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Abstract

Regression extremiles define a least squares analogue of regression quantiles.

They are determined by weighted expectations rather than tail probabilities. Of

special interest is their intuitive meaning in terms of expected minima and maxima.

Their use appears naturally in risk management where, in contrast to quantiles,

they fulfill the coherency axiom and take the severity of tail losses into account. In

addition, they are comonotonically additive and belong to both the families of spec-

tral risk measures and concave distortion risk measures. This paper provides the

first detailed study exploring implications of the extremile terminology in a general

setting of presence of covariates. We rely on local linear (least squares) check func-

tion minimization for estimating conditional extremiles and deriving the asymptotic

normality of their estimators. We also extend extremile regression far into the tails

of heavy-tailed distributions. Extrapolated estimators are constructed and their

asymptotic theory is developed. Some applications to real data are provided.
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1 Introduction

A basic tool in different scientific fields for analyzing the impact of a set of regressors X

on the distribution of a response Y is quantile regression. For τ P p0, 1q, the conditional

τth quantile of Y given X “ x is defined as the minimizer

qτ pxq P arg min
θPR

E t r|τ ´ 1IpY ď θq| ¨ |Y ´ θ| ´ |τ ´ 1IpY ď 0q| ¨ |Y |s |X “ xu , (1)

with 1Ip¨q being the indicator function. Subtracting |τ ´1IpY ď 0q| ¨ |Y | in the expectation

makes the integrand well-defined and finite without assuming Ep|Y ||X “ xq ă 8. A

disadvantage of quantile regression is that quantiles only use the information on whether

an observation is below or above some specific value. However, in a financial risk manage-

ment context for example, not taking into account the effective magnitude of high values

of losses, might not be wise. Conditional expectiles deal with this drawback, and lead to

coherent and more realistic risk measures as compared to quantile-based risk measures,

as evidenced by [1] and [4], among others. The conditional τth expectile is defined as

eτ pxq “ arg min
θPR

E
 “

|τ ´ 1IpY ď θq| ¨ |Y ´ θ|2 ´ |τ ´ 1IpY ď 0q| ¨ |Y |2
‰

|X “ x
(

, (2)

obtained in a similar way to qτ pxq in (1) but replacing absolute deviations by squared

deviations (Newey and Powell [8]). Expectiles depend on both the tail realizations and

their probability, while quantiles only depend on the frequency of tail observations. An

inconvenience of expectiles is their lack of transparent interpretation, due to the absence of

a closed form expression of eτ pxq as a solution to the asymmetric least squares problem (2),

for all τ ‰ 1
2
. The absence of an explicit expression makes the treatment of expectiles

a hard mathematical problem from the perspective of extreme value theory, for instance

when it comes to estimating tail risk (Daouia et al. [4]).

Very recently, Daouia et al. [3] considered an alternative class to expectiles, called

extremiles, which defines a new least squares analogue of quantiles. A starting point for

the introduction of this class was that the unconditional τth quantile of Y , with continuous

cumulative distribution function F , can alternatively be obtained from

qτ P arg min
θPR

E tJτ pF pY qq ¨ r|Y ´ θ| ´ |Y |su , (3)

2



where Jτ p¨q “ K 1
τ p¨q, with

Kτ ptq “

$

&

%

1´ p1´ tqspτq if 0 ă τ ď 1{2

trpτq if 1{2 ď τ ă 1
(4)

being a distribution function with support r0, 1s, and rpτq “ sp1 ´ τq “ logp1{2q{ logpτq.

See Section 2.1 in [3]. The unconditional extremile of order τ is then defined by substi-

tuting the absolute deviations with squared deviations, i.e.

ξτ “ arg min
θPR

E
 

Jτ pF pY qq ¨
“

|Y ´ θ|2 ´ |Y |2
‰(

. (5)

Unlike expectiles, extremiles can be motivated via several angles and enjoy various inter-

pretations and closed form expressions. For an overview on this issue, and the specific

merits related to these interpretations and explicit expressions, see Daouia et al. [3]. In

the presence of covariates, one can define conditional extremiles by considering a condi-

tional version of (5). It will be evidenced in Section 2 that conditional extremiles enjoy the

same advantages as unconditional extremiles. Obviously statistical inference for condi-

tional quantities, such as conditional quantiles, expectiles and extremiles, requires specific

regression tools as compared to statistical inference for their unconditional counterparts.

The aim of this paper is to study conditional extremiles, i.e. to pursue extremile

regression, in a general setting. The main contributions of this paper consist of (i) dis-

cussing probabilistic properties of regression extremiles; (ii) studying and establishing the

asymptotic behaviour of their nonparametric estimators; (iii) investigating conditional

extremile estimators when applied to the far tail (case τ “ τn Ñ 1, as the sample size

n Ñ 8); and (iv) illustrating the practical use of noncentral conditional extremiles. We

shall discuss below in Section 5 the various merits of extremile regression.

The paper is organized as follows. Section 2 presents the class of regression extremiles

and their basic probabilistic properties. Section 3 deals with estimation of ordinary condi-

tional extremiles for fixed orders τ . Extrapolated estimators of tail regression extremiles,

for high orders τ “ τn Ñ 1 as n Ñ 8, are developed in Section 4 for heavy-tailed condi-

tional distributions. Section 5 concludes. All the necessary mathematical proofs, practical

implementation guidelines and simulation results are given in the supplementary file.
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2 Class of regression extremiles

Let X P Rd and Y P R be two random variables. Denote by F p¨|xq the cumulative

distribution function of Y given X “ x and by qτ pxq “ F´1pτ |xq “ infty P R|F py|xq ě τu

the related conditional quantile of order τ P p0, 1q. For ease of presentation, we assume

throughout the paper that F p¨|xq is continuous. The order-τ extremile of this distribution

function, as introduced in (5), defines the regression τth extremile of Y given X “ x.

Definition 1 Let Y given X “ x have a finite absolute first moment. Then, for any

τ P p0, 1q, the conditional order-τ extremile of Y given X “ x is

ξτ pxq “ arg min
θPR

E
 

Jτ pF pY |Xqq ¨ r|Y ´ θ|
2
´ |Y |2s|X “ x

(

. (6)

Particularly useful is to look at ξτ pxq as the following probability-weighted moment,

expected maximum or expected minimum.

Proposition 1 Let Y given X “ x have a finite absolute first moment. Then, for any

τ P p0, 1q, we have the following equivalent closed form expressions:

ξτ pxq “ E rY Jτ pF pY |Xqq |X “ xs “

ż 1

0

Jτ ptq qtpxq dt “

ż 1

0

qtpxq dKτ ptq,

and ξτ pxq “

$

&

%

E rmax pY 1
x , . . . , Y

r
x qs when τ “ p1{2q1{r with r P Nzt0u,

E rmin pY 1
x , . . . , Y

s
x qs when τ “ 1´ p1{2q1{s with s P Nzt0u,

for independent observations Y i
x drawn from the conditional distribution of Y given X “ x.

In the central case τ “ 1{2, we have rpτq “ spτq “ 1, and hence ξτ pxq reduces to the

standard regression mean EpY |X “ xq. The limit cases τ Ò 1 (i.e. rpτq Ñ 8) and τ Ó 0

(i.e. spτq Ñ 8) lead to the upper and, respectively, lower endpoints of the support of

F p¨|xq. Further important properties are established in the following.

Proposition 2 (i) If Y given X “ x has a symmetric distribution with finite absolute

first moment, then ξ1´τ pxq “ 2EpY |X “ xq ´ ξτ pxq, for any τ P p0, 1q.

(ii) If Y “ mpXq ` σpXqε, where σpXq ą 0 and ε is independent of X and has a finite

absolute first moment, then ξτ pxq “ mpxq`σpxqξτ,ε, for any τ P p0, 1q, where ξτ,ε denotes

the τ th extremile of ε.
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An implication of Proposition 2 is that, for symmetric conditional distributions, the

lower and upper extremile curves are symmetric about the regression mean. Also, the ex-

tremile curves are parallel to each other if the distribution of the response is homogeneous.

