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Abstract

The nitrogen cycle is one of the most disrupted geo-chemical cycles on earth. Human activity, mainly

through intensive farming, releases nitrogen by-products such as nitrates and ammonium into the en-

vironment where they have wide ranging impacts on human health, biodiversity and climate change.

One of the earliest and most ambitious regulations of nitrogen use in the world is the EU Nitrate Direc-

tive, which not only sets limitations on the amount and timing of nitrogen application but also makes

the adoption of modern nitrogen management tools mandatory in an effort to enhance nitrogen use

efficiency. We leverage the geographical and temporal variation in the implementation of the Nitrate

Directive in France to estimate its causal effects on water quality, biodiversity and farmers’ practices,

productivity and profits in a Difference In Difference (DID) framework. We modify the DID estimator

to account for the existence of diffusion effects along river streams, leveraging recent developments in

the analysis of Randomized Controlled Trials over a network of interrelated units. This is a method-

ological extension that can be of interest for similar applications. We find that the EU Nitrate Directive

reduced the concentration of nitrates in surface water by 1.23 milligrams per liter: a decrease of 8%.

We find a clear dose-response relationship, with higher impacts where more of the upstream area is

covered by the Directive. We also find that other biochemical indicators, as well as biodiversity, as

measured by the number of fish and fish species, also improved as a result of the Directive. We also find

that the Directive managed to improve farmers’ nitrogen use efficiency and productivity and did not

decrease their profits. These findings are consistent with the Porter hypothesis. Finally, we show that

not accounting for diffusion effects biases downwards the estimate of the effect of the Directive obtained

with a classical DID estimator and the more recent geographic discontinuity estimator.
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1 Introduction

The nitrogen cycle is one of the most disrupted geo-chemical cycles on earth (Rockstrom et al.,

2009). During the past half century, the amount of nitrogen in the environment has increased more

than that of any other element worldwide (Leach et al., 2012). Agriculture is the main source of

nitrogen pollution. Of all nitrogen fertilizers applied on fields to increase crop yields worldwide, only

50% are actually absorbed by plants (Lassaletta et al., 2014). A significant amount runs off in river

streams or evaporates into the atmosphere. Nitrogen by-products from agricultural sources have

become the most pervasive chemical contaminant in the world’s groundwater aquifers (WWAP,

2013). Air and water pollution by nitrogen by-products such as nitrates and ammonium have wide

ranging impacts on human health, biodiversity and the climate (Galloway et al., 2003). Nitrogen

by-products in water have impacts on human health, through methaemoglobinemia, a potentially

fatal illness for infants causing the blue-baby syndrome (Lundberg et al., 2004). Nitrogen by-

products also threaten aquatic biodiversity through the eutrophication process, an excess quantity

of nutrients in waters, which creates algal blooms and dead zones (Canfield et al., 2010; Diaz and

Rosenberg, 2008). In the atmosphere, nitrogen by-products are precursors of small particulate

matter (PM2.5), which have been shown to increase the likelihood of respiratory and cardiac

diseases. Finally, nitrogen, when it vaporises as nitrous oxyde, is a powerful greenhouse gas.

The costs of pollution by nitrogen by-products are very high and reducing their presence in the

environment is a key priority for governments around the world. The environmental and social

costs of water pollution caused by agriculture have been estimated to exceed several billion dollars

annually (OECD, 2012). The FAO considers that “water pollution is a global challenge that has

increased in both developed and developing countries, undermining economic growth as well as

the physical and environmental health of billions of people.” (Mateo-Sagasta et al., 2017). The

UN Environmental Program states that “humans are producing a cocktail of reactive nitrogen that

threatens health, climate and ecosystems, making nitrogen one of the most important pollution issues

facing humanity” (UNEP, 2019). It has launched a research initiative to improve management of

the global nitrogen cycle, with the goal to halve the amount of nitrogen in the environment by

mid-century. In this context, evidence of the effectiveness of policies aimed at reducing the amount

of nitrogen by-products in the environment is sorely needed.

In this paper, we estimate the impact of one of the earliest and most ambitious regulations

of nitrogen use in the world, the EU Nitrate Directive. The Nitrate Directive, enacted in 1991,

required EU member states to delineate zones vulnerable to nitrate pollution and to enforce several

regulations on the farming activities in these zones. The regulations under the Nitrate Directive

include seasonal restrictions on the application of fertilizers, the planting of nitrate-fixing inter-

mediate crops and grass buffer strips, and the building of storage facilities for manure. A very

interesting feature of the Nitrate Directve is that it mandates the use of the nitrogen balance

method by farmers with plots located in vulnerable zones, with the goal of increasing farmers’ ni-

trogen use efficiency. The nitrogen balance method helps farmers determine the amount of nitrogen

to apply on their plots as a function of the target yield and the amount of nitrogen remaining in



the soil at the end of winter. The Directive therefore also requires farmers in vulnerable zones to

perform soil analysis at the end of winter. The policy furthermore includes audits to control for

farmers’ effective enforcement with these requirements. The Nitrate Directive is a unique piece of

regulation. No similar regulation exists in the U.S., for example. The Clean Water Rule enacted

by the Environmental Protection Agency in 2015 and recently threatened by an executive order is

of a much more limited scope.

We leverage the geographical and temporal variation in the implementation of the Nitrate

Directive to estimate its causal effects on water quality and biodiversity, and on farmers’ practices,

nitrogen use efficiency, productivity and profits in a Difference In Difference (DID) framework. We

study the effects of the implementation of the Nitrate Directive in France, one of the largest farming

countries in the EU, which has severe nitrate pollution problems. Most of the Nitrate Directive

regulation was implemented in France in 2001 in areas vulnerable to nitrate pollution. Vulnerable

areas cover approximately 40% of France’s territory and 70% of its utilized agricultural area.

We modify the DID estimator to account for the existence of diffusion effects along river streams.

Because water flows along river streams, improvements in water quality due to the Directive might

spill over downstream to areas not covered by the regulation. The existence of such spillover

or diffusion effects belies a critical assumption that underlies most methods of causal inference,

including DID.1 In order to take diffusion effects into account, we leverage recent developments

in the analysis of Randomized Controlled Trials in a network of interrelated units. We carefully

define average treatment effects in the presence of diffusion effects as being the effects of treatment

exposure, following Manski (2013) and Aronow and Samii (2017). The first key component of this

approach is the existence of a matrix measuring the strength of connections between each units

in the network. In our application, we build this matrix using data on upstream and downstream

relationships along all France’s river streams and watersheds. A second crucial component of this

approach is the choice of an exposure mapping that, for each unit, assigns a level of exposure

to the treatment as a function of the allocation of the treatment over the whole network. In

our application, we use the proportion of upstream areas regulated under the Directive as our

main treatment exposure indicator. We thus show that the average effect of treatment exposure

is identified in a DID design under a set of sufficient conditions. These conditions include an

equivalent to the classical assumption of parallel trends, which is testable using pre-treatment

data. We also require that our definition of the exposure mapping is valid, which is much weaker

than the assumption of an absence of diffusion effects. There futhermore needs to be some units that

are not affected by the treatment at all. In our application, the existence of units unrelated to any

other units, and of untreated units with no part of their upstream areas falling within vulnerable

zones, ensures that this condition is actually met. In practice, we estimate the effect of treatment

exposure using a parametric panel data model with a rich set of fixed effects. We also discretize

our continuous treatment indicator in categories of increasing intensity, which enables us to test

1In technical terms, the absence of spillover or diffusion effects is generally called the Stable Unit Treatment Value
Assumption and abbreviated as SUTVA (Imbens and Rubin, 2015).
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for the parallel trends assumption and to measure a dose-response relationship non-parametrically.

To account for autocorrelation between our measurements of water quality over space and over

time, we adapt Leung (2020)’s estimator to panel data. To choose the adequate level at which

to account for autocorrelation in Leung’s estimator, we follow Barrios et al. (2012)’s suggestion

to measure the extent of autocorrelation empirically. We also extend to panel data Athey et al.

(2018)’s randomization-inference tests developed for the analysis of Randomized Controlled Trials

in a network. This allows us to test for the existence of treatment effects at various distances and

for the existence of a dose-effect relationship, accounting for the clustering of observations.

Our methodological extension of the DID estimator to interventions that have spillover effects on

a network can be of separate interest for other applications for which Randomized Controlled Trials

might not be feasible, but a source of spatial and temporal variation in treatment exposure exists.

Diffusion or spillover effects affect multiple economic, social and biological phenomena such as water

and air pollution, traffic congestion, the transmission of contagious diseases and the diffusion of

innovations, to cite but a few. Our paper clarifies how treatment effects are to be defined in the

presence of diffusion effects on a network under the DID assumptions, states conditions for their

identification and provides ways to do inference on them. We also clarify the two key components

of this approach: the proximity matrix and the exposure mapping. The proximity matrix might be

the most critical component when applying our approach to other situations. In applications where

interactions are mechanistic, because for example they stem from biophysical processes such as the

diffusion of pollution along water or air flows, our approach can be applied straightforwardly. In

other applications, especially characterized by behavioral interactions (such as migration or traffic,

for example), our approach might require more modelling ex ante, for example by estimating a

structural model and using it to define the proximity matrix. Our approach can then serve as a

test for the predictions of the structural model.

In our application, to build our treatment exposure indicator, we combine data on upstream

and downstream relationships along all of France’s river streams and watersheds, with the map of

vulnerable areas regulated under the Nitrate Directive. We then measure how surface water quality

has changed over time between areas exposed to different levels of treatment exposure. We use

measurements of surface water quality over the period 1994-2015 with more than 400,000 readings

from 2,800 monitoring stations covering the entire French territory. Our measurements include

physico-chemical outcomes such as concentrations of nitrates, nitrites, phosphorus, ammonium,

along with dissolved oxygen and chemical oxygen demand, and biological outcomes such as the

concentration in chlorophyll A, a proxy for eutrophication, the number of fish and fish species

observed. We also investigate the impact of the Nitrate Directive on farmers’ practices, productivity

and profits using a more classical DID estimator and data from the French surveys of agricultural

practices and from the Farm Accountancy Data Network (FADN).

We find that the EU Nitrate Directive reduced the concentration of nitrates in surface water in

France by 1.23±0.27 milligrams per liter (mg/l), a decrease of 8%.2 We find a clear dose-response

2We use the half-width of the 95% confidence interval as a measure of precision.
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relationship, with higher impacts where more of the upstream area is covered by the Directive. The

reduction in nitrate concentration that we measure goes from 0.05±0.30 mg/l when 25% to 50%

of the upstream watershed is regulated under the Directive, to 0.73±0.41 mg/l when 50% to 75%

of the upstream watershed is regulated, 1.37±0.43 mg/l when 75% to 99% of the upstream area

is regulated, finally reaching 2.82±0.44 mg/l when 100% of the upstream watershed is regulated

under the Directive. We also perform an heterogeneous analysis by seasons and hydrographic

districts, and find that the largest drop in nitrate concentration occurs during winter, and in

the Loire-Bretagne region (a region specifically concerned by nitrogen issues and algea blooms).

We also find that the Directive improved the physico-chemical state of surface waters in terms

of nitrites, ammonium, phosphorus, dissolved oxygen and chemical oxygen demand. Finally, we

find a noticeable improvement in the biological state of rivers, thanks to the policy: chlorophyll A

concentration significantly decreased by 2.7µg/l, the number of fish increased by 70 in the average

monitoring station, and we find one additional species of fish in river streams regulated under the

Directive. In addition, we show that wastewater treatment plants, climate and land use changes

are unlikely to explain our results.

We find evidence that the Nitrate Directive successfully improved farmers’ nitrogen management

practices. We find that the policy increased the proportion of farmers: recording their nitrogen

practices; measuring the amount of nitrogen remaining on their plots after winter; and adjusting

their amount of nitrogen fertilizer using the nitrogen balance method. We also find that the policy

increased by 6 percentage points (p.p.) the proportion of plots with nitrate-fixing intermediate

crops, and decreased by 1.4kg/ha/year the amount of organic fertilizers applied on lands. We

observe no impact of the Nitrate Directive on the planting of grass buffer strips, which can be

explained by the fact that they were made mandatory throughout Europe as a pre-requisite for the

granting of subsidies under the first pillar of the Common Agricultural Policy. More surprisingly,

we do not find that the policy changed the amount of mineral nitrogen fertilizers applied on plots.

Nevertheless, we find that the Nitrate Directive improved the efficiency of nitrogen fertilizer use.

The indicator of nitrogen use efficiency, which measures the ratio of nitrogen output to nitrogen

input, increased by 16±7 p.p. and the N balance indicator, estimating nitrogen loss to the envi-

ronment, has significantly dropped in treated areas (-9±6.6 p.p.). Hence, the nitrogen content of

harvested crops has increased by 7%. Our results suggest that the technological standards imposed

by the regulation have triggered significant changes in farmers’ behavior by disclosing informa-

tion on when and how to apply fertilizers, thus ensuring productivity gains. Consistent with that

assumption, we find that the variance of nitrogen application has increased in areas covered by

the Nitrate Directive. This confirms that farmers are adapting their choices of fertilizer quantities

to the specific needs and characteristics of their crops and fields. As a consequence, we find evi-

dence that the regulation increased farmers’ total factor productivity, suggesting that the mandated

adoption of improved fertilization practices did indeed trigger productivity increases. Overall, these

results are compatible with the Porter hypothesis that environmental regulation might increase the

productivity of regulated agents (Porter and Van der Linde, 1995).
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Finally, we find that the classical DID estimator that does not account for the existence of

diffusion effects would have obtained smaller estimates of the policy impact. This downward bias is

not very large though because, in our application, most areas that are downstream of a regulated

area are also regulated. We also find that a classical DID estimator would have underestimated the

steepness of the dose-response relationship, and therefore would not have captured how much larger

the effects of the regulation are when a bigger share of the upstream watershed is regulated. Lastly,

we find that the most recent geographic discontinuity estimators of the effect of regulation on water

pollution such as the one proposed by Keiser and Shapiro (2017) would also have underestimated

the effect of the Directive and of the dose-response relationship. It would also have provided less

precise estimates than our proposed method. This makes sense because, since nitrates pollution

is due to the combined action of multiple small emitters, studying the impact of the Directive by

observing how pollution changes when we cross the borders of the regulated zone has limited power.

Using a continuous measure for treatment exposure enables us to leverage the natural variation in

the proportion of upstream areas regulated under the Directive as a source of identification for its

impact.

Our paper contributes to several literatures. On the methodological side, our paper clarifies the

definition, identification, estimation of and inference for causal effects in the presence of diffusion

effects on a network under the DID assumptions. We draw heavily on recent developments in

the literature on the analysis of Randomized Controlled Trials over a network, especially Manski

(2013) and Aronow and Samii (2017) who introduce the overall setting and define the concept of

treatment exposure and the assumption of a properly specified exposure mapping, Leung (2020)

who introduces an estimator for doing inference with treatment effects on a network, Athey et al.

(2018) who propose randomization inference tests for various features of treatment effects with

interactions over a network and Barrios et al. (2012) who propose a set of best practices to account

for clustering in DID regressions. To our knowledge, our paper is the first to delineate a full set

of sufficient conditions for the identification of treatment effects over a network under the DID

assumptions. Delgado and Florax (2015) propose a linear model with a spatial contiguity matrix

in a DID model, and analyze its behavior in Monte Carlo simulations. Manresa (2016) proposes to

uncover the proximity matrix using machine learning on panel data relating outcomes to a time-

varying treatment. She nevertheless assumes away time fixed-effects, thereby eschewing one of the

main components of a DID setting. Our paper is also closely related to Borusyak and Hull (2021)

who propose an approach to estimate the effect of non-random exposure to exogenous shocks.

One of their suggested applications is the analysis of exposure on network data. Our approach

is complementary to theirs: instead of leveraging the random part of the exposure and correcting

for the non-random part using randomization inference, as they do, we directly invoke a parallel

trends assumption. Our approach to defining treatment effects in the presence of diffusion effects is

reminiscent of Miguel and Kremer (2004) and Cai et al. (2015), where the proportion of neighbors

assigned to a treatment is used as an indicator of treatment exposure, and of Banerjee et al. (2013)

where network centrality is used to proxy for treatment effectiveness. In the context of DID, the
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closest papers to ours are Imbert and Papp (2020), where the proportion of migrants from a given

rural area is used to proxy for the intensity of the indirect effect of a job guarantee program, and

Deryugina et al. (2019) and Missirian (2019), who use the upwind/downwind relationship between

counties to account for the spillover effects of air pollution.

We also contribute to the literature estimating the impact of environmental regulation on the

environment. Most of this literature has looked at regulations affecting air quality. Among the

papers studying water quality, some estimate the impact of water quality on the environment or

human health, without looking at the effect of specific regulations (Ebenstein, 2012; Brainerd and

Menon, 2014). Greenstone and Hanna (2014) estimate the impact of water pollution regulations

in India without accounting for diffusion effects along river streams. More closely related to us,

Keiser and Shapiro (2017) use individual station data to estimate the impact of the U.S. Clean

Water Act on surface water quality. Their approach relies on the point-source nature of the Clean

Water Act. They use the installation of a new wastewater treatment plant as a treatment, and

identify its causal effect by comparing the ways in which water quality just above and just below

the plant changes after the treatment. Similarly, He et al. (2020) use local comparisons between

plants located upstream and downstream of pollution monitors to estimate the impact of regulation

on TFP. Other empirical studies that consider the impact of regulation on non-point source water

pollution combine a structural model of farmers’ choices with a reduced form model relating those

choices to water quality. This approach enables above all the study of the impact of monetary

incentives such as taxes (Lungarska and Jayet, 2014) or payments for environmental services (Wu

et al., 2004) but not the impact of a command-and-control policy such as the E.U. Nitrate Directive,

the behavioral effects of which are much harder to model a priori. In this approach, the impact of

agricultural practices is estimated using an explicitly spatial model, and sometimes an upstream-

downstream weighting matrix (Bayramoglu et al., 2019). The key difference with our approach is

that these models are estimated using a random effects specification which assumes that permanent

unobservables are uncorrelated with treatment exposure, whereas we use a fixed effects approach

that allows for an arbitrary correlation between unobservables and treatment exposure. While the

random effects specification might be defensible when looking at the effects of land use on water

quality (thanks to a rich set of control variables), it is clearly not suited to policy evaluation when

the regulation is correlated with the level of pollution ex-ante.

Finally, our results are also related to the literature on the impacts of environmental regulation

on companies’ performance. We find evidence that the EU Nitrate Directive has not had detrimental

consequences on farmers’ profits, and evidence of an increase in total factor productivity. Our results

are thus compatible with the Porter hypothesis stating that environmental regulation might trigger

innovation and productivity growth in the regulated firms (Porter and Van der Linde, 1995; Ambec

et al., 2013). Greenstone et al. (2012) find similar results for one out of the four substances regulated

under the U.S. Clean Air Act Amendments. Similar positive effects have been found for the EU

Emissions Trading Scheme by Barrows et al. (2021) and Pavan et al. (2019). Not all regulations

have positive effects on regulated firms. For example, He et al. (2020) find that monitored firms see

6



a decrease in productivity of 25%. In our application, though, we can delineate a credible causal

channel through which the regulation improved farmers’ productivity, namely the adoption of more

efficient nitrogen management techniques.

The paper is structured as follows. Section 2 provides a background discussion on anthropogenic

nitrogen pressures and the Nitrate Directive. Section 3 describes the data sources. Section 4 sets out

the methodology. Section 5 presents the results and Section 6 discusses them. Section 7 concludes.

2 The Nitrogen Cycle and the EU Nitrate Directive

In this section, we first present the natural nitrogen cycle and how it has been disrupted by human

activities. We then present the details of the EU Nitrate Directive.

