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Abstract

Taking advantage of a generalization of the matrix formulation introduced by LeSage
and Pace (2008), this article presents improvements in the computational performance and
flexibility of three estimators of spatial econometric interaction models. By generalizing
computational techniques for the evaluation of the likelihood function and also for the Hes-
sian matrix the maximum likelihood estimator (MLE) achieves computation times that are
not much longer than those of an ordinary least-squares (OLS) regression. The restruc-
tured likelihood also improves the performance of the Bayesian Markov chain Monte Carlo
(MCMC) estimator considerably. Finally, the spatial two-stage least-squares (S2SLS) esti-
mator presented in this article is the first one that exploits the efficiency gains of the matrix
formulation. In addition to the computational improvements of the three estimation meth-
ods this article presents a new solution to the issue of defining the feasible parameter space
that allows to verify the consistency of the spatial econometric interaction model with a min-
imal computational burden. All of these developments indicate that the spatial econometric
alternative to the traditional gravity model has become an increasingly mature option and
should eventually be considered a standard modeling approach for origin-destination flow
problems.
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1 Introduction
Spatial interaction models are a mathematical representation of interaction behavior between
entities located at an origin and a destination. They are widely applied to explain and predict,
for example, passenger-flows between airports, trade or migration flows between countries, and
flows of customers from residential areas to stores. The most famous spatial interaction model
is the gravity model, which is originally inspired by Newton’s law of universal gravitation. The
gravity model states that the attraction between an origin and a destination increases as their
masses increase and the distance between them decreases. Young (1924) was among the first
to use a simple gravity model to explain migration flows of the agricultural population between
farms. Since then, the gravity model has been continuously refined and has become one of
the most popular econometric models used across industries and scientific disciplines. A recent
overview of the topic is given by Oshan (2020).

Initially, the success of the gravity model has been solely attributed to its excellent agreement
with the data in empirical applications. However, by taking a macro perspective of interactions
between cities or countries, it lacked a solid theoretical underpinning. Wilson (1967) addressed
this problem by showing that the gravity equation can be derived from the behavior of individual
actors. This theoretical underpinning increased the recognition of the model in academic circles,
but Curry (1972) raised another type of criticism when she showed that the distance parameter is
not estimated consistently by usual OLS estimation. This would only be possible if the flows were
independent, an assumption that is rather unrealistic as many flows start from the same origin
or go to the same destination. Additionally, an increasing number of studies report significant
spatial dependence in origin-destination flows (see for example Lee and Pace 2005; Porojan
2001), which compromises not only the computation of the distance effect but the estimation of
all model parameters.

LeSage and Pace (2008) account for spatial dependence in gravity type models by extending
the class of spatial econometric models to origin-destination flows. In general, spatial econometric
models avoid the independence assumption by allowing observations to be influenced by their
geographical neighbors. The neighborhood structure is reflected by spatial weight matrices which
allow to compute spatial lags of the original variables. These spatial lags contain information on
the average value of a variable in the neighborhood around a location and a variety of spatial
econometric models use them to account for different types of spatial dependence. A great
overview on different types of spatial econometric models is provided by Elhorst (2010). The
spatial lag (LAG) model includes a lag of the dependent variable and using additional lags of
the explanatory variables leads to the so-called Spatial Durbin model (SDM). These models
cannot be estimated consistently by OLS and much effort has been devoted to the development
of alternative estimation procedures, such as MLE (Ord 1975; Anselin 1988), S2SLS estimation
(Kelejian and Prucha 1998), or Bayesian MCMC (LeSage 1997). Naturally, these procedures
have much higher computational cost than the OLS method and a large strand of the literature
is devoted to improvements that bring down the cost of estimating spatial econometric models.
For interaction models the usual computational bottlenecks are even more pronounced because
they have a double spatial index. This double index complicates the definition of a geographical
neighborhood because a flow might be influenced by the neighbors of the origin, the destination,
or both. Additionally, the number of potential interactions N = n2 grows quadratically with
the number of origins and destinations, which increases problems related to the dimension of the
data. LeSage and Pace (2008) propose a spatial interaction model that represents the spatial
dependence structure of the flows with three neighborhood matrices. They also attenuate the
problem of high dimensions by developing a matrix formulation of the model, that is much more
efficient than the traditional vectorized formulation.

This article further improves some computational aspects related to the estimation of the
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spatial econometric interaction model and puts forward a generalization of the matrix formulation
that allows to use the exogenous variables much more flexibly. The MLE and the Bayesian
MCMC estimator benefit from a simple reformulation of the likelihood function that allows to
compute the residual sum of squares (RSS) term from moment matrices with low dimensions.
We also extend the mixed numerical analytical Hessian approximation of LeSage and Pace (2009)
to higher order spatial models and show how to use this extension to compute the variances of
the MLE at a very low cost. To improve the performance of the S2SLS estimator we develop
its matrix formulation and also address multicollinearity problems of the spatial instruments.
Some of these problems arise as a consequence of the origin-destination structure of the data and
others are linked to the SDM specification of the model. Consequently, the presented solutions
to the multicollinearity of instruments in the SDM also help when estimating spatial models that
do not deal with flows. Concerning the feasible parameter space, we develop a new method that
allows to verify the consistency of the model and only marginally increases the computational
burden of the estimation. To facilitate the adoption of the model all estimators presented in this
article are implemented in the R package spflow. These contributions should help to establish
spatial econometric interaction models as a standard approach to modeling origin-destination
flows. Failing to make this model operational implies that spatial dependence continues to be
ignored in many studies which may have severe consequences. Kerkman, Martens, and Meurs
(2017), for example, point out that omitted spatial autocorrelation might be a reason for the
systematic overestimation of the effects of policy interventions in the public transport sector.

Section 2 introduces the spatial model and the matrix formulation. Section 3 discusses
the issue of defining the feasible parameter space. Section 4 details the improved calculation
procedures for the three estimators. In Section 5 all estimators are illustrated based on the
example of home-to-work commuting flows between the municipalities of Paris. The final section
concludes.

2 A spatial econometric model for origin-destination flows
LeSage and Pace (2008) develop a model for origin-destination flows that accounts for three
types of spatial autocorrelation. Their matrix formulation leads to significant efficiency gains
as it allows to perform most calculations linked to the parameter estimation with objects of
dimension n (the number of spatial sites) instead of N = n2 (the number of origin-destination
pairs). The following paragraphs introduce this model and present a generalized version of the
matrix formulation that is more flexible in handling the explanatory variables.

Representation of the flows
To construct the flow matrix Y (n × n) we have to define an ordering of all the spatial sites at
the origins and destinations of the flows. Based on this ordering, all flows are arranged into a
matrix, whose columns correspond to the origins and whose rows correspond to the destinations,
as is shown in (1) below.

o1 → d1 o2 → d1 · · · on → d1
o1 → d2 o2 → d2 · · · on → d2

...
...

. . .
...

o1 → dn o2 → dn · · · on → dn

 =⇒


y1 yn+1 · · · yN−n+1

y2 yn+2 · · · yN−n+2

...
...

. . .
...

yn y2n · · · yN

 = Y (1)

Using the VEC-operator that stacks the columns of a matrix (from left to right), it is then
possible to derive the flow vector as y = VEC(Y ) = (y1, y2, . . . , yN )′. LeSage and Pace (2009)
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describe this representation of y as an origin-centric flow arrangement. Applying the same proce-
dure to the transpose Y ′ of the flow matrix would lead to a destination centric flow arrangement.

Representation of the spatial neighborhood
To illustrate how LeSage and Pace (2008) derive the three neighborhood matrices of the origin-
destination pairs we consider a toy example of three sites (s1, s2, s3) that are located on a line.
In this example the neighborhood matrix W of the sites is defined by contiguity.

s1
s2
s3

=⇒ W =

 0 1 0
0.5 0 0.5
0 1 0

 (2)

By convention the diagonal elements of W are zero which means that no site is its own
neighbor. We also make the assumption that the rows of W sum to one, which is common
in the spatial econometric literature. This row-stochastic property yields some computational
advantages and allows to interpret the spatial lag of a variable as a local weighted average,
where the weights correspond to the strength of the neighborhood relation. Based on these
assumptions, we obtain the site neighborhood matrix shown in (2). The first and last sites (s1
and s3) only have the middle site (s2) as their neighbor, which in turn has two neighbors. From
the site neighborhood matrix W we can then derive three origin-destination pair neighborhood
matrices

Wd = In ⊗W Wo = W ⊗ In Ww = W ⊗W, (3)

where ⊗ denotes the Kronecker product. The destination-neighborhood matrix Wd allows to
capture the mutual influence of flows that start at the same origin and end at a neighbor of the
destination. Likewise, the origin-neighborhood matrix Wo represents the dependence between
flows that have the same destination and start from neighboring origins. Finally, the origin-
to-destination neighborhood matrix Ww represents links between origin-destination pairs whose
origins and destinations are neighbors. All three matrices are of dimensions (N ×N) and inherit
the row-stochastic property of W (n× n).

Below we illustrate how the Wd matrix is constructed for the above example of n = 3 sites
and N = n2 = 9 origin-destination pairs. The first row of Wd reveals that the only destination
neighbor of the first pair (s1 → s1) is the second pair (s1 → s2).

s1 → s1
s1 → s2
s1 → s3
s2 → s1
s2 → s2
s2 → s3
s3 → s1
s3 → s2
s3 → s3

=⇒ Wd =

W 0 0
0 W 0
0 0 W

 =



0 1 0 0 0 0 0 0 0
0.5 0 0.5 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0.5 0 0.5 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0.5 0 0.5
0 0 0 0 0 0 0 1 0


The explanatory variables
Interaction models use two types of exogenous variables which have different dimensions. While
attributes of the sites have n entries, those of the origin-destination pairs have N = n2 entries.
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Origin-destination pair attributes

In the classical gravity model the origin-destination pair attributes correspond to the distance
vector g (N × 1). LeSage and Pace (2008) arrange this vector into the matrix G (n × n) using
the same ordering as the one for the flow matrix in (1). Modern interaction models often employ
much broader measures for separation than the geographical distance and it is also possible to
use more than one separation measure. An extension to account for multiple pair attributes
is not mathematically involving but leads to more complicated moment expressions. For this
reason the article works with a single distance vector while the accompanying R package 1 allows
multiple origin-destination pair attributes.

Site attributes

The attributes of the spatial sites reflect the origin’s capacity to emit and the destination’s
capacity to attract a flow. While the original framework of LeSage and Pace (2008) assumed
that emission and attraction arise from identical attributes, we will add the option to use distinct
sets of variables for these two effects. We introduce this flexibility by using the matrix OX (ko×n)
to describe the emission capacity of the origins, and the matrix DX (kd × n) to describe the
attraction capacity of the destinations.

Another frequent problem during the estimation of spatial interaction models is related to
flows that start and end at the same geographical site. Such intra-regional flows are often orders
of magnitudes larger than inter-regional ones and may dominate the parameter estimation (see for
example Tiefelsdorf 2003). Setting the diagonal elements of the flow matrix to zero or removing
them from the data appears as an easy solution but it also impacts all inter-regional flows that are
neighbors to intra-regional ones. This spurious side effect occurs as soon as the model includes
spatial lags of the flow vector and leads to distorted parameter estimates. LeSage and Pace
(2009) present a more elegant solution that isolates the dominating data points by adding an
additional set of parameters to intra-regional flows. The variables used for the intra-regional
model are represented in a third matrix, denoted by IX (kI × n). Following a suggestion of
LeSage and Pace (2008), this article uses the notation in (4) below to treat the SDM and the
LAG specification in the same framework. The same notation is subsequently applied to all three
matrices of site attributes (DX, OX and IX).