These properties hold for conditional quantiles as well.

3 Estimation method

Our approach is a local linear estimation based on the definition (6) which is of particu-

lar relevance when considering flexible regression specifications such as local polynomial

approximations. We restrict our analysis here to one-dimensional covariates X (d “ 1).

3.1 Least squares kernel smoothing

For a generic estimator pF p¨|xq of F p¨|xq, the local linear check function minimization

solves the weighted least squares problem

arg min
pα,βqPR2

n
ÿ

i“1

Jτ

´

pF pYi|xq
¯

tYi ´ α ´ βpx´Xiqu
2 L

ˆ

x´Xi

hn

˙

(7)

to get the estimators qα “ qξLL,τ pxq and qβ “ qξ1LL,τ pxq of ξτ pxq and ξ1τ pxq, respectively, where

Lp¨q is a kernel function and hn ą 0 a bandwidth sequence. Standard weighted least

squares theory leads to the following explicit solution
¨

˝

qα

qβ

˛

‚“

´

XT
LLW

pF ,LXLL

¯´1

XT
LLW

pF ,LY,

where Y is the column vector of dimension n containing all Yi, i “ 1, . . . , n, and XLL is

the usual design matrix of the local linear fitting technique, i.e. the n ˆ 2 matrix with a

vector of 1’s as a first column, and where the second column consists of the values x´Xi,

i “ 1, . . . , n. Furthermore, the weight matrix in the weighted least squares problem is

W
pF ,L “ diag

ˆ

Jτ

´

pF pYi|xq
¯

L

ˆ

x´Xi

hn

˙˙

i“1,...,n

.

Clearly, the asymptotic behavior of pF p¨|xq will be crucial to the analysis of the asymptotic

and finite-sample behavior of qξLL,τ pxq. Let us first discuss the properties of the latter

estimator under some general high-level conditions, including the following assumptions:
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(C1) The random vector pX, Y q has a joint density fpX,Y q which is twice continuously

differentiable in its first argument and such that for each x0, we can write

sup
xPU

 

fpX,Y qpx, yq ` |BxfpX,Y qpx, yq| ` |B
2
xxfpX,Y qpx, yq|

(

ď hpyq

for some neighborhood U of x0, where h is a nonnegative measurable function sat-

isfying
ş

Rp1` |y|
2`δqhpyq dy ă 8 for some δ ą 0;

(C2) The density fX of X is continuous and positive on the interior of its support;

(C3) The kernel L is a symmetric and bounded density function with compact support.

Theorem 1 Assume that conditions (C1)–(C3) hold, and that pF p¨|xq is a uniformly con-

sistent estimator of F p¨|xq satisfying

1
?
nhn

n
ÿ

i“1

Jτ

´

pF pYi|xq
¯

tYi ´ α ´ βpx´Xiqu

ˆ

x´Xi

hn

˙j

L

ˆ

x´Xi

hn

˙

“
1

?
nhn

n
ÿ

i“1

Jτ pF pYi|xqq tYi ´ α ´ βpx´Xiqu

ˆ

x´Xi

hn

˙j

L

ˆ

x´Xi

hn

˙

` oPp1q (8)

locally uniformly in pα, βq P R2, for j “ 0, 1. Let hn Ñ 0 be such that nh5n Ñ 0, as

nÑ 8. Then, for any x interior to the support of X,

a

nhn

!

qξLL,τ pxq ´ ξτ pxq
)

d
ÝÑ N

ˆ

0,
}L}22
fXpxq

Vτ pxq

˙

, as nÑ 8, (9)

where Vτ pxq “ E
“

J2
τ pF pY |xqq tY ´ ξτ pxqu

2
|X “ x

‰

.

Assumption (8) is evidently the central condition to be checked as part of Theo-

rem 1. It ensures that the asymptotic analysis of qξLL,τ pxq can be performed by replacing

pF p¨|xq with F p¨|xq. It should also be noted that in the higher-dimensional setting with

d´dimensional covariates X, nonparametric estimators converge in general at the rate
?
nhd, for a given bandwidth sequence h “ hn Ñ 0. The associated bias condition, which

makes it possible to find the optimal rate of convergence of the estimator, is typically

nhd`4 Ñ c P p0,8q. This is realized for h having order n´1{pd`4q, resulting in the optimal

convergence rate n2{pd`4q. This gets slower as d grows, and is an example of the well-known

curse of dimensionality phenomenon.
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The next corollary gives a simpler result for estimators pF p¨|xq having the typical

rate of convergence n2{5. Examples of such estimators include the traditional Nadaraya-

Watson estimator [7], the nearest-neighbor estimator [9] and the (improved) local linear

estimator [5]. For those estimators pF p¨|xq, we derive the asymptotic normality of qξLL,τ pxq

when estimating noncentral regression extremiles ξτ pxq.

Corollary 1 Assume that conditions (C1)–(C3) hold. Let pF p¨|xq be an estimator of

F p¨|xq satisfying n2{5 supyPR

ˇ

ˇ

ˇ

pF py|xq ´ F py|xq
ˇ

ˇ

ˇ
“ OPp1q. Let finally hn Ñ 0 be such that

nh5n Ñ 0, as n Ñ 8. Then, with the notation of Theorem 1, for any x interior to the

support of X and any τ P p0, 1´ 1{
?

2s Y r1{
?

2, 1q, we have the convergence (9).

The condition τ P p0, 1 ´ 1{
?

2s Y r1{
?

2, 1q should not be viewed as a restriction in

practice. Indeed, by Proposition 1, regression extremiles in the right tail (τ ě 1{2) are

most easily interpreted when the power rpτq “ logp1{2q{ logpτq in (4) is an integer, since

then ξτ pxq “ E
”

max
´

Y 1
x , . . . , Y

rpτq
x

¯ı

, for independent observations Y i
x drawn from the

conditional distribution of Y given X “ x. In this case, the condition τ P r1{
?

2, 1q is

equivalent to rpτq ě 2, and hence all expected maxima and corresponding extremiles are

covered by this condition, except for the conditional expectation ξ1{2pxq “ EpY |X “ xq

whose estimation obviously does not require extremile regression. Likewise, regression

extremiles in the left tail (τ ď 1{2) are interpreted as ξτ pxq “ E
”

min
´

Y 1
x , . . . , Y

rp1´τq
x

¯ı

when rp1 ´ τq P Nzt0u. In this case, the condition τ P p0, 1 ´ 1{
?

2s is equivalent

to rp1 ´ τq ě 2, and so apart from ξ1{2pxq “ EpY |X “ xq, all expected minima and

corresponding extremiles are covered by this condition.

3.2 Empirical data examples

We now illustrate the usefulness of extremile regression on two real datasets about triceps

skinfold variation and motorcycle insurance payouts. The first dataset ‘dataTriceps’,

kindly sent by Keming Yu, comprises triceps skinfold measurements of 892 girls and

women up to age 50, recorded in three Gambian villages during the dry season of 1989.

To understand the evolution of triceps skinfold with age, Yu and Jones [12] proposed to
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look at a collection of estimated quantiles as a function of age. The obtained fits via

local linear check function minimization are graphed in Figure 1 (left panel). To calculate

these conditional quantiles, we used the locally polynomial quantile regression function

lprq of the R package quantreg, in conjunction with the optimal bandwidth hqτ chosen

by the Yu and Jones [12] selection method. The competing conditional extremiles qξLL,τ

in (7), obtained with the bandwidth hξτ from our automatic selection strategy developed

in Section B of the supplementary file, are given in the same figure (left panel) in solid

lines, along with some 95% pointwise asymptotic confidence intervals in dashed lines. To

calculate the probability weights Jτ

´

pF pYi|xq
¯

in qξLL,τ pxq, we used in all our examples the

local linear estimator pF p¨|xq. In the absence of a rule-of-thumb bandwidth selection for

estimated expectiles via the check function method of Yao and Tong [11], we superimpose

in the same figure (left panel) the expectile curves corresponding to hqτ (dashed lines)

and those corresponding to hξτ (solid lines); the difference between the resulting expectile

curves is negligible although hqτ and hξτ are appreciably different for each τ .