2.1 The Nitrogen Cycle and Human Activities

The Nitrogen Cycle Nitrogen is the fifth most abundant element on our planet. It is essential

to life, as a basic constituent of proteins and DNA. Nitrogen is converted into multiple chemical

forms such as nitrate (NO−3 ), ammonium (NH+
4 ), nitrite (NO−2 ), nitrous oxide (N2O), nitric

oxide (NO) or nitrogen gas (N2) as it circulates in water, air and soil, through a biogeochemical

cycle called the nitrogen cycle (EU Nitrogen Expert Panel, 2015). The most abundant form of

nitrogen is nitrogen gas, the main component of the earth’s atmosphere. Nitrogen gas is a highly

stable and non-reactive molecule that very few organisms can use as a source of organic nitrogen.

Therefore, plants cannot directly extract nitrogen from the atmosphere–unlike with carbon–but can

only absorb it in a reactive form such as nitrate or ammonium. The natural production of reactive

forms of nitrogen is mostly due to the fixation of nitrogen gas by highly specialized bacteria. As the

natural regeneration of reactive nitrogen is extremely slow, nitrogen has long been a major factor

limiting plant yields and population growth (Smil, 2000).

Human-Induced Changes to the Nitrogen Cycle The invention of the industrial synthesis of

ammonium by Friz Haber and Carl Bosch at the beginning of the 20th century provided humankind

with a cheap and reliable source of reactive nitrogen (Smil, 2000). Canfield et al. (2010) report that

from 1960 to 2000, nitrogen fertilizer use increased by around 800%, primarily on wheat, rice and

maize. As a result, crop yields skyrocketed, and Haber and Bosch’s invention is sometimes claimed

to be responsible for the doubling of the human population (Erisman et al., 2008). Today, half of all

the nitrogen present in human bodies is estimated to come from the Haber-Bosch process (Erisman

et al., 2008) which is also responsible for 2% of the world’s annual energy use (Smil, 2000).

Inefficiencies in the conversion of nitrogen at several points of the food production cycle have

raised the amount of reactive nitrogen in the environment. First, the conversion of nitrogen fertilizer

into crops is far from perfect. Worldwide, on average, less than 50% of nitrogen applied on fields is

absorbed by plants (Lassaletta et al., 2014). Second, the conversion of plant nitrogen into animal

nitrogen is also ineffective, resulting in emissions of reactive nitrogen by cattle in the form of
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manure. Third, the same inefficiencies occur when humans transform plant or animal proteins into

human proteins. As a consequence, the majority of reactive nitrogen applied to fields ends up in

the environment, either running off in river streams or evaporating into the atmosphere.

Air and water pollution by reactive nitrogen such as nitrates and ammonium have wide-ranging

impacts on human health, biodiversity and the climate (Galloway et al., 2003). In water, reactive

nitrogen has impacts on human health through methaemoglobinemia, a potentially fatal illness

for infants that causes the blue-baby syndrome (Lundberg et al., 2004). Reactive nitrogen also

threatens aquatic biodiversity through eutrophication (Canfield et al., 2010; Diaz and Rosenberg,

2008). Eutrophication occurs when anthropogenic nutrients (mainly nitrogen and phosphorus) flow

into waters, causing the proliferation of algae whose decomposition induces a loss of oxygen. This

in turn asphyxiates aquatic life and might result in dead zones, that is, areas where biodiversity

has decreased severely. Eutrophication arises during springtime and summertime when higher

temperatures and luminosity increase algae growth. In the atmosphere, reactive nitrogen is a

precursor of small particulate matter (PM2.5) which has been shown to increase the likelihood of

respiratory and cardiac diseases. Finally, reactive nitrogen is also a powerful greenshouse gas when

it vaporizes as nitrous oxide.

2.2 The EU Nitrate Directive

In this section, we first present the general setting of the EU Nitrate Directive before detailing the

way it has been implemented in France.

General setting of the EU Nitrate Directive In 1991 the European Union implemented the

Nitrate Directive, one of the world’s earliest and most ambitious attempts to regulate nitrogen use.

The Nitrate Directive mandates EU Member States to delineate zones vulnerable to pollution by

nitrates. Within these zones, it sets up a set of requirements for nitrogen management. Figure 1

shows a historical timeline of the policy with the detailed sets of measures as they have been

implemented in France.

The Nitrate Directive is designed to reduce the amount of reactive nitrogen in the environment,

mainly in three ways: (i) by making the building of storage facilities for manure mandatory and

setting limits on the amount of nitrogen fertilizer and manure that farmers can apply on fields; (ii)

by requiring the adoption of technical innovations to increase nitrogen use efficiency; and (iii) by

requiring the adoption of techniques reducing the amount of nitrogen runoff from fields (i.e. planting

of nitrogen-fixing crops during winter and of grass buffer strips along river streams). The Nitrate

Directive requires above all not only that farmers record their fertilization practices, but also that

they adopt the nitrogen balance method. The nitrogen balance method is an agronomically-founded

method that helps farmers determine the amount of nitrogen to apply on lands as a function of

the target yield and the amount of nitrogen remaining in the soil at the end of winter. The policy

also requires that farmers conduct soil analysis on their farms to estimate the level of nitrogen

present after the winter. The nitrogen balance method aims at improving nitrogen use efficiency
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by reducing the amount of nitrogen applied to fields when it is not needed (when nitrogen from

the previous crop is left in the soil after winter). The nitrogen balance method also helps farmers

determine how much nitrogen to apply to a field, depending on the type of crop and of their target

yield.

The Nitrate Directive furhtermore includes randomly performed audits on farms to check for

compliance with the regulation. Farmers have to pay a fine in case of non-compliance (from e1,500

to e3,000 in case of recidivism).

The EU Nitrate Directive in France The Nitrate Directive was transposed into French law

in September 1993. Vulnerable zones are defined as areas in which surface and ground waters have

a nitrate concentration higher than 50 mg/l or between 40 mg/l and 50 mg/l with no improvement

trends and/or showing signs of eutrophication linked with intensive agriculture. The data used to

define the position with respect to these thresholds was data collected before 1993. The map of

vulnerable zones stabilized around 2000, with very little evolution afterwards; the area covered by

vulnerable zones increased by less than 7% after 2002. Figure 2 shows a map of the evolution of

vulnerable zones from 2000 to 2015.

In France, the first set of measures under the EU Nitrate Directive were implemented between

1997 and 2000 as the first action program (see Figure 1). This was a minor program that mainly

concerned nitrogen application standards, and that was used primarily to prepare farmers for

compliance in 2001. Our analysis thus focuses on the following action programs and uses 2001 as

the treatment year. In our main specification, we include all the time periods (vulnerable zones of

2000, 2003, 2007 and 2012) and analyze them as if treatment started in 2001 for all of them. This

might bias our estimates downwards since we consider as treated in 2001 some zones that would

only be treated later. Since those zones account for only a small portion of all the treated zones,

we expect this bias to be small.3

3 Data

In this section, we describe the data that we use to estimate the impact of the Nitrate Directive

on water quality and on farmers’ practices, profits and productivity in France. We first detail the

data we use to build treatment exposure. We then move on to data on water quality and we end

by presenting the farm-level data that we use.

3.1 Data on vulnerable areas and on the hydrographic network

We use data on the French hydrographic network from the French National Geographic Institute

to have information on upstream-downstream relationships for each river making up the network.

3We choose to focus on 2001 as our sole entry date in order to avoid the issue of negative weights in fixed effects
estimators for Difference-In-Differences with staggered entry date (Athey and Imbens, 2021; Borusyak and Jaravel,
2017; Callaway and Sant’Anna, 2020; de Chaisemartin and D’Haultfœuille, 2020; Goodman-Bacon, 2021; Sun and
Abraham, 2020). The fact that most of the vulnerable zones start to be treated in 2001 makes this approach viable.
Section 5.3 tests the robustness of our estimates to this assumption.
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The hydrographic network of mainland France is composed of 6,108 hydrographic zones that are

designed to follow the courses of the main river streams. Figure 3a shows the whole network of

French main river streams. Figure 3b shows the 6,108 hydrographic zones that cover the whole

French metropolitan territory. Each hydrographic zone is defined as a watershed: an area containing

portions of rivers and groundwaters where precipitations collect and flow into a common outflow.

The hydrographic zone is the finest scale of catchment area available from the hydrographic data.

Each hydrographic zone is part of a network of similar zones that form an arborescence. The French

hydrographic network is organized into 127 such arborescences. Each arborescence is composed of

at least one upstream watershed, i.e. the water source, a chain of intermediate watersheds, and a

downstream watershed through which freshwater flows into the ocean or the sea. Figure 3c shows

part of such an arborescence.

We merge the map of hydrographic zones shown on Figure 3b with the map of vulnerable areas

shown on Figure 2, that we have retrieved from the French government website (data.gouv.fr),

using GIS software. We compute the area of each hydrographic zone covered by the Directive at

any time period between 2000 and 2012 as our measure of the extent to which each hydrographic

zone is treated.

3.2 Data on water quality

We measure the impact of the Nitrate Directive on surface water rather than on ground water.

We anticipate that the policy will have more detectable effects on the quality of surface water

compared to ground water where nitrogen accumulates. Additionally, the biodiversity impacts of

reactive nitrogen are mostly felt in surface water.

We use data on surface water quality from the French public service Eau France compiled in

the national data interface Näıade. These data are produced by a countrywide network of stations

all along France’s river streams, that monitor water quality. In practice, government officials from

each Water Agency and the French Biodiversity Agency periodically visit each monitoring station

to collect water for analysis and to collect biological data on site.

We track water concentrations in reactive nitrogen, mainly nitrate, ammonium and nitrite. We

also measure the concentration in phosphorus, which is generally applied to fields at the same time

as nitrogen. We proxy for eutrophication using the concentration in Chlorophyll A, which is a good

estimate of the amounts of algae present in the water. We also use chemical oxygen demand, which

measures how much organic matter is in suspension in the water in relation to how much oxygen is

required for its decomposition, and the concentration of dissolved oxygen. Large chemical oxygen

demand signals that eutrophication is present, whereas large concentrations in dissolved oxygen

signal that eutrophication is not severe. Finally, we use the number of fish and the number of

different species of fish in the water as measures of biodiversity.

Monitoring stations have been measuring the quality of surface water in France since 1971. The

number of analyses per monitoring station actually sharply increased with the enactment of the

Nitrate Directive in French Law in 1993. We therefore focus on the period 1994-2015 in ou rmain
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empirical analyses. We select data from monitoring stations that have measurements over at least

5 years, and with at least one measurement before 2000. The resulting dataset is a panel of 2,800

monitoring stations with more than 400,000 water quality readings. Figure 4 shows a map of the

monitoring stations included in the final dataset along with the map of the French watersheds.

To control for any annual or monthly variations in water quality due to weather conditions, we

use a database from Météo France providing us with information on monthly average temperatures

and precipitations over the period under study: 1994-2015.

3.3 Data on farming practices and profits

To measure the impact of the Nitrate Directive on farmers’ practices, profits and productivity, we

use three separate datasets: the survey on farming practices, the agricultural census, and the Farm

Accountancy Data Network (FADN).

The survey on farming practices records detailed information on farmers’ agricultural practices

on a representative sample of fields. The sample is built to be representative of the farming practices

with regard to the main crops planted in France in a given year: durum wheat, soft wheat, barley,

grain maize, forage corn, rape, sunflower, peas, beet and potato. For each crop, a set of points

is selected at random within the départements where the crop accounts for more than 10% of the

overall area dedicated to that same crop nationwide.4 Enumerators visit the farmers cultivating

the plots to which each selected point belongs and record all the farmers’ interventions made (soil

preparation, seeding, fertilization, pesticide use, yields, etc). Surveys on farming practices were

conducted in 1993, 2000, 2005 and 2010. Since each point does not exhibit the same crop each

year, the survey of farming practices is a repeated cross section and not a panel. Because the set

of crops and of départements changes from year to year, we have built a sample where each crop

and département pair appears every survey year.

From the survey on farming practices, we extract an array of outcomes that might have been

impacted by the Nitrate Directive. We first look at N , the amount of mineral nitrogen fertilizers

applied on plots (expressed in kg/ha/year), P , the amount of mineral phosphorus fertilizers applied

on lands (in kg/ha/year) and at Manure, the amount of organic fertilizers applied on lands (in

kg/ha/year). Second, we build indicators of nitrogen use efficiency, following Brentrup and Lammel

(2016). Ninput measures the nitrogen content of all the inputs applied by the farmer to fertilize

the plot, including especially N and Manure. Ninput is computed by multiplying the quantity

of each input by its actual nitrogen content. For manure, we use conversion tables provided by

AgroParisTech. Noutput measures the nitrogen content of the outputs extracted from the field.

Noutput is computed by multiplying the crop yield by the nitrogen content of each crop. We use

conversion tables specific to each crop provided by the COMIFER. Finally, we build two indices

of nitrogen productivity. nitrogen use efficiency, NUE, is the ratio of Noutput to Ninput. NUE

measures the efficiency of mineral and organic nitrogen conversion into nitrogen contained in crops.

We also compute the balance of nitrogen on the field, Nbalance. Nbalance is the difference between

4Départements are the second largest administrative unit in France. There are 95 départements in France.
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Ninput and Noutput. It measures how much nitrogen has been extracted from the field by the crops,

net of how much has been input through fertilization. A positive Nbalance means excess nitrogen

that might run off the field.

The survey on farming practices also collects information on whether farmers estimate the

amounts of nitrogen remaining in the soil at the end of winter and whether they use the nitrogen

balance method to estimate the amount of nitrogen to apply on the plot. We generate two dummy

variables: Nestimated and NBM . Nestimated takes value one when the farmer measure nitrogen at

the end of winter and zero otherwise. NBM takes value one when the farmer use the Nitrogen

Balance Method and zero otehrwise. The survey on farming practices also collects data on farmers’

adoption of practices aiming at curbing nitrogen runoffs from fields. Nitrate-fixing intermediate

crops are planted between winter and spring to avoid nitrogen runoffs by fixing nitrogen in their

biomass. Grass buffer strips are strips of land along river streams that are permanently covered

by vegetation to avoid nitrate discharges from agricultural fields. We form two dummy variables

taking value one when the farmer has planted a nitrate-fixing intermediate crop or a grass buffer

strip on her field.

To measure the effect of the Nitrate Directive on profits and productivity, we use data from the

Farm Accountancy Data Network (FADN), an 8-year rotating panel of professional French farms.

The FADN has detailed accounting information, especially on spending on inputs and on the value

and quantity of outputs. From the FADN, we form several types of outcome variables. First, we

use data on spending on input use, especially fertilizer. We cannot separate spending on nitrogen

fertilizers from spending on phosphorus and potassium fertilizers, but nitrogen fertilizers account

for most of the money spent by French farmers on fertilizers. We measure overall spending on

fertilizers and spending per hectare of crops and per hectare of usable agricultural area. Second,

we use data on spending on services for crops, which contains spending for lab analysis of the

soil nitrogen content mandated by the Nitrate Directive. Third, we compute yields by dividing

the quantity produced by the area dedicated to each crop. We standardize yields using their

yearly mean and standard deviation. Fourth, we compute data on gross margin and value added

at the farm level by taking the value of crop production and subtracting from it spending on

various items of intermediate consumption (fertilizers, seeds, pesticides, services, etc.). Fifth, we

compute an index of total factor productivity. We use a ratio between the value of output and a

Cobb-Douglass combination of the value of inputs (intermediate consumption, labor and capital

(including land)), as suggested by Syverson (2011). The weights used for weighting the values of

inputs are the average factor shares over the whole period. The factor shares are computed as

the share of total spending spent on each factor. As suggested by Syverson (2011), we compute

capital spending as a residual after subtracting spending on intermediate consumption and labor

from total spending. One particuilarity of agriculture is that spending on labor does not include

the farmer’s labor or that of their family. To include the farmer’s labor and that of their family in

the amount of labor used on the farm, we convert the time spent working on the farm (which is

reported on the FADN) into monetary terms based on the nominal wage of a blue-collar worker in
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France, provided by the French National Statistical Agency (INSEE).

Finally, we use data from the agricultural censuses of 1988, 2000 and 2010 to measure the

amount of land dedicated to each crop in vulnerable and non-vulnerable areas. The French national

agricultural census surveys all farms in the country every ten years and collects detailed information

on land use in the year of the census.

We identify whether each farm or plot in the surveys that we use belongs to a vulnerable zone

by using the geocoded information that we have on them and merging it with the map of vulnerable

zones shown on Figure 2. For the French national agricultural censuses and the FADN, we are able

to locate farms at the commune level. The commune is the smallest administrative unit in France,

with an average size of 15 square kilometers, 200 times smaller than the average U.S. county. We

thus locate each farm at the centroid of the commune to which it belongs before merging it with

the map of vulnerable zones. For the survey of farming practices, we directly use the geographical

coordinates of each plot in order to locate it within or outside a vulnerable zone.

Table 1 presents descriptive statistics from the resulting dataset. Farms in vulnerable areas are

slightly larger than farms in non-vulnerable areas, but this difference does not change much over

time. Nitrate-fixing crops were almost absent before 2001,yet cover 10% of all plots afterwards, but

only in vulnerable areas, which suggests a causal impact of the Nitrate Directive. Grass-buffer strips

do not follow the same pattern: their presence increases in both vulnerable and non vulnerable zones

at the same pace. N and P , the quantities of nitrogen and phosphorus mineral fertilizers applied

to fields, are similar in both zones and in both time periods, which surprisingly suggests that the

policy might not have had an impact on the amount of mineral fertilizer. In contrast, the quantity

of organic fertilizer decreases more in vulnerable areas after 2001, suggesting a possible impact

of the Nitrate Directive. Perhaps the most impressive differential evolution recorded on Table 1

is the massive increase in Noutput observed within vulnerable zones, while it remains constant in

non-vulnerable zones. Together with the fact that Ninput varies in the same way in both zones, this

implies that Nbalance improves and that nitrogen use efficiency increases in vulnerable zones. The

accounting data from FADN broadly confirm these results. They suggest that, although spending

on fertilizers increased slightly more in vulnerable areas than in non-vulnerable ones, the value of

production increased even more, whereas spending on other factors remained broadly similar in

both vulnerable and non-vulnerable zones. As a consequence, total factor productivity seems to

have increased more in vulnerable areas than in non-vulnerable ones. Whether these changes are

actually caused by the policy requires more investigation.

4 Methodology

In this section, we present the econometric methodology that we use to infer the causal effect of

the Nitrate Directive on water quality and farmers’ practices and productivity. Since the Nitrate

Directive was implemented on a subset of the total French area (roughly 40% of the total area of

metropolitan France and approximately 70% of its usable agricultural area) after 2001, we use a

Difference In Difference (DID) framework to estimate its causal effect. Because water flows along
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river streams, improvements in water quality due to the Nitrate Directive being implemented in

vulnerable areas might spill over to non-vulnerable areas located downstream. The classical DID

estimator that ignores the upstream/downstream relationships between hydrographic zones will

thus be biased downwards. We modify the DID estimator to account for potential spillover effects

of the Directive, leveraging recent developments in the definition and estimation of, and inference

on, treatment effects in the analysis of Randomized Controlled Trials on a network of interrelated

units. This methodological extension to DID might be of interest for similar applications. In the

remainder of this section, we first detail our approach for dealing with diffusion effects on a network

in a DID framework, and expain how we apply this approach to estimate the effect of the Nitrate

Directive on water quality. We then detail how we estimate the effect of the Directive on farmers’

practices, where we use a much more classical DID approach.

