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Abstract

We define a disastrous default as the default of a systemic entity, Such an event is expected
to have a negative effect on the economy and to be contagious. Bringing macroeconomic
structure to a no-arbitrage asset-pricing framework, we exploit prices of disaster-exposed as-
sets {credit and equity derivatives) to extract information on (i) the expected influence of a
disastrous default on consumption and (ii) the probability of a financial meltdown. Using Eu-
ropean data, we find that the returns of disaster-exposed assets are consistent with a systemic
default being followed by a 2% decrease in consumption. The recessionary influence of dis-
astrous defaults implies that financial instruments whose payoffs are exposed to such credit
events carry substantial risk premiums. We also produce systemic risk indicators based on the
probability of observing a certain number of systemic defaults or a sharp drop of consumption.
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Introduction

1 Introduction

Since the seminal contribution of Rietz (1988), studies have shown that disaster risk, defined as
a sudden and dramatic decrease in output and consumption, helps in solving several asset pricing
puzzles (e.g. Barro, 2006; Gabaix, 2012; Gourio, 2013). In these studies, disasters are typically
modeled as exogenous events that cause dramatic increases in the default probabilities of bond
issuers (or dramatic decreases in the asset values of firms). However, recent events suggest that
the default of a systemic entity per se may very well constitute a disaster in itself. Indeed, since its
inception, the largest drop in the University of Michigan Consumer Sentiment index took place in
September 2008, the month when Lehman Brothers went bankrupt. By the same token, the exis-
tence of systemic entities is at the core of novel regulations on Systemically Important Financial
Institutions—SIFIs (Battiston et al., 2016; Kelly et al., 2016; Brownlees and Engle, 2017).

In this paper, we propose an asset pricing framework where the default of some entities—
called systemic—may have disastrous economic effects. In the model, the default of each systemic
entity can affect consumption; moreover such an event can be the source of default cascades.!
When they materialize, new defaults are likely to reinforce the initial drop in consumption and
to contribute to fﬁrther defaults. The model therefore accommodates amplification mechanisms
(Allen and Gale, 2000; Stiglitz, 2011). In this context, financial instruments that are exposed to the
default of systemic entities are expected to command substantial risk premiums; the latter being
defined as the component of prices that would not exist if agents’ were risk-neutral, Our paper
builds on the growing literature that develops the view that a large part of aggregate fluctuations
arises from idiosyncratic shocks to individual firms (Gabaix, 2011; Barrot and Sauvagnat, 2016;
Acemoglu et al., 2017; Bagaee and Farhi, 2019, Carvalho et al., 2016; Dew-Becker et al., 2020).
Gabaix (2011} argues that idiosyncratic firm-level shocks (i.e., granular sources) can explain an
important part of aggregate movements and uncovers the importance of large firms by showing that
idiosyncratic shocks to the top 100 firms explain a large fraction of aggregate volatility. Acemoglu
et al, (2017) discuss how such phenomena may arise in a production network, while Barrot and

Saunvagnat (2016) and Carvalho et al. (2016) provide empirical evidence. Bagaee and Farhi (2019)

IDas et al. (2007) find that default clustering cannot be explained only by the firms’ joint exposure to observable
systematic factors. In a recent paper, Azizpour et al. (2018) provide strong evidence for the fact that contagion, through
which the default of one firm has a direct impact on the health of other firms, is a significant clustering source.
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and Dew-Becker et al. (2020) study non-linearity in production networks and stipulate that large
declines in output can come from local sector shocks due to non-linearity in production.

To our knowledge, the present study constitutes the first attempt to measure the macroeconomic
influence of contagious corporate defaults. This information is extracted from the joint dynamics of
consumption and of the prices of disaster-exposed market instruments. Our contribution relative to
the above-mentioned literature is in proposing a tractable asset-pricing model that entails disastrous
firms, and in bringing such a model to the data. The model tractability, which is instrumental for
our study, allows us to explore the importance of our two key mechanisms (i.e. contagion and
macroeconomic effect) in accounting for the joint dynamics of consumption and asset prices. In
particular, while our analysis shares similarities with Seo and Wachter (2018), they do not address
the macroeconomic effect of contagious corporate defaults. Their framework relies on computer-
demanding simulations to price credit derivatives whose payoffs depend on the number of defaults,
making their estimation particularly challenging in our setup.

We estimate our model by exploiting market data on two types of financial instruments that are
directly exposed to systemic risk: tranches of synthetic Collateralized Debt Obligations (CDOs)
and far-out-of-the-money put options written on equity indexes. In synthetic CDO transactions, the
protection buyer recei.ves payments when a pre-specified amount of credit losses in the reference
portfolio has been reached. Losses are allocated first to the lowest tranche, known as the equity
tranche, and then to successively prioritized tranches (mezzanine tranches, followed by senior
tranches). Therefore, senior tranches provide non-null payoffs to the protection buyer only once
a sufficiently large number of entities in the underlying portfolio have defaulted. As a result,
market prices of senior tranches reflect investors’ expectations regarding catastrophic events (Coval
et al., 2007; Longstaff and Rajan, 2008; Collin-Dufresne et al., 2012). Even the senior tranches of
CDOs written on a portfolio of investment grade firms display non-negligible prices. This suggests
that investors allocate a non-zero probability to disastrous events. The second type of financial
instruments, far-out-of-the-money put options, deliver payoffs when the underlying equity index
experiences crashes. Typically, if the strike price is equal to 70% of the current value of the equity
index, then this option yields a strictly positive payoff when the equity index falls by 30% between
the inception and the maturity date of the contract. Therefore, such equity options also convey

information regarding the market perception of systemic risk (Santa-Clara and Yan, 2010; Backus
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etal., 2011).

The empirical application, which is conducted on euro-area data spanning the period from Jan-
uary 2006 to September 2017, demonstrates the ability of our model to capture a substantial share
of the joint fluctuations of consumption growth, stock returns and stock and credit derivatives, both
in tranquil and stressed periods.? Specifically, our estimation involves prices of derivatives written
on (1) the EURO STOXX 50 index, one of the main benchmarks of European equity markets, and
(i1) the credit portfolio underlying the iTraxx Europe main index, including synthetic CDOs of dif-
ferent maturities and seniority levels. Our estimation procedure assigns all 125 constituent entities
of the 1Traxx index—the most liquid European investment grade credits—as systemic.

In the spirit of Backus et al. (2011), we deduce estimates of the influence of systemic defaults
on consumption. Our results suggest that the default of a systemic entity is expected to be followed
by a 2% decrease in consumption within two years, taking contagion effects into account. Let us
provide some intuition as to why this effect can be inferred from our estimation. Our equilib-
rium model provides some structure regarding risk premiums; specifically, once the relationship
between the payoffs of a given asset and the factors affecting consumption has been specified, the
model predicts the size of risk premiums asked by investors to carry this asset. Now, the payoffs
of a Credit Default Swap (CDS) written on a systemic entity critically depend on the default status
of this entity, As a result, through the lens of the model, the potential influence of a “systemic
default” on consumption can be inferred from the size of credit risk premiums embedded in a CDS
spread writfen on a systemic entity.

We further exploit our estimated model to derive two systemic risk indicators. The first indi-
cator is defined as the probability of observing a certain number of systemic defaults over specific
horizons.? The resulting systemic indicator reaches its highest levels in late 2008, after the Lehman
bankruptcy and in late 2011, when the European sovereign crisis was at its peak. On these two
dates, the probabilities of having at least 10 iTraxx constituents defaulting within two years were

of 5.5% and 5%, respectively. The second indicator is defined as the probability of consumption

2Hence, our results contribute to the growing literature investigating the links between stock and fixed-income
prices (see e.g. Bekaert et al,, 2010; Lustig et al., 2013; Koijen et al., 2017; Campbell et al., 2017).

3Using prices of far-out-of-the-money put options to infer disaster probabilities dates back to Bates (1991). This
approach has been applied recently by Backus et al. (2011), Bollerslev and Todorov (2011), Barro and Liao (2016),
Siriwardane (2016) and Seo and Wachter (2018), among others. For a discussion regarding the difficulty in measuring
systemic risk, refer to Hansen (2013).
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displaying a sharp drop in the next year. In line with the first indicator, these probabilities reached
their maximum levels at the time of the Lehman bankruptcy and at the height of the European
sovereign crisis. On these two dates, the probabilities of consumption dropping by more than 10%
in the next year were of 8% and 6%, respectively.

Moreover, our findings point to the existence of substantial credit risk premiums in the credit
derivatives written on systemic entities. In particular, the results suggest that about two thirds of
10-year Credit Default Swaps (CDSs) spreads written on systemic entities correspond to credit
risk premiums. In other words, if agents were not risk-averse, these spreads would be three times
lower. In line with previous studies (Brigo et al., 2009; Azizpour et al., 2011; Giesecke and Kim,
2011), we find that an overwhelming share of the prices of the most senior tranches corresponds to
risk premiums.

The remainder of this paper is organized as follows. Section 2 presents the general framework
and derives associated pricing formulas. Section3 describes the data and Section4 documents
the estimation approach. Section5 explores the asset pricing and macroeconomic implications
of systemic defaults. Section 6 concludes. The derivation of pricing formulas are gathered in

appendices.

2 Model

The following Section describes the model and its key features, provides the representative agent’s

preferences and derives the pricing formulas for disaster-exposed credit and equity derivatives,

2.1 Model overview

The present model builds on the theoretical framework of Gouriéroux et al. (2014) by bringing
macroeconomic structure and by introducing disasters. The approach relies on default counting
(or loss) processes (e.g. Azizpour et al., 2011; Giesecke and Kim, 2011; Giesecke et al.,, 2011).
These models contrast an alternative approach that considers default processes of individual firms
as the model primitives (e.g. Lando, 1998; Duffie and Singleton, 1999; Duffie and Gérleanu, 2001).
While in our framework, it is sufficient to keep track of the number of systemic defaults to study

the macroeconomic effect of contagious corporate defaults, the alternative approach would need
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to include the default indicators of all contagious firms in the state vector to account for contagion

(which would dramatically affect model tractability).

2.2 Credit segments

We consider J homogeneous segments of defaultable entities. For any j, the /; entities of segment j
share the same credit characteristics.

Let N;; be the number of segment-j entities in default at date f and N, be the vector N; =
[N1yy...,Nyy)'. We denote by nj, = Nj, —N;, | the number of defaults occurring in segment j on
date . With obvious notations, we have n, = N, — N,_1.

The information on current and past values of any process &; is denoted by &, = {k;, k—1,... }.
Conditional on Ny = 0, the information contained in the information set g (respectively n,) is
equivalent to that in N;, (resp. N,).

The first two segments of entities gather large firms supposed to be systemic. We denote by
N} = N1, + Ny, the cumulated number of systemic defaults and by ] = ny; 4 ny; the number
of systemic defaults occurring on date ¢. The only distinction between these first two segments
is that the first one contains the constituents of a credit index used as the reference portfolio for
traded credit derivatives, whose prices are used to calibrate the model. Having a single segment of
systemic enftities would be restrictive because it would mean that this specific credit index, namely
the iTraxx Europe main, covers all systemic entities in our economy, which may not be realistic.

The other segments, j > 3, gather non-systemic small and medium-sized enterprises (SMEs).

2.3 Default-count processes

We assume that defaults are caused by two exogenous and non-negative factors that we denote by
x; and y;, which allows to distinguish between longer-run and shorter-run fluctuations of aggregate
credit risk. Without loss of generality, we impose E(x,;} = E{y,) = 1. Appendix A.1 proposes a
specification based on vector auto-regressive gamma processes (see Gouriéroux and Jasiak, 20006;

Monfort et al,, 2017). These processes are Markovian, with gamma-type transition distributions,
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and feature conditional heteroscedasticity. In particular, they are such that:

=1 = pula_1—1)+ 08y, 0
ye—x = Py(Y—1—X—1)+ Oy,
where & = [8,\-,,,8),,,]’ is a martingale difference sequence with components that have a unit condi-
tional variance and where [07,, 07" is affine in [x—1,y—1)".
Intuitively, if 0 < py < py < 1, the autonomous factor x; is more persistent than y; — x,; and, if
p. is large, x; can be seen as the low-frequency component of y,. The residual component y; — x;,
which has a marginal zero expectation, can be interpreted as the higher-frequency component of y;.
The higher y,, the higher the probability of default of the different entities. This factor is conceived
as a business cycle component, which is also included in the consumption growth process (eq. 4).

Formally, for any segment j, we assume that n;, is an integer process with stochastic intensity,

defined by:

nisrt Ly LN~ P Byt +einy), )

where f3; and ¢; are non-negative parameters, where 1} is the total number of systemic defaults
taking place on date ¢ and & denotes the Poisson distribution. If ¢ j > 0, the occurrence of
systemic defaults on date ¢ increases the conditional probability of having defaults in segment j
on the next date. Thus, systemic defaults are contagious when ¢; > 0 for some 7.7% By contrast,
the defaults of non-systemic segments are not contagious since, for j > 2, nj, does not appear in
the parameter of the Poisson distribution in eq. (2). In the interest of tractability, our approach in
modeling contagion is reduced-form and abstracts from the underlying mechanisms of contagion
(e.g. network structure).