The messages yielded by the three regression methods are broadly similar, indicating

particularly that adulthood corresponds to a much greater variability in triceps skinfold

compared to childhood. Still, expectiles beyond the regression mean exhibit less evidence

of the obvious variation and over-dispersion of the triceps skinfold as age increases: the

widening of extreme expectiles seems to be rather “narrow”. By contrast, there is a dis-

tinct tendency for the noncentral extremiles and quantiles to be more spread, suggesting

better capability of fitting both location and sparseness in data points. That said, extrem-

ile regression seems to be beneficial at least in producing smoother and more pleasing fits

of conditional location and spread beyond the regression mean. Of course, the quantile

curves can be smoothed by resorting to local linear double-kernel smoothing, but this is

unnecessary for extremiles. Moreover, we are not aware of any ready-made procedure for

constructing asymptotic confidence intervals of conditional quantiles and expectiles based

directly on the limit distributions of their local linear estimators.

The advantages of extremile regression at the tails become even more pronounced when

considering heavy-tailed scenarios as is the case in most actuarial and financial applica-
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tions. The second dataset ‘dataOhlsson’, available from the R package insuranceData,

contains 670 motorcycle-related claims recorded from 1994 to 1998 by the Swedish in-

surer Wasa. The scatterplot and local linear fits are given in Figure 1 (right panel). Here,

tail regression extremiles show more alertness and reactivity to unexpected high losses

than their expectile counterparts. They also exhibit better smoothness and stability than

their quantile competitors and do not show any crossing, unlike the unpleasant quantile

crossings that are incompatible with what occurs at the population level.

0 20 40 60

0

5

10

15

20

25

30

35

40

T
ri

c
e
p

s
  
S

k
in

fo
ld

Quantile  curves

0 20 40 60

Age  (yr)

0

5

10

15

20

25

30

35

40
Extremile  curves

0 20 40 60

0

5

10

15

20

25

30

35

40
Expectile  curves

20 40 60

0

50

100

150

200

250

300

350

400

L
o

s
s
  
(t

h
o

u
s
a
n

d
s
 o

f 
U

S
D

)

Quantile  curves

20 40 60

Age  (yr)

0

50

100

150

200

250

300

350

400
Extremile  curves

20 40 60

0

50

100

150

200

250

300

350

400
Expectile  curves

Figure 1: Left panel: dataTriceps, with smoothed 1%, 3%, 10%, 25%, 50%, 75%, 90%,

97% and 99% quantile (left), extremile (middle) and expectile curves (right) in solid lines,

and 95% pointwise asymptotic confidence intervals for ξ.01, ξ.1, ξ.5, ξ.9, ξ.99 in dashed lines.

Right panel: dataOhlsson, with smoothed 75%, 90%, 95%, 97%, 99% and 99.2% regression

curves (solid), and confidence intervals for ξ.75, ξ.9, ξ.95, ξ.97 and ξ.99 (dashed).

Note that Proposition 1 provides a straightforward interpretation of the regression

extremile ξτ pxq by making use of the asymmetry level forms τ “ p1{2q1{rpτq, for τ ě 1{2,

and τ “ 1 ´ p1{2q1{rp1´τq for τ ď 1{2. Intuitively, for example in the case of mo-

torcycle insurance claims, in the right tail, ξτ pxq ” ErmaxpY 1
x , . . . , Y

rpτq
x qs gives the

expected maximum claim amount among rpτq potential claimants aged x years, with

rp.97q « 22.75, rp.99q « 68.96, rp.992q « 86.29, rp.993q « 98.67, and rp.994q « 115.17.

Interestingly, the regression quantile of the same order τ has the “dual” intuitive meaning

as qτ pxq ” MedianrmaxpY 1
x , . . . , Y

rpτq
x qs. For a general level τ , we still keep the intuitive
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meaning of ξτ pxq as an expected maximum on the right tail p1
2
ď τ ă 1q in the sense that

E
“

max
`

Y 1
x , . . . , Y

trpτqu
x

˘‰

ď ξτ pxq ď E
“

max
`

Y 1
x , . . . , Y

trpτqu`1
x

˘‰

,

where t¨u denotes the floor function.

4 Extremal regression

In this section, we focus on extremal regression of a response variable Y P R given a vector

of covariates X P Rd. This translates into considering the order τ “ τ 1n Ñ 1 or τ 1n Ñ 0 as

the sample size n goes to infinity. To ease the presentation, we restrict our extreme-value

analysis to the case τ Ñ 1. Similar considerations evidently apply to the left tail τ Ñ 0.

4.1 Model assumption

We assume for the sake of simplicity that the response Y given X “ x is positive and

EpY |X “ xq ă 8. We focus on the challenging domain of attraction of heavy-tailed

conditional distributions that better describe the tail structure and sparseness of the data

in most applications in financial and natural sciences [2, 6, 10]. More precisely, we assume

that the conditional tail quantile function t ÞÑ q1´t´1pxq is second-order regularly varying:

(E) @y ą 0, lim
tÑ8

1

Apt|xq

ˆ

q1´ptyq´1pxq

q1´t´1pxq
´ yγpxq

˙

“ yγpxq
yρpxq ´ 1

ρpxq

for some parameters 0 ă γpxq ă 1, ρpxq ď 0 and an auxiliary function Ap¨|xq having

constant sign, with Apt|xq Ñ 0 as t Ñ 8. We use throughout the convention that

pyb´1q{b “ log y for b “ 0, so that the right-hand side reads yγpxq log y if the second-order

parameter ρpxq is zero. The index γpxq ą 0 tunes the tail heaviness of the conditional

distribution of Y given X “ x, with higher positive values indicating heavier conditional

tails. The assumption γpxq ă 1 is tailored to our requirement that EpY |X “ xq ă 8.

4.2 Estimation procedure and main results

Here we consider the estimation of ξτ pxq when τ “ τ 1n Ò 1 at an arbitrary rate as n Ñ

8. Under assumption (E), we have by Proposition 3 of [3], applied to the conditional
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distribution of Y given X “ x, that ξτ 1npxq „ qτ 1npxqG pγpxqq as n Ñ 8, where Gpsq :“

Γp1´ sqtlog 2us and Γ is the Gamma function. This motivates the estimator

pξ‹τ 1npxq :“ pq‹τ 1npxqG ppγpxqq (10)

obtained by substituting in suitable estimators pq‹τ 1npxq of qτ 1npxq and pγpxq of γpxq. Non-

parametric local estimates of the tail quantities qτ 1npxq and γpxq have been proposed in

the last decade by [2, 6, 10], among others. Prominent among these contributions is the

Weissman quantile-type estimator

pq‹τ 1npxq ” pq‹τ 1n,τnpxq :“

ˆ

1´ τ 1n
1´ τn

˙´pγpxq

pqτnpxq, (11)

where pγpxq and pqτnpxq are consistent estimators of γpxq and qτnpxq, with τn ă τ 1n being a

tuning sequence to be selected jointly with hn. Combining (10) and (11), we arrive at

pξ‹τ 1npxq ”
pξ‹τ 1n,τnpxq “

ˆ

1´ τ 1n
1´ τn

˙´pγpxq

pqτnpxqG ppγpxqq . (12)

In Theorem A.1 in the Supplementary Material document, we establish the asymptotic

distribution of pξ‹τ 1npxq in its general form (12), for generic estimators pγpxq and pqτnpxq, under

standard assumptions in the literature of conditional extremes. Here, we specialize the

discussion to well-specified estimators pqτnpxq and pγpxq in the generic form (12) of pξ‹τ 1npxq.