4.1 Estimating the effect of the Nitrate Directive on water quality

In this section, we set out our approach to define, estimate and do inference on treatment effects in

a DID design when there are diffusion effects. To this end, we leverage recent developments in the

analysis of Randomized Controlled Trials over a network of interrelated units. We illustrate each

step by detailing how it applies to the estimation of the impact of the Nitrate Directive on water

quality. We first start with the basic setting that enables us to define treatment exposure and its

average effect. We state conditions for the identification of the effect of treatment exposure in a

DID setting and then proceed with estimation of and inference on this parameter. We end up with

randomization-inference tests of the existence and shape of the effects of the regulation on water

quality.

Setting

Our approach closely follows Manski (2013) and Aronow and Samii (2017). We simply allow for

panel data and the existence of periods where the treatment is absent.5 We assume access to

a population of N units i = {1, . . . , N} observed over T time periods t = {1, . . . , T}. In our

application, units are hydrographic zones. Each unit i belongs either to the treatment group,

which we denote as Di = 1, or to the control group, which we denote as Di = 0. In our application,

Di indicates whether a hydrographic zone belongs to a vulnerable zone or not. The membership of

the treatment group in the whole population can then be characterized by a treatment group vector

D = {D1, . . . , DN}. Ω = 2N is the set of all possible treatment vectors. We encode the classical

DID framework using a time treatment dummy postt that takes value one once the treatment is in

place (when t ≥ k, for some date k when the treatment starts) and zero before. In our application,

we set k = 2001. We call a treatment allocation the time-varying indicator that takes value one

when a member of the treatment group effectively receives the treatment (i.e. is observed after

date k). We denote treatment allocation as Dt = D · postt. Because we allow for possible diffusion

5Our approach easily extends to data from repeated cross-sections.
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effects of the policy to untreated units, we write the potential outcomes for unit i at date t as a

function of the whole treatment allocation at date t: Yi,t(Dt).
6

The last crucial ingredient is a network accounting for the links between units. The network is

summarized by a N × N proximity matrix A, where each term aj,i measures the strength of the

relationship between i and j. For example, aj,i can take value one when unit i is connected to unit

j. In our setting, aj,i takes value one when hydrographic zone j is upstream of hydrographic zone i.

Figure 5a shows the A matrix for the French hydrographic zones, with dark pixels for when aj,i = 1

and white pixels when aj,i = 0. As the hydrographic network is a directed network, the A matrix is

not symmetric. The hydrographic network is made of various arborescences. It is also possible to

define the A matrix with aj,i being a continuous measure, e.g. the area of the watershed upstream

of i that is covered by j.

Treatment exposure

The second part of the setting that is essential is the definition of treatment exposure. Here, again,

we closely follow Manski (2013) and Aronow and Samii (2017), simply extending their concepts

to a DID setting. We define the potential treatment exposure of unit i ∆i = f(D, θi), where f is

a mapping which goes from Ω × Θ in ∆. Θ is a set of characteristics of each unit i, including

the matrix A. ∆ is the set of treatment exposures. Potential treatment exposure measures the

intensity with which unit i is affected by the treatment vector D. Effective treatment exposure,

which we define as ∆̃i,t = ∆i · postt, is the actual level of exposure to the treatment received by

unit i. Because we are in a DID setting, effective treatment exposure is zero before the treatment

date k. Since f is a mapping, treatment exposure can be characterized by a vector and not only

by a scalar.

In our setting, we choose to define potential treatment exposure as the proportion of the area

upstream of hydrographic zone i that is covered by the Nitrate Directive. We call this quantity

treatment intensity and denote it as Ti. Formally, treatment intensity is defined as follows:

Ti =

∑N
j=1 aj,iDj∑N
j=1 aj,i

, (1)

where aj,i is equal to the area of hydrographic zone j when it is upstream of i and zero otherwise.

Figure 6 illustrates this definition. Hydrographic zone i has seven upstream hydrographic zones

(including itself). Five of them, delimited by the dark square, belong to a vulnerable zone and are

regulated under the Nitrate Directive. Ti is the sum of the area upstream of i that is regulated

under the Directive (including i) divided by the total area upstream of i. Ti approximates the

proportion of water streaming through i that has transited through areas affected by the Nitrate

Directive.

6Note that our notation is already restrictive in that we do not allow for effects of the treatment at date t to have
impacts at later dates. Extending our setting to allow for such effects is straightforward. In our application, since
the treatment is fixed over most of the time periods, allowing for effects of the treatment to spill over time would not
add much to the analysis.
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Figure 6 also illustrates the bias that not accounting for diffusion effects generates for a treat-

ment effect estimator and how the concept of treatment exposure corrects for this problem. Hy-

dographic zones downstream of i are not classified as vulnerable and thus are not covered by the

Nitrate Directive. But a large portion of the water flowing through these unregulated downstream

hydrographic zones comes from rain that has fallen on regulated hydrographic zones. It is therefore

highly likely that water quality in the hydrographic zones downstream of i has been affected by

the regulation. A naive DID estimator not accounting for diffusion effects would classify these

hydrographic zones as untreated and would include them in the control group, which would bias

downwards the estimates of the impact of the regulation, since it would artificially decrease pol-

lution levels in the control group. Our measure of treatment intensity accounts for the indirect

exposure to the regulation of the hydrographic zones downstream of i. It thus avoids the biases of

the classical DID estimator that assumes that diffusion effects are absent.

In practice, we choose to discretize our treatment intensity indicator Ti into several categories.

This enables us to investigate potential non linear effects and to test for the existence of a dose-

response relationship. Discrete treatment indicators allow us moreover to use the classical DID

tools such as parallel trends graphs. We generate two discrete treatment indicators. The 25%

threshold treatment indicator attributes to the treated group each hydrographic zone that has a

treatment intensity higher than 25%. The 5-intensity treatment assigns each hydrographic zone into

a treatment group corresponding to its treatment intensity from 0% to 100%, by 25% increments.

Table 2 shows the assignment of hydrographic zones to each treatment group according to these two

definitions. With the dichotomous treatment indicator, we end up with roughly half of the french

hydrographic zones classified in the treatment group. With the 5-intensity treatment definition, we

have around 3000 hydrographic zones in the control group, almost 500 hydrographic zones in the

]25%,50%] treatment level, 261 in the ]50%,75%] treatment level, roughly 1000 hydrographic zones

in the ]75%,100%[ treatment level and 1250 hydrographic zones in the 100% treatment level.

Figure 7 shows the allocation of each hydrographic zone according to the two discretizations

of treatment intensity. Two points are worthy of note. First, since the areas regulated under

the Nitrate Directive exhibit a high degree of spatial correlation (see Figure 2) and are mostly

located downstream of their main catchment areas, in practice there are very few unregulated

hydrographic zones that are indirectly affected by the regulation. We should therefore not expect a

strong downward bias from ignoring diffusion effects. Second, the fact that the main river streams

appear in lighter colors than their surroundings on the map with detailed treatment intensity levels

(Figure 7b) signals that their water quality depends on a larger watershed area. This clearly

demonstrates that ignoring upstream influences would mask the impact of treatment intensity and

thus might underestimate the steepness of the dose-response curve.

The key assumption of the setting delineated by Manski (2013) and Aronow and Samii (2017)

is that treatment exposure summarizes exactly how each unit is affected by the treatment vector.

It is formally encoded as follows:

Assumption 1 (Properly specified exposure mapping) ∀i, t, ∀D,D′ ∈ Ω, f(D, θi) = f(D′, θi)⇒
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Yi,t(Dt) = Yi,t(D
′
t).

Under Assumption 1, we can write potential outcomes as a function of treatment exposure only:

Yi,t(Dt) = Yi,t(∆̃i,t). Assumption 1 is a generalization of the assumption of absence of diffusion

effects.7 It restricts diffusion effects to have the shape embedded in the exposure mapping. In our

application, Assumption 1 implies that the only way water quality in hydrographic zone i is affected

by the Nitrate Directive is through treatment intensity Ti,t, that is the proportion of its upstream

watershed that is under the regulation. In a first approximation, it makes sense that water quality

downstream essentially depends on what happens upstream. Nevertheless, Assumption 1 coupled

with our use of treatment intensity as a measure of treatment exposure is restrictive in a number of

ways. First, we assume that the impact of the regulation moves downstream mechanically, and does

not cross river streams (it does not go from one arborescence to another). We therefore exclude

imitation effects, where farmers upstream or located in an unconnected hydrographic zone emulate

the technical changes that the Directive imposes on farmers located in vulnerable zones. Second,

we exclude market equilibrium effects, where changes in yields in regulated zones would affect the

price of crops and change supply decisions outside of the regulated zones. In view of the limited

production effects that we find at the farmer level, we are fairly confident that this issue is not of

primary importance. Third, we exclude possible reallocation of manure from regulated areas to

unregulated areas. We test for this assumption using data on manure transfers over space and find

them to be very small. Fourth, we do not allow the impact of treatment to decay as we move up the

river stream. It is nevertheless possible that the influence of what happens in hydrographic zone j

matters less and less for water quality in i as j is further upstream from i. One way to capture this

phenomenon would be to make the weights aj,i in the A matrix depend on the physical distance

between i and j. We prefer to use a more non-parametric approach and test how our results

are sensitive to the use of an alternative definition of treatment exposure that takes into account

the distance between where treatment occurs and hydrographic zone i. We define the upstream

distance u(i, j) of zone j relative to zone i as the number of hydrographic zones between i and j,

when j is upstream of i. For example, on Figure 6, the two hydrographic zones just upstream of

i have u(i, j) = 1 and the two above are at a distance 2 relative to i. The distance between i and

itself is zero, so that u(i, i) = 0. u(., .) is directional: the distance between i and its downstream

zones is negative. We thus define a set of treatment intensities, one for each distance (or group of

distances) as follows, for every distance q ∈ {1, . . . , Q}:

T
uq
i =

∑
j:u(i,j)=q aj,iDj∑N

j=1 aj,i
. (2)

T
uq
i measures the proportion of the upstream watershed of i that is regulated under the Nitrate

Directive at distance q.
{
T
uq
i

}
q∈{0,...,Q} is the set of treatment intensities at distances 0 to Q and

one feasible alternative definition of treatment exposure.8

7SUTVA is indeed a special case of Assumption 1 where f(D, θi) = Di.
8An alternative to formulating the shape of the treatment exposure mapping ex-ante would be to estimate the
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Identification of the effect of treatment exposure in a DID setting

We are now equipped to define and study the identification of causal effects in a DID setting when

there are diffusion effects. Let us first define our object of interest, the average effect of treatment

exposure on the treated:

Definition 1 (Average effect of treatment exposure on the treated)

TT Yt (d) = E[Yi,t(∆i)− Yi,t(0)|∆i = d].

Definition 1 shows that the treatment effect that we are interested in here is specific to a given level

of exposure. There is therefore an infinite number of these effects, one for each level of treatment

exposure. With our definition of treatment exposure as treatment intensity, d can theoretically

take values in [0, 1]. In practice, we discretize treatment intensity into a dichotomous version and

a polytomous five-level version. For the dichotomous version, there is only one average treament

effect of treatment exposure. For the polytomous version, there are four different average effects of

treatment exposure, one for each dose above the control dose. The polytomous version enables us

to study whether there is a dose-response relationship between the regulation and water quality.

To obtain the identification of the average effect of treatment exposure using DID, we need to

state additional assumptions, in addition to Assumption 1. We first need assumptions that will

ensure that the expected potential outcomes at all levels of treatment exposure would have followed

parallel trends in the absence of the treatment. We decompose this set of assumptions into four

main assumptions. The first assumption is an additive separability assumption:

Assumption 2 (Additive separability) Functions g, h and m and random variables µi, Xi, δt

and εi,t exists such that:

Yi,t(∆̃i,t) = g(µi, Xi) + h(δt, Xi) +m(∆̃i,t, µi, δt, Xi) + εi,t.

Assumption 2 requires that the effect of unobserved confounders on outcomes can be decomposed

into four additively separable parts, one due to unobserved confounders fixed over time (or in-

dividual fixed effects) µi, one due to unobserved confounders that change over time but that do

not change over space (or time fixed effects) δt, one where treatment exposure operates, possibly

interacting with both time and unit fixed effects, and an idiosyncratic residual εi,t. We allow each

of the first three parts to interact freely with the level of the observed covariates Xi. An important

question is whether there exists a plausible structural model of water quality along a river stream

that would have such properties. We delineate one such model in Appendix A.1.

components of the A matrix from the data, using some form of machine learning estimator relating each observation
i to the treatment in all the other zones j at every time period, as in Manresa (2016). Manresa’s approach is not
feasible in our case unfortunately, since we have very limited variation in the regulation over time and space. Another
approach that we are keeping for further research would be to estimate a model of influence across outcomes, following
for example Barigozzi and Brownlees (2019), and use the estimated weights to back out the weights applicable for
the treatment.

18



The second assumption is an independence assumption:

Assumption 3 (Independence) E[εi,t|∆i, µi, δt, Xi] = 0, ∀t.

Assumption 3 requires that the idiosyncratic innovations to the outcome process are independent

from treatment exposure, conditional on the fixed effects and the observed covariates. Assump-

tions 2 and 3 allow the level of treatment exposure to be correlated with time and individual fixed

effects. This means that areas that are the most polluted in general can receive a larger dose of the

treatment. It was actually embedded in the design of the Nitrate Directive, where the definition of

vulnerable zones implied that they encompassed areas with the largest levels of pollution. Assump-

tions 2 and 3 also allow pollution to decrease or increase for all areas in the same proportion in the

absence of the Directive. Assumptions 2 and 3 are restrictive in that they prevent areas with differ-

ent treatment exposure to undergo different trends over time. Assumption 2 requires that time and

individual fixed effects do not interact, except for the effect of treatment exposure, which requires

that time fixed effects have the same impact on all units (conditional on observables). Assumptions

3 requires that idiosyncratic innovations be independent from potential treatment exposure and

have mean zero every year. Thus, idiosyncratic innovations cannot be correlated with treatment

exposure.

The third assumption is a normalization:

Assumption 4 (Normalization) ∀µ, δ, x, m(0, µ, δ, x) = 0.

Assumption 4 requires that, when treatment exposure is zero, there is no interaction between indi-

vidual and time fixed effects. Assumption 4 allows for unrestricted interactions between treatment

exposure and individual and time fixed effects, which enables treatment exposure for example to

have greater effects in certain places or at certain times.

Finally, we need a fourth assumption that ensures that there are units with a treatment exposure

level of zero:

Assumption 5 (Existence of untreated units) Pr(∆i = 0|Xi) > 0.

Assumption 5 requires that there be a positive measure of units that receive zero exposure to

the treatment. In our application, most units located at the most upstream parts of the French

hydrographic network were not covered by the Nitrate Directive, which validates Assumption 5. As

Lemma 1 in Appendix A.2 shows, Assumptions 1, 2, 3, 4 and 5 imply that the changes in outcomes

in the absence of the treatment are identical at every level of treatment exposure (i.e. the Parallel

Trends Assumption). We test for this assumption by comparing the trends at different exposure

levels before the implementation of the Directive in 2001.

Let us finally define the DID estimator that we want to use to identify the effect of treatment

exposure:

DIDY
k+τ,k−τ ′(d) = E[E[Yi,k+τ − Yi,k−τ ′ |Xi,∆i = d]− E[Yi,k+τ − Yi,k−τ ′ |Xi,∆i = 0]|∆i = d]. (3)
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Our DID estimator computes the average changes in outcomes between τ time periods after the

treatment date and τ ′ time periods before the treatment date for the group of units with treat-

ment exposure level d and compares it to the change between the same periods for the units with

zero treatment exposure, conditional on observed covariates. It is thus a form of semi-parametric

DID estimator (Heckman et al., 1997; Abadie, 2005). The following theorem shows that our DID

estimator identifies the average effect of treatment exposure on the treated:

Theorem 1 (Identification of TT) Under Assumptions 1, 2, 3, 4 and 5, the DID estimator

identifies the average effect of treatment exposure on the treated:

DIDY
k+τ,k−τ ′(d) = TT Yk+τ (d).

Proof. See Section A.2.

Estimation and inference for the effect of treatment exposure with panel data

Theorem 1 opens the possibility for estimating the effects of treatment exposure on water quality

using a DID-matching estimator. In practice, we prefer to resort to a simpler parametric model

that enables us to use a rich set of fixed effects. We estimate the impact of the policy on the water

quality indicator Y using the following regression:9

Ysirmt =
L∑
l=1

βl(T
l
i × postt) + α′Xsirmt + δs + γm + θrt + εsirmt (4)

where Yisrmt denotes water quality measured at station s, in hydrographic zone i, in hydrographic

region r (there are five hydrographic regions in France), on month m of year t. T li is a dummy

variable taking value one when our treatment intensity indicator is at level l in the hydrographic

zone i. L is the maximum number of treatment intensity levels, not including the control level.

L = 1 for the 25% threshold treatment and L = 4 for the 5-intensity treatment. Xsirmt is a

set of control variables including rainfall, temperatures, quality of measurement, measurement

support, portion analyzed, and the reading is raw or has been controlled, analyzed or validated.

We introduce a rich set of fixed effects: station fixed effects (δs), month-of-the-year fixed effects

(γm) and region×year fixed effects (θrt). Station fixed effects account for the permanent shifters

of pollution levels at the station level. Month-of-the-year fixed effects account for the cyclicality

of pollution over the year, as it is particularly acute during the winter. Year fixed effects account

for specific yearly pollution shocks common to all stations in the same region. We choose to make

these yearly fixed effects specific to each hydrographic region, to account for possible region-specific

trends in pollution. Our analysis thus looks at how pollution changes after 2001 at stations exposed

to the regulation, comapred to what happens to stations located in the same region but not exposed

to the regulation.

9The structural model of water quality along a river stream that we present in Appendix A.1 is compatible with
the parametric model we use for estimation.
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We compare our modified DID estimator to a classical DID estimator that ignores diffusion

effects. We write the classical DID estimator as follows:

Ysirmt =
L∑
l=1

βcl (D
l
i × postt) + αc

′
Xsirmt + δcs + γcm + θcrt + εcsirmt, (5)

where Dl
i is a treatment intensity variable defined by the proportion of the area of hydrographic

zone i that is covered by the regulation, ignoring what happens upstream of i. We also estimate a

version of the geographical discontinuity design estimator of Keiser and Shapiro (2017):

Ysipzrmt = βks(Dp × postt × downz) + αks
′
Xsirmt + δkss + γksm + φkszt + θkszrt + εkssipzrmt (6)

This estimator is computed only on pairs p of contiguous hydrographic zones i located around the

borders of the vulnerable zones. The position of each hydrographic zone i in each pair p is encoded

by the index z, which takes value one if the hydrographic zone is downstream in the pair and zero if

it is upstream. The variable downz takes value one when z = 1. The treatment variable, Dp, takes

value one if the downstream hydrographic zone in the pair is covered by a vulnerable zone and

zero otherwise. Keiser and Shapiro (2017) introduce pair×downstream fixed effects, which would

be equivalent in our case to hydrographic zones fixed effects. We prefer to use more fine-grained

station specific fixed effects δkss . Two additional sets of fixed effects are key to the identification

strategy in Keiser and Shapiro (2017): pair×year fixed effects (φkspt ) that account very finely for

time trends specific to each pair and enable the estimation to focus only on changes in pollution

within each pair; and downstream×region×year fixed effects, θkszrt, which account for differential

trends between upstream and downstream hydrographic zones in each region, capturing the effect

of other sources of pollution that would systematically be located within vulnerable zones. Keiser

and Shapiro (2017)’s approach does not allow the effect of the regulation to accumulate along the

river stream. It is thus likely that this estimator is biased downwards.

