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Abstract

This paper considers linear panel data models where the dependence of the regressors
and the unobservables is modelled through a factor structure. The asymptotic setting is
such that the number of time periods and the sample size both go to infinity. Non-strong
factors are allowed and the number of factors can grow to infinity with the sample size.
We study a class of two-step estimators of the regression coefficients. In the first step,
factors and factor loadings are estimated. Then, the second step corresponds to the
panel regression of the outcome on the regressors and the estimates of the factors and the
factor loadings from the first step. Different methods can be used in the first step while
the second step is unique. We derive sufficient conditions on the first-step estimator
and the data generating process under which the two-step estimator is asymptotically
normal. Assumptions under which using an approach based on principal components
analysis in the first step yields an asymptotically normal estimator are also given. The

two-step procedure exhibits good finite sample properties in simulations.
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1 Introduction

This paper considers inference on 3 € R¥ in the following model:

K TN
Yie = Z B Xrie + Z Aij f1505 + Eit, (1.1)

k=1 j=1
where the data consists of the outcome Y;; and the regressors Xy; for all k = 1,... K,
t=1,...,Nand t =1...,T. The random vectors \; and f; in R™ are factor loadings and

factors, ¢ is a nonrandom vector in R"™ | ry is the number of factors.

This is a panel data model with interactive fixed effects (see 7). It allows for flexible cross-
section and serial correlation thanks to the factor structure in the regression error. Several
techniques have been developed to estimate this model. ? proposes to estimate jointly
the regression coefficient and the factors and factor loadings. ? and ? study a nuclear-
norm penalized estimator. In contrast, the CCE estimator of 7 and the factor-augmented
regression estimator studied in 7 and ? model the dependence between the regressors and
the unobservables Z;Z L Niifti0; + Ei. They assume that, for £ € {1,..., K}, there exists
A1, - - -, Aey Which are random vectors in R™ and mean-zero errors Ei, ..., Ex which are
N x T random matrices such that Xy, = > 'Y Ay for + Egie for k € {1,..., K'}. This means
that the regressors have a factor structure with the same factors as the error term but possibly
different factor loadings.

In the papers of 7, 7 and ?, a strong factor assumption is imposed. It means that the ratio
of the singular values of T' and v/NT has a finite deterministic limit as N, T — oo, where
Ty = 3% N fuy Tt holds if (1/N) S MM (1/T) S0, fif,T has a finite deterministic
limit in probability. The number of factors is also assumed to be fixed with the sample size.
It is worth noting that some papers have sought to relax these assumptions in the context of
the CCE (?) and factor augmented (?) estimators.

This paper proposes instead to model the dependence of the regressors with both the
factors and the factor loadings by assuming that there exists d, € R~ for k € {1,..., K}

and errors E1, ..., Ex which are N x T" random matrices such that
N
Xt = Y NijfijOkj + Err, k€ {1,..., K}, (1.2)
j=1

The role of the vectors 0, ..., 0k is to model the dependence between the regressors and the
unobservables Z;Z 1 Aijf1i0; + By The structure that we impose can be seen as the gener-

alisation to dimension 3 (the third dimension being the one of variables) of the usual factor



models for matrices as in 7. Such a modelling was already introduced in the psychometrics
literature in 7 and ?. The mathematical foundations behind this approach lie in the tensor
decomposition literature, see 7 for a survey.

We study a class of two-step estimators of the proposed model ((1.1) and (1.2)). In
the first step , the factors and the factor loadings are estimated. Then, in the second step
the outcome is regressed on the covariates augmented by estimates of the factors and the
factor loadings. We provide sufficient conditions on the first-step estimator under which
the two-step estimator is asymptotically normal. We present assumptions under which a
first-step estimator based on principal components analysis (henceforth PCA) satisfies these
conditions. All the results are developed under an asymptotic regime where the sample size
N goes to infinity and T is a function of N going to infinity with N. Moreover, the number
of factors is unknown and allowed to grow (possibly to infinity) with the sample size. Factors
are not assumed to be strong. The proposed principal components augmented estimator
exhibits better finite sample properties than alternatives in Monte-Carlo simulations.

When a strong factor assumption is imposed and the number of factors is assumed to be
fixed, the proposed two-step estimator is found to be asymptotically normal under weaker
conditions on N and T than for the factor-augmented estimator in 7. This suggests that
augmenting the panel regression with estimates of the factor loadings leads to improved
estimation properties. The estimator of Section 4.7.1 of 7 is a special case of the two-step
procedure of this paper. In this other article, a first-step estimator based on hard-thresholding
of a nuclear-norm penalized estimator is used. The procedure is pivotal in the sense that it
does not require knowledge of the variance of the error terms and that the thresholding level
is data-driven. The first-step estimator uses a penalty which level depend on the distribution
of the operator norms of the errors while the approach with PCA that we develop here does
not. It also relies on the fact that a compatibility constant is bounded away from 0 with
probability approaching 1. Such an assumption is absent in the present paper.

This paper is organized as follows. The two-step estimator is introduced in Section 2.
Sufficient conditions for asymptotic normality are derived in Section 3. Section 4 is devoted
to the analysis of the two-step procedure when PCA is used in the first step. Section 5
describes our simulations. All the proofs are deferred to the Appendix.