We consider the Nadaraya-Watson type estimator pqτnpxq ” pF´1NWpτn|xq, where

pFNWpy|xq :“
n
ÿ

i“1

1IpYi ď yqL

ˆ

x´Xi

hn

˙

O

n
ÿ

i“1

L

ˆ

x´Xi

hn

˙

. (13)

As for the choice of the conditional tail index estimator pγpxq, we will use in the sequel

the notation αn :“ 1´ τn and pn :“ 1´ τ 1n, and consider the kernel estimator of [2]:

pγpxq “
J
ÿ

j“1

“

log pq1´tjαnpxq ´ log pq1´αnpxq
‰

O

J
ÿ

j“1

logp1{tjq, (14)

where p1 “ t1 ą t2 ą ¨ ¨ ¨ ą tJ ą 0q is a decreasing list of J weights. Note that, unlike [2],

we do not assume differentiability of the conditional distribution function, and therefore

the distribution of Y given X is allowed to have atoms. The asymptotic normality of the

corresponding regression extremile estimator

pξ‹1´pnpxq :“

ˆ

αn
pn

˙

pγpxq

pq1´αnpxqG ppγpxqq

11



follows under the following additional regularity conditions:

(K1) The functions 1{γ and fX are Lipschitz continuous and x ÞÑ log `py|xq{ log y, where

`py|xq :“ y1{γpxqr1´ F py|xqs, satisfies, for a norm } ¨ } on Rd,

Dc ą 0, Dy0 ą 1, sup
yěy0

ˇ

ˇ

ˇ

ˇ

log `py|xq

log y
´

log `py|x1q

log y

ˇ

ˇ

ˇ

ˇ

“ sup
yěy0

1

log y

ˇ

ˇ

ˇ

ˇ

log
`py|xq

`py|x1q

ˇ

ˇ

ˇ

ˇ

ď c}x´ x1}.

(K2) The kernel L is a bounded density with support included in the unit ball of Rd.

Theorem 2 Suppose (E) and (K1)–(K2) hold. Let x P Rd be such that fXpxq ą 0.

Assume further that ρpxq ă 0 and, as nÑ 8,

1. αn Ñ 0, nhdnαn Ñ 8 and nhdnpn Ñ c ă 8;

2. logpαn{pnq{
a

nhdnαn Ñ 0, nhd`2n αn log2 αn Ñ 0 and
a

nhdnαnApp1´ αnq
´1|xq Ñ 0.

Then we have
a

nhdnαn
logpαn{pnq

˜

pξ‹1´pnpxq

ξ1´pnpxq
´ 1

¸

d
ÝÑ N

ˆ

0,
}L}22
fXpxq

VJ γ
2
pxq

˙

as nÑ 8,

where

VJ “

˜

J
ÿ

j“1

2pJ ´ jq ` 1

tj
´ J2

¸O˜

J
ÿ

j“1

logp1{tjq

¸2

.

When choosing, for instance, the harmonic sequence tj “ 1{j, the variance of the

limiting distribution is minimal for J “ 9 with V9 « 1.25 (see [2]). We shall discuss below

concrete applications where ptj “ 1{jq1ďjď9 are employed with the discretized tuning

parameter αn “ k{n for a sequence of integers k P r1, nq. A data-driven method for

selecting both k and the bandwidth hn in practice is described in Supplement C.

4.3 Insurance payouts

This section returns to our motivating data set ‘dataOhlsson’ and explores estimation and

inference for extreme risk associated with motorcycle insurance claims. It can be seen

in Figure 1 that this data pn “ 670q features heavy tails and data sparsity in the tail

areas. Figure 2 (top left) plots the tail index estimates pγpxq versus k, for the empirical

12



quartiles x of X. The plot shows stability over the region k P r50, 90s, which suggests to

pick out the pointwise estimates pγpxq over this interval. The top right panel plots the

final estimates pγpxq versus x obtained via our data-driven device (red curve), along with

the estimates using k P t50, 70, 90u. It is remarkable that the automatic selection points

towards similar results as these k values from the stable region. The four estimated curves

indicate tail indices pγpxq P r0.25, 0.65s which, as expected, reflect a strong conditional tail

heaviness. Hereafter in this extremal regression study, we focus mainly on the estimates

obtained for x ď 55 to mitigate data scarcity and boundary effects beyond this range.

To estimate conditional extremiles ξτ 1npxq at extreme levels, Supplement D gives Monte

Carlo evidence that the extrapolated estimates pξ‹τ 1npxq in (12) are more efficient relative

to the direct estimates qξLL,τ 1npxq from ordinary local linear regression in (7). For τ 1n “ .99,

the middle panel of Figure 2 plots pξ‹τ 1npxq versus k (left), for the empirical quartiles x of X,

and plots the final estimates x ÞÑ pξ‹τ 1npxq (right), obtained by using the automatic selection

and three values of k (selected in the stable region r5, 25s of the plots shown on the left-

hand side). The data-driven method affords a smoother and more stable estimated curve

(in red). This extrapolated curve x ÞÑ pξ‹τ 1npxq is superimposed in the bottom panel (left)

with the curve x ÞÑ qξLL,τ 1npxq of the local linear estimator (in solid blue), along with their

corresponding asymptotic pointwise 95% confidence intervals (in dashed blue for qξLL,τ 1npxq

and dashed red for pξ‹τ 1npxq). There is a substantial difference between pξ‹τ 1npxq and qξLL,τ 1npxq,

which may exceed 80,000 USD for claimants’ ages x outside the interval r30, 40s. The

extrapolated quantile (Value at Risk) estimator pq‹τ 1npxq, described in (11), is also graphed

in the same figure (in dashed green). It lies below the extremile competitor (in solid red),

close and sometimes beyond its lower confidence bound (in dashed red), with a gap that

may exceed 54,000 USD. The extrapolated estimate pξ‹τ 1npxq shows much greater reactivity

to the shape of the conditional tail, as can be observed on the right end of the plot where

pξ‹τ 1npxq visibly takes into account the few very large claims incurred by older customers to

produce a more prudent measure of extreme risk relative to these older claimants.

The bottom right panel plots the extrapolated pξ‹τ 1npxq and ordinary qξLL,τ 1npxq esti-

mators of the tail extremile ξτ 1npxq ” ErmaxpY 1
x , . . . , Y

rpτ 1nq
x qs, in solid and dashed lines

13



respectively, for τ 1n “ .992 [i.e. rpτ 1nq « 86], τ 1n “ .995 [i.e. rpτ 1nq « 138] and τ 1n “ .998

[i.e. rpτ 1nq « 346]. With the increase of the security level τ 1n, in contrast to the non-

extrapolated estimator qξLL,τ 1npxq, the refined version pξ‹τ 1npxq becomes clearly more alert to

the claims’ severity and better captures the magnitude of the two most extreme losses.

5 Concluding remarks

The use of regression extremiles appears naturally in the context of risk handling, where

their interpretability is straightforward and they are fully operational in practice. Beyond

their remarkable merits from the point of view of the axiomatic theory of risk measures,

why should statisticians and practitioners care about extremile regression? A first dis-

tinctive property of extremile regression is that, in contrast to its quantile and expectile

competitors, the local linear estimators have an explicit form that is straightforward to

compute, without recourse to any approximation algorithm. A second unexpected result

is that the asymptotic variance of these estimators is not merely an adaptation to the

conditional setup of the asymptotic variance arising in the unconditional case from [3].

