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Abstract

In many mechanism design problems in practice, often allocation exter-

nality exists (e.g., peer effects in student allocation, and post-license com-

petition in oligopoly). Despite the practical importance, mechanism design

with allocation externality has not been much explored in the literature, per-

haps due to the tractability issue of the problem. In this paper, we propose

a simple and tractable model of mechanism design with allocation external-

ity. We characterize the optimal mechanism, which has a very simple form

in the sense that it is identified by only a few parameters. This simplicity of

the optimal mechanism is also useful to obtain comparative statics results.
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1 Introduction

In many mechanism design problems in practice, often allocation externality exists.

For example, in a student-allocation problem to schools (or to classes, groups, etc.),

which studies how to divide a pool of students into different schools, often one of

the important concerns is peer effects. In a license-allocation problem in oligopoly,

studying which firms should be given special licenses to operate in certain markets,

each firm’s willingness-to-pay for a license crucially depends on which other firms

would get licensed and hence be rivals. Another example is an optimal intervention

problem in an adverse selection market, where the market price depends on which

types of sellers are certified.

Despite the practical importance, in the literature, mechanism design with al-

location externality has not been much explored, perhaps due to the tractability

issue of the problem: For example, Jehiel, Moldovanu, and Stacchetti (1996, 1999);

Jehiel and Moldovanu (2001) consider a very general model of externality, where

agent i’s externality on agent j can be different from i’s externality on another

agent k, corresponding to different parameters. This multi-dimensional character-

istics of agents naturally makes the problem complicated, as is well-known in the

multi-dimentional screening literature. Figueroa and Skreta (2009, 2011) consider

one-dimensional type, summarizing this agent’s payoff-type and his externality on

all the other agents (as in this paper). On the other hand, their main interest

is in a general form of type-dependent outside options (including externality as a

special case), again making characterization of the optimal mechanism difficult. In

the optimal taxation literature, several papers consider externalities such as those

due to an occupational choice and its resulting wage changes (e.g., Rothschild and
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Scheuer (2013, 2016)), and price changes in a product market (e.g., Kushnir and

Zubrickas (2019)). Here again, they consider very general environments (such as

multi-dimensional types and multi-dimensional externality channels). It is cer-

tainly important to allow for a general externality structure and study properties

of desirable mechanisms in such general environments, even if fully characteriz-

ing optimal mechanisms are prohibitive. However, as its complement, it is also

important to provide a simpler model which enables us to characterize optimal

mechanisms, conduct comparative statics, and obtain key economic insights more

straightforwardly.

This paper’s goal is to provide a simple and tractable model of mechanism

design with externality. With mild technical conditions, we can fully characterize

the optimal mechanism, and moreover, the optimal mechanism has a very simple

form in the sense that it is identified by only a few parameters. Furthermore,

thanks to this simplicity of the optimal mechanism, some clean comparative statics

results are provided.

As the cost of tractability, the model is admittedly restrictive in several dimen-

sions, and hence, would not cover all possible applications of mechanism design

with externality. Nevertheless, some applications may well be studied in this

model, and for those applications, our approach could be useful.

1.1 Related papers

As discussed above, this paper basically lies in the literature of mechanism de-

sign with allocation externality. The main contribution within this literature is

to propose a tractable model with characterization of optimal mechanisms and
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comparative statics.

The moment-based externality makes this paper also very related to the litera-

ture of information design / Bayesian persuasion. Indeed, our problem of dividing

a set of heterogeneous agents into two groups can be interpreted as a special kind

of information design problem where the principal (“sender”) designs a signaling

device of generating a binary signal (e.g., “good school” signal or “bad school” sig-

nal) about the payoff-relevant state (e.g., “student’s ability”), where the expected

value of a function of the state is payoff-relevant. In the standard approach in this

literature, the sender is not only restricted to a binary signaling structure, and in

this sense, our problem is different from the standard approach. As the other key

difference, our mechanism or “signaling device” must satisfy the agents’ incentive

compatibility, while it is not usually required in this literature (except for some

papers which look at monotone signaling devices: e.g., Mensch (2019) and Arieli,

Babichenko, Smorodinsky, and Yamashita (2021)). Despite those differences, it is

useful to understand our results in relation to the basic insights in this literature.

For example, if the principal’s objective exhibits certain convexity or concavity

property, then as in Kamenica and Gentzkow (2011), maximum “diversification”

or “concentration” of treated agent types would be optimal.

2 Baseline model

In this section, we describe the baseline model. To obtain tractability, the model

has a number of special features.

First, we assume that there exists a continuum of agents (e.g., students or

firms). Each agent is identified by his type θ ∈ [0, 1], and the density of type θ
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in the population is given by f(θ). Let F (θ) =
∫
θ̃≤θ f(θ̃)dθ̃. This f is common

knowledge among the agents, and also known to the mechanism designer (the

“principal”).1

An allocation is denoted by (q, p) ∈ [0, 1] × R, where q is interpreted as a

probability of a treatment, and p as a (monetary or non-monetary) payment. In

the school allocation, the treatment to agent i can mean that this agent is admitted

to a better school, perhaps with a higher tuition or costly effort of passing an exam

(captured by p); in license allocation, the treatment to firm i can mean that this

firm obtains a license to operate in a certain market, possibly with a fee or costly

rent-seeking behavior (captured by p).

The principal commits to a (menu) mechanism given by (q(θ), p(θ))θ∈[0,1]. An

agent reports θ to the principal, and the principal assigns (q(θ), p(θ)).2 It is without

loss to focus on the class of mechanisms where every agent has an incentive to

report his type truthfully.

The second key component of the model is that externality is given in a

“moment-based” manner. More specifically, there exists an increasing function

1The case with aggregate uncertainty (i.e., with unknown f) would be an interesting gener-
alization.

2We implicitly assume that an agent’s allocation only depends on his report, and not on the
other agents’ reports. This assumption may be interpreted as a (quasi-)anonymity assumption
on mechanisms, as follows. A general (direct) mechanism determines an agent’s allocation as a
function of his report and the other agents’ reports. Assume that we only consider a class of
(quasi-)anonymous mechanism in the sense that an agent’s allocation depends on his report and
only anonymously on the other reports, that is, permuting the other reports does not change
this agent’s allocation. Then, because of continuously many agents, these anonymous reports
are fully summarized by f . However, because f is already known to the principal, we can omit
the dependence of the allocation on f without loss of generality.
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χ : [0, 1] → R and we define the externality index x ∈ R by:

x = E[χ(θ)|treated]

=

∫
χ(θ)q(θ)dF∫
q(θ)dF

.

In what follows, without loss of generality, we focus on the case where χ is an

identify function, which implies x = E[θ|treated].3

Agent θ’s payoff is given by:

U(θ, x, q, p) = qu1(θ, x) + (1− q)u0(θ, x)− p,

where (q, p) denotes the assigned allocation and x is the externality index, u1 is

the payoff when he is treated, and u0 is the payoff when not treated. We assume

that U exhibits single-crossing in (θ, q): for each x,

sgn

[
d

dθ
(u1(θ, x)− u0(θ, x))

]

is constant in θ. This implies that one of the extreme types, the highest-θ or lowest-

θ type, is the most willing type for the treatment (and which one is can depend

on x). In what follows, for simplicity, we focus on the case where d
dθ
(u1(θ, x) −

u0(θ, x)) > 0, but the other case can be treated similarly.

