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1 Introduction

� Priority races (patent or R&D races, scientific or academic research, entry games...)

are often characterized by both highly skewed rewards in favor of the first mover, and by

opportunities to learn from the experiences of rivals. Firms (or researchers) then face a

tension between the need to act quickly and the desire to wait to gather information. As

an illustration, Krieger (2021) empirically documents that, upon observing a rival exiting

an R&D race, pharmaceutical companies with a project using a similar technology are more

likely to discontinue their own projects in spite of a lowered preemption risk. Whereas firms

quite accurately observe the progress of their rivals in the drugs industry (health regulators

like the FDA or the EMA impose pharmaceutical companies to report their clinical trial

results at all phases of the drug development process), other priority races are characterized

instead by little information disclosure. For instance, in scientific or academic research,

failed attempts (null, negative, or inconclusive results) are rarely disclosed.1 The concern

that such a “file drawer problem” (Rosenthal, 1979) might harm the overall efficiency of the

scientific process has triggered recent changes going in the direction of greater transparency.2

At the policy level, there has been as well a recent push towards more information disclosure.

The World Health Organization has notably taken a strong stance in its 2015 Statement on

Public Disclosure of Clinical Trial Results:

“Researchers have a duty to make publicly available the results of their research

[...] Negative and inconclusive as well as positive results must be published or

otherwise made publicly available.”3

Although an implicit rationale behind such initiatives and regulations is that more

information disclosure improves welfare, one may wonder if this is actually the case in

environments already plagued by a strong inefficiency due to intense competition. In line

with this idea, the objective of this article is to examine the interplay between preemption

concerns (payoff externalities) and the desire to learn from others (information externalities),

and to assess the welfare impact of policies fostering or mandating disclosure.

We consider a model of investment timing that features both competition and learning.

Firms observe conditionally independent processes that may stochastically reveal bad news

1For instance, Franco, Malhotra, and Simonovits (2014) show that studies that yield null results are 40%
less likely to be published, and 60% less likely to be written up in any form than those with statistically
significant results.

2For instance, several journals, institutions, and grants request the preregistration of scientific studies in
a public registry. Furthermore, a new type of journals (such as the Missing Pieces Collection by PLOS One)
specializing in the publication of negative, null, or inconclusive results, has emerged.

3See https://www.who.int/news/item/09-04-2015-japan-primary-registries-network.
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about the common value of a project they contemplate, and compete to be the first to invest,

if they ever do so. Whereas firms learn from their own signals, the extent to which they also

observe their rivals’ signals (or exit) varies between the two polar cases of public and private

learning. We establish that, as soon as signals are not always publicly disclosed, firms face a

winner’s curse: when seeing that no rival has invested yet, they become wary that such lack

of investment might result from some rival having privately learned that the project fails;

being the first one to invest is then all else equal bad news. This winner’s curse provides

an incentive to delay investment in order to gain extra confidence on the project through

one’s own signal. In any case, under winner-take-all competition, rents are fully dissipated

in equilibrium, and the publicity of signals is accordingly irrelevant to welfare: with public

news, firms learn faster but also invest sooner, leaving the NPV of the project constant and

null at any investment date. Regulating information disclosure with the aim of promoting

information spillovers is thus vain: the benefits arising from these spillovers are fully eroded

by competition anyway.

In the second part of the article, we show that this irrelevance result no longer holds when

firms have asymmetric rates of disclosure. Specifically, we study a two-player asymmetric

preemption race where firms in addition receive a payment both when their rival successfully

invests (thereby relaxing winner-take-all competition), and when they publicly disclose their

own signals. First, we highlight that a firm known to be less likely to disclose its signal

obtains a competitive advantage in the preemption race, which provides a micro-foundation

for the cost of disclosure. Second, we show that there is typically an interior optimal level of

publicity in that policies promoting disclosure boost welfare up to a certain point but then

depress it. This optimal level of publicity decreases as competition gets more severe. This

suggests a pecking order whereby the optimal regulation should first and foremost address

winner-take-all competition, and promote transparency only once competition is less severe.

Finally, this extended framework allows us to analyze strategic disclosure decisions and

to derive the optimal subsidy that a planner offers to firms to incentivize disclosure. By

committing to disclosing its signal, a firm can secure the disclosure reward in case bad news

arises, but incurs the risk of being at a competitive disadvantage when its rival does not

disclose. We then characterize a symmetric (possibly mixed-strategy) equilibrium in which

firms optimally choose their disclosure policies. Although a higher reward increases average

disclosure, the correlation between disclosure policies across firms is nonmonotonic in the

reward: too large and too small rewards will induce firms to either both disclose or not

disclose. Instead, a moderate reward makes them most likely to be ex-post asymmetric, and

accordingly maximizes welfare.
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� Related literature. This article relates to the literatures on preemption and learning

externalities in timing games. Since the seminal works of Reinganum (1981) and Fudenberg

and Tirole (1985) on preemption races, several authors have generalized the basic preemption

framework in terms of payoff functions (Hoppe and Lehmann-Grube, 2005), number of firms

(Argenziano and Schmidt-Dengler, 2014), and uncertainty about the presence of competitors

(Bobtcheff and Mariotti, 2012; Bobtcheff, Bolte, and Mariotti, 2017). Besides, following

Chamley and Gale (1994), who highlight how the desire to learn from others’ investment

decisions causes inefficient delays, another stream of articles have studied timing games with

no preemption but with information externalities (Décamps and Mariotti, 2004; Murto and

Välimäki, 2011; Margaria, 2020; Kirpalani and Madsen, 2023).

Our model combines both payoff and information externalities, as in Chen, Ishida, and

Mukherjee (2023). However, they only consider private signals, whereas we stress the

comparison between public and private news to highlight the welfare impact of transparency.

This focus also relates our article to a series of works that compare public and private

learning in timing games. Hopenhayn and Squintani (2011) analyze the impact of players

being privately informed about their payoff from exiting. However, because they consider

a private-value setup, there is no information externality, and hence no winner’s curse.

Moscarini and Squintani (2010) study the impact of private signals in a model where private

information is on the arrival rate of payoffs, so that staying in the game signals positive

information to the competitor. Akcigit and Liu (2015) also focus on the inefficiency created

by private information. Whereas observable signals take the form of breakthroughs (good

news) in their model, we consider bad-news learning, which generates a winner’s curse. As

a result, we emphasize the downside of public information, a concern that is absent in their

setup where public information is always optimal. Wagner and Klein (2022) consider a setup

where private signals can dominate public signals, because the opportunity for signaling

brought about by private information allows to encourage investment, thereby mitigating

free riding. Finally, Hoppe-Wewetzer, Katsenos, and Ozdenoren (2023) compare private and

public learning in a discrete-time race with good-news learning. As a consequence, there

is no winner’s curse and public news may lead to longer experimentation, in contrast to

this article. Notice to conclude that none of these works on private versus public learning

considers strategic disclosure.

The complementarity between the publicity of learning and the prize-sharing rule we

highlight also relates this article to Halac, Kartik, and Liu (2017) and Ely et al. (2023), who

study how a principal optimally designs a contest both in terms of the allocation of the prize

and of the feedback given to contestants. A key difference, however, is that we consider

a stopping problem where investment stops the game for everyone, and these preemption
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externalities generate a completely different kind of inefficiency.

The article is organized as follows. In Section 2, we describe the model. In Section

3, we characterize equilibrium behavior and profits, and examine welfare. In Section 4, we

consider asymmetric and strategic disclosures, and derive the optimal subsidy for information

disclosure. Section 5 concludes. Proofs that are not in the text are in Appendices A–B.

2 A preemption race

� The building blocks of our model are as follows.

Actions and payoffs. Time is continuous and indexed by t ≥ 0. Each of finitely many firms,

indexed by i = 1, . . . , n, contemplates investing in a project of ex-ante unknown but common

quality. The quality of the project is either high, with probability p0, or low, with probability

1− p0. Each firm decides when to invest in the project, if it ever does. Investment involves

an irreversible cost I ∈ (p0, 1), so that the ex-ante NPV of the project is negative. Upon

investing, a firm obtains a revenue of 1 if and only if it is the first to invest and the project

is of high quality. In case several firms simultaneously attempt to invest, a tie-breaking

rule randomly selects one of them and the others do not incur the investment cost I, as

in Dutta and Rustichini (1993). Specifically, to every firm i is associated a weight αi > 0,

and if a subset I of firms simultaneously attempt to invest, every firm i ∈ I is selected

with probability αi∑
j∈I α

j . In all the other cases, the revenue is 0. Firms are risk-neutral and

discount future revenues and costs at rate r.

Personal signals. As long as it has not invested, each firm learns about the quality of the

project by observing for free a personal signal. This signal generates a single failure at a

date that is exponentially distributed with rate λ > 0 if the project is of low quality, and

0 otherwise. Thus, a failure conveys conclusive bad news about the quality of the project.

Instead, whereas one becomes increasingly optimistic as long as nothing is observed, it is

impossible for any firm to ever know for certain that the quality of the project is high.4

Personal signals are conditionally independent across firms given the quality of the project.

Information structure. That a firm’s personal signal has generated a failure may or may

not be disclosed to its rivals. Specifically, we assume that, with probability x, a failure

is publicly and immediately disclosed, whereas, with probability 1 − x, it remains forever

4 Notice that none of our results would be affected if our model also featured fully revealing good news as
long as observing a fully revealing signal is more likely in the bad state than in the good state. In particular,
it is clear that the optimal strategy for a firm who receives fully revealing good news is to invest right away.
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private.5 In addition, investment by any firm becomes immediately public. The information

set of each firm at date t thus possibly consists of three elements: whether or not it has

observed a failure from its personal signal, whether or not the failure of some other firm has

been publicly disclosed, and whether or not some other firm has invested.

Strategies. As soon as its information set is nonempty—that is, either a rival has invested,

or a failure has been personally observed or publicly disclosed—a firm cannot do better than

giving up. Therefore, a pure strategy for each firm just specifies at which date t to invest, if

any, conditional on observing neither a failure nor any of its rivals investing by then. Because

conditional beliefs at all future dates can be perfectly anticipated at date 0, if planning to

invest at date t is optimal from a firm’s perspective at date 0, it is optimal for the firm to

invest at date t as long as it has observed nothing by then. So there is no loss in considering

that strategies are chosen at date 0 and simply implemented whenever nothing is observed

by the planned investment date. Likewise, if a firm plays according to a mixed strategy, it

randomly draws at date 0 an investment date t from a distribution F , and investment is then

implemented at date t as long as the firm has observed nothing by then. Our equilibrium

concept is perfect Bayesian equilibrium.

� Discussion. Though stylized, our model is meant to capture a variety of situations

in which players (firms, researchers) face a tradeoff between the desire to act quickly to

preempt their rivals and the value of waiting to learn from their own but also from their

rivals’ experience. Whereas we define x as the probability of observing a failure from any

rival’s personal signal when it arises, an equivalent interpretation is that x captures the

probability that exit is public (as long as exit is observed with no delay), as bad news is fully

revealing and thus leads players to discontinue their projects (exit). For instance, because

of mandatory disclosure, drug companies often publicly announce themselves when they

terminate one project (high x); instead, scientists hardly know whether other scientists are

still working on some unpublished project or have secretly abandoned it (low x).

3 Equilibrium analysis

� In this section, we develop the equilibrium analysis of our basic model.

� Pure-strategy equilibria. We first study under which conditions our preemption

race admits a pure-strategy equilibrium. This allows to get a first sense of the role of payoff

and information externalities.

5Although we view x at this stage as an exogenous market parameter common to all firms, we will allow
firms to endogenously choose their (possibly asymmetric) disclosure policies in Section 4.
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Proposition 1 The following holds:

(i) If x < 1, there exists no pure-strategy equilibrium.

(ii) If x = 1, there exist pure-strategy equilibria. In any such equilibrium, m ≥ 2 firms plan

to invest at t̂ such that

p0

p0 + (1− p0)e−λnt̂
= I, (1)

and the other n−m firms each plan to invest after t̂ or to stay inactive. All firms earn

zero profit in equilibrium.

The intuition for the case of partial disclosure (x < 1) is as follows. For any firm

planning to invest at t, the relevant belief is the probability that the project is of high

quality conditional on observing no failure by t and winning the race. When x < 1, the mere

fact of winning the race brings bad news. Indeed, one is more likely to win the race in the

bad state as some other firm planning to invest at t or before may have privately observed

a failure and, hence, dropped out from the race. Accordingly, there is a winner’s curse. For

the sake of exposition, let us illustrate how this winner’s curse precludes the existence of a

pure-strategy equilibrium in the case of two firms and a fair tie-breaking rule.

