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1 Introduction

Mortality reduction represents a significant part of the benefit of many environmental

projects. For instance, it has been estimated to account for more than 90% of the mon-

etized benefit of the Clean Air Act (U.S. Environmental Protection Agency 2011). A

standard practice to evaluate this benefit is to use benefit cost analysis (BCA) based

on the willingness to pay approach. In the context of the evaluation of a mortality risk

reduction project, this amounts to using the value of statistical life (VSL) approach.1

Importantly, BCA and thus the VSL approach traditionally assumes that the financing

of a project is “perfect” in the sense that taxation optimally accounts for the hetero-

geneity of taxpayers, and does not create distortions such as labor supply distortions. In

this paper, we relax this assumption and examine how the imperfections of the taxation

system affect the optimal level of public safety, and in turn whether adjustments in the

standard VSL approach are warranted.

Accounting for imperfect taxation in the evaluation of mortality reduction benefits in

public safety projects is important for several reasons. First, it is well documented that

the taxation system is imperfect in both developed and developing countries and that the

degree of imperfection varies widely across the world (Tanzi and Zee 2001).2 Second, from

a policy perspective, various guidelines encourage policy evaluations to also include in

BCA “distributive impacts”, “equity”, or “environmental justice” (European Commission

2009; U.S. Environmental Protection Agency 2016a). But it is also well known that

concrete methodologies for evaluating such additional impacts remain undeveloped (Adler

2008). Moreover, safety issues usually raise strong equity concerns that call for a careful

and systematic analysis of distributive impacts, as illustrated by the economic policy

discussions about the COVID-19 pandemic (Adler 2020). Third, the literature in public

economics has long debated in general settings the issue of the optimal provision of public

goods under distortionary taxes and individual heterogeneities (Atkinson and Stiglitz

1980). It thus seems useful to examine a specific but important domain of application

such as public safety provision. A starting point to do so is to develop a comparative
1Environmental Protection Agency (EPA) guidelines recommend using a VSL of $9.7 million in 2013

U.S dollars (U.S. Environmental Protection Agency 2010). In 2016, the U.S. Department of Trans-
portation (DOT) uses a VSL of $9.6 million for their analyses (U.S. Department of Transportation
2016).

2For example, according to OECD (2017), Hungary still implements a flat income tax system, whereas
other OECD countries implement a progressive tax system.
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statics analysis of the effect of taxation system imperfections on the optimal level of

public safety.

In our analysis, we proceed as follows. We compare the optimal level of public safety

selected by a utilitarian social planner under three exogenous benchmark types of the

taxation system: individual lump-sum tax (first-best), uniform lump-sum tax (uniform

tax) and uniform flat tax (income tax).3 We consider in turn two types of individual

heterogeneity, namely wealth and mortality risk heterogeneity, and we also consider dis-

tortionary taxation. Our primary results are the following. Under wealth heterogeneity,

compared with the first-best level of public safety, we show that the optimal level of

public safety provision is usually lower under uniform taxation, but that it can be greater

under income taxation. Under mortality risk heterogeneity, the comparison is generally

ambiguous, as it typically depends on whether the heterogeneity concerns the baseline

risk or the reduction in risk. Finally, we show that under reasonable assumptions on labor

supply and the shape of the utility function, public safety under first-best is generally

higher compared to distortionary taxation.

From this theoretical analysis, we conclude that the imperfection of the taxation

system cannot generically justify more or less public safety provision. The basic intuition

is simple. Take the wealth heterogeneity case for example. Under perfect taxation, the

rich are taxed more than the poor. Imperfect taxation shifts some of the tax burden

from the rich to the poor. Thus, the rich are relatively richer and would prefer more

public safety, whereas the poor are relatively poorer and would prefer less public safety.

Depending on the shape of the utility function, the demand for safety of the rich may, or

may not, over shadow that of the poor, so that more or less safety should be provided.

Hence, the answer about which effect dominates is essentially empirical.

At the end of the paper, we discuss some policy implications. In particular, we

develop some simulation exercises based on the calibration of distributional weights using

data from the U.S. population. These simulations indicate that the VSL, and in turn

the optimal level of public safety, should be significantly adjusted downwards because

of imperfect taxation. For instance, in our illustrative analysis of the COVID-19 early

prevention policy, the induced weighted VSL should be reduced by about one-third under
3In the optimal taxation literature, endogenous taxation is typically studied to account for the issue

of imperfect information (Mirrlees 1971). In our setting, we assume for simplicity that the tax system is
exogenously given.
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uniform taxation compared to the first-best case.

Our paper builds on two strands of literature: the VSL and the optimal provision of

public good literature. First, the VSL represents the individual’s marginal willingness

to pay for a small reduction in mortality risk (Drèze 1962; Jones-Lee 1974). The VSL

literature has examined both theoretically and empirically how VSL varies with the char-

acteristics of individuals or of the decision-making environment (Andersson and Treich

2011; Viscusi and Aldy 2003). However, the vast majority of this literature has ignored

the issue of imperfect taxation, with two notable exceptions. Pratt and Zeckhauser (1996)

study the optimal allocation of safety among heterogeneous individuals under uniform

taxation.4 Armantier and Treich (2004) examine the bias induced by the standard VSL

approach under uniform taxation when individuals are heterogeneous in wealth and mor-

tality risk. However, these two papers do not compare the impact of various taxation

systems. Moreover, they do not consider labor supply distortions.

Second, in the public good provision literature, a standard reference is the Pigou

conjecture. Pigou (1947) states that, under distortionary taxation, the marginal benefit

of the public good should be greater than the marginal production cost, implying a lower

provision of the public good.5 This conjecture led to the development of the marginal cost

of public funds (MCPF) concept, which was first incorporated into Samuelson’s rule for

the optimal public good provision by Stiglitz and Dasgupta (1971), Diamond and Mirrlees

(1971) and Atkinson and Stern (1974). If Pigou’s conjecture holds, the value of MCPF

should be greater than 1. However, the literature has shown that this conjecture holds

only under specific settings and that the value of the MCPF depends on the relationship

between the public good, labor supply, and the taxed activities (Atkinson and Stern

1974; Ballard and Fullerton 1992; Stiglitz and Dasgupta 1971). Gaube (2000) shows for

instance that with heterogeneous households, equity considerations may increase public

expenditure in the second-best. In practice, BCA typically recommends using an MCPF

larger than one to account for imperfect taxation, which seems questionable given the
4Pratt and Zeckhauser (1996) focus on the collectively purchased risk reduction that can be targeted

at different individuals. Under uniform taxation, they study the optimal individual safety level, whereas
we study the optimal public safety (i.e. individuals consume the same amount of safety).

5Pigou (1947, p.33-34) noted: “Where there is indirect damage, it ought to be added to the direct
loss of satisfaction involved in the withdrawal of the marginal unit of resources by taxation, before this
is balanced against the satisfaction yielded by the marginal expenditure. It follows that, in general,
expenditure ought not to be carried so far as to make the real yield of the last unit of resources expended
by the government equal to the real yield of the last unit left in the hands of the representative citizen.”
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lack of consensus in the literature. Although the MCPF has been extensively studied, we

are not aware of any specific application to public safety.

Moreover, most of the literature in public economics examines the level and properties

of optimal public good provision under a specific taxation system, but does not compare

various systems. Thus, we contribute to this literature by considering a public safety

setting, and by developing a comparative statics analysis of different taxation systems.

Before proceeding further with the model, we want to stress two strong limitations.

The first is that the model is most directly applicable to government-funded public safety

programs that are financed by taxes. We have in mind for instance public clean-up pro-

grams (such as those concerning sites contaminated with hazardous substances), infras-

tructure investments (such as those improving transport safety or reducing flood risks),

water sanitation, R&D research in health, or nuclear wastes management. However,

in reality, many public safety programs are based on regulations that impose costs on

private firms and households. Our model is not directly relevant to this latter form of reg-

ulation that would typically require a precise modeling of the polluting industry market

structure and of the households’ demand for the goods produced by that industry.6 The

second important limitation is that the model is static. However, many mortality risks

are long term risks which affect the dynamics of private decisions such as self-protection,

insurance demand, borrowing and savings (Shepard and Zeckhauser 1984). Moreover,

the optimal fiscal policy is better conceived in a dynamic setting (Motta and Rossi 2019;

Werning 2007). Here, we abstract from the various complexities induced by a dynamic

model with a sequence of public intervention and individual decisions, including that of

time-inconsistency.

