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Abstract

The composition of the mutual fund industry changes through entry and exit over
the business cycle. Entrants may on average be higher quality than exiting funds
(a cleansing effect that improves welfare), but they have no returns history and so
investors have less precise beliefs about their ability (an information loss effect that
harms welfare). I find that the net effect of this firm turnover is negative in the short-
term but turns positive as the effect of information loss decays over time. I show that
older funds should optimally be subsidized during recessions to preserve their socially
valuable returns history.
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1 Introduction

The business cycle induces firm turnover: firms exit in recessions, and enter in recoveries.

What impact does this firm turnover have on outcomes post-recovery? How persistent is this

impact? These questions then naturally give rise to questions about policy: which firms, if

any, should a social planner support through recessions so they do not exit?

I study a key trade-off that underpins these questions. On the one hand, the business cycle

can improve outcomes by “cleansing” the market of low quality firms: replacing low quality

firms that exit during the recession with higher quality firms that enter during the subsequent

recovery. On the other hand, the firms that exit have a track record of performance, whereas

the entrants that replace them do not. To the extent that this information was valuable

and had an impact on outcomes, this “information loss” over the business cycle could harm

outcomes.

This trade-off between cleansing and information loss is important in the wide class of

markets in which unobserved quality is important for outcomes and past performance is

informative about quality. The mutual fund industry is such a market, and is a natural

setting in which to study this trade-off because there is a broad literature exploring whether

quality or ability is important for outcomes in this industry and there is clear evidence that

investors in mutual funds respond to past returns.

I evaluate this trade-off by estimating a structural equilibrium model of investor and

mutual fund behaviour. I estimate this model, and I use the results to run counterfactuals

in which I simulate business cycles of varying types and quantify the impact of the resulting

firm turnover. This allows me to draw novel conclusions about the size and persistence of

business cycle shocks and derive policy implications. This paper is the first, to my knowledge,

to structurally estimate the impact of cleansing and information loss over the business cycle.

The model consists of two parts. On the demand side, rational investors invest in mutual

funds based on their beliefs about the heterogeneous abilities of funds to generate excess

returns, and update those beliefs over time as they observe fund performance, following

Berk and Green (2004). The ability of a given mutual fund to generate excess returns is

decreasing in the total size of the mutual fund industry (capturing competition between

funds, in the spirit of Pástor and Stambaugh (2012)) and also varies with a macroeconomic

factor. The aggregate surplus generated by a fund is the total payout to the fund managers

and to investors. This aggregate surplus is increasing in both fund ability and the precision
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of investor beliefs about fund ability: if these beliefs are imprecise, then there is misallocation

(over-investment in low ability funds or under-investment in high ability funds) that harms

surplus.

On the supply side, funds make dynamic decisions to exit and enter based on a macroe-

conomic factor and their type, including their age and their expected ability to generate

excess returns. If a fund enters it incurs a fixed entry cost, sets its fee rate and randomly

draws ability from the population distribution. After entry, the fund pays a fixed cost every

period representing direct fixed costs and the opportunity cost of remaining in business. I

allow this fixed cost to vary across the macroeconomic state and the type of fund.

I take the size of the mutual fund market as given, and instead focus on compositional

inefficiencies regarding the types of funds that make up the market: incumbent funds do not

take into account that if they exit then new funds could enter, which may improve aggregate

surplus depending on their relative characteristics. A business cycle (which I model as a

negative shock to the macroeconomic factor, followed by a recovery) results in exactly this

exchange of funds: during the recession funds exit, which reduces competition and allows

funds to enter during the subsequent recovery.

The impact of this firm turnover depends on two countervailing effects. Low ability funds

are smaller and are more likely to exit during the recession, whereas the firms that replace

them in a subsequent recovery are of average, and therefore higher, size and ability: in other

words, the recession exchanges a large number of small funds for a smaller number of larger

funds. This exchange may reduce total fixed costs incurred, depending on how fixed costs

vary across fund types.1 This is the cleansing effect. The entering funds, however, have

no returns history, meaning that investors have less precise beliefs about their ability. This

results in more misallocation in equilibrium, which has a negative effect on aggregate surplus.

This is the information loss effect. Cleansing is about the first moment in ability (entrants

are higher ability on average), whereas information loss is about the second moment (there

is greater uncertainty about the ability of entrants).

The model allows me to formalise the key parameters that determine the relative strength

of these two countervailing effects. The strength of the cleansing effect depends on the

dispersion in the distribution of fund abilities, the differing extents to which low and high

1If fixed costs are homogenous across fund types, then exchanging small funds for a smaller number of
large funds will always reduce total fixed costs. When fixed costs are heterogeneous across fund types, then
whether this exchange reduces total fixed costs depends on the relative difference between size and fixed
costs across fund types.
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ability funds exit and, most importantly, the relative sensitivity of a fund’s size and fixed

costs to its ability. The strength of the information loss effect depends on the informational

content of returns and the age of exiting funds.

I estimate both the demand-side and the supply-side of this model using data on US

Equity mutual funds. I fit the demand-side to data on mutual fund size, taking into account

fund returns. I do not identify the ability of funds directly, but I do identify the beliefs of

investors about ability from the size of the fund: the model implies that bigger funds, all

else being equal, are believed to be higher ability. I identify the value of information from

the rate at which investors adjust their holdings in response to past performance: a returns

history is valuable if investors are responsive to returns.

I fit the supply-side to data on fund entry and exit. I identify the fixed cost incurred by

a particular type of fund by comparing its size to its empirical exit probability: for example,

a fund type that is large (and therefore profitable) but exits with high probability has higher

fixed costs.

The model fits well on both the demand- and supply-side. Investors are relatively fast to

respond to past returns: the estimated signal-to-noise ratio implies that investors consider

the informational content in their priors to be roughly equivalent to 20 months of returns

data. Fixed costs vary in intuitive ways with the state and type of the fund: funds have

higher fixed costs (possibly through their opportunity cost of remaining as a mutual fund)

when the macroeconomic factor is good and when they are believed to be high ability. This

means that high ability funds are bigger, but also have higher costs.

I use my results to undertake two sets of counterfactual simulations. First, I counter-

factually simulate a single recession and recovery at a given point in time of varying depth,

where a deeper business cycle results in more firm turnover. I then compare the surplus

generated by the exiting funds and the entering funds at various points after the recovery.

My primary finding is that the effect of a single business cycle on aggregate surplus is

negative in the short-run, positive in the medium-term, and decays to 0 in the long-term. In

the short-term, the information loss effect dominates the cleansing effect: there is significant

misallocation because investors have imprecise beliefs about the new funds. Over time, funds

age and acquire a returns history: this is true of both the new entering funds and the exiting

funds that they counterfactually replaced because of the business cycle. The benefit of this

extra information is greater for the entering funds who started with no information, and so

over time the information loss effect decays. After 30 months, the information loss effect has
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decayed to the point where it is dominated by the cleansing effect. From this point onwards,

aggregate surplus is higher because of the business cycle, because it has caused better, larger

funds to enter. In the long-run the effect of an initial business cycle decays to 0, because

ongoing entry and exit causes firm composition to converge regardless of its starting value.

The sizes of these effects depend on the depth of the initial business cycle. The per-firm

effect on surplus can be large: for the deepest business cycle I model (which is roughly

equivalent to the financial crisis), the aggregate surplus of entering funds is 14% less than

the aggregate surplus of the exiting funds in the first month after the recovery. The effect

on aggregate surplus in the industry is material and persistent, but small (no more than 1%

of aggregate surplus in the industry) as most firms neither exit not enter.

Having modelled the effect of the business cycle on firm exit and thus on outcomes, it

is natural to then consider the extent to which policy should mitigate these effects. In my

second set of counterfactuals, I consider which mutual funds, if any, should optimally be

subsidised during a stylised, predictably temporary recession such as that resulting from

the Covid-19 pandemic. I simulate subsidies targeted at particular types of mutual funds,

and show that the trade-off between the information loss and cleansing effects varies across

fund types in three ways. First, the information loss resulting from the exit of a young

fund is relatively low, as that fund does not have an extensive returns history (there is little

information to lose, in other words). Second, subsiding the largest funds has little impact

because they are unlikely to exit with or without a subsidy. Third, the cleansing benefit from

the exit of a medium-sized fund is relatively high, because they have disproportionately large

fixed costs relative to small funds. In other words, the contribution of a particular fund to

aggregate surplus is not just a function of its size, but also of its costs, and on this basis

smaller funds contribute more than medium-sized funds.2 The policy implication of these

three findings collectively is that subsidies targeted at older, smaller funds have the biggest

surplus benefits.