Preliminaries. The transpose of a N x T' matrix A is written AT and its trace is tr(A). Its

k™ singular value is oy (A) and rank(A) is its rank. A = Zzazni{(A) or(A)ur(A)vg(A)T is the

singular value decomposition of A, where {uy (A) za:nf @ s a family of orthonormal vectors

of RN and {v, (A)}*™ ) is a family of orthonormal vectors of R7. The scalar product in the

space of N x T matrices is (A, B) = tr(A" B). The nuclear norm is |A|, = ;ffi{(A) or(A),

and the operator norm is |A|,, = 01(A) = max |Ahl,. For two integers, N and T,
heRT s.t. |h|y=1
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N Vv T is the maximum of N and 7', N AT is the minimum of N and 7" and |N] is the
integer part of N. For N € N, Iy is the identity matrix of size .

We consider sequences of data generating processes indexed by N. T is a function of N
that goes to infinity with /N. This paper studies an asymptotic where N goes to infinity. For
a probabilistic event A, its complement is denoted A° and we write that A happens with

probability approaching 1 or w.p.a 1 if P(A) — 1.

2 The estimator

The model can be rewritten in matrix form as Y = Ilg+ Ey, Xy, = Hx+Ey for k € {1,..., K},
where Ty = Y7 Aij fijdry for i € {1,... N} and t € {1,...,T}, o = 3, Blly + T,
it = > 7% Nir fr0, and Ey = Zszl BpE) + E. Notice that Ey and E are different. F is the
remainder term in (1.1), while £ is the remainder term in the expression of Y as the sum
of a term with a statistical factor structure and a remainder. Remark also that we do not
assume that the error terms E, Fy, ..., EFx have mean zero, hence they can be the sum of an
error term with mean zero and a small remainder as in ?.

Let 11, = (I, ..., Hg), I, = ((Ilp)",...,(g)"). For z = u,v, we denote by P, the
projector on the vector space spanned by the columns of II, and M, the projector on the
orthogonal of the vector space spanned by the columns of II,. Let r, be the rank of II,. Note
that r, < ry, by definition.

The proposed estimator is as follows. In a first step, one estimates M, and M, by

estimators ]\7u and ]\//Z,. From there, the estimator of ( is

2

, (2.1)

~ K ~
Ey - bk

k=1

f € argmin
beRK

where EO = ]\/LY]\Z, and Ek = ]\/ZUX;C]\Z for ke {1,..., K}.

As argued in the introduction, the estimator (2.1) can be seen as the regression of the
outcome on the regressors and estimated factor loadings and factors as shown in the fol-
lowing lemma. Let us introduce 7, = rank <IN — J/\I\u), 7y = rank <[T — ]\Z) and X;; =
(X Xiei) T

Lemma 2.1 Let {\;}Y, (resp. {f.},) be a family of vectors in R™ (resp. R™) such that
{(/):1]- o ,/):Nj)T}?’;l (resp. {(]/“\1] . ]?Tj)T}?”:l) is a generating family of the orthogonal of



the null space of J\//ju (resp. ]\/J\U) Then, it holds that

N T
3 ~ N2
[ € argmin min ZZ (Yz‘t — X b— )\ ¢ — lint) ‘
bERE Gy, .., €R™, =1 t=1
ll,...,lNER?”

3 Sufficient assumptions for asymptotic normality

In this section, we present sufficient conditions for asymptotic normality of B\ and consis-
tent estimation of its asymptotic variance. The first assumption concerns the asymptotic
behaviour of the error matrices. For a N x T matrix A, define A = M,AM,,.

Assumption 3.1 The following holds:
(i) There exists a K x K positive definite matriz X such that, for k,l € {1,... K},
<E}€,El> /(NT) g Ekl;

E(z JNT) 5 o and (B, B))” VT % N (0.0%5).

K
k=1

(#) There exists o > 0 such that

This assumption is similar to Assumption 9 (v) and (vi) in 7. The next lemma provides

sufficient conditions for Assumption 3.1.
Lemma 3.1 Assume that
(1) E(|P.Ely + |EP|y] + 34  E(|P.Egl; + |ExPoly) = op(VNT);

(i) There exists a positive definite matriz ¥ such that, fork,l € {1,..., K}, (Ex, E) /(NT) LN
2ki;

(i11) For k € {1,...,K}, (Ey,P,E)/|P,E|l, = Op(1) and (Ey, M ,EP,) /|M,EP,|, =
OP (1)}

() There exists o > 0 such that |E|; /(NT) 5 6% and ((Ep, E))r_, /VNT 4 N (0,0°%).
Then, conditions (i) and (ii) in Assumption 3.1 hold.

The next corollary gives an example of data generating process under which Assumption 3.1
holds.