For parsimony, we consider that entities from the two systemic segments are alike, the only dif-
ference being that those from segment | are the constituents of fraded credit indexes. Accordingly,

we assume that ¢| = ¢ and that §; = f,.

4Up to the Poisson approximation of the binomial distribution, eq.(2) implies that, on date ¢ + 1, the default
probability of each firm of segment j, conditional on x;41,y,41,M is given by (,B})’;+[ +eynf) /1, if Ny, = 0.

3In particular, if c; > Ofor j € {1,2} (systemic segments), then systemic defaults are “self-excited” (Ait-Sahalia
et al., 2014).

6Systemic defaults are contagious, or “infectious”, using Davis and Lo (2001)’s terminology.
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Eq. (2) specifies a default process N;, that does not necessarily terminate at [}, the number
of entities in segment j. As noted by Azizpour et al. (2011), this feature is, however, innocuous
because for the relatively large portfolios of interest, the probability of N;; exceeding I; during

standard contract terms is small for our sample.”-8

2.4 Consumption growth process

We assume that systemic defaults have a negative impact on the log growth rate of per capita
consumption, denoted by Ac¢; = log(C;/C,—1). To have this, a possibility is to make Ac; directly
depend on the number of systemic defaults n;_,. However, this would have the unrealistic implica-
tion that all systemic defaults have the same deterministic effect on consumption growth. Instead,

we assume that Ac, depends on a factor wy, that depends itself on systemic defaults according to:

Wr|«ﬁ,;’gf_\/£ ~ Yo(‘ﬁwn-;s_p#w), (3)

where the gamma-zero distribution ¥ s a distribution featuring a point mass at zero (Monfort et al.,
2017). Specifically, when rj_; > 0, wy is drawn from a gamma distribution whose scale parameter
is i and shape parameter is drawn from F(§,,nf_|). When the shape parameter is zero, we have
wy = 0. Therefore, the conditional probability that w, =0 is exp(—&pnf_l ). In particular, we have
w; = 0 as long as there has been no systemic defaults in the previous period. For identification, we
impose E(w,) = [, which is obtained by setting y,, = 1/(&,E(n)).

The consumption growth process is then specified as follows:

AC! - “C,O + “‘C‘,)’yl‘ + “C'HJHJ[ + O.CSIC',I With grc i i-i-(14 L/V(O, 1)- (4)

That is, consumption growth is affected by: the long-run component y;, the disaster-like com-
ponent w, and a volatile normally-distributed shock &°. Conditionally on x;, y;, w;, 11 and ng,
consumption does not depend on the number of defaults in the non-systemic segments (j > 3).

We indeed assume that the credit risk associated with these firms is diversifiable (as these firms

’Size effects are captured by parameters f8 ; and ¢;. In our empirical study, the segment sizes we use are 50 (EURO
STOXX 50y and 125 (iTraxx index), see Subsection 3.1.

8The fact that N, does not terminate at /; is important if one wants to use this type of model {o produce long-term
forecasts; it implicitly entails a form of replacement mechanism of systemic entities,
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are supposed to be small, extremely numerous, and with defaults that are not perfectly correlated
conditionally on the above-mentioned factors). Accordingly, the additional information contained
‘in Nj,, j > 3, is not useful to price assets whose payoffs do not depend on nj,, j > 3. Therefore,
these additional segments will not be used at the estimation stage; we will nevertheless make use
of them later on (in Subsection 5.4) to explore the effects of changing exposures (§; and ¢;) on
credit risk premiums, in a “laboratory mode”.

As is standard in this literature, we do not account for inflation in our model, That is, we
assume that the inflation rate is constant.

Panel (a) of Figure 1 shows the causal scheme. In our model, the defaults of non-systemic
segments (j > 2) have no causal impact on consumption or on defaunlts in other segments. As a
result, non-systemic segments are not used in the model estimation. We will however use segment 3
in Section 5 to study the implications of the model for the pricing of credit derivatives written on
non-systemic enfities.

Panel (b) of Figure 1 represents the type of scheme prevailing in standard disaster-risk models.
In these models, disasters take the form of jumps that simultaneously trigger a fall in consumption
and sharp increases in default probabilities. By contrast, in our context, the defaulls themselves
cause drops in consumption. Because this mechanism is the focus of the present study, we do not

incorporate feedback effects from consumption to factors x; and y;.

2.5 State vector and agent’s information sets

On date ¢, the information set of the representative agent is Q; = {x;, Yrs Wi, €, Ni }. It includes the
current and past observations of all default counts and underlying factors, In the following, [,
denotes the expectation conditional on the information available at time ¢, i.e. E, (o) = E(s|Q;).”
In the following, we focus on the state vector X; = [x;,y,,w,,N/,N/_,]'.1% As shown below,
the payoffs of the financial instruments we consider, as well as their values, are functions of X;
(as a result, the information contained in the underlying factor values can be recovered from the

observed derivative prices), The tractability of our approach results from the fact that X; is an affine

9Because it is i.i.d., £ does not explicitly intervene in any asset price.
0The econometrician does not directly observe Q, but as it be explained below, she can infer values of x; and y;,
in particular through observed asset prices (see Section4),

9
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Figure 1: Causal scheme

Panel (a) Panel {(b)
Present model Standard disaster-risk model

Systemic entities

J\, ! w; (jum
iTraxx - Hr G p)

3 o \
— \,\//V
e ) — ~ Consumption

growth

Non systemic
entities

Panel (a) displays the causal scheme underlying our model. Panel (b) represents the scheme prevailing in standard
disaster-risk models. Arrows represent Granger-causal relationships.

process. The log conditional Laplace transform of process (X;), denoted by y(v,X;) and defined
by:
E, (exp("inJrE)) = exp(W(stf))a

is affine in X;. Formally, there exist functions g and ¥ such that:
W(VnXI) = WO(V) + ¥ (V)’XH ' (5)

for the values of v that are such that E, (exp(v'X,|)) exists. Functions yp and vy are made ex-
plicit in Appendix A.2 (eqs. a.2 and a.3). As is well-known, the combination of affine processes
and an exponential affine stochastic discount factor results in closed-form, or quasi closed-form,

expressions for the prices of a wide range of financial instruments (Duffie et al., 2002),
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2.6 Preferences, stochastic discount factor and risk-neutral dynamics

The preferences of the representative agent are of the Epstein and Zin (1989) type, with a unit
elasticity of intertemporal substitution (EIS).'! Specifically, the time-¢ utility of a consumption

stream ((}) is recursively defined by:

w = {1=38)+

%8 (B exp (1 — P)urs]) (6)

where ¢; denotes the logarithm of the agent’s consumption level C;, & the time discount factor and v
the risk aversion parameter.'? Exploiting the affine property of the state vector X, it can be shown
that the short-term stochastic discount factor (s.d.f.) at date #, denoted by M, ,..|, then admits the

following exponential affine representation:
_ . I
M1 = exp [—(WO + X)X — YR X)) — Nty — Eﬂcz : N

where scalars 1jg and 7., and vectors 7 and 1; depend on previously-introduced model parameters
(see Proposition 2 of Appendix B). Because E,(M; ;1) = exp[—(no + N1X;)], the short-term risk-

free interest rate r; is affine in X; and given by:
rr="no+MX,. (8)

In order to price financial instruments, it is convenient to introduce the risk-neutral probability
measure, denoted by Q. This probability measure is defined with respect to the historical one
through the change of density (dQ/dP); .1, given by:

jLﬁ‘{ f+1 ! . 1 2
— Y e T X — bis X _— n ¢ __.fr’u .
]E!(M{’[ 1) exp [ 41 W( ! t) CEIN'“I 2 ¢

”Using a unit EIS facilitates resolution. Piazzesi and Schneider (2007), or Seo and Wachter (2018), among others,
also work under this assumption of a unit EIS. This value is however slightly below the lower bound of the 90%
confidence interval found by Schorfheide et al. (2018) for the EIS.

[2Eq. (6) results from a first-order Taylor expansion around p = 1 of the general Epstein and Zin (1989) recursive

1
utility defined by: 1, = ﬁ log ((I -8/ TP+ 6 (B [exp{(1 = p)uy41}]) T:%) , where p is the inverse of the EIS.
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Appendix B (Proposition 3) shows that X; is also affine under @; more precisely it shows that the

QQ-Laplace transform of X; is given by:

exp (WQ(V,X,)> =EC (exp(v'X,41)) = exp (u/(?(v) + wi@(v)’X,) :

with
W) = yo(v+m)—yo(),
vi) =y —(m).

The fact that X; is also an affine process under (Q facilitates the pricing of various assets whose
payoffs depend on future values of X;. In particular, Appendix C.1 provides closed-form for-
mulas to compute date-t prices of European derivatives with payoffs of the form exp(a’X; ),
exp(a' X 1) L px eyt @ Xigns o1 a' X1 {b'X, <y} Settled on date t + /. These formulas are key

building blocks to price specific financial instruments.

2.7 Pricing credit and equity derivatives
2.7.1 Pricing credit index swaps

A credit index swap allows an investor to either buy or sell protection on a credit index, which is a
basket of reference entities. There are two main families of credit indexes, which serve as reference
points for Credit Default Swap (CDS) markets: the Dow Jones CDX and iTraxx indexes. The CDX
North American Investment Grade index and the iTraxx Europe main index are each comprised
of 125 equally-weighted underlying credits (see Section 3 for more details on the iTraxx Europe
main indexX, which is the one used in our application).

In a credit index swap transaction, a protection seller agrees to pay all default losses in the

C

index in return for a fixed periodic spread S {1 /g paid on the total notional of obligors remaining

f
in the index over a period of & years, where ¢ is the number of time periods per year. Should there
be no credit event, the protection buyer pays a regular spread until maturity. Upon default of one
of the reference entities, the protection seller provides the buyer with the amount that the latter
would have lost if she had held the index bond portfolio. For instance, for a $100,000 position in a
20-name index, with a recovery rate of 50%, the amount would be $2,500 (= 50% x 100,000/20).

Following this default, the trade continues with the notional amount reduced by the weight of the

12

T - . TEoe b i . i ‘i PR 3 R IR R
N B LT R e T S R L T A B B P Lt I L PR R YRR



Model

defaulted credit. In the previous example, the new notional would be $95,000; the number of
reference entities in the index would be reduced to the remaining (non-defaulted) 19 entities.

In our application, we consider that the names in the credit index coincide with segment 1,
therefore, the payoffs critically depend on Ny ;. Following, among others, Coval et al. (2007)
and Collin-Dufresne et al. (2012), we make the simplifying assumption that these 125 firms are
homogeneous. The spread SF}; is determined by equalizing the date-¢ values of the protection leg

and of the premium leg, that is:

& Ny~ N Shoo & LN
Ltk Fibk1 J 1 14k
E’ Z Ass4#{1—RR) 7 ! ~ e E Ar,r-kk“““"}““{‘“ ) 9
Protection leg ‘ Premium leg

where [y is the number of entities in segment 1, i.e. the number of names in the index, where
RR is the contractual recovery rate, assumed independent of time as in Azizpour et al. (2011) and

Giesecke et al. (2011), and where:

Ajk = exp(—r; —Fpl— ’”H—k—l): (10)

7y being the risk-free short-term interest rate between periods f and ¢ -+ 1.

Hence, credit index swap spreads result from the knowledge of conditional expectations of the
form ]E:@(A,ﬁkN 1s+k) and }EEQ(A,‘,HN[ 1+k—1), whose computation is addressed in Corollary 1 of
Appendix C.1.

Online Appendix O.4 shows that the spread on a CDS written on any entity of segment 1 is also

given by eq. (9).

2.7.2 Pricing synthetic Collateralized Debt Obligations

Collateralized Debt Obligations (CDOs), or credit tranches, allow an investor to get a specified

exposure to the credit risk of the underlying reference portfolio, or credit index, while in return

13

receiving periodic coupon payments.'® Losses due to credit events in the underlying portfolio

B The credit-tranche market consists of an actively traded segment and an illiquid “buy-and-hold” segment (Sche-
icher, 2008). In the actively-fraded segment, the underlying credit portfolio is based on the standardized portfolio of

13
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are allocated first to the lowest tranche, known as the equity tranche, and then to successively
prioritized tranches (junior tranches, mezzanine tranches, followed by senior tranches).

The risk of a tranche is determined by attachment and detachment points. The attachment
point, denoted by a, determines the subordination of a tranche. The detachment point, denoted
by b, b > a, determines the point beyond which the tranche has lost its complete notional. The
equity tranche takes the first losses on the portfolio, from gy = 0 up to b;. When the portfolio has
accumulated losses exceeding the fraction b; of notional, the next tranche, (a9,b;) with a; = by,
will incur losses from any additional defaults up to b,, and so on.

