− w(1, 0)))}

+ max{0, (1− f)w(1, 0)− λ10(w(1, 1)− w(1, 0))}

+ max{0, (1− f)w(0, 0) + λ10(w(0, 0)− w(0, 1))}

sub. to λ10 ≥ 0.

Case 1.1: v∗ < 0 and w(1, 0) < fw(1, 1) Note that this case is equivalent

to:

(1− f)w(1, 0)

w(1, 1)− w(1, 0)
< min{(1− f)(−w(0, 0))

w(0, 0)− w(0, 1)
, f}.

Then, any λ10 ∈ ( (1−f)w(1,0)
w(1,1)−w(1,0)

,min{ (1−f)(−w(0,0))
w(0,0)−w(0,1)

, f}) makes all the max terms

zero, which is obviously a solution. The objective is fw(1, 1). It is easy to derive

x0(1) = x0(0) = 0 and τ1 = w(1, 1) and τ0 = 0. This allocation is clearly achieved

with full disclosure.

Case 1.2: w(1, 0) > fw(1, 1) and −w(0, 0) > f(−w(0, 1)) Note that this

case is equivalent to:

f < min{(1− f)(−w(0, 0))

w(0, 0)− w(0, 1)
,

(1− f)w(1, 0)

w(1, 1)− w(1, 0)
}.

Then, any λ10 ∈ (f,min{ (1−f)(−w(0,0))
w(0,0)−w(0,1)

, (1−f)w(1,0)
w(1,1)−w(1,0)

}) is a solution, making the

objective w(1, 0). It is easy to derive x0(1) = 1 and x0(0) = 0 and τ1 = τ0 =

w(1, 0). This allocation is clearly achieved with full disclosure.
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Case 1.3: v∗ > 0 and −w(0, 0) < f(−w(0, 1)) Note that this case is equiv-

alent to:

(1− f)(−w(0, 0))

w(0, 0)− w(0, 1)
< min{f, (1− f)w(1, 0)

w(1, 1)− w(1, 0)
}.

Then, it is optimal to set λ10 = (1−f)(−w(0,0))
w(0,0)−w(0,1)

> 0 (hence, the incentive con-

straint for type t = 1 holds with equality). As λ01 = 0, we have λ0, λ1 > 0

(hence, the participation constraints for both types hold with equality). Finally,

as (1 − f)w(1, 0) − λ10(w(1, 1) − w(1, 0)) > 0, we have x0(1) = 1. These binding

constraints imply x0(0) = w(1,1)−w(1,0)
w(0,0)−w(0,1)

, and the objective attained is fw(1, 1) +

(1 − f)w(1,1)w(0,0)−w(1,0)w(0,1)
w(0,0)−w(0,1)

. This allocation is achieved by the following type-

contingent disclosure:

� For t = 1: The principal fully discloses θ, and allocates (q, p) = (1, v(1, 1)) if

θ = 1 and (0, 0) if θ = 0;

� For t = 0: The principal sends µ = µ∗ with probability 1 given θ = 1 and

probability x0(0) = w(1,1)−w(1,0)
w(0,0)−w(0,1)

given θ = 0, and sends µ = 0 with probability

1− x0(0) given θ = 0; The allocation is (q, p) = (1, v∗) if µ = µ∗ is sent, and

is (0, 0) if µ = 0.

Case 1’: w(1, 1) < 0 (hence w(1, 0) < 0): Similar to Case 1, and hence is

omitted.

Case 2: w(0, 0) > 0 > w(0, 1) and w(1, 1) > 0 > w(1, 0) Because fw(1, 1) +

λ01(w(1, 1) − w(1, 0)) > 0 and (1 − f)w(0, 0) + λ10(w(0, 0) − w(0, 1)) > 0, we

obtain x1(1) = x0(0) = 1. Because fw(0, 1) − λ01(w(0, 0) − w(0, 1)) < 0 and
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(1 − f)w(1, 0) − λ10(w(1, 1) − w(1, 0)) < 0, we obtain x1(0) = x0(1) = 0. The

objective is fw(1, 1) + (1 − f)w(0, 0), and it is easy to derive τ1 = w(1, 1) and

τ0 = w(0, 0) (where both types’ participation constraints are satisfied).

This allocation is clearly achieved with full disclosure.

Case 3: w(0, 0) > 0 > w(0, 1) and w(1, 1) > w(1, 0) > 0 Because fw(1, 1) +

λ01(w(1, 1) − w(1, 0)) > 0 and (1 − f)w(0, 0) + λ10(w(0, 0) − w(0, 1)) > 0, we

obtain x1(1) = x0(0) = 1. Because fw(0, 1)−λ01(w(0, 0)−w(0, 1)) < 0, we obtain

x1(0) = 0.