Corollary 3.1 Let us assume that E, Ey, ..., Ey, are independent, r, + r, = op ( N A T)
and there exists 0,01, ...,01 > 0 such that {Ey}y are i.4.d. N'(0,0%) and {Eyit}i are i.i.d.
N(0,02). If also (E, Ey, ..., Ey) is independent of (I1,,11,), then Assumption 3.1 holds.
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The last set of conditions concerns the performance of the estimators of the projectors J\//Tu
Mu - Mu ) = OP(UN)

and ‘J\/I\v - Mv‘ = Op(vy). Let also {hy}ny and {py}n be real-valued sequences such that

2
max _|II; + Ey|l, = Op(hy) and max |Eg|,, = Op(py). The estimators satisfy the
kefo,.. K} ke{0,...,.K} p

following assumption.

and ]\/Zv Let {un}ny and {vy}y be real-valued sequences such that

Assumption 3.2 The following holds:
(i) M, and M, are symmetric almost surely;
(1) P(Fy = 1y) = 1 and P(F, = 1,) — 1;
(ii1) un V oy = o(1) and h = O(NT);
(iv) V2rn(uy Von)pi = o(NT);
(v) unvyhy = o(NT);
(vi) 2rn(un Von)pn =0 (m) :

(vit) uyvnpnhy =0 (W) ;

This assumption plays a similar role as conditions (i) to (iv) in Assumption 9 in 7. It
is difficult to understand the strength of Assumption 3.2 without examples of uy and vy
for specific first-step estimators. Hence, we discuss it in Section 4, where we derive the
properties of ]\/4\u and ]\/4\U when they are estimated by a method relying on PCA. The next

theorem constitutes the main result of this paper.

Theorem 3.1 (Asymptotic Normality) Under assumptions 3.1 and 3.2, we have
VNT(B - 8) % N (0,025 .

~ ~ ~ ~ ~ o~ |2
Also, fork,1 € {1,.... K}, Sy = <Ek,El> JINT) & 5y and 52 = ‘EO ~ K BE| /T 5
2

o



4 Estimation of the projectors using principal compo-

nents analysis

4.1 Strength of the factors

In this section, we discuss the estimation of the projectors using a method based on PCA. We
make assumptions regarding the asymptotic behaviour of o;(Il,) for z = u,v. The purpose of
this subsection is to show that there exists data generating processes (henceforth DGP) that
generate various asymptotic behaviours of the singular values of II,. When o;(II,)/ VNT
has a finite deterministic limit in probability, then we say that the j'* factor is strong. The

following lemma shows that there exists a wide variety of DGP under which such a strong
factor assumption holds. Let A = (Ay,...,An), F = (f1,...,fn), and A = (dg,...,0k),
where 8 = 0 + 31, BiOk.

Lemma 4.1 Assume that ry is fized and
(i) There exists a ry x Ty positive definite matriz X5 such that ANT /N L YA;
(i1) There exists a ry X ry positive definite matriz X such that FFT /T L Yr;
(iii) AAT does not depend on N.

Then, for z = u,v, the ratio of the singular values of I1, and v/ NT has a finite deterministic
limat in probability.

If instead o,(II,)/a;n has a finite deterministic limit for a;jy = o (\/ N T), then the ;%
factor is not strong. For a detailed discussion of the concept of non-strong factors, see 7.
The following lemma shows how to generate non-strong factors and a growing number of

factors in the case where F', A and A are nonrandom.

Lemma 4.2 Let {ajn}n for j € N be real-valued sequences with positive values. Maintain

(1) A is nonrandom and (AAT);; = I,

N ’.
(ii) F is nonrandom and FF" is equal to the rx x ry diagonal matriz with coefficients

2 2 .

(i) AAT is a diagonal matriz such that oy (AAT) >+ >a2 v (AAT)

11 — rNN TNTN

Then, for z =u,v and r € N, 0;(II,) = a;n (AAT)jj.

Notice that the last two lemmas give sufficient conditions for Assumption 8 in ?.
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4.2 Convergence results

The econometrician can use different methods to estimate the projectors M, and M,. The
approach in ? relies on a nuclear-norm penalised estimator followed by hard-thresholding of
the singular values. It has the advantage of being data-driven, in the sense that it does not
use any knowledge of the number of factors or the variance of the errors. Another interesting
and computationally advantageous procedure is the double IV estimator of 7. In this paper,
we focus the theoretical presentation on yet another method, based on the PCA. r, and r,

are estimated via the eigenvalue ratio estimator from ?. For z = u, v, let us define

~ (Y,
T, €  argmax 7 (V%)

je{t...|[VNAT|} M’ (4.1)

where Y, = (Y, X1,...,Xg) and Y, = (Y, X],..., X}). It may be that there exists r €
{1, e { N A TJ }, 0j+1 (Y.) = 0. To ensure that the estimators are defined, throughout
this section, we use the convention that the division of a positive number by 0 is equal to
oo. The estimator in 7 is of the form 7, € argmax;cqy g (naryy 05 (Y2) /oj41 (Y2), where
d* € (0,1]. Therefore, the estimators in (4.1) correspond to the one in ? for a particular
choice of d*. Our theoretical analysis is different from the one of ? because it allows for
non-strong factors and a growing number of factors. Contrarily to the estimators in 7, the
advantage of the eigenvalue ratio estimator is that it does not require to choose a penalty level.

To ensure consistency of the eigenvalue ratio estimator, we make the following assumption.
Let E, = (Ey,...,Ex) and E, = (E] ,..., Ey).