Let us detail the cash-flows induced by an {(a,b) credit tranche in the context of the reference
portfolio made of segment-1 entities, that are the iTraxx ones in our study, Consider a protection
buyer and a protection seller who meet at date # and agree in a spread Sf:,?s (a,b), which is the
quote associated with this credit tranche at date ¢, the maturity date of this derivative product being

t + h. Let us denote by ; the cumulative loss, that is:

N
4 =(1—RR)-.
1y
From dates £ 41 to £ 4 /1, cash-flows are exchanged between the two parties unless the cumulative
losses €, (fork=1,...,h) have exceeded the detachment point b. Specifically, at date ¢ -+ &, these

cash-flows are the following:

¢ If cumulative losses £,,.; have not reached the attachment point a: (i) there is no cash-flow

paid by the protection seller and (i) the protection buyer pays the full premium S} ?(a,b)/q.

¢ If cumulative losses £, exceed the attachment point @, but remain lower than the detach-
ment point b: (i) the protection seller provides the protection buyer with an amount equal
to the fraction of the tranche consumed by new losses between ¢ &k — [ and -k, that is
(44 — i1x—1)/(b—a), and (ii) the protection buyer pays a premium equal to the multi-
plication of the full premium S7”%(a,b)/q by the fraction of the tranche that has not been

consumed at date 7 +k, thatis (b —£,,,)/(b—a).

The spread Sf: DS(a,b)/q is such that the protection and premium legs have the same value at date

a credit index such as the iTraxx or the CDX index. The less-actively-traded segment of the credit-tranche market
consists of tailor-made tranches of Collateralized Debt Obligations (CDOs) in which various loans are bundled,
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t, that is; !

gh

b Az J+k (min(4; 44, b) — max (€, laa))]l{a<f,+k}11{em 1<b}}

Protection leg

€r+k £r+k I
R { Z Aspik = Lact, b}

Protection leg
TDS gqh

Sj a,b) b—1t .y
= rTf;DS( b)Y+ Lq"“]EQ{EAIWk(ﬂ{L’HkQ:}“l“ - ﬂ{a<(g+k<b}) , (1)

A g

-

Premium leg

where U,,”%(a,b) is an upfront payment and where A4 is defined in eq. (10)."% Credit tranches
are either quoted in terms of spreads S7”*(a,b), or in terms of up-front payments U7 ?5(a,b),
Typically, in the former case, the upnfront payment is fixed, and vice versa.

Appendix C.2 shows that by expanding both sides of eq.(11), computing S,T";?S (a,b)—or,
equivalently, U[",?DS (a,b)—amounts to calculating date- prices of payoffs of the forms: 1 N1 rei<e}s
.Ni,r+k]1{N1‘,+,{. <z} and Nf.ffkﬂl]l{NIHkQ}' these payoffs being settled at date ¢ + k. The computa-

tion of such prices is addressed in Corollaries 2 and 3 (Appendix C.1).

2.7.3 Pricing equity derivatives
The price F, of a stock at date ¢ can be deduced from the series of future dividends D, i > 1, as:

o

P = Z E?(Ar,ﬂ-hDrHa)-
h=1

Let us assume that, as consumption growth, the dividend log growth rate g4, = log(D;/D;1)
is affine in [x;,y;,w¢]":

8ay = Ha o+ Hayyr + B wWe, (12)

“The smaller £, — &,,4..; compared to b — a, the better the approximation made on the protection leg. Whereas
this approximation overstates the payoff on those dates where £, < a < £,4; (because it mistakenly attributes
a — £ 45— to the payoff), it understates the payoff when & ;.. < b < £, (because b — £,4..) is then mistakenly
excluded from i¢).

See e.g. O'Kane and Sen (2003), D’ Amato and Gyntelberg (2005), or Morgan Stanley (2011) for an analysis of
upfront versus running spread quoting conventions.
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where it is assumed that [ty y, fa,w] = X [Hcy, He,w)s X corresponding to a leverage ratio on con-
sumption growth (e.g. Abel, 1999; Bansal and Yaron, 2004).

Proposition 6 (Appendix C.3) provides an approximﬁtcd solution for the stock returns in the
general case where the log growth rate of dividends is affine in X;. As in Bansal and Yaron (2004),
this approximated solution is based on the Campbell and Shiller (1988) linearization of stock
returns around the average of the log price-dividend ratio 1, = log(P,/D;}. In the solution, 7, is
expressed as an affine function of X;.

The payoffs of equity derivatives depend on P, The dynamics of F, is deduced from the dy-

namics of the ex-dividend return rj, ; = log(F,1/F). This return is given by:

P, D, D
’";k+1 — 1 (HH]XJX 141

o , 13
Dt P Dr) T+l — T+ Bdutl (13)

which is affine in (X, |, X/]". We therefore have, for any horizon /:

Pop = Bexp (4 +7r) (14)

= hexp (Tr+h — T+ 8di+1 T 8dy+2+ -+ 8a/,r+h) - (15)

Let us consider the price of a European put option of maturity & and strike K. This price is

given by EZ (Arr01(K — Pon)ligop,,) )- Using eq. (14), we obtain:

ER (A (K = B L or,0)
= KER (Apanlis, ooy, <toet)-logr)

1+h

~BER (A enexp07 s+ 4 L, bt <log(0)log ) ) - (16)

t+h

Appendix C.4 provides details about the computation of the two conditional expectations ap-

pearing on the right-hand side of eq. (16).

3 Data

The data cover both financial and macroeconomic series spanning the period from January 2006

to September 2017, at a bi-monthly frequency. On the financial side, we use stock returns on

16
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the EURO STOXX 50 (i.e. one of the most important benchmarks of European equity markets),
credit index swap spreads and prices of tranches associated with the iTraxx Europe main index,
and prices of far-out-of-the-money (far-OTM) equity put options written on the EURO STOXX
50. On the macroeconomic front, data consist of quarterly real private consumption, taken from
the Area-Wide Model (AWM) database (Fagan et al., 2001). We apply the method by Chow and
Lin (1971) on the quarterly series and exploit information on the monthly European Sentiment
Index in order to obtain a bi-monthly consumption growth series (see Online Appendix O.6).

In what follows, we detail the financial data and provide, in particular, arguments for the sys-

temic nature of iTraxx constituents (Subsection 3.2) and their stability across time (Subsection 3.3).

3.1 Financial data description
3.1.1 Credit index and tranche prices (iTraxx)

To estimate the model, we employ data based on the iTraxx Europe main index, a euro-denominated
index involving 125 large European firms whose credit default swaps are actively traded. iTraxx
indexes roll every six month—forming series. That is, every six months, a new series of the in-
dex is created with updated constituents. Derivatives written on previous series continue trading,
although liquidity is concentrated on options written on the on-the-run series (see Markit, 2014).

The roll consists of a series of steps which are administered by Markit, a financial services
information company that owns and compiles CDX and iTraxx indexes. For the Markit iTraxx
Europe indexes, liquidity lists are formed from the trading volumes from the Depository Trust and
Clearing Corporation (DTCC) Trade Information Warehouse.'® Markit then applies index rules
to determine the index constituents among the most liquid names (see Markit, 2016). For iTraxx
Europe main (the index used in this study), the final Index comprises 30 Autos & Indusirials, 30
Consumers, 20 Energy, 20 Telecommunications, Media and Technology (TMTs) and 25 Finan-
cials.

Constituents of the iTraxx Europe main index must have an investment grade rating. That
is, to be included in the list of constituents, entities have to be rated BBB-/Baa3/BBB- (Fitch/-

Moody’s/S&P), or higher. On average, over the ongoing life of the iTraxx index (from series 1 to

E(’h't',tp ://wuw.dtcc, com/derivatives-services/trade-information-warehouse,
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30), the median rating of its constituents is BBB+ at the S&P rating—which corresponds to a Baal
Moodys’ rating.

We extract spreads of iTraxx indexes from Thomson Datastream. These spreads correspond
to maturities of 3, 5, 7 and 10 years. We also use iTr;axx tranche prices that come from Markit’s
website.!” For each maturity, we use prices associated with the following tranches: 0%-3%, 3%-
6%, 6%-9%, 9%-12% and [2%-22%. We do not use prices associated with the super-senior tranche
(229%-100%) as well as prices associated with the 10-year maturity given the very low liquidity of
these contracts. Note also that, for liquidity reasons, our Markit data do not cover all dates in our
sample. In particular, we do not have tranche prices before January 2007 and after March 2013.

Because each index roll features fixed maturity dates, market prices are not of the “constant-
maturity” type. To deal with this issue, for each considered maturity, for (1) each date and (ii) each
pair of attachment/detachment points, we look for the tranche price whose residual maturity is the
closest to the considered one. If the residual maturity of the resulting tranche is not in a =1 year

window around the targeted maturity, no price is reported.

3.1.2 Equity options (EURO STOXX 50)

Equity put options are far ocut-of-the-money options written on the EURO STOXX 50 index. We
consider two maturities, 6 and 12 months, and strikes equal to 70% of the current value of the index.
These options protect against larger-than-30% falls in the equity index. That is, the payoffs of these
options become strictly positive in case of a fall of the index by more than 30%. Such option prices
are not directly available on Thomson Datastream; option prices reported on those database are for
contracts with standardized maturity dates and strikes, We compute the prices of our out-of-money
options by applying interpolation splines on available data, in both the time and strike (1000, 1500,
2000, 2500, 3000, 3500, 4000 euros) dimensions. Following market convention, we convert put
option prices into implied volatilities using the Black-Scholes formula and Euribor swap rates as

the risk-free rate.

Yhttp: //uww.creditfixings.com/CreditEventAuctions/itraxx.jsp. For each date, maturity and
tranche, we convert all quotes into an equivalent running spread with no upfront payment by using the risky dura-
tion approach (sec e.g. O'Kane and Sen, 2003; D’ Amato and Gyntelberg, 2005; Morgan Stanley, 2011).

18
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3.2 The systemic nature of iTraxx entities

In this subsection, we document that iTraxx constituents represent substantial shares of Euro-
pean economies—along different dimensions. This reinforces the idea that these entities are large
enough for their defaults to have economy-wide effects, which supports our use of the iTraxx index
to proxy for systemic firms.

Table [ reports information, collected on Thomson Reuters Eikon, on the 125 entities of series
30 of the iTraxx Europe main index (series 30 was issued on September 20, 2018). Specifically, the
Table reports the different countries whose firms are included in the iTraxx’s series 30, their number
of iTraxx firms (as of September 20, 2018) and their respective market capitalization, number of
employees, long-term debt and total debt, as a percentage of the total listed firms in a given couniry.
On average, across the fifteen different countries, iTraxx entities represent about 27% of the market
capitalization of a country; with the Netherlands featuring the highest proportion of total market
capitalization amounting to 62%. By the same token, the average number of employees of iTraxx
entities represents about 22% of the total number of employees hired by the listed firms of a given
country; with Germany having the largest proportion (44%). Last, iTraxx entities represent, on
average, about 42% of the long-term debt and total debt of all the listed firms of a country.

Aggregating these metrics across all 125 entities amounts to about 5 trillion euros of market
capitalization, 12.5 million employees, 3.8 trillion euros of long-term debt and 5.5 trillion euros
of total debt.!® These descriptive statistics suggest that iTraxx entities represent a large part of
macroeconomic activity (see Gabaix, 2011) and may have a direct impact on the health of other
firms, via their financial, legal or business relationships (echoing the arguments of Azizpour et al.,
2018). Indeed, contagion is not limited to the financial sector. This is supported by the fact that
General Motors and Chrysler received 20% of the funds of the Troubled Asset Relief Program
(launched in 2008), amounting to about 80 billion dollars. The arguments used at the time were
that millions of jobs would be lost and that their default could trigger the closure of many factories,

the liquidation of suppliers and dealerships and the potential loss of an entire industry. !

'8To provide a sense of the order of magnitude of these figures, note that the aggregate size of the market capital-
ization is about twice as large as the French GDP in 2017, while the aggregate number of employees represents more
than haif of the active population of Spain,

9See e.g. https://wuw.reuters. com/article/autos-bailout-study-idUSLINOJOOXU20131209.
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Table 1: Systemic nature of iTraxx entities

Country Nb. iTraxx entities Market capitalization Nb. employees Long-term debt  Total debt
Austria 1 3.88 3.44 345 3.27
Belgium 2 45.23 36.85 44.31 3841
Denmark I 3.64 229 65.19 70.08
Finland H 346 1.37 3.00 2.36
France 29 50.25 41.78 7i.64 64.48
Germany 21 41.10 43.70 65.29 69.27
Italy 7 40.55 31.08 61.16 60.08
Luxembourg 2 11.56 27.26 13.29 13.93
Netherlands 11 62.14 41.04 77.07 74.63
Norway 2 31.7! 10.98 472 5.39
Portugal 1 23.61 - - -
Spain 6 8.07 26.73 68.43 64.76
Sweden 3 8.50 9.54 4.70 5.15
Switzerland 7 29.23 30.92 56.85 62.94
United Kingdom 31 37.43 27.63 51.22 55.06

This table reports the different countries whose firms are included in the iTraxx’s series 30, their number of iTraxx
firms (as of September 20, 2018) and their respective market capitalization, number of employees, long-term debt and
total debt, as a percentage of the total listed firms in a given country, All figures are in percentages, The data on iTraxx
firms and on all listed firms per country is collected from Thomson Reuters Eikon, As of the time of the analysis,
Portugal’s only iTraxx firm (EDP Finance} does not disclose its number of employees, long-term debt and total debt.