ÕX =

{
OX if spatial structure = LAG
(OX WOX) if spatial structure = SDM

(4)

The matrix of explanatory variables

The matrix Z gathers all explanatory variables in their vectorized formulation. The first two
columns of the Z matrix represent the global constant ιN and an intra-regional constant ιI =
VEC(In), which is equal to one if the origin and destination coincide and zero otherwise. The
next four sets of variables represent the attributes of the origins (X̃o), the destinations (X̃d), the
intra-regional observations (X̃I) and the distance vector. To construct the matrices X̃d, X̃o and
X̃I we have to duplicate the information in D̃X, ÕX and ˜IX. The ordering introduced in (1)
allows to derive all six components of the matrix Z =

(
ιN ιI X̃d X̃o X̃I g

)
as

ιN = ιn ⊗ ιn ιI = VEC(In) g = VEC(G)

X̃d = ιn ⊗ D̃X X̃o = ÕX ⊗ ιn X̃I = Diag(ιI)( ˜IX ⊗ ιn),
(5)

1The package will be made available on the author’s GitHub page and a release to the Comprehensive R
Archive Network (CRAN) is planned in the second quarter of 2021.
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where In is the (n× n) identity matrix, ιn is a (n× 1) vector of ones, ⊗ denotes the Kronecker
product and the operation Diag(x) creates a matrix whose diagonal contains the elements of the
vector x, while all other elements are zero.

This definition of the explanatory variables implies that the parameters of intra-regional ob-
servations only capture the difference to the corresponding inter-regional ones. In other words,
the direct effect of a site attribute on an intra-regional flow corresponds to the sum three co-
efficients if the attribute is present in all three matrices D̃X, ÕX and ˜IX. An alternative
parametrization requires to set the rows of ιN , X̃d and X̃o for intra-regional observations to
zero, which leads to intra-regional parameters that capture the full effect of the intra-regional
attributes. However, the parametrization implied by equation (5) simplifies the calculation and
reporting of significance tests. Using (5) we can, for example, test the necessity to include an
intra-regional effect based on a null-hypothesis of the form H0 : αI = 0 (where αI could be
the coefficient of the intra-regional constant). The corresponding t-test is easy to compute and
can be reported for all parameters in tabular form. With the alternative parametrization we
would have to use the hypothesis of equality between the intra- and inter-regional parameters
(for example H0 : αI = α) to make the same test, which is not as easy to calculate and to report.

The model
We consider the following spatial econometric interaction model

y = ρdWdy + ρoWoy + ρwWwy + Zδ + ε ⇐⇒ Ay = Zδ + ε, (6)
where the parameters δ capture the influence of the explanatory variables, ε represents a vector
of random errors, and ρ =

(
ρd ρo ρw

)′ is the vector of autocorrelation parameters associated
to the three possible forms of spatial dependence. The spatial filter matrix A = A(ρ) = (In −
ρdWd − ρoWo − ρwWw) defines the spatial structure of the model. Definition (6) of the model
is, up the elements of the Z matrix, identical to the one of LeSage and Pace (2008), who derive
a family of nine sub-models from this general specification.

Matrix formulation and moment expressions
Model (6) explains the flow vector y (N × 1) with some explanatory variables and three au-
toregressive components. From a theoretical point of view, it is no problem to treat this model
as a usual spatial econometric model with multiple weight matrices. However, this vectorized
formulation is computationally inefficient because it ignores redundancies that arise from the
fact that every site is at the same time origin and destination of many flows. For this reason, the
spatial neighborhood matrices and the explanatory variables contain mainly duplicated informa-
tion. The matrix formulation of LeSage and Pace (2008) avoids these inefficiencies by operating
on the flows in their matrix representation and by deriving the elements of moments expressions
such as Z ′Z and Z ′y directly from the original data. Hence, when using this matrix formulation
we do not need to construct the large matrix of covariates Z (N ×K) and the even larger neigh-
borhood matrices of the origin-destination pairs Wr (N ×N) (for r = d, o, w). LeSage and Pace
(2008) use these ideas to derive a matrix based MLE and also apply them to a Bayesian MCMC
estimator (LeSage and Pace 2009). In Section 4 we will show that this matrix formulation can
also be used for a S2SLS estimator of the model.

Moment expressions such as Z ′Z and Z ′y have the advantage that their dimensions are
independent of the number of observations and a key idea of the improvements presented in
Section 4 is to derive estimators that can be computed from such moment expressions. The
moments presented in the following have the same structure as those of LeSage and Pace (2009,
page 224) but do not impose that ÕX = D̃X = ˜IX = X̃.
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The Z ′Z moment is derived from the exogenous covariates defined in (5). Since it is a
symmetric matrix, we use the • notation to indicate elements that are already given on the
upper triangle. The following definition of Z ′Z also uses the trace operator (tr), the elementwise
Hadamard product � and the diag-operator to extract the main diagonal of a square matrix.

Z′Z =



N n n · ι′nD̃X n · ι′nÕX ι′n ˜IX ι′nGιn
• n ι′nD̃X ι′nÕX ι′n ˜IX tr(G)

• • n · D̃X
′
D̃X (ιnD̃X)′ιnÕX D̃X

′ ˜IX D̃X
′
Gιn

• • • n · ÕX
′
ÕX ÕX

′ ˜IX ÕX
′
G′ιn

• • • • ˜IX
′ ˜IX ˜IX

′
diag(G)

• • • • • ι′n(G�G)ιn


(7)

The Z ′y moment corresponds to the empirical covariance between the flows and the exogenous
variables. This covariance is also required for the three spatial lags of the flow vector. LeSage
and Pace (2008) note the similarity in these four covariance terms and by adopting their notation
we can derive them efficiently according to the equations in (8) below, where y(t) (t = 1, 2, 3, 4)
represent the original flow vector as well as the lagged versions (y(1) = y, y(2) = Wdy, y(3) =
Woy, y(4) = Wwy).

y(t) = VEC(Y (t)) Y (t) =


Y if t = 1
WY if t = 2
YW ′ if t = 3
WYW ′ if t = 4

Z ′y(t) =



ι′nY
(t)ιn

tr(Y (t))

D̃X
′
Y (t)ιn

ÕX
′
Y (t)′ιn

˜IX
′
diag(Y (t))

ι′n(G� Y (t))ιn


(8)

3 The feasible parameter space
Unfortunately, the spatial interaction model in (6) is not defined for all values of the autore-
gressive parameters and we have to consider a feasible parameter space that ensures the well-
behavedness of the model. The following paragraphs give an overview about the problems we
encounter when defining this feasible parameter space and discuss some of the available solutions.
We treat this issue first from the general perspective of a higher-order spatial LAG or Durbin
model. Afterwards, we develop a new solution to this problem for the special case of the spatial
interaction model in (6). In general, a spatial model of order l is characterized by the fact that
it uses l distinct neighborhood matrices associated to l autoregressive parameters. The spatial
filter matrix of such a model is given by A = (I −WF ), where WF = ρ1W1 + ...+ ρlWl.

Table 1 illustrates how the most commonly applied constraints on the parameter space for a
spatial model of order one have been extended to higher order models. The presented formulas
and the discussion in the following paragraph are valid under the condition that the neighborhood
matrices have positive, real entries. Stricter assumptions such as symmetry are not necessary if
we interpret the absolute value of a complex number as the modulus. The first column of Table
1 defines five constraints on the feasible space for the autoregressive parameters ρ = (ρ1, ..., ρl)
in a SDM or LAG model of order l. Columns two and three of Table 1 indicate whether a
given constraint is necessary or sufficient to ensure that the model is well defined and the last
column shows an expression of the feasible parameter space for the order one model. The first
four constraints are ordered in decreasing restrictiveness, while the fifth constraint cannot be
compared to the others because it is rather an ad hoc rule than a mathematically justified
restriction.
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Table 1: The feasible parameter space in spatial autoregressive models

Constrainta Necessary Sufficient Constraint for (l = 1)b

(I) ρ ∈ Rl \ A1 3 3 ρ1 6= λi(W1)
−1, for i = 1, ..., n

(II) ρ ∈ B1 7 3 λmin(W1)
−1 < ρ1 < λmax(W1)

−1

(III) ρ ∈ B2 7 3 −φ(W1)
−1 < ρ1 < φ(W1)

−1

(IV) 0 ≤ |ρ1|+ ...+ |ρl| < 1 7 3 −1 < ρ1 < 1
(V) −1 < ρ1, ..., ρl,

∑
l ρl < 1 7 7 −1 < ρ1 < 1

a The set A1 contains all values of ρ for which at least one eigenvalue of WF is equal to one.
a The set B1 contains all values of ρ for which all real eigenvalues of WF are smaller than one.
a The set B2 contains all values of ρ for which all eigenvalues of WF are smaller than one in

absolute value.
b Let M be a square matrix, then λi(M) is its ith eigenvalue, λmin(M) (respectively λmax(M))

its smallest (respectively largest) real eigenvalue and φ(M) is the spectral radius of M .
b Constraint (IV) and (V) are typically used in conjunction with row-stochastic neighborhood

matrices which always have 1 as their largest eigenvalue.

The first three constraints in Table 1 can be expressed in terms of the eigenvalues λ(WF )
of WF . For the order one model the eigenvalues of WF are linked to those of W1 by the
equation λ(WF ) = ρ1λ(W1). This link allows to obtain λ(WF ) for changing values of the
autoregressive parameter without having to compute an eigenvalue decomposition of the WF

matrix. In contrast, for higher order models the eigenvalues of WF must be recomputed for
every change in the autoregressive parameters, which makes it very costly to define the parameter
spaces implied by the first three constraints. This difficulty explains why many empirical studies
resort to the naive extensions described by constraint (IV) and (V).

Constraint (I) ensures that the variance-covariance matrix of the dependent variable is posi-
tive definite and is a necessary and sufficient condition for the spatial model to be well behaved.
Martin (1992) and Kelejian and Robinson (1995) 2 derive this condition for the order one model
but their conclusions also apply to the case of an order l model, as shown by the following argu-
ments. If we consider the errors to be independent and gaussian, the variance of the dependent
variable is given by Var(y) = (A′A)−1. This expression is positive definite when the inverse of
the spatial filter matrix exists, which corresponds to all eigenvalues of WF being different from
one. Even for the order one model, constraint (I) is rarely used in practice because it requires
knowledge of all eigenvalues of WF and implies that the set of feasible values for the autore-
gressive parameters is not compact (Hepple 1995). For these reasons, most spatial econometric
models employ one of the more restrictive alternatives given by the later four constraints, as
they are easier to verify and have more convenient properties.