As in the standard argument, the agent’s truth-telling condition of a mechanism

(q(θ), p(θ))θ becomes equivalent to monotonicity of q(·) (and the corresponding p(·)

is fully determined by the envelope theorem up to a constant).

3In applications where θ has some natural meaning, it may be more useful to work with χ. For
example, imagine a school allocation problem where the peer-effect index is given by a weighted
sum of the mean and variance of treated students’ abilities.
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The principal’s objective is:

∫
q(θ)v1(θ, x) + (1− q(θ))v0(θ, x)dF.

For example, if the principal cares about the utilitarian (non-monetary) surplus, we

would have vk(θ, x) = uk(θ, x) for k = 0, 1; if the principal cares about the total

monetary transfer from the agents (“revenue”), then we would have v1(θ, x) −

v0(θ, x) as the agent’s virtual valuation.

Finally, we only consider a class of mechanisms such that type-0 agent’s payoff

coincides with some exogenous value u. The result does not depend on the exact

value of u in the sense that, if (q(θ), p(θ))θ is the optimal mechanism with some

u, (q(θ), p(θ) + δ)θ is the optimal mechanism with u− δ.

Therefore, the optimal mechanism design problem is given by:

max
(q(·),p(·))

∫
q(θ)v1(θ, x) + (1− q(θ))v0(θ, x)dF

sub. to q(θ)u1(θ, x) + (1− q(θ))u0(θ, x)− p(θ)

≥ q(θ′)u1(θ, x) + (1− q(θ′))u0(θ, x)− p(θ′), ∀θ, θ′,

q(0)u1(0, x) + (1− q(0))u0(0, x)− p(0) = u,

Q =

∫
q(θ)dF ∈ Q, x =

∫
θq(θ)dF

Q
,

where Q captures a possible restriction of the total size of the treatment. For

example, if we are interested in the unrestricted case, we would set Q = [0, 1]; if we

are interested in the fixed-capacity problem, then we would set Q as a singleton.

Because our main focus is on the role of the externality index in the optimal

mechanism, in what follows, we focus on the case where Q is any fixed singleton
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(i.e., Q = {Q} for some Q ∈ (0, 1)). However, it is possible to extend our analysis

to the cases with more flexible Q.

At this point, it may be instructive to present a few instances of potential

treatment profile q(·).

θ
1

1

0
q = 1

q = 0
0

1

1

0

1

0

The first figure exhibits “full mixing”, because the treatment decision does not

depend on θ, and the second figure exhibits “full separation” in the sense that

the treatment decision differs completely before and after a cutoff value of θ. The

third figure exhibits both separation and mixing in a particular way, and the last

one exhibits more smooth boundary.

As these figures suggest, the principal’s problem is to divide a unit-square into

two regions of fixed measures (Q and 1 − Q), appreciating the agents’ incentive

compatibility, and importantly, the fact that x changes endogenously with q(·).

Despite this infinite-dimensional nature of the problem and endogenous exter-

nality, the optimal mechanism has a simple form, as explained in the following

sections.

3 Examples

Here, we describe three applications of the model.
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3.1 School allocation

The following is based on Arnott and Rowse (1987). There exist a continuum of

students, each with ability θ, and two schools (0 and 1) of equal capacity 1
2
(= Q).

Let q denote the probability of being admitted to school 1, and p
q
denote the

payment in case of admission (which might be tuition or effort cost of passing an

exam). A peer effect index in school s = 0, 1 is given by xs, where

x = x1 =

∫
θq(θ)dF

1/2
,

x0 =

∫
θ(1− q(θ))dF

1/2
= 2E[θ]− x.

Assume that student θ’s payoff in school s is give by us = βθαxs + (1 − β)
√
xs

for some α ∈ (0, 1], a convex combination (with some exogenous weight β) of a

product θxs and a concave function of the peer effect index
√
xs. The principal’s

objective is pure welfare maximization:

vs(θ, x) = βθαxs + (1− β)
√
xs.

Intuitively, the first term exhibits supermodularity in type and the peer effect

index, which makes the principal prefer more separation. Indeed, it is well-known

that, with β = 1, full separation is optimal (i.e., q(θ) = 1{θ > θ∗} where F (θ∗) =

1
2
). On the other hand, the second term is concave in the peer effect index, which

makes the principal prefer more mixing. Indeed, it is easy to show that, with

β = 0, full mixing is optimal (i.e., q(θ) = 1
2
for all θ).

A question is when β is more intermediate. It is perhaps easy to show that

neither full separation nor full mixing is optimal, but what is optimal is more
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challenging. Would it look like the third figure at the end of the previous section,

where high-θ types are surely admitted and low-θ types are admitted only with

some constant probability? Or would it look like the fourth figure where the

boundary is smooth? Or different from them?

As a related point, if β gradually increases, it seems quite natural to expect

that the optimal mechanism exhibits “more separation”. However, with two mech-

anisms at hand for low β and high β, how to judge whether one exhibits more

separation than the other?

Theorem 1 in the next section shows that the optimal mechanism belongs to a

simple class identified by only a few parameters (and in some cases, it has a form

as in the third figure). This simple structure allows clean comparative statics:

with higher β, in a quite natural sense, the optimal mechanism exhibits more

separation. For example, in the case where the optimal mechanism has a form as

in the third figure, with higher β, the optimal mechanism exhibits higher cutoff

type below which the agent is never admitted (and accordingly, the probability of

admission above the cutoff decreases).

3.2 License allocation

The following is based on Melitz (2003). There exist a representative consumer

with a CES utility function with elasticity of substitution ρ ∈ (0, 1) across a

variety of goods, and continuum of firms, each with different marginal production

cost 1
ψ
, where ψ ∈ [0, 1] with density f0(ψ). Let θ = ψ

ρ
1−ρ , and in what follows, we

interpret this θ (which is strictly increasing in ψ) as the firm’s cost parameter. The

density of θ is f(θ) where f(θ) = f0(θ
1−ρ
ρ )1−ρ

ρ
θ

1−2ρ
ρ . The firms play the following
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game: In the first period, each firm, without knowing θ, must decide whether to

pay an (exogenously given) cost ϕ to be informed of θ or not. Assume measure M

firms pay ϕ to be informed of their types.4 After learning, in the second period,

each firm reports θ to the principal to get licensed with prob q(θ) by paying

p(θ). We interpret p(θ)
q(θ)

as a license fee (in case of getting licensed), a monetary

transfer to the principal. Finally, those who get licensed operate in a monopolistic

competition market. This last part involves a standard but additional argument

about the consumer’s purchase decision and the firms’ production decisions, and

hence at this moment, we skip it and only provide a “solved” or “reduced-form”

description.

More specifically, firm θ’s payoff is 0 if he does not learn his type θ, −ϕ if he

learns θ but does not get licensed, and

C

Mx
θq(θ)− p(θ)− ϕ

if he learns θ and gets licensed, where C is a constant and x =
∫
θq(θ)dF∫
q(θ)dF

. Naturally,

the firm’s payoff increases with its competitiveness θ, but notice that the payoff

decreases with Mx: with higher M , the market is more congested, and hence each

firm’s payoff becomes smaller; and with higher x, each firm competes with more

cost-efficient firms, again implying a lower payoff.