Assumption 4.1 (Eigenvalue Ratio) For z = wu,v, it holds that v, < VN AT almost
surely, |E.|,, = op (0. (I1.)) and there exists C < 1 such that

(11 Ezo T Hz
P ( ax M)v max APl ) _plon () )
JE{L,..rz—1} 041 (Hz) je{rz—l-l,..‘,L\/N/\TJ} Or,+j (Ez) 02, +1 (Ez)

Let us give sufficient conditions fo Assumption 4.1.

Lemma 4.3 For z = u,v, assume that r, < VN AT, ||, = Op (\/W), |E.|5/(NT)
has a finite deterministic limit in probability and there exists a sequence {zn}n such that

o, (L) = Op(zx), VNV T = 0 (zy) and max;eqi..,. 1y 05 (IL) /041 (I1,) = op (zN/W),
then Assumption 4.1 holds.

This Lemma shows that our assumption allows for non-strong factors and a growing number

-----



the singular values of II, cannot decrease too quickly with j € {1,...,7,}. The assumption
that [E.|,, = Op (\/N \% T) is standard in the panel data literature and holds under flexible
cross-sectional and serial correlations. For a detailed discussion, see Appendix A.1in 7. Let

us now state the main result regarding the eigenvalue ratio estimator.
Lemma 4.4 Under Assumption 4.1, we have P (7, = r,,7, =1,) — 1.

Given the estimators 7, and 7,, we set M, = Iy — Zj.“:l u; (Yy)u; (Yy)" and M, =
Ir — Z;A.”:l u; (Y,) u; (Y,)". Then, we have the following theorem which states the rates of

convergence of the estimators of the projectors.

Theorem 4.1 Forz = u,v, if P(r, =r,) = 1, we have ‘]\/4\2 — M,

2

4.3 Examples

Let us now show how Assumption 3.2 can hold under different assumptions on the singular

values of IL,,II,, F, and E,. In both examples, we assume that, for z = u,v, |EZ|0p =

Op (\/N VT ) and |E.|2 /(NT) has a deterministic finite limit. The assumption on the
errors implies that we can choose py = VN VT because |Eg|,, < |Eul,,-

Example 1. In this first example, we assume that ry is fixed and that the strong factor
assumption holds, that is, for z = u,v and j € {1,...,r}, aj(Hz)/\/W has a finite deter-
ministic limit. This implies that we can choose hy = v/ NT because |IL,|, = Op (\/W )
and that Assumption 4.1 holds by Lemma 4.3. Theorem 4.1 yields uy = vy = 1/ VN AT.
All conditions in Assumption 3.2 except (vii) are satisfied whatever the value of N and T.
Condition (vii) holds if v/N VT /(N AT) = o(1). The latter correponds to the condition for
asymptotic normality of the debiased estimator in ? and is weaker than the conditions for
asymptotic normality in 7.

Example 2. In this case, we assume that r, = r, = ry can grow with the sample size,
and that, for z = u,v and j € {1,...,ry}, \/maj(ﬂz)/\/ﬁ has a finite deterministic limit.
This is a case with non-strong factors and a growing number of factors. This implies that
we can choose hy = v/ NT because IL,], = Op (\/W) and that Assumption 4.1 holds by

Lemma 4.3. From Theorem 4.1, we obtain uy = vy = ry/v N AT. Conditions (i)-(iii) hold
3

for any value of N, T" and rx. For (iv)- (vi) to hold, it is enough that r% /(N AT) = o(1).

Finally, condition (vii) is satisfied if 73V N VT/(N AT) = o(1).

= Op (V7= |Exlyp fo. (1))



5 Simulations

We consider a data generating process with a single regressor and two factors:

Yie = Xyie + Nin fu + Niafio + By,

1
Xt = 5/\i1ft1 + Niafro + Eit,

where fy, A\ii, Evi, and Ej for all indices are mutually independent, fy; ~ N (1/2,1), Ay ~
N(1,1) and Ey, . . ., Fxi and Ej are standard normals. The matrix X has a statistical fac-
tor structure with a low-rank component of rank 2. Recall that ELS € argminb € R|Y — bX; \3

is the least-squares estimator of the linear regression of the outcome on the regressors.

~ — 2
pFA € argminb € R |Y M, — bX,M,| is the factor augmented regression estimator where
2

]\//Z, is computed as in Section 4. E(l) and 5(2) are the two-stage estimators of Section 4.7.1 in
?. They are computed as in the simulations of that paper, without using within transforms.
5 (2) uses Bai’s estimator as a second stage while Eg uses the approach of this paper with two
projectors and a first-step based on hard-thresholding of a nuclear-norm penalized estimator.
Finally, 37C4 is the estimator (2.1), using the procedure of Section 4 as the first-stage.
Tables 1 and 2 compare the performance of the estimators in terms of mean squared error
(henceforth MSE), bias, standard error (henceforth std) and coverage of 95% confidence
intervals, for different sample sizes. The coverage is not reported for ELS because the latter
is not asymptotically normal for the DGP that we consider. We use 7300 Monte-Carlo
replications which allows for an accuracy of +0.005 with 95% for the coverage probabilities
of 95% confidence intervals. In this simulation exercise, our estimator exhibits better finite

samples properties than the studied alternatives.