There is already an extensive macroeconomic literature on the Covid-19 pandemic (see

Brodeur et al. (2020) for a summary), but I make what I believe to be a novel point in a

microeconomic context: subsidies in the pandemic are intended to preserve beneficial con-

nections through a temporary recession, and one of those benefits is the value of information

2As described above, in broad terms I identify fixed costs by comparing a fund type’s size to its exit
rate. Empirically, the middle size quintile of mutual funds is 18 times bigger than the first quintile, but is
only around half as likely to exit. It is this empirical fact that underpins my result that medium-sized funds
have disproportionately large fixed costs such that a social planner would choose to cleanse them and keep
smaller funds.
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that has been built up about an existing firm. On the other side of the trade-off, I show how

the firms that should be cleansed and allowed to fail may not be immediately obvious: in

my context, what matters is not just a firm’s size and ability, but its size and ability relative

to its costs.

I review the literature below. In Section 2, I introduce the data and set out some guiding

empirical facts. In Section 3, I set out my model. In Section 4, I describe my empirical

approach. In Section 5, I report my results. In Section 6, I undertake counterfactual analyses.

In Section 7, I conclude.

1.1 Related literature

The main contribution of this paper is to develop an under-explored implication of business

cycles: the information loss that results from firm turnover. I explore the conditions under

which this information loss dominates the cleansing effect, and I quantify how this trade-off

changes over time. This paper is related to three broad strands of literature.

First, this paper is related to the literature on cleansing that goes back to Schumpeter

et al. (1939), and is featured more recently in Caballero and Hammour (1996) and Castillo-

Martınez (2018). In this paper, I document and measure cleansing in the context of mutual

funds. I also show how cleansing may bring first-moment benefits but second-moment costs

in the form of information loss. This loss of information over the business cycle has not been

studied extensively. Relatedly, Hale (2012) sets out reduced form evidence that recessions

affect connections between firms and banks which, in a relationship banking context, could

have implications for the extent of information asymmetry. Pástor and Veronesi (2009) set

out a model of technological progress in which new technologies may be better than existing

ones, but with greater uncertainty and therefore with greater return volatility.

Second, this paper is related to the literature on mutual funds generally (Barber et al.,

2016; Berk and Green, 2004; Berk and Van Binsbergen, 2015, 2017; Fama and French, 2010;

Gil-Bazo and Ruiz-Verdú, 2009; Ibert et al., 2018; Pástor and Stambaugh, 2012) and more

specifically the effect of the business cycle (Gil-Bazo et al., 2020; Kosowski, 2011; Glode,

2011; Kacperczyk et al., 2014, 2016) and of fund scale (Pástor et al., 2020, 2015; Pollet and

Wilson, 2008; van Binsbergen et al., 2019b) on mutual fund outcomes. There is a smaller lit-

erature that estimates structural models related to mutual funds, including Gavazza (2011),

Roussanov et al. (2021) and Roussanov et al. (2020). I introduce information loss over the

business cycle as a new consideration within this literature, and quantify its importance in a
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structural econometric context. I also contribute to the debate on how to identify and rank

high ability mutual funds (Barras et al., 2010; Berk and Van Binsbergen, 2015; Jiang and

Zheng, 2018; Kacperczyk and Seru, 2007) by showing that unobserved fund costs affect this

ranking and can be inferred from fund exit behaviour.

Third, this paper contributes to the recent literature on economic and financial responses

to Covid-19 (see Brodeur et al. (2020) for a summary). Much of this literature focuses on

macroeconomic aspects of the pandemic, including Acemoglu et al. (2020), Bigio et al. (2020)

and Eichenbaum et al. (2020). I consider optimal policy in a microeconomic model of a single

industry, but make a broader point about preserving socially valuable information during a

pandemic.

2 Data

I first describe how I select funds and calculate excess returns. I then describe the key

empirical facts that motivate my research question and guide my modelling.

2.1 Sample selection

I obtain data on mutual fund characteristics and their monthly returns and assets from the

database maintained by the Center for Research in Security Prices (CRSP), The University

of Chicago Booth School of Business. I select data from January 1990 to December 2016.

I limit my sample to actively managed US Equity funds that (i) are never smaller than

USD 0.2m in size and (ii) have at least 12 months of returns data. This departs from the

standard approach in the literature (see for example Berk and Van Binsbergen (2015) for an

overview of mutual fund selection), in that I impose lower size and returns history thresholds

for inclusion and I do not exclude funds missing data on expense ratios. Each of these is

important in my context because propensity to exit is likely to be correlated with size and

data availability. In other words, the standard thresholds exclude some of the funds I am

seeking to study. Where a fund has multiple share classes, I combine them into a single fund

observation by aggregating size and averaging fund characteristics across classes (see Nanda

et al. (2009) for an analysis of the role of share classes in mutual fund outcomes). I am left

with a sample of 4,446 funds and a total of 582,382 month-fund observations.
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2.2 Calculating excess returns

I calculate excess returns following Berk and Van Binsbergen (2015). I regress returns in

excess of the risk-free rate (Rit) on a set of 11 common factors (Ft) which are the returns to

the main index funds operated by Vanguard. The fund’s excess return, αit is the residual in

this regression:

Rit = βiFt + αit (1)

This is a more reasonable benchmark for mutual funds than, for example, a benchmark

involving momentum investing returns that would be prohibitively costly to implement in

practice. See Berk and Van Binsbergen (2015) for a fuller discussion.

2.3 Empirical facts

I set out four empirical facts:

1. Heterogeneity in fund size. Funds vary significantly in size at the point of entry

and over their lifetime, as I show in Figure 1. This is true even controlling for the

macroeconomic conditions at the time of entry: in other words, this is cross-sectional

variation not just inter-temporal variation.

2. Exit is correlated with size. Smaller funds are significantly more likely to exit in any

given period than bigger funds, as I show in Figure 2, where I define exit as dissolution

or being merged into another fund. The relationship between size and exit is convex:

for example, the 1st size quintile is 18 times smaller than the 3rd size quintile, but only

slightly under twice as likely to exit in any given year.

3. Exit is counter-cyclical. Funds are more likely to exit when the S&P500 (which I

denote macroeconomic factor Mt) is low than when it is high, as I show in Figure 3.

4. The size of the mutual fund industry is pro-cyclical. There is, unsurprisingly,

a close relationship between the S&P500 and the aggregate size of the mutual fund

industry, which I denote Qt. I show this graphically in Figure 4 and in the regression

results in Table 1. The R2 of a regression of Qt on Mt is 0.75, rising to 0.9 if I include

a structural break in the financial crisis.

To these empirical facts I add that investors respond to past returns, on which there is

a large literature (see, for example, Chevalier and Ellison (1997)). These facts combined
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naturally give rise to my research question: given that exiting funds are observably different

from the average fund, what impact does this exit have on aggregate outcomes? Given that

investors clearly attach some value to past returns, what impact does the absence of past

returns have on entrants? The macroeconomic factor clearly has an impact on aggregate

trends in the mutual fund industry, but what about on its composition?

Figure 1: Heterogeneity in fund size

(a) Initial size (b) Log initial size

(c) Log initial size conditional on M1 (d) Log maximum size

Note: Panel (a) shows the distribution of fund size in the first period of its life, excluding

the top 5% of funds by size. Panel (b) shows the distribution of the natural log of initial

size. Panel (c) conditions on M1, the level of the S&P500 in the period in which the fund

entered. Panel (d) shows the log of the maximum size the fund attains during my sample.
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Figure 2: Variation across fund size

(a) Exit rates (b) Fund size

Note: Panel (a) shows that smaller funds are more likely to exit than bigger funds. Panel

(b) shows that the size distribution is asymmetric: there are some very large funds. In

combination the panels show the relationship between size and exit is convex.

