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Abstract

The producers of electricity using dispatchable plants rely on partially flexible tech-
nologies to match the variability of demand and intermittent renewables. We analyse
flexibility in a two-stage decision process where production decided at the last moment
is more costly than if it is planned in advance. We first determine the first best outputs,
prices and gains. We then consider a model where two partially flexible firms compete
in quantities to supply a random residual demand. We determine the subgame perfect
equilibria corresponding to two market designs: one where all trade occurs in a spot
market with known demand, the other where a day-ahead market with random de-
mand is added to the ex-post market, first in a general setting, then using a quadratic
specification. We show that when all trade occurs ex post, the least flexible firm is
not necessarily disadvantaged. We also show that adding a day-ahead market makes
consumers better off and firms worse off by increasing total output. It increases welfare
but it also transfers risks from firms to consumers.
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1 Introduction
As long as electricity energy cannot be stored at large scale, the equilibrium
between production and consumption must be reached in real time. This would
be a simple routine if demand was not permanently varying, following predict-
able cycles (e.g. day-night) and random events (e.g. temperature variations).
Moreover, the deployment of intermittent sources of renewable energy (solar,
wind) increases the randomness of the residual demand that must be served
by dispatchable plants (coal, gas, hydro, nuclear). Buyers’ price-responsiveness
would ease the balancing of electricity markets but it cannot be a general solu-
tion as long as smart meters and appliances are not massively deployed and
consumers cannot instantaneously adapt their behavior. The drastic solution of
energy blackouts is politically unacceptable in developed countries. Then, under
the severe conditions of i) no storage, ii) no demand rationing and iii) no state-
dependent pricing, the only way to accomodate variations in residual demand
would be to benefit from perfectly flexible technologies able to follow demand in
real time. There exist some cases of supply and demand varying in time in a bal-
anced way: it is so in regions where solar energy simultaneously determines the
electricity supply from photovoltaïc panels and the demand for air-conditioning.
However, cases of perfect positive correlations are the exception. Renewables
rather add uncertainty on the exact quantity of residual energy to supply at each
moment. The task to match the demand not served by undispatchable renewables
is mainly devoted to hydroelectric reservoirs that can instantaneously increase or
decrease their output at zero operation cost, and complementarily to less flexible
thermal plants that incur fixed starting and stopping costs, plus additional costs
for ramping up and down in the very short run (Kök et al., 2020). The flexibility
question is often addressed at the electric system level rather than within firms.
Investing in gas-fired power plants or flexible CCS plants (Bertsch et al 2016) and
energy storage (Bistline, 2017) provides global flexibility as a by-product.
In this paper, we consider the case of production plants that are not fully

flexible by assuming that the cost to produce 1kWh is increasing when the time
lag to do so is shorter. Our approach differs from what Boyer and Moreaux
(1997) call ’technological flexibility’ where firms have to make a choice among
different equipment, which resuts in different cost configurations. The problem
we address is ’flexibility in timing’ where costs depend on the decision date. Our
analysis belongs to the same strand of literature as Eisenack and Mier (2018).
However, contrary to what they do, we do not separate from scratch firms that
can only plan their production day ahead from those that can adjust their output
in real time. We rather assume like in Crampes and Renault (2019) that each
firm can do both, but at different costs. Because our focus is on the supply side
characteristics, we assume that all consumers can react to price signals, which
excludes any type of rationing as shown in Joskow and Tirole (2007) and Léautier
(2019).
Our analysis has common features with the literature on market power in
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sequential markets (Allaz and Vila ,1993; Ito and Reguant 2016), but with an
emphasis on the cost specificities. The question we address is how firms exerting
some market power adapt their strategies when their technologies are partially
flexible and the demand to serve is both random and price responsive. A cor-
related question is how the two-market structure that is the standard in most
liberalized countries (day-ahead commitment followed by intra-day adjustment)
affects the competitors’ strategies. Crampes and Renault (2019) show that, when
all agents are price-takers and risk-neutral, making competition in the wholesale
market efficient given demand uncertainty does not necessitate a day-ahead mar-
ket. By contrast, when producers have some market power, trading only on
ex-post markets or on a combination of ex-ante and ex-post markets is not the
same.1 In this paper, we discuss the elements that determine which market design
is the most socially efficient in a Cournot duopolistic structure framework.
The question is sensible in terms of competition policy. Indeed, in the energy

field, competition authorities face questions such as "Are units inflexible because
they are old and inefficient, because owners have not invested in increased flexibil-
ity or because they serve as a mechanism for the exercise of market power?"2 Our
model provides some intuitions that help identifying strategic uses of (in)flexibility
in timing. Note also that in the dual market structure, firms that bid in both
markets are de facto multiproduct producers. Then, one can wonder whether it
is possible to use one of the markets as a leverage to exert market power in the
other.
The paper is organized as follows. In Section 2 we present the general hy-

potheses on demand and production, and on the timing of the game. We also
specify a quadratic surplus function and a quadratic cost function that will illus-
trate some of the results. Section 3 presents the basic trade-off between the extra
cost of producing a given quantity with little anticipation and the benefits of a
better knowledge of the target, first when there is only one production plant, then
when production can be allocated to two plants. In Section 4, we switch to the
analysis of imperfect competition with a duopoly that can be either symmetric
or asymmetric in terms of production cost. In particular, we study how benefits
and risks are re-allocated between producers and consumers when the ex-post
spot market is complemented by a day-ahead market. We conclude in Section 5.

2 Hypotheses
We consider n firms competing to supply residual demand for electricity, that is
the demand not served by undispatchable energies like wind, solar and along-the-

1Using data from the German market, Goutte and Vassilopoulos (2019) show that the volat-
ility of short term prices provides an additional revenue to the flexible resources able to react
quickly as real-time approaches.

2Page 104 section 3 in "2018 Quarterly State of the Market Report for PJM",
http://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2018/2018q3-
som-pjm-sec3.pdf
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river power. Since both supply by renewables and final demand are random, the
residual demand is random. Let S(x, z) denote the gross surplus of consumers
and green producers, where z is a random variable with expectation IE(z) =
E and variance V = IE(z2) − E2. In the following, we will refer to z as the
’willingness-to-pay’ of consumers or the ’market size’. The function S(x, z) is
increasing and concave in x and, after reordering, increasing in z. Consumers and
intermittent producers are price-takers. Because we focus on the partial flexibility
of dispatchable producers, we assume that the residual demand is reactive to price
changes. Given the exogeneous price p and the state of nature z, the residual
demand in inverse form is p(x, z).3 Given the properties of the surplus function,
p(x, z) is decreasing in x and increasing in z.
Firms can bid in two stages. Day ahead, before knowing the value of z,

each firm i can bid Qi ≥ 0. Later, firm i can bid qi ! 0 knowing z (as long as
qi+Qi ≥ 0) and its competitors’ commitment Q−i. The cost function is Ci(Qi, qi),
increasing with its two arguments, and convex. Since delaying decisions until
knowing the true state of nature reduces the lag between the decision time and
its implementation, the second stage output is more costly than the quantity
planned initially. Then Ci(x, 0) < Ci(0, x) for any x > 0 in each production plant
i.
In the following, we will write Q = Qi +Q−i, q = qi + q−i, 1Q = (Q1, ..., Qn),

and 1q = (q1, ..., qn).
To illustrate our results, we will use the quadratic specifications

S(x, z) = (z − x/2)x (1)

Ci(Qi, qi) = (Qi + qi)
2 + aiq

2
i , i = 1, ..., n

where ai ≥ 0 is the index of (in)flexibility. The quadratic form of the cost function
has continuity characteristics that make it easier to handle than the multilinear
specification used in Crampes and Renault (2019). Having quadratic specifica-
tions for both utility and costs has the advantage to provide explicit results in
terms of the average value E and the variance V of the random component of
demand without having to specify a distribution of probability. The main draw-
back is that there is no room for dissymetry and higher statistical characteristics
of the random shock in the equilibrium quantities and prices. However, higher
statistical moments show up in the variance of equilibrium profits and surplus so
that they play a role to explain how market design transfers risks from producers
to consumers.

3If consumers are perfectly reactive, for each observed pair (p, z), they solve maxx S(x, z)−
px. Then, the inverse demand function in state z, p(x, z), is derived from the first order condition
∂S
∂x (x, z) = p. Imperfect response can be represented by a parameter α < 1 such that the FOC
is ∂S∂x (x, z) = αp. For each z, the resulting residual demand curve is located above the optimal
one. The lower α, the steeper the demand curve. In the extreme case where α = 0, the demand
curve in state z is a vertical line: consumers are unable to change their consumption when the
price of energy varies.
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3 Wait-and-see gains and costs
The trade-off between the informational benefit of delayed decisions and the extra
cost due to shorter delays can be analyzed by maximizing the expected welfare
function taking into account the possibility to fix the adjusted production after
z is known. Notice that maximising the expected welfare, that is the expected
difference between the consumers’ surplus and the production cost, implicitly
assumes that consumers are risk-neutral to monetary transfers. To facilitate the
identification of the elements of the trade-off, in subsection 3.1 we assume that
there is one single production plant and in subsection 3.2 we add a second plant.

3.1 One production plant

Assume first that all production is coming from one plant. The first-best problem
is

max
Q
IEzmax

q
W (Q, q, z)

where W (Q, q, z)
def
= S(Q+ q, z)− C(Q, q).