3.3 The stability of iTraxx indexes

As mentioned above, iTraxx indexes roll every six months. In this subsection, we want to see
whether the rolling of the index affects the stability of its constituents across time,

Figure 2 reports statistics on the stability of the iTraxx across its entire past history, up to series
30, For comparison, we perform similar statistics on the CDX North American Investment Grade
index (up to series 31). The j™ bar depicts the average proportion of constituents that belong to
a given credit default swap index (iTraxx or CDX) series and the one prevailing j semesters later.
For instance, the first (respectively second) bar is obtained by computing the proportion of iTraxx
constituents that belong to the index at 6 months intervals (respectively 12 months intervals).

We find that, on average, over the first 30 iTraxx series spanning the last 15 years, about 80%
of the constituents are the same in a given series and the one that is launched three years later.
As shown by the low turnover in Figure 2, iTraxx constituents are fairly stable from one series to

another. Therefore, in spite of the fact that our estimation sample covers several iTraxx indexes,

20

- . . o . . .. . e vty
P I L 2 T S S e R I R SR AT RIDUE DR i LTS LN



Estimation

Figure 2: iTraxx constituents’ stability
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This figure illustrates the stability of the constituents of the iTraxx index (dark gray bars) and the CDX index (light gray
bars). The j* bar depicts the average proportion of constituents that belong to a given credit default swap index (iTraxx
or CDX) series and the one prevailing j semesters later. For instance, the first (respectively second) bar is obtained by
computing the proportion of iTraxx constituents that belong to the index at 6 months intervals (respectively 12 months
intervals), The computations are based on the 30 first iTraxx Evrope main index series and on the 31 first CDX Notth
American Investment Grade series, respectively.

we consider a single model parametrization (see Section 4).2
Given the constituents are relatively stable across series, conducting a similar analysis to that

of Subsection 3.2 on any other series would lead to qualitatively similar results.

4 Estimation

Bringing the model to the data amounts to determining two types of objects: the model parameters
have to be estimated and the latent variables have to be filtered. In order to discipline the estima-
tion, some of the model parameters—in particular the preference parameters—are not estimated,
but are calibrated. Thanks to the tractability of our framework, the estimation of remaining param-
eters and the filtering of unobserved variables are performed jointly by Kalman filter techniques.

This estimation approach could not be employed in frameworks that do not entail closed-form

20By contrast, Collin-Dufresne et al. (2012) modify their model calibration for each new CDX index (see their Ta-
ble 1). This table discloses important changes in the parameter values they obtain from one index to another, which is
at odds with the stability of the index constituents (see Figure 2). Similarly, in Seo and Wachter (2018), the parame-
terization of the model changes in a sample covering 3 years of data (2005/10-2008/09). Specifically, their leverage
parameter ¢; (the equivalent of ¥ in our model, see Subsection 2.7.3) is equal to 1.3 in the pre-crisis period and
increases to [.6 in the crisis period.
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formulas.?!

4.1 Calibrated parameters

The left panel of Table 2 reports the calibrated parameters. Following Seo and Wachter (2018),
we take an annualized rate of time preference of 1.2%. Because our model is at a bi-monthly fre-
quency, this rate of time preference translates into 8 = (I — 1.2%)'/6 = 0.998. The risk aversion
parameter ¥ is set to 5, in between the coefficients retained by Seo and Wachter (2018) and by
Bansal and Yaron (2004), of 3 and 7.5/10, respectively. As mentioned above (Subsection2.6), we
consider a unit elasticity of intertemporal substitution. Another calibrated moment is the popula-
tion expectation of consumption growth, that is set to 1.5% (annualized). This value is between our
sample average of 0.7% and that of a longer sample covering the period from 1970Q1 to 2017Q4.
The variance of the annual consumption growth rate is set to 3%, which is roughly consistent with
the values given by Barro and Ursua (2011) for the OECD.?? As in Bansal and Yaron (2004), the
log growth rate of real dividends is given the same marginal expectation as the log growth rate
of consumption (1.5%, annualized). We take a contractual recovery rate RR of 40%, consistently
with standard market practice. We also set the average default rate of the systemic entities to be
of 0.3% per year. This is consistent with historical data on investment-grade entities compiled by

Moody’s.??

4.2 State-space model

During the period we consider (2006-2017), there has been no systemic default in the euro area.

On October 22, 2009, though, CDS contracts written on the French electronics firm Thomson—

210On a standard laptop, the computation of the likelihood function—which involves the estimation of the latent
factors—takes about ten seconds. Though this is not a negligible amount of time, it still allows for the numerical
optimization of the likelihood function with respect to a reasonable number of parameters (about ten here). By contrast,
Seo and Wachter (2018) have to employ a 200-cores High Performance Computer (HPC) cluster to evaluate CDX
prices {on a single set of calibrated parameters).

22Acc0rding to Barro and Ursua (2011, Table 2), the standard deviation of the annual consumption growth rate of
OECD countries has been of 5.7% for a large sample starting at the end of the 19th century and ending in 2009—and
of 2.9% tor a post-world-war-1T sample.

BMore precisely, this corresponds to the average cumulative issuer-weighted global default rates for Baa-rated firms
on the period 1920-2016 (see Moody’s, 2017, Exhibit 32), On average, over the ongoing life of the iTraxx index (from
series 1 to 30), the median rating of its constituents is BBB+ at the S&P rating—which corresponds to a Baal Moodys’
rating.



Estimation

one of the iTraxx constituents— were triggered. However, we do not consider this credit event (o
be a systemic event. Indeed, this credit event was not a failure of the firm, but a restructuring of
its debt.?* In the U.S., following the so-called “Big Bang™ changes in practices on credit events
(April 8 2009) restructuring was excluded from the list of credit events triggering American CDSs
(see Coudert and Gex, 2010).

Accordingly, we have n{ = 0 and therefore w, = O for all dates 7 in our sample. Then we can
focus on the filtering of the other factors x; and y,. Let us stress that, in spite of the fact that w, =0
over our sample, the threat of possibly having w,;; > 0, k£ > 0, is taken into account by investors
on each date ¢ of the sample. Accordingly, the parameters governing the dynamics of w;, i.e. &,
s He e and pg , are, in particular, identifiable af least through observed derivative prices.

Observed financial variables include equity returns, credit index swap spreads of different ma-
turities, tranche spreads and equity put prices. Let us denote by I'; the vector of observed data—that
includes financial data as well as consumption growth and the number of systemic defaults— and
by 0 the vector of model parameters to be estimated. Over our estimation period (where w; = 0
and nf = 0), our model predicts that these prices are functions of z; = [x,y,]" and 8. Allowing for

measurement errors denoted by &, the set of measurement equations reads:

I =F(z:;0)+¢&, (17

where the components of & are mutually and serially independent Gaussian shocks, 1.e. & ~
iid. A (0,L:), where Z; is a diagonal matrix.
The transition equation describes the dynamics of z. Using the formula provided in Ap-

pendix A.1, the dynamics of z; can be expressed as follows:
1/2
g1 =t + Pz + 2, (Zr)érﬂa (18)

where &1 is a martingale difference sequence that, conditional on £, is zero mean and admits an
identity conditional covariance matrix. Thus, matrix X,(z;) describes the conditional covariance.

Eqs. (2.33) and (a.34) constitute the state-space form of our model. We employ the extended

MThe recovery rate was determined through auctions; for the shortest maturity (2.5 years), the recovery rate was of
96.26%.
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Kalman filter to approximate the log-likelihood function associated with this state-space model.?
By maximizing this function with respect to 8, we obtain estimates of the parameters that have not
been directly calibrated (Subsection 4.1) or that cannot be retrieved from calibrated moments.2® A

final pass of the Kalman algorithm provides us with filtered values of the latent factors z.

S5 Results

5.1 Model fit

Table 2 shows calibrated and estimated parameters. It notably appears that c¢; parameters (j €
{1,2}) are equal to 0.38, revealing a substantial level of contagion, (Recall that segment 1 gathers
the systemic entities included in the iTraxx index and segment 2 gathers the remaining systemic
entities.) It implies that an additional defauit by one systemic firm on date r leads to an increase in
the expected number of systemic default on date - 1 by 0.76 (2 x 0.38) on date 7 + 1 27 Responses
to systemic defaults will be studied more extensively through impulse response functions in Sub-
section 5.3. PFollowing Abel (1999), Collin-Dufresne et al. (2016) and Seo and Wachter (2018),
we assume that, up to an affine transformation—and up to consumption-specific Gaussian distur-
bances (&f in eq.4)—the log growth rate of dividends is equal to consumption growth. That is,
the parameters [y, and fiq,, pertaining to eq. (12) are proportional to the parameters fc,y and e
pertaining to eq. (4). In our setup, this “leverage parameter” ¥ is equal to 3.8, which is larger than
the values found in Abel (1999), Collin-Dufresne et al. (2016) and Seo and Wachter (2018) (2.74,
2.5 and 2.6, respectively). Moreover, the fact that p, = 0.983 and p, = 0.863—associated with
half-lives of 6.7 and 0.8 years, respectively—indicates that the persistence of x; is larger than that

of y; — x,. This is illustrated by Figure 3, which displays the filtered factors x; and y;. This figure

ZDerivatives of function F with respect to z, are obtained numerically. In order to reduce the number of parameters
to estimate, the diagonal entries of I, (variances of the measurement errors) are calibrated in a preliminary step. We
employ the approach of Green and Silverman (1994) and proceed as follows: we apply a smoothing spline to series
of observed prices, Next, we compute the sample variances of the differences between the prices and their smoothed
counterparts. The variances of the measurement equations are set to these values. In the case of stock returns, the
standard deviations of measurement errors is set to 10% of the standard deviation of observed stock returns,

261n our framework, this approach notably benefits from the existence of closed-form formulas to compute calibrated
moments (these computations are based on the results shown in Online Appendix O.2).

*'Bq. (2) implies that B,(n;, b,y mi_y) = Bjye + ey and therefore that [y (n],, +naglxynm_ =K+ 1) -

By (niy +maglx,yon_ = K) = 2¢;.
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shows that y, is more volatile than x;. In particular, contrary to x;, process y; has been more sen-
sitive to the post-Lehman crisis (late 2008, early 2009) and to the peak of the euro-area sovereign
debt crisis (late 2011, early 2012).

Figure 3 also shows that the long-run factor x; remained subdued before the euro-area sovereign
debt crisis of 2010-2012, Therefore, the peak reached by y; in late 2008 is mainly due to an increase
in the shorter-run component of y,, i.e. y; —x;. This suggests that, as regards corporate European
credit risk, the post-Lehman crisis was then perceived as a relatively short-lived phenomenon. By
contrast, the Buropean sovereign debt crisis triggered an increase in the long-run component of y;.
This indicates that the market considers that this latter crisis will have a longer-lived impact on
corporate European credit risk, As of the end of the sample, the level of the long-run factor x; is
higher than before 2008. As a consequence, even though the 2017 level of y, is below its late 2008
level, conditional medium to long-run expectations of y, are higher in 2017 than by in late 2008.
The fact that we work on a long sample that covers both tranquil and distressed periods allows us
to capture this increase in the low-frequency component of credit risk—i.e., shift from short-run
risk (L.ehman) to long-run risk (Euro debt crisis).

Table 3 reports model-implied population moments. It indicates for instance that the average
excess return for our stock index is of 7.6% and that the maximum Sharpe ratio, evaluated at the
average values of the state vector X;, has a value of 81%, which is for instance comparable to the
70% maximum Sharpe ratio value reported in Brennan et al. (2004). Our estimate is for instance
in line with several of the mutual funds’ Sharpe ratios reported in Lo (2002, see Table 4 thercin)
and is included in the interval proposed by Cochrane and Saa-Requejo (2000) of 50% (i.e. the

).28 Moreover,

historical Sharpe ratio of market portfolios) and 100% (i.e. their target Sharpe ratio
Panels (a), (b) and (c) of lTablc4 document the fit resulting from our baseline estimation (reported
on the second column) by comparing the sample averages of observed financial data to their model-
implied counterparts. Overall, the model displays a satisfactory fit of the prices of disaster-exposed
market instruments.

The model fit is also illustrated by Figures 4 to 8. Figure 4 depicts the fit of stock returns and

consumption growth. In our framework, model-implied stock returns are given by a linear combi-

nation of the state vector X; and and its lag X, (see eq. a.12). Our estimation approach fits stock

28 Appendix Q.5 details the computation of the maximum Sharpe ratio in our context.
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returns well, as seen in Panel (a). Moreover, Panel (b) of Figure 4 indicates that the model-implied
persistent component of Ac; (i.e. Heo+ He,yyr, See eq.4) captures an important share of observed
consumption growth fluctuations. Though the consamption process also underlies the pricing of
credit derivatives in Christoffersen et al. (2017) or in Seo and Wachter (2018), the latter two papers
do not discuss the ability of their model to track consumption’s dynamics. Figure 5 complements
the information provided on Figure 4 by displaying the unconditional distribution of year-on-year
consumption growth. Panel (a) of this figure shows its probability distribution function (p.d.f.) and
Panel (b) shows its cumulative distribution function (c.d.f.).?” The fact that this distribution fea-
tures a fat left tail is better seen on Panel (b), which shows that while the probability of observing a
drop in consumption by more than 5% is close to 2% in our baseline model, it would be (virtuaily)
zero in the absence of disastrous events (i, ,, = 0, case represented by the dashed line).