2 The Model

In this section, we set up the benchmark first-best model of optimal public safety provi-

sion. We consider a single period economy with H individuals that differ only in wealth

wi and mortality risk 1 − pi (i = 1, ..., H). We assume that the utility function is uni-

form across individuals and the bequest motive is normalized to zero. Following the VSL
6However, we note that we include a numerical exploration of the COVID-19 prevention policy (see

7.2), which may be somehow informative about the impact of a safety program that imposes large costs
on firms and households. This numerical exercise was made possible because we could rely on existing
papers that estimate the cost of public safety in terms of the global loss in GDP.
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literature, the individual i’s expected utility is given by

EUi = pi(G)u(ci, li) (2.1)

Here pi(G) denotes the probability of survival given the level of public expenditure on

safety G. u(·) is the individual’s survival utility as a function of her consumption level ci
and labor supply li. Under an exogenous wage rate ωi, individual i has wealth wi ≡ ωili

and when the individual faces a tax rate ti, the consumption level is ci = ωili − ti. We

assume that the tax is collected ex ante when everyone is alive and before knowing who

will die.7

In this model, the utility function is assumed to be strictly positive (u > 0), since the

bequest motive is normalized to zero and survival is assumed to be strictly preferred to

death.8 The utility function is increasing and concave in the consumption level (uc > 0,

ucc < 0), and decreasing and concave in labor supply (ul < 0, ull < 0). The survival

function is positive, increasing, and weakly concave (pi(·) > 0, p′i(·) > 0, p′′i (·) ≤ 0), and

pi(G) < 1 for all is.

In the first-best, the utilitarian social planner chooses the optimal level of public safety

G and the lump-sum tax rate ti (a subsidy is a negative tax) for each individual i by

maximizing social welfare and taking into account the individual optimal labor supply

response for a given level of ti. As the tax levied on each individual is lump-sum, the

individual’s labor supply is not distorted and the optimal decision c∗i (ti), l∗i (ti) satisfies:

−u∗
l

u∗
c
= ωi, where u∗

c ≡ uc(c
∗
i (ti), l

∗
i (ti)) and u∗

l ≡ ul(c
∗
i (ti), l

∗
i (ti)).9 Therefore, the social

7This assumption is a shortcut for a more complex model, where all living individuals today finance
public safety expenditures, but these individuals will die at different times in the future. Here, in our
one-period model, there are only two possibilities, either the individual survives the period and can enjoy
the consumption of his income, or he dies (and his utility is normalized to zero and thus independent of
income).

8In a special case, the possibility of a bequest motive v(ci, li) can also be considered, with EUi =
pi(G)u(ci, li)+ (1− pi(G)v(ci, li). As is common in the literature, assume v(ci, li) = ku(ci, li) for some k
(k ∈ [0, 1) for u > 0 and k > 1 for u < 0) (Kaplow 2005; Viscusi and Evans 1990). This means that the
utility in the death state is proportionally lower than the survival utility. Therefore, for each individual,
we can write πi(G) = k + (1 − k)pi(G), πi(·) > 0, π′

i(·) > 0, π′′
i (·) ≤ 0, and EUi = πi(G)u(ci, li). It is

straightforward that all results of the paper carry out under this particular case.
9This can be obtained by solving maxci,li u(ci, li) s.t. ci = wili − ti for all i.
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planner solves the following welfare maximization problem:

max
G,{ti}i∈{1,...H}

H∑
i=1

pi(G)u(c∗i (ti), l
∗
i (ti))

s.t. G ≤
H∑
i=1

ti

c∗i (ti) = ωil
∗
i (ti)− ti ∀i

(2.2)

Setting the Lagrangian:

L =
H∑
i=1

pi(G)u(c∗i (ti), l
∗
i (ti)) + µ(

H∑
i=1

ti −G) (2.3)

the first order conditions (focs) with respect to ti and G give

∂L
∂ti

= pi(G
∗)uc(c

∗
i (ti), l

∗
i (ti))− µ = 0, ∀i (2.4)

∂L
∂G

=
H∑
i=1

p′i(G
∗)u(c∗i (ti), l

∗
i (ti))− µ = 0, (2.5)

where µ denotes the shadow price of one additional unit of public safety.10 Assuming

interior solutions, the system of focs has a unique set of solutions denoted by t∗i and

G∗. The focs indicate that the social planner equalizes the expected marginal utility of

consumption across individuals.

Replacing µ in equation 2.5 and rearranging, we get

H∑
i=1

p′i(G
∗)V SLi = 1 (2.6)

where V SLi ≡
u∗

pi(G∗)u∗
c

with u∗ ≡ u(c∗i (t
∗
i ), l

∗
i (t

∗
i )) (and similarly for u∗

c) and G∗ =
∑H

i=1 t
∗
i . V SLi is the VSL

of individual i, which describes the marginal rate of substitution (MRS) between wealth

and survival probability. The VSL term exhibits two standard effects, namely the dead-

anyway effect and the wealth effect. The dead-anyway effect states that VSL decreases
10We will assume throughout that the second order conditions hold globally. See appendix A.1 for

more details.
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in the survival probability pi, i.e., the individual facing higher risks has the incentive to

increase his spending on risk reduction (Pratt and Zeckhauser 1996). The wealth effect

states that VSL increases in the individual’s disposable wealth ci.

Equation 2.6 characterizes the efficiency condition to achieve the optimal level of

public safety provision. It corresponds to Samuelson’s condition of equalizing social

marginal benefit to the social marginal cost of providing for the public good (Samuelson

1954).

In the following, we relax the assumption of perfect taxation. Moreover, we want to

the compare optimal public safety level under first and second-best taxation. Because

this comparison is very difficult in a general setting, we consider two simple alternative

taxation schemes, uniform and income taxation. Moreover, we carry out the analyses

with one variation at a time.11 We examine in section 3 and 4 the case of imperfect

redistribution between heterogeneous individuals with exogenous labor supply. In that

case, we denote without loss of generality that u(ci) ≡ u(ci, li). To illustrate the analysis,

two common utility forms are used, namely constant relative risk aversion (CRRA) utility

and constant absolute risk aversion (CARA) utility: with CRRA utility, u(c) = c1−γ

1−γ
, γ ∈

(0, 1); with CARA utility, u(c) = 1−e−αc

α
, α > 0.12 Two analytically important coefficients

are relative risk aversion R(c) = −cu
′′(c)
u′(c)

and the fear of ruin FR(c) = u(c)
u′(c)

(Foncel and

Treich 2005). The only class of utility function that has linear fear of ruin is CRRA,

which also has R(c) = γ. In section 5, we study the case of labor effort distortion with

income taxes on identical individuals with utilities u(c, l).

3 Wealth Heterogeneity

In this section, we examine the case of individual heterogeneity in wealth only. We assume

that the labor supply is exogenously determined (or consider wealth in the form of an

endowment) and the survival probabilities are homogeneous across individuals. In the

first-best, tax ti is levied on individual i. Deviating from the first-best, we consider two

cases: uniform tax tU and income tax τwi. Thus, the social planner solves the following
11We thus do not explore theoretically the global impact of all individual heterogeneities combined.

Although we partially address this in the simulations, we do not explore the impact of possible correlations
among wealth and risk. It is well documented for instance that wealthier individuals are usually less
exposed to risks. We leave this for future research.

12Note that because we assume u > 0, we impose γ < 1 and α > 0. This assumption restricts the class
of CRRA and CARA utility functions that we consider in this paper.
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maximization problems under the three tax systems:

First-best:

max
GF ,ti

p(GF )
H∑
i=1

u(wi − ti)

s.t. GF =
H∑
i=1

ti

(3.1)

Uniform Tax:

max
GU ,tU

p(GU)
H∑
i=1

u(wi − tU)

s.t. GU = HtU

(3.2)

Income Tax:

max
GI ,τ

p(GI)
H∑
i=1

u(wi(1− τ))

s.t. GI = τ
H∑
i=1

wi

(3.3)

Rearranging the focs, we can easily get the following equations:

First-best: p(G∗
F )

p′(G∗
F )

=
H∑
i=1

u(wi − t∗i )

u′(wi − t∗i )
, ∀i (3.4)

Uniform Tax: p(G∗
U)

p′(G∗
U)

= H

∑H
i=1 u(wi − t∗U)∑H
i=1 u

′(wi − t∗U)
, ∀i (3.5)

Income Tax: p(G∗
I)

p′(G∗
I)

=

∑H
i=1wi

∑H
i=1 u(wi(1− τ ∗))∑H

i=1 wiu′(wi(1− τ ∗))
, ∀i (3.6)

The focs 3.4 imply wi− t∗i = wj− t∗j ∀i, j ∈ {1, .., H}. Assuming wi > wj, we can infer

that t∗i > t∗j . Thus under wealth heterogeneity, the first-best requires a higher tax on the

wealthier individual. In the remainder of this section, we separately compare first-best

G∗
F with uniform tax G∗

U and with income tax G∗
I .
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3.1 First-best and uniform tax comparison

Proposition 1. Under wealth heterogeneity with homogeneous risk and exogenous labor

supply, with u′′′(x) ≥ 0, the optimal level of public safety in the first-best is higher than

that with uniform taxation (G∗
F > G∗

U).

Proof. See Appendix A.2.

Proposition 1 shows that, under the common assumption of prudence (Kimball 1990),

where the marginal utility of consumption is decreasing at a diminishing rate, the optimal

level of public safety in the first-best is higher than that under uniform tax.