Ex post. Upon observing z and knowing the quantity Q already planned,
the first order condition of maxq S(Q+ q, z)− C(Q, q) is

S′(Q+ q, z) = C ′q(Q, q) (2)

where S ′(x, z)
def
= ∂S(x, z)/∂x is the marginal gross surplus and C ′q(Q, q) the

marginal cost of adjustment. Given the hypotheses on surplus and cost, this
condition is sufficient to determine the adjustment function q(Q, z). The adjusted
quantity is related to the planned output and the random market size by

dq

dQ
= −

S′′ − C ′′qQ
S ′′ − C ′′qq

,
dq

dz
= −

∂S′/∂z

S ′′ − C ′′
qq

Since S ′′ < 0 and C ′′qq ≥ 0, from the hypothesis ∂S ′/∂z > 0 we have that
dq/dz > 0.
The derivative dq/dQ, has the same sign as S′′ − C ′′qQ. Then, if C ′′qQ ≥ 0, or

if C ′′qQ is negative but small in absolute value,
dq
dQ
< 0. Indeed, with a decreas-

ing marginal surplus (S′′ < 0), increasing Q decreases the need for a positive
adjustment: it is a "saturation effect", or, in a market context, a "competition
effect". Additionally, if a larger Q deteriorates the conditions to produce an extra
output, i.e. if C ′′qQ ≥ 0 ("diseconomies of scope"), the adjusted quantity is a de-
creasing function of the planned quantity. It is only when there is a large positive
technical and/or economical externality between the two production processes,
i.e. C ′′qQ < S

′′ < 0, that a large planned output will induce a larger adjustment.
The latter can be the case in thermal plants for small levels of Q since the initial
costs of warming-up being already paid to produce Q > 0, adjustments will be
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less expensive. This can be viewed as "economies of scope" encouraging planned
production. But this positive effect can be insufficient to offset the "saturation
effect". And if Q is large, an increase in Q will most likely increase C ′q, resulting
in dq

dQ
< 0. It is the case with the quadratic cost function C(Q, q) = (Q+q)2+aq2

since C ′′qQ = 2. Indeed, solving (2) in the quadratic case, we obtain

q(Q, z) =
z − 3Q
3 + 2a

(3)

which is decreasing in Q. Note that it is also decreasing in a as we could expect.
Ex ante. The problem is

max
Q
IEz [S(Q+ q(Q, z), z)− C(Q, q(Q, z))]

and, given the adjustment defined by (2), the solution Q∗ is such that

Q∗ ≥ 0, IEz
!
S ′(Q∗ + q(Q∗, z), z)− C ′Q(Q

∗, q(Q∗, z))
"
≤ 0

Q∗ × IEz
!
S ′(Q∗ + q(Q∗, z), z)− C ′Q(Q

∗, q(Q∗, z))
"
= 0 (4)

Then, Q∗ = 0 if IEz
!
C ′q(0 + q(0, z), z)− C ′Q(0, q(0, z))

"
≤ 0. Otherwise, taking

account of the adjustment rule (2), Q∗ is the solution to the equality between the
two expected marginal costs.
In the quadratic case, since IEz

!
C ′q(0 + q(0, z), z)− C ′Q(0, q(0, z))

"
= 2a

3+2a
E >

0 if a > 0, the planned output is positive. From (4), it is the solution to

IEz

#
z −Q−

z − 3Q
(3 + 2a)

− 2(Q+
z − 3Q
(3 + 2a)

)

$
= 0.

We deduce that Q∗ = E/3 if a > 0. From (3) the optimal adjustment is then
q(Q∗, z) = z−E

3+2a
which is decreasing with both the adjustment cost a (as expected)

and the expected demand E since the planned production increases with E and
there are diseconomies of scope. The adjustment is positive (resp. negative) for
large (resp. small) values of the market size z. On average, the adjustment is
nil: IEzq(Q∗, z) = 0. Finally, note that if a = 0 any appropriate combination of
planned and adjusted output is the solution since there is no penalty for delaying
production.

Remark 3.1. Notice that with Q∗ + q(Q∗, z) = 2aE+3z
3(3+2a)

, the condition Q∗ + q ≥ 0
is satisfied for all non negative a and z.

Remark 3.2. Planning a production Q∗ non dependent on the adjustment cost
a (= 0 is somewhat counter-intuitive. The same is true as for the zero expected
adjustment. This actually is an artifact of our elementary quadratic specification.
Indeed, under the slightly more complex function C(Q, q) = (bQ+ q)2+aq2 where
b is a cost index for the base production, the adjustment function is q (Q, z) =
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z−(1+2b)Q
3+2a

, the optimal planned output is Q∗ = 1+a−b
1+a−2b+(1+2a)b2E, and one can com-

pute that IEzq(Q∗, z) (= 0. The reason is that with b (= 1 the forecasted sales
Q+ q are not homogeneous in terms of initial cost in addition to the subsequent
adjustment cost. The advantage of setting b = 1, is that the planned quantities
are simple to compute and compare, and we can focus on the adjustment process,
then on the benefits and costs of having flexible technologies.

Welfare evaluation. Plotting Q = E
3
and q = z−E

3+2a
into W, we obtain the

following welfare value in state z :

W ∗ =
1

12a+ 18

%
3z2 + 4azE − 2aE2

&
(5)

and the expected welfare

IEW ∗ =
1

6
E2 +

V

2 (2a+ 3)

With IEW ∗ increasing in V, there is a social gain from randomness as was
shown by Waugh (1945) for consumers and Oi (1961) for producers, provided
they are risk-neutral to monetary transfers. However this benefit decreases when
the adjustment cost parameter a increases, and it vanishes when the technology
is fully inflexible (a −→∞).
Market mechanism with only ex post transactions. The first best

quantities can be decentralized with competitive price-taking firms and consumers
facing exogeneous ex post contingent prices. Since it is a mere application of the
second theorem of welfare, let us just check it with our numerical illustration. Ex
post, consumers solve maxq+Q S(Q+q, z)−p(q+Q) where p is independent from
the quantities. Given (1), demand is Q + q = z − p. Producers solve maxq pq −
C(Q, q). Hence the adjustment supply function using (1) is q = p

2(1+a)
− Q

(1+a)
.

Equating supply and demand, we deduce the equilibrium price and quantity in
state z,

p (Q, z) = 2
z (1 + a)− aQ

3 + 2a
, q(Q, z) =

z − 3Q
3 + 2a

(6)

Anticipating these quantities and prices, firms launch planned production solving
maxQ IE [p× (q +Q)− C(Q, q]. Since they are price-takers, they do not intern-
alize the effect of Q on p (Q, z) . However, as rational agents, they internalize the
effect on q (Q, z) . Consequently, the first order condition is

IE

#
p (Q, z) (1 +

dq

dQ
)−

'
C

′

Q + C
′

q

dq

dQ

($
= 0 = IE

)
p (Q, z)− C

′

Q

*

since C
′

q = p (Q, z) by the condition on ex post adjustment. Then, simple calcu-
lation shows that producers choose Q = E/3.
Trade on two markets. As shown in Crampes and Renault (2019), if

we open a market for ex ante transactions in complement to the ex post mar-
ket, as it is the case in most organized power markets that combine day-ahead
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and intra-day trade, under perfect competition the result is the same as when
there is one single market like in the former paragraph. Indeed, the ex-post
demand function is q = z − Q − p where Q is the ex ante purchase, and sup-
ply is the same as in the one single market case. Therefore, the ex post equi-
librium is the same as in (6). Let P be the ex ante price. Producers solve
maxQ PQ+ IE [p (Q, z) (q(Q, z)− C(Q, q(Q, z)] . Again ∂p (Q, z) /∂Q ≡ 0. Then
the FOC reads P + IE

)
p (Q, z) ∂q(Q,z)

∂Q
−
+
C

′

Q + C
′

q
∂q(Q,z)
∂Q

,*
= 0. Given the-ex

post adjustment, we obtain the (inverse) supply function for planned production
P = IE

!%
C

′

Q

&"
or, with our specification, P = 22aQ+E

3+2a
. On the demand side, the

consumers solve maxQ IE [S(Q+ q(Q, z)] − PQ − IE [p (Q, z) q(Q, z)] and their
demand function is IE [S ′(Q+ q(Q, z)] = P, specifically P = 2 [(1+a)E−aQ]

(3+2a)
. At

equilibrium between ex ante supply and demand, we obtain Q = E/3 as ex-
pected, and P = 2

3
E. The latter actually is IEp (Q, z) . Indeed, P = IEp (Q, z)

prevents any possibility of arbitrage between the two markets.
Risk neutrality. It is worthwhile noting that the equivalence of the two

market designs results from the quasi-linearity of the consumers’ and producers’
preferences. Indeed, assuming that the consumers’ performance is measured by
their net surplus Sn = S− px and the producers’ performance by their net profit
π = px − C implicitly states that they are risk-neutral when facing monetary
risks. Consequently, as long as the today price is the same as the expectation of
the tomorrow prices, randomness does not affect their decisions.

3.2 Two production plants

We now analyse the social gains due to the existence of two production plants. We
first consider the general optimization problem, then we determine the explicit
solution corresponding to the quadratic specification.

3.2.1 General properties

There are two plants producing the same homogenous product with respective
cost functions C1(Q1, q1), C2(Q2, q2). Costs are increasing and convex.
The problem to solve is

max
Q1,Q2

IEzmax
q1,q2

W ( 1Q,−→q , z)

• Given Q1, Q2 and z, the adjustments are the solutions to

S′(Q+ q, z) = C ′1q(Q1, q1) = C
′
2q(Q2, q2) (7)

The adjustment in plant i is then a function of both the market size and the
two planned outputs: qi(Q1, Q2, z).
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Total differentiation of the two equations in (7) wrt Qi gives the variation in
qi due to a variation in the planned output of plant i:

dqi
dQi

= D−1
)
S
′′
C

′′

−iqq +
+
S
′′
− C

′′

−iqq

,
C

′′

iqQ

*

where D denotes the determinant of the full system. D is positive by concavity
of the objective function. Then, like in the one-plant case, C

′′

iqQ ≥ 0 is sufficient
for dqi

dQi
≤ 0. It would take a negative and large in absolute value C ′′

iqQ to obtain
the opposite. As for the adjustment in plant −i,

dq−i
dQi

= D−1S
′′
+
C

′′

iqq − C
′′

iqQ

,
,

which is negative if C
′′

iqQ is negative or positive but small in absolute value, and
dq−i
dQi

> 0 when C
′′

iqQ >> 0. The reason is that plant 1 and plant 2 compete in the
adjustment process. Then, if C

′′

iqQ < 0 it is profitable to decrease q−i and leave
room to a potential increase in qi. Conversely, if there are strong diseconomies of
scope between Qi and qi (i.e C

′′

iqQ >> 0), efficiency requires to use plant −i for
adjustments after an increase in the planned production of plant i.