Figure 6 illustrates the fit of the iTraxx index swap spreads of different maturities. Figure7
compares observed and model-based implied volatilities of far-OTM put options and Figure 8 dis-
plays tranche price estimates. These figures show that the model is successful in capturing the main
joint fluctuations of consumption- growth, stock returns and stock and credit derivatives exposed
to systemic risk., Moreover, although we use a longer sample (2006-2017 versus 2005-2008)—
including acute crisis periods—and a larger cross-section of prices than in Collin-Dufresne et al.
(2012), Christoffersen et al, (2017), or Seo and Wachter (2018), the fit we obtain for credit deriva-

tives is comparable to theirs.>°

29Closed-form formulas for the conditional ¢.d.f. of a linear combination of the state vector X; can be deduced from
a straightforward adaptation of Corollary 2 (see Appendix C.1.1). At a bi-monthly frequency, annual consumption
growth is an affine combination of six consecutive values of the state vectors X; (see eq. 4).

30Unlike our analysis (which uses the iTraxx Burope main index), these studies focus on (U.8)) CDX-index data.
However, the 10-year index swap spreads of both CDX and iTraxx indexes share similar dynamics and summary
statistics. Specifically, the 10-year spreads on the iTraxx index feature a slightly lower mean (of about 98 basis points,
relative to its CDX-counterpart of 107 basis points) and higher standard deviation (of about 40 basis points, refative
to its CDX-counterpart of 30 basis points). Moreover, regressing 10-year iTraxx index swap spreads on 10-year CDX
index swap spreads (respectively, regressing the squared values of 10-year iTraxx index swap spreads on the squared
values of 10-year CDX index swap spreads), we find that, at a 1% significance level, we fail to reject that the intercept
is statistically different from zero and that the slope coefficient is statistically different from 1, while the reported
R-squared is of 75% (resp. 61%).
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Table 2: Estimated parameters

Panel (a)—Calibrated parameters Panel (b)—Estimated parameters

y 5 ¢ je{1,2} 0.38  [0.01]

5 0.998

EIS 1B je{1,2}  (x10%) 1.51  [0.07]
tyy (x1072) 246  [2.11]

E(Ac,) (x6) 1.50% &, (x10%) 6.51  [5.60]

s.d.(Aci+ -+ Ac_s5) 3.00%
Ly (x10%) 0.66 [0.81]

E(ga,) - (x6) 1.50%  py (x10%) 8.79 [9.18]
Px 0.983  [0.02]
Py 0.863  [0.09]
[T (x10%)  —9.61  [4.38]
L s (x10%) =294  [0.86]
G, (x10%) 0.18  [0.10]
Ha.y (x10%)  —36.50 [20.70]
Hd oo (x10%)  —11.17  {5.59]

This table presents the model parameterization. ¥ is the coefficient of relative risk aversion, 0 is the time dis-
count factor. EIS is the elasticity of intertemporal substitution. E(Ac,} and E(g,,) are multiplied by 6 so as to
be expressed in annualized terms. The parameterization is such that E(x,} = E(y,) = 1 (see Appendix A.1).
Parameters ¢; and 8; define the conditional distribution of the number of defaults in segment j on date 1, given
in eq. (2). Parameters &, and p,, define the conditional distribution of w;, which is given in eq. (3). Parameters
Hxs Hy, Py and py characterize the dynamics of factors x; and y; (see eq. 1). The specification of the consump-
tion growth rate is given by eq. (4), that is: Ac; = {0 + He ¥t + e Wy + OcESL s.d.(Ac, -+ -+ Ac;.s) denoles
the unconditional standard deviation of consumption growth. The specification of the dividend growth rate is
given by eq. (12), that is gg, = Uq,0 + Md y¥r + Hawwvr, It is assumed that [Jud‘y, Haw) = X[Heys Ugw). Panel (a)
reports calibrated parameters. Panel (b) reports parameters estimated by maximizing an approximation of the
log-likelihood associated with the state-space model defined by measurement equations (a.33) and transition
equations (a.34) (see Subsection4.2). Standard deviations (in square brackets) are calculated from the outer
product of the log-likelihood gradient, evaluated at the estimated parameter values.
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Table 3: Model-implied population moments—with and without contagion and/or effect of sys-
temic defaults

@M (D (I1I) (V)
Data Baseline ¢=0 =0 Ue,w=0

c=0

Avg. annual consumption growth 2.007 1.50 1.50 1.50 1.50
St. dev. annual consumption growth 1.697/2.9%75.7° 3.00 1.45 0.83 0.83
Avg. short-term risk-free rate 1.464 2.28 2.61 2.70 2.70
St. dev. short-term risk-free rate 2.55¢ 0.59 0.17 0.10 0.10
Avg, equity excess return 7.65 2.18 2.32 2.32
Maximum Sharpe ratio 80.8 11.5 7.7 7.7
Avg. default proba. of a systemic entity 0.30¢ 0.30 030 030 0.30

9. These moments are based on the Area-wide-Model (AWM) database for the euro area (Fagan et al., 2001, updated
database covering the period from 1970Q1 to 2017Q4); b and ¢ come from Barro and Ursua (2011, Table 2, OECD
countries); ¥ (respectively ©) is based on a large sample starting at the end of the 19th century and ending in 2009 (resp.
a post-world-war-1I sample); ¢ is based on Moody’s (2017) (see Footnote 23). The reported maximum Sharpe ratio
is evaluated at the population mean of the state vector, i.e, for X, = X (a one-year investment is considered here; see
Online Appendix O.5 for computational details). Models (II), (III) and (IV) are modified versions of Model (I}, which
is the baseline model; in Model (I}, there is no contagion (i.e. ¢; = c2 = 0); in Model (III), defaults do not affect
consumption (i.e. M, = 0; see eq. 4); in Model (IV), there is no contagion and defaults do not affect consumption; in
Models (If), {ITT} and (IV), B, = B> are modified so as to keep the same average default probability of systemic entities
as in the baseline model.

Figure 3: Estimated factors x; and y,

Panel (a) — Estimates of x; Panel (b) — Estimates of y;

I I | | Ill I ! | I l 1 |
2006 2008 2010 2012 2014 2018 2018 2008 2008 2010 2012 2014 2016 2018

This figure displays the smoothed values of x; and y,. These values stem from the extended Kalman smoother applied
on the state-space model whose measurement and transition are egs. (a.33) and (a.34), respectively. Gray-shaded areas
are 90% confidence intervals, computed using Hamilton (1986)’s approach, that aims at taking into account both the
uncertainty surrounding parameter estimates and the one associated with the filtering approach.
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Table 4: Sample fit of data—with and without contagion and and/or effect of systemic defaults

oy (1) (11D (IV)
Data  Baseline ¢=0 e =0  fig,y =0
c=0

Panel (a) ITRAXX indices (in b.p.)
3 years 66 64 36 30 35
5 years 88 81 33 30 33
7 years 102 97 31 29 31
10 years 112 127 30 29 30
Panel (b) ITRAXX tranches (in b.p.)
3 years, Tranche: 0-3% 1879 1584 2040 1111 2024
3 years, Tranche: 3-6% 772 618 120 274 118
3 years, Tranche: 6-9% 452 387 0 59 0
3 years, Tranche: 9-12% 161 218 15 41 15
3 years, Tranche: 12-22% 113 100 9 9 9
5 years, Tranche: 0-3% 1444 1309 1694 800 1685
5 years, Tranche: 3-6% 664 560 153 248 151
5 years, Tranche: 6-9% 421 393 0 73 0
5 years, Tranche: 9-12% 152 228 15 46 14
5 years, Tranche: 12-22% 92 136 S 10 5
7 years, Tranche: 0-3% 1242 1228 1587 824 1581
7 years, Tranche: 3-6% 672 556 190 243 138
7 years, Tranche: 6-9% 439 393 0 81 0
7 years, Tranche: 9-12% 146 226 14 48 14
7 years, Tranche: 12-22% 94 145 3 11 3
Panel (c) Implied Volatility (in p.p.)
Maturity: 6 months 33% 31% 24% 14% 14%
Maturity: 12 months 31% 32% 20% 10% 10%
Panel (d) Conditional probability of k£ default over estim. period
k=0 - 5.3% 0.0% 5.3% 0.0%
k=1 - 10.7% 0.0% 10.7% 0.0%

This table compares sample averages of observed and model-implied prices. Model-implied prices are evaluated by
setting factors x; and y; to their filtered values derived from the extended Kaiman filter (see Subsection4.2). Models
(ID), (I1I1) and (IV) are modified versions of Model (I}, which is the baseline model; in Model (II), there is no contagion
(i.e. ¢1 = ca = 0); in Model (111}, defaults do not affect consumption (i.e. i ,, = 0; see eq. 4); in Model (IV), there is
no contagion and defaults do not affect consumption; in Modets (II), (IIT) and (IV), ) = [, are modified so as to keep
the same average default probability of systemic entities as in the baseline model. Panel (d) reports the model impiied
probability of observing 0 or I systemic default over the estimation period, conditional on the estimated (x;,y;).
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Figure 4: Fit of stock returns and consumption growth

Panel (a) — Stock returns

in percent

2006 2008 2010 2012 2014

2018

in percent

Panel {h) = Consumption growth

=== [ata {quartesly)
- Data (bi-monthly)
— fodel

2006

1
2008

i | I T I
2010 2012 2014 2016 2018

Stock returns are computed on the EURO STOXX 50 index. Model-implied stock returns are based on eq.(a.12).
On Panel (b), the black solid line corresponds to the part of annualized consumption growth that is accounted for by
Yo, that is 6 X (fep + Meyyi) (see eq.4). Observed annualized consumption is at the quarterly frequency (gray solid
line); to obtain a bi-monthly series (dotted gray line), we apply the method by Chow and Lin (1971) on the quarterly
series and exploit information on the monthly European Sentiment Index in order to obtain a bi-monthly consumption

growth series (see Online Appendix O.6).

Figure 5: Model-implied distribution of consumption growfh

Panel (a) — P.d.f.

g - — Model
vt Data {AWM)

[Te]

™~

Q
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o

Ln —

o —

Year~on-yaar consumption growth {in percent)

9
5

2

5%
0%
5%

5%
2%
1%

Panel (b) ~ C.d.f.

[

Model

Model (without disastrous events, L.e. {1c,=0)

] i T 1
0 2 4 6

Year-on=year cansumption growth {in percent)

This figure displays the model implied probability density function [p.d.f., Panel (a)] and cumulative distribution func-
tion [c.d.f,, Panel (b)} of annual (log) consnmption growth (black solid lines). On Panel (a), the dotted black line reports
a kernel-based estimate of annual consumption growth based on the Area-wide-Model (AWM) database for the euro
area, The dashed grey line displayed on Panel (b) corresponds to the c.d.f. that would prevail if we had no direct effect
of defaults on consumption, that is if we had p,.,, = 0 (se eq.4). The computation of the c.d.f. of consumption growth
is based on a straightforward adaptation of Corollary 2 (using the fact that annual consumption growth is an affine
combination of six consecutive values of the state vectors X, see eq. 4).
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Figure 6: Fit of iTraxx index swap spreads
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This figure displays index swap spreads (iTraxx Europe main index, black dots) and their model-implied counterparts
(gray solid lines). The data cover the period from January 2006 to September 2017 at a bi-monthly frequency. Spreads
are expressed in basis points, The dashed black lines represent (model-based) the index swap spreads that would
prevail if agents were risk-neutral, that is, they correspond to the index swap spreads computed under the physical
measure P
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Figure 7: Equity options
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This figure displays implied volatilitics of put options written on the EURO STOXX 50 index (black dots) and their
model-implied counterparts (gray solid lines). The dashed black lines represent (model-based) implied volatilities
that would prevail if agents were risk-neutral; they comrespond to the implied volatilities computed under the physical

measure P,
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Results

5.2 Sensitivity to model specification

In this Subection, we show how the model performs when different qualitative features are elim-
inated, To this end, we conduct two exercises. First, we show model-outputs derived from the
baseline model switching off some channels (i.e. with no contagion and/or no macro effects of
defaults). Second, we re-estimate our model by isolating its different channels—disaster and/or
contagion. Interestingly, the results across these two exercises differ and the re-estimation analy-

sis, in particular, is able to shed light on the mechanisms at play in the model.