Thus, the problem becomes:

min
λ01,λ10

fw(1, 1) + λ01(w(1, 1)− w(1, 0))

+ max{0, (1− f)w(1, 0)− λ10(w(1, 1)− w(1, 0))}

+(1− f)w(0, 0) + λ10(w(0, 0)− w(0, 1))

sub. to λ10, λ01 ≥ 0, λ01 − λ10 ∈ [−f, 1− f ].

It is clearly optimal to set λ01 = max{0, λ10 − f}, and thus:

min
λ10

fw(1, 1) + max{0, (λ10 − f)(w(1, 1)− w(1, 0))}

+ max{0, (1− f)w(1, 0)− λ10(w(1, 1)− w(1, 0))}

+(1− f)w(0, 0) + λ10(w(0, 0)− w(0, 1))

sub. to λ10 ≥ 0.

Because the objective is strictly increasing in λ10, it is optimal to set λ10 = 0,

and thus x0(1) = 0 and λ01 = 0 (hence, both types’ participation constraints hold
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with equality, and no incentive constraint is binding). This allocation is achieved

by the following type-contingent disclosure:

� For t = 1: The principal fully discloses θ, and allocates (q, p) = (1, v(1, 1)) if

θ = 1 and (0, 0) if θ = 0;

� For t = 0: The principal sends µ = µ∗ with probability 1 given θ = 1 and

probability x0(0) = w(1,1)−w(1,0)
w(0,0)−w(0,1)

given θ = 0, and sends µ = 0 with probability

1− x0(0) given θ = 0; The allocation is (q, p) = (1, v∗) if µ = µ∗ is sent, and

is (1, v(0, 0)) if µ = 0.18

Case 3’: w(0, 0) > w(0, 1) > 0 and w(1, 1) > 0 > w(1, 0) Similar to Case 3,

and hence is omitted.

Case 4: w(0, 0) > w(0, 1) > 0 and w(1, 1) > w(1, 0) > 0 Because fw(1, 1) +

λ01(w(1, 1)−w(1, 0)) > 0 and (1−f)w(0, 0)+λ10(w(0, 0)−w(0, 1)) > 0, we obtain

x1(1) = x0(0) = 1. Given this, the objective is strictly increasing in λ10, and thus,

it is optimal to set λ10 = max{0, λ01 + f − 1}.

Then, the problem becomes:

min
λ01

fw(1, 1) + λ01(w(1, 1)− w(1, 0))

+ max{0, fw(0, 1)− λ01(w(0, 0)− w(0, 1))}

+(1− f)w(0, 0) + max{0, (λ01 + f − 1)(w(0, 0)− w(0, 1))}

+ max{0, (1− f)w(1, 0)−max{0, (λ01 + f − 1)(w(1, 1)− w(1, 0))}}

sub. to λ01 ≥ 0,

18The same objective is achieved if there is no disclosure for t = 0. In fact, there exist multiple
optimal disclosure policies. However, in any case, information disclosure must be type-contingent.
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where

max{0, (1− f)w(1, 0)−max{0, (λ01 + f − 1)(w(1, 1)− w(1, 0))}}

=


(1− f)w(1, 0) if λ01 < 1− f

(1− f)w(1, 0)− λ01(w(1, 1)− w(1, 0)) if 1− f < λ01 <
(1−f)w(1,0)
w(1,1)−w(1,0)

0 if λ01 >
(1−f)w(1,0)
w(1,1)−w(1,0)

.

Case 4.1: w(0, 1) > (1 − f)w(0, 0) Because we have 1 − f < fw(0,1)
w(0,0)−w(0,1)

in

this case, the objective is strictly decreasing in λ01 if λ01 < 1 − f and otherwise

strictly increasing. Therefore, λ01 = 1− f is optimal. This implies λ10 = 0 (hence

the incentive constraint for t = 0 and the participation constraint for t = 0 hold

with equality), and x1(0) = x0(1) = 1. We have τ1 = τ0 = w(1, 1) + w(0, 1), and

the objective becomes w(1, 1) + w(0, 1).