Suppose that both firms are supposed to invest at t in case they have observed nothing

by then. Conditional on observing no failure and winning the race, each firm’s belief at date

t that the project is of high quality is

p(t) =
1
2
p0

1
2
p0 + (1− p0)e−λt

[
1
2
e−λt + (1− x)(1− e−λt)

] .
In the good state, no firm ever observes bad news, so both firms attempt to invest at t, each

winning with probability 1
2
. In the bad state, instead, a firm attempts to invest at t only if

it has observed no failure from its personal signal by t, which happens with probability e−λt;

it then wins the race with probability 1
2

when its rival has not observed a failure either and

thus attempts to invest at t, which again happens with probability e−λt; finally, it wins the

race with probability 1 when its rival has privately observed a failure, which happens with

probability (1− x)(1− e−λt). In turn, if a firm deviates by planning to invest at s < t, there

is never a tie and its belief at date s that the project is of high quality is

p(s) =
p0

p0 + (1− p0)e−λs[e−λs + (1− x)(1− e−λs)]
.

It is clear that, as soon as x < 1, p(t) < lims↑t p(s). Thus, conditional on winning the

race, beliefs that the project is of high quality discontinuously fall at the date at which the

other firm plans to invest. As a consequence, if investing at t yields a nonnegative NPV (a
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necessary condition for equilibrium), then any firm strictly benefits from planning to invest

slightly earlier, because this both increases the likelihood of winning the race and allows one

to avoid the winner’s curse.

In the case of perfect disclosure (x = 1), there is no winner’s curse: winning the race is

a pure matter of luck and carries no informational content. Firms all share the same belief

about the quality of the project at any date and, pushed by the Bertrand logic, they must

earn zero profit in equilibrium. Indeed, if the NPV upon investment were positive, firms

would be willing to undercut their rivals, decreasing only marginally their confidence in the

project at the benefit of an upward jump in the probability of winning the race.

The analysis of pure-strategy equilibria thus highlights the role of the two forces of

our model: on the one hand, preemption motives due to winner-take-all competition drive

equilibrium profits to zero; on the other hand, private signals generate a winner’s curse in

that lack of investment by other firms becomes all else equal bad news. In what follows, we

outline how these payoff and information externalities interact to shape equilibrium behavior

in mixed-strategy equilibria.

� Mixed-strategy equilibria. Recall that firm j playing a mixed strategy initially

draws an investment date t from a distribution F j and actually attempts to invest at t as

long as it has observed nothing by then. We allow for limt→∞ F
j(t) < 1 to capture that firm

j may plan to never invest with positive probability, in which case it earns zero profit.

If no F j, j 6= i, has an atom at t, then firm i’s expected profit if it plans to invest at t is6

V i(t) ≡ e−rt

(
p0(1− I)

∏
j 6=i

[1− F j(t)] (2)

− (1− p0)Ie−λt
∏
j 6=i

{
(1− x)

∫ t

0

λe−λs[1− F j(s)] ds+ e−λt[1− F j(t)]

})
.

In the good state, no firm ever observes a failure from its personal signal, so that firm i wins

the race if all other firms’ planned investment dates turn out to be posterior to t, which

happens with probability
∏

j 6=i [1−F j(t)]. In the bad state, firm i wins the race when it has

observed no failure from its personal signal by t, which happens with probability e−λt, and

none of its rivals has yet invested or disclosed a failure, which happens with probability∏
j 6=i

{
(1− x)

∫ t

0

λe−λs[1− F j(s)] ds+ e−λt[1− F j(t)]

}
,

where the bracketed term is the probability that firm j either has privately observed a failure

from its personal signal prior to the date at which it planned to invest, or has observed no

6As argued in the discussion of pure-strategy equilibria, atoms generate downward jumps in the profit
functions of other firms. We show in Proposition 2 that equilibrium distributions are atomless when x < 1.
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failure from its personal signal and has not invested yet by t.

The expression (2) highlights that planning to invest at or after a date by which one

rival would have invested for sure had he observed nothing must yield a nonpositive profit;

formally, if F j(t) = 1 for some j and t, then V i(s) ≤ 0 for all i 6= j and s ≥ t. This has the

following implication.

Lemma 1 In any equilibrium, all firms earn zero profit.

To lay out intuition, suppose that, say, firm 1 makes a positive profit in equilibrium, and

let t1 and t1 be the infimum and supremum of the support of its equilibrium distribution F 1,

respectively. The argument is then twofold. On the one hand, all other firms must earn zero

profit in equilibrium. Indeed, because firm 1 makes a profit by planning to invest at t1, it

must be that all other firms planned to invest with positive probability after that date or to

stay inactive, which gives them at most zero profit—in both cases, because of winner-take-all

competition. On the other hand, at t1, firm 1 must be weakly more pessimistic about the

project than any other firm. Indeed, its behavior up to t1 does not impose any information

externality onto its rivals—that it had not invested carries no information, so that there is

no winner’s curse.7 This implies that if firm 1 can make a profit by planning to invest at t1,

then so can all other firms. To sum up, because of winner-take-all competition, at most one

firm can make a profit in equilibrium, and because of the winner’s curse (or common beliefs

when x = 1), either all or no firm makes a profit in equilibrium. Whereas winner-take-all

competition typically leads to rent dissipation (Fudenberg and Tirole, 1985), this discussion

highlights how information and payoff externalities combine to generate full dissipation of

rents in the presence of learning as well.

Lemma 1 implies that mini=1,..,n t
i = t, where t is the first date at which the NPV of the

project is nonnegative given that no firm could have possibly invested beforehand; that is,

p0

p0 + (1− p0)e−λt(1− x+ xe−λt)n−1
= I. (3)

Observe from (3) that t is a decreasing function of x. We are now ready to characterize all

the mixed-strategy equilibria of the preemption race.

Proposition 2 If x < 1, the following holds:

(i) For each m ≥ 2, there exists an essentially unique equilibrium in which m ≥ 2 firms are

active and plan to invest according to a common continuously differentiable increasing

distribution over [t,∞), whereas n−m firms remain inactive.

7Notice that this argument is also valid when x = 1. In this case, all firms have the same beliefs at any
date. What is key is that a firm making a profit cannot be strictly more optimistic than its rivals.
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(ii) If x < x′ < 1, then, in the mixed-strategy equilibria under x and x′ in which all firms

are active, the investment date under x′ is smaller than the investment date under x

in the hazard-rate order.

Proposition 2 establishes that the only source of equilibrium multiplicity is the number of

firms that are active in equilibrium, and that all active firms must play symmetric strategies.

As is the case for pure-strategy equilibria, at least two firms must be active, but given that

all firms earn zero profit, up to n− 2 firms may equally want to stay inactive.8 Notice that,

if 0 < x < 1, these inactive firms are not out of the market altogether, because they still

receive personal signals that may be disclosed to their rivals.9 The most natural equilibrium

to consider is the symmetric one in which all n firms are active, and in which the equilibrium

strategy F (t) is as follows:10

F (t) = 1− e−
1

n−1
λ(t−t)

[
( p0

1−p0
1−I
I

)
1

n−1 − e−
n
n−1

λt

( p0
1−p0

1−I
I

)
1

n−1 − e−
n
n−1

λt

] 1+(n−1)x
n

, t ≥ t. (4)

As x goes to 1, t goes to t̂, so that ( p0
1−p0

1−I
I

)
1

n−1 − e−
n
n−1

λt goes to 0 by (1). Hence, by

(4), for any sequence (xk)k∈N converging to 1, the corresponding sequence of equilibrium

distributions (Fxk)k∈N converges weakly to the jump distribution 1[t̂,∞). That is, as failures

from personal signals become close to being perfectly observable, the sequence of mixed-

strategy equilibria converges to the pure-strategy equilibrium described in Proposition 1(ii).

Figure 1: Equilibrium distributions for x = 0.2 and x = 0.8 [p0 = 0.5, I = 0.7, λ = 0.8, n = 2].

Proposition 2 also establishes that equilibrium distributions can be ranked in the hazard-

rate order as a function of the publicity of news: when failures are less likely to be disclosed,

8Specifically, Proposition 2 implies that equilibria with m < n active firms are entry-proof in the sense
that, if all the m active firms play according to their equilibrium strategies, then the remaining n−m firms
are better off staying inactive.

9Only if x = 0 is being inactive equivalent to being out of the market.
10To keep notation light, we do not make explicit that t and F depend on x and n.
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firms respond by investing later in equilibrium, as illustrated in Figure 1. Intuitively, the

winner’s curse problem worsens, which provides incentives to further delay investment so as

to gain extra confidence about the project through one’s personal signal.11

� Welfare. We now draw the welfare implications of our analysis, focusing for simplicity

on the fully symmetric equilibrium with n active firms.

An irrelevance result. Using the fact that firms’ beliefs upon observing nothing by date t

are given by

p(t) =
p0[1− F (t)]n−1

p0[1− F (t)]n−1 + (1− p0)e−λt
{

(1− x)
∫ t

0
λe−λs[1− F (s)] ds+ e−λt[1− F (t)]

}n−1

for all t ≥ t, and that p0[1−F (t)])n−1

p(t)
is thus the total probability for a given firm to reach date

t without observing anything, we derive that the random variable equal to the first date at

which investment occurs is distributed according to n p0[1−F (t)]n−1

p(t)
dF (t). As a consequence,

total expected welfare is given by

W ≡
∫ ∞
t

e−rt[p(t)− I]n
p0[1− F (t)]n−1

p(t)
dF (t). (5)

By Lemma 1, each firm earns zero profit in equilibrium, so that the project has zero NPV

given its beliefs at any date at which it contemplates investing; that is, p(t) = I for all t ≥ t.

Hence the following result.

Proposition 3 W is null no matter the publicity of news x and the number of firms n.

Notice that the probability that investment ever takes place,
∫∞
t
n p0[1−F (t)]n−1

p(t)
dF (t), is

also independent of x and n. Indeed, using p(t) = I, it reads p0
I

∫∞
t
n[1 − F (t)]n−1 dF (t) =

p0
I

for all x and n. Because the probability of investment is always 1 in the good state,

this notably implies that the probability of investing in a project of low quality is also

independent of the publicity of news x. Indeed, higher publicity generates information

spillovers, improving the quality of learning holding firms’ strategies fixed; but, on the other

hand, firms respond to higher publicity by planning to invest sooner, and the net effect on

the total probability of investment in the bad state is null.

The cooperative benchmark. To see how the irrelevance result arises from the preemption

motive, it is useful to consider what would be the planner’s (or cooperative) solution. A

planner that could impose the timing of investment—but not information disclosure—would

choose t to maximize the expected value of the project,

e−rt
{
p0(1− I)− (1− p0)I

[
(1− x+ e−λt)n − (1− x)n(1− e−λt)n

]}
.

11Notice that a lower publicity also decreases the speed at which firms learn even before they start investing,
which, as shown by Bobtcheff and Levy (2017), reinforces the incentives to delay investment.
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It is easy to check that this objective function attains its maximum at some finite date

posterior to t that optimally solves the tradeoff between discounting and learning. Observing

that this objective function is increasing in x and n, we infer from the envelope theorem that

its maximum value increases with x and n. Put differently, because competition is muted

in the cooperative solution, firms optimally respond to more publicity, enabling the social

planner to reach a higher welfare level thanks to information spillovers. Our irrelevance

result is thus an equilibrium feature, that is, a consequence of preemption forces.

Conditions for irrelevance. More generally, our irrelevance result holds both because the

planner is assumed to have preferences that are aligned with those of firms, and because

rents are fully dissipated in equilibrium.

To figure out the role of aligned preferences, notice that, if the planner gets instead a

payoff WS in case of success and −WF in case of failure, (5) becomes

W̃ ≡
∫ ∞
t

e−rt{p(t)WS − [1− p(t)]WF}n
p0(1− F (t))n−1

p(t)
dF (t),

that is, given that p(t) = I for all t ≥ t,

W̃ = [IWS − (1− I)WF ]︸ ︷︷ ︸
Planner’s NPV upon investment

×
∫ ∞
t

e−rtn
p0[1− F (t)]n−1

I
dF (t)︸ ︷︷ ︸

Present value of obtaining 1 at the first investment date

Because investment arises sooner when x increases,
∫∞
t

e−rtn p0[1−F (t)]n−1

I
dF (t), the present

expected value of obtaining 1 at the first investment date, is increasing in x. This implies

that, when WS

WF
> 1−I

I
, that is, when the planner is relatively keener on investing than the

firms, he prefers investment to take place as early as possible, hence a preference for public

signals (x = 1). By contrast, when WS

WF
< 1−I

I
, that is, when the planner is more conservative

than the firms, he prefers investment to be delayed, hence a preference for private signals

(x = 0).12 This provides a possible rationale against mandatory disclosure when the planner

primarily cares about avoiding investments in the bad state.