Figure 3: Exiting funds and the S&P500
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Figure 4: The relationship between Q and S&P500

3 Model

The model consists of two parts: (1) a model of demand by rational investors for mutual

funds and (2) a model of supply by mutual funds. I describe each part of the model, before

considering the implications of the model for aggregate surplus, efficiency and the role of the

business cycle.

3.1 Demand

The model of demand is based on Berk and Green (2004), in that it shares the following two

core components. First, there are decreasing returns to scale in the ability of funds to earn

excess returns. Bigger funds, all else being equal, earn lower returns because their ability
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to gather and exploit information is diluted or because of price effects or execution costs.

Second, ability is unobserved, but investors learn as they observe past returns. These two

core components in combination mean that rational investors form beliefs about the ability

of funds and invest up to the point where, given decreasing returns to scale, those returns

are competed away. As investors observe past returns of the fund, they update their beliefs

about the ability of the fund and adjust their holdings.

To these core components I add the following to suit my research question and to allow

the model to be reasonably taken to data. First, following Pástor and Stambaugh (2012),

I model competition between mutual funds by allowing the returns earned by funds to be

decreasing in the total size of the mutual fund industry: a mutual fund earns lower excess

returns, all other things being equal, if there are many other mutual funds trying to earn

excess returns from the same set of investment opportunities.3 Second, I include a role for

the business cycle by allowing the ability of funds to earn excess returns to vary according

to a macroeconomic factor that varies exogenously over time.

More formally, I follow Berk and Green (2004) and draw a distinction between the net

excess return that investors actually earn, and the gross excess return the fund would have

earned on a single dollar of investment (that is, before the effect of decreasing returns to

scale). The total risk-adjusted payout in dollar terms to investors from investing qit in mutual

fund i with gross return αgit and fee rate fi is:

TPit = qitα
g
it − C(qit)− qitfi

where C(qit) is a cost function representing the decreasing returns to scale in the ability to

earn excess returns. I parameterise the cost function as C(qit) = φiq
2
it. The parameter φi > 0

denotes the scalability of the fund, where high φi indicates that returns to scale decrease

quickly. The net αni excess return is what investors actually earn, and is simply this payout

divided by the size of the investment:

αnit =
TPt+1

qit
= αgit −

C(qit)

qit
− fi = αgit − φiqit − fi (2)

I disaggregate the fund’s gross excess return into three components. First, the fund’s

3The effect of competition depends only the size of the industry, and so is homogenous across funds
regardless of their investment style or fund family. See Wahal and Wang (2011) for an assessment of local
competition that is heterogeneous across funds depending on their investment strategies. See Gavazza (2011)
and Sialm and Tham (2016) for more on the role of fund families.
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true ability to generate excess returns αi, where αi ∼ N(µi, τ
−1
i,α ). Second, a fund-specific

iid shock εit, where εit ∼ N(0, τ−1
i,e ) and αi ⊥⊥ εit. Third, common variation in ability across

funds δt:

αgit = αi + εit + δt (3)

I then disaggregate the common variation into a further three components: an age effect

δa(it) (where I denote the age of fund i at time t as a(it)), the effect of macroeconomic factor

Mt and the effect of industry size Qt:

δt = δa(it) + βMt + θQt (4)

I estimate unrestricted age effects δa(it), macro-effects β and industry-size-effects θ in my

empirical analysis, as described below. A natural interpretation at this stage, however,

is that β > 0 and θ < 0. β > 0 implies that funds are more able to earn gross excess

returns when the macroeconomic factor is good.4 θ < 0 represents competition, in that a

larger mutual fund industry means more competition for the same investment opportunities,

reducing excess returns.

Investors choose qit before εit is realised. Furthermore, investors do not know the true

ability of the fund αi, but form expectations based on the information available to them at

the point of investment, which I denote It−1. I define these expectations as eit ≡ E[αi | It−1].

All other components of the return are known to the investor, including φi and δt.

Investors supply capital with infinite elasticity to any fund with positive expected net

returns αnit, taking aggregate investment qit in the fund as given. In equilibrium, qit is then

such that E[αnit | It−1] = 0. Substituting in Equations 2 and 4, this means that:

qit =
eit + δt − fi

φi
(5)

Investor demand for mutual fund i is therefore increasing in its expected ability eit,

increasing in its scalability φi, decreasing in its fee rate fi and subject to common variation

δt. Note that for ease of reference I refer to eit as “ability” and φi as “scalability”, but in

some sense both are fund-specific measures of the ability to generate excess returns on qit.

4β > 0 implies that unobservable gross excess returns and fund size are positively correlated with
the macroeconomic factor, but does not imply that observable net excess returns are correlated with the
macroeconomic factor. See Kacperczyk et al. (2016) for more on how net excess returns vary over the
business cycle.
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To complete the model of demand, I need to characterise the expectations formation

process behind eit. Investors observe past net excess returns, αnis<t and from this can infer

gross returns αgis. Investors cannot separately identify αi from εis, but can extract a signal

about αi given their relative distributions.

Given these distributional assumptions, there are simple closed-form expressions for how

investors form and update their posterior beliefs about αi in responses to these signals.

Defining the signal-to-noise ratio λ = τe
τα

and s(λ, t) = 1 + (t− 1)λ:

qit =
1

φi

[
δt − fi +

µi
s(λ, t)

+
λ

s(λ, t)

t−1∑
m=1

αgim

]
(6)

I leave implicit the lower bound of zero. I repeatedly substitute in Equation 2 to solve

forward for optimal qit in terms of net returns (which are observed by the econometrician),

instead of gross returns (which are not directly observed by the econometrician):

qit =
1

φi

[
µi − fi + δt + λ

t−1∑
m=1

αnim − fi
s(λ,m+ 1)

]
+ eqit (7)

I add an error term, eqit, that represents shocks to qit beyond this expectations formation

process. This could include, for example, noise traders. I leave further discussion of this error

term and its distribution to the section below on my empirical analysis. This Equation 7

characterises equilibrium investor demand for fund i. In what follows I define the “observable

type” of mutual fund i as Θi = (µi, φi, σ
a
i , σ

e
i , fi) and its “unobservable type” as αi.

3.2 Supply

On the supply-side, firms make three decisions: (1) they choose to enter or not to enter,

(2) they set a single fee at the start of their life and (3) they choose to exit or not to exit.

Before modelling these three choices, I describe firm beliefs about the evolution of industry

size, which will be important for each choice.

3.2.1 Firm beliefs about industry size

The payoff to a mutual fund depends on macroeconomic factor Mt and competition through

the size of the mutual fund industry Qt, as I set out in equation 4. I set out in Figure 4 and
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in Table 1 how closely Mt and Qt co-move, with a R2 value of 0.75 in a linear regression of

Qt on Mt.

I assume that Mt follows an AR(1) process, with stochastic error eM ∼ N(0, σM):

Mt = ρMMt−1 + eMt

The key assumption on the supply-side is that funds take aggregate industry size Qt as

given, and form beliefs about its dynamics based on its linear co-movement with Mt:

Qt = g(Mt) = g1 + g2 Mt (8)

I assume the relationship is linear for simplicity and because of the empirical relationship set

out in Figure 4. This means that Qt also follows an AR(1), such that firms have expectations

about how industry size will develop over time, regardless of their own decisions or those

of their competitors. This assumption has obvious computational benefits: the modelling

environment is not a game, but a series of individual decisions by each mutual fund. The

remaining complication, which I consider below, is ensuring that the individual decisions

result in aggregate dynamics that are consistent with the firm beliefs set out in Equation 8.

I argue that this assumption is reasonable given that there are a very large number of

funds, the significant majority of which are a very small proportion of total Qt. There are

admittedly a small number of very large mutual funds for which this assumption may not

be reasonable: these, however, are mostly established, older funds that are very unlikely to

exit. That is, this is a reasonable assumption to make when studying, as I am, the entry

and exit of mutual funds.

3.2.2 Exit

In each period, a mutual fund earns fees based on the size of the fund, where all marginal

costs are subsumed into the fee rate they charge. Each period the fund manager incurs a

fixed cost, denoted W , representing fixed expenditures and the opportunity cost of remaining

in business.5 The mutual fund can choose to exit and obtain an outside option, the value of

which I set to 0.