The principal’s objective is a weighted sum of the consumers’ surplus, a mono-

tone transformation of Mx, and the fee revenue M
∫
p(θ)dF . The producers’

surplus is zero by free entry, and hence does not appear in the principal’s objec-

tive. However, if ϕ is interpreted as inefficient value burning, one may want to

4In the equilibrium, M is determined so that the firms’ ex ante expected payoff is zero.

11



make the principal’s surplus decreasing with respect to Mϕ. The principal’s pay-

off is therefore Mx + γM
∫
p(θ)dF − δMϕ, where γ, δ ≥ 0 are exogenously given

weights. In fact, a further examination of Melitz’s model shows that

Mx =
β(1− ρ)

ϕ

∫
1− F (θ)

f(θ)
q(θ)dF,

where β > 0 is a constant, and hence, one can further rewrite the principal’s payoff

so that his ex ante objective becomes proportional to the following (and hence fits

our framework):

v1(θ, x)− v0(θ, x) =

∫ (
β

ϕ

1− F (θ)

f(θ)
+
γ

x

(
θ − 1− F (θ)

f(θ)

)
− δϕ

x

)
q(θ)dF.

The first term corresponds to the consumer’s surplus. The second term is

a standard “virtual value” expression for the principal’s revenue, except the co-

efficient 1
x
in front. The third term corresponds to the sunk cost of learning.

Intuitively, the second (revenue) part makes the principal prefer more separation,

because given any size of the licenses, more separation enables the principal to

charge a higher license fee. However, notice that the marginal return of higher

license fee would be rapidly decreasing because of the coefficient 1
x
in front of

this revenue expression: if the rival firms become “too competitive”, each firm’s

willingness-to-pay decreases. A similar effect exists for the third (sunk cost) part.

More separation implies higher x, which decreases M , implying smaller total sunk

cost. However, again, its marginal effect is decreasing. Those two effects balance

with the negative effect of inviting less firms with higher x.

As in the first example, unless the parameters are extreme, the optimal mech-
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anism exhibits both separation and mixing. A question is how the optimal mech-

anism looks like, and how the changes in the parameters change this balance of

separation and mixing.

3.3 Intervention in adverse selection market

The following is partly motivated by Tirole (2012) and Philippon and Skreta

(2012). Consider a bilateral-trade setting in which a mass of risk-neutral sell-

ers, each endowed with a single unit of an indivisible good, engages in exchanges

with a larger mass of risk-neutral buyers.5 The quality of the good, θ ∼ F , is

private information of the seller. The buyers’ valuation for a good of quality θ is

given by θ; while the (opportunity) cost for the seller is c(θ), strictly increasing and

convex function of θ. The trade surplus θ− c(θ) is positive for all θ and increasing

in θ. However, the market suffers from severe adverse selection in the sense that

there is no mutually acceptable trading price π except for π = 0:

E[θ|π − c(θ) ≥ 0]− π ≥ 0 ⇒ π = 0.

In order to realize some surplus-generating trade, the government (principal)

intervenes the market through certification with subsidization (e.g., buybacks of

legacy assets by the government, in the setting of Tirole (2012)). Let q denote the

probability of being certified, and p denote the expected transfer from the seller

(agent) to the government (hence, negative p means subsidy from the government

5Hence, the trading price in the market is given by the buyer’s break-even condition.
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to the seller). The externality parameter is the resulted market price:

x =

∫ 1

0
θq(θ)dθ∫ 1

0
q(θ)dθ

.

The seller with θ earns payoff q(θ)(x− c(θ)) + (1− q(θ))u0(θ, x)− p(θ), where

x− c(θ) is his ex post pre-subsidy payoff if certified, and u0(θ, x) otherwise. There

may be several possible specifications of u0. The simplest one (and the one we

adopt here) is u0 ≡ 0, corresponding to the case where non-certified sellers cannot

trade. An interesting extension may be when even non-certified sellers can trade

in the market, possibly with some friction relative to the certified case:

u0(θ, x) = ϕ(x∗ − c(θ)),

where ϕ is some function representing the friction and x∗ denotes the market price

for non-certified sellers:

x∗ =

∫ 1

0
θ(1− q(θ))dθ∫ 1

0
(1− q(θ))dθ

=
1

1−Q

(
1

2
−Qx

)

for Q =
∫ 1

0
q(θ)dθ. The case we consider here can be interpreted as the extreme

case with ϕ ≡ 0.

The government’s problem is to optimally allocate certificates among the sell-

ers, taking into account the total trade surplus and the total subsidy, both depen-

dent on the endogenous market price x. More specifically, the government’s payoff
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satisfies:

v1(θ)− v0(θ) = ωq(θ)

(
x− c(θ)− c′(θ)

F (θ)

f(θ)

)
+ (1− ω)q(θ)(θ − c(θ)).

Given any fixed size of the certificates Q =
∫ 1

0
q(θ)dθ, it is natural to guess that

more separation would be preferable for the government who puts more weight on

the subsidy, by focusing on less costly seller types; conversely, more mixing would

be preferable for the surplus-oriented government, because the higher seller types

induce higher trade surplus. A non-trivial question is how the optimal balance is

achieved in the intermediate case, and its comparative statics.

4 Optimal mechanism

This section characterizes the optimal mechanism. A potential challenge of this

problem is the following circularity. Imagine some x is exogenously fixed. Then,

the standard mechanism design technique is applicable, enabling us to obtain

the optimal mechanism in a well-known manner. With x as the endogenously-

determined externality index, however, a change in a mechanism can change the

externality index, changing the optimal mechanism given the new externality in-

dex, changing the optimal mechanism, and so on.

To circumvent this potential circularity, in what follows, we solve the problem

in the following steps. To begin with, for each (Q, x) ∈ Q×R, we say that (Q, x)
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is feasible if there exists non-decreasing q(·) with which:

Q =

∫
q(θ)dF

Qx =

∫
θq(θ)dF.

Fix any feasible (Q, x). It is possible that, in general, there are multiple non-

decreasing q(·) which induces (Q, x). The first step of the solution is to maximize

the principal’s ex ante payoff among all q(·) that induces this (Q, x). Let V ∗(Q, x)

denote the maximized objective in this first step. Then, in the second step, we

maximize V ∗(Q, x) among all feasible (Q, x). The advantage of this procedure is

two-fold. First, although the first-step problem is infinite-dimensional, the problem

is relatively standard: given (Q, x) fixed, the problem is close to the standard mech-

anism design problem without externality. It is still not fully standard because of

the “auxiliary feasibility constraint” that q(·) induces the prefixed (Q, x). How-

ever, thanks to the moment-based form of the externality index, it can tractably

be accommodated. Second, once the first-step problem is solved, the remaining

problem is just a finite-dimensional problem. In particular, in case Q is singleton,

it is just a one-variable problem.