Table 1: N =T =50

,BLS BFA B(l) B(Z) ﬁPCA
MSE 0.884 | 0.004 | 0.14 | 0.13 | 0.004
bias 0.939 | -0.011 | 0.321 | 0.275 | 0.012

std 0.055 | 0.191 | 0.023 | 0.234 | 0.063

coverage 0.75 0.22 | 0.37 | 0.90




Table 2: N =T = 150

BLS ,BFA ,3(1) 5(2) 5PCA
MSE 0887 | 100* [ 410° [ 410° | 4107°
bias 0.9414 | -0.007 | -51075 | -8 1076 | -5 10>
std 0.031 | 0.007 | 0.007 0.007 0.007

coverage 0.79 0.95 0.95 0.95

Appendix

Proof of Lemma 2.1.

Let b € Rk7 Y; = (}/ila--w}/iT>T and Xz = (Xil,...,XiT)T for © € {1,...,N}, Y; =
(Yita' .. ,Yv]\ft)T and Xt = (Xlta c. ,XNt)T fort € {1, c. ,T} and

N T
~ 2
o(b) = min ZZ(mt—X;b—Aj@—zjft) .
¢1> 7¢T € RT”) =1 t=1
[y, Ay € R™

By algebra, we have

N R R T 2

o(b) = min ZYi—XZ-b—(qbl,...,m)T)\i—<f1,...,fT> I

¢1,...,¢T€RT“, i=1 2
ll,...,lNeR?“

Then, by definition of ]\/4\1,, it holds

N
_ ~ 2
Sp(b) = min R Z ‘Mv (Y; - X?,b - ((blv Tt (bT)—r )\Z)
b1, br € R 2

Because M, is symmetric, this implies

2

p(b) = min (5.1)

¢17"'7¢T€R?u

K
(Y— S b X - (Xl,...,XN)T (¢1,...,¢T)> M,
k=1

2

10



Next, by definition of ]\//[\u7 we obtain

Hence, because the value of

min

¢17---7¢T€R&

K
(Y_Zkak - <3\\17"'7/):N)T(¢17"'7¢T>> j/\j\v

—~ —~ 12

M, <Y K kak) M,
2

K
o(b) = ‘J\Z (Y -3 kak> M,
k=1

~ o~ T —
when <)\1, . ,/\N> IES (]N — Mu> (Y; — Xib), we get

18

2

2

Proof of Lemma 3.1.

Proof that Assumption 3.1 (i) holds. For k € {1,..., K}, we have
E, — M,ExM, = P,Ey, + M, E.P,.
By Markov’s inequality and the fact that M, is a projector, we have
|PuEk|2 + |MuEka|2 < |PuEk|2 + |Eka|2 =Op (E [|PuEk|2 + |Eka|2]) .

By condition (i) in Lemma 3.1, this yields |P,Ey|, + |MyEyP,|, = op (\/ NT). This implies
|M,ExM, — Ei|, = op (\/ NT). By the Cauchy-Schwarz inequality, we obtain

(MyExM,, Ey) — (Ey, Ey) = (M E M, — Ey, E) = op (NT)
because |Ej|, = Op (vNT). We get

1 /~ =~ 1 1 P
—EE>:—MUEMU,E — — (B, E DS
o (B Bi) = = MUE My, B = —— (By Bi) + 0p(1) & Sy

by condition (ii) in Lemma 3.1.

2
Proof that Assumption 3.1 (ii) holds. The proof of ‘E‘ J(NT) L 62 is similar to the
2
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proof that Assumption 3.1 (i) holds. By conditions (i) and (iii) in Lemma 3.1, we have

(P Ey, E) = Op(1) | PuExl, = Op(1)op <\/NT> = op (\/NT)
and similarly (M, E.P,, E) = op (\/ NT) . Next, this yields

(B, E) — (MyEM,, E) = (PEy, E) + (M E.P,, E) = op (\/NT) .
We obtain that

e (B E)), = S (MLBM B, = e (B B or(1) 5 A (0.0°5),

by condition (iv) in Lemma 3.1.

Proof of Corollary 3.1.

Let us prove that the assumptions of Proposition 3.1 are satisfied. (ii) and (iv) in Proposition
3.1 are direct consequences of the weak law of large numbers and the central limit theorem.
Concerning (i) in Proposition 3.1, for & € {1,..., K}, by Lemma A.3 in ? and the fact that
E. F,,..., Ex are independent of II, and II,, we have

N N
> (P.EW); > (P.EW);| P
i=1 i=1

T

E [|P.E3] Z

t=1

T

=) E|E

t=1

=Tr,of =0 (\/ NT>

Similarly, one can show that E [|EkPU|§] =0 (\/ NT > In the same manner, we obtain that
E[|P,E|,+ |EP,|,] = o(vVNT). To prove (iii), just notice that conditionally on P,E, we
have (P,E, Ey,) / |P,E|, ~ N(0,0}), hence, for any M > 0, it holds that

p(% M’PE) < 2(1— @' (M)),

where ® is the cumulative distribution function of a A/(0,1) distribution. This implies

P (K‘;‘ig—@ > M) <2(1 - @ HM)).

Therefore, we obtain that (P, Ey, E) / |P,E|, = Op(1). The proof that (Ey, M,EP,) | |M,EP,|, =
Op(1) is the same.
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Proof of Theorem 3.1.

Proof of asymptotic normality.