5.2.1 Counterfactual analysis

Panels (a), (b) and (c¢) of Table4 document the fit resulting from our first exercise. The third
column reports the results derived from the baseline without contagion (i.e. setting ¢; = ¢ =0
and modifying 81 = f; such that the average default probability of systemic entities is the same
as in the baseline model), while the fourth column reports those without macroeconomic effects
(i.e. setting f,,, = 0). By imposing no contagion, we prevent the formation of default clusters
while maintaining the same probability of default we had under our baseline estimation. We thus
observe that, on the one hand, spreads for senior tranches practically vanish, which reflects the
fact that there are fewer default clusters and hence a lower probability of these tranches being
triggered. On the other hand, spreads for equity tranches increase because now defaults are evenly
spread in time and therefore these tranches are more likely to be triggered. This finding is in line
with the fact that, under a no-contagion setup, the conditional probability of no default occurring
over the estimated period is equal to 0% (see Panel (d) of Table4). Moreover, by switching off
macroeconomic effects, the default of a systemic entity no longer has an effect on consumption—
conditional on x; and y;. By eliminating the possibility of a dramatic drop in consumption due
to a systemic default, consumption becomes less volatile (the standard deviation of consumption
growth goes from 3% in the baseline case to 0.83%, see second row of Table 3) and a systemic
default no longer needs to occur only in a bad state of the economy; this implies that investors no
longer require risk premiums that are as high as under our baseline estimation. Consequently, we
observe that the average equity excess return and maximum Sharpe ratio are lower and all spreads

(indexes and tranches) decrease substantially (refer to the fourth column of Table4). The fifth
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column reports the results without contagion and macroeconomic effects. In the absence of these
channels, the model is unable to fit any of the asset prices (iTraxx indexes, iTraxx tranches and
implied volatility) or market regularities such as the conditional probability of no default occurring
over the estimated period. The counterfactual exercises support the conjecture that both channels—

contagion and macroeconomic effect—are important for the model fit.

5.2.2 Isolating disaster and contagion

The tractability of our approach allows us to re-estimate the model by isolating its different channels—
disaster and contagion. The results of this exercise are presented on Table 5 and Table 6. The results
across these two exercises differ and the re-estimation analysis sheds light on the mechanisms at
play in our model. Interestingly, in this second exercise, where the model is re-estimated without
at least one the two channels, the fit of prices is only mildly affected (see Table 6). However, the
likelihood is substantially affected, reflecting inconsistencies with the data. Let us be more explicit.

Re-estimating without contagion affects the model’s ability to form default clusters. To com-
pensate for the decrease in the correlation between firms’ defanlts—and to still justify substantial
observed tranche prices—the model-implied probability of default of each firm increases. But this
is at odds with the data; Panel (d) of Table 6 shows that, under such a model, the conditional prob-
ability of no default occurring over the estimated period is equal to 0.0% (degrading in particular
the log-likelihood). In such a model, defauits should occur often and not necessarily in a bad state
of the world; risk premiums are therefore small. This is reflected by a lower average equity excess
- return and lower maximum Sharpe ratio, as seen on Table 5.

Instead, when we re-estimate the model precluding disaster, the model exhibits some tensions
around risk premiums and contagion. The model requires risk premiums to reconcile the large ob-
served credit swap spreads and the absence of default over the sample. However, without disasters,
risk premiums tend to decrease because of a lower correlation between consumption and defaults,
To compensate, the model needs a large covariance between default and the business-cycle com-
ponent of consumption (i.e. feyy,). This leads to a very poor fit of consumption under this model,
because the model generates risk premiums by increasing the volatility of the business cycle (see
Figure 9).

When we re-estimate the model cutting-off both channels, although the model is able to fit
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Table 5: Model-implied population moments—models re-estimated with and without contagion
and/or effect of systemic defaults

(D ey oy v

Data Baseline ¢=0 pew=0 =0

c=0
Avg. annual consumption growth 2.00¢ 1.50 1.50 1.50 1.50
St. dev. annual consumption growth  1.69/2.9%/5.7¢ 3.00 3.00 3.00 3.00
Avg, short-term risk-free rate 1.49¢ 2.28 2.60 2.68 2.65
St. dev. short-term risk-free rate 2.55¢ 0.59 0.44 0.31 0.26
Avg. equity excess return 7.65 5.30 4,93 7.64
Maximum Sharpe ratio 80.8 35.6 27.9 32.4
Avg. default proba. of a systemic entity 0.30¢ 0.30 0.30 0.30 0.30

See notes of Table 3. Models (II), (III} and (IV) are constrained (re-estimated) versions of Model (I), which is the
baseline model; in Model (IT), there is no contagion (i.e. ¢ = ¢ = 0); in Model (111}, defaults do not affect consumption
(i.e. ey = 0; see eq. 4); in Model (IV), there is no contagion and defaults do not affect consumption.

consumption well (see Figure 9), it fails on all other respects and produces the lowest log-likelihood
across all model specifications (refer to the fifth column of Table 6).
We conclude that both features of our model—disaster and contagion—are crucial in order to

capture the joint dynamics of consumption and disaster-exposed credit and equity derivatives.

5.3 Dynamic effects of systemic defaults

This subsection examines the dynamic implications of a systemic default. We focus on both con-
sumption and stock returns; the implications on credit derivative prices will be considered in the
next subsection, The dynamic analysis relies on impulse response functions (IRFs), where the ini-
tial shock consists of an unexpected additional default by a systemic entity, Figure 10 displays the
results.

The left-hand side panel of Figure 10 shows the dynamic responses of the number of systemic
defaults following an unexpected systemic default on date r = 0. Because of contagion phenomena,
the initial default increases the expected number of subsequent systemic defaults, More precisely,
a systemic default triggers three additional systemic defaults in the subsequent two years, on av-
erage. The middle panel shows, in black, the response of consumption following the systemic

default. This response is gradual, going from 0 to —2% in the two years following the shock. The
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Table 6: Sample fit of data—models re-estimated with and without contagion and and/or effect of

systemic defaults

ey (1) (It vy
Data Baseline c=10 Mo =0 Hew =0
c=0
Panel (a) ITRAXX indices (in b.p.)
3 years 66 64 68 58 57
5 years 88 81 83 81 72
7 years 102 97 98 96 92
10 years 112 127 127 114 142
Panel (b) ITRAXX tranches (in b.p.)
3 years, Tranche: 0-3% 1879 1584 1775 1408 2567
3 years, Tranche: 3-6% 772 618 658 547 606
3 years, Tranche: 6-9% 452 387 381 324 57
3 years, Tranche: 9-12% 161 218 227 173 61
3 years, Tranche: 12-22% 113 100 99 71 5
S years, Tranche: 0-3% 1444 1309 1486 1316 2122
5 years, Tranche: 3-6% 664 560 606 600 734
S years, Tranche: 6-9% 421 393 395 430 357
S years, Tranche: 9-12% 152 228 239 243 213
S years, Tranche: 12-22% 92 136 134 132 53
7 years, Tranche: 0-3% 1242 1228 1411 1277 1898
7 years, Tranche: 3-6% 672 556 616 644 732
7 years, Tranche: 6-9% 439 393 412 493 484
7 years, Tranche: 9-12% 146 226 245 280 307
7 years, Tranche: 12-22% 94 145 149 166 145
Panel (¢) Implied Volatility (in p.p.)
Maturity: 6 months 33% 31% 32% 27% 31%
Maturity: 12 months 31% 32% 31% 30% 32%
Panel (d) Conditional probability of & default over estim, period
k=0 - 5.3% 0.0% 29.0% 0.0%
k=1 - 10.7% 0.1% 22.8% 0.1%
Panel (e) Log-likelihood
4421.2 43238 3817.6 2856.4

See notes of Table4. Models (II), {IIT) and {1V} are constrained (re-estimated) versions of Model (I), which is the
baseline model; in Model (11}, there is no contagion (i.e. ¢; = c3 = 0); in Model (I1I), defauits do not affect consumption

(ie. t.w = 0; see eq.4); in Model (IV), there is no contagion and defaults do not atfect consumption.
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Figure 9: Fit of consumption growth with/without contagion and macro effects
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This figure shows the fit of the annualized consumption growth rate when the estimated model allows—or not—for
contagion and macroeconomic effects of systemic defaults. See notes of Table 3 for the description of Models I to IV.
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economic impact of a systemic default is therefore substantial. For the sake of comparison, using
international data, Laeven and Valencia (2012) find that a systemic banking crisis is, on average,
followed by a 23% decrease in output, which would correspond to about 8 defaults of systemic
entities {(assuming that consumption and GDP move in tandem). Interestingly, in our model, a sys-
temic default has not only an impact on conditional expectations, but also on conditional variances:
upon arrival of a systemic default, we observe a jump of the volatility of consumption growth, i.e,
a dramatic increase in economic uncertainty (right-hand plot of Figure [0).

The middle and right-hand side panels of Figure 10 further display the respective responses
of ex-dividend stock returns ;7 and their volatility. Following a systemic default, the conditional
level and volatility of the stock index undergo the same types of effects as consumption does,
except that the stock price response (in level, central plot) is immediate. This is consistent with the
forward-looking nature of stock returns. Figure 11 indicates the responses to an unexpected default
of a systemic entity when switching off contagion and/or macro effects of defaults. As expected,
effects on consumption and stock returns are muted (under no contagion) and inexistant (under no
macro effects).

In order to address the sensitivity of our results to different calibrations, we estimate 26 alter-
native models to our baseline. Specifically, we apply three different values for each of the three
calibrated parameters of interest, as follows: (i) the unconditional probabilities of default (either
0.2%, 0.3%—bascline—or 0.4%), (ii} the unconditional variances of consumption (either 2%,
3% —baseline—or 5%) and (iii} the coefficients of relative risk aversion (either 3, 5—baseline—or
7). The resulting responses of consumption are displayed on Figure 16 in Online Appendix O.7).
We find that, overall, across the different calibrations of our model, 23 out of the 27 specifications
fall within the confidence bands of our baseline result in Figure 10. Some of the notable excep-
tions correspond to models that feature a low out-of-sample fit to default realizations (featuring a
probability of observing no systemic default on the estimation period lower than 1%), implying

that they would be rejected by the data.
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Figure 10: Responses to an unexpected default of a systemic entity
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This figure displays response functions of different variables to an additional default of a systemic entity at date r =0,
That is, the initial shock is ny_q = E(n]) + 1. The left-hand side panel displays the effect on the number of systemic
defaults. The middle panel displays changes in expectations of future consumption and of the future stock index,
The right-hand side panel shows the effect on the expectations of future conditional variances of consumption growth
and of stock returns. To facilitate the reading, we plot the square roots of the expected conditional variance. The grey
shaded areas are +2 standard-deviation intervals; the standard deviations reflect the uncertainty surrounding parameter
estimates, their computation is based on the delta method and relies on the asymptotic distribution of the parameters’
maximum-likelihood estimates.
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Figure 11: Impulse Responses Functions without contagion and/or macroeconomic effects of de-
faults

Panel A - Baseline model (switching off contagion and/or macroeconomic effects}
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This figure aims to show the contribution of the contagion and of the macroeconomic effects of defaults on the impulse
response functions (IRFs). The initial shock is #{_y = E(n}} 4+ 1. For both Panel A and Panel B, the IRT's associated
with Model I are the same as in Figure 10. In Panel A, Models (IT), (III) and (IV) are modified versions of Model (I),
which is the baseline model: in Model (II}, there is no contagion (i.e. ¢; = ¢ = 0); in Model (11I), defaults do not affect
consumption (i.e. f, = 0; see eq.4); in Model (IV), there is no contagion and defaults do not affect consumption.
The plots of Panel B are based on Models (II), (IIT} and (IV) whose parameters have been re-estimated by maximum
likelihood techniques (after having switched off contagion and/or macroeconomic effects of default).
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5.4 Credit risk premiums

Let us now turn to the study of credit risk premiums, defined as the differences between model-
implied prices and those prices that would be observed if agents were not risk averse. The latter
prices are computed by replacing E? by EF = E in the pricing formulas. In other words, these
counterfactual prices are computed “under the physical measure P’ (whereas standard model-
implied prices are computed under the risk-neutral measure Q).

Let us first consider the decompositions of Credit Default Swap (CDS) spreads. Figure 12
displays the IP (gray) and @ (black) CDS spreads associated with maturities of 5 and 10 years. The
differences between the two types of spreads are credit risk premiums. The solid lines correspond
to spreads of CDSs written on systemic entities. In late 2011, CDS premiums accounted for almost
80% of the 10-year CDS spread. Such high risk premiums reflect the fact that the default of a
systemic entity is a particularly bad state of the world, i.c. a state of high marginal utility: when
it happens, agents dramatically revise théir future consumption path downward (consistently with
the IRF plotted on the middle panel of Figure 10). For a CDS written on a systemic entity, the
protection seller expects to face large losses in bad states of the world. As a result, she is willing
to provide this protection only if the compensation is high enough, i.e. if the CDS spread is
sufficiently above her expected loss, which translates into high credit risk premiums.