In particular, this makes inference on regression extremiles much easier than inference on

regression quantiles and expectiles. We are not aware of any ready-made procedure for

constructing asymptotic confidence intervals of both conditional quantiles and expectiles

based on the limit distributions of their local linear estimators. A further distinctive

advantage of using local linear extremiles is that they suggest better capability of fitting

both location and spread of data points beyond the regression mean, especially for heavy-

tailed distributions. They provide much smoother and more stable fits than their quantile

counterparts and do not suffer from crossings, as illustrated through both the concrete

applications on triceps skinfold variation and motorcycle insurance payouts. In the class

of light-tailed conditional distributions, population extremiles and quantiles are equiva-

lent in the tail. In this class, the merits of local linear extremile estimators lead us then to

favor their use over quantile estimators. It should finally be pointed out that we restrict

our local linear kernel smoothing analysis to one-dimensional covariates. Extensions of

our Theorem 1 and Corollary 1 to multiple covariates are obviously of interest as well.
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Figure 2: Top left: plots of pγpxq versus k, for the quartiles of X; Top right: estimates x ÞÑ

pγpxq obtained via the automatic selection (red) and three selected k values; Middle left:

plots of pξ‹.99pxq versus k; Middle right: final estimates x ÞÑ pξ‹.99pxq; Bottom left: Estimates

pξ‹.99pxq and qξLL,.99pxq (solid red and blue), corresponding 95% confidence intervals (dashed

red and blue), and pq‹.99pxq (dashed green); Bottom right: The estimators pξ‹τ 1npxq (solid lines)

and qξLL,τ 1npxq (dashed lines), for τ 1n “ .992 (green), τ 1n “ .995 (red), and τ 1n “ .998 (blue).
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Supplementary Material for

“Extremile regression”

This supplement contains the proofs of all theoretical results in the main paper, along with
auxiliary results in Section A. It also discusses in Section B the rationale behind our automatic
bandwidth selector that was employed in Section 3 of the main article. The data-driven selection
method of the two tuning parameters hn and αn that was used in Section 4 of the main article is
described below in Section C. Finally, we provide some simulation experiments in Section D.

A Proofs

Proof of Proposition 1. Definition 1 states that

ξτ pxq “ arg min
θPR

E
 

Jτ pF pY |Xqq ¨ r|Y ´ θ|
2
´ |Y |2s|X “ x

(

.

The right-hand side defines a convex polynomial of degree 2 whose derivative is 0 at

ξτ pxq “
E rY Jτ pF pY |Xqq |X “ xs

E rJτ pF pY |Xqq |X “ xs
.

Now

E rJτ pF pY |Xqq |X “ xs “

ż

yPR
Jτ pF py|xqq dF py|xq “

ż 1

0

Jτ puq du “ 1

by continuity of F p¨|xq, so that

ξτ pxq “ E rY Jτ pF pY |Xqq |X “ xs “

ż

yPR
y Jτ pF py|xqq dF py|xq “

ż 1

0

Jτ ptq qtpxq dt

“

ż 1

0

qtpxq dKτ ptq

using the identity K 1
τ “ Jτ . Besides, we have by Definition 1 that ξτ pxq “ EpZx

τ q where Zx
τ has

cumulative distribution function FZxτ “ Kτ pF p¨|xqq. When τ “ p1{2q1{r, r P Nzt0u, this cumulative
distribution function becomes

@z P R, FZxτ pzq “ Kτ pF pz|xqq “ rF pz|xqs
r
“ Ppmax

`

Y 1
x , . . . , Y

r
x

˘

ď zq

so that Zx
τ

d
“ max pY 1

x , . . . , Y
r
x q and therefore ξτ pxq “ E rmax pY 1

x , . . . , Y
r
x qs. Similarly, when τ “

1´ p1{2q1{s, s P Nzt0u, one finds the complementary distribution function of Zx
τ as

@z P R, 1´ FZxτ pzq “ 1´Kτ pF pz|xqq “ r1´ F pz|xqs
s
“ Ppmin

`

Y 1
x , . . . , Y

s
x

˘

ą zq

so that Zx
τ

d
“ min pY 1

x , . . . , Y
s
x q and thus ξτ pxq “ E rmin pY 1

x , . . . , Y
s
x qs, as required.



Proof of Proposition 2. Statement (i) is a direct corollary of Proposition 2(iv) in Daouia et
al. (2019) applied to the conditional distribution of Y given X “ x. To show (ii), we note that,
by independence of X and ε and positivity of σpXq,

qtpxq “ mpxq ` σpxqqt,ε

where t ÞÑ qt,ε denotes the quantile function of ε. By our Proposition 1,

ξτ pxq “

ż 1

0

Jτ ptq qtpxq dt “ mpxq ` σpxq

ż 1

0

Jτ ptq qt,ε dt “ mpxq ` σpxqξt,ε

since Jτ has integral 1.

To prove Theorem 1 we need the following preliminary result on certain population and em-
pirical smoothed moments.

Lemma A.1. Assume that conditions (C1)–(C3) hold. Assume also that hn Ñ 0 and nhn Ñ 8,
as nÑ 8. Let x be interior to the support of X.

(i) We have, for any nonnegative integer j, any k P t1, 2u and any l P t0, 1, 2u, that

mj,k,l,npxq :“ E

#

Jkτ pF pY |xqqY
l

ˆ

x´X

hn

˙jk
1

hkn
Lk

ˆ

x´X

hn

˙

+

„
1

hk´1
n

EpY lJkτ pF pY |xqq |X “ xqfXpxq

ż

R
zjkLkpzq dz as nÑ 8.

In addition, there is δ ą 0 such that for any nonnegative integer j,

E

#

J2`δ
τ pF pY |xqq |Y |2`δ

ˇ

ˇ

ˇ

ˇ

x´X

hn

ˇ

ˇ

ˇ

ˇ

jp2`δq
1

hn
L2`δ

ˆ

x´X

hn

˙

+

“ Op1q as nÑ 8.

(ii) With the above notation,

1

hn
pm0,1,0,npxqm1,1,1,npxq ´m1,1,0,npxqm0,1,1,npxqq

Ñ ´fXpxq

ż

R
ry ´ ξτ pxqsJτ pF py|xqq BxfpX,Y qpx, yq dy

ż

R
z2Lpzq dz as nÑ 8

(note that the limit is indeed well-defined and finite).

(iii) With the notation of (i), as nÑ 8,

m0,1,1,npxqm2,1,0,npxq ´m1,1,1,npxqm1,1,0,npxq

m0,1,0,npxqm2,1,0,npxq ´ rm1,1,0,npxqs2

“ ξτ pxq `
h2
n

fXpxq

ż

R
z2Lpzq dz

ˆ

1

2

ż

R
ry ´ ξτ pxqsJτ pF py|xqq B

2
xxfpX,Y qpx, yq dy

´

ż

R
ry ´ ξτ pxqsJτ pF py|xqq BxfpX,Y qpx, yq dy

ż

R
Jτ pF py|xqq

BxfpX,Y qpx, yq

fXpxq
dy

˙

` oph2
nq.
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(iv) We have, for any nonnegative integer j:

1

nhn

n
ÿ

i“1

Jτ pF pYi|xqq

ˆ

x´Xi

hn

˙j

L

ˆ

x´Xi

hn

˙

P
ÝÑ fXpxq

ż

R
zjLpzq dz as nÑ 8.

Proof of Lemma A.1. Note that

mj,k,l,npxq “
1

hk´1
n

ż ż

R2

Jkτ pF py|xqq y
lzjkLkpzqfpX,Y qpx´ hnz, yq dz dy. (A.1)

By the dominated convergence theorem (note that Jτ is bounded), this entails

hk´1
n mj,k,l,npxq Ñ

ż

R
ylJkτ pF py|xqq fpX,Y qpx, yq dy

ż

R
zjkLkpzq dz as nÑ 8.

Noting that fpX,Y qpx, yq “ fY |Xpy|xqfXpxq gives the convergence stated in (i). The Op1q statement
follows in exactly the same way.

To show (ii), we note that, combining (A.1), a Taylor expansion of z ÞÑ fpX,Y qpx ´ hnz, yq in a
neighborhood of 0, and the equality

ş

R zLpzq dz “ 0, we find

m1,1,l,npxq “ ´hn

ż

R
ylJτ pF py|xqq BxfpX,Y qpx, yq dy

ż

R
z2Lpzq dz ` ophnq (A.2)

for l “ 0, 1. Using this asymptotic equivalence in conjunction with m0,1,0,npxq Ñ fXpxq and
m0,1,1,npxq Ñ fXpxqξτ pxq (as a consequence of (i)) shows (ii).