Because ]\/4\u and ]\/Zv are symmetric, a solution to (2.1) satisfies, for l = 1,..., K,

K
<]\/4\qu]\/4\7” Y — Z//@\ka> =0,
1

hence
<MquMv, 1B+ é (8- B) Xk>
— <<M ~ M) XiM,, B+ kZK; (8 = B ) X
¥ <Mqu (M, - 1L) B + é (8- B:) Xk>
(-T2 (T B3 (- R) ).
s

i (/6k - Bk) <<MquMv>Xk:> - <(Mu — J/W\u> X, M,, Xk>

. <Mqu (MU - ]\7) ,Xk>
(o ) 5 0, 1) 30 ) (- ) w0 4.
+ <Mqu (Mv — M) ,+E>

— (M, = 31,) X, (M, 3L,) T+ ).

(5.2)

Let us show that (M, X;M,, X)), which by Assumption 3.1 (i) diverges like NT, is the
high-order term multiplying (ﬁk — Bk) in (5.2). This also yields the consistency of the
estimator of the covariance matrix. For a matrix M and r € N, let us define [M|[3, =

> r—1 ok(M)?. By symmetry of the projectors, Theorem C.5 in ?, and Assumption 3.2 (ii)

13



(Which implies rank (Mu — M\u) < 2ry w.p.a. 1), we have

(4 = 37.) 20, X))

9 }XZMUXJ‘MTN
S (\/ 27“]\[ + OP(l)) ‘Mu - ]/\Zu

= Op (V2ryunpy) = op(NT) (by Assumption 3.2 (iv)).

9 |X1Mv|op |XkMU|op

We bound similarly ’<MUXZ (Mv — J\//‘Tv> ,Xk> , and, for the fourth term, use that

(= B8) X (1, = 37) X))

2

= Op (unvnhy) = op(NT) (by Assumption 3.2 (v)). (5.3)

Let us consider now the quantities on the right-hand side in (5.2). Notice that because
E=EFE,— Zszl BrEk, it holds that |E| = Op(pn). Proceeding like above, we have

(a0 = 38.) 00 )

|
) | XiMET|,,

< (V2ry +op(1)) ux | Ell,, | El,
=0Op (\/ZTNuNp?V) =op(VNT) (by Assumption 3.2 (vi)).

and treat similarly <Mqu (MU — ]\/4\”> ,E>. With the same arguments as in (5.3), the
absolute value of the last term of (5.2) is smaller than uyvy |Xi|, |I' + E|,, which is an
Op(unvypnhy) = op (\/ﬁ) because '+ £E =Y — Zle B Xk

Let us now look at the first terms on the left-hand side and on the right-hand side of (5.2).
By Assumption 3.2 (vi), for all k,1 € {1,..., K}, we have (M, X,M,, Xy) = (M, E,M,, Ey) +
op(NT). Hence because of Assumption 3.1 (i), (M,X;M,, Xx) are the high-order terms on
the left-hand side of (5.2). Similarly, by Assumption 3.1 (ii), the high-order terms on the
right-hand side of (5.2) are (M, E;M,, E). As a result, B\ is asymptotically equivalent to the

ideal estimator 3
2

B € argmin (5.4)

BERK

K
M, (Y -> @J@) M,
k=1

2

14



Hence, we obtain by usual arguments that vVNT(3 — 8) % A (0,0571).

Proof of the consistency of 5. We use

K K
NTG® = <Y = > BXi M, (Y - Z@m) z\?>

k=1 k=1
K K
= <Y =" BeXo, (Mo — M) (Y - > B | (M, M)>
k:lK i B k::lK A
+ <Y = > B, (M, — M) <Y - Zﬁkxk) Mv>
k}:(l A N A k=1 R
= <Y = > B M, <Y -> kxk) (7, - M)>
k}z{l A k}:{l A
+ <Y — > BX, M, (Y -~ Zﬂkxk) Mv> :
k=1 k=1

IA
I\<
|
]~
=
s
=)
|
=
VR
)~<
|
]~
ey
s
N—————
=
|
=

i
o
[N}

K
SY_ZAk:Xk ]/\I\u_Muz

k=1 2
2

= op(NT) (by Assumption 3.2 (iii))).

Similarly, we can show that

15



and

Hence, we have

NTG?

< W Xn, M ( ZBka> >+OP(NT)

R
= < i (ﬂk — Bk) Xk — Zﬁkxk, (Y - i <Bk - ﬁk) Xk — Ifﬁka) Mv> +op(NT)

k=1
_ <§: (B = B) X M, (i (B - 1) Xk) Mv> + <E0,Mu (i (3 - 6) Xk> MU>
- <i (Ek — 5k) Xy, MUEKMU> (NT).

Now, by the Cauchy-Schwarz inequality, Assumption 3.2 and the fact that 3 — B = op(1),

one can show that

<E,Mu <i (Bk - 5k> Xk) Mv> = OP(NT);
(Ak _ 6k> X, MuEMv> — 0p(NT).

We conclude the proof using Assumption 3.1.

Proof of Lemma 4.1.