At this stage, we have not discussed the parametrization of the number of non-systemic defaults
(n3,;). Given this number does not cause any other variable in the model (see Figure 1), it does not
affect the prices we have considered until now. In particular, it was not necessary to parametrize
the conditional distribution of n3; to estimate the model. Thus, we are now free to choose the
exposure of non-systemic entities, which we will exploit to investigate the influence of default
risk exposure to credit risk premiums. Recall that the conditional distribution of the number of
defaults in segment j is Z?(f;y;41 + c;n}) (this is eq. 2). Therefore, the default risk exposure of
segment-3 entities is defined by the pair (83, c¢3). The triangles in Figure 12 are obtained by taking
c3 = 0.5¢| = 0.5¢; and by computing f33 in order to have segment-3 entities featuring the same
average default probability as the systemic entities (from segments 1 and 2), Figure 12 shows that
the spreads of CDS written on these entities are far lower than those for systemic entities. This

figure also shows that the P components of the CDS spreads of systemic entities and segment-3
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entities are close. This was expected as P-CDS spreads essentially reflect default probabilities and
segment-3 entities have, on average, the same default probability as systemic entities. The reason
why credit risk premiums are far lower for segment-3 entities is that the defaults of such entities
tend to occur in relatively better states of the world than is the case for systemic entities. Though
defaults of segment-3 entities are more likely to happen when y; is high, the decline in consumption
may then remain subdued as long as such a high level of y; has not triggered (recessionary) defaults
of systemic entities.

Again, the exposure (83,¢3) chosen for segment-3 entities was arbitrary. Another exposure
{Bs,c3) would have resulted in different dotted lines in Figure 12, In particular, we could have
chosen B3 < B and ¢3 > ¢ (say), still keeping the average default probability constant, In this
case, compared to systemic entities, a larger fraction of defaults of segment-3 entities would take
place in particularly bad states of the world. Accordingly, we would expect higher CDS spreads for
this new type of entities than for the systemic ones. They would remain “non systemic” because
their default would still not cause a drop in consumption growth or other defaults.

Let us define the Q/P ratio as the ratio between model-implied CDS spreads and counter-factual
P-CDS spreads. Figure 13 explores in a systematic way the relationship between the exposures to
the risk factors (B3, c3) on the one hand, and the 10-year-maturity Q/IP ratio on the other hand. On
Figure 13, we connect, with black lines, those pairs of exposures resulting in the same average Q/IP
ratio. We also connect, with dashed gray lines, pairs of exposures resulting in the same average
one-year probability of default. Whereas the black square represents the segment-3 entity we
considered in Figure 12, the triangle indicates an entity that features the same exposures as our
systemic entities. While the average default probabilities of these two types of entities are close,
their Q/IP ratios differ substantially (2.75 and 2, respectively). The figure also shows that, for
each average probability of default, there exists a maximum Q/IP ratio. Typically, for a one-year
probability of default of 0.2% (say), the maximum Q/P ratio is about 3.

Credit risk premiums are also present in iTraxx tranche spreads. On Figure 8, these risk premi-
ums are the differences between the gray lines and the dashed black lines: while the gray lines are
the model-implied tranche prices, the dotted lines are their P-counterparts, i.e. the (model-implied)
prices that would prevail if agents were not risk averse. The more senior the tranche, the higher

the relative importance of credit risk premiums. This is consistent with the fact that more senior
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tranches are more exposed to catastrophic events (i.e. a fall in consumption triggered by one or

several systemic defaults).

5.5 Measuring systemic risk

Our approach provides natural measures of systemic risk by considering the probabilities of having
at least @ systemic defaults (say) at any given horizon /.3

As an illustration, the top panel of Figure 14 plots the probability of observing at least 10
iTraxx constituents defaulting in the next 12 months (dotted line) and 24 months (solid line). We
also report vertical lines indicating significant dates of the financial crisis. Our systemic indicators
reached their maximum levels in late 2008, after the Lehman bankruptcy and in late 2011, when
the European sovereign crisis was at its peak. For these two dates, the conditional probabilities
to have more than 10 defaults among iTraxx constituents within two years were of 5.5% and 5%,
respectively.

The bottom panel of Figure 14 depicts an alternative indicator of systemic risk by reporting the
probabilities of consumption dropping by more than 10% (solid line) and 20% (dotted line) in the
next 12 months, In line with our first indicator, these probabilities reached their maximum levels
at the time of the Lehman bankruptcy and at the height of the European sovereign crisis. On these
two dates, the probabilities of consumption dropping by more than 10% in the next 12 months
were of 8% and 6%, respectively.

A similar sensitivity analysis across different calibrations has been conducted on the systemic
indicators (see Figure 17 in Online Appendix O.7). We find that our baseline results are quantita-

tively supported by this analysis, given they are centered around alternative estimation outputs,

3 Closed-form formulas can be deduced from a straightforward adaptation of Corollary 2.
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Figure 12: Credit risk premiums in iTraxx Europe main indexes
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This figure illustrates the magnitude of credit risk premiums in iTraxx Europe main indexes. The black solid line is the
model-implied iTraxx index. The gray solid line is the (counter-factual) iTraxx index that would prevail if agents were
not risk averse (said to be the iTraxx index “under the physical measure P”), The difference between the black and gray
solid lines reflects credit risk premiums, Triangles correspond to (P and Q) CDS spreads associated with a firm from
the third segment; these entities are non-systemic, in the sense that their defaults do not Granger-cause consumption;
however, they may be exposed to systemic-risk factors, which implies that the CDS written on segment-3 entities
may embed substantial risk premiums. Recall that the conditional distribution of number of defaults in segment f is
P(Biyis1 +¢jnf) (see eq.2). As explained in Subsection 5.4, the specification of the exposure of segment-3 entities
{i.e. B3 and ¢3) is arbitrary. In the context of this chart, the exposure is defined by ¢3 = 0.5 x ¢| = 0.5 X ¢3, and by
setting f33 in such a way as to have the same average default probability as systemic entities (segments I and 2). This
is why P CDS spreads coincide for systemic and segment-3 entities. This is not the case for ¢ CDS spreads: because
¢3 < ¢ = ¢3, segment-3 entities arc relatively less exposed to disasters than systemic entities, which translates into
lower credit-risk premiums. See Subsection 5.4 for more details.
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Figure 13: Impact of exposures to the exogenous factor y; (measured by f3;) and to the number of
systemic defaults nf (measured by ¢;) on the average size of credit risk premiums
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This figure illustrates the influence of the exposure {o the risk factors—that are the exogenous variable y, and the
number of systemic defaults 7j—on the relative importance of risk premiums in CDS spreads. The coordinates of
each point correspond to the exposure of a given entity to factor y; (abscissa) and to the number of systemic defaults,
i.e. ny (ordinate). The black lines connect the pairs of exposures implying the same Q/IP ratio, defined as the ratio
between the (model-implied) CDS spread and the counter-factual CDS spread that would be observed if agents were
risk-neutral. (The former is the one computed under the pricing, or risk-neutral, measure €, the latter is computed
under the physical measure P, hence the denomination “Q/P ratio”.) We consider the 10-year maturity. The gray
dashed lines connect pairs of exposures implying the same average probability of default. Figures reported in gray
are probabilities of default expressed in annuvalized percentage points. The triangle indicates a pair of exposures
corresponding to the systemic entities. The square indicates the pair of exposures of non-systemic entities whose CDS
indexes are displayed in Figure 12,
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Figure 14: Systemic indicators
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The top panel of this figure displays the (model-implied) probabilities that at least 10 iTraxx constituents—considered
to be systemic entities—default in the coming 12 months (dotted line) and 24 months (solid line). The bottom panel
displays the (model-implied) probabilities that consumption drops by at least 10% (solid line) and 20% (dotted line)
in the next 12 months. Gray-shaded areas are 95% confidence bands; they reflect the uncertainty surrounding filtered
x; and y,. The vertical bars correspond to important dates of the financial crisis (see Bruegel, http://bruegel . org/
2016/09/euro-crisis/): (1) August 2007: European interbank markets seize-up; (2) 15 September 2008: Collapse
of Lehman Brothers; (3)7 May 2010: Emergency measures to safeguard financial stability; (4) October2011: Spain
and Ifaly are hit by a wave of rating downgrades by the three main rating agencies; (5) 26 July 2042: ECB President
Mario Draghi says that the ECB will do “whatever it takes to preserve the euro”,
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Concluding remarks

6 Concluding remarks

In the literature on disaster risk and its asset pricing implications, disasters are usually modeled as
exogenous shocks that simultaneously impact macroeconomic variables and default probabilities
of firms. In the present paper, we propose a no-arbitrage asset pricing framework that allows for the
default of large (systemic) firms to constitute a disaster in itself. More precisely, in our model, such
a systemic default (i} has an adverse macroeconomic impact, and (ii) can trigger default cascades;
thus leading to an amplification of the original recessionary effect.

Before the occurrence of such a disaster, the probabilities of default depend on a small number
of factors capturing the fluctuations of the economy. Risk-averse investors observe these factors,
and price derivatives that are consistent with the model structure. The model offers closed-form so-
lutions for a wide variety of derivatives that are exposed to systemic risk, notably far-OTM equity
puts and credit derivatives. In this context, the econometrician can infer the model parametrization
from observed prices even if no systemic default has taken place over the estimation period. That is
because, typically, prices of CDOs provide information on the views of investors regarding conta-
gion effects. Indeed, the parameters governing the contagion mechanism influence the conditional
distribution of the number of future defaults, which CDO prices directly depend on.

The empirical application, on euro-area data, demonstrates the ability of our model to capture a
substantial share of the joint fluctuations of stock and credit markets, both in tranquil and stressed
periods. Our approach also provides an estimation of the conditional effect of a systemic default
on consumption. This effect is found to be substantial: the default of a systemic entity is expected
to be followed by a 2% decrease in consumption. In line with the recessionary effect of a systemic
default, our results point to the existence of important risk premiums in the credit derivatives writ-
ten on systemic entities. This implies that simple inversions of CDS pricing formulas to obtain
probabilities of default—without éorrecting for risk aversion—may tend to substantially overesti-
mate these probabilities. We finally derive systemic risk indicators defined as: (i) the probability of
joint defaults of systemic entities, and (ii) the probability of consumption displaying a sharp drop

in the next year.
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State-vector dynamics

A State-vector dynamics

A.1 The dynamics of z; = [x,, ;]

We assume that, conditional on {x;, Y}, %41 and y,4 are independently drawn from non-centered

Gamma distributions:32

Xe+1 |_)_'_f_»)l ~ '}"\;_\_(C,\-x,, u\)

'ED:_)_?L ~ ry"’.\-(g)’.r\'xf + C.Y»J'yf * I’L)’)'

Y+

In this case, we have that (Monfort et al., 2017):
Xoo= MVet+ e Gox + Ty €Ext

yio= HyVyt+ Ly Cy,.\'x!—— 1+ Hy Cy,yy (=11 Oy ey,

where & = [g;,,&,,]’ is a martingale difference sequence with identity conditional covariance ma-
trix and where:

Oxy = Hxy/ Vet 2§r~¥r—1,

Gyr = My \/ Vy+ 28591+ 28 0% 1.

Let us use the notations py = p, ¢, and Py = tyCyy and let us assume that (i) 1 — py = vy = Ly Vy
and that (ii) Px— py = ’u-_): Cy,xo We gert:

x—1 = Px(xr—l - 1) + Oxyéxy,
Yr = I- P+ PrXe—1 + Py()"r-—l — X l) + 6)’,1 éy,r-

Defining &,, = Oy,r€y,r — Ox €y
v

= and oy, = 6')%, + oﬁ, leads to System (1).
Gy + 0%y

>The random variable W is drawn from a non-centered Gamma distribution ¥, (@, i), iif there exists a 22()-
distributed variable Z such that W|Z ~ y(v +Z, tt) where Z and p are, respectively, the shape and scale parameters of
the Gamma distribution (Gouriéroux and Jasiak, 2006, see e.g.). When Z=0and v =0, then W = 0. When v =0,
this distribution is called Gammag distribution; this case is introduced and studied by Monfort et al. (2017).
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State-vector dynamics

A.2  The conditional log-Laplace transform of X; = [x;,y;,w;,N/,N/_,/

The dynamics followed by X; = [x;,yr, wr,N/,N/_,|’ is a special case of the general case treated in
the Online Appendix (see O.1) with:

- i_:y],\- 0 00 &, 0 0 0 c1 €2 €3

CFZ 0 gy,_\; D ) é’nm 00 'G’w 3 lBz ﬁl ﬁz ﬁ3 ? ¢
0 0 0 00 0 0 0 0 0 0 0

i

1 €2 €3 |,

and Ju' = [H.n Hy,ﬂw}’s V= [Vx, V).,O}’.
As shown in the Online Appendix (O.1), in this case the conditional log Laplace transform of

X; is given by:

B (exp(v'Xrs1)) = exp(w (v, X;)) = exp(yo(v) -+ w1 (v)'X)), (a.1)

where

{ WO(\;) = (Z‘l{w} (GXP(VB,J') - I)ﬁ.f+ vA) g (a.2)

i) = [wal®) s vis() vieT,
with d{w) = —v'log(1 —w® 1), where ® is the element-by-element (Hadamard) product (and

where, by abuse of notations, the log operator is applied element-by-element wise) and where:

yia(v)  =a(Ti (exp(vs,;) — 1B +va),
vis(v) =B (exp(ve ;) — 1)BY +va) + Lo, (exp(va ;) — e/ +va -t v, (a.3)
Yic(v) =c(Xioi(exp(vp ;) — 1)/ 4va) — Tl (exp(va j) — 1)e/,

where 8/ and ¢/ denote the j* columns of f and of ¢ respectively, and where v = [/, v, v,]/,

where v, is a np-dimensional vector and vg and v are J-dimensional vectors, and:

o) = G (T28) b= ({2 ) = bl

where, again, the log and division operator are applied element wise, by abuse of notations.
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Derivation of the s.d.f,

B Derivation of the s.d.f.