The intuition for this result is illustrated in Figure 1. In the first-best, the social

planner equalizes the individual marginal utilities. When perfect taxation is not possible,

the marginal utility cannot be equalized which affects both the marginal benefit and

marginal cost of safety provision. Comparing to the first-best, uniform taxation decreases

the marginal benefit of safety for any given level of safety due to the unequal distribution

of after-tax wealth under risk aversion. In other words, saving a life has less value

on average because imperfect taxation lowers the average utility in the society. Uniform

taxation also increases the marginal cost of safety provision because the average marginal

utility of consumption is higher (under prudence) due to sub-optimal financing. This is

consistent with the Pigou conjecture. Combining the two effects, less safety is provided

under uniform taxation than in the first-best.

Figure 1 Illustration of the comparison between first-best and uniform tax

G∗
U G∗

F G

1
H p(G)

∑H
i=1 u

′(wi − G
H )

1
H p(G)

∑H
i=1 u

′(wi − ti)

p′(G)
∑H

i=1 u(wi − ti)

p′(G)
∑H

i=1 u(wi − G
H )

risk aversion

prudence

To illustrate the result with a specific and extreme example, consider two individuals

with wealth 1000 and 10 respectively. They both have the same CRRA utility u(c) = c0.5

0.5
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and survival function p(G) = a + (1 − a)(1 − e−(1−a)G) with a = 0.8. In the first best,

the rich is taxed 505.9, and the poor is given a subsidy of 484.1. Therefore, the total

investment in public safety is 21.8. Under uniform taxation, each is taxed 5.9, and the

total investment on public safety is now 11.8, which is about one-half of the level of safety

in the first-best.

3.2 First-best and income tax comparison

Remark 1. Under wealth heterogeneity with homogeneous risk and exogenous labor sup-

ply, the optimal level of public safety in the first-best could be above, below or equal to the

level under income tax.

We illustrate Remark 1 with the case of two individuals. Table 1 presents simulations

of the optimal public safety provision under three specific cases with CRRA and CARA

utility. With CRRA utility, the optimal level is the same under first-best and income

tax. With CARA utility, the level of provision may be higher or lower in first-best than

with income tax given the degree of risk aversion (parameter α in the utility function).

Table 1 Simulations of the optimal public safety under wealth heterogeneity

Utility CRRA CARA
Parameter value γ = 0.5 α = 0.02 α = 0.001

Tax Rate
t1 794.6 1047.5 794.1
t2 -705.3 -452.6 -705.9

τ(w1 + w2) 89.3 306.0 91.5
G∗

F = G∗
I G∗

F > G∗
I G∗

F < G∗
I

Note: Simulated in Mathematica. p(G) = a + (1 − a)(1 − e−0.3(1−a)G) with a = 0.9, CRRA utility
u(x) = x1−γ

1−γ , CARA utility u(x) = 1−e−αx

α , w1 = 2000 and w2 = 500.

In the following, we further study the case of CRRA utility.

Remark 2. Under wealth heterogeneity with homogeneous risk and exogenous labor sup-

ply, if the utility function satisfies CRRA, then the optimal level of public safety in the

first-best is always the same as that with income taxation (G∗
F = G∗

I).

Proof. See Appendix A.3.

The linear fear of ruin property of CRRA utility is instrumental to this result. Notice

that with CRRA utility, the RHS of equation 3.6 becomes 1−τ∗

1−γ

∑H
i=1wi. This indicates
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that only the sum of wealth matters for determining the optimal level of public safety.

Therefore, if the sum of wealth remains the same, optimal level of public safety would

always coincide in the first-best and in income tax, regardless of how the wealth is dis-

tributed.

4 Mortality Risk Heterogeneity

In this section, we consider individual heterogeneity on survival probability pi(G) (or risk

heterogeneity 1 − pi(G)), with homogeneous wealth and exogenous labor supply. As we

will see, the comparison depends on the specification of the survival probability function,

and the results are thus not generic. We therefore present results as “remarks” in this

section, and restrict to the case of H = 2 to facilitate the exposition. Without loss of

generality, we assume p1(G) > p2(G). The social planner’s problems can be written as

follows:

First-Best:

max
GF ,t1,t2

p1(GF )u(w − t1) + p2(GF )u(w − t2)

s.t. GF = t1 + t2

(4.1)

Uniform Tax:

max
GU ,tU

(p1(GU) + p2(GU))u(w − tU)

s.t. GU = 2tU

(4.2)

Income Tax:

max
GI ,τ

(p1(GI) + p2(GI))u(w(1− τ))

s.t. GI = 2τw

(4.3)

Note that income tax is equivalent to uniform tax in this scenario as there is no hetero-

geneity in wealth. Indeed, one can always set τ = tU
w

to have w(1 − τ) = w − tU and

obtain GI = GU . Therefore, we focus the analysis on the uniform tax case.

We show in Appendix A.4 that the ranking of G∗
F and G∗

U depends on the shape

of the fear of ruin ( u
u′ ) and the relationship between p′1(G

∗
F )

p1(G∗
F )

and p′2(G
∗
F )

p2(G∗
F )

. To determine

12



this relationship, it is important to identify where the risk heterogeneity arises. The

risk heterogeneity may come from two sources: baseline risk and risk reduction. More

specifically, baseline risk refers to the individual risk prior to the implementation of the

public safety project, and risk reduction refers to the individual benefit from the project.

In the remainder of this section, we first separately analyze heterogeneous baseline risk

and heterogeneous risk reduction, and then we consider a proportional risk reduction

which implies that the two sources are correlated.

Heterogeneous Baseline Risk

With heterogeneous baseline risk, agents have different baseline survival probability

pi, but receive the same level of benefit from the public safety project ε(G). The survival

function could be expressed as pi(G) = pi + ε(G), with ε(·) < 1−max{p1, p2}, ε(·) > 0,

ε′(·) > 0, and ε′′(·) ≤ 0.

Remark 3. Under heterogeneous baseline risk (pi(G) = pi + ε(G)) with homogeneous

wealth and exogenous labor supply, if fear of ruin is weakly concave, the optimal level of

public safety is lower in the first-best than with uniform or income tax (G∗
F < G∗

U = G∗
I).

Remark 3 can be shown directly by assuming p1 > p2. Then p′1(G
∗
F )

p1(G∗
F )

=
ε′(G∗

F )

p1+ε(G∗
F )

<

ε′(G∗
F )

p2+ε(G∗
F )

=
p′2(G

∗
F )

p2(G∗
F )

. We show in Appendix A.4 that with fear of ruin weakly concave, e.g.,

CRRA utility, p′1(G
∗
F )

p1(G∗
F )

<
p′2(G

∗
F )

p2(G∗
F )

implies G∗
F < G∗

U = G∗
I .

We show in Table 2 that if utility is CARA, for which fear of ruin is convex, the

optimal level of public safety can be greater or lower in the first-best than under uniform

or income tax.

Table 2 Simulation for heterogeneous baseline risk with CARA utility

Utility CARA
Wealth level w = 1000 w = 200

Tax Rate
t1 -1.3 -116.7
t2 245.3 179.9
tU 121.9 32.7

G∗
F > G∗

U = G∗
I G∗

F < G∗
U = G∗

I

Note: Simulated in Mathematica. p(G) = pi+
0.01G

1+0.02G , p1 = 0.5, p2 = 0.3. CARA utility U(x) = 1−e−αx

α ,
α = 0.001.

The result displayed in Remark 3 goes in the opposite direction of the Pigou conjec-

ture. First-best equalizes the expected marginal utility of individuals by imposing a lower
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tax on the less-exposed individual, i.e., one with higher baseline survival probability, and

a higher tax on the more-exposed individual, i.e., one with lower baseline survival prob-

ability. This is in line with the dead-anyway effect (Pratt and Zeckhauser 1996). Under

uniform taxation and weakly concave fear of ruin, uniform taxation may exacerbate this

effect, which results in a higher public safety level.

Heterogeneous Risk Reduction

With heterogeneous risk reduction, agents have the same baseline survival probability

p, but have different degrees of benefit δi from the safety project. The survival function

is assumed to be linear in the public safety level, thus pi(G) = p+ δiG, δi < 1−p
G

for any

G.

Remark 4. Under heterogeneous linear risk reduction (pi(G) = p + δiG) with homoge-

neous wealth and exogenous labor supply, if fear of ruin is weakly convex, the optimal

level of safety provision in the first-best is higher than that with uniform or income tax

(G∗
F > G∗

U = G∗
I).

Similarly, assuming δ1 > δ2, we have p′1(GF )

p1(GF )
= δ1

p+δ1GF
> δ2

p+δ2GF
=

p′2(GF )

p2(GF )
. Thus, if fear

of ruin is weakly convex, G∗
F > G∗

U = G∗
I .