One final important question is how to estimate the precision of our estimators of the effect

of the Nitrate Directive accounting for the very likely autocorrelation between error terms along

river streams and over time. We first follow Barrios et al. (2012) and estimate the extent of

autocorrelation in our data empirically to guide our choice of the best estimator for precision. We

especially focus on the extent of autocorrelation along river streams by estimating the empirical

covariance Ĉ(q) at each distance q:

Ĉ(q) =

∑N
i=1

∑
j:u(i,j)=q YiYj∑N

i=1

∑
j:u(i,j)=q 1[j : u(i, j) = q ≥ 0]

, (7)

where 1[A ≥ 0] takes value one when A is true and zero otherwise. We also cluster our estimates

either at the station level or at the hydrographic zone level. The latter approach accounts for

both temporal autocorrelation and for spatial autocorrelation among stations that belong to the

same hydrographic zone. Finally, we extend to the DID setting Leung (2020)’s estimator for the
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covariance matrix of a linear regression on a network based on cross-sectional data (and predated

on the analysis of a Randomized Controlled Trial conducted on a network). The extension is

pretty straightforward, in that in Leung (2020)’s formula we replace the covariates in levels by the

demeaned covariates X̃i. We thus use the following estimator for the covariance matrix Σ̂ of the

parameters of equation (4) estimated using a fixed effects estimator:

Σ̂ = (X̃ ′X̃)−1M′GM(X̃ ′X̃)−1, (8)

where X̃ is the matrix of demeaned covariates, M is a matrix where columns are the product

between each demeaned covariate and ε̂isrmt the estimated residuals from equation (4), and G is

a matrix accounting for the autocorrelation between observations. Figure 5b shows the G matrix

for the cross-section of hydrograghic zones that is the symmetric matrix built from A. It accounts

for potential autocorrelation between all observations that belong to the same river stream by

connecting all the observations that are in an upstream/downstream relationship. In practice, the

G matrix that we use is much larger (it has the same number of lines as there are observations in

our panel dataset). The G matrix that we use accounts for spatial correlation over space (using

the pattern encoded in Figure 5b) but also accounts for autocorrelation over time by connecting

observations from the same station and/or the same hydrographic zone in different time periods.

Randomization inference tests for the existence and shape of diffusion effects

We complement our approach by randomization inference tests, extending tools developed for the

analysis of Randomized Controlled Trials conducted on a network by Athey et al. (2018). The way

we extend their approach is to apply the tests not directly on the outcomes in levels, but on the

demeaned outcomes ỹsirmt, obtained as the residuals of a regression of the outcomes in levels on

the fixed effects, without the treatment variables. Under our assumptions, these residuals should

be as good as random with respect to the treatment.

We perform several randomization inference tests. We first test whether there are any effects

of the treatment. The null hypothesis in this case is that all the effects of the treatment are

zero: Yi,t(Dt) = Yi,t(D
′
t), ∀i,∀D,D′ ∈ Ω. To test for this assumption, we randomly allocate all

hydrographic zones to placebo vulnerable zones, which gives us a randomized treatment vector D̃i.

To test for the existence of a treatment effect, we use as test statistics β̂OLS and δ̂DID, estimated

using the following regressions:

ỹsirmt = αOLS + βOLSD̃i + ηOLSsirmt, t ≥ 2001 (9)

ỹsirmt = αDID + βDIDD̃i + γDIDpostt + δDIDD̃ipostt + ηDIDsirmt. (10)

We compare the estimates of β̂OLS and δ̂DID obtained using the true treatment allocation to the

distribution obtained by randomly allocating the treatment status across hydrographic zones.

We also test for the existence of diffusion effects. The null hypothesis in this case is that all

diffusion effects beyond some distance q are non-existent: Yi,t(Dt) = Yi,t(D
′
t), ∀i,∀D,D′ ∈ Ω such
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that Dj = D′j ∀j such that u(i, j) ≥ q. This is crucial because implicit in our formulation of

treatment exposure is the fact that when regulating a hydrographic zone, we affect water quality

not only there but also in the zones located downstream. In practice, we test for the existence of

effects of order one and two, that is for q = 1 and q = 2 in the hypothesis above. We implement the

tests proposed by Athey et al. (2018) as follows. We first select a set of focal units. In our case, these

units are the ones for which we observe water quality at some point in time. To test for effects of

order one, we first select all the hydrographic zones that are one upstream hydrographic zone away

from the focal ones. Athey et al. (2018) call these units the auxiliary units. We randomly allocate

the treatment among the auxiliary units, obtaining a random treatment vector among auxiliary

units D̃1
i . To test for the null hypothesis, we use as test statistics γ̂OLS and ρ̂DID, estimated using

the following regressions:

ỹsirmt = αOLS + βOLSDi + γOLSD̃
1
i + ηOLSsirmt, t ≥ 2001 (11)

ỹsirmt = αDID + βDIDDi + φDIDD̃
1
i + γDIDpostt + δDIDDipostt + ρDIDD̃

1
i postt + ηDIDsirmt. (12)

To test for diffusion effects of order two, we select as auxiliary units the hydrographic zones that are

two upstream hydrographic zones away from the focal ones and we randomly allocate the treatment

among them (D̃2
s). To test for the null hypothesis, we use as test statistics δ̂OLS and θ̂DID, obtained

estimating the following regressions on the focal units:

ỹsirmt = αOLS + βOLSDi + γOLSD
1
i + δOLSD̃

2
i + ηOLSsirmt, t ≥ 2001 (13)

ỹirmt = αDID + βDIDDi + φDIDD
1
i + ψDIDD̃

2
i + γDIDpostt

+ δDIDDipostt + ρDIDD
1
i postt + θDIDD̃

2
i postt + ηDIDsirmt. (14)

We also test for the existence of a dose-response relationship. The null hypothesis in that

case is that there are no effects when treatment intensity moves beyond 0.25: Yi,t(Dt) = Yi,t(D
′
t),

∀i,∀D,D′ ∈ Ω such that 1[∆i ≥ 0.25] = 1[∆′i ≥ 0.25]. To test for this hypothesis, we select

as focal units all the most downstream units. We then move upstream until the cumulative area

regulated under the directive reaches 25% of the total area of the upstream watershed of each

focal unit. We classify as auxiliary units all the units that are located beyond the 25% threshold.

We randomly allocate the treatment among the auxiliary units and obtain a cumulated treatment

intensity among auxiliary units T̃i. To test for the null hypothesis, we use as test statistics β̂TOLS
and δ̂TDID, obtained by estimating the following regressions on the focal units:

ỹsirmt = αOLS + βTOLST̃i + ηOLSsirmt, t ≥ 2001 (15)

ỹirmt = αDID + βDIDT̃i + γDIDpostt + δTDIDT̃ipostt + ηDIDsirmt. (16)

Finally, we account for clustering in the implementation of the Directive by randomly allocating

the treatment among clusters of three hydrographic zones. We build these clusters by moving

upstream along each river stream from its most downstream point, allocating to the same cluster

23



all the hydrographic zones that are less than two zones away from the focal one, and repeating the

operation until we reach the most upstream hydrographic zone in each arborescence.

Extensions to other applications

Our methodological extension of the DID estimator to interventions that have spillover effects on a

network can be of separate interest for other applications for which Randomized Controlled Trials

might not be feasible, but where a source of spatial and temporal variation in treatment exposure

exists. Diffusion or spillover effects affect multiple economic, social, and biological phenomena

such as water and air pollution, traffic congestion, the transmission of contagious diseases and the

diffusion of innovations, among many others. The proximity matrix A might be the most crucial

component when applying the approach delineated here to other situations. In applications where

interactions are mechanistic, because for example they stem from biophysical processes, such as

the diffusion of pollution along river streams or wind directions, the proximity matrix can easily

be defined by the observed physical flows. For example, for applications to air quality, one could

define the A matrix as the proportion of the time the wind from location i flows in the direction of

j, or reaches location j.

In other applications, especially characterized by behavioral interactions (such as migration or

traffic congestion, for example), building the A matrix might require more work. Take the example

of a workfare program that might have effects on labor markets and, as a consequence, on untreated

units, as for example in Imbert and Papp (2020). One way to define the A matrix in that case is to

say that individuals are connected if they share the same labor market (and possibly the same type

of task or job). This might be restrictive, though, since new migration might occur in the zones to

which workers taking up the workfare program used to migrate. If the strength of these migrations

differs among zones, then treatment exposure should reflect that variation. Estimating a model of

how migration flows as in Imbert and Papp (2020) might help build the exposure matrix. In the

case of a policy prohibiting traffic in certain areas on high pollution days, building the A matrix is

even more difficult. Simply using observed flows does not allow to predict how flows will react to

the policy. Using a model of transport and route choice accounting for the fact that some routes

are inaccessible might help to build the A matrix. Our approach can then serve as a test for the

predictions of the structural model.

4.2 Estimating the effect of the Nitrate Directive on farmers

At the farmer level, we have access to two types of datasets: a repeated cross-section (the survey

of agricultural practices) and a rotating panel (the Farm Accountancy Data Network). With the

repeated cross-section, we use a traditional DID approach:

Ypt = β(V ulnerablep × postt) + γV ulnerablep + φd(p) + ψt + εpt, (17)
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where Ydt is an agricultural practice of interest on plot p in year t and in department d(p).

V ulnerablep is a dichotomous variable that takes value one when plot p is regulated under the

Nitrate Directive and zero otherwise. γV ulnerablep captures the average level of the agricultural

practice for the group of plots regulated under the Nitrate Directive before the regulation is imple-

mented. φd(p) and ψt are département and year fixed effects respectively.10

With the rotating panel data of the Farm Accountancy Data Network, we run a more classical

panel data regression:

Yft = β(V ulnerablef × postt) + χf + ζt + εft, (18)

where Yft is an agricultural practice of interest on farm f in year t. V ulnerablef is a dichotomous

variable that takes value one when farm f is located in a commune regulated under the Nitrate

Directive and zero otherwise. χf and ζt are farm and year fixed effects respectively.

5 Results

This section presents our main results. The first part presents the impacts of the EU Nitrate Direc-

tive on water quality, while the second part details the impacts of the Directive on farmers’ practices

and profits. A third part provides the most relevant robustness checks, including the results of using

alternative estimators, alternative methods for estimating precision, and randomization inference

tests.

5.1 Impacts of the Nitrate Directive on water quality

We first present the impacts of the Nitrate DIrective on nitrate concentration. We then move

on to results on other physico-chemical indicators of water quality before ending with results on

eutrophication and biodiversity.

Impacts on nitrate concentration

In this section, we first show descriptive evidence of the impact of the Nitrate Directive on nitrate

concentrations in water before presenting results obtained estimating equation (4).

Figure 8a shows the annual mean nitrate concentration in surface waters at each level of treat-

ment intensity. Several findings are apparent on this graph. First, hydrographic zones with higher

levels of treatment intensity have higher levels of nitrate concentration before 2001. This makes

sense since vulnerable areas were selected because they had high levels of nitrate pollution before

1993. Second, before 2001 the trends in nitrate concentration are roughly similar (and actually

rather flat) in areas with different levels of treatment intensity, thus vindicating the assumption of

parallel trends that underlies the DID approach that we use. Third, water quality improves in the

group with the highest treatment intensity, whereas it remains constant in control areas, thereby

10The département is the second smallest administrative level in France. There are roughly 100 départements
containing on average 360 communes each.
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suggesting that the Nitrate Directive improves water quality, at least when enough of the upstream

watershed is regulated under the Directive. Figure 8b shows the trends in water quality in treated

groups compared to the control group. The trends in water quality in treated watersheds do not

exhibit major upward or downward trends before 2001. The mean level of water quality compared

to the control group (in red) decreases after 2001, and seems to decrease more at higher treatment

intensity.

Figure 9 reports estimates of the impact of the Nitrate Directive on nitrate concentration in

surface water obtained using Equation (4) and the two treatment definitions (2-levels on the left

and 5-levels on the right). Table 3 presents the actual magnitudes of the estimates. There are two

important results from Figure 9. First, when grouping all treatment intensities above 25% together,

we estimate that the Nitrate Directive reduces nitrate concentration in surface water by 1.23±0.27

mg/l, a decrease of roughly 8% with respect to a mean concentration level of 16 mg/l. Second,

the impact of the Nitrate Directive on water quality exhibits a dose-response relationship: nitrate

concentration decreases as the share of the upstream watershed regulated under the Directive

increases. The reduction in nitrate concentration that we measure goes from 0.05±0.30 mg/l when

25% to 50% of the upstream watershed is regulated under the Directive, to 0.73±0.41 mg/l when

50% to 75% of the upstream watershed is regulated, 1.37±0.43 mg/l when 75% to 99% of the

upstream area is regulated, finally reaching 2.82±0.44 mg/l when 100% of the upstream watershed

is regulated under the Directive.

Table 4 displays the results of a heterogeneous analysis of the effect of the Nitrate Directive

by season and by region. We find the most important effects of the Directive to be concentrated

during winter, when nitrates are at a higher risk of running off from the fields. We also find that

the impact of the Directive is greatest in the Loire-Bretagne hydrographic district, with a reduction

in nitrate concentration of 3.90±0.72 mg/l, followed by the Seine-Normandie hydrographic district,

with a reduction in nitrate concentration of 1.18±0.80 mg/l. The large impact in Loire-Bretagne

is probably due to the fact that a large portion of the area there is regulated under the Directive.

Impacts on other physico-chemical indicators of water quality

Figure 10 presents the mean concentrations in treated and control groups and the deviations from

the control group for the concentrations in nitrites, ammonium and phosphorus and for dissolved

oxygen and chemical oxygen demand. When looking at the plots on the left, it seems that the

water concentrations in nitrites, ammonium, phosphorus and chemical oxygen demand decrease

more in treated areas than in control areas before 2001, suggesting a potential failure of the Parallel

Trends Assumption underlying DID. This might be because the first action program starting in

1997 actually reduced pollution, contrary to our assumptions so far. Note that if this is the case,

our estimates underestimate the reduction of pollution due to the EU Nitrate Directive. But

these trends might also be due to confounding influences, for example the differences in temporal

trends in water pollution between hydrographic regions before 2001. This second explanation seems

vindicated when looking at the plots on the right: adding region×year fixed effects gets rid of the
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diverging trends. Comparisons of pre- and post- 2001 levels of pollution in the treated group with

respect to the control group (in red on the plots on the left) suggests that the Nitrate Directive has

improved water quality.

Table 5 presents econometric estimates of the impact of the Nitrate Directive on the con-

centrations of nitrites, ammonium and phosphorus, dissolved oxygen and chemical oxygen de-

mand obtained by estimating equation (4). The econometric results confirm the visual impres-

sion obtained after looking at Figure 10. We find that the Nitrate Directive decreases concen-

trations in nitrites by 0.032±0.012 mg/l, in ammonium by 0.12±0.11 mg/l and in phosphorus by

0.027±0.022 µg/l. We also find that the Nitrate Directive increases the concentration in dissolved

oxygen by 0.06±0.07 mg/l. We find very imprecise results with respect to the impact of the Directive

on chemical oxygen demand, where we find an imprecisely estimated increase of 0.19±1.01 mg/l.

Results estimated with our balanced sample find a decrease in chemical oxygen demand of 1.56±1.7,

which is still very imprecise (see Table 14). These changes correspond to roughly a 10% improve-

ment relative to their mean, except for ammonium, where the change represents roughly 5% of its

average concentration, and dissolved oxygen, where the change in concentration is of the order of

1o/oo.

Impacts on eutrophication and biodiversity

Figure 11 presents the trends in the concentration in Chlorophyll A, the number of fish and the

number of fish species in treated and control watersheds. Figures 11a, 11c and 11e show that the

concentration in Chlorophyll A, the number of fish and the number of fish species seem to improve

more in treated areas than in control areas before 2001. This might be due either to improvements

owing to the first action program that started in 1997, or to diverging trends, possibly at the

hydrographic region level. Introducing region×year fixed effects transforms the diverging trends

in an oscillation compatible with the parallel trends assumption (Figures 11b, ?? and 11f). These

figures also show that water quality improves in the treated areas compared to the control areas

after 2001. Table 6 shows the results of regressions estimating equation (4) for the concentration

in Chlorophyll A, the number of fish and the number of fish species. We find that the Nitrate

Directive reduces the concentration in Chlorophyll A by 2.7±1.4 µg/l, a decrease of more than 20%

relative to the baseline level. We also find that the stock of fish increases by 70±22, an increase of

40% relative to the average fish population at our measurement points. The number of fish species

increases by almost one (0.92±0.44), or roughly 10% of its baseline level.

5.2 Impacts on farmers’ practices and productivity

In this section, we present the impacts of the Nitrate Directive on farmers’ practices, profits and

productivity. We present the impacts of the Directive on practices aimed at reducing the transfers

of pollutants in a first part, on nitrogen use efficiency in a second part and on farmers’ profits and

productivity in a last part.
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Impacts on practices aimed at reducing the transfer of pollutants

Figure 12 presents the trends in adoption of nitrate-fixing crops and grass buffer strips by farmers

located inside and outside the vulnerable zones delimited by the Nitrate Directive. Figure 12a

shows that, before 2001, the adoption of nitrate-fixing crops was increasing slowly in both types

of zones. After 2001, farmers started planting nitrate-fixing crops at a much higher rate in zones

regulated under the Nitrate Directive. Figure 12c shows that the adoption of grass buffer strips

skyrocketed after 2001, but that the rate of increase was similar both in vulnerable and in non-

vulnerable zones. This suggests that the Nitrate Directive succeeded in increasing the adoption of

nitrate-fixing crops, but failed at increasing the planting of grass buffer strips, which increased for

other reasons. Since 2001, subsidies from the first pillar of the Common Agricultural Policy have

been conditional on the planting of grass buffer strips, which triggered a general increase of these

strips in vulnerable and non-vulnerable zones alike.

Table 7 confirms this analysis by showing estimates of equation (17). Our estimates show that

the Nitrate Directive increased the adoption of nitrate fixing crops by 6±1 p.p., a more than 100%

increase relative to the mean, while the Nitrate Directive did not affect the proportion of farmers

planting grass buffer strips (-1.0±2.4 p.p.).

Impacts on practices aimied at increasing the effectiveness of nitrogen management

Figure 13 shows the evolution of the proportion of farmers estimating nitrogen content in the soil

and adjusting their nitrogen fertilization using the nitrogen balance method in zones covered or not

covered by the Nitrate Directive. Both practices serve to adapt the amount of nitrogen fertilizer

applied to the field to the needs of the plant and the nitrogen content in the ground. Figure 13b

shows that the proportion of farmers performing soil analysis to measure the Nitrogen content by

the end of winter increases over time more in zones covered by the Nitrate Directive than in zones

not covered by it. Similarly, and even more strikingly, Figure 13c shows that the proportion of

farmers adjusting their nitrogen input using the nitrogen balance method has increased by roughly

10 p.p. in zones covered by the Nitrate Directive relative to zones not covered by it.

Table 8 confirms the impression taken from Figure 13 with estimates of equation (17). It shows

that the Nitrate Directive increased the proportion of farmers estimating the level of nitrates in their

field by 6.4±2.8 p.p and the proportion of farmers adjusting their nitrogen input using the nitrogen

balance method by 10.2±2.0 p.p., which correspond to increases of 50% and 71% respectively with

respect to the mean.

Impacts on nitrogen use and nitrogen use efficiency

Figure 14 presents the evolution of fertilizer use for plots of land regulated or not under the Nitrate

Directive. We do not see clear changes in mineral fertilizer use, but can observe a signs of a decrease

in manure use after 2001. Figure 15 presents the evolution of nitrogen input, output, balance, and

nitrogen use efficiency for plots of land regulated or not under the Nitrate Directive. While we do
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not observe clear changes in nitrogen input on plots regulated under the Nitrate Directive, there is

a differential increase in nitrogen output on those plots, which translates into a relative increase in

nitrogen use efficiency and a decrease in nitrogen balance.