The solution to the first-step problem for any feasible (Q, x) is given as follows

(see also the figure below). Given any (Q, x), let Q(Q, x) denote the set of all q
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such that, for some ∃0 ≤ y1 ≤ y2 ≤ y3 ≤ 1, ∃0 < w1 < w2 < 1, we have:

q(θ) =



0 if θ < y1

w1 if θ ∈ [y1, y2)

w2 if θ ∈ [y2, y3)

1 if θ ≥ y3,

Q = w1(F (y2)− F (y1)) + w2(F (y3)− F (y2)) + 1− F (y3),

Qx = w1

∫ y2

y1

θdF + w2

∫ y3

y2

θdF +

∫ 1

y3

θdF.

θ
1

1

0 y1 y2 y3

w1

w2

q = 1

q = 0

Theorem 1. Given any (Q, x), an optimal q is in Q(Q, x).

The solution simply comprises the four regions. If θ < y1, then the agent is

never treated; if θ ∈ [y1, y2), the agent is treated with some fixed probability w1;

if θ ∈ [y2, y3), the agent is treated with a higher fixed probability w2(> w1); and if

θ ≥ y3, then the agent is surely treated. Of course, y, w satisfy the two feasibility

conditions in the first-step problem, corresponding to the fixed total size of the

treatment and the fixed externality index. In this sense, out of five parameters,

only three degrees of freedom exist.

The proof is relegated to the appendix.
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4.1 Simpler cases

Even simpler mechanisms are optimal with additional conditions on v. Let V cav−vex

denote the set of all v with a strictly increasing second derivative; V vex−cav denote

the set of all v with a strictly decreasing second derivative; V vex denote the set of

all v with a strictly positive second derivative; and let V cav denote the set of all v

with a strictly negative second derivative.

Proposition 1. 1. If v ∈ V cav−vex, then an optimal mechanism is in Q(Q, x)

identified by (y1, y2, y3;w1, w2) with y2 ∈ {y1, y3}.

2. If v ∈ V vex−cav, then an optimal mechanism is in Q(Q, x) identified by

(y1, y2, y3;w1, w2) with y1 ∈ {0, y2} and y3 ∈ {y2, 1}.

3. If v ∈ V vex then an optimal mechanism is inQ(Q, x) identified by (y1, y2, y3;w1, w2)

with either y1 = y2 = 0 or y1 = y2 = y3.

4. If v ∈ V cav then an optimal mechanism is inQ(Q, x) identified by (y1, y2, y3;w1, w2)

with either y2 = y3 = 1 or y1 = y2 = y3.

The first case with v ∈ V cav−vex corresponds to the first figure below (and

as special cases, the last two figures are also possible).6 The second case with

v ∈ V vex−cav corresponds to the second figure and the last two figures. The third

case with v ∈ V vex corresponds to the third figure. The last case with v ∈ V cav

corresponds to the last figure.

θ
1

1

0
1

0

6The full-separation and full-mixing cases are also possible as special cases.
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Figure 1: Optimal allocation function for β = 0.28 and different values of α.

Example 1. We revisit the school allocation example introduced in Section 3.

Recall that vs(θ, x) = βθαxs + (1− β)
√
xs for each s.

Figure 1 plot the optimal q for (α, β) = (1.1, 0.28) and for (α, β) = (0.9, 0.28).

The first case with α = 1.1 is covered in Proposition 1.3, where the optimal policy

exhibits sure treatment of high-enough θ; while the second case with α = 0.9 is

covered in Proposition 1.4, where the optimal policy exhibits sure non-treatment

of low-enough θ. As suggested in this example, the optimal policy may change

drastically even if model parameters change only slightly.
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5 Comparative Statics

5.1 Separation or Mixing

Here, we investigate the conditions under which the optimal mechanism exhibits

more separation (and hence higher x) or more mixing (and hence lower x).

We say that q exhibits more separation (less mixing) than q′ if the distribution

of treated types given q (with density q(θ)f(θ)
Q

) first-order stochastically dominates

that given q′ (with density q′(θ)f(θ)
Q

). Intuitively, q treats more of higher types than

q′ does. Accordingly, given any F , q implies higher externality index than q′ does.

In the following, let q denote the optimal mechanism given v1, v0; and q
′ denote

the optimal mechanism given v′1, v
′
0. By Theorem 1, both q and q′ are (at-most-

)four-step functions:

q(θ) =



0 if θ < y1

w1 if θ ∈ (y1, y2)

w2 if θ ∈ (y2, y3)

1 if θ > y3.

, q′(θ) =



0 if θ < y′1

w′
1 if θ ∈ (y′1, y

′
2)

w′
2 if θ ∈ (y′2, y

′
3)

1 if θ > y′3.

We establish the following comparative statics result. Let v(θ, x) = v1(θ, x)−

v0(θ, x), and similarly, v′(θ, x) = v′1(θ, x)− v′0(θ, x).

Proposition 2. Assume that, for all θ, x, ∂
∂θ
(v′(θ, x)−v(θ, x)) ≥ 0 and ∂2

∂x∂θ
(v′(θ, x)−

v(θ, x)) ≥ 0. Then, q does not exhibits more separation than q′.

Although the above result establishes a condition with which q does not exhibit

more separation than q′, one might expect a stronger claim that “q′ exhibits more

separation than q” (under the stated condition). However, that claim is not gener-
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ally true. For example, recall Example 1, where the optimal policies given different

values of α cannot be ordered according to the first-order stochastic dominance,

even though the change in α satisfies the conditions in Proposition 2. Intuitively,

the change from v to v′ does not only make the principal prefer more separation (in

the sense of the conditions in Proposition 2), but also make him prefer more diver-

sity of treated types, or put it differently, prefer more concentration of non-treated

types. Thus, the stronger comparative statics result requires more assumptions on

the environment.

Proposition 3. Assume that either v, v′ ∈ V vex or v, v′ ∈ V cav. Assume also

∂2

∂x∂θ
(v′(θ, x) − v(θ, x)) ≥ 0 and ∂

∂θ
(v′(θ, x) − v(θ, x)) ≥ 0 for all θ, x. Then, the

optimal mechanism given v′ exhibits more separation than that given v.

Example 2. We revisit the school allocation example introduced in Section 3.

Recall that vs(θ, x) = βθαxs + (1− β)
√
xs for each s. Thus, letting x = x1 (which

implies x0 = 1− x) with x ∈
[
1
2
, 3
4

]
without loss of generality, we have:

v(θ, x) = v1(θ, x)− v0(θ, 1− x)

= βθα(2x− 1) + (1− β)(
√
x−

√
1− x).

Thus, for α, β ∈ (0, 1),

∂v(θ, x)

∂θ
= αθα−1β(2x− 1) > 0

∂2v(θ, x)

∂θ2
= −α(1− α)θα−2β(2x− 1) < 0

for x ∈
(
1
2
, 3
4

)
, that is, v ∈ V cav. For example, the optimal policy given (α, β) =

(0.9, 0.28) and given (α, β) = (0.9, 0.285) are plotted as follows:
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Figure 2: Optimal allocation functions (left) and its FOSD relationship (right)
with α = 0.9 and different values of β.

As in the figure, the distribution of the treated types in the optimal q with

(α, β) = (0.9, 0.285) first-order stochastically dominates that with (α, β) = (0.9, 0.28).