As the proof of Proposition 3 shows, our irrelevance result follows from the full dissipation

of rents. Much like the Bertrand paradox, this is an extreme result due in particular to the

fact that firms are symmetric. In addition, it is easy to see that firms obtain rents when

a firm that does not invest (a second mover, or a firm that observed a failure) receives a

positive profit.13 In the next section, we consider a richer model where we relax the two key

assumptions of symmetry and winner-take-all competition, and spell out how the publicity

of signals then becomes relevant to welfare.

12When WS

WF
= 1−I

I , the planner’s preferences are aligned with the firms’ and we retrieve our irrelevance
result.

13It is for instance immediate to see that such a firm could secure a positive profit by waiting forever.
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4 Endogenous disclosure

� In this section, we generalize the baseline model along three dimensions: (a) we allow

firms to have asymmetric probabilities of disclosure; (b) we relax winner-take-all competition

by assuming that a preempted firm obtains a revenue L ≥ 0 whenever the project is of high

quality; (c) we introduce a reward D ≥ 0 for firms that publicly disclose failures from their

personal signals. We assume for simplicity that a firm observing a failure can secure D by

disclosing it even when such disclosure brings no extra social value (that is, if the bad state

was already revealed either by some unsuccessful investment or by another firm disclosing a

failure from its personal signal).14 To simplify the analysis and the exposition, we restrict

attention to the case of two firms in this section, and we assume that r = 0.15

We first characterize the equilibrium in the asymmetric preemption race, holding the

disclosure probabilities (x1, x2) and the payoffs L and D fixed, and derive the corresponding

welfare. Building on this, we derive how firms choose x1 and x2 as a function of D, and

how the planner then optimally sets D to incentivize disclosure. In so doing, we treat

L ∈ (0, 1 − I) as a parameter measuring the severity of competition: indeed, between the

two polar cases of winner-take-all competition (L = 0) and of no preemption risk (L = 1−I),

priority races often feature a significant first-mover advantage but also nontrivial payoffs for

the follower.16 Our analysis accordingly allows us to derive how the optimal policy varies

with the magnitude of the first-mover advantage.

In what follows, it will prove convenient to define

y ≡ p0

1− p0

1− I − L
I

, (6)

which provides a measure of the willingness of firms to win the preemption race given the

risk of failure it entails and the outside option to wait for the other firm to move first. As

y increases, the cutoff belief above which a firm is willing to invest increases. Notice in

particular that y is decreasing in L, the revenue of the second mover.

In addition, the case p0
1−p0

1−I
I
> 1

2
turns out to yield to the richest set of configurations,

and we thus henceforth make the following assumption.

Assumption 1 p0
1−p0

1−I
I
> 1

2
.

� Equilibrium. We first look at the preemption race with asymmetric disclosure rates,

assuming with no loss of generality that x1 ≤ x2 ≤ 1.

14Alternative assumptions are possible but would only make the analysis more cumbersome without any
essential changes in the results.

15Notice that none of the results of Section 3 depends on the value of r. A convenient feature of assuming
r = 0 is that it does not matter when the payoff L accrues.

16For instance, Hill and Stein (forthcoming) argue that competition between scientists in molecular biology
is far from winner-take-all, and estimate that “scooped” papers receive only 20% fewer citations.
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Proposition 4 Suppose that x1 ≤ x2 ≤ 1. Then the following holds:

(i) If x1 < 1, then there exists a mixed-strategy equilibrium in which both firms plan to

start investing at t(x1), where

p0(1− L)

p0 + (1− p0)e−λt(x1)[1− x1 + x1e−λt(x1)]
= I. (7)

If x1 < x2, firm 2 stays inactive with probability (x2−x1)[1−e−λt(x
1)]

1−x1+x1e−λt(x1)
.

(ii) If x1 = 1, then there exists a unique, pure-strategy equilibrium in which both firms plan

to invest at t(1).

(iii) In any equilibrium, the firms’ equilibrium profits are

V 1∗(x1, x2) = p0L+ (1− p0)x1D + (x2 − x1)(1− p0)Ie−λt(x
1)[1− e−λt(x

1)], (8)

V 2∗(x1, x2) = p0L+ (1− p0)x2D. (9)

In the asymmetric race that arises when x1 < x2, firm 1 has a comparative advantage:

it learns at a faster rate than firm 2 because it is more likely to observe firm 2’s personal

signal than firm 2 is to observe firm 1’s. Besides, firms could guarantee themselves the profit

of the second mover in the good state by staying inactive, that is, p0L. Thus, as long as

firm 2’s beliefs do not allow it to secure this amount, firm 1 faces no preemption risk. This

is why firm 1 in equilibrium plans to start investing only at date t(x1), which leaves firm

2 with the profit it would get from waiting indefinitely. This logic is reminiscent of that of

Bertrand competition with asymmetric costs.17 Notice also that t(x1) is decreasing in x1

and increasing in L. Indeed, when the informational advantage of firm 1 increases, that is,

when x1 decreases, it takes longer for firm 2 to be optimistic enough to even contemplate

investing. Likewise, when competition becomes less stringent, that is, when L increases, firm

2 will not invest unless the perceived value of the project is high enough, insulating firm 1

longer from the risk of preemption.

� Welfare. Total welfare depends on whether the payoffs L and D are transfers

made by the planner (for instance, in the form of subsidies), or underlying parameters of

the environment. As mentioned above, we take the view that L is a parameter governing

the severity of competition. Instead, in line with the idea that competitors typically do

not disclose bad news absent any incentive, and motivated by the policy debate regarding

17Notice, though, that, when x1 < x2, firm 1 must also randomize in equilibrium. Indeed, if firm 1 were
to invest at t(x1) for sure, firm 2 would never invest because lack of investment at this date by firm 1 would
reveal that the project is of low quality, so that firm 1 would be better off waiting longer.
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transparency regulations, we view D as a reward (or subsidy) offered by the planner to

incentivize disclosure. Therefore, when x1 ≤ x2, we take welfare to be equal to

W (x1, x2) ≡ V 1∗(x1, x2) + V 2∗(x1, x2)− (1− p0)(x1 + x2)D

= 2p0L+ (x2 − x1)(1− p0)Ie−λt(x
1)[1− e−λt(x

1)], (10)

where the equality follows from (8)–(9). Notice that considering D as a transfer makes it

neutral to welfare, so that any welfare impact of D comes from its sole impact on disclosure

policies, as we show later.18

Proposition 5 As long as x1 ≤ x2, W (x1, x2) is decreasing in x1 and increasing in x2.

Proof. That W (x1, x2) is increasing in x2 as long as x1 ≤ x2 is immediate from (10). To see

why W (x1, x2) is decreasing in x1, notice, using (7), that p0L+ (x2−x1)(1− p0)Ie−λt(x
1)[1−

e−λt(x
1)] = p0(1− I)− (1− p0)Ie−λt(x

1)[1− x2 + x2e−λt(x
1)], which is decreasing in x1 as t(x1)

is decreasing in x1. Hence the result. �

Welfare is thus highest when the asymmetry between firms is maximum. This result

echoes the irrelevance result derived in Section 3 that welfare does not depend on the

publicity of news as long as firms have symmetric disclosure probabilities. One prediction

from Proposition 5 is then that the optimal policy should be asymmetric: encourage one firm

to disclose, while deterring the other. In many instances, however, policies must uniformly

apply to all, that is, increase or decrease x1 and x2 by the same amount. To understand the

welfare implications of such transparency policies, let us consider ∆ ≡ x2 − x1 > 0 and look

at how W (x1, x1 + ∆) varies with x1, holding ∆ fixed.

Proposition 6 There exist (L0, L1) with 0 < L0 < L1 < 1− I such that

(i) if L ≤ L0, then W (x1, x1 +∆) is decreasing in x1, with a maximum reached at x1∗ = 0;

(ii) if L0 < L < L1, then W (x1, x1 + ∆) is single-peaked in x1, with a maximum reached

at x1∗ = 2(1− 2y);

(iii) if L ≥ L1, then W (x1, x1 + ∆) is increasing in x1, with a maximum reached at x1∗ =

1−∆.

Given (6), Proposition 6 implies that the welfare-maximizing level of disclosure x1∗ is

nondecreasing in L, as illustrated in Figure 2.19 In particular, maximal disclosure may be

18Welfare would more generally read W (x1, x2) ≡ V 1∗(x1, x2)+V ∗
2 (x1, x2)−ηLp0L−ηD(1−p0)(x1+x2)D,

where ηL and ηD capture the costs of policy interventions on L and D. We thus take the stance that ηL = 0
and ηD = 1. It is easy to see how our results would be modified under different configurations.

19Notice that L0 > 0 is implied by Assumption 1. If Assumption 1 does not hold, the region where x1∗ = 0
simply does not exist, but nothing is otherwise changed.
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Figure 2: The optimal level of disclosure.

detrimental to welfare under winner-take-all competition, but may become optimal once

preemption concerns become milder. Accordingly, promoting disclosure can be efficient

as a complement to a policy that relaxes winner-take-all competition; however, in the

impossibility to resort to such policies, fostering transparency may actually backfire. One

also remarks that there are parameter values such that V 1∗ is increasing in x1, keeping

∆ = x2 − x1 constant. In the spirit of raise-your-rival-cost strategies, some firms (here firm

1) would then possibly have an incentive to lobby for more stringent disclosure requirements

when this improves their relative competitive situations.

� Strategic disclosure. In this section, we let firms endogenously select their disclosure

policies as a function of the reward they receive for disclosing their signals, and we then

explore the optimal incentive policy of the planner given firms’ equilibrium responses.

The timing of the game now has three stages:

1. the planner sets D;

2. the firms simultaneously and publicly commit to their disclosure policies x1 and x2;

3. the preemption race starts.

In this strategic-disclosure game, we assume that every firm i commits to disclose with

probability xi and with no delay any failure generated by its personal signal. In addition,

we assume that personal signals are verifiable, so that firms can choose to disclose them or

not, but cannot report a failure that they did not observe.20

The assumption that firms can ex-ante commit to a disclosure policy is clearly restrictive.21

A plausible alternative would be that firms strategically disclose bad news upon observing

20In a cheap-talk game, firms would always pretend that they know the project to fail to discourage others,
hence no information transmission. This contrasts with Wagner and Klein (2022), who consider a model
with pure information externalities (no preemption) where signaling aims at encouraging the rival to invest.

21Notice that considering time-invariant disclosure policies is restrictive as well, but a more general analysis
would be beyond the scope of this work.
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it. But unless there is a direct or strategic disclosure cost (not modeled here), firms would

be always tempted to disclose bad news in the presence of a reward. Besides, our analysis

shows that firms known to disclose less than their rivals have a comparative advantage in

the preemption race. Our approach thus allows to micro-found the cost of disclosure on the

basis of the ingredients of the model only. Focusing on ex-ante disclosure choices highlights

in a simple way the tradeoff between the benefit of disclosing (the reward) and the benefit

of concealing (the competitive advantage).

Recall from (9) that V 2∗(x1, x2) is increasing in x2 for x1 ≤ x2, which implies that the

best response to x1 is either x2 < x1 or x2 = 1. Because the best response to x2 = 0 is

x1 = 1, xi = 1 must be played with positive probability by every firm i in any equilibrium,

which allows us to pin down the equilibrium profit of p0L+ (1− p0)D.

Proposition 7 There exists a symmetric (possibly mixed-strategy) equilibrium in which each

firm earns a profit p0L+ (1− p0)D. Moreover, there exist D0(y) and D1(y) such that

(i) if D ≤ D0(y), then the average probability of disclosure in equilibrium is E[x̃∗] =

D
y(1−y)I

;

(ii) if D0(y) < D < D1(y), then the average probability of disclosure E[x̃∗] ∈ ( D0(y)
y(1−y)I

, 1) is

increasing in D;

(iii) if D ≥ D1(y), both firms fully disclose, that is, E[x̃∗] = 1.

Quite intuitively, the average probability of disclosure increases with the reward D. When

D = 0, there is no benefit from disclosing, and not disclosing possibly gives a comparative

advantage in the preemption race, so no firm discloses (E[x̃∗] = 0). Conversely, if D ≥ D1(y),

the reward is sufficiently large to outweigh the benefit of any comparative advantage in the

preemption race, so both firms fully disclose (E[x̃∗] = 1.) For intermediate values of D, any

symmetric equilibrium must be in mixed strategies. We show in the proof of Proposition 8

that the expected welfare equals

W = 2p0L+ 2(1− p0){1− E[x̃∗]}D.

We can now derive how the planner should optimally set the subsidy D to maximize welfare.

Proposition 8 The optimal subsidy is D∗ ≡ y(1−y)I
2

and is such that E[x̃∗] = 1
2
.