Expansion (iii) rests on the following identity:

m0,1,1,npxqm2,1,0,npxq ´m1,1,1,npxqm1,1,0,npxq

m0,1,0,npxqm2,1,0,npxq ´ rm1,1,0,npxqs2

“

ˆ

m0,1,1,npxq

m0,1,0,npxq
´

m1,1,1,npxqm1,1,0,npxq

m0,1,0,npxqm2,1,0,npxq

˙ˆ

1´
rm1,1,0,npxqs

2

m0,1,0,npxqm2,1,0,npxq

˙´1

.

Note further that, up to order h2
n,

m0,1,l,npxq ´ fXpxq r1Ipl “ 0q ` ξτ pxq1Ipl “ 1qs «
h2
n

2

ż

R
ylJτ pF py|xqq B

2
xxfpX,Y qpx, yq dy

ż

R
z2Lpzq dz

for l “ 0, 1. Combining this expansion with the convergence m2,1,0,npxq Ñ fXpxq
ş

R z
2Lpzq dz

and (A.2) provides the desired result after some straightforward calculations.

Convergence (iv) is obtained by remarking that

E

«

1

nhn

n
ÿ

i“1

Jτ pF pYi|xqq

ˆ

x´Xi

hn

˙j

L

ˆ

x´Xi

hn

˙

ff

“ mj,1,0,npxq

and Var

«

1

nhn

n
ÿ

i“1

Jτ pF pYi|xqq

ˆ

x´Xi

hn

˙j

L

ˆ

x´Xi

hn

˙

ff

“
1

n

`

mj,2,0,npxq ´ tmj,1,0,npxqu
2
˘

.

The conclusion then follows from a combination of (i) and Chebyshev’s inequality.
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Proof of Theorem 1. Define

pαnpxq, βnpxqq “ arg min
pα,βqPR2

E
"

Jτ pF pY |xqq pY ´ α ´ βpx´Xqq
2L

ˆ

x´X

hn

˙*

.

This minimizer is indeed well-defined and unique, and we have

αnpxq “
m0,1,1,npxqm2,1,0,npxq ´m1,1,1,npxqm1,1,0,npxq

m0,1,0,npxqm2,1,0,npxq ´ rm1,1,0,npxqs2

and βnpxq “
1

hn

m0,1,0,npxqm1,1,1,npxq ´m1,1,0,npxqm0,1,1,npxq

m0,1,0,npxqm2,1,0,npxq ´ rm1,1,0,npxqs2

with the notation of Lemma A.1. Note now that
a

nhn

´

qξLL,τ pxq ´ αnpxq, hnpqβ ´ βnpxqq
¯

“ arg min
pu,vqPR2

ψnpu, vq

with

ψnpu, vq “
n
ÿ

i“1

Jτ

´

pF pYi|xq
¯

"

Yi ´

„

αnpxq `
u

?
nhn



´

„

βnpxq `
v{hn
?
nhn



px´Xiq

*2

L

ˆ

x´Xi

hn

˙

´

n
ÿ

i“1

Jτ

´

pF pYi|xq
¯

tYi ´ αnpxq ´ βnpxqpx´Xiqu
2 L

ˆ

x´Xi

hn

˙

.

The objective function ψnpu, vq is clearly continuous and convex; by Theorem 5 in Knight (1999),
it is enough to analyze the asymptotic properties of ψnpu, vq, rather than those of the minimizer.
Expanding and simplifying, we find

ψnpu, vq “ ´
2

?
nhn

n
ÿ

i“1

Jτ

´

pF pYi|xq
¯

tYi ´ αnpxq ´ βnpxqpx´Xiqu

"

u` v
x´Xi

hn

*

L

ˆ

x´Xi

hn

˙

`
1

nhn

n
ÿ

i“1

Jτ

´

pF pYi|xq
¯

"

u` v
x´Xi

hn

*2

L

ˆ

x´Xi

hn

˙

.

Since αnpxq and βnpxq have finite limits by Lemma A.1(ii) and (iii), we can rewrite ψnpu, vq as

ψnpu, vq “ ´
2

?
nhn

n
ÿ

i“1

Jτ pF pYi|xqq tYi ´ αnpxq ´ βnpxqpx´Xiqu

"

u` v
x´Xi

hn

*

L

ˆ

x´Xi

hn

˙

`
1

nhn

n
ÿ

i“1

Jτ pF pYi|xqq

"

u` v
x´Xi

hn

*2

L

ˆ

x´Xi

hn

˙

` oPp1q.

[Here assumption (8) in the statement of Theorem 1 was used to replace pF pYi|xq by F pYi|xq in

the first term, and the uniform consistency of pF p¨|xq was used together with Lemma A.1(iv) for

τ “ 1{2 to replace pF pYi|xq by F pYi|xq in the second term.] By Lemma A.1(iv) and the equality
ş

R zLpzq dz “ 0,

1

nhn

n
ÿ

i“1

Jτ pF pYi|xqq

"

u` v
x´Xi

hn

*2

L

ˆ

x´Xi

hn

˙

P
ÝÑ fXpxq

ˆ

u2
` v2

ż

R
z2Lpzq dz

˙

.
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We use this convergence to rewrite ψnpu, vq in yet another form:

ψnpu, vq “ ´2uSn,1pxq ´ 2vSn,2pxq ` u2fXpxq ` v
2fXpxq

ż

R
z2Lpzq dz ` oPp1q

with Sn,1pxq “
1

?
nhn

n
ÿ

i“1

Jτ pF pYi|xqq tYi ´ αnpxq ´ βnpxqpx´XiquL

ˆ

x´Xi

hn

˙

and Sn,2pxq “
1

?
nhn

n
ÿ

i“1

Jτ pF pYi|xqq tYi ´ αnpxq ´ βnpxqpx´Xiqu
x´Xi

hn
L

ˆ

x´Xi

hn

˙

.

Note that Sn,1pxq and Sn,2pxq are sums of independent, identically distributed, and centered random
variables (the latter by definition of αnpxq and βnpxq). By Lemma A.1(i), (ii) and (iii), tedious
but straightforward calculations, and the Lyapunov central limit theorem (see e.g. Theorem 27.3
in p.362 of Billingsley, 1999), pSn,1pxq,Sn,2pxqq converges weakly to a random pair pS1,S2q having
a bivariate centered normal distribution. In particular

VarpS1q “ lim
nÑ8

E
„

J2
τ pF pY |xqq tY ´ αnpxq ´ βnpxqpx´Xqu

2 1

hn
L2

ˆ

x´X

hn

˙

“ fXpxqE
“

J2
τ pF pY |xqq tY ´ ξτ pxqu

2
|X “ x

‰

}L}22, (A.3)

where Lemma A.1(ii) and (iii) were used to get αnpxq Ñ ξτ pxq and βnpxq “ Op1q. Consequently

ψnpu, vq
d
ÝÑ ´2uS1 ´ 2vS2 ` u

2fXpxq ` v
2fXpxq

ż

R
z2Lpzq dz

in the sense of finite-dimensional convergence. By Theorem 5 in Knight (1999),

a

nhn

´

qξLL,τ pxq ´ αnpxq, hnpqβ ´ βnpxqq
¯

d
ÝÑ

ˆ

S1

fXpxq
,

S2

fXpxq
ş

R z
2Lpzq dz

˙

.

Combining the convergence of the first marginal with (A.3) yields

a

nhn

´

qξLL,τ pxq ´ αnpxq
¯

d
ÝÑ N

ˆ

0, Vτ pxq
}L}22
fXpxq

˙

.

Combining finally Lemma A.1(iii) with the assumption nh5
n Ñ 0 completes the proof.

Proof of Corollary 1. Note that since τ P p0, 1´ 1{
?

2s Y r1{
?