• Ex ante, given the adjustment defined by (7), the solution Q∗1, Q∗2 is such
that for i = 1, 2

Q∗i ≥ 0, IEz
!
S ′(Q∗ + q(Q∗1, Q

∗
2, z), z)− C

′
iQ(Q

∗
i , qi(Q

∗
1, Q

∗
2, z)

"
≤ 0

Q∗ × IEz
!
S ′(Q∗ + q(Q∗1, Q

∗
2, z), z)− C

′
iQ(Q

∗
i , qi(Q

∗
1, Q

∗
2, z)

"
= 0 (8)

Depending on the form of the cost functions, in particular their relative ad-
vantage in terms of flexibility, we can obtain solutions where the two plants
produce at the two speeds, and others where they must specialize (e.g. Q∗1 >
0, Q∗2 = 0, q1(Q

∗
1, 0, z) = 0, q2(Q

∗
1, 0, z) > 0).

3.2.2 Quadratic specification

To share or not to share From a pure cost-efficiency point of view, the
quadratic function Ci(Qi, qi) = (Qi + qi)

2 + aiq
2
i , i = 1, 2 opens the door to a

trade-off between specialisation and two-speed production. Indeed, with convex
cost functions (∼decreasing returns to scale), we must share any given quantity
among several generation units to reduce the total cost. On the other hand,
there are "diseconomies of scope", globally (Ci(Qi, qi)− (Ci(Qi, 0) + Ci(0, qi)) =
2Qiqi > 0), and at the margin (

∂2Ci(Qi,qi)
∂Qi∂qi

> 0). Then separating the planned and
adjusted productions would lower the marginal cost of both. Actually, since there
is no parameter making the planned ouput more or less costly depending on the
production unit (see the specification in Remark 3.2 for a counter-example), the
trade-off will be solved by asking each plant i to prepare the same ex ante level
of production Qi.
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Quantities To apply the results of subsection 3.2.1, suppose that the social
planner can order production from two plants with non-negative inflexibility in-
dices a1, a2. The utility function is unchanged. The total expected welfare is
then

W = IE((z −
1

2
(Q+ q))(Q+ q)− (Q1 + q1)2 − (Q2 + q2)2 − a1q21 − a2q

2
2). (9)

From (7) we know that ex post productive efficiency is reached when the two
marginal adjustment costs are equal, i.e. given Q1, Q2 and the total quantity
x = Q+ q to produce, we have

2Q1 + 2(1 + a1)q1 = 2Q2 + 2(1 + a2)q2 (10)

so that
(1 + a1)q1 − (1 + a2)q2 = Q2 −Q1

i.e. the larger adjustment will be done in the plant with the smaller planned
output and, for a given difference Q2 − Q1, the larger ai, the smaller qi and/or
the larger q−i, (i = 1, 2). Note that (10) is true for all values of q1 and q2 (in the
limit of qi ≥ −Qi) since these quantities can be positive or negative.
Now, equating (10) with marginal utility, we can solve for q1 and q2:

-
q∗1 = γ−1 [(1 + a2)z − (4 + 3a2)Q1 − a2Q2]
q∗2 = γ−1 [(1 + a1)z − (4 + 3a1)Q2 − a1Q1]

(11)

where γ is a constant:

γ = 4 + 3a1 + 3a2 + 2a1a2. (12)

As expected, the two quantities decrease with the planned outputs. For a
given z, it means that the adjusted quantities are positive and smaller and smaller
(resp. negative and larger and larger in absolute value) when Q1 + Q2 is small
(resp. large) and increases.
At the planning stage, we know from (8) that the solution Q1, Q2 must make

the two expected marginal costs and the expected marginal utility equal:

IE [z −Q1 −Q2 − q∗1 − q
∗
2] = IE [2(Q1 + q

∗
1)] = IE [2(Q2 + q

∗
2)] . (13)

Using (11) and solving, we obtain

Q∗1 =
1
4
E,Q∗2 =

1
4
E

q∗1 = γ
−1 (1 + a2) (z − E) , q∗2 = γ−1 (1 + a1) (z −E)

(14)

Remark 3.3. Contrary to our observation in Remark 3.1, when there are several
production plants the internal solution given by (14) does not guarantee that the
condition Q∗i + q

∗
i ≥ 0 holds. Indeed we face the risk of obtaining a solution

where one plant adjust downwards to decrease not only its own output but also
the output of the other plant, which is technically impossible. Formally, using (12)
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and (14), we must check that 2ai (1 + a−i)+(ai − a−i)+(4 + 4a−i) z ≥ 0, i = 1, 2.
We see that the constraint is redundant as long as the difference (ai − a−i) is not
too large and/or the demand index z is never too low. By contrast, suppose that
firm 2 is fully inflexible (a2 −→ +∞) so that q∗2 = 0 and firm 1 can adapt at
a finite cost. Then equation (10) is no longer relevant. To determine q1(

−→
Q, z),

we must equate the marginal cost of adjustment in plant 1 with marginal utility:
2Q1 + 2(1 + a1)q1 = z − (Q1 +Q2 + q1) and we obtain q1 = z−(3Q1+Q2)

3+2a1
. Solving

the stage 1 condition (13) for this adjustment functions, the corner solution is
Q∗1 = Q∗2 =

1
4
E, q∗1 =

z−E
2a1+3

, q∗2 = 0. The total output of firm 1 is Q∗1 + q
∗
1 =

1
4
E + z−E

2a1+3
≥ 0. It is non negative if z ≥ E

4
(1 − 2a1). We see that the most

constraining case is when firm 1 is perfectly flexible (a1 = 0). The condition is
then z ≥ E

4
which means that demand forecasts must be accurate enough for the

lowest possible level to be at least one fourth of the average, which is not very
challenging given the statistical tools available today.

Apart from the extreme cases evoked in Remark 3.3, the first best (interior)
solution is given by (14): both firms are active at the two periods because, under
increasing marginal costs, it is efficient to share the load. They produce the same
quantity at the planning period because of the peculiarities of our cost function:
in each firm, decreasing the planned output Qi decreases the adjustment marginal
cost, and the two firms incur the same cost for the production of Qi. Then the
adjusted quantities q1, q2 only differ from each other because their marginal costs
have different slopes ∂Ci(Q

∗
1,q1)

∂qi
= E

2
+2(1+ ai)qi. Ex post, efficiency imposes that

∂q∗i /∂ai < 0, ∂q∗i /∂a−i < 0 and q∗1 ! q∗2 as a2 ! a1. Note that the adjustments
decrease with the expected demand since planned outputs increase with E.
Given these quantities, welfare in state z is

W ∗=
1

4γ

%%
z2 −E2

&
a1 +

%
z2 −E2

&
a2 + (a1 + a2 + 4) z

2 − 2E2a1a2 + 2zE (a1 + a2 + 2a1a2)
&

resulting in the expected welfare

IEW ∗ =
E2

4
+
2 + a1 + a2

2γ
V

To compare these results with those of the one-plant case, assume that a1 =
a2 = a.Then q∗1 + q

∗
2 =

1+a
2+3a+a2

(z −E) , Q∗1+Q∗2 =
1
2
E and IEW ∗ = E2

4
+ 1

2(a+2)
V.

At the two stages of the production process the total quantity is larger because
the cost has been alleviated by allocating the output among the two plants. Here
again, the expected welfare can be explicitly written as a function of the mean
and variance of demand. Both terms are larger than in the one-plant case but,
again, there is no benefit from the variance if the parameter a becomes infinite.

Prices First best can be decentralized if all agents are price takers. Using the
same argument as in the one-plant case, we can compute the adjustment price by
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fixing it at the value of the first best marginal utility S ′ = z − (Q∗ + q∗),which
gives

p(z) = z − γ−1
'
γ
E

2
+ (2 + a1 + a2) (z − E)

(
.

The price of the day-ahead market (if there is one), is obtained by taking the
average of the spot price (no-arbitrage argument)

P = IEp(z) =
E

2

to be compared with P = 2
3
E obtained in the one-plant case. Clearly, sharing the

load between two price-taking firms is profitable to consumers since they consume
more at a lower price than with one single price-taking producer. As for the firms,
the price decrease is offset by a drop in costs, so that the profit of the industry
1
8
E2 + 1+a

2(2+a)2
V is larger than when there is only one producer, 1

9
E2 + 1+a

(3+2a)2
V.

In order to facilitate the comparison with the results of the next section, we
summarize the main outcomes in the following Proposition:

Proposition 3.4. When the gross surplus and cost functions are given by the
quadratic specifications (1), at first best with two production plants the ex ante
production levels are Q∗1 =

1
4
E,Q∗2 =

1
4
E and the two expected adjustments are nil.

The expected welfare is IEW ∗ = E2

4
+ 2+a1+a2

2γ
V . If the plants are operated by two

price-taking private operators, the outcomes are the same as at first best whatever
the market design. If one firm is perfectly flexible and the other totally inflexible
( a1 = 0 et a2 = +∞), when V > 0 the flexible firm has a higher expected profit
than the inflexible one: IEΠ∗1 =

E2

16
+ V

9
> IEΠ∗2 =

E2

16
.

4 Duopoly
We now assume that there are two firms, each managed by an independent private
owner who wants to maximize its expected operating profit by fixing the quantit-
iesQi and qi, taking account of the effect of its decisions on prices, and constrained
by its competitor’s choices (Cournot competition). In this framework, we know
from Crampes and Renault (2019) that the two market organizations presented
in the former section are no longer equivalent. In sub-section 4.1 we explain
the roots of this no-equivalence and show that the market design has ambiguous
effects on the total output and the agents’ surplus. In sub-section 4.2, we com-
pare the two market designs under the quadratic specification, and show that the
opening of a day-ahead market makes consumers better off and firms worse off.
It also transfers risks from firms to consumers.