5See Deuskar et al. (2011) for more on mutual fund exit, including the number and type of managers
that leave to work in hedge funds.
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This decision is dynamic, and depends on the type of the mutual fund and the state,

including investor beliefs about the mutual fund eit, the age of the mutual fund ait and the

macroeconomic factor Mt:

• Type: Θi = (µi, φi, σ
a
i , σ

e
i , fi)

• State: St = (eit, ait,Mt)

• Action: zit = 0 if exit, zit = 1 if do not exit.

Firms take expectations over the development of beliefs about their ability eit and changes

in Mt. Their age, and with it the precision of investor beliefs about their ability, updates

deterministically. As is standard in the literature (see for example Hotz and Miller (1993))

funds receive an action-specific shock η(zit) that is distributed Type-1 extreme value. In

recursive Bellman form:

Vit(St; Θi) = max
zit

zitfiqit(St; Θi)− zitW (St; Θi) + η(zit) + zitβE[Vit+1(St+1; Θi)] (9)

I allow the fixed cost W (St; Θi) to vary with the state and type of the fund, on the

basis that the opportunity cost of remaining in business may be greater for better funds

and in better macroeconomic states. It also affords me additional flexibility to fit observed

empirical exit probabilities. To illustrate the equilibrium exit decisions resulting from this

model, I solve for z∗(St; Θi) under various combinations of ability beliefs eit, macroeconomic

states mt and parameter values in Figure 5 below, ignoring the action-specific shock η(zit)

and with homogenous fixed cost W . These numerical results indicate a cutoff rule: funds

exit when they are perceived to be bad or when the macroeconomic state is bad, or some

convex combination thereof.

I abstract away from complications relating to exit, such as the decision to liquidate or

merger with another fund. It would in principle be straightforward to add an exogenous

probability (possibly varying with state or type) with which the assets of the exiting fund

are merged with another fund rather than liquidated.

3.2.3 Entry

Firms decide to enter and set fees without knowing their observable type Θi, but knowing

the type distribution hΘi
. Firms choose to enter if the expected value of entry, taking
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Figure 5: Exit decisions

Note: The area under the curve shows the combinations of ability belief (eit) and business
cycle state (mt) in which a fund exits: funds exit when they are perceived to be bad or
when the macroeconomic state is bad, or some convex combination thereof. Funds are less
likely to exit when returns are less informative (λ is low) and/or when their ability scales up
easily (φ is low). For ease of exposition this figure ignores action-specific shocks and assumes
constant fixed cost across types and states.

expectations over Θi, exceeds an entry cost that is common across firms but can vary over

time:

f ∗t = arg max
fi

∫
Vit(St; Θi) (10)

∫
Vit(St; Θi) dΘi ≥ F entry

t (11)
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This produces inter-temporal variation in the fee rate over time, in that funds charge

lower fees at entry when the macroeconomic factor is worse. Fees are homogenous across

funds that enter at the same time. This means that there is no relationship between fund

ability and market power, such as there would be if, for example, funds chose their fee

rate after learning their type. Such a relationship would provide an additional channel for

the cleansing effect to work, in that better funds would earn higher profits. I justify this

assumption on the basis that empirical fund fees, whilst not homogenous, do not appear to

vary systematically.

3.3 Equilibrium

In equilibrium, (1) investors invest in any fund with positive expected excess returns, as per

Equation 7; (2) mutual funds choose to enter, set fees and exit optimally, given their type,

the state, investor behaviour and their beliefs about future competition, as per Equations

17, 11 and 10; and (3) mutual fund beliefs about the dynamics of future competition are

consistent with optimal mutual fund behaviour.

Expanding on the third of these equilibrium requirements: the entry and exit rules,

conditional on g(Mt), induce dynamics in Qt, which I denote h(Mt, g(Mt)). Equilibrium is a

fixed point such that g∗(Mt) = h(Mt, g
∗(Mt)). In other words, in equilibrium the entry and

exit rules induce fund behaviour that is consistent with the overall dynamics in Qt given Mt.

I do not solve for this equilibrium function. Instead, in the empirical analysis below, I

observe and estimate this equilibrium function and hold it constant in the counterfactuals I

run. This clearly places restrictions on the counterfactuals in which this equilibrium function

could plausibly be held constant, which I discuss below.

3.4 Aggregate surplus

I define the surplus (or value-added, following Berk and Van Binsbergen (2015) and van

Binsbergen et al. (2019a)) generated by a given fund i as the dollar return to fund and

investors, less the fixed cost Wit:

sit = fiqit + αnitqit −Wit (12)
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Aggregate surplus is then the sum of individual fund surplus: ASt =
∑

i sit. The model I

set out above has two important implications for how sit varies across funds.

First, the surplus generated by a given mutual fund industry of size Qt is increasing in

the ability of its constituent funds. This follows simply from the presence of fixed costs:

the model of demand above implies that better funds are larger, meaning that an industry

of given size is made up of fewer funds and incurs fewer fixed costs in total. There are no

cleansing effects, holding industry size constant, via fees (which do not vary with ability) or

excess returns (which are competed away in expectation).

Second, conditional on true αi, the surplus generated by a given fund is typically in-

creasing in the precision of investor beliefs. The general intuition for this is straightforward:

investor beliefs are correct in expectation, but in particular realisations investors can think

a particular fund is good when it is bad, and vice versa. This uncertainty results in mis-

allocation (investing too much in bad funds or too little in good funds) that harms surplus.

More formally, substitute Equations 2 and 5 into Equation 12 for surplus and assume for

ease of exposition that fi = Wit = δt = 0 and φ = 1:

sit = (αgit − eit)eit (13)

Surplus is, under these assumptions, a function only of the net return to investors. This

is positive if αgit − eit > 0, meaning that the fund is better than investors believe, such that

they under-invest and some net excess return is not competed away. Conversely it is negative

if investors believe that the fund is better than it is, and so over-invest. Let eit = αi + εeit,

where εeit denotes the error in investor beliefs for fund i, with mean zero and variance σeit.

Substitute in Equation 6 for αgit and take expectations conditional on unknown true ability

αi, and it follows that sit is decreasing in the variance of this error: mis-allocation is harmful

to surplus.

The primary determinant of the precision of investor beliefs is the age of the mutual

fund. Older mutual funds have a returns history that is a signal of their ability, and so

allows investors to form more precise beliefs. As the age of a fund goes to infinity, the error

term εeit and its variance σeit go to zero. In Figure 6, I set out an example of how the surplus

of a given fund is typically increasing in its age.

Additional information as a fund ages typically increases surplus. Whether this is always

the case depends on the age of the fund and the fee rate fi: when fi is set too low or too
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Figure 6: The effect of age and ability on surplus

(a) The effect of ability on surplus (b) The effect of age on surplus

Note: Panel (a) shows how the size of a mutual fund varies with investor beliefs about its
ability eit. Panel (b) shows how surplus is typically increasing in age, because as funds age
investor beliefs become more precise as they observe returns.

high relative to the fund’s true ability, then this introduces a distortion. This distortion can

interact with the effect of aging in a way that means that, beyond a certain age, surplus is

no longer increasing in age. I discuss this in more detail in Figure 16 in the appendix. For

the purposes of my research question, it suffices to say that funds with no returns history

typically have lower surplus than those that have a returns history, all other things being

equal.

3.4.1 Efficiency

I consider the choices of a social planner without additional information: that is, the social

planner does not know true fund ability αi or have any more information than investors or

funds. I am interested in the composition of the mutual fund industry, rather than its size.

That is, I consider the second-best problem of optimising the composition of mutual funds,

whilst taking as given the aggregate size of the mutual fund industry Qt and its dynamics.

I illustrate a compositional inefficiency by considering the mutual fund industry in equi-

librium, in which no incumbent fund wishes to exit and and no potential entrant wishes to

enter, given the prevailing macroeconomic state Mt and the size of the industry Qt. Consider

a simple example with two types of fund, type 1 and type 2, in equal numbers and of homoge-
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nous age A, where q1 > q2, f1 = f2 and W1 > W2. To focus, for now, only on the cleansing

effect, suppose that returns have no informational value (λ = 0, such that the information

loss channel is shut down). I ask whether the social planner would be willing to swap n

funds of type 2 for a single randomly drawn entrant of expected size q̄ = q1+q2
2

and fixed

cost W̄ = W1+W2

2
. To focus on composition only, suppose that n, q1 and q2 are such that the

overall mutual fund industry size Qt does not change. That is, nq2 = q̄. These assumptions

mean that the only part of surplus that is affected by such an exchange is aggregate fixed

costs. The exiting funds incur fixed costs nW2 and in expectation the entering funds incur

W̄ , such that the social planner would make this exchange if q2/W2 < q̄/W̄ . This exchange

need not occur in a decentralised market, in which type 2 funds have no incentive to exit so

that the funds that replace them can earn greater profits.