Let A = (A1,...Ay). Fort € {1,...,T} and k € {0,..., K}, we use the notation ¢y, =
(fe10k1, - - - ftTN5kTN)T. We also introduce ¥ = (¢1q,...,%710,--., V1K, -, UrK). It holds
that, for j, 7' € {1,...,rn}, (\IJ\IJT)jj, JT = (AAT); 5 (FFT)].]., /T. Therefore, ANTWUT /(NT)
converges in probability to Xy YA, where, for 5, 7' € {1,...,rn}, (EAF)].J., = (AAT);; (Ep)jj/.
Next, let U = (uy (I1,)), .. ., ury (IL,)), V = (v1 (IL,) , . .., vry (I1,)) and D be the ry X ry
diagonal matrix for which D;; = o; (II,). We have UDV" = AT¥, which implies UD?U T =

16



ATWUTA. This yields AUD? = AATOUTAU. On the event £ = {rank(AU) = ry}, we
obtain AATWWUT = AUD?*(AU)~!. Therefore, the diagonal elements of D?/(NT) are the
eigenvalues of AATUWT /(NT) on €. Because AAT /N converges in probability to a positive
definite matrix, the set of full rank matrices is an open set and the determinant is a contin-
uous mapping, we have P(rank(A) = rn) — 1, which implies P(€) — 1. For j € {1,...,rn}
and £ > 0, we get

<¢)

o (o () - o5
o ([ (%) - ssan| 2e}ne)

=P ({|o; (ANTWUT/(NT)) — 0; (EaZar)| <E}NE) = 1,

where the last statement holds because AAT WU /(NT) L S\ Sar, A € RV s (01(A), ..

is a continuous mapping and P(€) — 1.

Proof of Lemma 4.2.

We only prove the result for II,,, the proof for II,, being similar. We use the same notations as
in the proof of Lemma 4.1. We have, for j, ' € {1,...,rn}, (\IJ\IJT)].],, = (FFT);(AAT);5 =
0if j # j/ and (\II\IIT)jj = (FFT);;(AAT);; = ajy(AAT);; if j = 5. Therefore, AATOWT
is the diagonal matrix with diagonal coefficients of v (AAT )11, ..., a2 N (AAT), .. Because
A has full rank, AATOUT = AUD?(AU)~! and, therefore, the diagonal coefficients of D? are
AN(AAT )1, al N (AAT)

TNTN*

Results on PCA

Let us consider a N x T random matrix A. We do not observe A but A = A+ Z , where
Z is an N x T random matrix. Let r be the rank of A. A = Z;Zl ajujva is the singular
value decomposition of A, where oy > --- > 0. > 0 and {uy,...,u,} and {vy,...,v,.} are
orthonormal families of RY and R7, respectively. With similar notations, A = 23;1 @ﬂﬁ; is
the singular value decomposition of A and 7 is the rank of A. Z = Z;V:/\lT oi(Z)u;(Z)v;(Z)"
is a singular value decomposition of Z. T = T(N) is a function of N going to oo when
N — oo and and the asymptotic setting is such that N — oco. For s € {1,...,N AT}, we
consider the following estimators of A and P, A, = > 1 0u;0; and P, = >y usu; . Let
also M, = In — P;.

<2[Z|,,-

op

Lemma 5.1 ‘Er —A

17
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Proof. We have ‘Er —A

— |4, A4 A-a
op

NAT ~ ~ ~
o < ‘Zj:/;"-&—l o]
|Z|,, - Now, by Weyl’s inequality (Theorem C.6 in ?), it holds that 7,41 < ’g —A
O

+ ‘Z|op - 57«4_1 +
op

= |Z|op‘

op

Lemma 5.2 We have ﬁT — P

< 44/ 27”@ almost surely.
2 T

~ 2 o~ 2
P—pl <2 ‘MTA‘ Jo2. We
2 2

Proof. Following the proof of Proposition 10 in ?, we obtain

conclude using

-~

S@AT_A

2

i

[ (3.

<l

S @2 ’Z|op7
op

by Lemma 5.1 and the fact that ]\//Tr is a projector. 0
Lemma 5.3 The following holds:
(i) Forje{1,...,r}, o, — ‘ET—A

§5j§0j+’Ar—A
op

;
op

(i) Forj € {r+1L,NAT —r}, 0r4;(Z2) <0; <|Z],,

Proof. (i) follows from the fact that |o; — ;| < ‘E,n —A

by Weyl’s inequality. Weyl’s
op

inequality also yields o; < A—Al =z |ops Which implies the right-hand side of (ii). To
op

show the left-hand side of (ii), from (7.3.13) in 7, we obtain 0,,;(Z) < 7j_1 + 0,41 = 07;. O
Lemma 5.4 Let Z be a N X T random matriz and r € {1, cee L\/N A TJ } Assume that

1Z|,, = Op <\/N \/T> and there exists v > 0 such that |Z|5 /(NT) L 02 Then, we have

Ty VNAT] (Z) >0 w.p.a. 1 and je{l,..ﬂa}J(V/\TJ} 1Z\yp /0r44(Z) = Op(1).