4.1 Strategic behavior

• Ex post, the quantities Q1 ≥ 0, Q2 ≥ 0 are fixed and known by the two
firms. Either they have been sold on the day-ahead market if it exists, or

12



their production has just been launched if there are only ex post markets.4

In a subgame-perfect equilibrium, at stage 2 we have a game parameterized
by z and 1Q. If all quantities are sold at the ex-post price, the payoff of each
firm i is given by

Πi(q1, q2, z) = p(Q+ q, z)(qi +Qi)− Ci(Qi, qi) (15)

where p(Q+ q, z) = S ′(Q+ q, z) is the ex-post demand function. When there
are two successive markets, i’s profit is

.Πi(q1, q2, z) = PQi + p(Q+ q, z)qi − Ci(Qi, qi) (16)

where P is the ex ante price.
Given its market power, each firm i internalizes that its production will lower

the price. In the one-market framework, the FOCs are

p(Q+ q, z) + (Qi + qi)p
′ = C

′

iq(Qi, qi), i = 1, 2 (17)

where p′ = ∂p(q+Q,z)
∂qi

< 0 since S
′′
< 0. Let (qC1 , q

C
2 ) be the unique Cournot

equilibrium of this game and pC = S ′(Q+ qC , z) the associated price.
If there are two successive markets, the FOCs are

p(Q+ .q, z) + .qip′ = C
′

iq(Qi, .qi), i = 1, 2 (18)

Let us denote (.qC1 , .qC2 ) and .pC = S ′(Q+ .qC , z) the equilibrium quantities and
price of this game.
In both market frameworks, the equilibrium price and quantities depend on

z and 1Q. The adjusted quantities are generically decreasing in both Qi and Q−i.

• At stage 1:

— if all production is sold on the ex-post market the expected profit of
i is

Πi(Q1, Q2) = IEz

+
pC(
−→
Q, z)(qCi ( 1Q, z) +Qi)− Ci(Qi, q

C
i ( 1Q, z)

,
(19)

As detailed in Crampes and Renault (2019), the FOC for the maxim-
isation of Πi(Q1, Q2) wrt Qi (internalizing (17)) is

IEz

#
pC +

%
Qi + q

C
i

&
(1 +

∂qC−i
∂Qi

)pC
′
− C

′

iQ

$
= 0. (20)

where pC
′ def
= S

′′
(Q+qC , z) stands for the slope of the inverse demand

function at the equilibrium point. Let QC1 , Q
C
2 denote the solution.

4The assumption that Qi is known by −i even when there is no ex-ante market-place can
be justified in terms of technological and managerial expertise.
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— if there are two markets, the expected profit is

.Πi(Q1, Q2) = P (Q1+Q2)Qi+IEz
)
.pC(Q, z).qCi (1Q, z)− Ci

+
Qi, .qCi ( 1Q, z)

,*

(21)

where P (Q1, Q2) = IEz
%
S
′
(Q+ .qC1 + .qC2 , z)

&
is the ex-ante demand function.

Given (18), the FOC is

P + P ′Qi + IEz

#
.qCi
'
1 +

∂.qC−i
∂Qi

(
.pC′ − C ′

iQ

$
= 0. (22)

Let .QC1 , .QC2 denote the solution.

• Comparing the two pairs of conditions, we observe two differences:

— ex post, if the firms have committed in an ex-ante market, increasing
their adjustment output has a lower impact on their profit since the
drop is .qip′ in (18) instead of (Qi + qi)p′ in (17). Then, given the
same planned quantities Q1+Q2, with two markets the ex post price
will be closer to the marginal cost, and quantities larger than without
day-ahead trade, which is in line with the role of forward markets in
Allaz and Vila (1993) and Ito and Reguant (2016); then this effect
pushes towards .qCi > qCi .

— ex ante, there is no term like Qi
∂qC−i
∂Qi
pC

′
> 0 in (22). The tomorrow

reaction of firm −i has no impact on the today’s marginal revenue
of firm i whereas firm i must consider this response when Qi and q−i
are sold on the same market (see (20)). Consequently, ceteris paribus
the expected marginal revenue of i in the unique market framework
(equation (20)) is higher than in the two-market system. Then, this
effect pushes towards QCi > .QCi .

— consequently, without additional information, we cannot predict whether
QCi + q

C
i " .QCi + .qCi . The specification below provides an illustration

of the outcome from the two antagonistic effects.

4.2 Duopoly equilibrium in the quadratic case

Before determining the duopoly equilibrium with and without a day-ahead mar-
ket, it is useful to gain a better understanding of how the firms can exert their
market power with two-speed technologies.
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Figure 1: Monopoly adjustment output and price.

4.2.1 Market power

Assume a monopoly with the cost function C (Q, q) = (Q+ q)2 + aq2 and facing
the inverse demand function p = z − (Q + q). At stage 2, given Q and after
observing z, it produces the quantity qm (z,Q) = z−3Q

2(2+a)
that equates the marginal

cost C
′

q = 2Q+ 2q (1 + a) and the marginal revenue R
′

q = (z −Q)− 2q. This is
shown in Figure 1 for two values of z, a high value zh and a low value zl. In case
zh, the outcome is standard: the monopoly produces less (point Mh

q ) and sells at
a higher price (point Mh

p ) than what would implement first best (point FB
h). It

is more interesting to observe that when demand is so low that it necessitates a
negative adjustment (case zl), the firm exerts its market power by reducing its
production less than what would be optimal, which means that it supplies too
much. It fixes a price below the optimal one to trigger a larger consumption.
Since increasing the quantity Q has the double negative consequence of push-

ing the ex post marginal cost upwards ("diseconomies of scope" effect) and pulling
the marginal revenue downwards ("self competition" effect), the planned output
produced by the monopolist is the lowest when the extra cost of adjustment a is
low.
Now, let us name i the firm we analyze and introduce a second firm −i.

The output Q−i has no effect on i’s marginal cost but it shifts the marginal
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revenue functions of i downwards, which increases the number of states of nature
where i will have to operate negative adjustments. Then firm i is incentivized by
its competitor to reduce its planned production, with the positive side effect of
decreasing the adjustment cost.
In the following we examine the results of these interactions, first when all the

outputs are sold on the spot market, and second when the firms can also trade
ex ante.

4.2.2 One market

Two firms i and −i compete in quantities in the dynamic setting depicted above.
In the profit function of i (15), the price in state z is p(Q + q, z) = z − (Q + q)
and the cost of i is Ci(Qi, qi) = (Qi + qi)2 + aiq2i .
Ex post. From (17), the FOC to determine the adjustment quantity qi is

z − 4Qi −Q−i − (4 + 2ai)qi − q−i = 0, i = 1, 2

The resulting equilibrium quantities are
-
qC1 = β−1 [(3 + 2a2)z − (15 + 8a2)Q1 − 2a2Q2]
qC2 = β−1 [(3 + 2a1)z − (15 + 8a1)Q2 − 2a1Q1]

(23)

and the price is

pC = β−1 [(2a1 + 3)(2a2 + 3)z − 2 (3 + 2a2) a1Q1 − 2 (3 + 2a1) a2Q2] (24)

where
β = (4 + 2a1)(4 + 2a2)− 1.

Ex ante. To obtain the FOC relative to the ex-ante quantity Qi, let’s use
(20) where we inject pC

′
= −1, ∂q

C
−i

∂Qi
= −2aiβ−1 by (23) and C

′

iQ = 2(Qi + q
C
i ). It

results that
IEz
!
pC −

%
Qi + q

C
i

&
(3− 2aiβ−1)

"
= 0, i = 1, 2. (25)

Then, we inject the adjustment functions given by (23) and solve the two-
equation system. The planned quantities we obtain are proportionnal to the ex-
pected willingness to pay of demanders (the explicit forms are given by equations
(28) in the Appendix 6.1):

QC1 = k1E
QC2 = k2E

(26)

First observe that the two firms will have different ex ante outputs if they
differ in terms of cost parameters, contrary to what we found at first best (see
(14)). This is because the strategic effect is now at work on top of the cost
minimization worry: firms try to gain market shares without decreasing the price
too much. Even when they are totally identical (a1 = a2 = a), the outputs differ
qualitatively from first best since QC1 = QC2 =

4(2+a)2

78a+20a2+75
E is decreasing in a
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whereas Q∗1 and Q
∗
2 given in (14) are fixed. Unsurprisingly, the firms exert their

market power by restricting quantities: QCi < Q
∗
i even when a = 0.

When a1 (= a2, the analysis of the equilibrium quantities (28) in Appendix
6.1 show that QCi is increasing in ai and decreasing in a−i. Moreover, Q

C
1 ≷

QC2 as a1 ≷ a2. These results are the consequence of the diseconomies of scope
mentioned formerly: the firm with the lower cost of adjustment produces less
than its competitor at the first stage because this will limit the negative impact
on its second stage cost where it will be more active. The higher the adjustment
parameter ai, the higher the planned production QCi because firm i does not
intend to intervene intensively at the adjustment stage, hence does not mind
about the negative cost externalty.
Consider now the profit of the firmsΠCi =

!
z − 2

%
QCi + q

C
i

&
−
%
QC−i + q

C
−i

&"
(QCi +

qCi ) − aiqCi
2
, i = 1, 2, and the consumers’ net surplus SCn =

(QC+qC)2

2
in state z.

Given (23) and (28), these functions can be written under the format ΠCi =
lizE + miE

2 + niz
2, i = 1, 2 and SCn = lSzE + mSE

2 + nSz
2 where the posit-

ive weights li,mi, ni, lS,mS, nS only depend on the adjustment coefficients a1, a2.
Consequently, the expected value of i’s profit is

IEΠCi = (li +mi + ni)E
2 + niV, i = 1, 2

and, similarly, the expected net surplus is

IESCn = (lS +mS + nS)E
2 + nSV

They are increasing in E and V , at a speed that depends on the values of the
adjustment coefficients a1, a2.
Numerical illustrations. To gain insights on how the flexibility question

impacts the firms’ strategies and the resulting outcomes, in the following we con-
sider four characteristic cases, three for symmetric costs and one for asymmetric
costs.5

Cost symmetry

• When the two firms are identical with a zero additional cost of adjustment
(a1 = a2 = 0), only the total quantity Qi + qi can be determined. Among
the infinity of sharing rules between Qi and qi, one is the limit of the
subgame-perfect equilibrium when a1 = a2 goes to 0. In this case, the
equilibrium is QCi = 0.213E, qCi = 0.2z − 0.213E, then a total expected
output QC1 + Q

C
2 + IE(q

C
1 + q

C
2 ) = 2/5. It is interesting to note that the

firms have a negative expected adjustment (contrary to the zero average
adjustment at first best in Proposition 3.4), which means that even though
each plans to produce less than at first best, the will to gain market shares
induces on average pushes the output upwards, which increases the risk
of downward adjustment. The expected individual profits are IE(ΠCi ) =

5A larger set of numerical simulations is available in the tables at the end of the paper.
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0.08(E2+V ), the expected consumers’ net surplus is IE(SCn ) = 0.08(E
2+V ).