The second constraint requires that all real eigenvalues of WF are smaller than one, which
is equivalent to λmax(WF ) < 1. This restriction also implies that the spatial filter matrix is
positive definite if no complex eigenvalue of WF exceeds 1 in magnitude. The parameter space
associated to constraint (II) corresponds to the largest compact set of feasible parameter values
that allows zero autocorrelation and is therefore intuitively appealing. In the order one model,
the largest real eigenvalue of WF is given by λmin(W1) · ρ1 if ρ1 ≤ 0 and by λmax(W1) · ρ1 if
0 < ρ1. From this definition of λmax(WF ) we can easily derive the simple interval in column four
and row two of Table 1. However, when l ≥ 2 we can identify the space of feasible combinations
of the autoregressive parameters (for which λmax(WF ) < 1) only by numerical search over a
grid of possible values for (ρ1, ..., ρl). Elhorst, Lacombe, and Piras (2012) develop a method that

2In fact Kelejian and Robinson (1995) discuss a model with spatial autocorrelation in the error term, but most
of their considerations are also relevant to the LAG and SDM model because they have a very similar expression
of the variance-covariance matrix of the dependent variable.

8



allows to identify this space based on a grid with dimension l − 1 instead of l, but computing
λmax(WF ) for all points in this grid is still very costly when l ≥ 3 and often impractical for large
data sets.

The third constraint is more restrictive than the second and requires all eigenvalues of WF

to be less than one in absolute value. It is often used to deal with the log-determinant term that
appears in the likelihood function of most spatial models (see Section 4.1). When the constraint
(III) is satisfied, this log-determinant can be approximated based on a truncated Taylor series
(see for example Martin 1992; Barry and Pace 1999; Pace and LeSage 2004; Smirnov and Anselin
2009; Bivand, Hauke, and Kossowski 2013). Most spatial models estimated by MLE or Bayesian
methodology make use of such an approximation and thereby restrict (sometimes implicitly) the
feasible parameter space according to constraint (III).

Constraints four and five can be regarded as naive higher order extensions of the previous two
constraints. Their main advantage is that they do not require any complex computations. For
row-stochastic neighborhood matrices, constraints (III), (IV) and (V) are equivalent if the order
of the model is l = 1 or when all autoregressive parameters are positive. However, the naive
constraints lead to problems if we allow negative autocorrelation in a higher order spatial model.
The main disadvantage of constraint (IV) is that it is much more restrictive than necessary. And
constraint (V), even though it works well in most applications, does not permit to draw any
conclusions about the consistency of the model.

The spatial interaction model in (6) contains three weight, matrices which is usually a blocking
point for defining the feasible parameter space according to constraints (I), (II) or (III). However,
the special neighborhood structure in this model allows to derive the feasible parameter space
based on computations that are not much more costly than those of an order one spatial model.
In model (6) the spatial filter matrix is WF = ρd(In⊗W )+ρo(W ⊗In)+ρw(W ⊗W ) and LeSage
and Pace (2008) already point out that we can compute the eigenvalues vector λ(WF )(N × 1)
directly from the eigenvalues vector λ(W )(n× 1) of the site neighborhood matrix W .

λ(WF ) = ρd(ιn ⊗ λ(W )) + ρo(λ(W )⊗ ιn) + ρw(λ(W )⊗ λ(W )) (9)

We could use (9) to verify constraint (I), but this would require up to O(n3) computations
to obtain λ(W ) and another O(n2) calculations for every set of values of the autoregressive
parameters that we want to verify. Hence, the computational effort makes constraint (I) unusable
for large sample applications.

However, if we restrict our attention to the case where W is similar to a symmetric matrix,
we can verify constraints (II) or (III) without having to consider full eigenvalues vector (9)
and by focusing on the relevant elements we can reduce the computational effort drastically.
Let us first note that all of the N equations in (9) have the coordinate expression ρdλj(W ) +
ρoλi(W ) + ρwλj(W )λi(W ), for i, j = 1, ..., n. This coordinate form helps to see that the two
extreme eigenvalues of WF are always contained in the same four elements of the vector λ(WF ):
The relevant entries correspond to the case when λj(W ) and λi(W ) are both chosen from the
set {λmax(W ), λmin(W )}. This argument also applies to a general W , if none of its complex
eigenvalues exceed min(|λmax(W )|, |λmin(W )|) in magnitude. In the following we suppose that
this condition is met 3 and denote the relevant entries by Λ(ρ). With a small abuse of notation,

3It is probably possible to generalize the developments related to the definition of the feasible parameter space
of model (6) to the case where W has large complex eigenvalues, but this enterprise is not the purpose of the
present article. In fact, many neighborhood matrices considered in practice fulfill the requirement that none of
its complex eigenvalues exceed min(|λmax(W )|, |λmin(W )|) in magnitude. For example, when the neighborhood
matrix is derived from contiguity or from distances it is similar to a symmetric matrix which implies that all its
eigenvalues are real. Furthermore, when the neighborhood matrix W is row normalized its largest eigenvalue is
real and equal to one, in which case we only have to verify that none of its complex eigenvalues exceeds λmin(W )
in magnitude.
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we can define the four elements of Λ(ρ) by (10) below.

Λ(ρ) = {ρdλj(W ) + ρoλi(W ) + ρwλj(W )λi(W ), for i, j = min,max} (10)

Verifying constraints (II) and (III) with this reduced set of relevant eigenvalues has the double
advantage that we only need to compute the largest and the smallest eigenvalue 4 of W and that,
instead of searching the minimum and the maximum of a (N × 1) vector, we can reduce its size
to a (4× 1) vector.

Constraint (II) ⇐⇒ max(Λ(ρ)) < 1

Constraint (III) ⇐⇒ −1 < min(Λ(ρ)) & max(Λ(ρ)) < 1
(11)

The vector of relevant eigenvalues Λ(ρ) allows to verify the two constraints in (11) almost
instantaneously. In the following we will use constraint (II) for the S2SLS estimator. For the
MLE and the Bayesian estimator we have to use the more restrictive constraint (III) when dealing
with large sample applications. In such applications, we rely on a log-determinant approximation
to evaluate the likelihood function and this approximation is only valid when (III) is satisfied.
To quantify the gains from choosing the spaces associated to (II) and (III) as opposed to the
classical approach, we can compare their volume with the one implied by constraint (IV) requiring
|ρd| + |ρo| + |ρw| < 1. For the example presented in Section 5, this comparison reveals that we
increase the size of the feasible parameter space by a factor 2.4 when choosing (III) and by a
factor 7.2 when choosing (II).

4 Improved estimation methods
Maximum likelihood estimation is the traditional estimation method for spatial econometric
models and dates back to Ord (1975). Anselin (1988) provides an in-depth analysis of the
MLE estimator for a general spatial model that may include dependence in the error term,
the response variable and the explanatory variables. Much later, Lee (2004) proves asymptotic
normality and consistency of the MLE and quasi-MLE and shows that the estimator attains

√
N

when the neighborhood matrix is sufficiently sparse. Although Anselin (1988) already discusses
alternatives to the MLE, it took another decade until Bayesian estimation (LeSage 1997) and
S2SLS estimation (Kelejian and Prucha 1998) received broader attention.

All three estimators were initially proposed for a standard spatial model, but they have been
adapted to the case of origin-destination flows. LeSage and Pace (2008) develop a MLE procedure
for the spatial interaction model given in (6) and in their textbook (LeSage and Pace 2009, page
218) they describe an MCMC estimator of the same model. Badinger and Egger (2011) extend
the S2SLS estimator of Kelejian and Prucha (1998) to models with multiple weight matrices
and Tamesue and Tsutsumi (2016) use this extension for a model of migration flows in Japan.
The following subsections show that we can derive all three estimators exclusively from moment
matrices with low dimensions. Consequently, the computational burden of the estimation is up
to the calculation of the moments independent of the number of observations. We first discuss a
reformulation of the RSS term in the likelihood function that yields computational advantages
for the MLE and the Bayesian MCMC estimator. Then we derive the estimators based on the
moment expressions beginning with the two likelihood based ones and finally present the matrix
formulation of the S2SLS estimator.

4Efficient algorithms that allow to extract the smallest or largest eigenvalues of large matrices are available in
many software packages. Some examples are the eigs function in MATLAB or the C++ library Spectra which
offers an interface to the R software.
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4.1 Refining the likelihood expression
Computational techniques that speed up the evaluation time of the likelihood function benefit
the MLE as well as Bayesian estimators. This evaluation time is largely determined by a log-
determinant term and a RSS term. While the log-determinant has been studied in great detail,
the RSS term is usually treated very briefly or in the context of a specific estimator. This article
proceeds differently by developing the RSS term as a reformulation of the likelihood function.
The RSS decomposition presented in the following draws inspiration from those of LeSage and
Pace (2008) and LeSage and Pace (2009, page 50), but has the advantage that it does not require
to construct additional (1×N) vectors of residuals and fitted values. Debarsy and LeSage (2020)
derive a formulation of the RSS term that is as efficient as the one given here, but only applies
to the special case of a marginal likelihood that depends on ρ but no longer on δ. Interestingly,
the concentrated log-likelihood described in Section 4.2.1 leads to the same special case as their
marginal likelihood approach.

The likelihood function fy(y) of model (6) can be derived from the density fε(ε) of the
errors using a transformation of variables (Shao 2003, page 23) which exploits the link y =
A−1Zδ+A−1ε between the errors and the flows. The Jacobian term of this transformation turns
out to be |A| the determinant of the spatial filter matrix.

fy(y) = fε(ε)|A| = (
1

2πσ2
)(N/2) exp

{
− 1

2σ2
(Ay − Zδ)′(Ay − Zδ)

}
|A| (12)

The likelihood function in (12) contains an RSS term RSS(ρ, δ) = (Ay − Zδ)′(Ay − Zδ)
whose evaluation would normally require O(n2) calculations. However, we can reformulate the
RSS term so that it only depends on the parameters and some low dimensional moment matrices.
Let us first consider the following decomposition of Ay the filtered flow vector

Ay = y•τ(ρ) y• =
(
y(1) y(2) y(3) y(4)

)
τ(ρ) =

(
1 −ρd −ρo −ρw

)′
,

(13)
where y(t), t = 1, 2, 3, 4 are defined in (8). The above decomposition of Ay allows to reformulate
the RSS term as

RSS(ρ, δ) = (Ay − Zδ)′(Ay − Zδ) = τ(ρ)′TSS•τ(ρ)− 2δ′Z ′y•τ(ρ) + δ′Z ′Zδ, (14)
where TSS• = y′•y•. LeSage and Pace (2008) also make use of the TSS• matrix and point out
that its elements can be computed efficiently using ι′n(Y

(t) � Y (s))ιn, for t, s = 1, 2, 3, 4. The
MLE and the Bayesian MCMC estimators in the following two sections use the RSS expression
in (14) to reduce the cost of evaluating the likelihood to a minimum.

4.2 The MLE
The MLE estimates of a model correspond to the parameter values that maximize the likelihood
function given the data. For most spatial models these maximizers do not admit an analytical
solution and we have to employ numerical optimization techniques to find them. This numerical
optimization is usually costly because it requires many evaluations of the likelihood function.
The following subsection recapitulates how we can reduce the dimension of this optimization
problem by working with the concentrated log-likelihood function and shows how to speed up
the evaluation of this function using the reformulated RSS term presented in Section 4.1. The
second subsection generalizes the mixed numerical analytical Hessian approximation of LeSage
and Pace (2009) to higher order spatial models and describes how to use this approximation to
compute the variances of the MLE estimators without any notable effort.
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4.2.1 The concentrated likelihood function

Applying the logarithm to the density of the dependent variable in (12) leads to the log-likelihood
function which is expressed in terms of the model parameters.