Table 9 confirms the results of the visual inspection of Figure 14 and Figure 15 by providing

estimates of equation (17). We find statistically insignificant effects of the Nitrate Directive on

mineral fertilization (both for nitrogen (-2.8±3.4 kgN/ha) and phosphorus (-1.5±2.1 kgP/ha)),

while we find small but significant effects of the Nitrate Directive on manure use (-1.4±1.2 kgN/ha).

Hence, we find no impact of the Nitrate Directive on the total amount of nitrogen input brought to

the field (0.88±4.6 kgN/ha). As expected from what we saw on Figure 15, we find that the Nitrate

Directive increases the output content in nitrogen by 9.6±4.8 kgN/ha, relative to a mean of 136.1,

which is an increase of 7%. This has led to an improvement in nitrogen use efficiency by 16±7 p.p.,

and a decrease in nitrogen balance by 9.6±6.6 kgN/ha.

Impacts on farmers’ profits and productivity

Table 10 presents the results of estimating equation (18) for the components of farmers’ per-

hectare profits on the FADN data, using the farmer’s location in a vulnerable zone or not as the

treatment indicator. We first confirm the results obtained using plot-level data, i.e. the total value

of production increases in vulnerable areas. We quantify this increase as equal to 18±12 e/ha for

all the farmers regulated under the Directive. This increase in the value of output is larger for

crop growers, who get to benefit the most from increases in crop yields. The value of their output

increases by 29±24 e/ha thanks to the Directive. This amounts to a 2% increase in the value

of the production of a typical crop grower over this period. When subtracting their spending on

fertilizers from the total value of production, we still find that the Directive improves farmers’ gross

profits (by 13±12 e/ha for all farmers and by 23±24 e/ha for crop growers). When subtracting

the costs of all the other main variable inputs (seeds, pesticides, fuel, and soil analysis), we find

that the Directive has an insignificant effect on farmers’ gross profits (6±12 e/ha for all farmers

and 13±24 e/ha for crop growers). Hence, we find that the Directive has not negatively impacted

farmers’ gross profits.

To examine the overall impact of the Directive on farmers’ economic performance, we estimate

its impact on total factor productivity. Table 11 reports on the results of estimating equation

(18) with total factor productivity as an outcome, with various levels of fixed effects. The results

of these regressions show that the Nitrate Directive increases farmers’ total factor productivity by

0.05±0.04, an 8% increase relative to the mean total factor productivity in the sample. The Nitrate

Directive seems to have increased the productivity of the regulated farmers, a result consistent

with the Porter hypothesis (Porter and Van der Linde, 1995). The Porter hypothesis states that

regulations might trigger the adoption of innovations by the regulated firms in order to cope with

the additional costs of the regulation.

A key question in the literature on the Porter hypothesis is how a regulation can improve the

productivity of the regulated firms. In our case, we think we have a fairly clear explanation for
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why the Nitrate Directive might have increased farmers’ total factor productivity: the mandatory

adoption of improved nitrogen management methods, especially soil analysis coupled with the

nitrogen balance method. Our interpretation of our results is that these technologies improve the

allocation of nitrogen by bringing it to where it is most needed. This increases the amount of

nitrogen exported in the crops and decreases the amount of nitrogen running off from the fields,

thereby increasing nitrogen use efficiency. One way to test for this explanation is to examine

whether the variance of the quantities of nitrogen fertilizers brought to the fields increases in the

zones covered by the Nitrate Directive. If farmers adapt the quantity of fertilizer used, by applying

more where it is needed most, and less where more nitrogen remains after winter, based on the

results of soil analysis and the nitrogen balance method, then the quantities applied to each field

should vary more since they are tailored better to the specific needs of each field. Table 12 shows

that the variance in the application of nitrogen fertilizer increases in vulnerable areas after the

implementation of the Nitrate Directive, as we would expect if the applications had become more

sensitive to the specific conditions in each field, specifically the content of nitrogen after winter.

5.3 Robustness Checks

In this section, we present the results of several robustness checks. First, we discuss the conditions of

selection of the hydrographic zones in vulnerable areas in relation to the parallel trends assumption.

Second, we test how our estimates change when using alternative estimators. Third, we report on

how our estimates of precision change when accounting for autocorrelation along river streams.

Fourth, we present evidence on the existence of diffusion effects and on the validity of our assumed

exposure mapping. Fifth, we test how our results vary depending on the sample of monitoring

stations we use and on the type of fixed effects. Sixth, we look at how our results change when

we control for land use changes. Seventh, we test the sensitivity of our results to the inclusion of

controls for the installation of wastewater treatment plants along river streams.

Delimitation of the vulnerable zones and validity of the parallel trends assumption

A key assumption for the validity of our approach is the parallel trends assumption which states

that, in the absence of the treatment, trends in water quality are independent of treatment exposure.

Figure 8b suggests that the pre-2001 trends in Nitrate concentration hovers around zero in all

groups of treatment intensity, but we have not yet provided a formal test for this assumption. In

this section, we want to provide more evidence to support that assumption, and how it follows from

the process of selection of hydrographic zones into vulnerable zones.

Let us start by discussing the conditions under which the official rules used to delimit the

vulnerable zones are compatible with the parallel trends assumption. We do not know the exact

rules of selection of vulnerable zones, but we know the general guidelines: stations and zones

that had maximum nitrate concentrations above 40 or 50 mg/l in the years before 1993 should

be included in a vulnerable zone. Figure 16 shows that the maximum concentration in nitrates

observed before 1993 is strongly correlated with the proportion of the area of a hydrographic
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zone classified as vulnerable to nitrate pollution. The proportion of vulnerable zones increases with

maximum concentration up to 50 mg/l, and then levels off, except in 1993 where it keeps increasing

even above 50 mg/l, suggesting that readings made in 1993 are the ones that regulators used to

define the boundaries of the vulnerable zones. We can thus model the selection of the vulnerable

zones as a threshold crossing model: Di = 1[Yi,1993 + ηi ≥ 50], where ηi is a mean zero shock.11

Following Chabé-Ferret (2015), we model nitrate concentrations in the absence of the treatment

in hydrographic zone i in year t as an AR(1) process with zone specific intercepts and trends:

Y 0
i,t = µi + βit + Ui,t, with Ui,t = ρUi,t−1 + εi,t, and εi,t an i.i.d. mean-zero shock.12 Combining

the two equations (and as shown formally in Chabé-Ferret (2015)), the difference between nitrate

concentrations in vulnerable zones and non-vulnerable zones will start increasing as we get closer

to 1993, because of the increasing influence of βi and Ui,t, which are both positively correlated with

selection into a vulnerable zone, and increasingly so as we get closer to 1993. Our simple model

of selection thus predicts that the parallel trends assumption will not hold before 1993, unless the

variance of βi is zero and ρ = 0 (see Chabé-Ferret (2017) for a formal proof). The model also

predicts that the difference between treated and control groups will continue to grow after 1993 if

the βi term dominates. If the variance of βi is zero and |ρ| < 1, the difference between treatment

and control groups will start shrinking after 1993. Finally, if the variance of βi is zero and ρ = 1,

the difference between treated and control groups will remain constant after 1993, ensuring the

validity of the parallel trends assumption.

Because selection into vulnerable zones was done in 1993, and the regulations of the Nitrate

Directive did not take effect before 2001, we have six years (between 1994 and 2000) during which

we can test which of the three cases of selection bias dynamics described above actually holds.

Figure 17 shows the trends in nitrate concentrations in each of the 5− intensity treatment groups

before 1993, between 1994 and 2000 and after 2001. As expected, we see that there is an increasing

divergence in nitrate concentrations between the treated groups and the control group up to 1993.

The steepness of this divergence increases with treatment intensity, as we could expect, since higher

treatment intensity means a bigger share of the watershed located upstream of the hydrographic

zone covered by vulnerable zones. After 1993, the divergence of nitrate concentrations between

the treated and control groups levels off and remains constant, as predicted by a model where the

variance of βi is zero and ρ = 1. A formal test does not reject the null hypothesis that the trends

in nitrate concentrations in each treatment groups are significantly different from the trends in the

control group between 1994 and 2000.13

11Note that this selection equation opens up the possibility of using a Regression Discontinuity Design with the
maximum nitrate concentrations registered in 1993 as a running variable. Weindeed find a very sharp increase in the
proportion of vulnerable area around 39.5 mg/l of maximum concentration of nitrates in 1993, and a corresponding
sharp decline of mean nitrate concentrations around the same threshold after 1997. However, the estimates rely on
a handful of observations and are thus highly imprecise. We therefore do not report them here.

12For simplicity, we ignore spatial autocorrelation, which does not alter the analysis.
13We perform the test by estimating the slope of a linear regression relating treatment group×year dummies,

estimated using equation (4) modified to replace postt by a set of yearly dummies, with time, separately for each
treatment group, using Weighted Least Squares, with the weights the inverse of the square of the standard error of
the estimated parameters. The estimated slopes are 0.032 ± 0.422 for group 1, 0.155 ± 0.57 for group 2, 0.412 ±
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We can therefore rule out both the model in which the variance of βi is zero and |ρ| < 1 and there

is regression to the mean and the model in which the variance of βi is positive and the divergence

between treatment and control groups increases over time. The model that is compatible with our

data is one in which the variance of βi is zero and ρ = 1, and the parallel trends assumption holds

after the date of selection of the vulnerable zones. In this model, shocks to nitrate concentrations

are permanent. This makes intuitive sense: the stock of cattle and the area dedicated to crops are

both highly persistent over time. Our reading of this evidence is that the parallel trends assumption

is verified in our data after 1993, and thus our main identification assumption holds.

Alternative estimators

Table 13 presents the results of estimating the impact of the Nitrate Directive on nitrate concentra-

tions using alternative methods: the classical DID approach ignoring diffusion effects, as delineated

in equation (5) and the geographical discontinuity design estimator of Keiser and Shapiro (2017)

presented in equation (6).

The results show that the classical DID estimator ignoring diffusion effects finds a reduction

of 1.14±0.24 mg/l in nitrate concentrations because of the treatment when it is defined as a di-

chotomous treatment, vs 1.23±0.27 mg/l for our modified estimator. We were expecting the bias

due to diffusion effects to be small, since the zones covered by the Nitrate Directive are spatially

correlated and mostly located downstream of the hydrographic network, leaving few zones that are

not covered by the Directive but that benefit from its impact. In contrast, we find that the classical

DID estimator would miss the steepness of the dose-response relationship, as columns (4) and (5)

of Table 13 show. Coefficients for the doses of treatment intensity equal to [0.5, 0.75[, [0.75, 1[ and

1 are underestimated by a factor of 1.4 to 4. As a consequence, the true effectiveness of cumulat-

ing the effect of the policy along river streams would have been downplayed by the classical DID

estimator.

Table 13 also presents the results of the geographical discontinuity design estimator of Keiser

and Shapiro (2017) detailed in equation (6). This estimator finds a statistically significant decrease

in nitrate concentrations due to the reform of 1.07±0.64 mg/l. This is slightly smaller and less

precise than the effect we find with our estimator (1.23±0.27 mg/l), but still in the same range.

Figure 18 presents the trends in nitrate concentrations obtained using Keiser and Shapiro (2017)’s

method. The difference between neighboring vulnerable and non-vulnerable zones hovers around

zero before 2001, confirming the validity of the assumption of parallel trends on which Keiser and

Shapiro (2017)’s approach rest. The coefficients start to become negative after 2001, indicating that

the reform did actually have an impact. As expected, Keiser and Shapiro (2017)’s approach slightly

underestimates the impact of the Nitrate Directive compared to our approach since it does not take

into account the fact that the impact of the Directive slowly accumulates along the river stream.

In contrast with our method, Keiser and Shapiro (2017)’s approach does not allow to estimate

0.874 for group 3 and -0.139 ± 0.845 for group 4. Estimates using a yearly balanced panel instead of a monthly
balanced one yield similar results.
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dose-response effects because most of the hydrographic zones located at the border of vulnerable

zones are covered by the regulation on a small proportion of their area. Finally, Keiser and Shapiro

(2017)’s approach is less precise since it focuses on a smaller subset of all the observations. It is

nevertheless reassuring that using a different identification strategy yields very similar estimates of

the main effect of the Nitrate Directive on nitrate concentrations as our main estimator.

Estimating precision accounting for autocorrelation along river streams

When estimating the precision of the effect of the Nitrate Directive on water quality, we have ac-

counted for the autocorrelation in error terms by clustering standard errors at the hydrographic

zone level. In this section, we explore the actual level of autocorrelation using the empirical estima-

tor suggested by Barrios et al. (2012). We test how sensitive our estimates of precision are to the

assumption that most autocorrelation takes place within hydrographic zones, using Leung (2020)’s

estimator of the covariance matrix on a network.

Figure 19 presents the empirical estimates of spatial and temporal autocorrelation using Barrios

et al. (2012)’s estimator detailed in equation (7). The first striking fact that emerges from Figure 19

is how large autocorrelation in the levels of treatment intensity and nitrate concentration is, both

over time and over space. Both autocorrelation estimates are of the same order of magnitude as

the variance of the variables, and decrease extremely slowly as distance between observations grows

over space and time. The second result from Figure 19 is that introducing fixed effects accounts for

a large fraction of the autocorrelation between observations, especially over space and especially

for nitrate concentrations. Figure 19a shows that spatial autocorrelation in nitrate concentrations

decreases as observations are further away from each other along river streams, passing under

0.25 beyond four levels of separation. The difference between levels and residuals of a fixed effect

regression is even starker for temporal correlation, as Figure 19b shows. Temporal correlation in

the levels of nitrate concentrations is extremely high, close to 1 even with as much as 24 months

of separation between observations. Temporal correlation in residuals decreases to a maximum of

0.4 and reaches almost zero at 6 month intervals, which shows that we have been able to capture

a large chunk of the covariance between observations with our set of fixed effects. Despite these

improvements, autocorrelation in residuals remains large and calls for accounting for it both in the

spatial and temporal dimensions when estimating standard errors.

Figure 20 presents the results of estimating the precision of the effect of the Nitrate Directive

on nitrate concentration, using traditional Huber-White clustered standard errors estimators along

with Leung (2020)’s estimator of the covariance matrix on a network, presented in equation (8),

under various assumptions of the structure of autocorrelation. It appears clearly on Figure 20

that ignoring autocorrelation altogether would greatly overestimate precision, by a factor of three

approximately. Accounting for spatial correlation along river streams doubles the naive estimate

of the standard error. Accounting for temporal correlation between observations from the same

station across time increases standard errors by another 50%. Clustering standard errors at the

hydrographic zone level yields very similar estimates of precision as the ones obtained using Leung’s
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standard errors accounting for both spatial and temporal correlation. The precision of our main

estimates is therefore not affected by accounting for spatial and temporal autocorrelation more

finely.

Evidence on diffusion effects, the dose-response relationship and proper specification of the

exposure mapping

Until now, we have insisted on the importance of taking into account diffusion effects along river

streams when estimating the effect of the Nitrate Directive, without bringing hard evidence that

these effects exist. The main piece of evidence that we have is the one presented in Table 13

where we have seen that estimators ignoring diffusion effects either underestimate the effect of the

regulation or miss the steepness of the dose-effect relationship. In this section, we present additional

evidence in favor of the existence of diffusion effects and of their importance, as well as the existence

of a dose-response relationship and of the proper specification of our exposure mapping.

Figure 21 presents the results of randomization-inference tests à la Athey et al. (2018) for the

existence of treatment effects, of diffusion effects and of a dose-response relationship. Figure 21a

presents the results of the tests of the null hypothesis that there are no direct effects of the Nitrate

Directive on the regulated hydrographic zones. The results show strong evidence for rejecting this

hypothesis in favor of the existence of treatment effects. Figures 21b and 21c present the results

of the tests of the null hypothesis that there are no diffusion effects at distances one and two

respectively. Again, both tests provide evidence that these hypotheses can be rejected with a high

level of confidence, and thus that the Nitrate Directive has diffusion effects of order one and two.

Figure 21d presents the results of the tests of the null hypothesis that there is no dose-response

relationship. The alternative is that it is only passing the 25% threshold in treatment intensity that

matters for the effects of the Directive to materialize. Here, results are less stark, but the p-value

for this hypothesis is 0.1 for both estimators, suggesting that there is some ground in favor of the

existence of a dose-response relationship.

Finally, we test the validity of our specification of treatment exposure. Remember that we use

the proportion of the watershed upstream of i that is regulated under the Nitrate Directive (or

treatment intensity) as our definition of treatment exposure. One implication of that definition of

treatment exposure is that the precise location of the regulated areas upstream of i does not matter,

as long as the overall treatment intensity is constant. A less restrictive definition of treatment

exposure would allow for differential effects of the treatment, depending on the exact distance from

i at which the upstream is regulated. One such alternative is to use
{
T
uq
i

}
q∈{0,...,Q}, the set of

treatment intensities at distances 1 to Q, as defined in equation (2). We thus run the following

regression:

Ysirmt =

Q∑
q=0

ψq(T
uq
i × postt) + α′Xsirmt + δs + γm + θrt + εsirmt. (19)

In equation (19), the assumption that our preferred exposure mapping is properly specified can be

encoded as the null hypothesis that ψ0 = ψ1 = · · · = ψQ = ψ. Under this assumption, we can indeed
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rewrite the first term on the right hand side of equation (19) as ψ(Ti × postt), meaning that the

effect of the treatment depends only on treatment intensity (the total proportion of the upstream of

hydrographic zone i that is regulated under the Nitrate Directive) and not on the precise location

where the regulation is implemented. In practice, we estimate equation (19) with Q = 2, using all

the hydrographic zones that have upstream neighbors at a distance of two upstream zones or more

(in order to avoid the confounding influence of the number of neighbors). Note that this approach

assumes a linear dose-response relationship, in order to be parsimonious and save on the number

of coefficients. Figure 22 presents the estimates of the ψq parameters. These coefficients can be

interpreted as the effect of moving from zero to 100 percent of the upstream area regulated under

the Nitrate Directive. Regulating a hydrographic zone under the Nitrate Directive decreases nitrate

concentrations by 2.031±2.744 mg/l in the same zone, by 2.343±2.086 mg/l when the regulated

zone is one upstream zone away and by 1.418±0.542 when the regulated zone is two upstream zones

away. However imprecise, the size of these coefficients is similar to the impacts we find for moving

the totality of the upstream under the Nitrate Directive in our main specifications (see Figure 9 and

Table 3). We test the null hypothesis that ψ0 = ψ1 = ψ2 = ψ using a Wald statistic, which, under

the null, is distributed as a χ2
Q. The Wald statistic is equal to 1.898, which, in a χ2

2 distribution,

has p-value 0.387. We thus do not reject the null of a properly specified exposure mapping.

Balanced sample and alternative treatment dates

Our main regressions on water quality are run on an unbalanced sample of monitoring stations with

at least one observation before 2000 and at least five measurements per monitoring station. Table 14

and Table 15 present the result of the same specification run on a balanced sample with yearly

measurements at the same monitoring stations over the period 1994-2015. Figure 23a presents

the sensitivity of the estimates of the impact of the Nitrate Directive on nitrate concentrations to

various balanced samples. The number of observations is roughly divided by two after balancing,

but the qualitative and quantitative properties of the results remain unchanged.

Our main regressions use 2001 as the official treatment date, and consider all the hydrographic

zones classified as vulnerable at any time between 2001 and 2012 as treated. Since there has been

some, albeit limited, entry and exit into the list of vulnerable zones, we test the sensitivity of

our results to the exact definition of vulnerable zone, always using 2001 as the official treatment

date. We also test the sensitivity of our results to a time-varying definition of the treatment group,

by including the hydrographic zones in the treated group only in the years in which they are

classified as vulnerable. Figure 23b presents the results of these robustness checks. Our results

are both qualitatively and quantitatively robust to the exact definition of the treatment group.