Consequently, the global performance is IE(WC) = 0.24(E2 + V ). In this
extreme case of perfect flexibility, the demand randomness (measured by
variance) is as profitable as the average willingness to pay.

• Consider now the opposite: the two fims have fully inflexible technolo-
gies: a1 = a2 = +∞. Obviously qCi = 0 for both firms and we have a
standard Cournot duopoly. The equilibrium quantities are QCi = 0.2E, in-
dividual profits amount to IE(ΠCi ) = 0.08E

2 and the net consumers’ surplus
is IE(SCn ) = 0.08E

2. Comparing with the perfect flexibility case, we see that
everybody is losing the gains from the demand variance.

• Let us switch to an intermediary symmetric case, for example a1 = a2 = 1.
At equilibrium, we obtain

QCi ≃ 0.208E, qCi ≃
1

7
z − 0.149E i = 1, 2

IE(ΠCi ) ≃ 0.079E2 + 0.061V i = 1, 2

IE(SCn ) ≃ 0.082E2 + 0.041V (27)

IE(WC) ≃ 0.241E2 + 0.163V

Unsurprisingly, the result falls in between the two former cases: the planned
output takes an intermediary value, the average adjustment is slightly neg-
ative and variance matters but less than if the technologies were fully flex-
ible.

• In the three cases above, the firms are symmetric. The case where a1 =
a2 = +∞ is an interesting bechmark because firms are just competing "à
la Cournot" facing an average demand. They both produce QCi = 0.2E <
Q∗i = 0.25E, qCi = q∗i = 0 whatever z, hence an expected social welfare
IEWC = 0.24E2 < IEW ∗ = 1

4
E2. These are standard results of imperfect

competition. We can similarly observe that Cournot profits are larger than
perfect competition profits and the opposite for consumers’net surplus. In
the two other cases where the ai are finite, we observe that QCi is larger
than when ai = ∞ and that the average adjustments are negative. This
is a Stackelberg effect: each firm has the incentive to invade the market to
decrease the market share of its competitor. But doing so, it is competing
against itself in the adjustment stage which explains the average decrease in
qi. This is a strategy à la Allaz and Vila (1993) with the trade-off between
the gains of pushing the price up by restricting supply and the drawback of
leaving a larger market share to the competitor.

Cost asymmetry

• There is an infinity of possibilities to depict cost dissymmetry. Suppose that
a2 > a1 so that firm 2 is less efficient than firm 1 at adjusting its output.
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Then anticipating it will produce a small ex post quantity, it can increase
its planned production without impairing too much its ex-post cost. Facing
this more agressive ex ante strategy, firm 1 reduces its planned production
and participates more in the adjustment process. As expected, there occurs
a partial specialisation of the firms.

• Let us illustrate it with the extreme case where firm 1 is perfectly flexible
and firm 2 fully inflexible: a1 = 0, a2 = +∞. When a1 = 0, there exist
several equilibria defined by QC1 + q

C
1 =

z
4
− 3E

56
. The following one is the

equilibrium obtained when a1 tends to 0:6

QC1 ≃ 0.196E, QC2 ≃ 0.214E,

qC1 =
1

4
(z − E), qC2 = 0,

IE(ΠC1 ) ≃ 0.077E2 + 0.125V, IE(ΠC2 ) ≃ 0.080E
2

IE(SCn ) ≃ 0.084E2 + 0.03V

IE(WC) ≃ 0.242E2 + 0.156V

Since firm 2 cannot adjust its production to the revelation of z (in Figure 1 its
marginal cost is just the vertical axis), firm 1 is a monopoly at the second stage.
And since firm 1 can produce at the same cost at the two stages, it would like to
share its output equally to prevent being penalized by increasing marginal costs.
However, it would not be profitable to do so because of the opportunism of firm 2
that would increase its ex ante production. Then we have QC1 < Q

C
2 < Q

∗
1 = Q

∗
2.

Consider now the expected profits. Firm 1’s profit IE(ΠC1 ) is increasing in both
the average and the variance of demand. By contrast, since firm 2 does not
participate in the adjustment market, only the average value of the willingness-
to-pay appears in IE(ΠC2 ), but with a higher coefficient than in IE(Π

C
1 ). It means

that, contrary to what we had under perfect competition (see Proposition 3.4),
for a small variance, the inflexibility of firm 2 is an advantage over the flexibility
of firm 1. Indeed, firm 2 contrary to firm 1 can credibly commit that it will
not adjust ex post. Then it has a Stackelberg market power pushing away firm 1
from the ex ante process, a result in line with the worry of competition authorities
quoted in footnote 1.
To sum up:

Proposition 4.1. When the gross surplus and cost functions are given by the
quadratic specifications (1) and there is no day-ahead market, two firms competing
in quantities produce less than at first best. If the firms have the same cost
function, the higher the adjustment cost, the lower the planned outputs and the
higher the (negative) expected adjustment. If the firms are asymmetrical, the
less flexible firm plans a higher level of output and adjusts less ex post than its

6Notice that the condition qC1 + Q
C
1 ≥ 0 is met if z ≥ 3

14E, which is satisfied given the
restriction z ≥ E

4 set in Remark 3.3.
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competitor. When the demand variance is low, being inflexible is more profitable
than being flexible.

Remark 4.2. In the symmetric case a1 = a2 = a, it is somewhat couterintuitive
to have QCi decreasing and IE(q

C
i ) increasing in a. On cost grounds, it is obviously

inefficient. Then the explanation is to be sought in terms of strategic effect:
each firm is seeking to appropriate a large market share (market stealing effect),
but doing so it increases the set of states of nature where it will have to adjust
downwards (note that the expected adjustment is always negative). When the
adjustment cost a increases, the firm decreases its planned production in order to
limit the cost of the negative expected adjustment. The higher a, the closer to 0 the
negative IE(qCi ), and the global game looks more and more like a one-shot game
with an outcome converging to a standard Cournot equilibrium. As a byproduct,
the expected total quantity QCi + IE(qCi ) is not monotonous in a: it is increasing
(resp. decreasing) when a is small (resp. large).

4.2.3 Addition of a day-ahead market

Assume now that the two firms i = 1, 2 do not just decide on the production
of Qi at stage 1. They also sell it on a day ahead market at a price equal to
the expectation of the ex post prices. On the intra-day market, fim i only sells
qi. In the following, we first consider two cases of identical costs: a1 = a2 = 1
and a1 = a2 = +∞ to emphasize the drastic changes due to the opening of a
day-ahead market, then the case a1 = 0, a2 = +∞ to illustrate the potential of
firms’ specialization.
Finite identical costs: a1 = a2 = 1
Applying the quadratic specification to the first order condition (18) and

assuming that a1 = a2 = 1 we obtain the following equilibrium outcome (the
explicit solution is in Appendix 6.2):

.QCi ≃ 0, 184E, .qCi ≃ 0, 143z − 0, 105E, i = 1, 2

The average profit of i is

IE(.ΠCi ) ≃ 0, 073E2 + 0, 061V,

the average consumers’ net surplus is

IE(.SCn ) = 0, 098E2 + 0, 041V.

and the resulting average welfare is

IE(.SCn + .ΠC) ≃ 0, 244E2 + 0, 163V.

Comparing with (27), we can observe that adding a day-ahead market has the
following effects:
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each firm produces less at the first stage ( .QCi < QCi ) but its average total
production is larger ( .QCi + IE.qCi > QCi + IEqCi ).

expected prices are lower: IE(.pC) ≃ 0.556E < IE(pC) ≃ 0.595E,
consumers are better off (IE .SCn > IESCn ) and firms are worse off (IE.ΠCi <

IEΠCi )
total welfare is higher (IE/WC > IEWC).

With .QCi < QCi but .qCi > qCi , we have an illustration of the two opposite effects
due to the opening of a day-ahead market that we have identified at the end of
subsection 4.1. Here the conflict ends out with .QCi + IE.qCi > QCi + IEqCi , so that
opening a day-ahead market is profitable to consumers, detrimental to producers,
and socially beneficial. However, notice that all the gains and losses result from
an increase in the coefficient of the mean demand, whereas the variance effect
remains unchanged. What if we take a closer look at the random performance
values of the second stage? We observe that /WC > WC if and only if z < 0.96E
and .SCn > SCn if and only if z > 0, 94E. In words, if z is small, the firms get a
bonus and the consumers a malus, because at stage 1 the firms have sold a smaller
quantity at a relatively high price. By contrast, if z is high, the firms get a malus
and the consumers get a bonus, because the consumers have bought at stage 1
products at a relatively low price. The reason why the consumers are better off
and the firms are worse off in expectation is that with convex cost functions, high
values of z matter more than low values.
Interestingly, the minimum profit is larger with a day-aheadmarket (≃ 0, 069E2,

reached when z ≃ 0, 738E) than without (≃ −0, 033E2, reached when z = 0).
Indeed the day-ahead market yields insurance to the firms in case of small z.
This is confirmed by the observation that the addition of the day-ahead market
induces a transfer of risks (measured by profit and surplus variances) from firms
to consumers. Specifically, applying the formulae in Appendix 6.2.3, we have that

V (.Πi)− V (Πi) ≃ 0, 0227V E2 + 0, 0172E4 − 0, 0172EIE(z3)