L(ρ, δ, σ2) = ln(fy) = −N

2
ln(2π)− N

2
ln(σ2)− 1

2σ2
(Ay − Zδ)′(Ay − Zδ) + ln |A| (15)

By differentiating the above log-likelihood with respect to the parameters ρ, δ and σ2, we
obtain the following three sets of first order conditions.

∂L
∂ρ

=− tr(A−1 ∂A

∂ρ
)− (Ay − Zδ)

σ2

∂A

∂ρ
= 0 =⇒ ρ has no analytical expression

∂L
∂δ

=− 1

σ2
(Z′Ay − Z′Zδ) = 0 =⇒ δ̂(ρ) = (Z′Z)−1Z′Ay

∂L
∂σ2

=− N

2σ2
+

(Ay − Zδ)′(Ay − Zδ)

2σ4
= 0 =⇒ σ̂2(ρ) =

(Ay − Zδ(ρ))′(Ay − Zδ(ρ))

N

(16)

The first set of equations in (16) reveals that this optimization problem does not yield an an-
alytical expression for the autoregressive parameters. However, the solutions for the parameters
δ and σ2 are found explicitly as a function of ρ. We can use the notation y• in (13) to define
δ• = (Z ′Z)−1Z ′y• which allows to simplify the solutions to the first order conditions in (16) and
also the expression of the RSS term in (14).

δ̂(ρ) = δ•τ(ρ)

σ̂2(ρ) =
RSS(ρ, δ̂(ρ))

N

RSS(ρ, δ̂(ρ)) = τ(ρ)′TSS•τ(ρ)− 2τ(ρ)′δ′•Z
′y•τ(ρ) + τ(ρ)′δ′•Z

′Zδ•τ(ρ)

= τ(ρ)′(TSS• − (Z ′y•)
′(Z ′Z)(Z ′y•))τ(ρ)

= τ(ρ)′RSS•τ(ρ)

(17)

LeSage and Pace (2008) already use the factorization τ(ρ)′RSS•τ(ρ) of the RSS term, but
they derive the RSS• matrix from an explicit expression of four residual vectors which is less
efficient than deriving their inner product directly as in (17). (In vectorized form their compu-
tations correspond to RSS• = ε′•ε•, where ε• = y• −Z ′δ•.) Substituting the simplified solutions
of (17) into the likelihood function Lc(ρ) = Lc(ρ, δ̂(ρ), σ̂2(ρ)) yields

Lc(ρ) = κ− N

2
ln(τ(ρ)′RSS•τ(ρ)) + ln |A|, (18)

where κ gathers all terms that are constant with respect to the parameters ρ. Using the log-
determinant approximation presented by LeSage and Pace (2008) we can optimize this function
with little computational effort. This optimization provides us with MLE estimates of ρ which
are then inserted into (17) to derive the MLE estimates of δ and σ2.

4.2.2 The Hessian Matrix

The Hessian matrix is required to conduct inference on the parameter estimates, which is an
important part of any estimation procedure. In most spatial econometric models, the expression
of the Hessian matrix involves A−1 the inverse of the spatial filter matrix whose computational
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cost are usually prohibitive. Approximations of the Hessian matrix allow to circumvent this
computational bottleneck and the finite difference approximation is a very popular approach.
For example, the R package spatialreg (Bivand and Piras 2015) or MATLAB implementations in
the spatial econometrics toolbox 5 use it to approximate the Hessian matrix. Although the finite
difference approximation avoids inverting a large matrix it requires many additional evaluations
of the likelihood function, which also enhances the computational burden. The mixed numerical
analytical Hessian approximation set forth in this article is effortless in comparison. This method
was first introduced by LeSage and Pace (2009, page 56) who use it for a spatial model with
a single weight matrix. In the following we extend their approximation method to the case of
origin-destination flows with three spatial weight matrices.

The Hessian matrix corresponds to the second order derivatives of the likelihood function
L, as in (12), with respect to all model parameters. The variance of the error term and the
parameters associated to the covariates in Z also appear in the standard regression model and
they are grouped in θ =

(
δ′ σ2

)′. Consequently, the likelihood function depends on two sets of
parameters (ρ and θ) and the Hessian matrix H(b) is composed of four blocks.

H(b) =

[
∂2L
∂ρ∂ρ′

∂2L
∂ρ∂θ′

∂2L
∂θ∂ρ′

∂2L
∂θ∂θ′

]
=

[
H

(b)
11 H

(b)
12

H
(b)
21 H

(b)
22

]
(19)

For a spatial model of order one LeSage and Pace (2009) already demonstrate that three of
the four blocks of the Hessian matrix have very simple analytical solutions. The developments in
Appendix A show that their argument carries over to the case of a model with multiple weight
matrices. The closed form solution of these blocks is given by

H
(b)′
12 = H

(b)
21 =

[
−Z′L

σ2

(Z′L)δ′−τ(ρ)′(y′
•L)

σ4

]
H

(b)
22 =

[
−Z′Z

σ2 0
0 − N

2σ4

]
, (20)

where the matrix L = (y(2)y(3)y(4)) groups the three spatial lags of the flow vector. The matrix
Z ′L corresponds to the last three columns of Z ′y• which are already computed for the factoriza-
tion of the RSS in (17). Similarly, the matrix y′•L corresponds to the last three columns of the
TSS• matrix.

The Hessian block H
(b)
11 contains the second order derivatives of the likelihood function with

respect to the autoregressive parameters ρ. Its analytical expression is given in (21) below, where
for j, k ∈ (d, o, w), Vjk = −tr(WjA

−1WkA
−1)− 1

σ2 y
′W ′

jWky.

H
(b)
11 =

 Vdd Vdo Vdw

• Voo Vow

• • Vww

 (21)

Computing the exact solution of H(b)
11 is infeasible in large sample applications because it

depends on the inverse of the spatial filter matrix. For this reason LeSage and Pace (2009)
propose to use a numerical approximation of this part of the Hessian. Their approximation
makes use of a theorem (for details see Davidson and MacKinnon 1993, page 269) that links the
blocks of the full Hessian matrix in (19) with the Hessian of the concentrated log-likelihood Lc.

∂2L
∂ρ∂ρ′

=
∂2Lc

∂ρ∂ρ′
+

∂2L
∂ρ∂θ′

(
∂2L
∂θ∂θ′

)−1
∂2L
∂θ∂ρ′

(22)

Equation (22) expresses the first Hessian block H
(b)
11 in terms of the other three blocks (H(b)

12 ,
H

(b)
21 and H

(b)
22 ) and the Hessian matrix of the concentrated likelihood HLc . We can use this

5https://www.spatial-econometrics.com/
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link to derive the mixed numerical analytical approximation of H(b)
11 , which we denote ˜̂

H
(b)
11 . To

compute this approximation we only require the analytical estimators of the blocks given in
(20) denoted by Ĥ

(b)
21 and Ĥ

(b)
22 , and a numerical estimate of the Hessian of the concentrated

log-likelihood denoted by H̃Lc .

˜̂
H

(b)
11 = H̃Lc + Ĥ

(b)′

21 (Ĥ
(b)
22 )

−1Ĥ
(b)
21 (23)

The approximation of the complete Hessian then combines the mixed estimator ˜̂
H

(b)
11 with

the analytical estimators Ĥ
(b)
21 and Ĥ

(b)
22 . LeSage and Pace (2009) already point out that New-

tonian methods for optimization will produce a numerical estimation of HLc as a by-product.
Consequently, if we choose such an optimization method, we can approximate the Hessian with
almost no additional computational cost because all required quantities are available from the
parameter estimation.

4.3 The Bayesian MCMC estimator
A Bayesian estimator of spatial econometric models is already mentioned by Anselin (1988), but
due to its prohibitively difficult estimation it took further progress in computer technology and
theory until it became a practical alternative to the MLE. The Bayesian methodology requires
to assume prior distributions for all model parameters. Through the estimation we update
these naive priors into posterior distributions that incorporate the information contained in the
data. The MCMC methodology caused a rise in the popularity of Bayesian statistics because
it avoids the main computational bottleneck of the traditional analytical approach. Instead of
searching the analytical expression for the moments of the posterior distribution with numerical
integration techniques, MCMC generates a random sample of parameter values. Based on this
sample it is possible to infer the moments of interest, such as the expectation and variance of a
parameter, using elementary statistics. Metropolis et al. (1953) solve the problem of generating
random draws from the unknown posterior by constructing the sampling procedure as a Markov
Chain that converges to the desired density function. Their solution is generalized by Hastings
(1970) and LeSage (1997) was among the first to use a variant of the Metropolis-Hastings (M-H)
algorithm to estimate a spatial econometric model. LeSage and Pace (2009) further develop this
idea and estimate a spatial econometric interaction model using Bayesian MCMC methodology.

In a more recent article Fischer and LeSage (2020) develop an extension of the spatial inter-
action model to panel data and estimate it by Bayesian MCMC. Their estimation methodology
already exploits the efficiency gains of the RSS reformulation but differs from the methods
presented in this article. Similar to Debarsy and LeSage (2018) they use block-sampling in con-
junction with an expression of the marginal likelihood to generate draws for the autoregressive
parameters. This article, in contrast, uses a sequential sampling approach and shows that we
can exploit the efficiency gains of the restructured RSS also when using the conditional instead
of the marginal likelihood. Their block sampling approach has the advantage that it requires less
evaluations of the likelihood function at every iteration of the MCMC sampler, but it leads to
lower acceptance rates and hence requires a higher number of iterations to converge. However,
since both approaches allow to express the sampling procedure in terms of low dimensional mo-
ment matrices it will be the calculation of the moments itself and not the sampling procedure
that dominates the computation cost for applications to very large data sets. The following
paragraphs introduce the Bayesian model of LeSage and Pace (2009) and then describe how to
use the restructured RSS of Section (4.1) to increase the efficiency of the sequential sampling
method.
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4.3.1 The Bayesian model

To estimate a Bayesian model we have to assign prior distributions p(φ) to all model parameters
φ. These prior assumption largely determine whether we can easily solve the estimation problem.
The posterior distribution p(φ|D) is derived from the prior assumptions and the conditional
distribution of the data p(D|φ) by the Bayes rule

p(φ|D) =
p(D|φ) · p(φ)

p(D)
∝ p(D|φ) · p(φ), (24)

where the unconditional distribution of the data p(D) is usually absorbed in the proportionality
constant. The above expression is a standard formalization for Bayesian models and LeSage
and Pace (2009) describe how to apply it to the model given in (6). In this model the set of
parameters is φ = (ρ′, δ′, σ2)′ and the data is given by D = (y, Z). The conditional distribution
of the data

p(D|φ) = p(D|ρ, δ, σ2) = (
1

2πσ2
)(N/2) exp{− 1

2σ2
(Ay − Zδ)′(Ay − Zδ)}|A| (25)

coincides with the likelihood function used for the MLE because it is derived from the same
distributional assumption on the error term ε ∼ N(0, σ2IN ).