Proportional risk reduction

The third case we look at is that of a proportional risk reduction, which implies a

correlation between the baseline risk and the risk change. It is well documented in the

environmental health literature that individuals with underlying health conditions are

often more susceptible to mortality risks from air pollution and thus may benefit more

from a regulatory intervention that reduces those risks (Goldberg et al. 2013; Pope III

et al. 2015). Here we consider a standard proportional hazards model of risk wherein

exposure to a pollutant would increase health risks in proportion to an individual’s base-

line risk. The survival function could be expressed as pi(G) = pi + (1 − pi)ε(G), with

0 ≤ ε(·) < 1, ε′(·) > 0, and ε′′(·) < 0.13

Remark 5. Under proportional risk reduction (pi(G) = pi + (1− pi)ε(G)) with homoge-

neous wealth and exogenous labor supply, if fear of ruin is weakly concave, the optimal level

of public safety is lower in the first-best than with uniform or income tax (G∗
F < G∗

U = G∗
I).

13To see that this corresponds to a proportional risk reduction, consider the initial mortality risk
exposure xi = 1 − pi. Then pi(G) = 1 − xi(1 − ε(G)), where ε(G) indeed represents the reduction in
proportion of the risk exposure.
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Remark 5 follows by showing p′1(G
∗
F )

p1(G∗
F )

=
ε′(G∗

F )(1−p1)

p1+(1−p1)ε(G∗
F )

<
ε′(G∗

F )(1−p2)

p2+(1−p2)ε(G∗
F )

=
p′2(G

∗
F )

p2(G∗
F )

if

p1 > p2.

The results in this section are closely related to those in Armantier and Treich (2004).

Most specifically, Armantier and Treich show in their Proposition 1 that, under uniform

taxation, there is over-provision of public safety under baseline risk heterogeneity while

there is under-provision under heterogeneous changes in risk. There are some differences

though with Armantier and Treich which explain why their results hold for all probability

and utility functions while our results can go either way depending on these functions.

First, Armantier and Treich only consider first-order approximations while our results

hold in the large. Second, the comparative statics exercise is slightly different. Indeed,

Armantier and Treich do not compare as we do here optimal public safety in the first-best

optimum and second-best optimum. Instead, they examine whether the net benefit of

an indivisible public safety project financed by uniform taxation, but evaluated by the

aggregate VSL method (as if the economy was at the first best optimum), is overestimated

or underestimated.

5 Distortionary Taxation

In this section, we focus on the distortionary aspect of imperfect taxation. The main

result of this section is an application of the general results in previous studies in public

economics.14 We assume that individuals are identical (so that we drop the individual

i’s index) and that they maximize their utility by choosing the consumption c and labor

supply l, subject to the tax rate. Because individuals are small compared to the size

of the economy, they do not take into account the feedback effect of taxation.15 With

identical individuals, the first-best is equivalent to uniform lump-sum taxation. Here,

income tax corresponds to the imperfect taxation case.

The social planner’s problems under first-best and income tax are respectively:
14Extensive research has been done on the issue of public good provision with distortionary tax (Atkin-

son and Stern 1974; Atkinson and Stiglitz 1980; Gaube 2000, 2005).
15Individuals take the level of public safety as given. That is, they do not take into consideration that

their labor supply level could influence the total amount of safety.
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First-best:

max
GF ,t

Hp(GF )u

(
c∗t (t), l

∗
t (t)

)
s.t. GF = Ht

(5.1)

Income tax:

max
GI ,τ

Hp(GI)u

(
c∗τ (τ), l

∗
τ (τ)

)
s.t. GI = Hωl∗τ (τ)τ

(5.2)

{c∗t (t), l∗t (t)} and {c∗τ (τ), l∗τ (τ)} are the individual’s optimal choice bundles given the

tax rate t and τ . By solving the individual utility maximization problem, we know that

− ul(c
∗
t (t),l

∗
t (t))

uc(c∗t (t),l
∗
t (t))

= ω and − ul(c
∗
τ (τ),l

∗
τ (τ))

uc(c∗τ (τ),l
∗
τ (τ))

= ω(1− τ). We can easily obtain from the focs:

First-best:

Hp′(G∗
F )u

(
c∗t (t

∗), l∗t (t
∗)

)
= p(G∗

F )uc

(
c∗t (t

∗), l∗t (t
∗)

)
(5.3)

Income tax:

Hp′(G∗
I)u

(
c∗τ (τ

∗), l∗τ (τ
∗)

)
= p(G∗

I)uc

(
c∗τ (τ

∗), l∗τ (τ
∗)

)
1

1 + εlτ∗
(5.4)

where G∗
F = Ht∗, G∗

I = τ ∗wl∗τ (τ
∗), and εlτ∗ =

∂l
∂τ
/ l
τ

denotes the labor supply elasticity of

income tax.

Comparing equation 5.3 and 5.4, we can see that the ranking of G∗
F and G∗

I depends

on the properties of the utility function u(·), the individual’s optimal choice bundles given

t and τ , and the elasticity term εlτ∗ .

Proposition 2. Under distortionary tax with identical individuals, assume labor supply

is an inferior good, then a sufficient condition for the optimal level of public safety in the

first-best to be greater than that under income tax (G∗
F = G∗

U > G∗
I) is to have a weakly

negative labor supply elasticity of income tax (εlτ ≤ 0).

Proof. See Appendix A.5.

Proposition 2 is very similar to Gaube (2000, Proposition 2). The meta-analysis on

labor supply elasticity conducted by Bargain and Peichl (2016) supports the assumptions
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made in Proposition 2. They summarize over 90 studies that estimate labor supply

elasticity in Europe and US. The majority of studies estimate a positive uncompensated

labor supply elasticity of wage rate, which corresponds to εlτ < 0. Moreover, in these

studies, the income elasticity of labor generally has a negative sign, which is consistent

with the assumption that labor is an inferior good.

Corollary 1. Let e(l) > 0 denote the labor effort with e′(l) > 0 and e′′(l) > 0. Then

G∗
F > G∗

I if

1. the labor effort is commensurable with consumption u(c, l) = v(c− e(l));

2. or the labor effort is separable from consumption u(c, l) = v(c) − e(l), and the

relative risk aversion of v(c) is less than 1.

Proof. See Appendix A.6.

Corollary 1 specifies two benchmark utility functional forms inducing a downward

sloping labor supply. This is when the substitution effect between consumption and

leisure always dominates the income effect, and less labor is provided when there is a

higher tax rate. Consequently, following Proposition 2, the first-best level of public safety

is always greater than under distortionary tax under these specific utility functions.

The results in this section also have implications on the marginal cost of public fund

(MCPF). From equations 5.3 and 5.4, we can define the MCPF = 1
1+εlτ∗

, which denotes

the distortion of income tax on labor supply.16 Depending on the sign of the labor supply

elasticity, the MCPF may be greater or lower than unity.

Proposition 2 shows that if the value of MCPF is greater than one, then the second-

best level of public safety is always lower than the first-best level. This is in line with

the Pigou conjecture. However, the proposition is not conclusive for the case where the

MCPF is lower than one. We can in fact show that this condition is not sufficient to induce

more public safety in the second-best. Consider a utility function u(c, l) = (1− l)e−e
c

1−l

and a survival function p(G) = a + (1 − a)(1 − e−bG), where a = 0.8 and b = 0.01.17

Assume there are H = 100 identical individuals. Given these specific functional forms,

G∗
F = 297.6 and G∗

I = 287.8. In this case, the MCPF = 0.65 with εlτ = 0.538.
16The expression of MCPF comes from rearranging equation 5.4 to fit the modified Samuelson’s rule

for distortionary taxation, where the sum of the marginal rate of substitution between the public good
and private consumption Hp′(G)u

p(G)uc
equals to the marginal rate of transformation 1 multiplied by a term

usually denoted as MCPF.
17This utility function has the property of backward bending labor supply as shown in Hanoch (1965).
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6 Inequalities and Public Safety

As the World Inequality Report 2018 documents, wealth and income inequalities within

world regions vary greatly and have been increasing in nearly all countries since 1980

(Alvaredo et al. 2018). Moreover, several studies in the public health sector document

significant level of inequality in mortality risks caused by differences in both socioeconomic

status and health behaviors (Laaksonen et al. 2007; Mackenbach et al. 2008). In this

section, we ask: How do wealth and risk inequalities affect optimal public safety provision?

And to what extent does the relationship between inequality and optimal public safety

vary with tax system imperfections?

6.1 Wealth inequality

Here we consider the model in section 3, and we assume H = 2 where w1 = (1 + η)w̄,

w2 = (1 − η)w̄, with w̄ denoting the average wealth. Here η ∈ [0, 1) measures wealth

inequality with η = 0 indicating perfect equality.

Remark 6. Under homogeneous risk and exogenous labor supply, an increase in wealth

inequality does not affect the first-best optimal level of public safety, but reduces the optimal

safety level under uniform taxation if u′′′ ≥ 0.

Proof. See Appendix A.7.