An interesting pattern seems to emerge: the estimated effects are slightly smaller when using the

list of vulnerable zones in 2001 as our treated group and when using a time-varying definition

of the treatment group. This result might be explained by the fact that, using only the zones

classified as vulnerable in 2001 as treated puts in the control group all the zones that become

classified as vulnerable after 2001. Since these latter zones experience an improvement in nitrate
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concentrations, putting them in the contro group biases downwards the estimate of the impact

of the Nitrate Directive on water quality. Using a time-varying definition of the treatment group

puts in the control group hydrographic zones that have been excluded from the list of vulnerable

zones. Sinxe these latter zones have experienced improvements in water quality, their inclusion in

the coontrol group again biases downwards the impact of the Nitrate Directive on water quality.

Land Use Changes

In our main regressions, we have not reported the impact of the Nitrate Directive on land use. It is

possible that our results on increasing nitrogen use efficiency, or on increasing water quality, comes

from changes in land use. In this section, we estimate the impact of the Nitrate Directive on land

use and we look at how the impact of the Nitrate Directive changes when conditioning on land

use. We estimate crop areas from the French Agricultural Censuses of 1988, 2000 and 2010. We

relate 1988 land use values to the period before the Nitrate Directive and 2000 and 2010 to after

the Nitrate Directive.

Figure 24 presents the trends in land use (especially crops) in areas covered and not covered by

the Nitrate Directive, while Figure 25 presents the same trends for grassland areas and number of

livestock units. The Directive seems to result in an increase in the area in cereals and crops, and

a simultaneous decrease in grassland areas and in livestock. The changes seem rather small with

respect to the mean values, though. Table 16 confirms this informal analysis. We find that the

Nitrate Directive decreased grassland area by 33±8 ha, or 12%, while it increased the area under

cereals by 18±1.6 ha. Table 17 and Table 18 report the results of regressions including land use as

a control variable. We find that land use changes are unlikely to explain our results: the coefficients

of interest remain almost unchanged when controlling for land use.

Wastewater Treatment Plants

At the same time as the Nitrate Directive was implemented, the EU Water Directive required the

establishment of wastewater treatment plants along river streams. If the wastewater treatment

plants were positioned in a way that is correlated with the zones regulated under the Nitrate

Directive, then our results might be biased. We test the importance of wastewater treatment

plants as a potential alternative source of improvement of water quality. We use a public database

on Urban Wastewater Treatment Plants from the French government website data.gouv.fr providing

information on the location of the treatment plants, their opening year and their capacity in terms

of population equivalents.

Figure 26 displays the wastewater treatment plants over the period 1994-2015. The total number

of treatment plants increases gradually over time, with 4,600 hydrographic zones that did not

contain a treatment plant in 1994 to only 2,000 in 2015. We define a treatment variable for sewage

water treatment plants: a hydrographic zone belongs to the treated group when a new wastewater

treatment plant has opened after 1994, while it belongs to the control group when it has no new

plant over the period 1994-2015. We use an event study approach, with hydrographic zones with
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no treatment station being a reference and each treated zone receiving an indicator depending on

the year of treatment, in the interval [-22,22], 0 being the year the wasterwater treatment plant

opens.14 We denote WastewaterTreatmentimt the treatment variable for hydrographic zone i in

month m and year t.

Figure 27a displays the annual means of nitrate concentrations in watersheds belonging to the

wastewater treated group and to the control group. The trends are similar between the two groups

until 2000 and then nitrate concentration decreases progressively in the treated group relative

to control group. Figure 27b presents the results of an event study regression of the impact

of wastewater treatment plants on nitrogen concentrations. We see that the trends in Nitrate

concentration remain parallel until the opening of the wastewater treatment plant, and that water

quality gradually improves afterwards. Table 19 reports the results of our main regression including

the wastewater treatment dummies as control variables. Our results remain unchanged when taking

into account this new variable.

6 Discussion

In this section, we put our results into perspective and try to clarify what we learn from them.

The first part of this discussion examines the impact of the Nitrate Directive on water quality. The

second part considers the impact of the Nitrate Directive on farmers. Finally, the last part looks

at the first two parts in relation to each other.

Our results show that the Nitrate Directive has improved water quality and increased biodi-

versity. First, the Nitrate Directive succeeded in reducing nitrate concentrations in freshwater

in France. We estimate that the Nitrate Directive decreased nitrate concentration in water by

1.23±0.27 mg/l, or 8%. There is a clear dose-response relationship with improvements of up to

2.82±0.44 mg/l in hydrographic zones with an upstream watershed regulated at 100% under the

Nitrate Directive. We find similar improvements for other indicators of nitrate pollution, such

as the concentration of nitrites and ammonium. Second, the Nitrate Directive improved overall

water quality beyond the concentration in nitrate and its by-products. We find that the Nitrate

Directive decreased the concentration of phosphorus in water, which might be a consequence of the

reduction of transfers of organic fertilizers such as manure. As a consequence of the reduction of

nitrate and phosphorus concentrations, the Nitrate Directive also reduced eutrophication. We find

that the Directive decreased the concentration of Chlorophyll A and chemical oxygen demand and

increased dissolved oxygen. Third, we also find improvements in biodiversity, with more fish and

more fish species observed, thanks to the Nitrate Directive. Overall, we interpret the improvements

14The event study regression is:

Nitratesimt = βWastewaterTreatmentimt + α′Xsimt + δWm + γW
s + θWt + εsimt (20)

where Nitratesimt denotes nitrate concentrations measured by stations s loated in hydrographic zone i, in month
m and year t. Xsimt is a matrix of water control variables (quality of measurement, measurement support, portion
analyzed, whether the reading is raw or has been controlled, analyzed or validated), δWm denotes month fixed effects,
γW
s represents monitoring station fixed effects and , θWt are year fixed-effects.
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in biodiversity as consequences of the improvements in water quality.

Our results also suggest that the Nitrate Directive has improved the efficiency of farmers’ use

of nitrogen. First, farmers have planted more nitrogen-fixing crops, in compliance with the Nitrate

Directive. This has certainly helped to reduce nitrogen runoff from fields, and contributed to the

improvement of water quality. Second, and rather surprisingly, we find no impacts of the Nitrate

Directive on the planting of grass-buffer strips, despite being mandated by the Nitrate Directive.

This result is probably due to the fact that the planting of grass-buffer strips has been made part

of the eco-conditionality of the direct payments that farmers receive under the first pillar of the

Common Agricultural Policy in 2001. We see a similar increase in the planting of grass buffer

strips in areas not covered by the Nitrate Directive. Third, we find that the Nitrate Directive has

increased the proportion of farmers using modern nitrogen management tools, such as the nitrogen

balance method that computes the dose of nitrogen to apply as a function of the expected yield

and of the amount of nitrogen in the field after winter. We also find that the Nitrate Directive

has increased the proportion of farmers analyzing the nitrogen content of their plots after winter,

again as required by the Directive. Fourth, we do not find that farmers significantly decreased

their nitrogen input as a consequence of the Nitrate Directive. Fifth, we find that total output as

measured in nitrogen units has increased, resulting in an increase in nitrogen use efficiency. One

possible vehicle for that is the mandatory adoption of soil analysis and of the nitrogen balance

method.

Finally, we find evidence that the Nitrate Directive has increased farmers’ economic efficiency.

We find that the Nitrate Directive increased farmers’ total factor productivity, that is, the ef-

fectiveness with which farmers convert inputs into outputs. One possible reason for that is the

adoption of technical innovations such as soil analysis and the nitrogen balance method that have

improved the effectiveness of the use of inputs, especially nitrogen fertilizers. Our finding that the

Nitrate Directive has increased farmer’s productivity is consistent with the Porter hypothesis that

environmental regulation might increase economic efficiency. We can only speculate as to which

market or behavioral failures could explain the non-adoption of potentially profitable technologies

by farmers. We favor informational biases on the side of farmers as the most liekly explanation.

Farmers might underestimate the gains from the adoption of modern nitrogen management tech-

nologies. The regulation compels them to adopt an otherwise profitable innovation. Other possible

explanations include credit constraints and procrastination due to hyperbolic discounting. It is

beyond the scope of this paper to shed light on the precise behavioral mechanisms behind our re-

sults. Our results nevertheless suggest that regulations might have unexpected effects not captured

under the assumption of perfect markets and perfectly rational and informed agents. In that case,

command and control regulations might be more effective than price regulations, as suggested by

Allcott (2016).
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7 Conclusion

In this paper, we estimate the impact of one of the earliest and most ambitious regulation of nitrogen

use in the world, the EU Nitrate Directive. The nitrogen cycle is one of the most disrupted geo-

chemical cycles on earth, mostly as a consequence of farmers’ use of synthetic nitrogen fertilizers.

The EU Nitrate Directive requires the creation of storage facilities for manure, sets limitations on

the amount and timing of nitrogen application, and also mandates the adoption of modern nitrogen

management tools in an effort to enhance nitrogen use efficiency. We leverage the geographical and

temporal variation in the implementation of the Nitrate Directive to estimate its causal effects on

water quality and biodiversity, and on farmers’ practices, nitrogen use efficiency, productivity and

profits in a Difference In Differences framework. We modify the Difference In Differences estimator

to account for the existence of diffusion effects along river streams, and for the non-point-source

nature of pollution by nitrates. We gather rich datasets on water quality, the hydrographic network,

climate data, farmers’ practices and wastewater treatment plants to examine the effects of the

Nitrate Directive on an array of outcomes: from water quality with more than 400,000 observations

from 2,800 monitoring stations across the country, to farmers’ behavior, practices and productivity.

We find that the EU Nitrate Directive reduced the concentration of nitrates in surface water

by 1.23 milligrams per liter (mg/l), a decrease of 8%. We find a clear dose-response relationship,

with higher impacts where more of the upstream area is covered by the Directive. We find that the

Nitrate Directive also improved the physico-chemical state of surface waters, with improvements

in terms of nitrites, ammonium, phosphorus, dissolved oxygen and oxygen demand. We find a

noticeable improvement in rivers’ biological status regarding eutrophication, fish stock and number

of fish species. In addition, we show that wastewater treatment plants and land use changes are

unlikely to drive our results.

We find that the Nitrate Directive increased the efficiency with which farmers use nitrogen, as

well as their overall economic efficiency. We believe that this result stems from the fact that the

Nitrate Directive mandated farmers to adopt modern methods of nitrogen management such as

nitrogen-fixing crops, soil analysis and the nitrogen balance method, that might have improved the

effectiveness of the use of inputs, especially nitrogen fertilizers.

Our result that the Nitrate Directive might have increased farmers’ productivity is compatible

with the Porter hypothesis that suggests that environmental regulation might increase economic

efficiency. We can only speculate as to which market or behavioral failures could explain farmers’

non-adoption of potentially profitable technologies. We see farmers’ informational biases as the

most liekly explanation. Farmers might underestimate the gains from the adoption of modern

nitrogen management technologies. If farmers do indeed have biased views about new technologies,

then command and control regulations such as the Nitrate Directive might be more effective than

price regulations.

On the methodological front, we provide tools for defining, identifying and estimating treatment

effects with diffusion effects in a Difference-In-Differences framework. These tools serve to measure

the extent of auto-correlation in the data, fine-tune the estimation of precision using the map of
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the hydrographic network, and implement randomization tests for the existence of diffusion effects

and for their shape. These tools could be of interest for similar applications of the Difference-

In-Differences method where diffusion effects are likely, such as air pollution, contagious diseases,

migration, traffic, etc. We find that ignoring the diffusion effects of the policy would bias downwards

the classical DID estimator and the more recent geographical discontinuity estimator of Keiser and

Shapiro (2017). These estimators would also miss the steepness of the dose-effect relationship and

thus would underestimate the importance of cumulating the regulation over the entire upstream

watershed to maximize its effects.
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A Proofs

A.1 Structural model of water quality along a river stream

In this section, we introduce a simple structural model of water quality along a river stream that is

compatible with Assumption 2 and with equation (4). We model water quality in an hydrographic

zone i at date t Yi,t as a weighted average between the quality of water that has ran off from the

fields and lands located within this hydrographic zone Y ∗i,t and the average quality that stems from

the nearest upstream hydrographic zones
∑

j:d(i,j)=1 w̃
i
jYj,t. The various components of the model

are defined as follows:

Yi,t = wiY
∗
i,t +

∑
j:d(i,j)=1

w̃ijYj,t (21)

wi =
ai,i∑N
l=1 al,i

(22)

w̃ij =

∑N
l=1 al,j∑N
l=1 al,i

(23)

Y ∗i,t = µi + δt + αDi,t + εi,t. (24)

The weights we choose are proportional to the area of each zone in the upstream watershed of zone

i, which is a way to approximate the quantity of water that comes from each zone and flows to

i. The quality of the water running off from fields and lands located in zone i depends on a zone

fixed effect µi that captures permanent (at least over the duration of our sample) determinants of

water quality in this zone, such as land quality, but also the average types of crops, fertilizers and

number of animals that are generally found in the fields located in the zone. The time fixed effect

δt captures the changes in water quality that are specific to each year but similar across all zones

(or all zones in a region when this effect is region specific). They capture changes in precipitation,

but also in prices of inputs and outputs that might change how much nitrogen is sprayed on fields.

αDi,t captures the effect of the regulation by the Nitrate Directive on the water that runs off fields

regulated under the Directive. εi,t captures other idiosyncratic shocks to water quality specific to

zone i at date t.

We can now show that this model can be written as an additive separable model where treatment

exposure is summarized by a treatment intensity index as the one we define in equation (1). By
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iterative substitution, we indeed have:

Yi,t = wiµi +
∑

j:d(i,j)=1

w̃ijµ̃j︸ ︷︷ ︸
µ̃i

+δt

wi +
∑

j:d(i,j)=1

w̃ij


︸ ︷︷ ︸

1

+ α

wiDi,t +
∑

j:d(i,j)=1

w̃ijTj,t


︸ ︷︷ ︸

Ti,t

+wiεi,t +
∑

j:d(i,j)=1

w̃ij ε̃j,t︸ ︷︷ ︸
ε̃i,t

, (25)

an equation similar to our equation (4) and compatible with Assumption 2.

A.2 Proof of Theorem 1

For simplicity, we keep the conditioning on Xi,t implicit all along. The proof can be separated into

two steps. In the first step, we show that the assumptions that we have made imply a version of the

parallel trend assumptions. In a second step we show that, under this condition, our DID estimator

identifies the average effect of treatment exposure on the treated. Let us first state the lemma:

Lemma 1 (Parallel trends) Under Assumptions 1, 2, 3, 4 and 5, the Parallel Trends Assump-

tion holds:

E[Yi,k+τ (0)− Yi,k−τ ′(0)|∆i = d] = E[Yi,k+τ (0)− Yi,k−τ ′(0)|∆i = 0].

Proof. Under Assumption 1, we can write potential outcomes as a function of ∆̃i,t. Under

Assumptions 2, 3, 4 and 5, we have:

E[Yi,k+τ (0)− Yi,k−τ ′(0)|∆i] = E[g(µi) + h(δk+τ ) +m(0, µi, δk+τ ) + εi,k+τ |∆i]

− E[g(µi) + h(δk−τ ′) +m(0, µi, δk−τ ′) + εi,k−τ ′ |∆i]

= h(δk+τ )− h(δk−τ ′) + E[εi,k+τ − εi,k−τ ′ |∆i]

= h(δk+τ )− h(δk−τ ′),

where the first equality stems from Assumptions 2 and 5, the second equality stems from As-

sumption 4 and the last equality stems from the Law of Iterated Expectations and Assumption 3:

E[εi,t|∆i] = E[E[εi,t|∆i, µi, δt]|∆i] = 0, ∀t. As a consequence, E[Yi,k+τ (0) − Yi,k−τ ′(0)|∆i] does not

depend on ∆i under Assumptions 1, 2, 3, 4 and 5, which proves the result.

The proof of the theorem follows from Lemma 1 since our DID estimator can be written as
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follows:

DIDY
k+τ,k−τ ′(d) = E[Yi,k+τ − Yi,k−τ ′ |∆i = d]− E[Yi,k+τ − Yi,k−τ ′ |∆i = 0]

= E[Yi,k+τ (∆i)− Yi,k+τ (0)|∆i = d]

+ E[Yi,k+τ (0)− Yi,k−τ ′(0)|∆i = d]− E[Yi,k+τ (0)− Yi,k−τ ′(0)|∆i = 0],

which is equal to TT Yk+τ (d) when the Parallel Trends Assumption holds.

47



B Figures

2nd$ac'on$
program$

$

(200102004)$

3rd$ac'on$
program$

$

(200502007)$$

5th$ac'on$
program$

$

(201202015)$$

4th$ac'on$
program$

$

(200802011)$$

2003$vulnerable$areas$$ 2007$vulnerable$areas$$ 2012$vulnerable$areas$$

1)$balanced$fer'liza'on$
$

2)$210$kg/ha/year$
threshold$quan'ty$for$
manure$spreading$on$fields$
$

3)$respect$of$periods$of$
prohibi'on$on$spreading$
manure$
$

4)$nitrogen$applica'on$
standards$depending$on$
soil/weather$condi'ons$
(close$to$surface$waters,$on$
steep$slope$and$on$snowy$
or$frozen$grounds)$
$

5)$respect$of$storage$
livestock$standards$
$

6)$Land$management$
$

7)$record$farming$prac'ces$

1)$balanced$fer'liza'on$
$

2)$170$kg/ha/year$
threshold$quan'ty$for$
manure$spreading$on$fields$
$

3)$respect$of$periods$of$
prohibi'on$on$spreading$
manure$
$

4)$nitrogen$applica'on$
standards$depending$on$
soil/weather$condi'ons$
(close$to$surface$waters,$on$
steep$slope$and$on$snowy$
or$frozen$grounds)$
$

5)$respect$of$storage$
livestock$standards$
$

6)$Land$management$
$

7)$record$farming$prac'ces$
$

8)$reinforced$ac5ons$:$
nitrogen9fixing$crops,$
grass9strips,$restric5on$of$
nitrogen$inputs$use$

1)$balanced$fer'liza'on$
$

2)$170$kg/ha/year$
threshold$quan'ty$for$
manure$spreading$on$fields$
$

3)$respect$of$periods$of$
prohibi'on$on$spreading$
manure$
$

4)$nitrogen$applica'on$
standards$depending$on$
soil/weather$condi'ons$
(close$to$surface$waters,$on$
steep$slope$and$on$snowy$
or$frozen$grounds)$
$

5)$respect$of$storage$
livestock$standards$
$

6)$Land$management$
$

7)$record$farming$prac'ces$
$

8)$reinforced$ac5ons$:$
nitrogen9fixing$crops,$
grass9strips,$restric5on$of$
nitrogen$inputs$use$

1)$balanced$fer'liza'on$
$

2)$170$kg/ha/year$
threshold$quan'ty$for$
manure$spreading$on$fields$
$

3)$respect$of$periods$of$
prohibi'on$on$spreading$
manure$
$

4)$nitrogen$applica'on$
standards$depending$on$
soil/weather$condi'ons$
(close$to$surface$waters,$on$
steep$slope$and$on$snowy$
or$frozen$grounds)$
$

5)$respect$of$storage$
livestock$standards$
$

6)$Land$management$
$

7)$record$farming$prac'ces$
$

8)$reinforced$ac5ons$:$
nitrogen9fixing$crops,$
grass9strips,$restric5on$of$
nitrogen$inputs$use$