The second term on the right hand side of (24) is defined by the prior assumptions on the
model parameters, which LeSage and Pace (2009) choose carefully. Even though they point out
that informative priors would only marginally influence the estimation results when the sample
is sufficiently large they rely on uninformative priors for all parameters. For the autoregressive
parameters ρ they choose a uniform prior which is by construction uninformative. For the
parameters δ and σ2 LeSage and Pace (2009) use a normal inverse gamma prior, which means
that the inverse of σ2 follows a gamma-distribution and that δ follows a normal distribution if σ2

is given. In general, these distributions are informative, but since LeSage and Pace (2009) define
near infinite prior variances they avoid to introduce subjective information in the estimation.
The equations in (26) below show the set of prior distributions, denoted by π, that the authors
use to define the Bayesian model. We define the uniform prior for ρ on the parameter space
Θ ⊂ R3 whose bounds are chosen to ensure that constraint (III) in (11) is satisfied. The resulting
density is expressed using the indicator function 1{x}, which is one if the event x is true and
zero otherwise. LeSage and Pace (2009) note that these assumptions imply prior independence
between ρ and the other parameters, which we should regard as an hypothesis that the estimation
results will confirm or reject.

δ|σ2 ∼ N (c, Tσ2) =⇒ π
(
δ|σ2

)
= (

1

2πσ2
)(K/2)|T |(−1/2) exp{− 1

2σ2
(δ − c)′T−1(δ − c)}

σ2 ∼ IG(a, b) =⇒ π(σ2) =
ba

Γ(a)
(
1

σ2
)(a+1) exp{−b/σ2}

ρ ∼ U(Θ) =⇒ π(ρ) ∝ 1{ρ∈Θ}

(26)

LeSage and Pace (2009) assign the value zero to a, b and c and a zero matrix to T−1, which
makes the distribution π

(
δ|σ2

)
and π

(
σ2

)
uninformative and allows to derive the following

simplified expression of the posterior density.

p(δ, σ2, ρ|D) ∝ σ(−N−1) exp{− 1

2σ2
(Ay − Zδ)′(Ay − Zδ)}|A|1{ρ∈Θ} (27)

The main problem of the classical Bayesian estimator for the spatial econometric interaction
model arises because the posterior in (27) is analytically not tractable. LeSage and Pace (2009)
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show that the parameters δ and σ2 can be integrated out to find the marginal density of the
autoregressive parameters p(ρ|D). However, it is generally not possible to find the expectation
and the variance of p(ρ|D) analytically. Consequently, if we want to compute the moment
expressions below we have to use numerical integration, which requires enormous computational
resources.

E(ρ | D) =

∫
ρ · p(ρ | D)dρ∫
p(ρ | D)dρ

VAR(ρ | D) =

∫
(ρ− E(ρ | D))2 · p(ρ | D)dρ∫

p(ρ | D)dρ

4.3.2 The MCMC methodology

Advances in the MCMC methodology raised the popularity of Bayesian statistics because they
allow to estimate a model without having to compute expressions like the above moments with
numerical methods. Like ordinary Monte Carlo methods the MCMC methodology generates
random draws from the distribution of the model parameters. We cannot use ordinary Monte
Carlo methods because the density of the parameters is not known and MCMC solves this
problem by setting up the sampling procedure as a Markov Chain that converges to the right
distribution function. Since the sampler needs to be initialized with more or less arbitrary values
and convergence requires some time we have to disregard the first draws as a burn-in period.
When the sampler converges we can regard the remaining draws as a sample from the desired
posterior distribution. LeSage and Pace (2009) explain how to set up such a MCMC sampler
for the Bayesian spatial interaction model described in the previous section. They decompose
the joint posterior density in (27) into three conditional densities, which leads to a multivariate
normal distribution for δ, an inverse gamma distribution for σ2 and an intractable density for ρ.

p(δ|σ2, ρ,D) = (
1

2πσ2
)(K/2)|T ∗|(1/2) exp{− 1

2σ2
(δ − c∗)′T ∗−1(δ − c∗)} ∼ N (c∗, T ∗σ2) (28)

c∗ = (Z ′Z + T−1)−1(Z ′Ay + T−1c)

T ∗ = (Z ′Z + T−1)−1

p(σ2|δ, ρ,D) =
b∗a

∗

Γ(a∗)
(
1

σ2
)(a

∗+1) exp{−b∗/σ2} ∼ IG(a∗, b∗) (29)

a∗ = a+N/2

b∗ = b+ (Ay − Zδ)′(Ay − Zδ)/2

p(ρ|δ, σ2,D) ∝ (
1

2πσ2
)(N/2) exp{− 1

2σ2
(Ay − Zδ)′(Ay − Zδ)}|A|1{ρ∈Θ} (30)

The simplifications of the densities in (29) and (30) are possible because the normal inverse
gamma prior is conjugate with respect to the gaussian distribution of the errors. LeSage and
Pace (2009) proceed by sampling sequentially from three conditional posteriors using a Metropolis
within Gibbs sampling procedure. This procedure generates draws of δ and σ2 based on Gibbs
sampling and resorts to the more costly M-H algorithm only for the draws of the autoregressive
parameters, which do not follow any known distribution. The next section presents the details
of the sampling procedure and shows how we can use the decomposition of the RSS in Section
4.1 to make it more efficient.
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4.3.3 The improved sampling procedure

The main issue of the MCMC sampler is that its convergence requires several thousand iterations,
which amplifies the computational costs associated with the updates of each parameter. We can
bring down this cost to a minimum by expressing all calculation steps in terms of moment
matrices with low dimensions. These moment matrices do not change with the parameter values
and hence only need to be calculated once to initiate the sampler. To distinguish these moments
from quantities that change throughout the sampling procedure the following three paragraphs
make extensive use of the indexation (i) for MCMC iterations.

Gibbs-sampling for the parameters δ

As the parameter δ ∼ N (c∗, T ∗σ2) is conditionally normally distributed we can use Gibbs sam-
pling for this parameter. Hence, to generate an updated draw δ(i) we only need c∗(i) the updated
mean of the normal distribution and σ2

(i−1) the value of the variance parameter from the previous
iteration. As LeSage and Pace (2009) we update δ by generating a multivariate normal deviate
ε(i) with the desired variance. This deviate is then added to the updated mean c∗(i) which we com-
pute efficiently using the simplified notation δ• as in (17) and the vector τ(ρ(i−1)) = (1 −ρ′(i−1))

′.

δ(i) = c∗(i) + ε(i)

ε(i) ∼ N (0, T ∗σ2
(i−1))

c∗(i) = (Z ′Z + T−1)−1(Z ′A(i−1)y + T−1c) = δ•τ(ρ(i−1))

T ∗ = (Z ′Z + T−1)−1 = (Z ′Z)−1

(31)

Gibbs-sampling for the variance parameter σ2

The conditional distribution of σ2 ∼ IG(a∗, b∗) also permits Gibbs sampling. In order to draw the
updated parameter σ2

(i) we only need to compute b∗(i) which we derive from the RSS decomposition
in Section 4.1.

σ2
(i) ∼ IG(a∗, b∗(i))

a∗ = a+
N

2
=

N

2

b∗(i) = b+
1

2

(
A(i−1)y − Zδ(i)

)′ (
A(i−1)y − Zδ(i)

)
=

1

2
RSS(ρ(i−1), δ(i))

=
1

2
(τ(ρ(i−1))

′RSS•τ(ρ(i−1)) + ε′(i)(Z
′Z)ε(i))

(32)

Metropolis-Hastings-sampling for the autoregressive parameters ρ

Sampling the autoregressive parameters is more complicated because the conditional posterior
distribution of ρ is unknown. LeSage and Pace (2009) use a M-H sampler that incorporates the
tuned random walk procedure of Holloway, Shankar, and Rahmanb (2002) to create a sample of
the posterior distribution of ρ. Since this distribution is not known the M-H algorithm relies on
a gaussian distribution to generate candidate draws that are accepted or rejected depending on
their likelihood value.

The tuned random walk procedure ensures that the candidate values for all autoregressive
parameters ρcr(i), r = d, o, w are accepted with a probability between 40% and 60%. This is
necessary because too high or too low acceptance rates indicate that generated parameter draws
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do not represent the entire posterior distribution. The acceptance rate of the candidates is
directly linked to the variance of the gaussian proposal distribution and the optimal choice for
this variance depends on the sample size. To make the estimator more flexible this variance is
controlled by the tuning parameter cr, as the below equation illustrates.

ρcr(i) = ρr(i−1) + cr · N (0, 1) for r = d, o, w

The tuning parameter is adjusted whenever the acceptance rate of the proposal distribution
lies outside the desired interval. In case of a too low acceptance rate the parameter cr is divided
by 1.1, and in case of a too high acceptance rate it is multiplied by 1.1. LeSage and Pace (2009)
also point out that restricting the candidates to the feasible parameter space can be done by
discarding the candidates until the chosen validity constraints are met.

Given a valid candidate ρcr(i) (for r = d, o, w) we accept it as an actual draw from the
conditional posterior distribution if it leads to a higher likelihood value than the previous draw
of the same parameter ρr(i−1). When the likelihood value is lower we still accept it with a
probability that is computed as the ratio of the conditional posteriors evaluated at the candidate
and the previous value. If a new candidate is accepted the current value is set to the candidate
value ρr(i) = ρcr(i), otherwise it remains at the previous value ρr(i) = ρr(i−1). We illustrate this
calculation only for the draws of ρd, because updating the draws for the other autoregressive
parameters (ρo and ρw) can be done with almost identical calculations. While the order of
updates is irrelevant, it is important to consider the updated values of all parameters when
updating the next one. To evaluate the candidate value ρcd(i) we first have to compute its
acceptance probability according to the equations below.

P (ρd(i) = ρcd(i)) = 1− P (ρd(i) = ρd(i−1)) = min
{
1, LR(ρcd(i))

}

LR(ρcd(i)) =
p(ρcd(i)|δ(i), σ

2
(i), ρo(i−1), ρw(i−1),D)

p(ρd(i−1)|δ(i), σ2
(i), ρo(i−1), ρw(i−1),D)

(33)

The largest part of the computational cost of the estimation procedure is linked to the eval-
uation of the above likelihood ratio and it is more convenient to evaluate its logarithm. This
requires to compute the difference between two log-determinant terms and the difference between
two RSS terms which we denote ∆RSS(ρcd(i)).

lnLR(ρcd(i)) = ln |A(ρcd(i), ρo(i−1), ρw(i−1))| − ln |A(ρ(i−1))| −
∆RSS(ρcd(i))

2σ2
(i)

(34)

We can compute the difference in the RSS terms almost instantaneously using

∆RSS(ρcd(i)) = τ c′d(i)RSS•τ
c
d(i) − τ ′d(i−1)RSS•τd(i−1), (35)

where τ cd(i) = (1 − ρcd(i) − ρo(i−1) − ρw(i−1)). Expression (35) can be derived from the reformu-
lation of the RSS term, as is already demonstrated for the computation of b∗(i) in (32). Based on
these developments we can compute the acceptance probability in (33) at a cost that is not much
higher than the cost a single log-determinant approximation, as the second log-determinant is
always available from the previous parameter update.

4.4 The S2SLS estimator
The spatial two-stage least-squares estimator is essentially an instrumental variable estimation
that treats the spatial lags of the dependent variables as endogenous regressors. This framing
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of the estimation problem is already developed by Anselin (1988), but the S2SLS became an
operational estimation method only after Kelejian and Prucha (1998) demonstrate that suitable
instrumental variables can be derived from higher order spatial lags of the exogenous covari-
ates. The authors prove consistency and asymptotic normality of their two-stage estimation and
subsequently extend their methodology to more complex models (see for example Kelejian and
Prucha 2004; Kelejian and Prucha 2010). Badinger and Egger (2011) extend the S2SLS estima-
tor to spatial models with multiple weight matrices and Tamesue and Tsutsumi (2016) use this
extension of the S2SLS to estimate a model of migration flows in Japan. However, as the authors
focus on the issue of missing values for intra-regional flows, they do not discuss potential mul-
ticollinearity problems of the instrumental variables. Such problems arise systematically when
the S2SLS estimator is used for a spatial interaction models and the following paragraphs show
how they can be avoided. Additionally, we show how adapt the two-stages of the estimation so
that we can exploit the efficiency gains provided by the matrix formulation.