This allocation can be achieved by the following non-type-contingent disclosure

policy:

� For both t, the principal discloses µ = µ∗ with probability 1 given θ = 1 and

probability w(1,1)−w(1,0)
w(0,0)−w(0,1)

given θ = 0; and he discloses µ = 0 otherwise. Given

µ = µ∗ disclosed, the allocation is (q1, p1) = (q0, p0) = (1, v∗); while given

µ = 0 disclosed, it is (q1, p1) = (q0, p0) = (1, v(0, 1)).

Case 4.2: w(0, 1) < (1 − f)w(0, 0) In this case, the objective is strictly de-

creasing in λ01 if λ01 <
fw(0,1)

w(0,0)−w(0,1)
and strictly increasing otherwise. Thus, it is

optimal to set λ01 = fw(0,1)
w(0,0)−w(0,1)

. Then we have λ10 = 0 (hence the incentive con-

straint for t = 0 and both types’ participation constraints hold with equality), and

x0(1) = 1. It is then implied that x1(0) = w(1,1)−w(1,0)
w(0,0)−w(0,1)

, τ1 = w(1, 1) + w(0, 1)x1(0)
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and τ0 = w(0, 0) +w(1, 0). The objective becomes f(w(1, 1) +w(0, 1)x1(0)) + (1−

f)(w(0, 0) + w(1, 0)).

This allocation can be achieved by the following non-type-contingent disclosure

policy:

� For both t, the principal discloses µ = µ∗ with probability 1 given θ = 1

and probability w(1,1)−w(1,0)
w(0,0)−w(0,1)

given θ = 0; and he discloses µ = 0 otherwise.

Given µ = µ∗ disclosed, the allocation is (q1, p1) = (q0, p0) = (1, v∗) (for

both types); while given µ = 0 disclosed, it is (q0, p0) = (1, v(0, 0)) and

(q1, p1) = (0, 0).

Summary In sum, among Cases 1,2,3 and 4, the optimal disclosure policy is

type-contingent in Case 1.3 and 3; otherwise it is non-type-contingent.

A.4 Proof of Theorem 3

Proof. For the problem P+, consider its relaxed version where only ICt→t−1 for

t > 1 (i.e., t’s local and downward incentive compatibility) and IR1 (i.e., the lowest

type’s participation constraint) are considered. After the standard calculation, this

relaxed problem becomes a virtual value maximization:

max
x

∑
t

∑
θ

γ(θ, t)x(θ, t)F0(θ)F (t)

s.t.
∑
θ

(
x(θ, t)− x(θ, t′)

)(
v(θ, t)− v(θ, t′)

)
F0(θ) ≥ 0, ∀t, t′,

0 ≤ x(θ, t) ≤ 1.

Ignoring the monotonicity condition, the pointwise maximization implies x(θ, t) =
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1 if γ(θ, v) > 0, while x(θ, t) = 0 if γ(θ, v) < 0. Under the monotone virtual

value assumption, we have
(
x(θ, t)− x(θ, t′)

)(
v(θ, t)− v(θ, t′)

)
≥ 0 for each θ and

t 6= t′, and thus the ignored constraints are automatically satisfied. Furthermore,

this optimal value of the objective can be achieved under full disclosure because

x(θ, t) ∈ {0, 1} for all θ and t.

A.5 Proof of Theorem 4

Proof. The key step is to establish the following lemma:

Lemma 1. Assume that Θ = {0, 1}, T = {1, . . . , N}, v(0, t) is strictly increasing

in t, v(1, t) is strictly decreasing in t, and that there is a concave function f such

that v(1, t) = f(v(0, t)) for all t.

Then, the solution to (P+) satisfies: (i) only local incentive compatibility con-

straints are relevant; (ii) as t changes from 1 to N , x(t) clockwise rotates along

the upper and right boundaries, i.e.,
(
[0, 1]× {1}

)
∪
(
{1} × [0, 1]

)
.

Proof of the lemma. Let λt,t′ be the multiplier for ICt→t′ , λt be the multiplier

for IRt, φt(θ) be the multiplier for x(θ, t) ≤ 1, and ηt(θ) be the multiplier for

x(θ, t) ≥ 0. Let φt =
(
φt(θ)

)
θ∈Θ
∈ R|Θ|, and ηt =

(
ηt(θ)

)
θ∈Θ
∈ R|Θ|. Then, the

dual problem of (P+) is given by

min
λ,φ,η≥0

∑
t∈T

φt · 1

s.t. F (t)w(t) +
∑
t′ 6=t

λt′,t
[
w(t)−w(t′)

]
= φt − ηt, ∀t

F (t)−
∑
t′ 6=t

λt,t′ +
∑
t′ 6=t

λt′,t ≥ 0, ∀t.
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For all t = 1, . . . , N − 2, we have

w(1, t)− w(1, t+ 1)

w(0, t)− w(0, t+ 1)
=
F0(1)

F0(0)
· v(1, t)− v(1, t+ 1)

v(0, t)− v(0, t+ 1)

>
F0(1)

F0(0)
· v(1, t+ 1)− v(1, t+ 2)

v(0, t+ 1)− v(0, t+ 2)
=
w(1, t+ 1)− w(1, t+ 2)

w(0, t+ 1)− w(0, t+ 2)
,

which means the agent’s types are located on a decreasing concave curve if the

horizontal (or vertical) axis denotes w(0, t) (or w(1, t)).