Proof. We have

25 QL N/\TJ 2 NAT 2

NT = NT Pl T v (4)°
Thus, we obtain

25 2[VNAT] zp < NAT

o 2
NT NT o < TN 2lvmar|(Z)

Using |Z|5 /(NT) 5 0% and 1Z|,, = Op (\/N\/T), we get

zp 2[VEAT)
NT NT

22, = 0

18



and, therefore,

Hence, we have

Z] 22|
P P < e — 1.
O-QL,/NATJ (Z) V NV Tv

Therefore, we obtain

Zl,, Zlp
9y vaar| (%) _OP( NVT) —ortl)

This leads to 7]
max P < . = Op(1).
GE{Loes [ VNAT |} Ortj (2) P! | VNAT | (Z)

Proof of Lemma 4.3.

Because VN VT = o(zy), it holds that |E.|,, = Op(0,.(Il;)). Then, we have oy, 1(E;) <

|E.|,, = Op (x/N\/T> which implies zy/VN VT = Op (0,.(IL) /0. 11(E.)). Moreover,

by Lemma 5.4, we have max E.|, /or.+ij(E;) = Op(l). Because
() = Onl)

max o, (IL) /0,41 (IL) = op (ZN/W) :

je{1,...,r.—1}

E,
P ( o ﬂ)v max Pl ) plon () )
JE{l,r2=1} Opgq (Hz> jE{rz+1 ,,,,, L\/N/\TJ} Or,+j (Ez) O2r,+1 (Ez)

Proof of Lemma 4.4.

vvvvv el o () < oY)
j€{l,...,r. — 1}, by Lemma 5.3 (i) and Lemma 5.1, we have o;(IL,) — 2 |E.[,, < 0;(Y;) <

To prove Lemma 4.4, let us show that P (maxje{l 0 (¥z) o _on(z) > — 1. Take
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o;(IL,) + 2|E.|,, - Then, on the event A = {arz (IL,) > 2 |EZ|0p}, we obtain

2|Ex], 2| B,
p P

Oj(}/;> < Uj(HZ)+2|EZ|OP _ Uj(HZ) 1+O’j(nz) < Uj(HZ) 1+U7‘z(HZ)

7y1(V2) = ol = 2By, 0palll) 1 - 2o = 0 (IL)] - 2
oj z Ory z

(5.5)

where the last equality is because o;(Il,) > 0;41(I,) > o, (I1,). Also, by Lemma 5.3, on A,
it holds that

UTZ(}/Z) > O-TZ(HZ) -2 |EZ|op . UTz(HZ) (1 _ %) . (56)

Uerrl(Y;:) N ‘72rz+1(EZ) B ‘72rz+1(EZ) Or, (HZ)

(- 25) /(1 2m) -

where C' is the constant in Assumption 4.1. We have

(Y T sz
P( ) o >)
JE{L,.., Tz—1}0j+1(Yz) or+1(Yz)

>IP>({ max 22 J”(YZ))}HAMB)

jell -1y 01 (Y.)  op (Ve

Let us call B the event

my (- 1E00)

je{l,...,r—1} O_j—i-l(Hz) 1+ Q‘E(lefp) 0-27”2—‘,-1(EZ>

o;(I1,) o, (I1,) } )
>P max —— < (C——2"2 _tnANB| —1,
- ({je{l ,,,,, re—1} 0541 (Hz) 02Tz+1(EZ)

where the last statement holds because P(A) — 1, P(B) — 1 (given that |E, |, = Op(0,.(IL,)))

and

NANB| (by (5.5) and (5.6))

j Hz T Hz
IP’( max IUD <C’02< ) >—>1
je{l,..,ro—1} Uj+1(Hz) O2r,+1 (Ez)
. o (Yz) or, (V2)
by Assumption 4.1. Next, let us show that, P (rnaxje{mrl ..... | VNAT |} O'jj—l(yz) < arz+1(Yz)> —

1. By Lemma 5.3 (ii), we have, for all j > r,,

o;(Yz) < |Ez|0p

(V) S o (B (5:)
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2|E.|,,
Orz (Hz)

Let C = {1 — > C’}. This implies that

g0l o)
v <j6{rz+1 ..... |VNAT |} 0541(Y2) = Urz+1(Yz)>

o;(Y2) o, (Y,)
>P ({je{rzﬂ??ff/mj} o1 (V) . Urz+1(Yz)} NAN C)

P ({& < (1 — i'fﬂ'p)) o, (IL.) ) } mAﬁC) (by (5.6) and (5.7))

Urz+j<Ez) 02T2+1(EZ
EZ o T Hz
IP({ 1Bz lop <Caz( ) }mAmC)—>1,
Ur+j(EZ) U21“z+1(EZ)
where the last statement holds because P(A) — 1, P(C) — 1 (given that |E.| = Op(0;.)))

and .|
p( <c"rz<“z))%1
O-'r'z“‘](Ez) 0-7"2—}-1(]:[2)

by Assumption 4.1. In the end, we obtain

P ( max —Uj(yz) )\/ max 7i(Y2) < or:(¥:) — 1,
je{tra—1} 0j11(Y2) je{r-+1,... LJWJ}Uj+1(3@) o2r.+1(Y2)

which concludes the proof.

v

v

Proof of Theorem 4.1.

We denote A = {7, = r,}. We have

= ”Ea'ffl’f)) =2 ({

ﬁz_Pz

—~ EZ
IP’(‘MZ—MZ < 4\/2r, Ezlop }mA) =P(A) — 1,
2 o, (IL,)

by Lemma 5.2.
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