V (.Sn)− V (Sn) ≃ 0, 0712V E2 − 0, 0225E4 + 0, 0225EIE(z3)
To assess the sign of these differences, we need the following Lemma:

Lemma 4.3. Let z be a random variable taking values in IR+. Recalling that
E = IE(z), V = IE(z2)−E2, then:

IE(z3) ≥ E3 +
3

2
EV.

Proof: Consider the function f : x /→ x3/2, f is convex on IR+ so by Jensen’s
inequality the expectation of f(z2) is at least f(IE(z2)), that is: IE(z3) ≥ (E2 +
V )3/2. But (E2+ V )3/2 = (E2(1+ V

E2
))

3
2 = E3(1+ V

E2
)
3
2 . Since (1+ x)

3
2 ≥ 1+ 3

2
x

for all x, we obtain (1 + V
E2
)
3
2 ≥ 1 + 3

2
V
E2
and IE(z3) ≥ E3(1 + V

E2
)
3
2 ≥ E3 + 3

2
EV.

Applying the Lemma, we obtain

V (.Πi)− V (Πi) ≤ −0, 0031V E2 < 0
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V (.Sn)− V (Sn) ≥ 0, 105V E2 > 0

Note that this is true − under the quadratic specification (1) − for any dis-
tribution of probabilities of the willingness-to-pay z.
Infinite identical costs: a1 = a2 = +∞
This transfer of risks can be emphasized by the case of total inflexibility for

both firms. When a1 = a2 = +∞, we obtain qCi = .qCi ≡ 0 and QCi = .QCi = 0.2E,
i = 1, 2. Even though the outcomes seem identical, the following table shows that
profits and net surplus are differently affected:

intraday market only day-ahead + intraday market
pC = z − 0.4E PC = 0.6E

ΠCi =
1
25
(5z − 3E)E .ΠCi = 0.08E2

SCn = 0.08E
2 .SCn = 0.4zE − 0.32E2

Profits have equal expected values in the two market designs. The same for
the consumer’s net surplus. However, when all trade can only occur ex post, the
quantity QC = 0.4E is produced ex ante and sold at the random price pC = z −
0.4E so that all risks are on the shoulders of firms and consumers are fully insured.
Symmetrically, when trade occurs day ahead, consumers buy the quantity .QCi =
0.4E but they pay a random price which provides full insurance to the producers.
In our model, this transfer is innocuous since both consumers and producers are
risk neutral. But it is worthwhile emphasizing it because in the real world most
consumers (at least households) are risk averse and many entrepreneurs are risk
lovers, so that the opening of a day-ahead market may have some detrimental
effect on welfare.
Asymmetric competition: a1 = 0, a2 = +∞.
The detailed solution for the case where firm 1 is perfectly flexible and firm

2 is totally inflexible is in Appendix 6.3. The first obvious result is that .qC2 = 0
whatever z and Q1 + Q2. Then, firm 1 is a monopoly on the ex post market,
and since it can adjust its output at the same cost as ex ante, its best choice is
.QC1 = 0, abandonning the initial stage to firm 2. The result is full specialization
with two successive monopolies where firm 2 sells .QC2 = 3

14
E day-ahead and firm

1 sells .qC1 = 1
4
z − 3

56
E on the spot market.7

We could deduce that the addition of the day ahead market has very dam-
ageable consequences for competition, then for consumers, since firm 1 has now
complete freedom in the ex-post market. However, the ex post market is shrinked
since the quantity .QC2 = 3

14
E has already been sold. It results a spot price

.p ≃ 3
4
z− 0.161E to be compared with p ≃ z− 0.411E in subsection 4.2.2.We see

that .p is smaller (resp. larger) than p for large (resp.small) values of z and, on
average, IE.p = IEp = 0.589. Since the quantity traded by each firm in each state
of nature is the same as when everything is sold ex post ( .QCi + .qCi = QCi + qCi ,

7Notice that this is the unique equilibrium of the game whereas when there is no day-ahead
market there is a multiplicity of equilibria since firm 1 can produce at the same cost ex ante
and ex post and everything is sold ex post as seen formerly.
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i = 1, 2), the expected profits of the two firms and the expected net surplus and
welfare are unchanged after the adjunction of the day-ahead market.
However, the average values hide some subtle changes. Firm 2 earns the same

average profit, but its profit is not random since all its production is sold ex
ante at an average price. In the same vein, the expectation of the spot price is
the same under the two market designs but the spot price is less varying with
the random shock when there is a day-ahead market. Clearly, the ex ante sales
have a stabilizing effect on the ex post trade. The most interesting feature is the
role of consumers, already mentioned in the cases a1 = a2. Their net surplus is
higher in the day ahead setup if and only if z > E. Here again, the variance of
the consumers’ net surplus increases with the opening of the day-ahead market.
Indeed, from subsection 6.3.3 in the Appendix, we have

V (.Sn)− V (S) ≃ 0, 029V E2 − 0, 01E4 + 0, 01EIE(z3)

which is non-negative by applying the Lemma.
As for firm 1, we have that ΠC1 = .ΠC1 = 1

8
(z − 3

14
E)2 and, for firm 2, ΠC2 =

9
56
E(z − 1

2
E) (= .ΠC2 = 9

112
E2. Then the opening of the day-ahead market changes

nothing as regards the financial risks held by the flexible firm and provides full
insurance to the inflexible firm at the expense of the consumers.

Proposition 4.4. Under the specification (1), when a firm is totally inflexible
and the other is perfectly flexible, if a day-ahead market is added to the spot
market the expected gains of all agents remain unchanged but the inflexible firm
is fully insured by consumers, whatever the distribution of probablities of demand.

5 Conclusion
The analysis of strategic behavior when electricity producers use partially flexible
technologies becomes more and more necessary given the deployment of intermit-
tent renewable sources at large scale. The paper provides some general results on
the trade-off faced by dispatchable generation plants between planning low-cost
production beforehand and benefitting from last minute accurate information on
residual demand. It also shows how the opening of a day-ahead market in addition
to ex post trade changes the strategic choices of two firms competing in quant-
ities. To obtain precise results it is necessary to use specific forms of cost and
surplus functions. In this paper, we have assumed a quadratic surplus function
and a quadratic cost function with diseconomies of scope between the planned
and the adjusted outputs. With these specifications we have shown that being
inflexible can be a strategic advantage since it confers credibility when planning
to produce large quantities. We also have shown that the opening of a day-ahead
market is always socially beneficial, profitable for consumers and detrimental to
producers. However, it also transfers risks from firms to consumers.
Clearly, these results cannot be generalized since the cost and surplus func-

tions we have used are very specific. However, they provide some hints on the
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paths to explore in the analysis of supply flexibility and the design of electricity
markets. We must relax at least four hypotheses to investigate the robustness of
the results. On the supply side, considering non quadratic cost functions would
allow to introduce statistical moments higher than variance, in particular skew-
ness since adjustment is generally more costly upwards than downwards. The
case of economies of scope (that is, a negative cross second derivative of the cost
function) should also be considered because starting costs and warming-up costs
are essential in thermal plants. On the demand side, we have assumed linear-
ity without analysing how the results vary if the slope of the demand function
changes. With more responsiveness to price variations on the consumer side, tech-
nical flexibility becomes less essential. Finally, the transfer of risks to consumers
when a day-ahead market is opened is sufficiently intriguing to justify the analysis
of the case where consumers are risk averse instead of risk neutral. A discount
on the day-ahead price would allow efficient risk sharing between producers and
consumers.
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6 Appendix

6.1 Duopoly game without day ahead market

After substituting for the adjustment functions qC1 , q
C
2 given by (23), solving the

two-equation system.

IEz
!
pC −

%
Q1 + q

C
1

&
(3− 2a1β−1)

"
= 0

IEz
!
pC −

%
Q2 + q

C
2

&
(3− 2a2β−1)

"
= 0

gives the planned quantities

QC1 =
E
D
4(a1 + 2)(a2 + 2)

%
(15 + 8a1)(45 + 24a1 + 46a2 + 24a1a2) + 8a

2
2(2 + a1)(11 + 6a1)

&

QC2 =
E
D
4(a1 + 2)(a2 + 2)

%
(15 + 8a2)(45 + 46a1 + 24a2 + 24a1a2) + 8a

2
1(2 + a2)(11 + 6a2)

&

where D =
%
8a1(2 + a2)(7 + 4a2) + (15 + 8a2)

2
& %
8a2(2 + a1)(7 + 4a1) + (15 + 8a1)

2
&
−

64a1a2(2 + a1)
2(2 + a2)

2.
(28)

They are denoted QCi = kiE, i = 1, 2 in subsection 4.2.2.
The equilibrium adjustments are given by

-
bq∗1 = (3 + 2a2)z − (15 + 8a2)Q∗1 − 2a2Q∗2
bq∗2 = (3 + 2a1)z − 2a1Q∗1 − (15 + 8a1)Q∗2
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6.2 Subgame perfect equilibrium in the quadratic case
with a1 = a2 = 1 when there are two markets

6.2.1 Stage 2 equilibrium

At stage 2, given 1Q = (Q1, Q2) and z, the price will be p(Q+ q, z) = z− (Q+ q).
Each firm i chooses qi so as to maximize:

Πi(q1, q2) = (z − (Q+ q))qi − (Qi + qi)2 − q2i + P (Q1, Q2)Qi.

Notice that the last term does not depend on qi and does not matter at this stage.
This is concave in qi, and differentiating gives:

-
6q1 + q2 = z − 3Q1 −Q2
q1 + 6q2 = z −Q1 − 3Q2.

(29)

We obtain the equilibrium of stage 2:





.q1(z,
−→
Q) = 1

7
z − 17

35
Q1 − 3

35
Q2,

.q2(z,
−→
Q) = 1

7
z − 3

35
Q1 − 17

35
Q2,

Q1 + .q1(z,
−→
Q ) = 1

7
z + 18

35
Q1 − 3

35
Q2,

Q2 + .q2(z,
−→
Q ) = 1

7
z − 3

35
Q1 +

18
35
Q2.