The ratio of size to fixed cost determines the value of such a swap. Importantly, the fund

type with the highest such ratio need not be the largest or highest ability. If fixed costs are

homogenous then W2 = W̄ and the social planner would seek to preserve the larger funds.

If, however, fixed costs are heterogeneous, then the smaller, lower ability fund may be the

fund type that would be preserved by the social planner.

Now suppose that returns are informative. In this case, then the exchange of funds being

considered affects fixed costs, as in the preceding example, but also the expected returns to

investors. The exiting funds have age A whereas the entering funds have age 1, meaning that

investors have more precise beliefs about the exiting funds because of their returns history.

As set out in Figure 6, this means that expected surplus is greater for older funds, all

other things being equal. The social planners’ decision about swapping fund types therefore

depends on the trade-off between ability and information.

3.4.2 The role of the business cycle

I discuss above whether the social planner would be willing to swap certain funds for an

average entrant. This type of swap is exactly what results from a business cycle in my

model, where I define a business cycle as a recession followed by an offsetting recovery. As

I set out in Figure 5, firms are more likely to exit if they are small, if they have high fixed

cost and if the macroeconomic factor is bad. The recession therefore has a cleansing effect

(in that bad funds are more likely to exit) and an information loss effect (in that they are

replaced by funds with no returns history).

The model allows me to formalise exactly which parameters determine the relative sizes
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of these two countervailing effects. The strength of the cleansing effect depends on (i) the

dispersion of the distribution in abilities and (ii) the extent to which exit rates are greater

for low ability funds than for high ability funds. The strength of the information loss effect

depends on the age of exiting funds and the value of the information contained in past

returns, as measured by the signal-to-noise ratio λ.

If, for example, returns are not particularly informative about ability, fund abilities are

highly dispersed and low ability funds are significantly more likely to exit, then the cleansing

effect is more likely to dominate the information loss effect and the business cycle has a

positive effect on aggregate surplus. If instead returns are extremely informative, then the

reverse is true. The model, therefore, cannot provide a general answer about the effect of

the business cycle on outcomes: it is an empirical question.

4 Empirical approach

There are three aspects to my empirical approach: (1) I estimate some exogenous processes

that are outside the model, (2) I calibrate some parameters and (3) I estimate the remaining

parameters by matching observed quantities, entry and exit decisions. I discuss each of these

in turn, before considering identification.

4.1 Exogenous processes

I model two exogenous processes outside the model. The first is the dynamics of macroeco-

nomic factor Mt, which in my empirical analysis is the S&P500 index. As described above, I

assume that Mt follows an AR(1) process, which in estimation I augment with a time trend:

Mt = ρMMt−1 + τM t+ eMt (14)

where eMt ∼ N(0, σM). I estimate this equation and recover an estimate of σM from the

time-series of Mt. In my counterfactual simulations I ignore the time trend component.

The second exogenous process is the relationship between Qt and Mt, as set out in

Equation 8. I use the results set out in column 3 of Table 1, which is a simple linear

regression of Qt on Mt.
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4.2 Calibration

On the supply-side, I set the discount factor to 0.99. On the demand-side, all of the parame-

ters in Equation 7 are separately identifiable, including fund-specific scalability φi and prior

beliefs µi. In practice, to keep the number of parameters to be estimated down, I calibrate

φi and µi based on how qit evolves over time.

I set scalability parameter φi to be the inverse of the maximum size that fund i reaches

in my sample: φ = 1
qi,max

, where qi,max = maxt qit. This is effectively a fund-specific nor-

malisation such that the product qitφi ∈ [0, 1] for any i. This means that I do not use the

cross-sectional variation in the size of the funds to identify the other parameters, but only

the variation over time. In other words, I assume that Vanguard’s largest funds are not large

relative to other funds because they earned very large returns early in their life, they are

large for fund-specific reasons that I effectively encode and leave fixed in φi.

I infer prior belief µi from the size of fund i in the first period of its life. Setting t = 1 in

Equation 7 and re-arranging: µi = qi1 − δi1. This results in computational benefits, relative

to simply estimating µi as a fixed effect, as it can be done outside of the main estimation

loop. It also better matches the interpretation of µi as an initial prior belief about fund

ability at the start of its life.

Implementing these calibrations in Equation 7 for demand, re-arranging and defining the

within-style transformation δ̃t = δt − δi1:

qit − qi1
qi,max

= δ̃it + λ
t−1∑
m=1

αnim − fi
s(λ,m+ 1)

+ eqit (15)

4.3 Estimation

I estimate the demand-side and the supply-side separately for tractability. From the supply-

side I need to estimate the entry cost F entry
t , the fixed costs W (St; Θi) and the variance of

exit shocks ση. I estimate all remaining parameters from the demand side.

On the demand-side, I run non-linear least squares on Equation 15, where the only non-

linear parameter is λ, which governs the responsiveness of fund size to past returns. I choose

2 months as the unit of time. I winsorize excess returns data at 1% and 99% across my

sample so as to avoid (potentially unreliable) extreme values. The specification is sensitive

to the units of excess returns chosen: I divide all excess returns by the largest single excess
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return in my sample, thus normalising excess returns to be weakly less than 1. In some cases

funds may experience one-off shocks to their size because of, for example, mergers. I account

for this in estimation by including a time- and fund-specific dummy variable wherever a

fund that is more than 2 years old grows by more than 100% within a 2 month period. This

happened 520 times within my sample of 291,191 month-period pairs.

Given estimates of the parameters in Equation 15, it is then straightforward to infer

estimates of unobserved gross αgit from Equation 2, and from that σ2
ie = var(αgit) and σiα =

λσie.

On the supply-side, I undertake a nested-fixed point estimation in which I match observed

probabilities of exit with model-implied probabilities. I discretise the state-space into 8

buckets for expected ability eit, 8 buckets for macroeconomic factor Mt and 3 buckets for the

fund’s age. I do this for 2 types of scalability φi, meaning I have a total of 384 state-type

combinations. The estimates of the demand-side and the first-stage estimates relating to the

evolution of Mt allow me to model transition probabilities between each of these buckets.

I show in Figure 13 in the appendix the exit rules implied by this coarser state space: it

matches the key characteristics of the exit rules implied by the finer state space in Figure

17. For each state-type bucket, I calculate the observed annual exit probabilities over 8

years between 2004 and 2011, P̂ r(z = 1 | St; Θi). To calculate model-implied probabilities,

I first set out the following mean choice-specific utilities, averaging across funds in the same

state-type buckets:

v1t(z = 1,St; Θi) = fiqit(St; Θi)−W (St; Θi) + βE[Vit+1(St+1; Θi)]

v0t(z = 0,St; Θi) = 0

Given the assumed distribution of exit shock η(zit), the probability of exit is then a

function of these mean utilities:

Pr(z = 1 | St; Θi) =
1

exp(v1t(St; Θi)) + 1

I parameterise fixed costs in order to then simulate over counterfactual combinations of

state and type that did not occur during my sample. I find that the following specification of
√
Wit (so as to ensure it predicts weakly positive fixed costs) on a quadratic specification in

fund type and state (comprising expected ability eit, scalability φi, age and macroeconomic

factor Mt) works well:
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√
Wit =w0 + w1eit + w2ageit + w3φi + w4Mt + w5e

2
it + w6age

2
it + w7φ

2
i

+ w8M
2
t + w9φieit + w10ageiteit + w11ageitφi + w12t+ w13t

2 (16)

I choose the parameters in this model, along with the standard deviation of the exit

shock η, to minimise the distance between model-implied exit rates by state-type bucket and

empirical exit rates by nested fixed point estimation. I exclude any state-type buckets for

which I have less than 10 observations from my estimation, leaving me with 291 empirical

probabilities to fit. The model cannot easily produce an exit probability of 0, so I replace

any empirical exit probability of 0 with the smallest strictly positive exit probability in my

sample, which is 0.0028.