The intuition behind Proposition 8 is as follows: if D is small or large, both firms have

minimal or maximal incentives to disclose, respectively. This makes it likely that they

ex post choose similar disclosure policies. As we have seen, welfare is low in symmetric
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environments (Proposition 3), and maximized when firms are most asymmetric (Proposition

5). Instead, when D is neither too small nor too large, firms face a nontrivial tradeoff

between the comparative advantage they can obtain by disclosing less than their rival and

the temptation to disclose to get the reward. Specifically, a key dimension is that disclosure

policies are strategic substitutes (at least over some range). When the rival discloses, not

disclosing is attractive as it allows to reap a maximal comparative advantage in the ensuing

preemption race. In turn, if one’s rival does not disclose, there is no possible competitive

advantage, and one should disclose to get the reward. This strategic substitutability leads

firms to opt for asymmetric policies, resulting in rents. Even focusing on a symmetric

equilibrium in which firms ex-ante play identical strategies, this equilibrium involves mixed

strategies and firms are more likely to be ex-post asymmetric for intermediate values of the

subsidy, hence a higher welfare. Indeed, at the optimal subsidy, E[x̃∗] = 1
2
, which corresponds

to the lowest possible correlation of disclosure probabilities across firms (each firm chooses

x = 0 and x = 1 with equal probabilities). To conclude, we derive that the optimal subsidy

is nonmonotonic in the severity of competition L.

Proposition 9 The optimal subsidy D∗ is increasing in L for L ≤ L0 and decreasing for

L ≥ L0.

Figure 3 illustrates this nonmonotonicity. The intuition has to do with the way a higher

competitive pressure impacts the willingness of firms to acquire a competitive advantage in

the preemption race by committing to disclosing less. When competition is fierce (small

L), the second-mover profit is low, and learning faster than one’s rival is very attractive.

In addition, as L increases, the less efficient (slow-learning) firm is less concerned about

being preempted, which lowers the competitive pressure faced by the more efficient firm,

to its primary benefit. Such an increase in L thus expands the willingness to acquire a

comparative advantage even further, hence lower incentives to disclose. In turn, the planner

must increase disclosure incentives to decrease the correlation of policies.22 As L gets large,

however, being the second mover becomes attractive and firms no longer seek to obtain a

competitive advantage, because there is little competition in the first place. Hence, they will

both tend to disclose too often, and the planner should then reduce disclosure incentives by

lowering the reward D.

22As mentioned above, L0 > 0 only under Assumption 1. Thus, the optimal reward D∗ decreases in L in
case Assumption 1 does not hold.
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Figure 3: The optimal subsidy D∗.

5 Conclusion

We consider a preemption race between firms that learn from each others’ signals and

investment decisions. In such a context, preemption concerns provide incentive to accelerate

investment, especially under winner-take-all competition, but the opportunities to learn from

others generates incentives to wait, because of the winner’s curse that arises when other firms’

signals are not publicly observed. Whereas welfare is invariant to the publicity of signals

when firms are symmetric, we highlight how welfare gains arise when firms have asymmetric

disclosure policies. As a result, transparency regulations or excessive incentives that induce

universal disclosure may be welfare-reducing.

18



Appendix A

Proof of Proposition 1. Let us fix a pure-strategy equilibrium (ti)i=1,...,n, assuming one exists,

and let t ≡ mini=1,...,n t
i. For each i and t, and holding the strategies of the firms other than i

fixed, we denote by P i(t) the probability that firm i planning to invest at t observes nothing

by t and wins the race at t, and by N i(t) its expectation of the NPV of the project at t

conditional on its observing nothing by t and winning the race at t. Hence firm i’s expected

profit from planning to invest at t is V i(t) ≡ e−rtP i(t)N i(t).

(i) Fix x < 1 and suppose, by way of contradiction, that a pure-strategy equilibrium

exists. Let I ≡ {i = 1, . . . , n : ti = t}, with m ≡ |I|. Then, for each i ∈ I,

P i(t) (A.1)

≡ αi0p0 + (1− p0)e−λt(1− x+ xe−λt)n−m
m−1∑
k=0

(
m− 1

k

)
(1− x)k(1− e−λt)k e−λ(m−1−k)t αik,

where, for each k = 0, . . . ,m− 1,

αik ≡
1(

m−1
k

) ∑
K⊂I\{i}, |K|=k

αi∑
j∈I\K α

j
(A.2)

is the probability that firm i wins the race at t conditional on k firms in I \ {i} having

dropped out from the race after privately observing a failure by t. In turn, we have

N i(t) ≡ αi0p0

P i(t)
− I. (A.3)

Because
∑

j∈I\K α
j <

∑
j∈I α

j if K 6= ∅, it follows from (A.2) that αik >
αi∑
j∈I α

j = αi0 for all

k = 1, . . . ,m − 1 if any such k exists, that is, if m ≥ 2. Then, using (A.1), (A.3), and the

binomial formula, we obtain

N i(t)

≤ p0

p0 + (1− p0)e−λt(1− x+ xe−λt)n−m
∑m−1

k=0

(
m−1
k

)
(1− x)k(1− e−λt)k e−λ(m−1−k)t

− I

=
p0

p0 + (1− p0)e−λt(1− x+ xe−λt)n−1
− I, (A.4)

with a strict inequality if m ≥ 2.

Claim 1. m = 1.

Proof. Suppose, by way of contradiction, that m ≥ 2. Then, by (A.4), we have

N i(t) < lim
t↑t

p0

p0 + (1− p0)e−λt (1− x+ xe−λt)n−1 − I = lim
t↑t

N i(t) (A.5)
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for all i ∈ I, where the equality follows from the fact that no firm plans to invest before t,

so that winning the race at t < t brings no additional information to firm i. Moreover, as

αik < 1 for all k = 0, . . . ,m − 2, using again (A.1), the binomial formula, and the fact that

no firm plans to invest before t yields

P i(t) < p0 + (1− p0)e−λt(1− x+ xe−λt)n−m
m−1∑
k=0

(
m− 1

k

)
(1− x)k(1− e−λt)k e−λ(m−1−k)t

= lim
t↑t

p0 + (1− p0)e−λt(1− x+ xe−λt)n−1

= lim
t↑t

P i(t). (A.6)

Because N i(t) ≥ 0 as firm i must earn a nonnegative profit in equilibrium, it follows from

(A.5)–(A.6) and the definition of V i that V i(t) < limt↑t V
i(t), a contradiction as this implies

that any firm i ∈ I has a profitable deviation. The claim follows. �

To complete the proof of (i), it suffices to remark that m = 1 is inconsistent with

equilibrium. Indeed, suppose that only firm i plans to invest at t. If N i(t) = 0, then

firm i would be better off slightly delaying its planned investment date, a contradiction. If

N i(t) > 0, then, by similar arguments as above, any firm j 6= i would be better off planning

to invest slightly before t, once again a contradiction. We conclude that no pure-strategy

equilibrium exists when x < 1.

(ii) We first claim that, if x = 1, then t = t̂ in any pure-strategy equilibrium, where t̂ is

defined by (1). Because x = 1, all firms share at any date the same belief about the quality

of the project. Hence

N i(t) =
p0

p0 + (1− p0)e−nλt
− I

for all i ∈ I. The same arguments as in the proof of (i) show that at least two firms must

plan to invest at t; moreover, if N i(t) > 0, then any firm is strictly better off planning to

invest slightly before t, a contradiction. Thus it must be that t = t̂, as claimed, and that

each firm earns zero profit in equilibrium. Finally, the tie-breaking rule ensures that such an

equilibrium can be sustained by letting at least two firms plan to invest at t̂, and, off path, if

any date t > t̂ is reached with no firm having invested by t, by letting all firms immediately

attempt to invest at t. Hence the result. �

Proof of Lemma 1. The proof consists in showing that the fact that one firm makes a profit

simultaneously implies that all other firms must earn zero profit and that they all must

make a profit, which is impossible. Hence, suppose, by way of contradiction, that, say, firm

1 makes a profit in an equilibrium (F i)i=1,...,n, and let ti and ti be the infimum and supremum

of the support of every firm i’s equilibrium distribution F i, respectively.
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Claim 1. If x < 1, then every firm j 6= 1 earns zero profit.

Proof. Suppose first that F j(t1) < 1 for all j 6= 1, where we set F j(t1) ≡ limt→∞ F
j(t) in

case ti =∞. As mentioned in the main text, F 1(t1) = 1 implies that V j(t) ≤ 0 for all t ≥ t1

and j 6= 1. Moreover, because F j(t1) < 1 for all j 6= 1, every firm j 6= 1 must with positive

probability plan to invest at dates t > t1 or to stay inactive. This implies that all firms j 6= 1

earn zero profit.

Suppose next that, say, F 2(t1) = 1, so that t2 ≤ t1. We must in fact have t2 = t1, for,

otherwise, lim supt↑t1 V
1(t) ≤ 0, a contradiction as t1 is the supremum of the support of

F 1 and firm 1 makes a profit in equilibrium. Reordering the players if necessary, a simple

inductive argument shows that there exists m ≥ 2 such that ti = t1 for all i ≤ m, and ti > t1

for all i > m. If F j is continuous at t1 for at least one j ≤ m, j 6= 1, then, applying (2) to firm

1, we obtain that V 1 is upper semicontinuous at t1, so that lim supt↑t1 V
1(t) ≤ V 1(t1) ≤ 0,

once again a contradiction. Hence every distribution F j, j ≤ m, j 6= 1, must have an atom at

t1. A winner’s curse argument similar to the one used in the proof of Proposition 1(i) implies

that F 1 cannot also have an atom at t1, and that, in fact, m = 2. Thus, applying (2) to firm

2, we obtain that V 2 is upper semicontinuous at t1, so that lim supt↑t1 V
2(t) ≤ V 2(t1) ≤ 0,

which implies, as t1 is the supremum of the support of F 2, that firm 2 earns zero profit.

Finally, that all firms j > 2 earn zero profit is immediate. The claim follows. �

Claim 2. Every firm j ≥ 2 makes a profit of zero.

Proof. Let li(t) be firm i’s likelihood ratio that the project is of high rather than of low

quality given that firm i has observed nothing by date t, that is

li(t) =
p0

∏
j 6=i [1− F j(t)]

(1− p0)e−λt
∏

j 6=i

{
(1− x)

∫ t
0
λe−λs[1− F j(s)] ds+ e−λt[1− F j(t)]

} . (A.7)

Let us compare l1(t1−) and li(t1−) for i 6= 1. We have F 1(t1−) = 0 and hence

li(t1−)

l1(t1−)
=

(1− x)
∫ t1

0
λe−λs[1− F i(s)] ds+ e−λt

1
[1− F i(t1−)]

(1− x)
∫ t1

0
λe−λs[1− F i(t1−)] ds+ e−λt1 [1− F i(t1−)]

≥ 1. (A.8)

Because V 1 is right-continuous at t1, the infimum of the support of F 1, and because firm 1

makes a profit in equilibrium, it must be that V 1(t1) > 0. As every firm i 6= 1 is, by (A.8),

weakly more optimistic than firm 1 about the quality of the project at t1−, it can guarantee

itself a strictly positive profit by planning to invest at t1 if F 1(t1) = 0, or slightly before t1

if F 1(t1) > 0. The claim follows. �

If x < 1, the contradiction between Claims 1 and 2 implies that all firms must earn zero
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profit in equilibrium. If x = 1, a standard Bertrand argument similar to the one used to

prove Proposition 1 implies that all firms cannot make a profit in equilibrium, as predicted

by Claim 2 as soon as one firm makes a profit. The result follows. �

Proof of Proposition 2. The proof consists of a series of claims.

Claim 1. In equilibrium, there cannot be an interval [a, b], 0 ≤ a < b, such that V i(a) = 0

for some i and a is in the support of F i, and such that F j(b) = F j(a) < 1 for all j 6= i.

Proof. Suppose, by way of contradiction, that such an interval exists. Then, by (2), V i is

differentiable over (a, b) and, for each t ∈ (a, b),

V̇ i(t) = − rV i(t)

+ λ(1− p0)Ie−(r+λ)t
∏
j 6=i

{
(1− x)

∫ t

0

λe−λs[1− F j(s)] ds+ e−λt[1− F j(a)]

}
− (1− p0)Ie−(r+λ)t d

dt

∏
j 6=i

{
(1− x)

∫ t

0

λe−λs[1− F j(s)] ds+ e−λt[1− F j(a)]

}

Now, d
dt

{
(1− x)

∫ t
0
λe−λs[1− F j(s)] ds + e−λt[1− F j(a)]

}
= −xλe−λt[1− F j(a)] ≤ 0 for all

j 6= i and t ∈ (a, b). From V i(a) = 0, we then derive that V̇ i(a+) > 0. That it, i would

make a positive profit by planning to invest slightly after a, which we know is impossible by

Lemma 1. The claim follows. �

Claim 2. In equilibrium, no F i can have an atom at a finite date. In particular, V i(t) = 0

for all i and t in the support of F i.