5.2 Diversity or Concentration

Two policies may differ not only in terms of separation/mixing, but also in other

dimensions. For example, as illustrated in the previous example, the principal may

prefer to have more or less variety of treated/non-treated types.

To obtain cleaner comparative statics results regarding the variety of treated/non-

treated types, in the following, we focus on the first-step problem of finding the

optimal mechanism given (Q, x).

Intuitively, more diversity of treated types keeping (Q, x) unchanged corre-

sponds to mean-preserving spread of treated types. We say that q exhibits more

diversity (less concentration) of treated types than q′ if the distribution of treated

types given q (with density q(θ)f(θ)
Q

) is second-order stochastically dominated by
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that given q′ (with density q′(θ)f(θ)
Q

).

Let q denote the optimal mechanism given v1, v0; and q′ denote the optimal

mechanism given v′1, v
′
0, as follows:

q(θ) =



0 if θ < y1

w1 if θ ∈ (y1, y2)

w2 if θ ∈ (y2, y3)

1 if θ > y3.

, q′(θ) =



0 if θ < y′1

w′
1 if θ ∈ (y′1, y

′
2)

w′
2 if θ ∈ (y′2, y

′
3)

1 if θ > y′3.

Let v(θ, x) = v1(θ, x)− v0(θ, x), and similarly, v′(θ, x) = v′1(θ, x)− v′0(θ, x).

Proposition 4. Assume that, for all θ, x, ∂2

∂θ2
(v′(θ, x)− v(θ, x)) ≥ 0. Then, in the

problem with any fixed (Q, x), q does not exhibit more diversity of treated types

than q′.

As in the previous comparative statics result, one cannot expect that the opti-

mal mechanism given v′ exhibits more concentration than that given v′. However,

such a stronger claim is possible with additional assumptions on the environment.

Proposition 5. Assume that either v, v′ ∈ V cav−vex or v, v′ ∈ V vex−cav. Assume

also that ∂2

∂θ2
(v′(θ, x) − v(θ, x)) ≥ 0 for all θ, x. Then, in the problem with any

fixed (Q, x), the optimal mechanism given v′ exhibits more concentration of treated

types than the optimal mechanism given v.

Example 3. We revisit the license allocation example introduced in Section 3.

Recall the principal’s objective:

v(θ, x) =
β

ϕ

1− F (θ)

f(θ)
+
γ

x

(
θ − 1− F (θ)

f(θ)

)
− δϕ

x
.
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Let H(θ) = 1−F (θ)
f(θ)

denote the inverse hazard rate. Notice that

∂2

∂θ2
v(θ, x) = H ′′(θ)

(
β

ϕ
− γ

x

)
,

and in this sense, the curvature of the inverse hazard rate is crucial for the curvature

of v. We assume that

F (θ) = θ2

so that the inverse hazard rate is convex.

In order to illustrate the comparative statics regarding diversification and con-

centration, let us fix Q = 0.5 and x = 0.75, and we only consider policies which

achieve this (Q, x) pair (and hence the “optimal” policy below refers to the best

one among those attaining this pair).

Let two objectives ṽ and v be such that:

ṽ(θ, x)− v(θ, x) =

(
β̃

ϕ̃
− β

ϕ

)
H(θ) +

(γ̃ − γ)

x
(θ −H(θ))−

(
δ̃ϕ̃− δϕ

)
x

,

where we assume (ϕ̃, γ̃, δ̃) = (ϕ, γ, δ) = (1, 1, 1), but β̃ = 5 ̸= 1 = β. Then we

have:

∂2

∂θ2
[ṽ(θ, x)− v(θ, x)] = H ′′(θ)

(
β̃ − β

)
.

The optimal policy given β = 1 exhibits maximal concentration, while it ex-

hibits maximal diversity given β̃ = 5 (the left panel of Figure 3). Indeed, the

distributions of treated types are ordered according to second-order stochastic

dominance (the right panel of Figure 3).
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Figure 3: Optimal allocation rules (left) and their SOSD relationship (right) for
fixed externality index (x = 0.75) given β = 1 and β′ = 5.

Intuitively, a more consumer welfare-oriented principal (i.e., with higher β)

favors more diversity of firms to congest the market and thus transfer surplus

from the monopolistic firms to the consumers, whilst a principal with lower β

concentrates its license allocation to firms with high virtual values, maximizing

separation of types (given the capacity Q and externality x) and thus revenue

obtained by means of higher fees.

6 Conclusion

This paper proposes a tractable model of mechanism design with allocation ex-

ternality. The key simplifying assumptions include a large number of agents and

moment-based allocation externality. We characterize the optimal mechanism,

which has a very simple form in the sense that it is identified by only a few param-

eters. This simplicity of the optimal mechanism is also useful to obtain compara-
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tive statics results, in terms of separation/mixing (based on a first-order stochastic

dominance idea) and concentration/diversity of optimal treatment groups (based

on a second-order stochastic dominance idea).

Admittedly, the model is restrictive in many respects, as the cost of tractability.

Future researches seeking less restrictive but still useful and insightful models

would be important.
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A Omitted proofs

A.1 Proof of Theorem 1

Fix any (Q, x). Let q∗ be optimal given v.

Lemma 1. There exists a sequence of non-decreasing, finite-step functions {qk}∞k=1,

such that (i) each qk achieves the same (Q, x), and (ii) qk converges uniformly to

q∗.

Proof. For each k, divide [0, 1] into (connected) subsets of the form Ii = [ i−1
2k
, i
2k
)

for i = 1, . . . , 2k − 1 and I2k = [2
k−1
2k

, 1]. Let Θi = {θ|q∗(θ) ∈ Ii}.

Define q
k
as follows. For each i and θ ∈ Θi, let qk(θ) = q∗(θ) if Θi is singleton;

otherwise:

q
k
(θ) =

∫
θ∈Θi

q∗(θ)dF∫
θ∈Θi

dF
.

Because q
k
(θ) ∈ [inf{q∗(θ)|θ ∈ Θi}, sup{q∗(θ)|θ ∈ Θi}] for θ ∈ Θi, this q

k
is

non-decreasing. It is also a finite-step function. It also satisfies:

∫ 1

0

q
k
(θ)dF = Q.

However, in general, we have

∫ 1

0

θq
k
(θ)dF ≤ Qx,

because the distribution of treated types given q∗ (whose density is q∗(θ)f(θ)
Q

) first-

order stochastically dominates that of q
k
(whose density is

q
k
(θ)f(θ)

Q
).
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Next, define qk as follows. For each i and θ ∈ Θi, let qk(θ) = q∗(θ) if Θi is

singleton; otherwise, for some θ∗i ∈ Θ∗
i :

qk(θ) =

 inf{q∗(θ)|θ ∈ Θi} if θ ≤ θ∗i

sup{q∗(θ)|θ ∈ Θi} if θ > θ∗i

This qk is a non-decreasing, finite-step function, which satisfies:

∫ 1

0

q
k
(θ)dF = Q∫ 1

0

θqk(θ)dF ≥ Qx,

because the distribution of treated types given q∗ is first-order stochastically dom-

inated by that of qk. Therefore, an appropriate convex combination of q
k
and

qk can be used as qk, which itself is a non-decreasing, finite-step function, and

satisfies:

∫ 1

0

qk(θ)dF = Q∫ 1

0

θqk(θ)dF = Qx.