Figure 2 illustrates Remark 6: in the first-best, increasing inequality does not affect

the optimal level of safety; under uniform tax, the level is monotonically decreasing with

increasing inequality. The first part of Remark 6 is analogous to the well known result

of private provision of public good: wealth redistribution among contributors does not

change the equilibrium supply of public good (Bergstrom et al. 1986).

Figure 2 also shows that with income taxation, increasing wealth inequality may

not monotonically change the optimal level of public safety. For example, with a specific

CARA utility function, increasing wealth inequality first decreases and then increases the

optimal level of public safety. If utility satisfies CRRA, given the result from Remark 2,

the optimal level of public safety remains unchanged regardless of the degree of inequality.
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Figure 2 Effect of wealth inequality on the optimal level of public safety under the three
tax systems
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Note: Simulated in Mathematica. p(x) = 0.2 + 0.02x
1+0.04x , CARA utility u(x) = 1−e−αx

α , α = 0.01 and

w = 1000.

6.2 Risk inequality

Here we consider the model in section 4, and we separately analyze the effect of baseline

risk inequality and risk reduction inequality. For baseline risk inequality, we set pb1(G) =

(1 + η)p̄ + ε(G) and pb2(G) = (1 − η)p̄ + ε(G). For risk reduction inequality, we set

pr1(G) = p + (1 + η)δ̄G and pr2(G) = p + (1 − η)δ̄G. As before, η denotes the degree of

inequality and η ∈ [0, 1).

Remark 7. Under homogeneous wealth and exogenous labor supply, an increase in risk

inequality (both baseline risk and risk reduction) does not affect the optimal level of public

safety under uniform and income tax.

Proof. See Appendix A.8.

The simulations show that in the first-best, however, increasing risk inequality affects

the optimal public safety level and magnifies the gap between the level in the first-best

and under uniform taxation. Figure 3 shows the optimal safety level with respect to the

baseline risk inequality and risk reduction inequality.
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Figure 3 Effect of risk inequality on the optimal safety level
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Note: Simulated in Mathematica. pi(x) = pi +
0.02x

1+0.04x , p1 = (1 + η)p̄, p2 = (1 − η)p̄, p̄ = 0.25, CARA

utility u(x) = 1−e−αx

α , α = 0.02, CRRA utility u(x) = x1−γ

1−γ , γ = 0.5 and w = 1000.

7 Policy Implications

In this section, we discuss some implications for policies and for their economic evaluation.

We discuss how to adjust BCA, and thus the VSL approach, to account for imperfect

taxation. Specifically, we show that imperfect taxation can be accounted for in BCA by

applying distributional weights to VSLs, and we illustrate the impact of this adjustment

with an evaluation of the COVID-19 prevention policy. We also discuss how to adjust

the VSL transfer method and the use of the MCPF concept.
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7.1 VSL and distributional weights under imperfect taxation

In practice, several policy-making agencies that implement public safety projects, e.g.

the U.S. EPA and the U.S. DOT, commonly use the VSL to monetize mortality risk

reduction benefit. The recommended VSL is usually obtained from meta-analysis of VSL

estimates from stated or revealed preferences studies (U.S. Environmental Protection

Agency 2016b), and is often interpreted as a population average of individual VSLs.

Recall from section 2 that the efficient condition to achieve optimality in public safety

provision in the first-best is
∑H

i=1 p
′
i(G

∗)V SLi = 1, where V SLi =
u(wi−t∗i )

pi(G∗)u′(wi−t∗i )
. Observe

that when p′i(G
∗) is independent from V SLi, the efficiency condition can be rewritten as

1
n

∑H
i=1 V SLi =

1∑H
i=1 p

′
i(G

∗)
, which equates the average VSL to the social marginal cost of

saving a life. Therefore, average VSL can determine the optimal level of public safety if

taxation is perfect and p′i(G
∗) is independent of V SLi. In the absence of either conditions,

however, the average VSL can lead to an over- or under-valuation of the social value of

public safety. One way to address this concern in practice is to incorporate “distributional

weights” into BCA (Adler 2016).

Currently, the official guidelines for BCA in the UK recommend using distributional

weights that can be expressed as the marginal utility of each quintile as a percentage of

average marginal utility (Her Majesty’s Treasury 2003). However, this weighting scheme

only accounts for income inequalities and does not consider other inequalities, such as risk

inequality. Moreover, it does not explicitly address the question of imperfect taxation.

In the following, we present a simple exercise of re-expressing the optimality conditions

under imperfect taxation in terms of a weighted VSL and discuss the weighting rules.

We rewrite the optimality conditions for any taxation scheme in the following form

H∑
i=1

λip
′
i(G)V SLi = 1, (7.1)

where λi is the corresponding weight assigned to each individual. The weights vary with

the tax systems and sources of heterogeneity. Table 3 shows the weights in each case.18

The Table shows that there is not one set of weights that can be applied to all taxation

cases. In the first-best, no weight is needed as redistribution is fully taken care of through
18The distributional weights for the wealth heterogeneity case are obtained by rearranging equations

3.5 and 3.6. The weights for the risk heterogeneity case are obtained by rearranging the focs of 4.2 for
the H individuals case. These computations are straightforward and left to the readers.
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Table 3 VSL weights under different taxation systems and heterogeneities

Wealth Heterogeneity Risk Heterogeneity

First-best 1 1

Uniform tax u′(wi−t∗U )
1
H

∑
j u

′(wj−t∗U )

pi(G
∗
U )

1
H

∑
j pj(G

∗
U )

Income tax u′(wi(1−τ∗))∑
k

wk∑
j wj

u′(wk(1−τ∗))

pi(G
∗
I )

1
H

∑
j pj(G

∗
I )

taxation. In the case of wealth heterogeneity, under uniform tax, the weights are similar

to the recommended distributional weights in the UK (λi =
u′(wi−t∗U )

1
H

∑
j u

′(wj−t∗U )
). Under income

tax, the weights can be expressed as the individual marginal utility over the sum of wealth

weighted ( wk∑
j wj

) marginal utilities. Moreover, under risk heterogeneity with uniform and

income taxation, the weights should be the individual survival probability as a percentage

of the population average survival probability (λi =
pi(G

∗
U )

1
H

∑
j pj(G

∗
U )

).

To illustrate how VSL changes when using distributional weights, we calibrate the

weights under uniform taxation for both wealth and risk heterogeneity using U.S. data.

In turn, we compare the average and the weighted level of VSLs. Table 4 exhibits the

parameters used for the calibration exercise. We take the average income in the top and

bottom quartile of the US population in the age group of 40 to construct a “rich” and a

“poor” group. Similarly, we take the all inclusive mortality risk in the age group 40-44

to construct a “risky” and a “safe” group.19

19According to the National Vital Statistics Reports of U.S. CDC, within the age group of 40-44, the
Non-hispanic American or Alaska Native has the highest number of death per 10 thousand people. The
Non-hispanic Asian or Pacific Islander has the lowest number of death per 10 thousand people. We take
the death rate of these two groups as the high and low mortality risk, respectively.
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Table 4 Parameters used to calibrate the distributional weights

Parameters Description Source Value

yrich average annual income for people, age 40, top 25% U.S. Census Bureau $80,400
ypoor average annual income for people, age 40, bottom 25% U.S. Census Bureau $27,509
ymedian median annual income for people, age 40 U.S. Census Bureau $47,529
rmedian average all inclusive mortality risk, age 40-44 U.S. CDC 0.0022
rrisky average all inclusive mortality risk, age 40-44, high risk U.S. CDC 0.0047
rsafe average all inclusive mortality risk, age 40-44, low risk U.S. CDC 0.0008
T average life expectancy for people of age 40 U.S. CDC 40
i interest rate 1%

V SL population average VSL U.S. EPA $9,700,000

Note: The mortality risk data from the U.S. Centers for Disease Control and Prevention (U.S. CDC) is
found in Kochanek et al. (2019).

We assume that individuals have CRRA utility of the form u(w) = w1−γ

1−γ
. Since

we do not observe the level of risk aversion, we calibrate the parameter γ such that

the average population VSL matches that of the EPA recommended level of 9.7 million

dollars. The pre-tax wealth of individuals are the net present value of their life-time

income w =
∑T

t=1
yt

(1+i)t−1 . The calibrated degree of relative risk aversion is shown in

Table 5.

Table 5 Calibrated degree of relative risk aversion

γ Description Value

γwealth for wealth heterogeneity 0.8114
γrisk for risk heterogeneity 0.8338

Note: γwealth is calibrated using the rich and poor life time discounted wealth and the median mortality
risk. γrisk is calibrated using the median life time discounted wealth with the risky and safe mortality
risk.

We then calculate the pre-tax distributional weights based on the formulas in Table

3 and compare the averages and weighted level of VSL.20 Table 6 displays the result.