4.4 Identification

The primary challenge in identification of the demand-side is the role of unobserved shocks

to mutual fund size. In the context of the model, the error term eqit represents investment in

the fund that is unrelated to beliefs of investors about the ability of the fund: noise traders,

in other words. Correlations in noise trading across funds and across time create challenges

in identification in two ways.

First, aggregate industry size Qt is endogenous in the presence of unobserved shocks that

are common across funds. If, for example, the mutual fund industry is popular with noise

traders in time t, then both q and Q would be large: this would likely bias our estimate of the

effect of Q on q away from zero. Second, αnit−1 is a function of qit−1 and so of eqit−1: this means

that historical returns are endogenous in the presence of serially correlated unobserved noise

trading. If, for example, firm i is popular among noise traders for two consecutive periods,

then returns are low and the fund is big: this would bias our estimate of the responsiveness

of rational investors to past returns λ downwards. This should not, however, happen if

investors are rational, as they would adjust their investment to account for any predictable

inter-temporal variation in noise trading.

Nevertheless, to mitigate the second of these concerns I implement a two-stage estimation

process. In the first stage, I estimate the demand equation including a time dummy, δt. This

insulates my estimation of λ from unidentified common shocks that are correlated across

time, such as noise traders. In the second stage, I regress these estimated time dummies on
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the common, time-varying components of demand, Qt and Mt. Separately identifying these

effects using only time series variation is challenging, in the absence of some exogenous shock

to fund size. I include a time trend and I instrument for Qt using the number of active mutual

funds, on the basis that this is likely to be less sensitive to unobserved contemporaneous

shocks. Importantly, in my simulations it is not necessary to separately identify the effect

of Qt from Mt, as all that matters is their net effect. I estimate them separately on the

demand-side only as support for my implicit assumption that mutual funds compete.

On the supply-side, the primary challenge is the identification of the role of Mt on exit,

via its effect on fixed costs W (St; Θi). It is not straightforward to separate the role of the

business cycle from other things that changed over the course of my sample period, such as

the general trend towards passive investment. I include a time trend and a squared time

trend to account for such general trends. I also limit my estimation window on the supply

side to 2004 to 2011 so as to minimise the effect of unobserved longer-term changes in the

industry, such as the trend away from active and towards passive investment management.

5 Results

I set out the results of my estimation in Tables 2 to 4 and Figures 7 to 15. Model fit is good

on both the demand-side (R2 of 0.73) and supply-side (0.69). Good model fit helps ensure

that the beliefs of mutual funds are consistent: firms believe that the size of the aggregate

industry Qt develops linearly with the macroeconomic factor Mt, as it does empirically. The

fact that the model fits well means that the model predicts optimal behaviour that will then

result in such a linear relationship in aggregate.

On the demand-side, the results have the following implications:

1. The role of past returns: I estimate λ to be 0.099. This means that investors

respond to returns relatively quickly. It implies, for example, that the investor’s priors

about a fund are as important to the investor as 20 months of returns history.

2. The role of competition. The coefficient on industry size Qt is negative and sig-

nificant, indicating that competition between mutual funds plays a role. Furthermore,

this parameter estimate is sensitive to the use of an IV approach in the direction one

would expect: failing to control for common shocks understates the importance of

competition.
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3. The role of the business cycle. The coefficient on macroeconomic Mt is positive

and significant: funds are larger when the macroeconomic factor is good. As well as

this direct effect, Mt has an indirect effect on qit via Qt. The net effect of Mt, taking

into account both the direct and indirect effect, is positive: when the macroeconomic

factor is good, Qt is higher (which has a negative impact on qit because of the impact

of competition), but not to the extent that it dominates the direct effect.

On the supply-side, the key implications of the results are as follows:

1. Variation in exit rates. Based on the results from the demand-side, I allocate each

fund to the state-type buckets described above, and calculate the exit rates in those

buckets. As set out in Figure 7, I find that funds are more likely to exit when my

model indicates that they are low expected ability (eit is low) or do not scale up well

(φi is high).

2. Variation in fixed cost. I estimate state-type specific fixed costs, and show their

estimated distribution in Figure 17. In Figure 8 I show that these fixed costs vary across

types and states in an intuitive way. Fixed cost co-moves closely with the expected

ability of the fund eit and with its scalability φi: funds have greater opportunity costs

if they are higher ability and/ or are able to scale that ability up easily.

3. Variation in entry cost. The expected value of entering is greater when the macroe-

conomic factorMt is good. Given that I assume that new entrants are always indifferent

between entering or not, this means that the fixed cost of entry F entry
t is also increasing

in Mt, as I set out in Figure 15.
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Figure 7: Observed firm exit by state and type

(a) Ability, eit (b) Macroeconomic factor, Mt

(c) Fund scalability, φi (d) Age, ageit

Note: I calculate the observed probability of exit in a year for each state-type bucket. In

this figure I show how these observed probabilities vary on average with states and types.

Note that the ability of a fund to scale up in size is decreasing in φi.
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Figure 8: State-type-specific fixed costs

(a) Fund ability, eit (b) Macroeconomic factor, mt

(c) Fund scalability, φi (d) Fund age, ageit

Note: I estimate fixed costs that vary according to state and type. In this figure I show

how these fixed costs vary according to the state and type of the fund. Funds have higher

fixed costs when they have higher expected ability (panel (a)) and when they scale well

(panel (c), where a fund that scales well has low φi). which may represent higher

opportunity costs. There is also minor variation in fixed costs with the macroeconomic

factor (panel (b)) and age (panel (d)).

6 Counterfactual analysis

I run two sets of counterfactuals. First, I simulate business cycles of various depths to model

their impact. Second, I consider optimal subsidies during a pandemic.
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6.1 Business cycle depth

I am interested in the effect of the depth of the business cycle on outcomes post-recovery.

To assess this, I simulate a single business cycle (that is, a recession, followed by a recovery)

in the macroeconomic factor Mt of varying depths, model the resulting counterfactual firm

turnover, and then set out the effect on aggregate surplus. I describe my approach to

modelling this counterfactual in detail in Appendix C.

Based on this counterfactual analysis, I draw two main conclusions:

1. The business cycle harms surplus in the short-term, improves surplus in

the medium-term and has no effect in the long-term.

2. Deeper business cycles have bigger effects in the short-term and medium-

term.

I set out the impact on firm turnover in Figure 9. The number of exiting firms and the

number of entering firms increasing in the depth of the recession. In Figure 10, I show the

net effect of firm turnover on aggregate surplus per-period. It is initially negative, indicating

that the information loss effect dominates the cleansing effect. Over time, as the funds age,

the information loss effect decays, such that there is a “switching point” at around month

30 after the business cycle when the effect of the firm turnover is reversed: the cleansing

effect dominates the information loss effect, and per-period aggregate surplus is higher. This

reversal occurs because as funds age they acquire a longer returns history and the precision

of investor beliefs increases. Because the exiting funds are older, however, the marginal

improvement in investor precision over time is much smaller than for the new entrant funds.

An extra datapoint is more valuable for funds with few datapoints. In other words, the decay

of the information loss effect over time is not about the change in the absolute precision of

investor beliefs about entrants, but instead about the change in their precision relative to

the precision about exiting funds.

The magnitudes of both the short-term and long-term effects are material relative to

aggregate surplus, although not large (as most funds never exit or enter), and are increasing

in the depth of the business cycle. For the deepest business cycle I model (which is roughly

equivalent to the financial crisis), the aggregate surplus of entering funds is 14% less than

the aggregate surplus of the exiting funds in the first month after the recovery. The effects

on total surplus in the market (including funds that did not exit) are material but small

(ranging between -1.0% and 0.2% of total mutual fund surplus for the deepest business
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cycles) because the majority of funds neither enter not exit. This also means, however, that

the effects are persistent (as can be seen in Figure 10, which simulates 200 months after the

initial business cycle), because it is ongoing exit and entry that in the long-term causes the

impact of a historical business cycle to decay.