2, 1q, the function Jτ is Lipschitz
continuous. Consequently

n2{5 sup
yPR

ˇ

ˇ

ˇ
Jτ p pF py|xqq ´ Jτ pF py|xqq

ˇ

ˇ

ˇ
“ OPp1q.

Since L has compact support and nh5
n Ñ 0, it follows that, for any nonnegative integer j,

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
nhn

n
ÿ

i“1

Jτ

´

pF pYi|xq
¯

tYi ´ α ´ βpx´Xiqu

ˆ

x´Xi

hn

˙j

L

ˆ

x´Xi

hn

˙

´
1

?
nhn

n
ÿ

i“1

Jτ pF pYi|xqq tYi ´ α ´ βpx´Xiqu

ˆ

x´Xi

hn

˙j

L

ˆ

x´Xi

hn

˙

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP

˜

1

nhn

n
ÿ

i“1

p1` |Yi|qL

ˆ

x´Xi

hn

˙

¸

(A.4)
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locally uniformly in pα, βq P R2. Conclude the proof by noting that

E

˜

1

nhn

n
ÿ

i“1

p1` |Yi|qL

ˆ

x´Xi

hn

˙

¸

“

ż ż

R2

p1` |y|qLpzqfpX,Y qpx´ hnz, yq dz dy

Ñ fXpxqErp1` |Y |q |X “ xs

by the dominated convergence theorem and assumption (C1). Similarly

Var

˜

1

nhn

n
ÿ

i“1

p1` |Yi|qL

ˆ

x´Xi

hn

˙

¸

“ O

ˆ

1

nhn

˙

Ñ 0.

Using the Chebyshev inequality entails

1

nhn

n
ÿ

i“1

p1` |Yi|qL

ˆ

x´Xi

hn

˙

P
ÝÑ fXpxqErp1` |Y |q |X “ xs

which, combined with (A.4), shows that
ˇ

ˇ

ˇ

ˇ

ˇ

1
?
nhn

n
ÿ

i“1

Jτ

´

pF pYi|xq
¯

tYi ´ α ´ βpx´Xiqu

ˆ

x´Xi

hn

˙j

L

ˆ

x´Xi

hn

˙

´
1

?
nhn

n
ÿ

i“1

Jτ pF pYi|xqq tYi ´ α ´ βpx´Xiqu

ˆ

x´Xi

hn

˙j

L

ˆ

x´Xi

hn

˙

ˇ

ˇ

ˇ

ˇ

ˇ

“ oPp1q

locally uniformly in pα, βq P R2. Applying Theorem 1 completes the proof.

Before moving to the proof of Theorem 2, we first establish the asymptotic distribution of
pξ‹τ 1npxq under the general form (11), for generic estimators pγpxq and pqτnpxq.

Theorem A.1. Suppose (E) holds with ρpxq ă 0 and, as nÑ 8,

1. τn Ñ 1, p1´ τ 1nq{p1´ τnq Ñ 0 and vn Ñ 8 such that vn{ logrp1´ τnq{p1´ τ
1
nqs Ñ 8;

2. vn ppqτnpxq{qτnpxq ´ 1q “ OPp1q;

3. vn ppγpxq ´ γpxqq
d
ÝÑ Zx, where Zx is a nondegenerate limit;

4.
vn

logrp1´ τnq{p1´ τ 1nqs
App1´ τnq

´1|xq Ñ 0 and
vn

logrp1´ τnq{p1´ τ 1nqs
p1´ τ 1nq Ñ 0.

Then
vn

logrp1´ τnq{p1´ τ 1nqs

˜

pξ‹τ 1npxq

ξτ 1npxq
´ 1

¸

d
ÝÑ Zx as nÑ 8.

Proof of Theorem A.1. Set αn “ 1´ τn, pn “ 1´ τ 1n and dn “ αn{pn. We have

vn
log dn

˜

pξ‹1´pnpxq

ξ1´pnpxq
´ 1

¸

“
vn

log dn

ˆ

pq‹1´pnpxq

q1´pnpxq
´ 1

˙

q1´pnpxq

ξ1´pnpxq
G ppγpxqq

`
vn

log dn
pG ppγpxqq ´ G pγpxqqq q1´pnpxq

ξ1´pnpxq
`

vn
log dn

„

G pγpxqq ´ ξ1´pnpxq

q1´pnpxq



q1´pnpxq

ξ1´pnpxq
,

6



where q1´pnpxq{ξ1´pnpxq Ñ 1{G pγpxqq, vn tG ppγpxqq ´ G pγpxqqu “ OPp1q, and log dn Ñ 8 as n Ñ
8. Following the lines of the proof of Theorem 4.3.8 in de Haan and Ferreira (2006), the first term
above therefore converges to Zx. The second term, meanwhile, converges to 0 by a straightforward
application of the Delta-method. Finally, the third term satisfies

vn
log dn

ˇ

ˇ

ˇ

ˇ

G pγpxqq ´ ξ1´pnpxq

q1´pnpxq

ˇ

ˇ

ˇ

ˇ

q1´pnpxq

ξ1´pnpxq
“ O

ˆ

vn
log dn

r|Ap1{pn|xq| ` pns

˙

“ O

ˆ

vn
log dn

r|Ap1{αn|xq| ` pns

˙

by Proposition 4 in Daouia et al. (2019), since |Ap¨|xq| is regularly varying with index ρpxq ă 0.
The left-hand side thus converges to 0, completing the proof.

Let us now turn to the asymptotic normality of

pξ‹1´pnpxq :“

ˆ

αn
pn

˙

pγpxq

pq1´αnpxqG ppγpxqq

in Theorem 2, where pqτ pxq ” pF´1
NWpτ |xq and

pγpxq “
J
ÿ

j“1

“

log pq1´tjαnpxq ´ log pq1´αnpxq
‰

O

J
ÿ

j“1

logp1{tjq.

Proof of Theorem 2. We first show the joint convergence of the estimators pq1´tjαnpxq, for

j P t1, . . . , Ju. Let αn,j “ tjαn, vn “
a

nhdnαn, choose z1, . . . , zJ P R and focus on the probability

πnpz1, . . . , zJq “ P

˜

J
č

j“1

"

vn

ˆ

pq1´αn,jpxq

q1´αn,jpxq
´ 1

˙

ď zj

*

¸

“ P

˜

J
č

j“1

 

pq1´αn,jpxq ď q1´αn,jpxq p1` zj{vnq
(

¸

.

Putting F p¨|xq :“ 1 ´ F p¨|xq and pFNWp¨|xq :“ 1 ´ pFNWp¨|xq, and using that for all y and α,

pqαpxq ď y ô pFNWpy|xq ď 1´ α, we find that

πnpz1, . . . , zJq “ P

˜

J
č

j“1

!

pFNWpq1´αn,jpxq p1` zj{vnq |xq ď αn,j

)

¸

.

Letting yn “ q1´αnpxq and yn,j “ q1´αn,jpxqp1` zj{vnq, we rewrite πnpz1, . . . , zJq as

P

˜

J
č

j“1

#

b

nhdnF pyn|xq

˜

pFNWpyn,j|xq

F pyn,j|xq
´ 1

¸

ď

b

nhdnF pyn|xq

ˆ

αn,j

F pyn,j|xq
´ 1

˙

+¸

.

By Lemma 1(ii) in Daouia et al. (2020) applied to the conditional distribution of Y given X “ x,
the second-order condition (E) yields

lim
tÑ8

1

Apt|xq

ˆ

1{F pq1´t´1pxq|xq

t
´ 1

˙

“ 0.

7



In our case, this implies, for any j P t1, . . . , Ju,

αn,j

F pq1´αn,jpxq|xq
´ 1 “ o p|Ap1{αn,j|xq|q “ o p|Ap1{αn|xq|q “ o

ˆ

1{

b

nhdnF pyn|xq

˙

,

since nhdnF pyn|xq “ nhdnF pq1´αnpxq|xq “ v2
np1 ` op1qq. Moreover, the second-order condition is

equivalent to the following convergence:

@y ą 0, lim
tÑ8

1

Ap1{F pt|xq|xq

ˆ

F pty|xq

F pt|xq
´ y´1{γpxq

˙

“ y´1{γpxqy
ρpxq{γpxq ´ 1

γpxqρpxq
.