Proposition 1. w, = u,_| -+ pe o+ ,u[’r,lX, + (Uo1 — tu 1 Y Xe—1 + (1 — 8) 0. satisfies eq. (6) for any
[XrlaX,«fml]j U Ha,1 satisfies:

o)
T:?Wl((i - y)ﬁu,l) = M1 — He,1s (a.d)

where Ut = [0, ey, e, O] (see eq. 4).
Proof. Let us consider the following specification for Au,:
Avy = o0+ My, ( X + Hy 2 X1 + (1 — 8)ocgf.

Then, for a given [X/,X] ||, we have:

eq. (6) & Huot My X+ My 0 Xi-1

§ 1
= Moo+ o Xi + 517 {lvr((1 =P pe) + (L = Ptt2] (X =X 1)}

Therefore eq. (6) is satisfied for any [X/, X/ ] iff

T.STET”}?VH ((1 - Y)#u,l) + ﬁ“ﬂﬁ =0,

My, 1= Hel — T%T{“?Wl((l - '}/);uvu,l) - %ﬂu,z =0,

M 0 = He 0,
or
& 1 [ — Ao, =0
-5 ple(( V1) + 752 '
a1 + Uy 2 — Hey = O, (a.3)
Hy 0 = He o,
which leads to the result, ]

Proposition 2. We have:

1
M1 = exp w(nwanf)wr’Xmww(ﬂ,Xf)—ncefH—inf : (a.6)
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Derivation of the s.d.f.

with
T o= (l“'}’)”u,l“"lu'c,l
Mo = —1log(8)+ pieo+yo((1—Y)ku1) = Yo(m) + (1 - 1)1~ )07
m = ‘!fl((l""}’)ﬂu,l)—%(”)
e = (Y(1-28)+8)o;

Proof. When agents’ preferences are as in eq. (6), the s.d.f. is given by (Piazzesi and Schneider,
2007):

(G -1 exp{(1 — V)it 41]
M1 =8 ( G ) E¢(exp[(1 = Y)urr1])

Therefore, we have:

logM; ;s = logd —Aciy+ (1 —Y)uy1 —logEy (exp[(1 — V)ur41])
= logd —Act1+ (1 —Y)Aury —logE{exp[(1 — ¥)Au,41])

= log(6) — fep— Né,erH — & {1 = 1)t + f»ﬂf.,;Xrﬂ + Hﬂ,er + (1= 68)ocgy)

—log E (exp[(1 — ¥) {10 + HL,[XIH + #::,zXI +{1—-08)o.€1)])
= 103(3) = Heo— WO(U - 3’)”«”,{) + [(1 - 7):”1:,1 - Nc',l],X'+1 — ¥ ((1 - T)ﬂ'u,i),Xr
¢ .
—0etfpy +(1-7)(1 - 8)oeefyy — 7 (1 -7)*(1 - 8)’c7,

which leads to the result, ' ]

Propeosition 3. We have:
exp (V2 X)) = B (exp(vXs1)) =exp (y0) + wl(m)X), a.7)
with

{wé?m = wov+m)—yo(r),
yiv) = wi(v+m)— (7).

Proof. Using the s.d.f. specification of Eq. (2.6), we get:

M
Q 7 - 41 rX
B (exp(vXi1)) & (JE/ (Mi141) xp(r X )>

= B (exp['X; 11— w(m, X:) + VX, 11))
= GXP(‘V(V + E:Xi’) - W(R:X!)):

which leads to Eq. (a.7). U
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Pricing formulas

C Pricing formulas

C.1 Generic pricing formulas
C.1.1 Pricing of exp(v'X;, ;) and V'X; ., settled at date 7 + 7

Proposition 4, The date-t price p(u,h,X;) of the payoff exp(u'X, +1,), that is settled at date t +h, is
given by exp(Top(u) + T () Xe), where:

Cipgr(e) = W?(Fl,h(“)) -,
Dopei (i) = w(Uy () — 1o+ Lo u (),

with I't o(u) = u and To o(u) = 0.

Proof. This proposition is clearly satisfied for # = 0. Assume that, for a given & > 0 and for all
admissible w and X;, we have p(u,h,X;) = exp(To s {u) +T1 4 (u)'X;), then

plh+1,X) = exp(—r)E2(p(u,h, X 41))
= exp(—r)ER(exp(Loy(te) + T () Xi11))
= exp(—no+To(tt) — MXYEL (exp(T'y 4 (1) Xi11))
= exp(—"no+Lou(u) — N X;)exp (‘J’(? (T n(u)) + IVP(I“;,;.(LA))’XJ ,

which leads to the result by recursion. 0]

Corollary 1. The date-t price of the payoff v'X, .y, conditional on X; = x, with payoff settlement at
date t +h, is given by:
(v, h,x) =V'V,plu,h,x) Iwo, (a.8)

where p(u,h,x) is defined in Proposition 4 and where V, denotes the Jacobian operator with

respect to the first argument of the function.

Let us denote by 0,.x. and 1, the matrices of dimensions r X ¢ filled with 0 and 1, respectively.
In addition, let ¢; denote the j/ " row vector of the identity matrix of dimension J x J. Using the
previous corollary with v/ = [0|43,¢ 7»01xy] and v = [01x3,01xy,€;], respectively, results in the
prices of the payoffs N; ), and Nj 4,1, settled at date ¢ + h.

Corollary 2. The date-t price of the payoff exp(a'Xen)iyx,, <y}, conditional on X; = x, with



Pricing formulas

payoff settlement at date t + h, is given by:

gla,b,y,h,x) = EEQ(Af,r+hﬂxp(ﬂfo+h)ﬂ{be,H,q»}|Xtmx)
pla,h,x) i/""Im[p(a+ivb,h,x)exp(—ivy)]
0

v

5 - dv, (a.9)

where Im(z) denotes the imaginary part of the complex number z and where Ai g4 18 defined in
eq. (10).

This result is proved in Duffie et al. (2000). Note that the formula for g(a,b,y, h,x) is quasi

explicit since it only involves a simple (one-dimensional) integration.

Corollary 3. The date-t price of the payoff a’X,,,.h]l{b:XH w<y})s conditional on X, = x, with payoff
settlement at date t + h, is given by:

C(a,b,y,h,x) = d'V,g(u,b,y,h,x)| (a,10)

u=0"

Let us consider the date-f prices of the following payoffs, settled at date r + k: (i) Liw, ,yp<e)s
(1) Ny, <oy and (iii) Nipk-10{n, <23 Using the notations introduced in Corollar-
ies 2 and 3, these prices are respectively equal to: (i) g(0,n,z,4,X;), (it) T(wy, wy,z,%,X;) and
(iil) Iy, 00,2, 7,X;), with @y = [01x3,€1,01xs) and @) = [0;43,01xs,e1]’, where e; is a J-

dimensional vector whose entries are 0, except the first one that is equal to 1.

C.1.2 Pricing of exp(t/\ Xy + -+ X yp—1 +ubX, 1), settled at date r +
Proposition 5. Using the notation u = {uy,u2}, the date-t price p(u,h,X,) of the payoff
exp(i X1+ + il Xppp—1 b Xe i),  forh>1

and of exp(uyX;41) for h =1, settled at date 1 + h, is given by exp (o 5 (0) + 1T, (0)'X,), where:

Fl,fu+1(u) = WP(F]J?(“) +up) — Ny,
Toper(w) =y (T u(u) +ug) — 1o+ To (),

with Iz‘;,l (ll) = F1,1 (Ll.g) and 1:‘()'1 (u) = FO,I(LEQ),

Proof. This proposition is clearly satisfied for # = 1. Assume that, for a given 2 > 1 and for all
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Pricing formulas

admissible u and X;, we know exp (o (u) -+ 4 (u)'X; ), then

Ph+1,%) = exp(—r)EL(exp(i; X0 5w, A, X41))
= exp(—r) B (exp([op(0) + Tty (W) Xyt + 1 X,11))
= exp(=1o + Lo u(w) = mX)ER (exp([Tr 4(0) + 1) X))
= exp(—no+Tox(u) — nX,)exp (llf(?(f"l,h(UJ +u)+ 9y (Trp(w) + LH)’X:) ,

which leads to the result by recursion. 0

C.2 Tranche products formula

Let’s rewrite eq. (11):

& Niw—H,
1+k f+k—1
H{JQ {kz Ar vk bh—a 1{5<MH-S'5}}

TDS by ah
TDS t) a ) b M-}-k
Uy {a,b) +E§@ { ' 2 Atrik ( (W p<a + Tﬂ{a<ﬁf+d3} ’

i ‘o
'\zvheiearuaI - and b = bI TR We obtain:

E@ {Egil Ay !+k(1v!+k - N:’Jrkf 1) (1{&“53} - ﬂ{ﬁwkﬂa}) } (b a)UtT};Dé (G, b)
E? {Z“’h Asisk ((5 ~ D)1y, e<a) + (= Niga) (1 {Fa<hy — 1 {ﬂ’wksa}) ) }

S,?:JITDS(CE’ b) -

C.3 Approximated stock returns

Proposition 6. If the log growth rate of dividends is affine in X;, i.e. if:
8y = Map+ My 1 X%, (a.11)
then stock returns are approximately given by:
i = Ko+Ao(x — 1)+ a0+ (KA + pa 1) X1 — ALK, (a.12)

where Ky and Ky are given by

exp(%)
1 +exp(T)’ (a.13)
Ko = log(1+exp(T))— K7,
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Pricing formulas

where Ay satisfies

Vi(KIAL g1+ 7)) = Ay yn (),

and where
Ag = K0T Hap + Mo+ Yo(7) — Yo(Kk1A| + pg1 + %)
Kp—1 '

Proof. Let us introduce the log price-dividend ratio defined by 7 = log{F;/D;) and let us denote
by 7 its marginal expectation. The following lemma is based on the log-linearization proposed by
Campbell and Shiller (1988).

Lemma 1, if ¢, — 7 is relatively small, then the stock return 1],y can be approximated by:

B+ Dpgy
11y = log (—“‘—P—“") Ko+ KTt — B+ 8ast (a.14)
f

Proof. See Online Appendix 0.3 0
Assume that 7; is affine in X}, i.e.:
7, = Ag +AX;. (a.15)

Substituting for 7; in eq. (a.14) leads to eq. (a.12). Let us now determine the constraints that should
be satisfied by Ag and Ay. The returns of stocks have to satisfy the Euler equation:

0=10gB2 (A, 111 exp(ri ). (a.16)
Using eqs. (7) and (a.12), we obtain:

My y1exp(riy) = @.17)
exp{Ko +Ap(Ky — 1)+ fia,0 — Mo — Vo) + (KiA1 + fy 1 + 7) Xt = (Ar + 11+ wi (7))'X,).

eqs. (a.17) and (a.16) are satisfied if:

Ko +Ao(x1 — 1)+ uao — 1o — Wo(7) + wo(KiA; + g1 +7) = 0,
Y (KA + g+ ) — (AL 1+ () = 0,

which proves Prop. 6. L1



Pricing formulas

C.4 Equity option pricing

If 7, and g4, are affine in X; (as in egs.(a.11) and (a.15)}, then eq. (15) implies that P, /P, is
exponential affine in X;.
Let us introduce function ¢ defined by:

f

)
(w0, 1, X1} — @(u,h, X)) = ]E;Q (Ar,H—heXp (ulog (_Eﬂ))) .

Using eq. (15) and Prop. 5 (see Subsection C.1.2), one can find functions aj} (e) and b} (e) such
that: '
@ (1,1, X;) = exp(al (u) + b5 (1)'X,).

Replacing p{a,h,x) by ¢(a,h,x) in Corollary 2 of Subsection C.1.1 provides formulas to com-

B
]E;Q (Afﬁh exp [alog (%)] H{biog(ﬁﬁﬂ)q} X, = x) .

Let us denote the expression above by g*(a, b,y,4,x). With this notation, the price of a put opticn
(eq. 16) reads:

pute:

EE (Arron(K — P liksp,,})
= KIE:(t@ (A!,r+h]l{rf+1+---+J':‘+,,<log(K)—logP,})

““B‘Ef'@ (Af,erh exp(rfﬂ +eeet r;kul-h)]i{er+~~-+rf+h<log(K)—logB})
= Kg*(0,1,log(K)—logh,h,X;)—Pg*(1,1,log(K) —log P, h,X)).
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