Figure 9: The effect of the business cycle on firm turnover

Note: Deeper recessions and subsequent recoveries result in greater firm turnover. The

composition of this firm turnover also varies with the depth of the recession, in that the

ratio of the number of exiting funds to the number of entering funds decreases (because

small funds are relatively more affected by deep recessions than large funds).
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Figure 10: The effect of the business cycle on aggregate surplus

Note: I simulate a recession and recovery at time 0, which results in firm turnover. In

this figure I plot the net effect of this firm turnover on per-period aggregate surplus over

time. Immediately after the recession, aggregate surplus in the mutual fund industry is

lower: the information loss dominates the cleansing effect. As the entrants age, investors

obtain a returns history and the information loss effect decays: 30 months after the recovery

the cleansing effect dominates the information loss effect and the firm turnover improves

aggregate surplus. The sizes of both effects are increasing in the depth of the business cycle.

In the long-term, ongoing exit and entry mean that the impact of a business cycle at time 0

decays to 0.
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6.2 Optimal subsidies in a pandemic

Having modelled the effect of the business cycle on firm exit and thus on outcomes, it is

natural to then consider the extent to which policy should mitigate these effects. Specifically,

I consider which mutual funds, if any, should optimally be subsidised during a predictably

temporary recession such as that resulting from the Covid-19 pandemic.

To do this, I add predictably temporary shocks to the dynamics of the macroeconomic

factor Mt set out in my baseline model above. In any given period, there is a probability

pC that there is a “pandemic”, which is a negative shock to Mt of size ∆C that lasts for a

single period only. If there is no pandemic, then Mt evolves according to the dynamics set

out above in Equation 14. Being in a pandemic, or not, is then an additional element of the

state-space that firms face when making their decisions to exit or not.

For simplicity, I assume that pC = 0, meaning that I do not need to change my estimation

of the dynamics of Mt, plus it means that the long-term expectations process of the firms is

unaffected by the possibility of a pandemic. In the short-term, of course, firms know that

the negative shock of ∆C will be reversed in the following period. In Figures 11, I set out

exit probabilities across state buckets in the pandemic state and in the non-pandemic state:

naturally, holding everything else equal, most firms are less likely to exit in the pandemic

state (when they know that the macroeconomy will improve in the next period) than in the

non-pandemic state (when the macroeconomic factor is as likely to go down as up).

In making these assumptions I abstract away from various issues that are important

in the broader context of the pandemic, such as whether the pandemic is likely to have

persistent direct economic effects, whether it was anticipated by firms and whether it (or a

related pandemic) is likely to reoccur in the future. These issues, and the dynamics of the

macroeconomic factor Mt more generally, are out of scope of my research question. The only

important thing in my context is that the pandemic induces a recession in which things are

predictably going to improve in the future.

I consider public, unanticipated, one-off subsidies τ to specific types of fund, contingent

on not exiting:

Vit(St; Θi) = max
zit

zitfiqit(St; Θi)+zitτi−zitW (St; Θi)+η(zit)+zitβE[Vit+1(St+1; Θi)] (17)

A subsidy to state-type-bucket i reduces the probability of exit in that period, which

then reduces firm entry in the following period. The aggregate size of the industry Qt and
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its relationship with Mt is unchanged, the only impact of the subsidy is on composition: it

preserves funds of a particular type, and prevents entry of random type. I illustrate this by

setting out the impact of a generic subsidy to all funds in Figure 11: unsurprisingly subsidies

make firms less likely to exit.

Figure 11: The effect of recession type and subsidies on exit probabilities

Note: I plot the empirical distribution of exit probabilities across my state-type buckets in a

normal recession (where future changes are not known), in a predictably temporary recession

and in a predictably temporary recession in which firms have been subsidised.

I describe in the preceding sub-section how the information loss and cleansing effects

trade off against each other on aggregate across the industry. The key insight of this sub-
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section is that this trade-off varies at the fund-level: for example, the information loss effect

resulting from the exit of a very young fund is relatively low, as that fund does not have an

extensive returns history (there is little information to lose, in other words). Similarly, there

is no positive cleansing effect resulting from the exit of a very high ability fund, because a

randomly drawn new entrant is likely to be lower ability.

I demonstrate the fund-specific nature of the trade-off by assuming that the social planner

can subsidise only a single type of fund (one of the 384 state-type buckets I describe in my

empirical approach). A given subsidy has a persistent effect on aggregate surplus in the

following periods, as modelled in the previous sub-section. I calculate the net present value

of this effect on aggregate surplus, assuming an annualised discount rate of 0.03.6 I then

search over possible subsidy levels to calculate the optimal subsidy that induces the biggest

increase in the net present value of aggregate surplus. Finally, I then compare this maximal

effect on surplus across fund types, to ask which fund type would be subsidised by a social

planner if it could subsidise only one. I abstract away from questions around the funding or

implementation of the subsidy. I set out my results in Figure 17, where for clarity I aggregate

fund-type buckets by their effect on size.

Figure 12: Optimal subsidies by type

(a) Deep recession (b) Shallow recession

Note: These figures show how subsidies should optimally be targeted at smaller, older
funds. I set out the returns to subsidising 10 distinct types of fund: size quintiles for older
(age greater than 40 months) and younger funds (age between 6 and 40 months). I do this
during predictably temporary deep (panel (a)) and shallow recessions (panel (b)).

6My results do not change substantively if I choose some other reasonable discount rate.
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The funds with the greatest returns to being subsidised are smaller, older funds. The

intuition on the age effect is straightforward: older funds have a socially valuable returns

history that the social planner wants to preserve. The intuition on the size effect is more

nuanced. Very large funds do not exit with or without the subsidy (meaning the subsidy

has little effect on aggregate surplus). Medium-sized funds (the middle quintile in the figure

above) are relatively large, but also have large fixed costs, meaning that although they are

relatively high ability their net effect on surplus is negative because of their costs. In other

words, they are the funds that a social planner would wish to cleanse. The benefits (and

potential costs, if the wrong funds are subsidised) are greater the deeper the recession.

For clarity I revisit the empirical facts that drive these counterfactual results. It is more

efficient to subsidise older funds because I find that returns are moderately informative, based

on the empirical relationship between fund size and past returns. This age effect would be

lower if the empirical relationship between fund size and past returns were much stronger (if

returns are very informative, then investors have precise beliefs even about relatively young

funds) or much weaker (if returns are not informative, then investors beliefs are no more

precise about older funds). The size effect I find in optimal subsidies follows from how size

and empirical exit rates vary across fund types: medium-sized funds are much larger than

small funds, but not much less likely to exit, which leads my estimation to conclude they

have high costs. This leads the social planner to choose to subsidise smaller funds rather

than medium-sized funds.

7 Conclusion

The persistent effects of the business cycle have been extensively studied in macroeconomic

contexts, but less so in market-specific microeconomic contexts. The main contribution of

this paper is to develop an under-explored implication of business cycles: the information loss

that results from firm turnover. My quantitative results are for the mutual fund industry,

but a similar trade-off between cleansing and information loss applies in any industry in

which unobserved quality is important for outcomes and past performance is informative

about quality.

I draw two primary conclusions that may be important in broader contexts, and have

particular relevance for policy during the Covid-19 pandemic. First, the information loss

effect can be large, and indeed in my context it dominates the cleansing effect in the short-
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term. This has what I believe to be a novel implication for policy during the pandemic:

subsidies in the pandemic are intended to preserve beneficial connections through a tempo-

rary recession, and one of those benefits is the value of information that has been built up

about an existing firm. Second, the cleansing effect can also be large, but the firm types that

should be cleansed and allowed to fail may not be immediately obvious: in my context, what

matters is not just a firm’s size and ability, but its size and ability relative to its costs. These

costs may not be observable, but can be inferred from firm behaviour relating to pricing or,

as in this paper, exit.
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A Tables

Table 1: Relationship between Qt and Mt

[1] [2] [3]

∆Qt Qt Qt

Intercept 0.001 7.38 x 105∗∗∗ -3.62 x 105∗∗∗

(0.007) (7.36 x 104) (1.22 x 105)

1Post2008 1.10 x 106∗∗∗

(1.38 x 105)

Mt 843.82∗∗∗ 1826.8∗∗∗

(51.35) (100.94)

Mt 1Post2008 -1022.1∗∗∗

(108.6)

∆Mt 0.466∗∗∗

(0.117)