Its uniform convergence to q∗ is immediate from the construction.

Thus, we have limk

∫ 1

0
v(θ, x)(q∗(θ)− qk(θ))dF = 0.

Next, we show that, for each k, there exists qk ∈ Q(Q, x) such that
∫ 1

0
v(θ, x)(qk(θ)−

qk(θ))dF ≥ 0. This implies that limk

∫ 1

0
v(θ, x)(q∗(θ)− qk(θ))dF = 0.

Lemma 2. Within the class of finite-step function q that achieves (Q, x), an

optimal policy is in Q(Q, x).
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Proof. Take any feasible and finite-step q that achieves (Q, x) but that is not in

Q(Q, x). Then, there exist intervals Θk ⊆ [0, 1] for k = 1, 2, 3 and 0 < w1 < w2 <

w3 < 1 such that:

q(θ) = wk iff θ ∈ Θk,

for each k = 1, 2, 3.

Consider another finite-step q̃ defined as follows: for some ε1, ε2, ε3 > 0,

q̃(θ) = w1 + ε1 iff θ ∈ Θ1

q̃(θ) = w2 − ε2 iff θ ∈ Θ2

q̃(θ) = w3 + ε3 iff θ ∈ Θ3,

and q̃(θ) = q(θ) otherwise, where

ε1

∫
θ∈Θ1

dF + ε2

∫
θ∈Θ2

dF + ε3

∫
θ∈Θ3

dF = 0

ε1

∫
θ∈Θ1

θdF + ε2

∫
θ∈Θ2

θdF + ε3

∫
θ∈Θ3

θdF = 0.

This q̃ is non-decreasing if ε1, ε2, ε3 are sufficiently small, and achieves (Q, x) by

construction. The objective increases by:

ε1

∫
θ∈Θ1

v(θ, x)dF + ε2

∫
θ∈Θ2

v(θ, x)dF + ε3

∫
θ∈Θ3

v(θ, x)dF,

which must be non-positive because q is optimal. Applying the same logic but
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with ε1, ε2, ε3 < 0 implies that it must be non-negative too. Therefore:

ε1

∫
θ∈Θ1

v(θ, x)dF + ε2

∫
θ∈Θ2

v(θ, x)dF + ε3

∫
θ∈Θ3

v(θ, x)dF = 0.

However, then, we can take ε so that the number of steps in q̃ is that in q less

one. If q̃ ∈ Q(Q, x), then we complete the proof. If not, then we can apply the

same procedure as here in order to obtain ˜̃q whose number of steps is that in q less

two. Because q has finitely many steps, this procedure leads to an optimal policy

in Q(Q, x).

Lemma 3. There exists q∗ ∈ Q(Q, x) such that limk

∫ 1

0
v(θ, x)(qk(θ)−q∗(θ))dF =

0.

This lemma implies
∫ 1

0
v(θ, x)(q∗(θ) − q∗(θ))dF = 0, and therefore, q∗ is an

optimal mechanism.

Proof. First, given that each q ∈ Q(Q, x) is identified by a finite-dimensional

vector (y, w), define a metric for Q(Q, x) as a Euclidean metric for (y, w). Note

that the principal’s expected payoff is continuous with respect to this metric.

Consider a slightly larger space than Q(Q, x), denoted by Q(Q, x), defined as
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the set of all q such that, for some 0 ≤ y1 ≤ y2 ≤ y3 ≤ 1 and 0 ≤ w1 ≤ w2 ≤ 1:

q(θ) =



0 if θ < y1

w1 if θ ∈ [y1, y2)

w2 if θ ∈ [y2, y3)

1 if θ ≥ y3,

Q = w1(F (y2)− F (y1)) + w2(F (y3)− F (y2)) + 1− F (y3),

Qx = w1

∫ y2

y1

θdF + w2

∫ y3

y2

θdF +

∫ 1

y3

θdF.

Notice the difference: 0 ≤ w1 ≤ w2 ≤ 1 for the definition of Q(Q, x), and 0 <

w1 < w2 < 1 for that of Q(Q, x). With these inequality constraints, Q(Q, x) is

compact.

Consider the sequence {qk}k. Because Q(Q, x) ⊆ Q(Q, x) and Q(Q, x) is

compact, qk has a limit point q∗ ∈ Q(Q, x). By the continuity of the principal’s

objective with respect to the Euclidean metric for (y, w), we have:

lim
k

∫ 1

0

v(θ, x)(qk(θ)− q∗(θ))dF = 0.

If q∗ ∈ Q(Q, x), then we are done, so suppose not. For example, suppose that

q∗ is identified by (y, w) with 0 = w1 < w2 < 1 (the other cases can be treated

similarly, and hence omitted). As a mechanism, this is essentially equivalent to

another q′ ∈ Q(Q, x) identified by (y′, w′) where y′1 = y′2 = y2, y
′
3 = y3, w

′
1 ∈

(0, w2), and w
′
2 = w2. In particular, we have:

∫ 1

0

v(θ, x)(q′(θ)− q∗(θ))dF = 0.
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Thus, we complete the proof by setting q∗ = q′.

A.2 Proof of Proposition 1.1

Let θ∗ be such that v′′(θ) < 0 if θ < θ∗, and v′′(θ) > 0 if θ > θ∗.

Suppose contrarily that an optimal mechanism satisfies y1 < y2 < y3. Consider

an alternative mechanism in Q(Q, x) identified by (y1+ ε1, y2+ ε2, y3;w1+ δ1, w2).

We choose ε1, ε2, δ1 > 0 so that the distribution of treated types in the optimal

mechanism is a mean-preserving spread of that in the alternative mechanism:

−w1

∫ y1+ε1

y1

dF − (w2 − w1 − δ1)

∫ y2+ε2

y2

dF + δ1

∫ y2

y1+ε1

dF = 0,

−w1

∫ y1+ε1

y1

θdF − (w2 − w1 − δ1)

∫ y2+ε2

y2

θdF + δ1

∫ y2

y1+ε1

θdF = 0.

By optimality, we must have θ∗ < y2: Suppose contrarily that θ∗ ≥ y2. Then

the principal’s expected payoff given the alternative mechanism is higher than that

given the optimal mechanism by:

∆ = −w1

∫ y1+ε1

y1

v(θ, x)dF − (w2 − w1 − δ1)

∫ y2+ε2

y2

v(θ, x)dF + δ1

∫ y2

y1+ε1

v(θ, x)dF.

Letting γ = v(y2+ε2)−v(y1)
y2+ε2−y1 , we have:

∫ y1+ε1

y1

v(θ, x)dF =

∫ y1+ε1

y1

v(y1) + (θ − y1)γ + o(ε1)dF,∫ y2+ε2

y2

v(θ, x)dF =

∫ y2+ε2

y2

v(y1) + (θ − y1)γ + o(ε2)dF,∫ y2

y1+ε1

v(θ, x)dF =

∫ y2

y1+ε1

v(y1) + (θ − y1)γ +HdF,
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where H > 0 can be taken independently of ε1, ε2, δ1 as long as they are small

enough, because of concavity of v on this region. Therefore,

∆ = −w1

∫ y1+ε1

y1

(o(ε1)−H)dF − (w2 − w1 − δ1)

∫ y2+ε2

y2

(o(ε2)−H)dF

> 0,

for sufficiently small ε1, ε2, δ1.