Proof. Let us suppose, by way of contradiction, that some F k has an atom at some finite

date t, and let δ ≡ F k(t) − lims↑t F
k(s) > 0. For the sake of simplicity, and with no loss

of generality, we assume that firm k is the only firm whose equilibrium distribution has an

atom at t.23 The undiscounted expected profit of a firm i 6= k from planning to invest at t is

p0(1− I)

[
1− F k(t) +

αi

αi + αk
δ

]∏
j 6=i,k

[1− F j(t)]

− (1− p0)Ie−λt
{

(1− x)

∫ t

0

λe−λs[1− F k(s)] ds+ e−λt
[
1− F k(t) +

αi

αi + αk
δ

]}
∏
j 6=i,k

{
(1− x)

∫ t

0

λe−λs[1− F j(s)] ds+ e−λt[1− F j(t)]

}
. (A.9)

In turn, computing firm i’s undiscounted expected profit from planning to invest at a date

23It is straightforward to see that nothing in the following argument hinges on this restriction. The case
of multiple atoms at t can be ruled out along the lines of the proof of Proposition 1(i).
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t − ε < t that is not an atom of the distributions F j, j 6= i, and taking the limit as ε > 0

goes to 0 yields

p0(1− I)[1− F k(t) + δ]
∏
j 6=i,k

[1− F j(t)]

− (1− p0)Ie−λt
{

(1− x)

∫ t

0

λe−λs[1− F k(s)] ds+ e−λt[1− F k(t) + δ]

}
∏
j 6=i,k

{
(1− x)

∫ t

0

λe−λs[1− F j(s)] ds+ e−λt[1− F j(t)]

}
. (A.10)

We now show that (A.9) is less than (A.10), so that there is a downward discontinuity in

firm i’s expected profit at t. Because δ > 0, it is easily seen that the difference between

(A.9) and (A.10) has the same sign as

(1− p0)Ie−2λt
∏
j 6=i,k

[
(1− x)

∫ t

0

λe−λs
1− F j(s)

1− F j(t)
ds+ e−λt

]
− p0(1− I), (A.11)

where we have taken advantage of the fact that F j(t) < 1 for all j 6= k, for, otherwise, by

(2) and x < 1, firm k would make a loss upon investing at t. Because F k has an atom at t,

it must be that V k(t) = 0 by Lemma 1, that is,

p0(1− I) = (1− p0)Ie−λt
∏
j 6=k

[
(1− x)

∫ t

0

λe−λs
1− F j(s)

1− F j(t)
ds+ e−λt

]
,

from which it follows as x < 1 that (A.11) is negative. Given the interpretation of (A.11),

we deduce that for each j 6= k, F j is constant and less than 1 over a right-neighborhood of

t; moreover, V k(t) = 0 and t clearly belongs to the support of F k. However, by Claim 1,

we know that these three properties cannot be simultaneously satisfied, a contradiction. To

conclude the proof, observe that the continuity of all the distributions F i implies that all

the functions V i are continuous. Because firms earn zero profit in equilibrium by Lemma 1,

this implies that, for each i, V i = 0 over the support of F i. The claim follows. �

Claim 3. In equilibrium, ti =∞ for all i.

Proof. Suppose, by way of contradiction, that ti < ∞ for some i. By Claim 2, V i(ti) = 0

and thus F j(ti) < 1 for all j 6= i by (2). By (2) again, V j(t) < 0 for all j 6= i and t > ti.

This implies that no firm j 6= i plans to invest after ti. By Claim 1, this is impossible, as

firm i would then strictly gain by planning to invest slightly after ti. The claim follows. �

Claim 4. In equilibrium, mini=1,...,n t
i = t, where t is defined by (3).

Proof. By construction, t is the first date t at which the project has zero NPV, conditional

on no firm investing before t. No firm would ever be willing to invest before t, as it would
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thereby make a loss. Conversely, if mini=1,...,n t
i > t, at least one firm would make a profit,

which we know is impossible by Lemma 1. The claim follows. �

Claim 5. In equilibrium, ti = t or ti = ∞ for all i. Moreover, there are at least two firms i

such that ti = t.

Proof. Suppose, by way of contradiction, that, say, t = ti < t1 < ∞. (We know from

Claim 4 that there must be at least one such firm i.) From (A.8), and using the fact that

F i(t1) > F i(t), we obtain li(t1) > l1(t1). Thus, as the project has zero NPV at date t1 from

the perspective of firm 1, it must have positive NPV at date t1 from the perspective of firm

i. This contradicts that firm i must make zero profit in equilibrium. Thus every firm i either

plans to start investing at t (ti = t) or stays inactive (ti =∞). That at least two firms plan

to start investing at t is an immediate consequence of Claim 1. The claim follows �

Claim 6. In any situation where exactly m ≥ 2 firms, say, firms 1, . . . ,m are active, and play

according to continuous distributions F i whose supports are included in [t,∞), with ti = t

and ti =∞, if V i(t) ≤ 0 for some i ≤ m and t > t, then V k(t) < 0 for all k > m.

Proof. The expected profit of a firm i ≤ m from planning to invest at t > t is

V i(t) = e−rt
∏

j 6=i,j≤m

[1− F j(t)]

{
p0(1− I) (A.12)

− (1− p0)Ie−λt
∏

j 6=i,j≤m

[
(1− x)

∫ t

0

λe−λs
1− F j(s)

1− F j(t)
ds+ e−λt

]
(1− x+ xe−λt)n−m

}
,

whereas the expected profit of a firm k > m from planning to invest at t > t is

V k(t) = e−rt
∏
j≤m

[1− F j(t)]

{
p0(1− I) (A.13)

− (1− p0)Ie−λt
∏
j≤m

[
(1− x)

∫ t

0

λe−λs
1− F j(s)

1− F j(t)
ds+ e−λt

]
(1− x+ xe−λt)n−m−1

}
,

where we have used the fact that, by Claim 3, F j < 1 over R+ for all j. Now, for each t > t,∏
j 6=i,j≤m

[
(1− x)

∫ t
0
λe−λs 1−F j(s)

1−F j(t) ds+ e−λt
]
(1− x+ xe−λt)n−m∏

j≤m

[
(1− x)

∫ t
0
λe−λs 1−F j(s)

1−F j(t) ds+ e−λt
]
(1− x+ xe−λt)n−m−1

=
1− x+ xe−λt

(1− x)
∫ t

0
λe−λs 1−F i(s)

1−F i(t) ds+ e−λt

< 1,

where the strict inequality follows from x < 1 along with the fact that, as t > t and F i
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is continuous, with ti = t, F i(s) < F i(t) for all s in a right-neighborhood of t. From

(A.12)–(A.13), this implies that V k(t) < V i(t) ≤ 0 for all t > t. The claim follows. �

Claim 7. In equilibrium, if exactly m ≥ 2 firms, say, firms 1, . . . ,m are active, then their

equilibrium distributions have the same support [t,∞).

Proof. Suppose, by way of contradiction, that, say, firm 1’s equilibrium distribution has not

full support [t,∞). By Claims 2–3, there exists a maximal interval [a, b] ⊂ (t,∞) such that

a and b belong to the support of F 1 and F 1(a) = F 1(b). Moreover, by Claim 1, there exists

a firm i ≤ m such that F i(a) < F i(b) and a belongs to the support of F i. By Claim 3, we

can rewrite the likelihood ratio (A.7) as

li(t) =
p0

(1− p0)e−λt
∏

j 6=i

{
(1− x)

∫ t
0
λe−λs 1−F j(s)

1−F j(t) ds+ e−λt
} ,

and similarly for firm 1. Because a belongs to the supports of F 1 and F i, we must have

li(a) = l1(a) = I
1−I , which implies, thanks to the above observation,∫ a

0

λe−λs
1− F i(s)

1− F i(a)
ds =

∫ a

0

λe−λs
1− F 1(s)

1− F 1(a)
ds. (A.14)

In turn,

li(b)

l1(b)
=

(1− x)
∫ b

0
λe−λs 1−F i(s)

1−F i(b) ds+ e−λb

(1− x)
∫ b

0
λe−λs 1−F 1(s)

1−F 1(b)
ds+ e−λb

=
(1− x)

[∫ a
0
λe−λs 1−F i(s)

1−F i(b) ds+
∫ b
a
λe−λs 1−F i(s)

1−F i(b) ds
]

+ e−λb

(1− x)
[∫ a

0
λe−λs 1−F i(s)

1−F i(a)
ds+

∫ b
a
λe−λs ds

]
+ e−λb

> 1,

where the second equality follows from (A.14) and F 1(a) = F 1(b), and the inequality follows

from F i(a) < F i(b). Hence li(b) > l1(b). Because li(b) ≤ I
1−I as firm i earns zero profit, this

implies that l1(b) < I
1−I , which is impossible by Claim 2 as b belongs to the support of F 1.

The claim follows. �

Claim 8. In equilibrium, if exactly m ≥ 2 firms, say, firms 1, . . . ,m are active, then their

equilibrium distributions F i, i = 1, . . . ,m, coincide and are continuously differentiable.

Proof. By Claims 2 and 7, for each i ≤ m, V i = 0 over [t,∞). Hence, by (A.12),∏
j 6=i,j≤m

[
(1− x)

∫ t

0

λe−λs
1− F j(s)

1− F j(t)
ds+ e−λt

]
=

p0(1− I)

(1− p0)Ie−λt(1− x+ xe−λt)n−m

for all i ≤ m and t ≥ t. Taking this equation for two different players i1, i2 ≤ m and dividing,
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we derive, as x < 1, that∫ t

0

λe−λs
1− F i1(s)

1− F i1(t)
ds =

∫ t

0

λe−λs
1− F i2(s)

1− F i2(t)
ds

for all t ≥ t. As a result,

e−λt(1− x+ xe−λt)n−m
[
(1− x)

∫ t

0

λe−λs
1− F i(s)

1− F i(t)
ds+ e−λt

]m−1

=
p0

1− p0

1− I
I

(A.15)

for all i ≤ m and t ≥ t, from which it readily follows that each F i is continuously

differentiable. Differentiating (A.15) leads to

(1− x)

∫ t

0

λe−λs
1− F i(s)

1− F i(t)
ds

[
(m− 1)

Ḟ i(t)

1− F i(t)
− λ− λ(n−m)xe−λt

1− x+ xe−λt

]

= λe−λt
[
1 + (m− 1)x+

(n−m)xe−λt

1− x+ xe−λt

]
(A.16)

Letting y0 ≡ p0
1−p0

1−I
I

and using (A.15) to replace (1− x)
∫ t

0
λe−λs 1−F i(s)

1−F i(t) ds in (A.16) yields

(m− 1)
Ḟ i(t)

1− F i(t)
= λ+ [1 + (m− 1)x]

λe−
m
m−1

λt(1− x+ xe−λt)
n−m
m−1

y
1

m−1

0 − e−
m
m−1

λt(1− x+ xe−λt)
n−m
m−1

+
λ(n−m)xe−λt

1− x+ xe−λt

[
1 +

e−
m
m−1

λt(1− x+ xe−λt)
n−m
m−1

y
1

m−1

0 − e−
m
m−1

λt(1− x+ xe−λt)
n−m
m−1

]
(A.17)

for all i ≤ m and t ≥ t. From the ordinary differential equation (A.17) and the initial

condition F i(t) = 0, we conclude from a straightforward integration that all F i, i = 1, . . . ,m,

coincide with a function Fm.24 It is clear from (A.17) that Ḟm > 0 over [t,∞), and from

(A.15) that limt→∞ Fm(t) = 1. The claim follows. �

Claim 9. An equilibrium exists.