The top half of the table shows the wealth heterogeneity case. We can see that under

uniform taxation, the poor are assigned a higher weight than the rich. Thus, the weighted
20 The weights are calibrated only for the uniform tax case. Indeed, with CRRA utility, the optimal

safety level under income tax and the first-best are always the same under wealth heterogeneity, as
demonstrated in Remark 2. For risk heterogeneity, income tax is equivalent to uniform tax.
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VSL under uniform tax is lower than the unweighted level, which indicates that, if the

underlying public finance for a safety project was a uniform tax, using the average VSL

would result in over-provision of public safety.

Similarly, the bottom half of Table 6 shows the risk heterogeneity case. Under uniform

taxation, the safe are assigned a higher weight. The weighted VSL is lower than the

average VSL, although to a very small extent due to the relatively small difference between

the initial risk level of the two groups.

Table 6 Calibrated distributional weights and VSLs

VSL Distributional Weights (λ)

Rich $14,455,492 0.590
Poor $494,597 1.410

Average (weighted) VSL $9,700,731 $7,753,248

Risky $9,721,552 0.998
Safe $9,691,367 1.002

Average (weighted) VSL $9,706,459 $9,706,436

7.2 Illustrative example – COVID-19

We now illustrate the analysis of the optimal level of public safety provision with the

example of policy interventions in the COVID-19 pandemic. Due to the pandemic, the

mortality risk increased significantly in 2020 and led to the implementation of social

distancing and lock-down rules to contain the spread of the virus. Here we simulate how

stringent the social distancing rules should be, depending on how the economic cost is

shared between different population cohorts.

Individuals face a general mortality risk r0i and a COVID-19 specific mortality risk

rci. We assume that social distancing rules decrease rci but do not affect r0i. Imposing

social distancing rules G would incur an economic cost measured by percentage of GDP.

The survival function pi(G) is concave in G.We take the example of the US. Following

Adler (2020), we divide the individuals into seven age groups ranging from 20 to above

80. Within each age group there are four income groups divided by quartiles. Altogether

there are 28 cohorts of individuals. The income and risk levels for each cohort are shown

in the tables below.
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Table 7 Annual income by age group and income quartile

Income ($) 20 30 40 50 60 70 80

1st 16005 26023 28488 29021 29277 28378 27002

2nd 27757 44756 49645 50334 50193 48404 47170

3rd 43458 71927 81126 84393 85651 85440 79041

4th 63262 110391 131646 140525 142882 157759 129139

Data source: U.S. Census Bureau

Table 8 Lifetime income by age group and income quartile

Life time income (million $) 20 30 40 50 60 70 80

1st 1.151 1.058 0.892 0.700 0.341 0.341 0.258

2nd 1.976 1.825 1.531 1.201 0.588 0.588 0.451

3rd 3.294 3.077 2.611 2.071 1.020 1.020 0.756

4th 5.416 5.149 4.447 3.574 1.742 1.742 1.235

Note: The lifetime income is computed using wi =
∑Ti−ti

k=0 βkyi,ti+k, where Ti is the life expectancy, ti
is the current age, β = 1

1+r is the discount factor, yi,ti+k is the income level at age ti + k. We assume

that individuals remain in their income quartile throughout their life and the discount rate r is taken at

1%. The life expectancy data is taken from U.S. CDC.

Table 9 General and COVID-19 risk by age group

Age group risk (%) 20 30 40 50 60 70 80

General risk 0.1087 0.1594 0.2674 0.6140 1.2437 2.7377 9.8789

COVID-19 risk 0.0240 0.0650 0.1220 0.4860 1.7820 4.1310 7.5330

Data source: General risk data are obtained from U.S. CDC; COVID-19 risk data are taken from Adler

(2020)’s Table 2. The COVID-19 mortality risk is defined as the mortality risk in the absence of any

government intervention, which would result in 80% of the population contracting the virus.

We calibrate the utility function and survival function using the above mentioned

data. The specific functional forms are shown in Table 10.
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Table 10 Calibrated function and parameter values

Functional form Parameter Value

Utility function u(ci) =
c1−γ
i

1−γ
γ = 0.7902

Survival function pi(G) = 1− r0i − rcie
−αG α = −3.27171

Note: γ is calibrated using the life time income level and general mortality risk, such that the population

average VSL equals to the recommended VSL of EPA, which amounts to 9.7 million USD. Following

Acemoglu et al. (2020), we calibrate a concave survival function such that a 37.5% (resp. 10%) decrease

in GDP reduces the average mortality risk from COVID-19 to 0.2% (resp. 1.05%). The calibration is

done using least square method to fit the exponential survival probability function to the data points.

Following Adler (2020), GDP is measured by the population weighted sum of individual income in the

current year. The population weight is obtained from U.S. Census Bureau, Current Population Survey,

“Age and Sex Tables,” Table 1.

We simulate the optimal cost incurred by social distancing given different cost sharing

schemes. To be consistent with the theoretical modelling, we consider three cases, optimal

cost sharing (first-best), uniform cost sharing (uniform), and proportional cost sharing

(income). Table 11 shows the optimal level of social distancing costs given different cost

sharing schemes as well as the corresponding distributional weighted VSL.

Table 11 Optimal social distancing rules given different cost sharing schemes

First-best Uniform Income

Optimal policy (% of GDP reduction) 51.65% 33.41% 47.61%

Weighted VSL ($) 9,608,700 6,056,900 9,606,300

Note: The weighted VSL is average VSL with cohort specific distributional weights. The distributional

weights are defined by equation 7.1 and we consider post-policy weights. In the uniform case, λi can be ex-

pressed as λi,uni =
pi(GU )u′(yi−tU )∑

j θjpj(GU )u′(yj−tU ) . In the income case, λi,income =
∑

k θkyk
pi(GI)u

′(yi(1−τ))∑
j θjyjpj(GI)u′(yj(1−τ)) .

The results show that if the economic cost of social distancing is shared evenly across

individuals (i.e., in the uniform case), then the social distancing rules should be relaxed

by about one-third compared to the first-best cost sharing case. Similarly, the distribu-

tional weighted VSL in the uniform case is also reduced by about one-third compared to

the population VSL in the first-best. Note finally that there is evidence that the more
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economically vulnerable workers are more likely to be affected by social distancing poli-

cies (Mongey et al. 2020). Hence, although the uniform case can be viewed in general as

an extreme form of imperfect taxation, it may not be a bad approximation for the cost

sharing rule of the COVID-19 early prevention policies.

7.3 VSL transfer

VSL is used in BCA for a variety of policy evaluations. However, it is costly to conduct

case-specific VSL studies. Thus, a common practice is to take the VSL value in some case

studies and quantitatively adjust the value to fit the policy context, known as “benefit

transfers” (U.S. Environmental Protection Agency 2011). A common practice is to adjust

VSL by the income elasticity of the populations under study (Hammitt and Robinson

2011). Our analysis suggests that, in addition to income elasticity, which accounts for

the wealth differences across populations, the population wealth and risk inequalities as

well as tax system imperfections also need to be considered.

Meta-analyses of wage-risk studies have shown that the VSL estimates of developed

countries (e.g. U.S., UK) can be more than ten times the estimates of middle-income

countries (e.g. China) (Viscusi and Aldy 2003). Moreover, the extrapolated VSL under

income adjustment for low-income countries (e.g. Kenya, Ethiopia) could be 50 times

lower than that of the U.S. (Hammitt and Robinson 2011). Although these values already

raise controversy, we argue there are two reasons to even further adjust these estimates:

the inequality of wealth and risk as well as the imperfection in the taxation systems. In

particular, Proposition 1 indicates that imperfect taxation justifies lower public safety.

Remarks 6 and 7 show that a higher degree of wealth or mortality risk inequalities may

also call for a lower safety provision.

7.4 The marginal cost of public funds

The marginal cost of public funds (MCPF) measures the loss incurred by raising ad-

ditional revenues to finance government spending. However, no consensus has yet been

reached on the value of MCPF (Dahlby 2008). In practice, agencies adopt different values

of MCPF in their guidelines for BCA, but they are usually greater than unity. For ex-

ample, the U.S. Office of Management and Budget (OMB) recommends using an MCPF

of 1.25 (Office of Management and Budget 1992, article 11), the European Union uses

27



a default MCPF of 1 in the absence of national guidelines (Florio et al. 2008) while the

French government recommends using a median value of 1.2 (Quinet 2013).21

We show in section 5 that the MCPF can theoretically be greater or lower than unity

depending on the labor supply elasticity. Empirical evidence suggests that the MCPF

is larger than unity.22 However, the BCA practice of accounting for tax distortions only

through MCPF on the cost side appears insufficient to determine the optimal level of

public safety provision. This is because distortionary taxation also affects the marginal

benefit of public safety (see the LHS of equation 5.4).23 Even if the MCPF is lower than

unity, which implies a lower marginal cost of providing public safety, the optimal public

safety in the second-best may still be lower than in the first-best due to the impact of

distortionary taxation on the marginal benefit.