Thus, given each t, for any
(
λt′,t
)
t′ 6=t ≥ 0, the vector

∑
t′ 6=t λt′,t

[
w(t) −w(t′)

]
will never be in the third quadrant. It follows that we always have either φt(0) > 0

or φt(1) > 0 or both. By the complementary slackness condition, we have either

x(0, t) = 1 or x(1, t) = 1 or both.

Pick any pair of local incentive compatible constraints, ICt→t+1 and ICt+1→t.

We have
(
x(t) − x(t + 1)

)
·
(
w(t) − w(t + 1)

)
≥ 0. Then, the solution to (P+)

must be one of the three cases:

(1) x(0, t) ≤ x(0, t+ 1), x(1, t) = x(1, t+ 1) = 1;

(2) x(0, t) = x(0, t+ 1) = 1, x(1, t) ≥ x(1, t+ 1);

(3) x(0, t) < 1, x(1, t) = 1, x(0, t+ 1) = 1, x(1, t+ 1) < 1.

Thus, x(t) clockwise rotates along the upper and right boundaries.

Using the above result, we can show that only local incentive compatibility
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constraints are relevant. This is because for arbitrary t < t′ < t′′, we have

x(t) ·w(t)− τ(t) ≥ x(t′) ·w(t)− τ(t′)

= x(t′) ·w(t′)− τ(t′) + x(t′) ·
[
w(t)−w(t′)

]
≥ x(t′′) ·w(t′)− τ(t′′) + x(t′) ·

[
w(t)−w(t′)

]
= x(t′′) ·w(t)− τ(t′′) +

[
x(t′)− x(t′′)

]
·
[
w(t)−w(t′)

]
≥ x(t′′) ·w(t)− τ(t′′),

where the first (or second) inequality is due to ICt→t′ (or ICt′→t′′), and the third

inequality is because the vector
(
x(t′) − x(t′′)

)
is always in the second quadrant

(or on its boundary).

From Lemma 1, we know there exists some t∗ such that x(t∗) = (1, 1). For

t < t′ < t∗, we have x(0, t) ≤ x(0, t′) and x(1, t) = x(1, t′) = 1. For t > t′ > t∗, we

have x(1, t) ≤ x(1, t′) and x(0, t) = x(0, t′) = 1. Then, it is easy to verify that the

combination of the information disclosure policies and allocations in the statement

achieves the resulted solution in the first step. We omit this part.

References

Anderson, S. P., and R. Renault (2006): “Advertising Content,” The Amer-

ican Economic Review, 96(1), 93–113.

Armstrong, M. (1996): “Multiproduct Nonlinear Pricing,” Econometrica,

64(1), 51–75.

47



Armstrong, M., and J.-C. Rochet (1999): “Multi-dimensional screening:: A

user’s guide,” European Economic Review, 43(4), 959 – 979.

Babaioff, M., R. Kleinberg, and R. Paes Leme (2012): “Optimal Mecha-

nisms for Selling Information,” in Proceedings of the 13th ACM Conference on

Electronic Commerce, EC ’12, p. 92–109, New York, NY, USA. Association for

Computing Machinery.

Bergemann, D., and A. Bonatti (2015): “Selling Cookies,” American Eco-

nomic Journal: Microeconomics, 7(3), 259–94.

Bergemann, D., A. Bonatti, and A. Smolin (2018): “The Design and Price

of Information,” American Economic Review, 108(1), 1–48.

Bergemann, D., and M. Pesendorfer (2007): “Information structures in

optimal auctions,” Journal of economic theory, 137(1), 580–609.

Daskalakis, C., A. Deckelbaum, and C. Tzamos (2013): “Mechanism De-

sign via Optimal Transport,” in Proceedings of the Fourteenth ACM Conference

on Electronic Commerce, EC ’13, p. 269–286, New York, NY, USA. Association

for Computing Machinery.
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