Proof. It follows readily from Claims 6 and 8 that, for each m ≥ 2, there exists a unique

equilibrium in which m firms are active and play according to the distribution Fm, whereas

the remaining n−m firms stay inactive. The claim follows. �

When n firms are active, that is, m = n, (A.17) simplifies to

(n− 1)
Ḟn(t)

1− Fn(t)
= λ+ [1 + (n− 1)x]

λe−
n
n−1

λt

y
1

n−1

0 − e−
n
n−1

λt
. (A.18)

Remarking that ∫ t

t

λe−
n
n−1

λs

y
1

n−1

0 − e−
n
n−1

λs
ds =

n− 1

n
ln

y 1
n−1

0 − e−
n
n−1

λt

y
1

n−1

0 − e−
n
n−1

λt

 (A.19)

24We only emphasize the dependence on m, but it should be clear that Fm also depends on n and x.
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and taking advantage of Fn(t) = 0, we obtain

Fn(t) = 1− e−
1

n−1
λ(t−t)

y 1
n−1

0 − e−
n
n−1

λt

y
1

n−1

0 − e−
n
n−1

λt


1+(n−1)x

n

, t ≥ t. (A.20)

To conclude, we infer from (A.18) along with the fact that t is decreasing in x that, if

x < x′ < 1, the investment date under x′ is smaller than the investment date under x in the

hazard-rate order. Hence the result. �

Proof of Proposition 4. The expected profit of firm i from planning to invest at a date t that

is not an atom of F j is

V i(t) = p0L+ (1− p0)xiD + p0(1− I − L)[1− F j(t)]

− (1− p0)Ie−λt
{

(1− xj)
∫ t

0

λe−λs[1− F j(s)] ds+ e−λt[1− F j(t)]

}
. (A.21)

If x1 = x2 ≡ x, we remark that, up to the constant p0L+ (1− p0)xD, the firms’ profits have

the same structure as in (2), except that the reward in case of success is 1 − I − L instead

of 1 − I. Therefore, as long as L < 1 − I, exactly the same analysis as in Propositions 1–2

applies. In particular, because there are only two firms, there exists a unique equilibrium,

which is symmetric. If x = 1, then this equilibrium is in pure strategies, and given by (??).

If x < 1, then this equilibrium is in mixed strategies. In any case, each firm makes a profit

p0L+ (1− p0)xD in equilibrium.

With no loss of generality, let us then hereafter focus on the case 0 ≤ x1 < x2 ≤ 1, and

let F 1 and F 2 be the firms’ equilibrium distributions. The proof consists of a series of claims.

Claim 1. suppF 2 ∩ R+ ⊂ suppF 1 ∩ R+, with equality if x2 < 1.

Proof. Suppose, by way of contradiction, that t belongs to (suppF 2 ∩R+) \ (suppF 1 ∩R+).

Then there exists an open interval centered around t that does not intersect the support

of F 1. From x1 < 1 and (A.21) for i = 2 and j = 1, it is easy to check that V 2 must be

increasing over this interval, which contradicts that t is in the support of F 2. By the same

argument, the reverse equality holds if x2 < 1. The claim follows. �

Claim 2. Neither F 1 nor F 2 can have an atom at a finite date.

Proof. Let us suppose, by way of contradiction, that some F j has an atom at some finite

date t, and let δ ≡ F j(t)− lims↑t F
j(s) > 0. The expected profit of firm i 6= j from planning

to invest at t is

p0(1− I − L)

[
1− F j(t) +

αi

αi + αj
δ

]
+ p0L+ (1− p0)xiD (A.22)
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− (1− p0)Ie−λt
{

(1− xj)
∫ t

0

λe−λs[1− F j(s)] ds+ e−λt
[
1− F j(t) +

αi

αi + αj
δ

]}
.

In turn, computing firm i’s expected profit from planning to invest at a date t− ε < t that

is not an atom of the distribution F j and taking the limit as ε > 0 goes to 0 yields

p0(1− I − L)[1− F j(t) + δ] + p0L+ (1− p0)xiD

− (1− p0)Ie−λt
{

(1− xj)
∫ t

0

λe−λs[1− F j(s)] ds+ e−λt[1− F j(t) + δ]

}
. (A.23)

Because δ > 0, it is easily seen that the difference between (A.22) and (A.23) has the same

sign as

(1− p0)Ie−2λt − p0(1− I − L). (A.24)

We now distinguish two cases.

Case 1. Suppose first that j = 2. Because F 2 has an atom at t, it follows from (A.21)

that V 2(t) ≥ p0L+ (1− p0)x2D, that is,

p0(1− I − L) ≥ (1− p0)Ie−λt
{

(1− x1)

∫ t

0

λe−λs
1− F 1(s)

1− F 1(t)
ds+ e−λt

}
> (1− p0)Ie−2λt,

where we have taken advantage of the fact that x1 < 1 and F 1(t) < 1, for, otherwise, by

(A.21), firm 2’s profit would be less than p0L+ (1− p0)x2D, a contradiction. Hence (A.24)

is negative if j = 2, so that there is a downward discontinuity in firm 1’s profit at t. Thus

F 1 is constant and less than 1 over a right-neighborhood of t, from which we conclude from

(A.21) that firm 2 could strictly increase her profit by planning to invest slightly after t, a

contradiction. Hence F 2 cannot have an atom at a finite date, and is thus continuous over

R+.

Case 2. If j = 1 and x2 < 1, the same argument as in Case 1 applies and F 1 cannot

have an atom at a finite date. Thus suppose that x2 = 1. As t is an atom of F 1, firm 1’s

equilibrium profit is

V 1(t) = p0L+ (1− p0)x1D + [p0(1− I − L)− (1− p0)Ie−2λt][1− F 2(t)]. (A.25)

If F 2(t) < 1, we conclude that p0(1− I−L) ≥ (1−p0)Ie−2λt. If this inequality is strict, that

is, if (A.24) is strictly negative, then, switching the roles of firms 1 and 2, the same argument

as in Case 1 leads to a contradiction. Thus, if F 2(t) < 1, it must be that p0(1 − I − L) =

(1− p0)Ie−2λt. But then, by (A.22) and x1 < 1, the expected profit of firm 2 from planning

to invest at t must be less than p0L + (1 − p0)x2D. As firm 2 can always guarantee this

profit by (A.21), F 2 is constant and less than 1 over a right-neighborhood of t, from which
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we conclude from (A.21) that firm 1 could strictly increase her profit by planning to invest

slightly after t, a contradiction. Hence the only remaining case to consider is F 2(t) = 1,

which implies from (A.25) that firm 1’s equilibrium profit is p0L + (1 − p0)x1D. As F 2 is

continuous over R+, it follows from (A.25) that

p0(1− I − L) = (1− p0)Ie−2λs (A.26)

for all s ∈ suppF 1 ∩ R+ ∩ (F 2)−1([0, 1)). This set is thus empty, or a singleton {s}. In the

first case, F 1
|[0,t] = γ1

1{t} for some γ1 ∈ (0, 1], a contradiction as F 2 is continuous over [0, t]

and F 2(t) = 1, and suppF 2 ∩ R+ ⊂ suppF 1 ∩ R+ by Claim 1. The second case leads to a

contradiction along the same lines as above. The claim follows. �

Claim 3. The following holds:

(i) t1 ≡ inf suppF 1 = t2 ≡ inf suppF 2 ≡ t <∞.

(ii) t1 ≡ sup suppF 1 ∩ R+ = t2 ≡ sup suppF 2 ∩ R+ =∞.

Proof. (i) By Claim 1, t1 ≤ t2. Suppose, by way of contradiction, that t1 < t2. Then,

by (A.21) for i = 1 and j = 2, V 1 is strictly increasing in a right-neighborhood of t1, a

contradiction as t1 ≡ inf suppF 1 < ∞. Thus t1 = t2 ≡ t. To conclude, we must rule out

the case t = ∞, that is, F 1 = F 2 = 1∞. In that case, every firm i would earn a profit

(1− p0)xiD, which is less, by (A.21), than the profit she would secure by planning to invest

at a large finite date t, a contradiction.

(ii) By Claim 1, t1 ≥ t2, so that we only need to show that t2 =∞. Suppose, by way of

contradiction, that t2 <∞. We distinguish two cases.

Case 1. Suppose first that x2 < 1. Then, by (A.21) for i = 1 and j = 2, V 1 is strictly

increasing over [t2,∞), a contradiction because t2 ∈ suppF 1 ∩ R+ by Claim 1 and V 1 is

continuous over R+ by Claim 2.

Case 2. Suppose next that x2 = 1. As t2 ∈ suppF 1∩R+ by Claim 1 and V 1 is continuous

over R+ by Claim 2, firm 1’s equilibrium profit is equal to V 1(t2) = p0L+ (1− p0)x1D. As

in Case 2 of the proof of Claim 2, we deduce that (A.26) holds for all s ∈ suppF 1 ∩ [0, t2).

Because this set is not empty as suppF 2 ∩R+ ⊂ suppF 1 ∩R+ by Claim 1 and both F 1 and

F 2 are continuous over [0, t2] by Claim 2, it is a singleton {s}. But then F 1 has an atom at

s, a contradiction by Claim 2. The claim follows. �

Claim 4. Each firm i’s equilibrium profit is

V i∗(x1, x2) ≡ lim
t→∞

V i(t) = p0L+ (1− p0)xiD + p0β
j(1− I − L), (A.27)
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where βj ≡ 1− limt→∞ F
j(t) is positive if F j has an atom at∞, that is, firm j stays inactive

with positive probability.

Proof. Immediate from (A.21) and Claim 3. �

Claim 5. For each j, βj > 0 implies βi = 0.

Proof. Suppose βj > 0. If firm i stays inactive with positive probability, that is, if βi > 0,

firm i earns a profit of p0L(1− βj) + (1− p0)xiD, which is less than its equilibrium profit of

p0L+ (1− p0)xiD + p0β
j(1− I − L) by Claim 4, a contradiction. The claim follows. �

Claim 6. The equilibrium profits are given by (8)–(9).

Proof. For t ≤ t, F 1(t) = F 2(t) = 0, and thus, by (A.21),

V i(t) = p0(1− I) + (1− p0)xiD − (1− p0)Ie−λt(1− xj + xje−λt).

Because F 1 and F 2 are continuous over [t,∞), where inf suppF 1 = inf suppF 2 ≡ t by

Claim 3, it follows that

V i∗(x1, x2) = p0(1− I) + (1− p0)xiD − (1− p0)Ie−λt(1− xj + xje−λt). (A.28)

Equating (A.27) to (A.28) yields, for each j,

p0(1− βj)(1− I − L) = (1− p0)Ie−λt(1− xj + xje−λt), (A.29)

from which it follows that β2 > β1 as x2 > x1, which implies in turn by Claim 5 that β2 > 0

and β1 = 0. It then follows from (A.27) for i = 2 that V 2∗(x1, x2) = p0L+(1−p0)x2D, which

is (9), from (7) and (A.29) for j = 1 that t = t(x1), and from (A.28) for i = 1 and (A.29) for

j = 1 that V 1∗(x1, x2) = p0L + (1− p0)x1D + (x2 − x1)(1− p0)Ie−λt(x
1)[1− e−λt(x

1)], which

is (8). The claim follows. �

Claim 7. An equilibrium exists.

Proof. Consider first firm 2. According to Claim 6, it is enough to find a distribution F 1

such that F 1(t(x1)) = 0 and V 2(t) = p0L + (1 − p0)x2D for all t ≥ t(x1). Proceeding as in

the proof of Proposition 2, and in analogy with (A.20), this yields

F 1(t) = 1− e−λ[t−t(x1)]

[
y − e−2λt(x1)

y − e−2λt

] 1+x1

2

, t ≥ t(x1). (A.30)

Consider next firm 1. According to Claim 6, it is enough to find a distribution F 2 such
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that F 2(t(x1)) = 0 and V 1(t) = p0L + (1 − p0)x1D + (1 − p0)IC for all t ≥ t(x1), where

C ≡ (x2 − x1)e−λt(x
1)[1− e−λt(x

1)]. This yields

e−λt
[
(1− x2)

∫ t

0

λe−λs
1− F 2(s)

1− F 2(t)
ds+ e−λt

]
= y − C

1− F 2(t)
, (A.31)

which implies

(y − e−2λt)Ḟ 2(t) = λ(y + x2e−2λt)[1− F 2(t)]− λC. (A.32)

By now standard computations, when C = 0, the general form of the solution to (A.32) is

given, for some positive constants a > ln(y)
2λ

and K0, by

F 2
0 (t) = 1−K0 exp

(
−λt− (1 + x2)

∫ t

a

λe−2λs

y − e−2λs
ds

)
= 1−K0e−λt

(
y − e−2λa

y − e−2λt

) 1+x2

2

.