8 Conclusion

It is well known that BCA focuses on efficiency. It rests on the Kaldor-Hicks concept,

which measures the (unweighted) sum of individuals’ willingness to pay for a project.

However, it is also well known that a project that does pass the BCA test may fail to

increase social welfare if its financing is sub-optimal. In the practice of policy evaluation,

a “common belief” is that the imperfections in the taxation system should decrease the

social value of a costly project. This belief is reminiscent of Pigou’s famous conjecture

that distortionary taxation should induce a lower provision of the public good. Our main

objective in this paper is to examine formally this common belief in the context of public

safety provision.

A central result in our paper is Proposition 1. Confirming the common belief, this

result shows that an (imperfect) uniform tax reduces the level of optimal public safety
21There are two competing approaches to the MCPF, namely the Dasgupta-Stiglitz-Atkinson-Stern

(DSAS) tradition, and the Pigou-Harberger-Browning (PHB) tradition (Dahlby 2008). Our analysis
follows the DSAS approach, where the social planner’s budget is balanced.

22Although it is a theoretical possibility in accordance with Atkinson and Stern (1974) that the income
effect may dominate the substitution effect resulting in a positive labor supply elasticity, there is little
empirical evidence of such occurrence (Meghir and Phillips 2010). However, Manski (2014) argues that
the consensus in the empirical literature may be an artifact of the strong assumptions made in the models.
He states that without the knowledge of income-leisure preference, one cannot predict how labor effort
may change with the tax rate (Manski 2014, p.147) .

23This is due to the non-separability between public safety and private consumption. If the public
good and private consumption were separable, distortionary tax would have no effect on the marginal
benefit of public good. See (e.g.) Atkinson and Stern (1974) for the analysis of the separable case.
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compared to a first best lump-sum tax. The intuition is the following. First, the marginal

cost of safety provision is higher under imperfect taxation because the tax burden on the

poor is greater. Second, the marginal benefit is lower because imperfect taxation lowers

the average utility in the society, and thus lowers the social value of saving a life. However,

the rest of the theoretical analysis presents a much more complex picture. Indeed, we

show that imperfect taxation may in fact increase, and not decrease, safety provision

if imperfect taxation takes the form of an income tax or if the heterogeneity concerns

individuals’ mortality risks. Therefore, we must add a word of caution, and recognize

that public safety need not decrease in general under imperfect taxation.

Moreover, the paper develops some preliminary numerical analyses. When we cali-

brate the distributional weights for imperfect taxation, we find that the weighted VSL

should be lower by between 0% to 20%. In our illustrative analysis of the COVID-19 early

prevention policy, the induced weighted VSL should be reduced by about one-third un-

der uniform cost sharing compared to the first-best case. Our simulations also show that

wealth inequality supports less safety provision under imperfect taxation. Furthermore,

when we study the impact of distortionary taxation, we find that public safety should be

reduced under a negative labor supply elasticity of the income tax, an assumption which

is relatively well supported empirically. Overall, we thus suggest that the VSL should in

general be adjusted downwards because of imperfect taxation. Further empirical studies

are needed however to estimate more precisely the size of this adjustment.
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A Appendix

A.1 Second order conditions

For the general framework, we assume that the second order conditions (socs) are satisfied.

For the wealth heterogeneity and distortionary taxation case, the socs of the social

planner’s problems (3.1, 3.2, 3.3, 5.3, and 5.4) are always satisfied under the assumptions

made.

For the risk heterogeneity case, the socs of the uniform and income tax problem

(4.2, 4.3) are always satisfied. For the first-best (4.1), in order to have the socs sat-

isfied, the Hessian of 4.1 need to be negative definite. Denoting f(t∗1, t
∗
2) ≡ p1(t

∗
1 +

t∗2)u(w − t∗1) + p2(t
∗
1 + t∗2)u(w − t∗2), this would require that ∂2f(t∗1,t

∗
2)

∂t21
< 0, ∂2f(t∗1,t

∗
2)

∂t22
< 0

and

∣∣∣∣∣∣
∂2f(t∗1,t

∗
2)

∂t21

∂2f(t∗1,t
∗
2)

∂t1∂t2

∂2f(t∗1,t
∗
2)

∂t1∂t2

∂2f(t∗1,t
∗
2)

∂t22

∣∣∣∣∣∣ > 0. The first two conditions are easy to show. For the last

condition, denote: A1 = p′′1u1, A2 = p′′2u2, B1 = p′1u
′
1, B2 = p′2u

′
2, C1 = p1u

′′
1, C2 = p2u

′′
2. If

(A1 +A2)(C1 +C2)− (B1 −B2)
2 − 2B1C2 − 2B2C1 +C1C2 > 0, then the soc is satisfied

globally.

A.2 Proof of Proposition 1

Proposition 1. Under wealth heterogeneity with homogeneous risk and exogenous labor

supply, with u′′′(x) ≥ 0, the optimal level of public safety in the first-best is higher than

that with uniform taxation (G∗
F > G∗

U).

Proof. The focs of the first-best and uniform tax maximization problems equalize the

marginal benefit of public safety to its marginal cost of provision. Thus equations 3.4

and 3.5 can be rewritten as

p′(G∗
F )

H∑
i=1

u(wi − t∗i ) =
1

H
p(G∗

F )
H∑
i=1

u′(wi − t∗i ) (A.1)

p′(G∗
U)

H∑
i=1

u(wi −
G∗

U

H
) =

1

H
p(G∗

U)
H∑
i=1

u′(wi −
G∗

U

H
) (A.2)

The left-hand side (LHS) for both equations A.1 and A.2 corresponds to the marginal

benefit and the right-hand side (RHS) corresponds to the marginal cost. Observe that for
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any given level of G =
∑H

i=1 ti such that wi − ti = wj − tj, i, j ∈ {1, ..., H}, risk aversion

implies that
H∑
i=1

u(wi − ti) >
H∑
i=1

u(wi −
G

H
),

and under prudence u′′′ ≥ 0, we have

H∑
i=1

u′(wi − ti) ≤
H∑
i=1

u′(wi −
G

H
).

Therefore, for the same level of G, the LHS of equation A.1 is greater than that of A.2

and the RHS of A.1 is lower than that of A.2. As Figure 1 illustrates, under risk aversion

and prudence, we must have G∗
F > G∗

U at the optimum.

A.3 Proof of Remark 2

Remark 2. Under wealth heterogeneity with homogeneous risk and exogenous labor

supply, if the utility function satisfies CRRA, then the optimal level of public safety in

the first-best is always the same as that with income taxation (G∗
F = G∗

I).

Proof. Under CRRA, u′(c) = c−γ and the fear of ruin coefficient FR(c) = u(c)
u′(c)

= c
1−γ

is

linear in c.

Substituting the utility function into equation 3.4 and 3.6, we get

First-Best:
p(G∗

F )

p′(G∗
F )

=

∑H
i=1wi −

∑H
i=1 t

∗
i

1− γ
(A.3)

Income Tax:
p(G∗

I)

p′(G∗
I)

=

∑H
i=1 wi − τ ∗

∑H
i=1wi

1− γ
(A.4)

The result is then immediate because τ ∗
∑H

i=1wi =
∑H

i=1 t
∗
i .
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A.4 Risk heterogeneity

Rearranging the focs of problems 4.1 and 4.2 we get:

First-Best:

p1(G
∗
F ) + p2(G

∗
F )

p′1(G
∗
F ) + p′2(G

∗
F )

=
u(w − t∗1)

u′(w − t∗1)
+

u(w − t∗2)

u′(w − t∗2)︸ ︷︷ ︸
U∗
FB

+
p2(G

∗
F )

p′1(G
∗
F ) + p′2(G

∗
F )︸ ︷︷ ︸

A

×

u(w − t∗1)− u(w − t∗2)

u′(w − t∗1)︸ ︷︷ ︸
B

(
p′1(G

∗
F )

p1(G∗
F )

− p′2(G
∗
F )

p2(G∗
F )

)
︸ ︷︷ ︸

C

(A.5)

p1(G
∗
F )u

′(w − t∗1) = p2(G
∗
F )u

′(w − t∗2) (A.6)

Uniform Tax:
p1(G

∗
U) + p2(G

∗
U)

p′1(G
∗
U) + p′2(G

∗
U)

=
2u(w − t∗U)

u′(w − t∗U)︸ ︷︷ ︸
U∗
Uni

(A.7)

Again, we are interested in comparing G∗
F and G∗

U . As the LHS of equations A.5 and

A.7 are of the same form and are increasing functions of G, we only need to examine the

RHS of the equations.