(30)

As a consequence,

p(Q+ .q, z) = 5

7
z −

3

7
Q1 −

3

7
Q2,

and the demand function at stage 1 is:

P (Q1, Q2) = IE(p(Q+ .q, z)) =
5

7
E −

3

7
Q1 −

3

7
Q2.

6.2.2 Stage 1 equilibrium

At stage 1, each firm i chooses Qi in order to maximize:

Πi(Qi, Q−i) = P (Qi, Q−i)Qi + IEz
+
p(Q+ .qi( 1Q, z), z).qi( 1Q, z)− Ci(Qi, .qi( 1Q, z)

,

= (
5

7
E −

3

7
Qi −

3

7
Q−i)Qi

+(
5

7
z −

3

7
Qi −

3

7
Q−i)(

1

7
z −

17

35
Qi −

3

35
Q−i)

−(Qi +
1

7
z −

17

35
Qi −

3

35
Q−i)

2 − (
1

7
z −

17

35
Qi −

3

35
Q−i)

2.
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Differentiating with respect to Qi and combining the best response functions,
we obtain the equilibrium outputs

.QC1 = .QC2 =
73

397
E ≃ 0, 184E.

Then, one can compute the prices

.PC ≃ 0, 557E, .pC ≃ 0, 714z − 0, 158E.

The intraday quantities are

.qC1 = .qC2 ≃ 0, 143z − 0, 105E
and the total quantity produced by i is equal to

.QCi + .qCi ≃ 0, 143z + 0, 079E, i = 1, 2

The resulting profit is

.ΠCi ≃ 0, 102E2 − 0, 090zE + 0, 061z2 (31)

and its expected value is

IE(.ΠCi ) ≃ 0, 073E2 + 0, 061V.

The consumers’ net surplus is

.SCn = ((z−( .QC+.qC)/2)( .QC+.qC)− .PC .QC−.pC.qC ≃ −0, 251E2+0, 041z2+0, 308zE
(32)

and its expected value is

IE(.SCn ) = 0, 098E2 + 0, 041V.

Finally, the expected welfare value is

IE(.SCn + .ΠC) ≃ 0, 244E2 + 0, 163V.

6.2.3 Variances when a1 = a2 = 1

The variance of profits and surplus is

• without day-ahead trade:

V (Πi) ≃ −0, 004V 2 + 0, 004IE(z4)− 0, 011V E2 − 0, 01E4 + 0, 006EIE(z3)
(33)

V (Sn) ≃ −0, 002V 2 + 0, 002IE(z4)− 0, 005V E2 − 0, 004E4 + 0, 003EIE(z3)
(34)

• with a day-ahead market:

V (.Πi) ≃ −0, 004V 2 + 0, 004IE(z4) + 0, 012V E2 + 0, 007E4 − 0, 011EIE(z3)
(35)

V (.Sn) ≃ −0, 002V 2 + 0, 002IE(z4) + 0, 066V E2 − 0, 027E4 + 0, 025EIE(z3)
(36)
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6.3 Subgame perfect equilibrium in the quadratic case
with a1 = 0, a2 = +∞ when there are two markets

6.3.1 Stage 2 equilibrium

Given the cost structure, its obvious that .qC2 = 0. At stage 2, given 1Q = (Q1, Q2)
and z, firm 1 chooses q1 so as to maximize:

Π1( 1Q, q1, 0, z) = (z − (Q1 +Q2 + q1))q1 − (Q1 + q1)2 + P (Q1, Q2)Q1.

which is concave in q1. The first order condition is z − 3Q1 −Q2 − 4q1 = 0, from
which we derive the equilibrium of stage 2:

.q1(1Q, z) =
z − 3Q1 −Q2

4

.q2(1Q, z) = 0.

Then, the spot price is

.p(Q+ .q1, z) = z − (Q+ .q1) =
3

4
z −

1

4
Q1 −

3

4
Q2,

and the price of stage 1 is

.P (Q1, Q2) = IE(.p(Q+ .q1, z)) =
3

4
E −

1

4
Q1 −

3

4
Q2.

6.3.2 Stage 1 equilibrium

At stage 1, firm 1 chooses Q1 in order to maximize:

IE.Π1(Q1, Q2) = .P (Q1, Q2)Q1 + IEz.p(Q+ .q1, z).q1( 1Q, z)− C1(Q1, .q1( 1Q, z))

= (
3

4
E −

1

4
Q1 −

3

4
Q2)Q1+

(
3

4
z −

1

4
Q1 −

3

4
Q2)(

1

4
z −

3

4
Q1 −

1

4
Q2)− (z/4 +Q1/4−Q2/4)2.

Differentiating with respect to Q1, we find 16
∂IE(Π1)
∂Q1

= −4Q1 < 0, so that at

equilibrium .QC1 = 0.
Firm 2 chooses Q2 in order to maximize the non random profit

.Π2 = (3/4E −Q1/4− 3/4Q2)Q2 −Q22.

At equilibrium we obtain
.QC2 =

3

14
E.
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Plotting these values in the adjustment function of firm 1, we obtain

.qC1 =
1

4
z −

3

56
E,

The prices are consequently

.PC ≃ 0, 557E, .pC(z) ≃ 0, 75z − 0, 161E

The random profit and the expected profit of firm 1 are

.ΠC1 =
1

8
(z −

3

14
E)2, IE.ΠC1 ≃ 0.077E2 + 0.125V

and the gains of firm 2 are

.ΠC2 =
9

112
E2 = IE.ΠC2 .

The consumers’ net surplus is

.SCn =
1

32
(z2 +

45

7
zE −

927

142
E2),

then, on average
IE .SCn ≃ 0.084E2 + 0.03V.

Finally, the expected welfare is

W = Sn +Π =
5

32
z2 +

33

224
zE +

81

6272
E2.

IE(.ΠC + .SCn ) ≃ 0.242E2 + 0.156V

6.3.3 Variances when a1 = 0, a2 =∞

When there is a day-ahead market, the variance of consumers’ net surplus is

V (.Sn) ≃ −0, 001V 2 + 0, 001IE(z4) + 0, 026V E2 − 0, 013E4 + 0, 012EIE(z3)

to be compared with

V (S) ≃ −0, 001V 2 + 0, 001IE(z4)− 0, 003V E2 − 0, 003E4 + 0, 002EIE(z3)

when the whole ouput is sold ex post.
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Table 1

a1 a2 Q1/E Q2/E coeff in 
z of q1

coeff in 
E of q1

coeff in  
z of 

Q1+q1

coeff in 
E of 

Q1+q1

Lower 
bound 
for  z/E 
induced 
by firm1 

coeff in 
z of  q2

coeff in  
E of  q2

coeff in  
z of  

Q2+q2

coeff in  
E of  

Q2+q2

Lower 
bound 
for  z/E 
induced 
by firm 2

(Q1+q1)/
E, 

expecte
d

(Q2+q2)/
E, 

expecte
d

(Q+q)/E, 
expecte

d

price/E, 
expecte

d

coeff in    
V of 

E(π1)

coeff  in 

E2 of  
E(π1)

coeff in 
V of 

E(π2)

coeff in 

E2 of 
E(π2)

coeff  in  
V of 

E(Sn)

coeff  in  

E2 of  
E(Sn)

coeff in  
V of  
E(W)

coeff in   

E2 of 
E(W)

0 0 0,2133 0,2133 0,2000 -0,2133 0,2000 0,0000 0,00 0,2000 -0,2133 0,2000 0,0000 0,00 0,2000 0,2000 0,4000 0,6000 0,0800 0,0800 0,0800 0,0800 0,0800 0,0800 0,2400 0,2400

1 1 0,2081 0,2081 0,1429 -0,1486 0,1429 0,0595 -0,42 0,1429 -0,1486 0,1429 0,0595 -0,42 0,2023 0,2023 0,4046 0,5954 0,0612 0,0795 0,0612 0,0795 0,0408 0,0819 0,1633 0,2408

2 2 0,2058 0,2058 0,1111 -0,1143 0,1111 0,0915 -0,82 0,1111 -0,1143 0,1111 0,0915 -0,82 0,2026 0,2026 0,4051 0,5949 0,0494 0,0794 0,0494 0,0794 0,0247 0,0821 0,1235 0,2410

5 5 0,2031 0,2031 0,0667 -0,0677 0,0667 0,1354 -2,03 0,0667 -0,0677 0,0667 0,1354 -2,03 0,2021 0,2021 0,4041 0,5959 0,0311 0,0796 0,0311 0,0796 0,0089 0,0817 0,0711 0,2408

10 10 0,2018 0,2018 0,0400 -0,0404 0,0400 0,1614 -4,04 0,0400 -0,0404 0,0400 0,1614 -4,04 0,2014 0,2014 0,4028 0,5972 0,0192 0,0797 0,0192 0,0797 0,0032 0,0811 0,0416 0,2406

100 100 0,2002 0,2002 0,0049 -0,0049 0,0049 0,1953 -40,04 0,0049 -0,0049 0,0049 0,1953 -40,04 0,2002 0,2002 0,4004 0,5996 0,0024 0,0800 0,0024 0,0800 0,0000 0,0802 0,0049 0,2401

1000 1000 0,2000 0,2000 0,0005 -0,0005 0,0005 0,1995 -400,04 0,0005 -0,0005 0,0005 0,1995 -400,04 0,2000 0,2000 0,4000 0,6000 0,0002 0,0800 0,0002 0,0800 0,0000 0,0800 0,0005 0,2400

0 1 0,2075 0,2136 0,2174 -0,2260 0,2174 -0,0186 0,09 0,1304 -0,1393 0,1304 0,0743 -0,57 0,1988 0,2047 0,4036 0,5964 0,0945 0,0791 0,0510 0,0801 0,0605 0,0814 0,2060 0,2406

0 2 0,2046 0,2138 0,2258 -0,2322 0,2258 -0,0276 0,12 0,0968 -0,1035 0,0968 0,1104 -1,14 0,1982 0,2071 0,4053 0,5947 0,1020 0,0786 0,0375 0,0802 0,0520 0,0822 0,1915 0,2409