Similarly, consider an alternative mechanism in Q(Q, x) identified by (y1, y2 −

ε2, y3 − ε3;w1, w2 − δ2) with ε2, ε3, δ2 > 0. By the same logic above, we must have

θ∗ > y2. This is a contradiction.

A.3 Proof of Proposition 1.2

Let θ∗ be such that v′′(θ) > 0 if θ < θ∗, and v′′(θ) < 0 if θ > θ∗.

Suppose contrarily that an optimal mechanism q satisfies y2 < y3 < 1. The

other case with 0 < y1 < y2 is similar, and hence is omitted.

If y2 = 0, then q is equivalent to another mechanism in Q(Q, x) identified by

(y′, w′) with y′1 = 0 and y′2 = y′3 = y3 and w′
1 = w2. This alternative mechanism

satisfies the conditions in the statement. Thus, in what follows, we consider the

case with y2 ̸= 0.

First, consider an alternative mechanism q′ such that, for small ε, δ1, δ2 > 0,

we have q′(θ) = w1 + δ1 for θ < y2 + ε; q′(θ) = w2 + δ2 for θ ∈ (y2 + ε, y3); and

q′(θ) = q(θ) otherwise. We choose ε, δ1, δ2 so that the distribution of treated types

in the alternative mechanism is a mean-preserving spread of that in the optimal
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mechanism:

δ1

∫ y2+ε

y1

dF − δ2

∫ y3

y2

dF + (w2 − δ − 2− w1)

∫ y2+ε

y2

dF = 0,

δ1

∫ y2+ε

y1

θdF − δ2

∫ y3

y2

θdF + (w2 − δ − 2− w1)

∫ y2+ε

y2

θdF = 0.

Consider first the case with v(y3, x) ≥ v(y2, x)+ v
′(y2, x)(y3−y2). This implies

θ∗ > y2, and moreover, v(θ) > v(y2)+v
′(y2)(θ−y2) for θ ∈ (y2, y3). Therefore, the

principal’s expected payoff given the alternative mechanism is higher than that

given the optimal mechanism by:

∆ = δ1

∫ y2+ε

y1

v(θ, x)dF − δ2

∫ y3

y2

v(θ, x)dF + (w2 − δ − 2− w1)

∫ y2+ε

y2

v(θ, x)dF

> δ1

∫ y2+ε

y1

v(θ, x)dF − δ2

∫ y3

y2

v(y2) + v′(y2)(θ − y2)dF

+(w2 − δ − 2− w1)

∫ y2+ε

y2

v(θ, x)dF.

Let ṽ(θ) = v(θ, x) for θ ∈ (y1, y2] and ṽ(θ) = v(y2) + v′(y2)y3 − y2(θ − y2) for

θ ∈ (y2, y3). Note that ṽ is convex on (y1, y3). Thus, we have:

∆ = δ1

∫ y2+ε

y1

ṽ(θ)dF − δ2

∫ y3

y2

ṽ(θ)dF + (w2 − δ − 2− w1)

∫ y2+ε

y2

ṽ(θ)dF

> 0,

where the inequality is because of convexity of ṽ. This contradicts that q is optimal.

Thus, we must have the other case with v(y3, x) < v(y2, x) + v′(y2, x)(y3 − y2).
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∆ = δ1

∫ y2+ε

y1

v(θ, x)dF − δ2

∫ y3

y2

v(θ, x)dF + (w2 − δ − 2− w1)

∫ y2+ε

y2

v(θ, x)dF

> δ1

∫ y2+ε

y1

v(θ, x)dF − δ2

∫ y3

y2

v(y2) +
v(y3)− v(y2)

y3 − y2
(θ − y2)dF

+(w2 − δ − 2− w1)

∫ y2+ε

y2

v(θ, x)dF.

Let ṽ(θ) = v(θ, x) for θ ∈ (y1, y2] and ṽ(θ) = v(y2) +
v(y3)−v(y2)
y3−y2 (θ − y2) for θ ∈

(y2, y3). Obviously:

∆ = δ1

∫ y2+ε

y1

ṽ(θ)dF − δ2

∫ y3

y2

ṽ(θ)dF + (w2 − δ − 2− w1)

∫ y2+ε

y2

ṽ(θ)dF.

If θ∗ ≥ y2 and v(y3)−v(y2)
y3−y2 ≥ v′(y2), then ṽ is convex on (y1, y3). Then we obtain

∆ > 0, which is a contradiction. Therefore, we must have either θ∗ < y2 or

v(y3)−v(y2)
y3−y2 < v′(y2). Note that v(y3)−v(y2)

y3−y2 < v′(y2) implies θ∗ < y3.

Next, consider an alternative mechanism q′ such that, for small ε, δ2, δ3 > 0,

we have q′(θ) = w2 − δ2 for θ ∈ (y2, y3 − ε); q′(θ) = 1− δ3 for θ ∈ (y3 − ε, 1); and

q′(θ) = q(θ) otherwise. We choose ε, δ2, δ3 so that the distribution of treated types

in the optimal mechanism is a mean-preserving spread of that in the alternative

mechanism. By the same logic, for this alternative mechanism not to be strictly

better than the optimal mechanism, we must have v(y3)−v(y2)
y3−y2 < v′(y3).

Combining the two sets of conditions, we must have v(y3)−v(y2)
y3−y2 < min{v′(y2), v′(y3)}.

Consider a linear function v̂ such that v̂(θ) = v(θ, x) for θ ∈ {y2, y3}. Hence, the

slope of v̂ is v(y3)−v(y2)
y3−y2 . By the intermediate value theorem, there must exist

y∗ ∈ (y2, y3) such that v′(y∗) = ṽ′(y∗). However, by assumption, v′(θ) is strictly

35



increasing for θ < θ∗ and strictly decreasing for θ > θ∗. This, together with

v(y3)−v(y2)
y3−y2 < min{v′(y2), v′(y3)}, implies v′(θ) > v(y3)−v(y2)

y3−y2 for all θ ∈ [y2, y3]. This

is a contradiction.

A.4 Proof of Proposition 1.3

First, consider the case with y1 > 0. Because v is a limit case of V vex−cav, the

above result applies so that y1 = y2 and y3 ∈ {y2, 1}. If y2 = y3, the mechanism

satisfies the condition in the statement, so consider the case with y3 = 1.

However, it is possible to construct another mechanism whose distribution of

treated types is a mean-preserving spread of that of the optimal mechanism. This

is a contradiction, as the optimal mechanism can be further improved.

Next, consider the case with y1 = 0. If y2 = 0, the mechanism satisfies the

condition in the statement, so consider the case with y2 > 0. Because v is a limit

case of V vex−cav, the above result applies so that y3 ∈ {y2, 1}. In either case, it is

possible to construct another mechanism whose distribution of treated types is a

mean-preserving spread of that of the optimal mechanism. This is a contradiction,

as the optimal mechanism can be further improved.