Denote t̂U and ÛUni such that t̂U =
t∗1+t∗2

2
and ÛUni =

2u(w−t̂U )

u′(w−t̂U )
. If fear of ruin ( u

u′ ) is

weakly convex, U∗
FB ≥ ÛUni. Given our assumptions on the functional forms, we know

that A > 0 and B > 0. Thus the ranking of G∗
F and G∗

U depends on the sign of C. If

C ≥ 0, that is p′1(G
∗
F )

p1(G∗
F )

≥ p′2(G
∗
F )

p2(G∗
F )

, the RHS of A.5 is greater than the RHS of A.7 when

t∗U = t̂U . Therefore, it must be that t∗U < t̂U and G∗
U < G∗

F . If C < 0, i.e., p′1(G
∗
F )

p1(G∗
F )

<
p′2(G

∗
F )

p2(G∗
F )

,

a sufficient condition for the RHS of A.5 to be lower than A.7 is fear of ruin weakly

concave (U∗
FB ≤ ÛUni). In this case, t∗U > t̂U and G∗

U > G∗
F .

A.5 Proof of Proposition 2

Proposition 2. Under distortionary tax with identical individuals, assume labor supply

is an inferior good, then a sufficient condition for the optimal level of public safety in the

first-best to be greater than that under income tax (G∗
F = G∗

U > G∗
I) is to have a weakly

negative labor supply elasticity of income tax (εlτ ≤ 0).

Proof. Equation 5.3 gives the implicit value of G∗
F . Take ĜI = G∗

F , we can con-

struct a τ̂ such that τ̂ωl∗τ (τ̂) = ĜI . Given equation 5.4, if we determine whether
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Hp′(ĜI)u(c
∗
τ (τ̂),l

∗
τ (τ̂))

p(ĜI)uc(c∗τ (τ̂),l
∗
τ (τ̂))

(1 + εlτ̂ ) ⋛ 1, then we can conclude about the ranking between G∗
F

and G∗
I . We get the following equation by substituting Hp′(ĜI)

p(ĜI)
using equation 5.3.

Hp′(ĜI)u(c
∗
τ (τ̂), l

∗
τ (τ̂))

p(ĜI)uc(c∗τ (τ̂), l
∗
τ (τ̂))

(1 + εlτ̂ ) =
uc(c

∗
t (t

∗), l∗t (t
∗))

u(c∗t (t
∗), l∗t (t

∗))

u(c∗τ (τ̂), l
∗
τ (τ̂))

uc(c∗τ (τ̂), l
∗
τ (τ̂))

(1 + εlτ̂ ) (A.8)

Therefore,

G∗
F

> G∗
I if εlτ̂ < FRt

FRτ
− 1

≤ G∗
I if εlτ̂ ≥ FRt

FRτ
− 1

where FRt =
u(c∗t (t

∗),l∗t (t
∗))

uc(c∗t (t
∗),l∗t (t

∗))
and FRτ = u(c∗τ (τ̂),l

∗
τ (τ̂))

uc(c∗τ (τ̂),l
∗
τ (τ̂))

.

We show that for a lump-sum tax and an income tax that obtains the same level of

tax revenue, the fear of ruin under the lump-sum tax is strictly higher than under the

income tax, FRt > FRτ , if labor is an inferior good. To compare FRt and FRτ , we

show that u(c∗t (t∗), l∗t (t∗)) > u(c∗τ (τ̂), l
∗
τ (τ̂)) and uc(c

∗
t (t

∗), l∗t (t
∗)) < uc(c

∗
τ (τ̂), l

∗
τ (τ̂)). Given

the same level of tax revenue, it is obvious that the lump-sum tax can achieve a strictly

higher utility level than the income tax (u(c∗t (t∗), l∗t (t∗)) > u(c∗τ (τ̂), l
∗
τ (τ̂))). It is easy to

show that for the same level of tax revenue, c∗t (t∗) > c∗τ (τ̂) and l∗t (t
∗) > l∗τ (τ̂). Taking the

full derivative of uc we get

duc = uccdc+ ucldl = (wucc + ucl)dl (A.9)

The last equality is obtained by substituting dc = ωdl from the budget constraint. There-

fore, uc(c
∗
t (t

∗), l∗t (t
∗)) < uc(c

∗
τ (τ̂), l

∗
τ (τ̂)) iff ucl + ωucc < 0. From the foc of the individual

utility maximization in the first-best, we have F (l, t) = uc(c
∗
t , l

∗
t )ω + ul(c

∗
t , l

∗
t ) = 0. Using

the implicit function theorem we get

∂l

∂t
= −

∂F (l,t)
∂t

∂F (l,t)
∂l

=
ucl + ωucc

uccω
∂c
∂l
+ uclω + ucl

∂c
∂l
+ ull

(A.10)

We know that the denominator must be negative so that the second-order condition

is satisfied. Thus, if labor is an inferior (normal) good, the numerator is negative

(positive). Under the assumption that labor is an inferior good, then ucl + ωucc < 0,

uc(c
∗
t (t

∗), l∗t (t
∗)) < uc(c

∗
τ (τ̂), l

∗
τ (τ̂)), and FRt > FRτ .

Thus, FRt

FRτ
− 1 > 0. A sufficient condition for G∗

F > G∗
I is to have εlτ ≤ 0.
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A.6 Proof of Corollary 1

Corollary 1. Let e(l) > 0 denote the labor effort with e′(l) > 0 and e′′(l) > 0. Then

G∗
F > G∗

I if

1. the labor effort is commensurable with consumption u(c, l) = v(c− e(l));

2. or the labor effort is separable from consumption u(c, l) = v(c) − e(l), and the

relative risk aversion of v(c) is less than 1.

Proof. As εlτ∗ = ∂l
∂τ
/ l
τ

and l∗t (τ)
τ∗

> 0, to obtain the sign of εlτ∗ , we just need to sign ∂l∗(τ)
∂τ

.

1. With commensurable labor effort, u(c, l) = v(c− e(l)), c = wl(1− τ), we get

∂l∗(τ)

∂τ ∗
= − w

e′′(l∗(τ))
(A.11)

By assumption, e′′(l) > 0, then ∂l∗(τ)
∂τ∗

< 0 which implies εlτ∗ < 0.

We can also check that labor is an inferior good under commensurable labor effort:

ucl + wucc = v′′ × (w − e′(l)) < 0, since e′(l) = w(1− τ) and v′′(·) < 0.

2. With separable labor effort, u(c, l) = v(c)− e(l), c = wl(1− τ), we get

∂l∗(τ)

∂τ ∗
=

v′′(c∗(τ))w2l∗(1− τ) + v′(c∗(τ))w

v′′(c∗(τ))w2(1− τ)2 − e′′(l∗(τ))
(A.12)

By assumption, the denominator is negative. In this case, if the relative risk aver-

sion coefficient R(c∗(τ)) = −c∗(τ)v
′′(c∗(τ))
v′(c∗(τ))

< 1, then the numerator of the RHS of

equation A.12 is positive, which implies εlτ∗ < 0.

Labor is indeed an inferior good under separable labor effort: ucl+wucc = wv′′(c) <

0.

We can easily conclude with Proposition 2 that G∗
F > G∗

I under the assumptions of 1 and

2.

A.7 Proof of Remark 6

Remark 6. Under homogeneous risk and exogenous labor supply, an increase in wealth

inequality does not affect the first-best optimal level of public safety, but reduces the optimal

safety level under uniform taxation if u′′′ ≥ 0.
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Proof. In the first-best, the optimal level of taxation is characterized by (1 + η)w̄− t∗1 =

(1 − η)w̄ − t∗2 from equation 3.4 when H = 2. A change in wealth inequality can be

expressed as η′ = η + ∆η. The optimality condition gives (1 + η + ∆η)w̄ − T ∗
1 = (1 −

η −∆η)w̄ − T ∗
2 . Thus, it is straightforward that t∗1 = T ∗

1 −∆ηw̄ and t∗2 = T ∗
2 +∆ηw̄. It

follows that T ∗
1 + T ∗

2 = t∗1 + t∗2.

For uniform taxation, we can rewrite equation 3.5 as a function of η:

F (t∗U , η) ≡ p(2t∗U)(u
′
1 + u′

2)− 2p′(2t∗U)(u1 + u2) = 0 (A.13)

where u1 = u((1 + η)w̄ − t∗U) and u2 = u((1− η)w̄ − t∗U). Applying the implicit function

theorem, it is easy to obtain that dt∗U
dη

= −
∂F (t∗U ,η)

∂η
∂F (t∗

U
,η)

∂t∗
U

< 0 if u′′′ ≥ 0. Therefore, assuming

prudence, t∗U decreases in η.

A.8 Proof of Remark 7

Remark 7. Under homogeneous wealth and exogenous labor supply, an increase in risk

inequality (both baseline risk and risk reduction) does not affect the optimal level of public

safety under uniform and income tax.

Proof. For baseline risk inequality, equation A.7 can be rewritten as:

p̄+ ε(G∗
U)

ε′(G∗
U)

=
2u(w − t∗U)

u′(w − t∗U)
.

As the foc of uniform tax is independent of η, GU (and equivalently GI) remains constant

regardless of η.

For risk reduction inequality, the LHS of A.7 can be written as p+δ̄G∗
U

δ̄
, which is also

independent of η.
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