R2 0.15 0.75 0.90

No. obs 90 91 91

Note: Figures in parentheses are standard errors. ***, **, * indicate different from 0 at 1%,

5% and 10% significance, respectively. Qt is the size of the mutual fund industry, Mt is the

S&P500 index and 1Post2008 is a dummy variable that is one after 2008. The dataset is from

2001 to 2016, at a frequency of 2 months.
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Table 2: Demand-side results (first step)

[1] [2]

qit qit

λ 0.099∗∗∗

(0.00)

mean(µi) 0.311 0.311

mean(φi) 0.037 0.037

Age FE Y Y

Time FE Y Y

R2 0.73 0.70

No. obs 291,191 291,191

Note: This table summarises the results of the first step of the two-step procedure described

in the text. Figures in parentheses are p-values. ***, **, * indicate different from 0 at

1%, 5% and 10% significance, respectively. qit is the size of mutual fund i at time t and λ

represents sensitivity to past returns. I calibrate fund-specific priors µi and scalability φi

and report the mean across funds here.
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Table 3: Demand-side results (second step)

[1] [2]

δ̂t δ̂t

Intercept -0.53∗∗∗ -0.53∗∗∗

(0.00) (0.00)

Qt 9.30∗∗∗ -7.43∗∗∗

(0.00) (0.047)

Mt 1.11∗∗∗ 3.57∗∗∗

(0.00) (0.00)

R2 0.92 0.89

No. obs 161 161

Note: This table summarises the results of the second step of the two-step procedure de-

scribed in the text. Figures in parentheses are p-values. ***, **, * indicate different from 0

at 1%, 5% and 10% significance, respectively. δ̂t is the estimated dummy variable for time t

from the first step in Table 2, in which fund size qit is regressed on various dummy variables

and past returns. Qt is the size of the mutual fund industry and Mt is the S&P500 index.

In Column [2] I instrument for Qt using the log of the total number of active mutual funds

at time t.
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Table 4: Supply-side results

P̂ r(Exit | St; Θi)

Intercept 6.37∗∗∗

(0.00)

eit 1.64
(0.29)

ageit -7.15
(0.29)

φi -3.17∗∗∗

(0.00)

Mt 2.05∗∗∗

(0.00)

e2it 0.18∗∗∗

(0.00)

age2it 6.84∗∗∗

(0.00)

φ2i -3.77∗∗∗

(0.00)

M2
t -1.19

(0.94)

eitφi -3.27∗∗∗

(0.00)

eitageit 0.82∗∗∗

(0.00)

ageitφi -1.38∗∗∗

(0.00)

t -0.11∗∗∗

(0.00)

t2 0.01∗∗∗

(0.00)

R2 0.699

No. obs 293

Note: Figures in parentheses are p-values. I parameterise state-type fixed costs according to Equation 16 and choose the

coefficients to fit the implied exit probabilities to observed exit probabilities. The fixed costs implied by these results are

plotted in Figure 8. eit, φi and Mt represent expected fund ability, scalability and the macroeconomic factor, respectively.
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B Additional figures

Figure 13: Exit decisions

Note: The area under the curve shows the combinations of ability belief (eit) and business

cycle state (mt) in which a fund exits: funds exit when they are perceived to be bad or when

the macroeconomic state is bad, or some convex combination thereof. This figure is the same

as figure 5, but with a coarser state space.
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Figure 14: The effect of fund age on fund size

Note: This figure plots the age dummy that I estimate on the demand-side. On average,

young funds grow quickly, peak at age 100 months, and then decline as they age further.
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Figure 15: Variation in the fixed cost of entry over time

Note: In this figure I plot how the estimated fixed cost of entry F entry
t varies over time (black

line). The cost of entry is correlated with the macroeconomic factor Mt (the red line), but

the effect is relatively weak: the maximum entry cost is only 6% greater than the minimum

entry cost.
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Figure 16: The effect of age on value-added

(a) Noisy convergence to optimum (b) Convergence to optimum

(c) Convergence towards and then away from

optimum when fee too low

(d) Convergence towards and then away

from optimum when fee too low

Note: Suppose that for a given fund true α = 0.1 and other parameters are such that

optimal fund size q∗ = 5. If investors priors are incorrect, µ 6= α and q 6= q∗. q is a function

of investor beliefs about ability (which converge to true α as the funds ages and investors

observe returns) and the fee rate f (which is fixed). This means that q converges to q∗ only

if f is ex-post optimal, which in this example means f ∗ = α/2. In panels (a) and (b) µ < α

and f = α/2 = f ∗ such that q converges to q∗, with noise in the signal (panel (a)) and with

the noise in the signal turned off (panel (b)). In panel (c) µ < α and f = µ/2 < f ∗, which

means that q initially converges to q∗ (the blue area), but then overshoots and moves away

from q∗ (the red area). In other words, fund value-added does not increase monotonically

with age, but is n-shaped, as in panel (d). The same is true if µ > α and so f > f ∗.
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Figure 17: The distribution of state-type-specific fixed costs

(a) Full (b) Small values

Note: In this figure I plot the distribution of estimated fixed costs across states and types,

including ability, scalability, age and macroeconomic factor. Panel (a) shows the full

distribution. Panel (b) shows the distribution of smaller values only.

C Details on counterfactual

In this section I describe in more detail my approach to the counterfactuals.

For each of the K fund types, I simulate their size (from the demand-side of their model)

and their expected surplus. Fees, fund size and fixed costs are known. I simulate the range

of possible net excess returns using investor beliefs about fund ability and the precision of

those beliefs. To limit age effects to the information loss channel, I remove any variation

across fund age in δa (age dummies in fund size qt) or W (fixed costs). I denote the K × 1

vector of fund sizes and surplus across types by q and S, respectively.

The supply-side of the model shows how exit rates by fund type vary across a grid of

possible values of the macroeconomic factor Mt. Prior to time t = 0, the industry is in

equilibrium at values from 2012. Let C0 denote the vector of firm numbers by type prior to

time t = 0.

At time t = 0, I simulate a reduction in Mt that is either deep (a 32% decrease), shallow

(a 18% decrease) or zero (no decrease in Mt). I use the exit rates to simulate expected exit,

given the composition of fund-types. Let xm denote the vector of exit rates across types
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for recession depth m ∈ {Deep, Shallow, Zero}, then the expected decrease in aggregate

industry size is ∆m = ι′(xm. ∗C. ∗ q), where .∗ signifies element-wise multiplication and ι is

a vector of ones of length K.

At t = 1, I simulate a complete recovery in macroeconomic factor Mt to its value in

t = 0, which induces entry. Entrants have mean size q̄, and I assume that n enter such that

nmq̄ = ∆m. I calculate C1,m as funds that did not exit from the previous period plus the n

new funds split evenly between types. I ignore integer constraints so as to take expectations

properly. For example, I allow 0.1 funds of a given type to enter. Importantly, because exit

and entry are both functions of the depth of the recession, the composition of funds is now

itself a function of m. For example, C1,Deep has more young funds than C1,Zero because

there was greater firm turnover because of the recession. I calculate the effect of a business

cycle of depth m on aggregate surplus as ∆S1,m = ι′ ∗ (C1,m. ∗ S)− ι′ ∗ (C1,Zero. ∗ S). This

is the immediate effect at time t = 1.

At time t = 2, firms exit and enter again. Exit rates are now the same across m, because

the macroeconomic factor at time t = 2 does not depend on its level at time t = 0. The only

thing that varies depending on the initial business cycle is firm composition. I simulate entry

and exit for a further 100 periods in an analogous manner to above: applying exit rates to

firm numbers, then allowing entry such that in expectation the aggregate size of the industry

is unchanged. Two compositional effects occur over time. First, firms age and shift from

young types to older types, meaning that the precision of investor priors changes. Second,

ongoing exit and entry causes the differences across m, the depth of the time 0 recession, to

decay. For example, a deep recession forces out more bad funds at time t = 0, relative to a

shallow recession. In future periods t > 1 this effect is reversed: more bad funds exit in the

shallow recession counterfactual than in the deep recession counterfactual, because in the

deep recession counterfactual many bad funds had already exited at time t = 0. Composition

thus converges over time regardless of the depth of the recession at time t = 0.
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