4.4.1 Instrumental variables for interaction models

When estimating a spatial interaction model with S2SLS we consider the spatial lags of the
dependent variable L = (Wdy Woy Wwy) as endogenous regressors in an ordinary linear model
which leads to the following reformulation of model (6).

y = Lρ+ Zδ + ε (36)

We can solve the endogenity issue by using instrumental variables for the endogenous regres-
sors and Kelejian and Prucha (1998) show that suitable instruments for this type of model can
be easily found among higher order spatial lags of the covariates in the matrix Z. While the
notion of higher order spatial lags is straightforward for models with a single weight matrix, it
becomes a bit more complicated in higher order models. Badinger and Egger (2011) explain how
to generate such lags for models with an arbitrary number of spatial weight matrices. For the
model in (36) we derive the required lag-operators from the interactions

Iω1

N ×Wω2

d ×Wω3
o ×Wω4

w , (37)

where the order of lags is given by m. The powers associated with the weight matrices are given
by ωt = 1, ...,m (for t = 1, 2, 3, 4) and their sum

∑4
t=1 ωt ≤ m should not exceed the defined

order of spatial lags. For their model of Japanese migration flows Tamesue and Tsutsumi (2016)
set m = 2, which is the common choice for the order of lags that is used to generate instruments
for the S2SLS estimator (Kelejian and Prucha 1998; Badinger and Egger 2011). Tamesue and
Tsutsumi (2016) rightfully note that many of the lag operators generated by the interactions in
(37) are in fact redundant and they reduce them to the set of unique lag operators which we
define as Wm

U . For m = 2 this set is shown in (38) below.

W 2
U =

{
IN Wd Wo Wd

2 Wo
2 Ww Ww

2 WdWw WoWw

}
(38)

However, even if we only use this reduced set of lag operators many of the instrument that
we derive from Z will be duplicated which leads to collinearity problems during the estimation.
For this reason, we associate specific lag operators in W 2

U to each of the six sets of variables
contained in the matrix Z (see equations (5)). The resulting instrumental variables are grouped
into four sets U =

(
Uα UαI

Uβ Uγ

)
, which are described in the sequel.

The first set of instruments Uα corresponds to the global constant. We derive no instruments
from this variable because constants are invariant to multiplication with row stochastic matrices.

Uα = ιn ⊗ ιn = ιN (39)
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The instruments in UαI
are derived from the intra-regional constant ιI = VEC(In) which is

multiplied by all the lag operators in W 2
U .

UαI
=

{
IN Wd Wo Wd

2 Wo
2 Ww Ww

2 WdWw WoWw

}
× ιI (40)

The resulting variables can be derived from the site neighborhood matrix W (n× n) and do
not require to actually construct any of the (N ×N) lag operators contained in W 2

U .

IN ιI = VEC(In)

WdιI = VEC(W )

WoιI = VEC(W ′)

Wd
2ιI = VEC(W 2)

Wo
2ιI = VEC(W 2′)

WwιI = VEC(WW ′)

Ww
2ιI = VEC(W 2W 2′)

WdWwιI = VEC(W 2W ′)

WoWwιI = VEC(WW 2′)

The matrix Uβ contains all instruments derived from the origin and destination attributes.
When constructing these instruments, we have to pay attention to two mechanisms which, if
we ignore them, create duplicated columns in the instrument matrix. One of these mechanisms
results from the row-stochastic property of the W matrix, a property that makes it unnecessary
to apply the origin lag operator Wo to the destination attributes X̃d (as Wm

o X̃d = X̃d for
m = 0, 1, 2, ...). The same argument holds when applying powers of the destination lag operator
Wd to the origin attributes X̃o. For the same reason it is also superfluous to apply origin-to-
destination lag operator Ww to the site attributes (as Wm

w X̃d = Wm
d X̃d and Wm

w X̃o = Wm
o X̃o for

m = 0, 1, 2, ...). The second mechanism causes duplication in the SDM specification, where we
use a spatial lag of the covariates as additional explanatory variables. In this case, instruments
that are generated as Wm

d X̃d and Wm
o X̃o will duplicate the first m− 1 lags.

We can avoid duplication of instrumental variables altogether if we define them according
to the equations in (41) below. These instruments are derived from lags of the site attributes
(DX,OX and IX), where the order of lags is given by m̃ = m+ 1 which is incremented by one
if the variables are used according to the SDM specification. Given the lagged site attributes we
use Kronecker products to derive the instruments Uβ = ( ˜̃Xd

˜̃Xo
˜̃XI).

˜̃DX = (W 0DX W 1DX ... W m̃DX)

˜̃OX = (W 0OX W 1OX ... W m̃OX)

˜̃IX = (W 0IX W 1IX ... W m̃IX)

˜̃Xd = ιn ⊗ ˜̃DX

˜̃Xo = ˜̃OX ⊗ ιn

˜̃XI = Diag(ιI)(ιn ⊗ ˜̃IX)

(41)

The fourth set of instruments Uγ is derived from the attributes of the origin-destination
pairs, denoted by g. Applying all the lag operators in (38) to this variable does not generally
lead to duplicated instruments. However, using all these lags is not necessary and increases the
computational burden of the whole estimation procedure significantly. For this reason, we will
only use powers of the origin-to-destination lag operator Ww to derive instruments from g. The
choice of Ww over Wo and Wd is more appealing because attributes such as the distance are only
defined for origin-destination pairs, but not for the sites. We can then compute Ǧ = WGW ′ and
ˇ̌G = WǦW ′, using G(n × n) the matrix representation of the distances and the neighborhood
matrix W (n× n) of the sites. Based on the lags of G we can derive the instruments in Uγ .

Uγ =
{
IN Ww Ww

2
}
× g =

(
VEC(G) VEC(Ǧ) VEC( ˇ̌G)

)
, (42)

4.4.2 Moment based S2SLS estimation

Given the previously defined instruments we can carry out the S2SLS estimation to identify the
parameter values of model (36). The first step of the estimation procedure is given by
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L̂ = PUL = U(U ′U)−1U ′L, (43)

where PU denotes the projection matrix. This step consists of projecting the endogenous regres-
sors on the space spanned by the columns of the instrument matrix. The second stage uses the
fitted values of the first stage L̂ as additional covariates and estimates the model parameters
µ′ = (ρ′δ′) using an OLS regression of y on Ẑ = (L̂ Z).

µ̂ = (Ẑ ′Ẑ)−1Ẑ ′y (44)

Even though the above two stages are simple to understand and implement, they involve
computations with the matrices U , Z and L̂ which are large for applications with many origin-
destination pairs. In the following we will derive an estimation procedure that circumvents the
construction of these three matrices. Based on this procedure we can derive the S2SLS estimates
only from moment expressions whose dimensions are independent of the sample size. Equation
(44) shows that estimating the model parameters only requires the two moments (Ẑ ′Ẑ) and Ẑ ′y
which are defined in terms of the five blocks shown below.

Ẑ ′Ẑ =

(
L̂′L̂ L̂′Z
• Z ′Z

)
Ẑ ′y =

(
L̂′y
Z ′y

)
(45)

Two of the five blocks in (45) coincide with the moment matrices Z ′Z and Z ′y, defined by
(7) and (8). The first block of the Ẑ ′Ẑ moment corresponds to the inner product of the fitted
values of the first stage in (43). We can derive this inner product directly from the two moments
U ′U and U ′L without having to compute L̂ (N × 3) explicitly.

L̂′L̂ = L′P ′
UPUL = L′PUL = (U ′L)′(U ′U)−1(U ′L) (46)

To compute the L̂′Z block in the Ẑ ′Ẑ moment we also do not require the fitted values of the
first stage. In fact we can omit the projection PU entirely because the matrix Z is a subset of
the columns of the matrix U .

L̂′Z = L′P ′
UZ = L′(PUZ) = L′Z (47)

The last block required to define the second stage moments in (45) is L̂′y which can be done
efficiently using the following developments.

L̂′y = L′PUy = (U ′L)′(U ′U)−1(U ′y) (48)

The equations (48), (47) and (46) show that it is possible to derive the matrices required for
the second stage of the estimation procedure directly from the three moments U ′U,U ′L and U ′y.
Since Z ′Z and Z ′y correspond to subsets of the columns and rows of these three moments they
do not add to the computational burden of the estimation procedure.

Hence, to make the S2SLS estimation as efficient as possible we have to derive the three
moments U ′U , U ′L and U ′y from the matrix formulation of the model. The columns of U ′L
and U ′y have identical structures and we can use the definition of y(t) (t = 1, 2, 3, 4) in (13) to
compute them efficiently. The block-structure of the required moments is derived from the four
instrument groups Uα, UαI

, Uβ and Uγ .

U ′U =


Uαα UααI

Uαβ Uαγ

• UαIαI
UαIβ UαIγ

• • Uββ Uβγ

• • • Uγγ

 U ′y(t) =


U ′
αy

(t)

U ′
αI
y(t)

U ′
βy

(t)

U ′
γy

(t)

 (49)
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Detailed calculations for all 14 blocks of the above moments in can be found in the Appendix
B. Given these moments we can derive the two matrices in (45) efficiently and continue to
estimate µ̂ = (Ẑ ′Ẑ)−1Ẑ ′y. We can then compute σ̂2 = y′y − (Ẑ ′y)′µ̂ which allows to derive the
variance-covariance matrix of µ̂.

V̂ ar(µ̂) = σ̂2(Ẑ ′Ẑ)−1,

5 Applied example of commuting flows
All three estimators are used for a model of home-to-work commuting flows between the munic-
ipalities around the center of Paris. The example includes n = 71 regions that are characterized
by their population, the median income and the number of companies located in the region.

Population Number of companies Median income

Figure 1: Explanatory variables for the municipalities of Paris (values are trans-
formed to logarithms).

Figure 1 illustrates the spatial distribution of the region-attributes, which already show signs
of spatial dependence. We then use a subset of these covariates as origin, destination, and
intra-regional characteristics and also the pairwise distances to estimate three different models
that explain the commuting flows between the municipalities. Two of these models make use of
spatially lagged variables and for both spatial models we suppose that the neighborhood structure
is defined by the contiguity of the municipalities. The most exhaustive model corresponds to a
SDM and includes the three spatial autoregressive components shown in (6) and some spatial
lags of the exogenous variables. This SDM is estimated by the three estimation methods of
Section 4. In addition to the SDM we estimate a model that uses the same covariates but does
not account for spatial autocorrelation in the flows. Since this model contains some spatial lags
among its exogenous covariates it is called spatial linear model (SLM) in the sequel. The third
model is an ordinary linear model (OLM) that does not include any spatially lagged variable.
The ordinary as well as the spatial linear model are estimated by OLS.