0 5 0,2010 0,2140 0,2364 -0,2400 0,2364 -0,0389 0,16 0,0545 -0,0584 0,0545 0,1556 -2,85 0,1975 0,2102 0,4076 0,5924 0,1117 0,0780 0,0208 0,0803 0,0423 0,0831 0,1749 0,2413

0 10 0,1991 0,2141 0,2421 -0,2442 0,2421 -0,0451 0,19 0,0316 -0,0338 0,0316 0,1803 -5,71 0,1970 0,2119 0,4089 0,5911 0,1172 0,0776 0,0120 0,0803 0,0375 0,0836 0,1666 0,2415

0 100 0,1967 0,2143 0,2491 -0,2493 0,2491 -0,0526 0,21 0,0037 -0,0039 0,0037 0,2103 -57,14 0,1965 0,2140 0,4105 0,5895 0,1241 0,0772 0,0014 0,0804 0,0319 0,0843 0,1574 0,2418

0 1000 0,1965 0,2143 0,2499 -0,2499 0,2499 -0,0535 0,21 0,0004 -0,0004 0,0004 0,2139 -571,42 0,1964 0,2143 0,4107 0,5893 0,1249 0,0772 0,0001 0,0804 0,0313 0,0843 0,1564 0,2419

1 2 0,2054 0,2084 0,1489 -0,1532 0,1489 0,0522 -0,35 0,1064 -0,1107 0,1064 0,0977 -0,92 0,2011 0,2041 0,4052 0,5948 0,0665 0,0792 0,0453 0,0797 0,0326 0,0821 0,1444 0,2409

1 5 0,2020 0,2088 0,1566 -0,1590 0,1566 0,0430 -0,27 0,0602 -0,0627 0,0602 0,1461 -2,42 0,1996 0,2063 0,4059 0,5941 0,0736 0,0787 0,0254 0,0800 0,0235 0,0824 0,1225 0,2411

1 10 0,2002 0,2090 0,1608 -0,1622 0,1608 0,0380 -0,24 0,0350 -0,0364 0,0350 0,1726 -4,94 0,1988 0,2076 0,4064 0,5936 0,0776 0,0785 0,0147 0,0801 0,0192 0,0826 0,1114 0,2412

1 100 0,1980 0,2093 0,1660 -0,1661 0,1660 0,0318 -0,19 0,0041 -0,0043 0,0041 0,2050 -50,15 0,1978 0,2091 0,4069 0,5931 0,0827 0,0782 0,0017 0,0803 0,0145 0,0828 0,0988 0,2413

1 1000 0,1977 0,2093 0,1666 -0,1666 0,1666 0,0311 -0,19 0,0004 -0,0004 0,0004 0,2089 -502,24 0,1977 0,2093 0,4070 0,5930 0,0833 0,0782 0,0002 0,0803 0,0139 0,0828 0,0974 0,2413

5 10 0,2014 0,2034 0,0687 -0,0693 0,0687 0,1321 -1,92 0,0388 -0,0394 0,0388 0,1640 -4,23 0,2008 0,2028 0,4036 0,5964 0,0330 0,0794 0,0181 0,0798 0,0058 0,0815 0,0568 0,2407

Flexibility: Equilibrium quantities with a single market (Crampes and Renault, 22032021)



Table 2

a1 a2 Q1/E Q2/E coeff in 
z of q1

coeff in 
E of q1

Lower 
bound 
for  z/E 
induced 
by firm1 

coeff in 
z of  q2

coeff in  
E of  q2

Lower 
bound 
for  z/E 
induced 
by firm 2

coeff in 
z of 
Q_1+q_
1

coeff in 
E of  
Q_1+q_
1

coeff in 
z of 
Q_2+q_
2

coeff in 
E of 
Q_2+q_
2

(Q1+q1)/
E, 

expecte
d

(Q2+q2)/
E, 

expected

(Q+q)/E
,  

expect
ed

price/E, 
expect

ed

coeff in    
V of 

E(π1)

coeff  

in E2 of  
E(π1)

coeff in 
V of 

E(π2)

coeff in 

E2 of 
E(π2)

coeff  
in  V of 
E(Sn)

coeff  

in  E2 

of  
E(Sn)

coeff in  
V of  
E(W)

coeff in   

E2 of 
E(W)

0 0 0,0526 0,0526 0,2000 -0,0421 0,21 0,2000 -0,0421 0,21 0,2000 0,0105 0,2000 0,0105 0,2105 0,2105 0,4211 0,5789 0,0800 0,0776 0,0800 0,0776 0,0800 0,0886 0,2400 0,2438

1 1 0,1839 0,1839 0,1429 -0,1051 0,74 0,1429 -0,1051 0,74 0,1429 0,0788 0,1429 0,0788 0,2217 0,2217 0,4433 0,5567 0,0612 0,0728 0,0612 0,0728 0,0408 0,0983 0,1633 0,2439

2 2 0,1914 0,1914 0,1111 -0,0851 0,77 0,1111 -0,0851 0,77 0,1111 0,1063 0,1111 0,1063 0,2174 0,2174 0,4348 0,5652 0,0494 0,0742 0,0494 0,0742 0,0247 0,0945 0,1235 0,2430

5 5 0,1963 0,1963 0,0667 -0,0524 0,79 0,0667 -0,0524 0,79 0,0667 0,1440 0,0667 0,1440 0,2106 0,2106 0,4213 0,5787 0,0311 0,0765 0,0311 0,0765 0,0089 0,0887 0,0711 0,2418

10 10 0,1981 0,1981 0,0400 -0,0317 0,79 0,0400 -0,0317 0,79 0,0400 0,1664 0,0400 0,1664 0,2064 0,2064 0,4128 0,5872 0,0192 0,0779 0,0192 0,0779 0,0032 0,0852 0,0416 0,2410

100 100 0,1998 0,1998 0,0049 -0,0039 0,80 0,0049 -0,0039 0,80 0,0049 0,1959 0,0049 0,1959 0,2008 0,2008 0,4016 0,5984 0,0024 0,0797 0,0024 0,0797 0,0000 0,0806 0,0049 0,2401

1000 1000 0,2000 0,2000 0,0005 -0,0004 0,80 0,0005 -0,0004 0,80 0,0005 0,1996 0,0005 0,1996 0,2001 0,2001 0,4002 0,5998 0,0002 0,0800 0,0002 0,0800 0,0000 0,0801 0,0005 0,2400

0 1 0,0335 0,1949 0,2174 -0,0501 0,23 0,1304 -0,0946 0,73 0,2174 -0,0167 0,1304 0,1002 0,2007 0,2306 0,4313 0,5687 0,0945 0,0738 0,0510 0,0767 0,0605 0,0930 0,2060 0,2436

0 2 0,0249 0,2037 0,2258 -0,0513 0,23 0,0968 -0,0731 0,76 0,2258 -0,0264 0,0968 0,1306 0,1994 0,2274 0,4268 0,5732 0,1020 0,0745 0,0375 0,0775 0,0520 0,0911 0,1915 0,2431

0 5 0,0141 0,2098 0,2364 -0,0525 0,22 0,0545 -0,0422 0,77 0,2364 -0,0383 0,0545 0,1675 0,1980 0,2221 0,4201 0,5799 0,1117 0,0756 0,0208 0,0787 0,0423 0,0882 0,1749 0,2426

0 10 0,0082 0,2119 0,2421 -0,0530 0,22 0,0316 -0,0246 0,78 0,2421 -0,0448 0,0316 0,1873 0,1973 0,2189 0,4162 0,5838 0,1172 0,0763 0,0120 0,0794 0,0375 0,0866 0,1666 0,2423

0 100 0,0010 0,2140 0,2491 -0,0535 0,21 0,0037 -0,0029 0,79 0,2491 -0,0525 0,0037 0,2112 0,1965 0,2148 0,4114 0,5886 0,1241 0,0771 0,0014 0,0802 0,0319 0,0846 0,1574 0,2419

0 1000 0,0001 0,2143 0,2499 -0,0536 0,21 0,0004 -0,0003 0,79 0,2499 -0,0535 0,0004 0,2140 0,1964 0,2143 0,4108 0,5892 0,1249 0,0772 0,0001 0,0803 0,0313 0,0844 0,1564 0,2419

1 2 0,1819 0,1929 0,1489 -0,1096 0,74 0,1064 -0,0814 0,77 0,1489 0,0724 0,1064 0,1115 0,2213 0,2179 0,4392 0,5608 0,0665 0,0736 0,0453 0,0735 0,0326 0,0965 0,1444 0,2435

1 5 0,1797 0,1989 0,1566 -0,1151 0,74 0,0602 -0,0472 0,78 0,1566 0,0646 0,0602 0,1517 0,2212 0,2119 0,4331 0,5669 0,0736 0,0747 0,0254 0,0744 0,0235 0,0938 0,1225 0,2429

1 10 0,1786 0,2010 0,1608 -0,1182 0,73 0,0350 -0,0276 0,79 0,1608 0,0604 0,0350 0,1733 0,2213 0,2083 0,4296 0,5704 0,0776 0,0754 0,0147 0,0749 0,0192 0,0923 0,1114 0,2426

1 100 0,1773 0,2029 0,1660 -0,1219 0,73 0,0041 -0,0033 0,80 0,1660 0,0554 0,0041 0,1997 0,2213 0,2037 0,4251 0,5749 0,0827 0,0763 0,0017 0,0756 0,0145 0,0903 0,0988 0,2422

1 1000 0,1771 0,2031 0,1666 -0,1223 0,73 0,0004 -0,0003 0,80 0,1666 0,0548 0,0004 0,2028 0,2214 0,2032 0,4245 0,5755 0,0833 0,0764 0,0002 0,0756 0,0139 0,0901 0,0974 0,2422

5 10 0,1957 0,1986 0,0687 -0,0539 0,79 0,0388 -0,0307 0,79 0,0687 0,1418 0,0388 0,1679 0,2104 0,2067 0,4171 0,5829 0,0330 0,0773 0,0181 0,0771 0,0058 0,0870 0,0568 0,2414

Flexibility: Equilibrium quantities with two markets (Crampes and Renault, 22032021)