Thus, using the Lagrange method, let us try a solution to (A.32) of the form

F 2(t) = 1−KC(t) exp

(
−λ[t− t(x1)]− (1 + x2)

∫ t

t(x1)

λe−2λs

y − e−2λs
ds

)
. (A.33)

Differentiating (A.33), identifying terms with (A.32), and imposing F 2(t(x1)) = 0 yields

KC(t) = λC

∫ t

t(x1)

1

y − e−2λs
exp

(
λ[s− t(x1)] + (1 + x2)

∫ s

t(x1)

λe−2λu

y − e−2λu
du

)
ds+ 1.

and thus

F 2(t) = 1−
λC
∫ t
t(x1)

1
y−e−2λs exp

(
λ[s− t(x1)] + (1 + x2)

∫ s
t(x1)

λe−2λu

y−e−2λu du
)

ds+ 1

exp
(
λ[t− t(x1)] + (1 + x2)

∫ t
t(x1)

λe−2λs

y−e−2λs ds
) . (A.34)

We need to show that F 2 ≡ 1 − F 2 is decreasing and converges to β2. From (A.34), Ḟ 2(t)

has the same sign as

H(t) = C exp

(
λ[t− t(x1)] + (1 + x2)

∫ t

t(x1)

λe−2λs

y − e−2λs
ds

)
−
[
λC

∫ t

t(x1)

1

y − e−2λs
exp

(
λ[s− t(x1)] + (1 + x2)

∫ s

t(x1)

λe−2λu

y − e−2λu
du

)
ds+ 1

]
(y + x2e−2λt). (A.35)

Using that C = (x2− x1)e−λt(x
1)[1− e−λt(x

1)] and y = p0(1−I−L)
(1−p0)I

= e−λt(x
1)[1− x1 + x1e−λt(x

1)]

by (A.29) for j = 1, we obtain that H(t(x1)) = e−λt(x
1){x2[1− 2e−λt(x

1)]− 1} < 0. Moreover,

from (A.35), it is easy to verify that Ḣ(t) > 0 for all t ≥ t(x1). Thus, to prove that Ḟ 2(t) < 0

for all t ≥ t(x1), we only need to verify that limt→∞H(t) ≤ 0. Observe that, by (A.19),

eλt − λy
∫ t

t(x1)

1

y − e−2λs
exp

(
λs− (1 + x2)

∫ t

s

λe−2λu

y − e−2λu
du

)
ds
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= eλt − y
∫ t

t(x1)

λeλs

(y − e−2λs)
1−x2

2 (y − e−2λt)
1+x2

2

ds

≤ eλt − y

y − e−2λt

∫ t

t(x1)

λeλs ds

=
yeλt(x

1) − e−λt

y − e−2λt
. (A.36)

In light of (A.35) and (A.36), we obtain that limt→∞H(t) ≤ 0 is equivalent to

C exp

(
(1 + x2)

∫ ∞
t(x1)

λe−2λs

y − e−2λs
ds

)
≤ y,

that is, by (A.19), C
[

y

y−e−2λt(x1)

] 1+x2

2 ≤ y. Because C = (x2 − x1)e−λt(x
1)[1 − e−λt(x

1)], the

left-hand side of this inequality is maximized for x2 = 1, in which case it is easy to verify

using y = e−λt(x
1)[1− x1 + x1e−λt(x

1)] that it becomes an equality. We conclude that H < 0

over [t(x1),∞), from which it follows that F 2 is decreasing over this interval. It remains

only to check that limt→∞ F
2(t) = β2, where β2 = (x2−x1)[1−e−λt(x

1)]

1−x1+x1e−λt(x1)
by (A.29). Applying

L’Hôpital’s rule to (A.34) yields limt→∞ F
2(t) = C

y
, which is the desired result given the

expressions of C and y. The claim follows. �

The proof of Proposition 4 is now complete. Hence the result. �

Appendix B

Proof of Proposition 6. For fixed ∆, welfare as a function of x1 is given by

W (x1, x1 + ∆) = 2p0L+ ∆(1− p0)I e−λt(x
1)[1− e−λt(x

1)].

Therefore, because t(x1) is decreasing in x1, dW
dx1

(x1, x1 +∆) has the same sign as 1−2e−λt(x
1).

Let L0 and L1 be such that

p0(1− I − L0)

(1− p0)I
=

1

2
and

2 p0(1−I−L1)
(1−p0)I

∆ +
√

∆2 + 4(1−∆) p0(1−I−L1)
(1−p0)I

=
1

2
. (B.1)

Assumption 1 ensures that L0 > 0, and one can verify from (B.1) that 1 − ∆ > L1 > L0.

Using (7), one easily derives that

e−λt(x
1) =

2y

1− x1 +
√

(1− x1)2 + 4yx1
. (B.2)

This gives e−λt(0) = y. Hence, at L = L0, we have e−λt(0) = 1
2
. Likewise, e−λt(1−∆) =

2y

∆+
√

∆2+4(1−∆)y
. Hence, at L = L1, we have e−λt(1−∆) = 1

2
. We can thus conclude:
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(i) If L ≤ L0, then e−λt(0) ≥ 1
2
, which implies, as t is decreasing, that e−λt(x

1) > 1
2

for all

x1 ∈ [0, 1−∆]. Hence W (x1, x1 + ∆) is decreasing in x1;

(ii) If L0 < L < L1, then e−λt(0) < 1
2
< e−λt(1−∆). Hence W (x1, x1 + ∆) is single-peaked

in x1, with a maximum reached at x1∗ such that e−λt(x
1∗) = 1

2
, that is, using (B.2),

x1∗ = 2(1− 2y);

(iii) If L ≥ L1, then e−λt(1−∆) ≤ 1
2
, which implies, as t is decreasing, that e−λt(x

1) < 1
2

for

all x1 ∈ [0, 1−∆]. Hence W (x1, x1 + ∆) is increasing in x1.

Hence the result. �

Proof of Proposition 7. Before proving the proposition, it is useful to first derive the best

response of a firm when the other firm chooses x = 1. Let x∗1 denote such a best response,

which is generically unique. By (8), x∗1 ∈ arg maxx∈[0,1] π(x), where π(x) ≡ p0L + (1 −
p0)Dx+ (1− p0)I(1− x)e−λt(x)[1− e−λt(x)].

Lemma B.1 The following holds:

(i) If y ≤ 1
4
, then x∗1 = 0 if D ≤ 2y2(1−y)I, 0 < x∗1 < 1 if 2y2(1−y)I < D <

√
y(1−√y)I,

and x∗1 = 1 if D ≥ √y(1−√y)I;

(ii) If 1
4
< y < 1

2
, then x∗1 = 0 if D ≤ 2y2(1− y)I, 0 < x∗1 < 2− 4y if 2y2(1− y)I < D < I

4
,

and x∗1 = 1 if D ≥ I
4
;

(iii) If y ≥ 1
2
, then x∗1 = 0 if D < y(1− y)I, x∗1 = 1 if D > y(1− y)I, and x∗1 is indifferently

0 or 1 if D = y(1− y)I.

Proof. One easily checks, using (7), that π′(x) = (1− p0)D− 2(1− p0)I e−2λt(x)[1−e−λt(x)]

2xe−λt(x)+1−x . The

marginal benefit of increasing x is thus increasing in D, which immediately implies that x∗1

is nondecreasing in D.

Claim 1. π′(x) is strictly quasiconvex in x.

Proof. Simple computations show that π′′(x) has the same sign as φ(x) ≡ 8xe−2λt(x) −
9xe−λt(x) + 5e−λt(x) + 3(x − 1). We thus only need to show that φ is increasing. Simple

computations show that φ′(x) has the same sign as ψ(x) ≡ −xe−2λt(x) +6xe−λt(x) +3e−2λt(x)−
4e−λt(x) +3(1−x) = Q(e−λt(x)), where Q(Z) ≡ (3−x)Z2 +2(3x−2)Z+3(1−x) for Z ∈ [0, 1].

If x > 2
3
, then Q is increasing in Z over [0, 1], so that, as Q(0) = 3(1 − x) ≥ 0, we have

Q(Z) > 0 for all Z ∈ (0, 1], which is the desired result. If x ≤ 2
3
, then the discriminant

6x2 − 5 of Q is negative, so that Q has no real root, which again implies the desired result.

33



The claim follows. �

Observe from (7) that e−λt(0) = y and e−λt(1) =
√
y. We now distinguish three cases.

Case 1. Suppose first that π′′(1) ≤ 0. By Claim 1, this is equivalent to y ≤ 1
4
, and π is

strictly concave over [0, 1]. Then x∗1 = 0 if π′(0) ≤ 0, that is, 2y2(1 − y)I ≥ D, x∗1 = 1 if

π′(1) ≥ 0, that is, D ≥ √y(1−√y)I, and 0 < x∗1 < 1 otherwise. This proves (i).

Case 2. Suppose next that π′′(0) ≥ 0. By Claim 1, this is equivalent to y ≥ 3
5
, and π is

strictly convex over [0, 1]. Then x∗1 = 0 if π(0) > π(1), that is, y(1 − y)I > D, x∗1 = 1 if

π(0) < π(1), that is, y(1 − y)I < D, and x∗1 is indifferently 0 or 1 if π(0) = π(1), that is,

D = y(1− y)I. This proves (iii) for y ≥ 3
5
.

Case 3. Suppose finally that π′′(1) > 0 > π′′(0). By Claim 1, this is equivalent to 1
4
< y <

3
5
, and π is first strictly concave and then strictly convex.

If π′(0) ≤ 0, that is, 2y2(1−y)I ≥ D, then x = 0 maximizes π(x) over the interval where

π is concave, which implies that x∗1 is either 0 or 1. If 1
4
< y < 1

2
, then we have 2y2(1−y)I <

y(1 − y)I. Hence y(1 − y)I > D, so that π(0) > π(1) and x∗1 = 0. This proves the first

statement in (ii). If, instead, 1
2
≤ y < 3

5
, then we have 2y2(1−y)I ≥ y(1−y)I, with equality

at y = 1
2
. This implies that x∗1 = 0 if D < y(1− y)I, x∗1 = 1 if y(1− y)I < D ≤ 2y2(1− y)I,

and x∗1 is indifferently 0 or 1 if π(0) = π(1), that is, y(1 − y)I = D. This proves (iii) for

1
2
≤ y < 3

5
and 2y2(1− y)I ≥ D.

If π′(0) > 0, that is, D > 2y2(1 − y)I, then π is increasing at 0. If 1
2
≤ y < 3

5
, then

2y2(1−y)I ≥ y(1−y)I and, as shown above, x∗1 = 1 if y(1−y)I < D ≤ 2y2(1−y)I. Because

x∗1 is nondecreasing in D, then a fortiori x∗1 = 1 for D > 2y2(1 − y)I. This concludes the

proof of (iii). Suppose finally that 1
4
< y < 1

2
. In such a case, x ≡ 2− 4y ∈ (0, 1), and using

(B.2), one remarks that e−λt(x) = 1
2
. In addition, when D = I

4
, π′(x) = 0 and π′′(x) has the

same sign as 2x− 9
2
x+ 3x− 1

2
= −1

2
(1−x) < 0, so x is the maximum of π on the part where

π is concave. Finally, π(x) = p0L+ (1− p0)Dx+ (1− p0) I
4
(1− x) = p0L+ (1− p0)D = π(1)

if D = I
4
. Hence, in that case, x∗1 is indifferently x or 1. Because x∗1 is nondecreasing in D,

we infer that x∗1 = 1 for D > I
4
, and that x∗1 ∈ (0, 2 − 4y) for D ∈ (2y2(1 − y)I, I

4
). This

concludes the proof of (ii). The result follows. �

Now, let

D1(y) ≡


√
y(1−√y)I if y ≤ 1

4
I
4

if 1
4
< y < 1

2

y(1− y)I if y ≥ 1
2

.

By Lemma B.1, if D ≥ D1(y), then, for each i, xi = 1 is a best response to xj = 1. Thus there
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exists a symmetric pure-strategy equilibrium in which both firms disclose with probability

1, and E[x̃∗] = 1. Both firms earn a profit p0L+ (1− p0)D. This proves (iii).

Suppose next that D < D1(y). We distinguish two cases.

Case 1. Suppose first that y ≥ 1
2
. We know from Lemma B.1 that, in that case, when

D < D1 = y(1 − y)I, xi = 0 is a best response to xj = 1, that is, π(0) ≥ π(x) for all

x ∈ [0, 1]. In such a case, there exists a mixed-strategy equilibrium in which each player

plays x = 1 with probability α ≡ π(1)−p0L
π(0)−p0L = D

y(1−y)I
and x = 0 with probability 1 − α.

The argument is twofold. First, taking advantage of (8)–(9) and of the fact that a firm

that plays x = 1 obtains π(1) no matter what the other firm does, it is easy to check that

each firm is then indifferent between playing x = 0 and x = 1. Second, if a firm deviates

to x ∈ (0, 1), then its profit becomes h(x) ≡ απ(x) + (1 − α)[p0L + (1 − p0)xD] by (9).

Because h′(x) = απ′(x) + (1 − α)(1 − p0)D, we have h′(0) = απ′(0) + (1 − α)(1 − p0)D =

(1 − p0)D − 2α(1 − p0)Iy2(1 − y) = (1 − p0)(1 − 2y)D ≤ 0. Moreover, because h′′ = απ′′

and, as shown in the proof of Lemma B.1, π is either convex or concave and then convex

over [0, 1] if y ≥ 1
2
, so is h. Because h′(0) ≤ 0 and h(0) = h(1), this implies that there is no

x ∈ (0, 1) such that h(x) > h(0). Hence we have characterized a mixed-strategy equilibrium

in which E[x̃∗] = α = D
y(1−y)I

.