The resulting parameter estimates and their standard errors are presented in Table 2. For
MLE and Bayesian MCMC the results are almost identical, while the S2SLS yields parameter
estimates that have the same sign as those of the likelihood based estimators but quite different
magnitudes. This pattern also holds for the OLS results of the SLM and the OLM, with an
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Table 2: Estimation results

Parameter MLE
(SDM)

MCMC
(SDM)

S2SLS
(SDM)

OLS
(SLM)

OLS
(OLM)

0.268* 0.269* 0.135
ρd (0.018) (0.019) (0.102)

0.674** 0.673** 0.665*
ρo (0.011) (0.01) (0.099)

-0.138’ -0.138’ 0.069
ρw (0.022) (0.023) (0.086)

2.651* 2.661* 1.89 15.166** 14.958**Constant (0.251) (0.248) (0.643) (0.177) (0.177)
1.267* 1.258* 1.609’ -6.498** -6.292*Constant (intra) (0.187) (0.188) (0.44) (0.199) (0.199)
0.345* 0.346* 0.347’ 1.053** 0.978**Dest: clog(MED_INCOME + 1) (0.015) (0.015) (0.107) (0.014) (0.011)
0.008 0.009 -0.423’ 0.25’ 0.069Dest: clog(NB_COMPANY + 1) (0.032) (0.033) (0.134) (0.046) (0.042)
-0.179* -0.18* -0.251 -0.303*Dest: clog(MED_INCOME + 1).lag (0.026) (0.026) (0.103) (0.032)
0.073 0.075 0.651’ 0.373*Dest: clog(NB_COMPANY + 1).lag (0.034) (0.034) (0.184) (0.05)
0.114’ 0.114’ -0.061 -0.292* -0.302*Orig: clog(MED_INCOME + 1) (0.02) (0.02) (0.034) (0.026) (0.02)
-0.059 -0.059 -0.031 -0.051 -0.108Orig: clog(NB_COMPANY + 1) (0.052) (0.052) (0.042) (0.077) (0.046)
0.589* 0.589* 0.903* 1.261** 1.266**Orig: clog(POPULATION + 1) (0.026) (0.026) (0.111) (0.029) (0.027)
-0.319* -0.318* -0.01 -0.014Orig: clog(MED_INCOME + 1).lag (0.02) (0.021) (0.045) (0.023)
0.077 0.077 -0.654’ -0.079Orig: clog(POPULATION + 1).lag (0.069) (0.07) (0.122) (0.103)
-0.467’ -0.469’ -0.443’ -0.825* -0.769’Intra: clog(POPULATION + 1) (0.084) (0.085) (0.113) (0.124) (0.125)
-0.208* -0.209* -0.153 -1.213** -1.19**log(DISTANCE + 1) (0.022) (0.022) (0.054) (0.02) (0.02)

N 5041 5041 5041 5041 5041
R2

corr 0.917 0.917 0.919 0.816 0.812
Time (ms) 79.906 1749.422 222.339 44.512 38.205

Notes:
Standard errors are given in parenthesis.
The function clog(x) centers the logarithm of x.
The execution time is calculated as a median over 15 repetitions.
The significance codes are: 0.1%(***), 1%(**), 5%(*), 10%(’)

exception for the parameter of the intra-regional constant. The first three rows of Table 2
report the results for the autoregressive parameters in the SDM. The parameter ρd of destination
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dependence is significant and positive for MLE and Bayesian MCMC, but insignificant for S2SLS
estimation. All three estimators of the SDM model report a significant and positive origin
dependence parameter ρo and an insignificant origin-to-destination dependence parameter ρw.

To compare the goodness of fit of the five estimations we use the R2
corr measure which is

computed as the squared correlation between the actual flows and their fitted values6. For
the two models that are estimated by OLS this measure coincides with the usual coefficient of
determination (R2) and reveals that the OLM explains 81.2% and the SLM explains 81.6% of the
variation in the data. For all three estimates of the SDM the R2

corr is just below 92%. In terms of
the computation time7 the OLS is, not surprisingly, the fastest of the four estimation methods,
but the MLE and S2SLS are also computed within fractions of a second. For this example the
Bayesian MCMC is, with about 1.75 seconds, the slowest method, which is explained by the 5500
iterations that are used to generate the MCMC sample.
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Figure 2: Moran scatter plot of residuals against spatial lags of residuals. To avoid
overplotting the point clouds are converted into bi-variate densities, where darker
colors indicate a high density of points.

Figure 2 shows a matrix of bi-variate scatter plots of the residuals against their spatial lags.
The rows correspond to the five estimations, while the columns represent the three neighborhood
matrices that are used to compute the lagged versions of the residuals Wrε, for r = d, o, w.
The slopes of the regression lines in the first three rows and columns of Figure 2 indicate that
the residuals of the SDM are not spatially correlated for all estimators presented in Section 4.

6The fitted values are computed according to the in-sample trend signal (TS) predictor which is described by
Goulard, Laurent, and Thomas-Agnan (2017)

7All computations are performed on the same system; Ubuntu (20.04.1 LTS), R version 4.0.3, Intel Core
i5-7200U CPU with a base frequency of 2.50GHz.
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However, for the OLM and SLM models there is noticeable positive spatial autocorrelation for all
three definitions of the spatial neighborhood (see rows four and five of Figure 2). The strongest
spatial dependence is observed for the origin neighborhood Wo displayed in the second column
of Figure 2. Destination dependence and origin-to-destination dependence in the residuals of the
SLM and the OLM are weaker magnitude but still clearly different from zero.

6 Conclusion
This article develops improved calculation techniques alongside a generalized version of the ma-
trix formulation for spatial econometric interaction models that reduce the computational burden
of the estimation considerably and allow to use the covariates more flexibly. Additionally, this
article shows that the spatial econometric interaction model does not suffer from issues related to
the definition of the feasible parameter space that typically arise in higher order spatial models.
Thanks to a reformulation of the likelihood function and an extension of the mixed numerical an-
alytical Hessian to spatial models with multiple weight matrices the computational requirement
of our MLE estimator becomes comparable to the requirements of an OLS estimation of an ordi-
nary linear model. The superiority of the spatial model is again confirmed by the results of our
application to home-to-work commuting flows. Irrespective of whether the model is estimated
by MLE, Bayesian MCMC or S2SLS, we find significant autocorrelation parameters, indicating
that a model which ignores spatial autocorrelation is misspecified. Moreover, the spatial esti-
mates lead to a better goodness of fit and yield regression residuals that are in line with the
assumptions of independent errors that is used to define the model. Consequently, the spatial
econometric model presents itself as the better alternative to the traditional gravity model and
should be preferred whenever possible. The improvements presented by this article show that
spatial econometric interaction models can be used for very large data sets, but further general-
izations are necessary before they can be considered as a drop-in replacement for the traditional
gravity model. Extensions that handle a sparse flow matrix or the case where the list of origins
is different from the list destinations are interesting paths for future research.
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Appendix A Hessian matrix
This appendix develops the simplified analytical expression of the elements of the Hessian matrix
that are presented in Section 4.2.2. These expressions are derived from the second order deriva-
tives of the likelihood function given in (15). LeSage and Pace (2009) derive similar expressions
for a spatial model of order one. Another treatment of the Hessian matrix for the spatial econo-
metric models can be found in Anselin (1988, see pages 74ff.), who provides many computation
steps linked to derivatives of the spatial filter matrix that are similar to the ones shown below.

∂A

∂ρd
= −Wd

∂A′A

∂ρd
= −2A′Wd

∂ln|A|
∂ρd

= tr(A−1 ∂A

∂ρd
) = − tr(A−1Wd)

∂A−1

∂ρd
= −A−1 ∂A

∂ρd
A−1 = A−1WdA

−1

The following paragraphs show that the Hessian matrix of higher order spatial models, in
particular the one of model (6), also admits very simple analytical solutions to most of its
elements. Since the expression of the likelihood function is invariant by permutation of the
terms ρoWo, ρdWd, ρwWw many elements of the Hessian matrix are up to the indexes (o, d, w)
identical. This property allows shorten the following argumentation, since we only have to
develop the expressions related to ρd, while the expressions related to ρd and ρw are inferred by
exchanging the indexes.
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Block H
(b)
11

The Hessian block H
(b)
11 given in (21) is the second order derivative of the likelihood function

with respect to ρ

H
(b)
11 =

∂2L
∂ρ∂ρ′

=


∂2L
∂ρ2

d

∂2L
∂ρd∂ρo

∂2L
∂ρd∂ρw

• ∂2L
∂ρ2

o

∂2L
∂ρo∂ρw

• • ∂2L
∂ρ2

w

 =

 Vdd Vdo Vdw

• Voo Vow

• • Vww

 ,

where for j, k ∈ (d, o, w), Vjk = − tr(WjA
−1WkA

−1)− 1
σ2 y

′W ′
jWky. The steps below derive the

expression of Vdd, while all other elements can be found using the same arguments and only
require to exchange the indexes.

∂2L
∂ρ2d

=
∂2

∂ρ2d
(ln |A|) + ∂2

∂ρ2d
(− 1

2σ2
(Ay − Zδ)′(Ay − Zδ))

=
∂

∂ρd
(tr(A−1 ∂

∂ρd
A)) +

∂2

∂ρ2d
(− 1

2σ2
y′A′Ay)

=
∂

∂ρd
(− tr(A−1Wd)) +

∂

∂ρd
(− 1

2σ2
2y′A′(−Wd)y)

= − tr(−A−1(−Wd)A
−1Wd))−

y′W ′
dWdy

σ2

= − tr(WdA
−1WdA

−1)− y′W ′
dWdy

σ2
:= Vdd

Block H
(b)
21

The Hessian block H
(b)
21 given in (20) corresponds to the cross derivative of the likelihood function

which we differentiate first with respect to θ = (δ′σ2)′ and then with respect to ρ

H
(b)
21 =

∂2L
∂θ∂ρ′

=

[
∂2L

∂δ∂ρd

∂2L
∂δ∂ρo

∂2L
∂δ∂ρw

∂2L
∂σ2∂ρd

∂2L
∂σ2∂ρo

∂2L
∂σ2∂ρw

]
=

[
−Z′L

σ2

δ′(Z′L)−τ(ρ)′(y′
•L)

σ4

]
,

where L = (y(2)y(3)y(4)) is based on the definition of y(t), for t = 2, 3, 4 in (13). The equations
below derive analytical expressions for the elements in the first column of above matrix.