A.5 Proof of Proposition 1.4

We omit the proof, as it is similar to that of the previous result.

A.6 Proof of Proposition 2

Let z1 = min{0, y1, y2, y3, y′1, y′2, y′3, 1}, z2 = min({0, y1, y2, y3, y′1, y′2, y′3, 1} \ {z1}),

and so on, and let zK = max{0, y1, y2, y3, y′1, y′2, y′3, 1}.
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Suppose that q exhibits more separation than q′, in order to obtain a con-

tradiction. Then, there exist αkk′ ≥ 0 and τkk′ : [0, 1] → R for each k, k′ with

1 ≤ k < k′ ≤ K such that (i):

τkk′(θ) = τkk′(θ
′) < 0 if θ, θ′ ∈ (zk, zk+1),

τkk′(θ) = τkk′(θ
′) > 0 if θ, θ′ ∈ (zk′ , zk′+1),

τkk′(θ) = τkk′(θ
′) = 0 otherwise;

(ii):

∫ 1

0

τkk′(θ)dF = 0;

and (iii):

q(θ) = q′(θ) +
∑

1≤k<k′≤K

αkk′τkk′(θ), ∀θ.

That is, q is obtained from q′ by shifting the treatment pattern according to

each τkk′(θ). By (i), this shift is “upward”, that is, more of higher types and less

of lower types are treated. By (ii), this preserves the total size of treated types.

Thus, in what follows, it suffices to show the following: Fixing any treatment

policy q∗ : [0, 1] → R and any shift τkk′(θ) satisfying (i) and (ii), if the principal is

better off by this shift given v, then he must also be better off by this shift given

v′. Let x be the externality index induced by q∗, and x′(≥ x) be the externality

index induced by q∗ + τkk′ . Suppose that the principal is better off by this shift
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given v, that is:

∫ 1

0

v(θ, x′)(q∗(θ) + τkk′(θ))dF −
∫ 1

0

v(θ, x)q∗(θ)dF ≥ 0.

It suffices to show that

∫ 1

0

(v′(θ, x′)− v(θ, x′))(q∗(θ) + τkk′(θ))dF −
∫ 1

0

(v′(θ, x)− v(θ, x))q∗(θ)dF ≥ 0,

because it then implies

∫ 1

0

v′(θ, x′)(q∗(θ) + τkk′(θ))dF −
∫ 1

0

v′(θ, x)q∗(θ)dF ≥ 0

and hence, the desired contradiction.

Let ε = −τkk′(θ) > 0 for θ ∈ (zk, zk+1) and ε
′ = τkk′(θ) > 0 for θ ∈ (zk′ , zk′+1).

By (ii), ε
∫ zk+1

zk
dF = ε′

∫ zk′+1

zk′
dF . Thus, we have:

∫ 1

0

(v′(θ, x′)− v(θ, x′))(q∗(θ) + τkk′(θ))dF −
∫ 1

0

(v′(θ, x)− v(θ, x))q∗(θ)dF

=

∫ 1

0

(v′(θ, x′)− v(θ, x′)− (v′(θ, x)− v(θ, x)))q∗(θ)dF +

∫ 1

0

(v′(θ, x′)− v(θ, x′))τkk′(θ)dF

≥ −ε
∫ zk+1

zk

(v′(θ, x′)− v(θ, x′))dF + ε′
∫ zk′+1

zk′

(v′(θ, x′)− v(θ, x′))dF

∝ −
∫ zk+1

zk
(v′(θ, x′)− v(θ, x′))dF∫ zk+1

zk
dF

+

∫ zk′+1

zk′
(v′(θ, x′)− v(θ, x′))dF∫ zk′+1

zk′
dF

≥ 0,

where the first inequality is because ∂2

∂x∂θ
(v′(θ, x)−v(θ, x)) ≥ 0 for all θ, x; and the

last inequality is because ∂
∂θ
(v′(θ, x)− v(θ, x)) ≥ 0 for all θ, x.
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A.7 Proof of Proposition 3

Under the stated conditions, Proposition 2 implies that the optimal mechanism

given v′ does not exhibit more separation than that given v. If v, v′ ∈ V vex or

v, v′ ∈ V cav, then by Proposition 1.3 or 1.4, the optimal mechanisms given v and

given v′ can always be ordered according to first-order stochastic dominance of

treated types. Therefore, the optimal mechanism given v′ exhibits more separation

than that given v.

A.8 Proof of Proposition 4

Let z1 = min{0, y1, y2, y3, y′1, y′2, y′3, 1}, z2 = min({0, y1, y2, y3, y′1, y′2, y′3, 1} \ {z1}),

and so on, and let zK = max{0, y1, y2, y3, y′1, y′2, y′3, 1}.

Suppose that q exhibits more diversity of treated types than q′, in order to

obtain a contradiction. Then, there exist αijk ≥ 0 and τijk : [0, 1] → R for each

i, j, k with 1 ≤ i < j < k ≤ K such that (i):

τijk(θ) = τijk(θ
′) > 0 if θ, θ′ ∈ (zi, zi+1),

τijk(θ) = τijk(θ
′) < 0 if θ, θ′ ∈ (zj, zj+1),

τijk(θ) = τijk(θ
′) > 0 if θ, θ′ ∈ (zk, zk+1),

τijk(θ) = τijk(θ
′) = 0 otherwise;

(ii):

∫ 1

0

τijk(θ)dF = 0,

∫ 1

0

θτijk(θ)dF = 0;
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and (iii):

q(θ) = q′(θ) +
∑

1≤i<j<k≤K

αijkτijk(θ), ∀θ.

That is, q is obtained from q′ by a series of mean-preserving spreads.

Thus, in what follows, it suffices to show the following: Fixing any treatment

policy q∗ : [0, 1] → R and any shift τijk(θ) satisfying (i) and (ii), if the principal is

better off by this shift given v, then he must also be better off by this shift given

v′. Suppose that the principal is better off by this shift given v, that is:

∫ 1

0

v(θ, x)(q∗(θ) + τijk(θ))dF −
∫ 1

0

v(θ, x)q∗(θ)dF ≥ 0,

or equivalently,

∫ 1

0

v(θ, x)τijk(θ)dF ≥ 0.

Because v′ − v is convex in θ and τijk is a mean-preserving spread, we obtain:

∫ 1

0

(v′(θ, x′)− v(θ, x′))τijk(θ)dF ≥ 0,

implying

∫ 1

0

v′(θ, x′)τijk(θ)dF ≥ 0,

and hence, the desired contradiction.
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A.9 Proof of Proposition 5

Under the stated conditions, Proposition 4 implies that the optimal mechanism

given v′ does not exhibit more concentration of treated types than that given v.

If v, v′ ∈ V cav−vex or v, v′ ∈ V vex−cav, then by Proposition 1.1 or 1.2, the optimal

mechanisms given v and given v′ (with any fixed (Q, x)) can always be ordered

according to second-order stochastic dominance of treated types. Therefore, the

optimal mechanism given v′ exhibits more concentration of treated types than that

given v.
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