1)$balanced$fer'liza'on$
$

2)$170$kg/ha/year$
threshold$quan'ty$for$
manure$spreading$on$fields$
$

3)$respect$of$periods$of$
prohibi'on$on$spreading$
manure$
$

4)$nitrogen$applica'on$
standards$depending$on$
soil/weather$condi'ons$
(close$to$surface$waters,$on$
steep$slope$and$on$snowy$
or$frozen$grounds)$
$

5)$respect$of$storage$
livestock$standards$
$

6)$Land$management$
$

7)$record$farming$prac'ces$
$

8)$reinforced$ac5ons$:$
nitrogen9fixing$crops,$
grass9strips,$restric5on$of$
nitrogen$inputs$use$

1st$ac'on$
program$

$

(199702000)$$

1997$vulnerable$areas$$

1997$$$$$$$$$$1998$$$$$$$$$$2000$$$$$$$$$$2001$$$$$$$$$$2002$$$$$$$$$$2003$$$$$$$$$$2004$$$$$$$$$$2005$$$$$$$$$$2006$$$$$$$$$$2007$$$$$$$$$$2008$$$$$$$$$$2009$$$$$$$$$$2010$$$$$$$$$$2011$$$$$$$$$$2012$$$$$$$$$$2013$$$$$$$$$$2014$$$$$$$$$2015$

Figure 1: Historical timeline of the action programs of the EU Nitrate Directive
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Figure 2: Map of the vulnerable zones from 2000 to 2012

(a) Rivers (b) Hydrographic zones (c) Example of network

Figure 3: French hydrographic network
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Figure 4: Water quality monitoring stations included in the dataset

(a) A (b) G

Figure 5: A and G matrices for the French hydrographic network
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Figure 6: Example of arborescence

(a) 25% Threshold Treatment Group (b) 5 Intensity Treatment Groups

Figure 7: Map of treatment intensity at the watershed level
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Figure 8: Nitrate concentrations in surface water in control and treated watersheds

Note: Annual nitrate concentration in (a) and (b) in mg/L. Figure (a) represents average annual nitrate concentration
by level of treatment intensity ([0%,25%] for the control group and ]25%,50%], ]50%,75%], ]75%,100%[ and 100% for
the treated groups 1, 2, 3 and 4 respectively). Figure (b) depicts regression coefficients with year × hydrographic
region, month and station fixed effects for each treated group with respect to the control group along with 95%
confidence intervals clustered at the hydrographic zone level. The horizontal red dashed line represents pre and post
treatment coefficient means.
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Figure 9: Impact of the Nitrate Directive on nitrate concentration in surface water (mg/l)

Note: Coefficients with 95% confidence intervals using standard errors clustered at the hydrographic zone level. Esti-
mated treatment impacts on nitrate concentration (mg/L) from equation (4) with 25%-threshold treatment definition
(left) and 5-intensity treatment definition (right).
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(a) Nitrites (means) (b) Ammonium (means) (c) Phosphorus (means) (d) Dissolved Oxygen (means) (e) Chemical Oxygen Demand
(means)

(f) Nitrites (trends) (g) Ammonium (trends) (h) Phosphorus (trends) (i) Dissolved Oxygen (trends) (j) Chemical Oxygen Demand
(trends)

Figure 10: Annual means by treatment group (top graphs) and trends relative to the control group (bottom graphs) for physico-chemical
outcomes

Note: On the top, annual concentrations in mg/L (except Phosphorus in µg/l) for the treated and control groups
defined by the 25%-threshold treatment definition ([0%,25%] for the control group and ]25%,100%] for the treated
group). On the bottom, regression coefficients with year × hydrographic region, month and station fixed effects for
the treated group with respect to the control group with 95% confidence intervals clustered at the hydrographic zone
level. The horizontal red dashed lines represents pre and post treatment coefficient means.
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(a) Chlorophyll A (means) (b) Chlorophyll A (trends)

(c) Number of fish (means) (d) Number of fish (trend)

(e) Number of fish species (means)(f) Number of fish species (trends)

Figure 11: Annual means by treatment group (left graphs) and trends relative to the control group
(right graphs) for biological outcomes

Note: On the left, annual concentrations in Chlorophyll A in µg/l and number of fish and number of fish species for
the treated and control groups defined by the 25%-threshold treatment definition ([0%,25%] for the control group and
]25%,100%] for the treated group). On the right, regression coefficients with year × hydrographic region, month and
station fixed effects for the treated group with respect to the control group with 95% confidence intervals clustered
at the hydrographic zone level. The horizontal red dashed lines represents pre and post treatment coefficient means.
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(d) Grass buffer strips (trends)

Figure 12: Annual means by treatment group (left graphs) and trends relative to the control group
(right graphs) for nitrate fixing crops and grass buffer strips

Note: On the left, percentage of plots under nitrate-fixing crops and surrounded by grass buffer strips, depending on
whether they are located in a vulnerable zone or not. On the right, regression coefficients with year and treatment
group fixed effects for the treated group with respect to the control group with 95% confidence intervals clustered at
the commune level.
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(d) N adjusted after winter (trends)

Figure 13: Annual means by treatment group (left graphs) and trends relative to the control group
(right graphs) of the proportions of farmers estimating nitrogen content in the soil and of farmers
adjusting their level of nitrogen after the end of winter using the nitrogen balance method.

Note: On the left, percentage of plots where farmers estimate the nitrogen content after the end of winter and use
this estimate to adjust their choice of fertilizer with the nitrogen balance method, depending on whether they are
located in a vulnerable zone or not. On the right, regression coefficients with year and treatment group fixed effects
for the treated group relative to the control group, with 95% confidence intervals clustered at the commune level.
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Figure 14: Annual means by treatment group (left graphs) and trends relative to the control group
(right graphs) of fertilizer use

Note: On the left, level of fertilizers (in kgN/ha and kgP/ha) applied on plots depending on whether they are located
in a vulnerable zone or not. On the right, regression coefficients with year and treatment group fixed effects for the
treated group with respect to the control group with 95% confidence intervals clustered at the commune level.
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Figure 15: Annual means by treatment group (left graphs) and trends relative to the control group
(right graphs) of nitrogen input, output, balance and nitrogen use efficiency

Note: On the left, level of N input, output and balance (in kgN/ha) and NUE on plots depending on whether they are
located in a vulnerable zone or not. On the right, regression coefficients with year and treatment group fixed effects
for the treated group with respect to the control group, with 95% confidence intervals clustered at the commune level.
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Figure 16: Proportion of area in a vulnerable zone and maximum yearly concentration in nitrates

Note: For each year, we compute the maximum concentration registered in each hydrographic zone and relate it
to the proportion of its area that is covered by a vulnerable zone. The fitted curves are obtained by local linear
regression.

(a) Before 1993 (b) Between 1994 and 2000 (c) After 2001

Figure 17: Trends in nitrate concentration over time

Note: Estimates of trends in nitrate concentration over time in each of the 5 − intensity treatment groups. Yearly
means are estimated using a balanced panel at the monthly level. Dashed lines are the best linear fit through each
set of data points.

Figure 18: Trends in Nitrate concentration in vulnerable zones relative to neighboring non-
vulnerable zones using Keiser and Shapiro (2017)’s approach

Note: Trends in Nitrate concentration in vulnerable zones relative to neighboring non-vulnerable zones using Keiser
and Shapiro (2017)’s approach. We provide estimates obtained using equation (6), replacing the postt dummy by
a set of annual dummies. The red dotted line indicates the treatment date. Standard errors are clustered at the
hydrographic zone level. Precision is shown as 95% confidence intervals.
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(a) Spatial autcorrelation (b) Temporal autcorrelation

Figure 19: Empirical autocorrelation in nitrate concentrations

Note: Estimates of the empirical autocorrelation in nitrate concentrations obtained using the formula delineated in
equation (7). T stands for treatment intensity in levels, while Tres stands for the residual of treatment intensity
from a regression of treatment intensity on month, station, and year×region fixed effects. Y stands for nitrate
concentrations in levels and Yres stands for the residual from a regression of nitrate concentrations on month, station,
and year×region fixed effects. Each covariance is scaled by the variance of the variable of interest. “UpstreamLevel”
refers to the distance between observations on the hydrographic network. “Time” is measured in months separating
observations.

Figure 20: Sensitivity of the precision of the effect of the Nitrate Directive on nitrate concentration
as a function of the assumed structure of autocorrelation

Note: Estimates of the precision of the effect of the Nitrate Directive on nitrate concentration as a function of
the assumed structure of autocorrelation using the Leung estimator presented in equation (8). “>25%” refers to
the effect of the treatment defined by the 25%-threshold treatment definition ([0%,25%] for the control group and
]25%,100%] for the treated group) while “1”, “2”, “3” , “4” refer to the 5-intensity treatment ([0%,25%] for the
control group and ]25%,50%], ]50%,75%], ]75%,100%[ and 100% for the treated groups). “LeungStandard” refers
to the Leung estimates assuming a total absence of autocorrelation between observations, “LeungSpatial” refers to
the Leung estimates accounting for autocorrelation along river streams, “LeungSpatialTemporalStation” refers to the
Leung estimates accounting for spatial correlation along river streams and for temporal correlation between stations
across time, and “LeungSpatialTemporalHZ” refers to the Leung estimates accounting for spatial correlation along
river streams and for temporal correlation between hydrographic zones across time. “ClusterHZ” refers to classical
Huber-White standard errors clustered at the hydrographic zone level, while “ClusterStation” refers to standars errors
clustered at the station level. Precision is presented as 95% confidence intervals.
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(a) Direct effects (b) Diffusion effects at distance one

(c) Diffusion effects at distance two (d) Dose-response relationship

Figure 21: Results of randomization inference testsfor the effects of the Nitrate Directive on nitrate
concentrations in surface water

Note: Results of randomization inference tests à la Athey et al. (2018). The histograms present the distribution
of the parameters of interest under the corresponding null hypothesis estimated using 1000 draws of the treatment
vector. The dotted red line presents the position of the treatment effect estimate obtained using the actual data.
“Direct effects” refers to the testing of the null hypothesis of absence of any effects estimated using equations (9)
and (10). “Diffusion effects of order q” refers to the null hypothesis of absence of any diffusion effects at a distance
lower than q estimated using equations (11) and (12) for the diffusion effects at distance one and (13) and (14)
for the diffusion effects at distance two. “Dose-response relationship” refers to the null hypothesis of absence of a
dose-response relationship estimated using equations (15) and (16).
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Figure 22: Impact of the Nitrate Directive as a function of the proportion of the upstream area
that is covered by a vulnerable zone at distance k

Note: Estimates of the impact of treatment intensity at several distances, obtained running equation (19) with
Q = 2 on the sample of observations with upstream neighbors at a distance of two or more. The coefficients can be
interpreted as the effect on nitrate concentrations of moving the proportion of the upstream area regulated under
the directive from zero to one. Standard errors are clustered at the hydrographic zone level. Error bars are 95%
confidence intervals.

63



(a) Sample delimitation (b) Treatment date

Figure 23: Sensitivity of the estimates of the impact of the Nitrate Directive on nitrate concentra-
tions to changes in sample delimitation and treatment date

Note: Coefficients with 95% confidence intervals using standard errors clustered at the hydrographic zone level. Esti-
mated treatment impacts on nitrate concentration (mg/L) from equation (4) with 25%-threshold treatment definition
(left) and 5-intensity treatment definition (right). “>25%” refers to the effect of the treatment defined by the 25%-
threshold treatment definition ([0%,25%] for the control group and ]25%,100%] for the treated group) while “1”, “2”,
“3” , “4” refer to the 5-intensity treatment ([0%,25%] for the control group and ]25%,50%], ]50%,75%], ]75%,100%[
and 100% for the treated groups). For the sample delimitation plot, “Original” refers to the sample on which we
perform our main regressions (at least five observations per stations, with at least one observation before 2001),
“1994Yearly” refers to the sample starting in 1994 and balanced so as to have at least one observation per year for
each station, “1994Monthly” refers to the sample starting in 1994 and balanced so as to have at least one observation
per month for each station, “1990Yearly” refers to the sample starting in 1990 and balanced so as to have at least
one observation per year for each station and “1990Monthly” refers to the sample starting in 1990 and balanced so
as to have at least one observation per month for each station. For the treatment date plot, “Original” refers to the
definition of the treatment used in our main regressions (all the hydrographic zones classified as vulnerable at any
time between 2001 and 2012), “2001”, “2003”, “2007”, “2012” define as treated only the zones that are classified as
vulnerable in each of those years, and “Variable” uses a time-variable definition of the treatment, where hydrographic
zones are classified as treated in the years in which they are classified as vulnerable.
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Figure 24: Annual means by treatment group (left graphs) and trends relative to the control group
(right graphs) of land use

Note: On the left, trends in land use (in ha) for various crops on farms depending on whether they are located in
a vulnerable zone or not. On the right, regression coefficients with year and treatment group fixed effects for the
treated group with respect to the control group with 95% confidence intervals clustered at the commune level.
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Figure 25: Annual means by treatment group (left graphs) and trends relative to the control group
(right graphs) of grassland area and livestock units

Note: On the left, trends in grassland area (in ha) and livestock units on farms depending on whether they are
located in a vulnerable zone or not. On the right, regression coefficients with year and treatment group fixed effects
for the treated group with respect to the control group with 95% confidence intervals clustered at the commune level.
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Figure 26: Wastewater treatment plants

(a) Wastewater treatment (means)(b) Wastewater treatment (trends)

Figure 27: Annual means by treatment group (left graphs) and trends relative to the control group
(right graphs) for the wastewater treatment plants

Note: On the left, trends in nitrate concentration (in mg/l) depending on whether a wastewater treatment plant is
established upstream at some point in time between 1995 and 2015. On the right, regression coefficients with year,
month and station fixed effects around the date of the opening of a wastewater treatment plant with 95% confidence
intervals clustered at the hydrographic zone level.
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Table 1: Descriptive statistics

Variables 1993-2000 2005-2010

unit vulnerable non-vulnerable vulnerable non-vulnerable Sample size

Water quality

Nitrate mg/l 20.003 7.962 19.871 7.874 406,174

Nitrite mg/l 0.235 0.114 0.149 0.0809 391,365

Ammonium mg/l 0.728 0.313 0.313 0.192 408,528

Phosphorus µg/l 0.325 0.229 0.175 0.120 372,402

Dissolved oxygen mg/L 10.078 9.669 10.135 9.785 409,474

Chemical oxygen demand mg/L 0.325 0.229 0.175 0.120 372,402

Chlorophyll A µg/l 17.808 11.109 10.696 4.991 159,649

Fish number 194 158 189 166 8,703

Fish species number 9 8 10 8 8,703

Farming practices

Yield (wheat) t/ha 64.97 50.94 98.12 75.51 23,540

Nitrate-fixing crops 0/1 0.016 0.007 0.108 0.032 65,602

Grass buffer strips 0/1 0.002 0.001 0.104 0.124 51,275

N mineral fertilizers kg/ha 122.47 123.04 133.77 131.87 65,602

P mineral fertilizers kg/ha 51.44 56.25 30.90 36.93 65,602

Organic fertilizers kg/ha 6.93 5.80 5.45 5.76 65,602

N output kgN/ha 128.85 110.13 158.75 109.94 51,974

N input kgN/ha 183.50 183.83 168.34 167.96 52,429

N balance kgN/ha 54.68 73.56 9.58 58.03 52,429

nitrogen use efficiency % 87.19 74.78 120.98 80.11 52,429

Accounting data

Utilized agricultural area ha 94.51 91.77 115.87 112.45 65,613

Production value e/ha 633.94 430.41 756.14 478.28 65,613

Spending on fertilizers e/ha 109.69 91.84 138.17 100.31 65,613

Spending on seeds e/ha 84.29 74.98 120.65 86.79 65,613

Spending on pesticides e/ha 131.37 102.92 135.71 96.42 65,613

Spending on gasoline e/ha 46.93 44.43 72.37 66.59 65,613

Spending on analysis on crops e/ha 106.74 77.31 118.19 84.43 65,613

Total factor productivity index 1.67 1.47 1.85 1.53 65,613

Note: this table reports the mean of outcome variables for observations located in vulnerable areas and outside of vulnerable areas,
before and after the implementation of the Nitrate Directive in France.
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Table 2: Number of hydrographic zones by level of treatment intensity

Treatment Definition Assignment Intensity N

control group [0%,25%] 3128
25%-threshold treatment treated group ]25%,100%] 2980

control group [0%,25%] 3128
treated group 1 ]25%,50%] 477

5-intensity treatment treated group 2 ]50%,75%] 261
treated group 3 ]75%,100%[ 992
treated group 4 100% 1250

Table 3: Impact of the Nitrate Directive on the concentration of nitrates in surface water

Dependent variable: nitrate nitrate (crop season)
(mg/L) (mg/L)

(1) (2) (3) (4)

−1.231∗∗∗ −1.563∗∗∗treated group 25%
(0.137) (0.142)

−0.049 −0.153treated group 1
(0.148) (0.154)
−0.728∗∗∗ −0.906∗∗∗treated group 2

(0.207) (0.162)
−1.369∗∗∗ −1.821∗∗∗treated group 3

(0.216) (0.292)
−2.282∗∗∗ −2.728∗∗∗treated group 4

(0.222) (0.243)

Controls 3 3 3 3

station FE 3 3 3 3

month FE 3 3 3 3

year×hydro district FE 3 3 3 3

R-squared 0.76 0.76 0.82 0.82
Mean Dep. Var. 15.992 15.992 17.711 17.711
Observations 406,174 406,174 198,058 198,058
Clusters 2,000 2,000 2,000 2,000

Note: This table reports the effects of the policy on nitrate concentration (in mg/L)
according to the two treatment definitions. In Columns 1 and 3, the 25% threshold
treatment attributes each watershed that has a treatment intensity higher than 25%
to the treated group. In Columns 2 and 4, the 5 intensity treatment assigns each
hydrographic zone to a treatment group corresponding to its treatment intensity,
from 0% to 100%, by 25% increments. Columns 3 and 4 report coefficients only for
a crop season (winter and spring). Regressions are run at the station level. Controls
include rainfall, temperatures, quality of measurement, measurement support, portion
analyzed and whether the reading is raw or has been controlled, analyzed or validated.
Standard errors are clustered at the hydrographic zone level. Significance levels are
***p < 0.01,**p < 0.05, *p < 0.10.
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Table 4: Impact of the Nitrate Directive on the concentration of nitrates in surface water by seasons
and hydrographic district

Dependent variable: nitrate
(1) (2)

−1.660∗∗∗season Winter
(0.197)
−0.540∗∗∗season Spring

(0.126)
−0.733∗∗∗season Summer

(0.136)
−0.711∗∗∗season Fall

(0.165)
−3.900∗∗∗hydrographic district Loire-Bretagne

(0.361)
−1.179∗∗∗hydrographic district Seine-Normandie

(0.401)
−0.639∗hydrographic district Medit-Rhône
(0.378)
−0.560∗hydrographic district Rhin-Meuse
(0.314)
0.443∗hydrographic district Adour-Garonne
(0.256)

Controls 3 3

station FE 3 3

month FE 3 3

year×hydro district FE 3 3

R-squared 0.77 0.76
Mean Dep. Var. 15.992 15.992
Observations 406,174 406,174
Clusters 2,000 2,000

Note: This table reports the effects of the policy on nitrate concentration
(in mg/L). Columns 1 presents the effects according to each season and
Column 2 relative to each hydrographic districts. Controls include rain-
fall, temperatures, quality of measurement, measurement support, portion
analyzed and whether the reading is raw or has been controlled, analyzed
or validated. Standard errors are clustered at the hydrographic zone level.
Significance levels are ***p < 0.01,**p < 0.05, *p < 0.10.
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Table 5: Impacts of the Nitrate Directive on physico-chemical indicators other than nitrates

Dependent variable: nitrites ammonium phosphorus dissolved oxygen COD
Unit: (mg/l) (mg/l) (µg/l) (mg/l) (mg/l)

(1) (2) (3) (4) (5)

−0.032∗∗∗ −0.119∗∗ −0.0268∗∗ 0.055∗ 0.189treated group 25%
(0.006) (0.055) (0.0116) (0.037) (0.505)

Controls 3 3 3 3 3

station FE 3 3 3 3 3

month FE 3 3 3 3 3

year×hydro region FE 3 3 3 3 3

R-squared 0.38 0.48 0.31 0.35 0.44
Mean Dep. Var 0.147 0.365 0.1951 9.874 19.123
Observations 406,174 408,528 372,402 409,474 209,802

Note: This table reports the effects of the policy on nitrites (mg/l), ammonium (mg/l), phosphorus (µg/l),
dissolved oxygen (mg/l) and chemical oxygen demand (COD) (mg/l) according to the 25% threshold
treatment definition. Regressions are run at the station level. Controls include rainfall, temperatures,
quality of measurement, measurement support, portion analyzed and whether the reading is raw or has
been controlled, analyzed or validated. Standard errors are clustered at the hydrographic zone level.
Significance levels are ***p < 0.01,**p < 0.05, *p < 0.10.