∂2L
∂δ∂ρd

=
∂2

∂δ∂ρd
(− 1

2σ2
(Ay − Zδ)′(Ay − Zδ))

=
∂2

∂δ∂ρd
(− 1

2σ2
(−2(Zδ)′Ay)

=
∂

∂δ
(
(Zδ)′(−Wd)y

σ2
)

=
−Z ′Wdy

σ2

∂2L
∂σ2∂ρd

=
∂2

∂σ2∂ρd
(− 1

2σ2
(Ay − Zδ)′(Ay − Zδ))

=
∂2

∂σ2∂ρd
(− 1

2σ2
(y′A′Ay − 2(Zδ)′Ay))

=
∂

∂ρd
(
y′A′Ay − 2(Zδ)′Ay

2σ4
)

=
−2(Ay)′Wdy + 2δ′Z ′Wdy

2σ4

The previously introduced permutation-invariance of the likelihood function then allows to
apply the same steps to derive the other two columns. These expressions are simplified further
using the multivariate formulation L = (y(2)y(3)y(4)) of the spatial lags of the flow vector.
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H
(b)
21 =

[
−Z′Wdy

σ2 −Z′Woy
σ2 −Z′Wwy

σ2

δ′Z′Wdy−(Ay)′Wdy
σ4

δ′Z′Woy−(Ay)′Woy
σ4

δ′Z′Wwy−(Ay)′Wwy
σ4

]

=

[
−Z′y(2)

σ2 −Z′y(3)

σ2 −Z′y(4)

σ2

δ′Z′y(2)−τ(ρ)′y′
•y

(2)

σ4

δ′Z′y(3)−τ(ρ)′y′
•y

(3)

σ4

δ′Z′y(4)−τ(ρ)′y′
•y

(4)

σ4

]

=

[
−Z′L

σ2

δ′(Z′L)−τ(ρ)′(y′
•L)

σ4

]

Block H
(b)
22

The Hessian block H
(b)
22 given in (20) contains the second order derivatives of the likelihood

function with respect to θ

H
(b)
22 =

∂2L
∂θ∂θ′

=

[
∂2L
∂δ∂δ′

∂2L
∂δ∂σ2

∂2L
∂σ2∂δ′

∂2L
∂(σ2)2

]
=

[
−Z′Z

σ2 0
0 − N

2σ4

]
When we evaluate the above block at the values of the maximum likelihood estimators in

(16), in particular σ̂2(ρ) = (Ay − Zδ(ρ))′(Ay − Zδ(ρ))N−1 and δ̂(ρ) = (Z ′Z)−1Z ′Ay, it has the
same expression as the Hessian matrix of a non-spatial linear model.
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∂2L
∂δ∂δ′

=
∂2

∂δ∂δ′
(− 1

2σ2
(Ay − Zδ)′(Ay − Zδ))

=
∂2

∂δ∂δ′
(
−δ′Z ′Zδ

2σ2
)

=
−Z ′Z

σ2

∂2L
∂δ∂σ2

=
∂2

∂δ∂σ2
(− 1

2σ2
(Ay − Zδ)′(Ay − Zδ))

=
∂

∂δ
(

1

2σ4
(Ay − Zδ)′(Ay − Zδ))

=
−Z ′(Ay − Zδ)

σ4

=
−Z ′Ay − Z ′Z(Z ′Z)−1Z ′Ay

σ4

= 0

∂2L
∂(σ2)2

=
∂2

∂(σ2)2
(−N

2
ln(σ2)− 1

2σ2
(Ay − Zδ)′(Ay − Zδ))

=
∂

∂σ2
(− N

2σ2
+

(Ay − Zδ)′(Ay − Zδ)

2σ4
)

=
N

2σ4
− (Ay − Zδ)′(Ay − Zδ)

σ6

=
N

2σ4
− Nσ2

σ6

= − N

2σ4

Appendix B A matrix formulation of spatial instruments
This appendix shows how to derive the moments U ′y, U ′L and U ′U of Section 4.4.2 that are
required to perform S2SLS estimation based on the matrix formulation of the spatial interaction
model. The first subsection presents the ten blocks of the variance moment U ′U and the following
one derives the covariance moments U ′y and U ′L.

The variance moment U ′U

The previously introduced groups of instrumental variables U = (UαUαI
UβUγ) allow to express

the moment matrix U ′U in terms of 16 blocks.

U ′U =


Uαα UααI

Uαβ Uαγ

• UαIαI
UαIβ UαIγ

• • Uββ Uβγ

• • • Uγγ


The following four paragraphs derive the diagonal blocks of above matrix. For the six off-

diagonal blocks we will start with those in the first row and move from top to bottom and left to
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right. Since U ′U is a symmetric matrix, we can focus on the upper triangle of the above matrix
and infer all blocks on the lower triangle by symmetry.

Block 1 (α2)

The first block of the U ′U moment contains only the inner product of intercept term Uα = ιN .

U ′
αUα := Uαα = (ι′n ⊗ ι′n)(ιn ⊗ ιn) = (ι′nιn)(ι

′
nιn) = n× n = N

Block 2 (α2
I)

The second diagonal block of the covariance moment U ′
αI
UαI

:= UαIαI
contains the inner product

of the instruments derived from intra-regional constant. All columns in UαI
are derived by

applying VEC-operator to the matrices AH
i , for i = 1, ..., 9, which are defined below.

UαI
=

(
V EC(AU

1 ) ... V EC(AU
9 )

)
AU

1 = In

AU
2 = W

AU
3 = W ′

AU
4 = W 2

AU
5 = W 2′

AU
6 = WW ′

AU
7 = W 2W 2′

AU
8 = W 2W ′

AU
9 = WW 2′

(50)

This structure allows to compute each element of UαIαI
as UαIαI ,ij = ι′n(A

H
i � AU

i )ιn, for
i, j = 1, ..., 9. Since the block is symmetric we only need to compute the elements on the
upper triangle. We can further reduce the number of elements to compute if we exploit the
following properties: For two square matrices A and B with compatible dimension, we have
ι′n(A � B)ιn = ι′n(A

′ � B′)ιn = ι′n(B � A)ιn. In addition, if either A or B is symmetric we
have ι′n(A � B)ιn = ι′n(A

′ � B)ιn. Exploiting all symmetries of the problem we only need to
compute 21 of the 81 elements that constitute the matrix UαIαI

for the case when W itself is
not symmetric. When W is symmetric we have to define Uα in terms of the five instruments
VEC(Wm) for m = 0, 1, 2, 3, 4 since four of the nine vectors in

(
V EC(AU

1 ) ... V EC(AU
9 )

)
would be redundant.

Block 3 (β2)

The next diagonal block contains the inner product of the instruments derived from the site
attributes Uβ = ( ˜̃Xd

˜̃Xo
˜̃XI). We can exploit the structure of the three matrices ˜̃Xr(r = d, o, I)

to derive this moment block from matrix products of much the much smaller matrices ˜̃DX, ˜̃OX

and ˜̃DX.

U ′
βUβ := Uββ =

n ˜̃DX ′ ˜̃DX (ι′n
˜̃DX)′(ι′n

˜̃OX) ˜̃DX ′ ˜̃IX

• n ˜̃OX ′ ˜̃OX ˜̃OX ′ ˜̃IX

• • ˜̃IX ′ ˜̃IX


Block 4 (γ2)

The last diagonal block contains inner product of the instruments derived from the pair attributes
Uγ = (VEC(G) VEC(Ǧ) VEC( ˇ̌G)), where Ǧ = WGW ′ and ˇ̌G = WǦW ′. This structure allows
to express the moment block in terms of the Hadamard product. When the matrix G represents
the geographic distance, it is usually symmetric, which implies that Ǧ and ˇ̌G are also symmetric.
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In this case, we can exploit that for two symmetric matrices A and B with compatible dimensions,
we only require the upper diagonal of both to compute ι′n(A� B)ιn. This reduces the memory
and computational requirements by about 50%, which may be worthwhile because this block is
responsible for a major part of the computational burden of the S2SLS estimator.

U ′
γUγ := Uγγ =

ι′n(G�G)ιn ι′n(G� Ǧ)ιn ι′n(G� ˇ̌G)ιn

• ι′n(Ǧ� Ǧ)ιn ι′n(Ǧ� ˇ̌G)ιn

• • ι′n(
ˇ̌G� ˇ̌G)ιn


Block 5 (ααI)

The fifth block of U ′U is obtained as the inner product of the global constant Uα and the
instruments derived from the intra-regional constant UαI

. Since all elements of Uα are one,
computing this inner product corresponds to summing the elements in each of the nine vectors
in UαI

. As W is assumed to be row-stochastic, we can directly conclude that the first five entries
of UααI

are equal to n. The remaining four entries are computed from the vectors of column
sums of W and W 2.

U ′
αUαI

:= UααI
= (n n n n n (ι′nW )(ι′nW )′ (ι′nW

2)(ι′nW
2)′ (ι′nW )(ι′nW

2)′ (ι′nW )(ι′nW
2)′)

Block 6 (αβ)

Block six is computed from the constant Uα and the instruments Uβ that are derived from the
site attributes. Computing the elements of this block only requires the scalar n and the column
sums of the matrices ˜̃DX, ˜̃OX and ˜̃IX.

U ′
αUβ := Uαβ =

(
n · ι′n

˜̃DX n · ι′n
˜̃OX ι′n

˜̃IX

)
Block 7 (αγ)

This block contains the inner product of the constant Uα with the instruments derived from the
exogenous attributes of the origin-destination pairs Uγ .

U ′
αUγ := Uαγ =

(
ι′nGιn ι′nǦιn ι′n

ˇ̌Gιn

)
Block 8 (αIβ)

The eighth block of U ′U is the empirical covariance between UαI
the instruments derived from the

intra-regional constant and Uβ the instruments derived from the site attributes. The structure
of UαI

allows to express each of the nine rows of U ′
αI
Uβ := UαIβ using AU

i , for i = 1, ..., 9, as
defined in (50).

UαIβ,i =
(
(ι′nA

H′
i ) ˜̃DX (ι′nA

H
i ) ˜̃OX diag(AH

i ) ˜̃IX

)
Block 9 (αIγ)

This block is calculated as the inner product of the instruments derived from the intra-regional
UαI

constant and those derived from the exogenous origin-destination pair attributes Uγ . It is
again possible to derive U ′

αI
Uγ := UαIγ for all rows (i = 1, ..., 9) using the notations in (50).
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UαIγ,i =
(
ι′n(A

H
i �G)ιn ι′n(A

H
i � Ǧ)ιn ι′n(A

H
i � ˇ̌G)ιn

)
We can reduce the computational burden of this block if we pay attention to symmetries that

were already mentioned in the sections on the diagonal blocks UαIαI
and Uγγ .

Block 10 (βγ)

The last block of the U ′U moment matrix is computed as the inner product of Uβ the instruments
derived from the site attributes with Uγ the instruments derived from the pair attributes.

U ′
βγ =

(ι′nG
′) ˜̃DX (ι′nG) ˜̃OX diag(G) ˜̃IX

(ι′nǦ
′) ˜̃DX (ι′nǦ) ˜̃OX diag(Ǧ) ˜̃IX

(ι′n
ˇ̌G′) ˜̃DX (ι′n

ˇ̌G) ˜̃OX diag( ˇ̌G) ˜̃IX


The covariance moments U ′y•

To construct the empirical covariances U ′y and U ′L we use the notations Y (t) and y(t) that are
defined in (13). The elements of the four moments U ′y(t), for t = 1, 2, 3, 4, represent the columns
of U ′y = U ′y(1) and U ′L = (U ′y(2)U ′y(3)U ′y(4)).

U ′y(t) =
(
(U ′

αy
(t))′ (U ′

αI
y(t))′ (U ′

βy
(t))′ (U ′

γy
(t))′

)′
The elements of the above moments are derived below, where the elementwise notation for

the nine entries of U ′
αI
y(t) uses definition (50) of AU

i , for i = 1, ..., 9.

U ′
αy

(t) =
(
ι′nY

(t)ιn
)

(U ′
αI
y(t))i =

(
ι′n(A

H
i � Y (t))ιn

)
, for i = 1, ..., 9

U ′
βy

(t) =


˜̃

DX ′(Y (t)ιn)
˜̃

OX ′(Y (t)′ιn)
˜̃

IX ′ diag(Y (t))



U ′
γy

(t) =

ι′n(G� Y (t))ιn
ι′n(Ǧ� Y (t))ιn

ι′n(
ˇ̌G� Y (t))ιn
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