Case 2. Suppose now that y < 1
2
. We construct a symmetric mixed-strategy equilibrium in

which each firm randomizes over x ∈ [xa, xb]∪{1}, where xb ≡ min{x, 1} and xa is yet to be

determined. Recall that x = 2−4y, which yields xb = 1 for y ≤ 1
4

and xb = x = 2−4y ∈ (0, 1)

for 1
4
< y < 1

2
. Notice that for each x ≤ xb, we have e−λt(x) ≤ 1

2
. Indeed, if y ≤ 1

4
, then

e−λt(x) ≤ e−λt(1) =
√
y ≤ 1

2
for all x ∈ [0, 1], and if 1

4
< y < 1

2
, then xb = x so that

e−λt(x) ≤ e−λt(x) = 1
2

for all x ≤ x.

Suppose that firm 2 plays according to a distribution G with support [xa, xb] ∪ {1} that

is continuous over [xa, xb]. Then, in equilibrium, the profit from choosing x1 ∈ [xa, xb], that

is, by (8),

p0L+ (1− p0)x1D + (1− p0)IP[x̃2 ≥ x1]E[x̃2 − x1 | x̃2 ≥ x1]e−λt(x
1)[1− e−λt(x

1)], (B.3)

must be the same as the payment from choosing x1 = 1, that is, p0L+ (1− p0)D. Hence, for

each x1 ∈ [xa, xb], it must be that

e−λt(x
1)[1− e−λt(x

1)]

{∫ xb

x1
(x2 − x1) dG(x2) + [1−G(xb)](1− x1)

}
=

(1− x1)D

I
. (B.4)

Differentiating (B.4) and plugging (B.4) into the resulting equation yields

G(x) = 1− 2D

e−λt(x)[1− e−λt(x)]I

[
1− e−λt(x)

2xe−λt(x) + 1− x

]
, x ∈ [xa, xb]. (B.5)
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To make sure that this yields an equilibrium, we need to check that the following conditions

are met: (a) G is increasing over [xa, xb], (b) G(xb) ≤ 1, (c) G(xa) ≥ 0, (d) Deviating to

x ∈ (xb, 1) cannot be strictly profitable (whenever relevant), (e) Deviating to x ∈ [0, xa)

cannot be strictly profitable (whenever relevant). We prove each of these claims in turn.

(a) Because e−λt(x) ≤ 1
2

for all x ≤ xb and t(x) is decreasing in x, e−λt(x)[1 − e−λt(x)] is

increasing in x ≤ xb. So if 1 − e−λt(x)

2xe−λt(x)+1−x , which is positive, is decreasing in x ≤ xb, then

G(x) must be increasing over [xa, xb]. The derivative of x 7→ 1 − e−λt(x)

2xe−λt(x)+1−x with respect

to x has the same sign as e−λt(x)[2e−λt(x) − 1]− (1− x) d
dx

e−λt(x). Because e−λt(x) ≤ 1
2

for all

x ≤ xb and t(x) is decreasing in x, this mapping is thus decreasing. Hence G is increasing

over [0, xb], as claimed.

(b) Because 1 − e−λt(x)

2xe−λt(x)+1−x is positive for all x ∈ [0, xb], it follows from (B.5) that

G(xb) ≤ 1, as claimed.

(c) It follows from (B.5) that G(0) ≥ 0 if and only if D ≤ yI
2
. In this case, we set xa ≡ 0.

Suppose now that yI
2
< D < D1(y). In this case, G(0) < 0. It is easy to check that G(xb) > 0

when D ≤ D1(y). Indeed, if y ≤ 1
4
, then xb = 1 and G(1) = 1 − D√

y(1−√y)I
= 1 − D

D1(y)
> 0,

and if 1
4
< y < 1

2
, then xb = x and G(x) = 1− 4D

I
= 1− D

D1(y)
> 0. By continuity of G, there

exists a unique xa ∈ (0, xb) such that G(xa) = 0, that is,

2D

e−λt(xa)[1− e−λt(xa)]I

[
1− e−λt(xa)

2xae−λt(xa) + 1− xa

]
= 1 (B.6)

(d) This is relevant only if xb = x < 1, that is, 1
4
< y < 1

2
. If a firm deviates to x ∈ (x, 1),

then its profit becomes h̃(x) ≡ [1 − G(x)]π(x) + G(x)[p0L + (1 − p0)xD]. Observe that

h̃′(x) = [1 − G(x)]π′(x) + G(x)(1 − p0)D. Using e−λt(x) = 1
2
, we infer that G(x) = 1 − 4D

I

as in (c). In addition, π′(x) = (1 − p0)(D − I
4
). This yields h̃′(x) = 0. Moreover, because

h̃′′ = [1−G(x)]π′′ and, as shown in the proof of Lemma B.1, π is concave and then convex

over [0, 1] if 1
4
< y < 1

2
, so is h. Because h̃′(x) ≤ 0 and h̃(x) = h̃(1), this implies that there

is no x ∈ (x, 1) such that h̃(x) > h̃(0). If, in addition, we have

D ≤ D0(y) ≡ yI

2
,

so that xa = 0, we have characterized a symmetric mixed-strategy equilibrium in which, by

equating (B.3) for x1 = 0 to p0L+ (1− p0)D, E[x̃∗] = D
y(1−y)I

.

(e) This is relevant only if xa > 0, that is, D0(y) < D < D1(y). If a firm, say, firm 1,

deviates to x1 < xa ≤ E[x̃∗], then its profit becomes

p0L+ (1− p0)x1D + (1− p0){E[x̃∗]− x1}Ie−λt(x
1)[1− e−λt(x

1)] = V 1∗(x1,E[x̃∗]).
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Claim 2. The mapping x 7→ V 1∗(x,E[x̃∗]) is strictly concave over [0, xa].

Proof. Simple computations show that ∂2V 1∗

∂x2
(x,E[x̃∗]) has the same sign as the bilinear form

BZ(x,E) ≡ E(1−5Z+5Z2)−(1−2Z)+x[1−3Z+3Z2−(1−2Z)3E], where E stands for E[x̃∗]

and Z for e−λt(x). Because e−λt(x) < 1
2

for all x ≤ xa < xb, we have 0 < Z < 1
2
. Moreover,

because x ≤ xa ≤ E[x̃∗], we have 0 ≤ x ≤ E ≤ 1. We now show that, for any Z ∈ (0, 1
2
),

max0≤x≤E≤1BZ(x,E) < 0, which implies the result. Observe first that 1−3Z+3Z2

(1−2Z)3
> 1 for all

Z ∈ (0, 1
2
), so that the term multiplying x in BZ(x,E) is positive as E ≤ 1. Thus BZ(x,E) is

maximized for x = E, leading to BZ(E,E) = −(1− 2Z)3E2 + (2− 8Z+ 8Z2)E− (1− 2Z) =

−(1− 2Z)[E(1− 2Z)− 1]2 < 0 as Z ∈ (0, 1
2
). The claim follows. �

Now, a simple computation yields

∂V 1∗

∂x1
(xa,E[x̃∗]) ∝ D − e−λt(xa)[1− e−λt(xa)]I

+
e−λt(xa)[1− e−λt(xa)]I[1− 2e−λt(xa)]

2xae−λt(xa) + 1− xa
{E[x̃∗]− xa}

= D − e−λt(xa)[1− e−λt(xa)]I +
1− 2e−λt(xa)

2xae−λt(xa) + 1− xa
(1− xa)D

= D − 2D

[
1− e−λt(xa)

2xae−λt(xa) + 1− xa

]
+

1− 2e−λt(xa)

2xae−λt(xa) + 1− xa
(1− xa)D

= 0, (B.7)

where the first equality follows from (B.4) at x1 = xa and the second equality follows

from (B.6). Because V 1∗(x1,E[x̃∗]) is strictly concave in x1 ∈ [0, xa], this implies that

V 1∗(x1,E[x̃∗]) is increasing in x1 over [0, xa]. This implies that no deviation to some x ∈
[0, xa) can be strictly profitable, and thus, together with (d), that we have characterized a

mixed-strategy equilibrium when D0(y) < D < D1(y).

Notice that E[x̃∗] is continuous in D. If y ≥ 1
2
, this follows from the fact that E[x̃∗] =

D
y(1−y)I

if D < D1(y) = y(1− y)I and E[x̃∗] = 1 otherwise. If y ≤ 1
2
, that E[x̃∗] is continuous

at D0(y) = yI
2

follows from the fact that E[x̃∗] = D
y(1−y)I

if D < D0(y) and that xa = 0

if D = D0(y), which, using (B.4) at x1 = 0 along with e−λt(0) = y, yields E[x̃∗] = D0(y)
y(1−y)I

.

If y ≤ 1
4
, that E[x̃∗] is continuous at D1(y) =

√
y(1 − √y)I follows from the fact that, if

D < D1(y) goes to D1(y), then xa goes to 1 by (B.6), so that E[x̃∗] goes to 1. Finally, if

1
4
< y < 1

2
, that E[x̃∗] is continuous at D1(y) = I

4
follows from the fact that, if D < D1(y)

goes to D1(y), then xb = x goes to 1 and G(x) goes to zero, so that E[x̃∗] goes to 1.

To complete the proof of the proposition, we need to verify that E[x̃∗] is strictly increasing

in D. The only case where this does not immediately follow from the description of the

equilibrium is when xa > 0. In that case, because x1 = xa and x1 = 1 are both played at

37



equilibrium, it must be that

V 1∗(xa,E[x̃∗]) = p0L+ (1− p0)D. (B.8)

It is easy to see from (B.6) that xa is differentiable in D, and from (B.8) and the definition

of V 1∗ that E[x̃∗] is differentiable in D. Differentiating (B.8) with respect to D yields

∂V 1∗

∂x1
(xa,E[x̃∗])

dxa
dD

+
∂V 1∗

∂x2
(xa,E[x̃∗])

dE[x̃∗]

dD
= 1− p0.

Because ∂V 1∗

∂x1
(xa,E[x̃∗]) = 0 by (B.7), we derive from the definition of V 1∗ that

dE[x̃∗]

dD
=

1

e−λt(xa)[1− e−λt(xa)]I
> 0. (B.9)

Hence the result. �

Proof of Proposition 8. Using (10), we derive that welfare equals

W = 2p0L+ 2Ex̃1 [Px̃2 [x̃
1 ≤ x̃2]{Ex̃2 [x̃

2 | x̃2 ≥ x̃1]− x1}(1− p0)Ie−λt(x̃
1)[1− e−λt(x̃

1)]]

= 2p0L+ 2Ex̃1 [(1− p0)(1− x̃1)D]

= 2p0L+ 2(1− p0){1− E[x̃∗]}D,

where the first equality leverages symmetry, and the second equality follows from (B.4).

First notice that, because E[x̃∗] is continuous in D, so is W . When D ≤ D0(y), we have

E[x̃∗] = D
y(1−y)I

, so W is maximized at D∗ ≡ y(1−y)I
2

< yI
2

= D0(y) over this range, for which

E[x̃∗] = 1
2
. Notice also that, for D ≥ D1(y), E[x̃∗] = 1 and thus W = 0, so the optimal

subsidy must be lower than D1(y). Now consider the interval [D0(y), D1(y)]. By continuity,

it is clear that, if the global solution lies within this range, it must belong to its interior.

Using (B.4) for x1 = xa and (B.9), we derive

dW

dD
= 2(1− p0)

{
1− E[x̃∗]−D dE[x̃∗]

dD

}
= 2(1− p0)

{
1− xa −

(2− xa)D
eλt(xa)[1− eλt(xa)]I

}
.

Thus, if an interior solution exists, it must be given by the first-order condition D =
eλt(xa)[1−eλt(xa)](1−xa)I

2−xa . However, inserting D = eλt(xa)[1−eλt(xa)](1−xa)I
2−xa into (B.6) yields 2(1−xa)

2−xa[
1− e−λt(xa)

2xae−λt(xa)+1−xa

]
= 1, which is clearly impossible. So an interior solution cannot exist

over [D0(y), D1(y)], and we conclude that D∗ = y(1−y)I
2

reaches a maximum of W . Hence

the result. �

Proof of Proposition 9. By definition of L0, y >
1
2

for L < L0. Thus increasing L decreases

y and accordingly increases D∗ = y(1−y)I
2

. Conversely, y < 1
2

for L > L0. Thus increasing L

decreases y and accordingly decreases D∗ = y(1−y)I
2

. Hence the result. �
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