Table 6: Impacts of the Nitrate Directive on eutrophication and biodiversity

Eutrophication Biodiversity
Dependent variable: chlorophyll A chlorophyll A stock of fish fish species

(spring & summer) (number) (number)
(1) (2) (3) (4)

−2.699∗∗∗ −3.002∗∗∗ 69.84∗∗∗ 0.918∗∗∗treated group 25%
(0.717) (0.772) (11.79) (0.224)

Controls 3 3 3 3

station FE 3 3 3 3

month FE 3 3 3 3

year FE 3 3 3 3

R-squared 0.29 0.31 0.42 0.80
Mean dep. var. 11.31 12.91 176.93 9.112
Observations 159,649 112,918 8,703 8,703

Note: This table reports the effects of the policy on chlorophyll A (µg/L) and the number of
fish according to the 25% threshold treatment definition. Regressions are run at the station level.
Controls for chlorophyll A include rainfall, temperatures, quality of measurement, measurement
support, portion analyzed and whether the reading is raw or has been controlled, analyzed or
validated. Controls for the number of fish and the number of fish species index include rainfall
and temperatures. Standard errors are clustered at the watershed level. Significance levels are
***p < 0.01,**p < 0.05, *p < 0.10.
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Table 7: Impacts of the Nitrate Directive on farming practices aimed at reducing the transfer of
pollutants

Dependent variable: nitrogen-fixing crop grass buffer strip
(% of plots) (% of plots)

(1) (2)

0.061∗∗∗ −0.010vulnerable areas
(0.005) (0.014)

Weights 3 3

year FE 3 3

departement FE 3 3

Mean Dep. Var. 0.050 0.036
R-squared 0.08 0.09
Observations 65,602 51,275

Note: This table reports the effects of the policy on plots under
nitrogen-fixing intermediate crops and grass buffer strips. Regressions
are run at the commune level. Standard errors are clustered at the plot
level. Significance levels are ***p < 0.01,**p < 0.05, *p < 0.10.

Table 8: Impacts of the Nitrate Directive on practices aimed at increasing the effectiveness of
nitrogen management

Dependent variable: N estimated N adjusted (after winter)
(% of plots) (% of plots)

(1) (2)

0.064∗∗∗ 0.102∗∗∗Vulnerable areas
(0.014) (0.010)

Controls 3 3

Weights 3 3

year FE 3 3

departement FE 3 3

R-squared 0.13 0.14
Mean Dep. Var. 0.314 0.142
Observations 54,455 61,714

Note: This table reports the effects of the policy on plots for which (col-
umn 1) farmers have assessed the amounts of nitrogen remaining in the
soil, and (column 2) farmers have adjusted the amounts of nitrogen ap-
plied to lands, depending on estimated nitrogen in the soil after winter.
Controls include type of crops and utilized agricultural area. Regres-
sions are run at the commune level. Standard errors are clustered at the
commune level. Significance levels are ***p < 0.01,**p < 0.05, *p < 0.10.
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Table 9: Impacts of the Nitrate Directive on fertilization and nitrogen use efficiency

Amount of fertilizers N Indicators
Dependent variable: N P manure N input N output NUE N balance

(kgN/ha) (kgP/ha) (kgN/ha) (kgN/ha) (kgN/ha) (%) (kgN/ha)
(1) (2) (3) (4) (5) (6) (7)

−2.764 −1.454 −1.435∗∗ 0.882 9.614∗∗∗ 16.279∗∗∗ −9.580∗∗∗Vulnerable areas
(1.700) (1.056) (0.662) (2.297) (2.410) (3.884) (3.349)

Controls 3 3 3 3 3 3 3

Weights 3 3 3 3 3 3 3

year FE 3 3 3 3 3 3 3

departement FE 3 3 3 3 3 3 3

R-squared 0.20 0.18 0.01 0.06 0.15 0.04 0.12
W. Mean Dep. Var. 126.060 41.331 6.618 175.371 136.076 97.834 39.101
Observations 65,602 65,602 65,602 52,429 51,974 52,429 52,429

Note: This table reports the effects of the policy on mineral and organic fertilizers applied on land, i.e. nitrogen N ,
phosphorus P and manure, and on indicators measuring agricultural performance in terms of nitrogen, i.e. nitrogen
use efficiency, nitrogen balance and nitrogen output. Controls include type of crops and utilized agricultural area.
Regressions are run at the commune level. Standard errors are clustered at the commune level. Significance levels are
***p < 0.01,**p < 0.05, *p < 0.10.
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Table 10: Impacts of the Nitrate Directive on farmers’ profits

Dependent variable: Output - Fertilizers - Seeds - Pesticides - Fuel - Soil analysis
vulnerable areas (e/ha) (e/ha) (e/ha) (e/ha) (e/ha) (e/ha)

(1) (2) (3) (4) (5) (6)

18∗∗∗ 13∗∗ 12∗∗ 9∗ 8 6All farmers
(6) (6) (6) (5) (3) (6)

29∗∗ 23∗ 24∗ 18 20∗ 13Crop growers
(12) (12) (12) (12) (11) (12)

year FE 3 3 3 3 3 3

Farm FE 3 3 3 3 3 3

Note: This table reports the effects of the Nitrate Directive on components of farmers’ profits per hectare:
value of output (column (1)), value of output minus spending on fertilizers (column (2)), value of output
minus spending on fertilizers and seeds (column (3)), value of output minus spending on fertilizers, seeds
and pesticides (column (4)), value of output minus spending on fertilizers, seeds, pesticides and fuel (column
(5)), and value of output minus spending on fertilizers, seeds, pesticides, fuel and soil analysis (column (6)).
Regressions are run at the farm level with farm and year fixed effects. Standard errors are clustered at the
commune level. Significance levels are ***p < 0.01,**p < 0.05, *p < 0.10.

Table 11: Impacts of the Nitrate Directive on farmers’ total factor productivity

TFP TFP TFP
(1) (2) (3)

0.0524∗∗ 0.0476∗∗ 0.0417∗Vulnerable areas
(0.0225) (0.0215) (0.0215)

Farm FE 3 3 3

year FE 3

region×year FE 3

region×year×OTEX FE 3

Mean Dep. Var. 0.65 0.65 0.65
Observations 45123 45123 45123

Note: This table reports the effects of the Nitrate Directive on
farmers’ total factor productivity. Regressions are run at the
farm level with farm fixed effects and year fixed effects (column
1), region×year fixed effects (column 2) and region×year×OTEX,
where OTEX is the technical orientation of the farm computed from
its main sources of revenue (cereals, cattle growing, miced farming,
etc.). Standard errors are clustered at the commune level. Signifi-
cance levels are ***p < 0.01,**p < 0.05, *p < 0.10.
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Table 12: Impacts of the Nitrate Directive on the Variance of the Nitrogen Mineral Fertilizers
Applied on Plots

Dependent variable: Variance(N Fertilizers)
(Nkg/ha/year)2

376.30∗∗vulnerable areas
(155.02)

year FE 3

department FE 3

Mean Dep. Var. 5,195
R-squared 0.09
Observations 65,602

Note: This table reports the effects of the policy on
the variance of the nitrogen mineral fertilizers in vul-
nerable areas relative to non-vulnerable areas, with
Variance(N fertilizers) = (Amount of N fertilizers at
the plot level - National mean of N fertilizers applied
on plots)2. Regressions are run at the plot level. Stan-
dard errors are clustered at the commune level. Sig-
nificance levels are ***p < 0.01,**p < 0.05, *p < 0.10.

76



Table 13: Impacts of the Nitrate Directive on nitrate concentration in surface water using alternative
estimators

Dependent variable: nitrate
(mg/L)

CFRT DID KS CFRT DID
(1) (2) (3) (4) (5)

−1.231∗∗∗ −1.141∗∗∗ −1.027∗∗∗Treatment dummy
(0.137) (0.123) (0.324)

−0.049 0.088treated group 1
(0.148) (0.243)
−0.728∗∗∗ −0.171treated group 2

(0.207) (0.206)
−1.369∗∗∗ −0.970∗∗∗treated group 3

(0.216) (0.234)
−2.282∗∗∗ −1.595∗∗∗treated group 4

(0.222) (0.163)

Controls 3 3 3 3 3

station FE 3 3 3 3 3

month FE 3 3 3 3 3

year×hydro district FE 3 3 3 3

year×pair FE 3

year×hydro district×downstream FE 3

R-squared 0.760 0.760 0.796 0.760 0.760
Mean Dep. Var. 15.992 15.992 12.41 15.992 15.992
Observations 406,174 406,174 375,153 406,174 406,174

Note: This table reports the effects of the Nitrate Directive on nitrates concentrations in surface water (in mg/l)
using several estimators. “CFRT” refers to the approach delineated in equation (4) using treatment intensity.
“DID” refers to the classical DID approach ignoring diffusion effects, as delineated in equation (5). “KS” refers
to the geographical discontinuity design estimator of Keiser and Shapiro (2017) presented in equation 6. Columns
1, 2 and 3 use the 25% threshold treatment definition while columns 4 and 5 use the 5-intensity treatment which
assigns each watershed into a treatment group corresponding to its treatment intensity from 0% to 100%, by
25% increments. Regressions are run at the station level. Controls include rainfall, temperatures, quality of
measurement, measurement support, portion analyzed and whether the reading is raw or has been controlled,
analyzed or validated. Standard errors are clustered at the hydrographic zone level. Significance levels are ***p <
0.01,**p < 0.05, *p < 0.10.
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Table 14: Impact of the Nitrate Directive on water quality with the balanced panel

Dependent variable: nitrates nitrites ammonium phosphorus dissolved oxygen DCO
(mg/L) (mg/L) (mg/L) (µg/L) (mg/L) (mg/L)

(1) (2) (3) (4) (5) (6) (7)

−1.112∗∗∗ −0.039∗∗∗ −0.161∗ −0.028∗ 0.080∗∗ −1.559∗treated group 25%
(0.178) (0.007) (0.086) (0.017) (0.037) (0.861)

0.012treated group 1
(0.197)
−0.205treated group 2
(0.250)
−1.275∗∗∗treated group 3

(0.287)
−2.251∗∗∗treated group 4

(0.304)

Controls 3 3 3 3 3 3 3

station FE 3 3 3 3 3 3 3

month FE 3 3 3 3 3 3 3

year×hydro district FE 3 3 3 3 3 3 3

R-squared 0.73 0.74 0.41 0.49 0.28 0.44 0.34
Mean Dep. Var. 15.872 15.872 0.166 0.453 0.216 9.903 18.609
Observations 224,236 224,236 210,490 225,832 186,757 203,452 76,780
Clusters 921 921 921 921 921 921 921

Note: This table reports the effects of the policy on nitrate concentrations and other physico-chemical parameters including land use
change as control variables (utilized agricultural area, cereal surface, wheat surface, maize surface and grassland surface). Regressions
are run at the station level. Controls include quality of measurement, measurement support, portion analyzed and whether the reading
is raw or has been controlled, analyzed or validated, livestock, utilized agricultural surface, surface in cereals, wheat, maize and grassland
and climate control (monthly rainfall and temperatures). Standard errors are clustered at the hydrographic zone level. Significance
levels are ***p < 0.01,**p < 0.05, *p < 0.10.

Table 15: Impact of the Nitrate Directive on eutrophication and biodiversity with the balanced
panel)

Dependent variable: chlorophyll A fish fish species
(µg/L) (number) (number)

(1) (2) (3) (4) (5) (6)

−2.868∗∗∗ −2.493∗∗ 122.500∗∗∗ 39.862 0.918∗∗∗ 0.400treated group 25%
(0.956) (1.058) (31.330) (36.316) (0.224) (0.233)

Controls 3 3 3 3 3 3

station FE 3 3 3 3 3 3

month FE 3 3 3 3 3 3

year FE 3 3 3

year×hydro district FE 3 3 3

R-squared 0.27 0.27 0.42 0.42 0.80 0.81
Mean Dep. Var. 13.207 13.207 179.702 179.702 9.112 9.112
Observations 73,350 73,350 1,471 1,471 8,703 8,703
Cluster 424 424 62 62 62 62

Note: This table reports the effects of the policy on chlorophyll A and other biological parameters.
Regressions are run at the station level. Controls for chlorophyll A include quality of measurement,
measurement support, portion analyzed and whether the reading is raw or has been controlled, analyzed or
validated and climate control for both chlorophyll A and fish outcomes (monthly rainfall and temperatures).
Standard errors are clustered at the hydrographic zone level. Significance levels are ***p < 0.01,**p < 0.05,
*p < 0.10.

78



Table 16: Impact of the Nitrate Directive on land use and livestock units

Dependent variable: utilized agricultural area livestock cereal wheat maize grassland
(ha) (livestock unit) (ha) (ha) (ha) (ha)
(1) (2) (3) (4) (5) (6)

−18.223∗∗∗ −57.783∗∗∗ 18.279∗∗∗ 9.509∗∗∗ 0.850 −32.895∗∗∗vulnerable area
(4.344) (8.289) (1.325) (0.870) (0.545) (4.053)

Controls 3 3 3 3 3 3

year FE 3 3 3 3 3 3

departement FE 3 3 3 3 3 3

R-squared 0.51 0.55 0.39 0.38 0.35 0.35
Cluster 35,241 35,241 35,241 35,241 35,241 35,241
Mean Dep. Var. 781.694 1,076.138 256.548 143.230 50.541 279.026
Observations 104,535 104,535 104,535 104,535 104,535 104,535

Note: This table reports the effects of the policy on land use and livestock units. Regressions are run at the station level.
Control include the number of farms per communes. Standard errors are clustered at the commune level. Significance levels are
***p < 0.01,**p < 0.05, *p < 0.10.

Table 17: Impact of the Nitrate Directive on water quality controlling for land use

Dependent variable: nitrates nitrites ammonium phosphorus dissolved oxygen DCO
(mg/L) (mg/L) (mg/L) (µg/L) (mg/L) (mg/L)

(1) (2) (3) (4) (5) (6) (7)

−1.248∗∗∗ −0.030∗∗∗ −0.133∗∗ −0.026∗∗ 0.062∗ −1.769∗treated group 25%
(0.136) (0.005) (0.058) (0.012) (0.032) (0.919)

−0.211treated group 1
(0.151)
−0.771∗∗∗treated group 2

(0.222)
−1.439∗∗∗treated group 3

(0.212)
−2.110∗∗∗treated group 4

(0.216)

Surface water controls 3 3 3 3 3 3 3

Climate controls 3 3 3 3 3 3 3

Land use change 3 3 3 3 3 3 3

Livestock 3 3 3 3 3 3 3

station FE 3 3 3 3 3 3 3

month FE 3 3 3 3 3 3 3

year×hydro district FE 3 3 3 3 3 3 3

R-squared 0.76 0.76 0.38 0.44 0.30 0.34 0.36
Cluster 280 280 280 280 280 280 280
Mean Dep. Var. 15.992 15.992 0.147 0.365 0.1951 9.903 18.609
Observations 406,174 406,174 391,365 408,528 372,402 409,474 76,780

Note: This table reports the effects of the policy on nitrate concentrations and other physico-chemical parameters including land
use change as control variables (utilized agricultural area, and cereal, wheat, maize and grassland areas). Regressions are run at the
station level. Controls include quality of measurement, measurement support, portion analyzed and whether the reading is raw or has
been controlled, analyzed or validated, livestock, utilized agricultural area, and cereal, wheat, maize and grassland areas and climate
control (monthly rainfall and temperatures). Standard errors are clustered at the hydrographic zone level. Significance levels are
***p < 0.01,**p < 0.05, *p < 0.10.
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Table 18: Impact of the Nitrate Directive on eutrophication and biodiversity controlling for land
use

Dependent variable: chlorophyll A fish fish species
(µg/L) (number) (number)

(1) (2) (3) (4) (5) (6)

−3.260∗∗∗ −2.399∗∗∗ 41.012∗∗∗ 69.129∗∗∗ 0.300 0.905∗∗∗treated group 25%
(0.776) (0.705) (11.618) (11.933) (0.232) (0.235)

Surface water controls 3 3

Climate controls 3 3 3 3 3 3

Land use change 3 3 3 3 3 3

Livestock 3 3 3 3 3 3

station FE 3 3 3 3 3 3

month FE 3 3 3 3 3 3

year FE 3 3 3

year×hydro district FE 3 3 3

R-squared 0.29 0.28 0.50 0.43 0.81 0.80
Cluster 280 280 280 280 280 280
Mean Dep. Var. 11.311 11.311 176.9 176.9 9.1 9.1
Observations 154,853 154,853 8,703 8,703 8,703 8,703

Note: This table reports the effects of the policy on chlorophyll A and other biological parameters. Regres-
sions are run at the station level. Controls for chlorophyll A include quality of measurement, measurement
support, portion analyzed and whether the reading is raw or has been controlled, analyzed or validated, live-
stock, utilized agricultural area, and cereal, wheat, maize and grassland areas and climate control (monthly
rainfall and temperatures). Standard errors are clustered at the hydrographic zone level. Significance levels
are ***p < 0.01,**p < 0.05, *p < 0.10.

Table 19: Impact of the Nitrate Directive on water quality controlling for wastewater treatment
plants

Dependent variable: nitrate nitrites ammonium phosphorus dissolved oxygen DCO
(1) (2) (3) (4) (5) (6) (7)

−1.241∗∗∗ −0.0321∗∗∗ −0.118∗∗ −0.0256∗∗ 0.077∗∗ −1.551∗treated group 25%
(0.138) (0.0057) (0.055) (0.0115) (0.037) (0.869)

−0.286∗∗treated group 1
(0.136)
−0.202treated group 2
(0.152)
−0.895∗∗∗treated group 3

(0.206)
−1.546∗∗∗treated group 4

(0.221)
−2.442∗∗∗treated group 5

(0.225)

Surface water controls 3 3 3 3 3 3 3

Wastewater treatment 3 3 3 3 3 3 3

station FE 3 3 3 3 3 3 3

month FE 3 3 3 3 3 3 3

year×hydro district FE 3 3 3 3 3 3 3

R-squared 0.76 0.76 0.38 0.48 0.31 0.44 0.36
Mean Dep. Var. 15.992 15.992 0.147 0.365 0.1951 9.903 18.609
Observations 406,174 406,174 391,365 408,528 372,402 203,402 76,780

Note: This table reports the effects of the policy on nitrate concentration. Regressions are run at the station level. Controls include
quality of measurement, measurement support, portion analyzed and whether the reading is raw or has been controlled, analyzed or
validated. Standard errors are clustered at the hydrographic zone level. Significance levels are ***p < 0.01,**p < 0.05, *p < 0.10.
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