This second-order convergence is known to be locally uniform in y P p0,8q (see for instance
Lemma 2 in Stupfler, 2019) and therefore, by a Taylor expansion,

F pq1´αn,jpxq|xq

F pyn,j|xq
´ 1 “

zj
γpxq

1

vn
` o p|Ap1{αn,j|xq|q “

zj
γpxq

1
b

nhdnF pyn|xq
p1` op1qq .

It follows that

πnpz1, . . . , zJq “ P

˜

J
č

j“1

#

b

nhdnF pyn|xq

˜

pFNWpyn,j|xq

F pyn,j|xq
´ 1

¸

ď
zj
γpxq

` op1q

+¸

.

Besides, again by the regular variation assumption, yn,j{yn Ñ t
´γpxq
j as n Ñ 8. An inspection of

the proof of Theorem 1 in Daouia et al. (2011) shows that, even though this result is formulated
under the assumption “yn,j “ ajyn for j “ 1, . . . , J”, it is in fact valid under the weaker assumption
“yn,j “ ajynp1` op1qq for j “ 1, . . . , J”. Applying this result proves that the random vector

#

b

nhdnF pyn|xq

˜

pFNWpyn,j|xq

F pyn,j|xq
´ 1

¸+

1ďjďJ

converges weakly to a centered Gaussian random vector with covariance matrix p}L}22{fXpxqqCpxq,
where Ci,jpxq “ 1{tminpi,jq. Conclude that

"

vn

ˆ

pq1´αn,jpxq

q1´αn,jpxq
´ 1

˙*

1ďjďJ

d
ÝÑ N

ˆ

0J ,
}L}22
fXpxq

γ2
pxqCpxq

˙

.

Using once again the second-order condition yields the expansion

J
ÿ

j“1

“

log q1´αn,jpxq ´ log q1´αnpxq
‰

O

J
ÿ

j“1

logp1{tjq “ γpxq ` op1{vnq.

A simple application of the delta-method now yields

vn ppγpxq ´ γpxqq
d
ÝÑ N

ˆ

0,
}L}22
fXpxq

VJ γ
2
pxq

˙

.

Applying Theorem A.1 concludes the proof.
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B An automatic bandwidth selector

As with any smoothing techniques, tuning the degree of smoothing, reflected in our setup through
bandwidth selection, is a major issue in practice. Our main goal here is to select an automatic
bandwidth hξτ for smoothing the τth regression extremile curve via kernel local linear fitting. As
a matter of fact, we can express hξτ in terms of the optimal bandwidth hqτ for regression quantile
estimation, whose automatic selection is nowadays well-established in the literature. Since the
conditional extremile ξτ p¨q and quantile qτ p¨q “ F´1pτ |¨q are, respectively, the mean and the median
of the same conditional distribution of a random variable ZX

τ given X, whose explicit distribution
function is FZXτ |Xp¨|xq “ Kτ pF p¨|xqq, the bandwidths hξτ and hqτ actually correspond to the optimal
choices of hn for regression mean and median estimation, respectively. Yu and Jones (1998, p.231)
have already established a neat and practical connection between hmean (i.e. the optimal choice hξτ
of hn for regression mean estimation) and hmedian (i.e. the optimal choice hqτ of hn for regression
median estimation). More precisely, they have found that

ˆ

hmean

hmedian

˙5

”

ˆ

hξτ
hqτ

˙5

“
4 rq2τ pxqs

2 ¨ σ2
ZXτ |X

pxq ¨ rfZXτ |X pqτ pxq|xqs
2

rξ2τ pxqs
2

,

where q2τ pxq and ξ2τ pxq are the second derivatives (with respect to x) of the conditional median qτ pxq
and mean ξτ pxq, respectively, and σ2

ZXτ |X
pxq and fZXτ |X p¨|xq stand respectively for the conditional

variance and density of ZX
τ given X “ x. By the same arguments as in Yu and Jones (1998, p.231)

we can turn to the usual type of rule-of-thumb calculations of the conditional variance and density,
based on assuming that the conditional distribution of Y given X “ x is Gaussian with mean µx
and variance σ2

x. Then it is easily seen that

fZXτ |X pqτ pxq|xq “ Jτ pτq ¨ σ
´1
x ¨ φ

`

Φ´1
pτq

˘

,

σ2
ZXτ |X

pxq “ σ2
x ¨ VKτ˝Φ :“ σ2

x

ż 1

0

`

Φ´1
ptq ´ µKτ˝Φ

˘2
Jτ ptqdt,

where φ and Φ are the standard normal density and distribution functions, and VKτ˝Φ is the
variance corresponding to the distribution function Kτ ˝ Φ, with µKτ˝Φ being the mean of the
distribution Kτ ˝Φ, or equivalently, the τth extremile of Φ, which is independent of x and readily
calculated. Also, following Yu and Jones (1998, Discussion after Equation (7)), it seems reasonable
as a first-order approximation to assume that q2t pxq is constant with respect to t. Hence

ξ2τ pxq

q2τ pxq
“

ż 1

0

q2t pxq

q2τ pxq
Jτ ptqdt “

ż 1

0

Jτ ptqdt “ 1.

In summary, we get a ready-to-use bandwidth selector for local linear kernel estimation as follows:

a. Use ready-made methods to select hξ1{2 , the optimal choice of bandwidth for regression mean
estimation, e.g., the cross-validation method implemented in the function npregbw of the R
package np;

b. Find the optimal bandwidth hqτ “ hξ1{2 tτp1´ τq{rφ pΦ
´1pτqqs2u

1{5
, for smoothing the τth

conditional quantile by the mean of the automatic method of Yu and Jones (1998);

c. Use the selected extremile bandwidth hξτ “ hqτ t4VKτ˝Φ ¨ rJτ pτq ¨ φ pΦ
´1pτqqs2u

1{5
,

where (as specified above) φ and Φ are the standard normal density and distribution functions,
and VKτ˝Φ is the readily calculated variance corresponding to the distribution function Kτ ˝ Φ.
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C Practical guidelines for selecting phn, αnq

The quantile, extremile and tail index estimators pq‹τ 1npxq,
pξ‹τ 1npxq and pγpxq described in (11), (12)

and (14), respectively, all depend on the intermediate regression quantiles pq1´tjαnpxq and on the
choice of the tuning parameters hn and αn ” 1´ τn. First, we apply the method of Li and Racine
(2008) to compute the least-squares cross-validated bandwidths via the function npcdistbw of

the R package np. These bandwidths are optimal for pFNWp¨|xq in (13). Then we compute the

conditional quantiles pq1´tjαnpxq ”
pF´1

NWp1 ´ tjαn|xq by inverting pFNWp¨|xq via a direct adaptation
of the function kernesti.quantile of the package regpro allowing it to use the Epanechnikov
kernel. In our concrete application to motorcycle insurance data (n “ 670) in Section 4.3 of the
main paper, the global least-squares cross-validated bandwidth obtained with this Epanechnikov
kernel is hn « 7.16 (years).

As for selecting the parameter αn, a usual practice is to set αn “ k{n for a sequence of integers
k “ kn P t1, . . . , n´ 1u, then to plot the graph of the extreme value estimator of interest, say pγpxq
versus k for each x fixed, and finally to choose k “ kpxq from the first stable region of the plot. To
this end, similarly to El Methni and Stupfler (2017) and Daouia et al. (2020), we employ a simple
data-driven method based on balancing the potential estimation bias and variance:

• The first step consists in plotting the estimates pγpxq versus k, for various values of x that
correspond, for instance, to the 10%, 20%, . . . , 90% empirical quantiles of X, as can be seen
below in Figure 1 (top) for motorcycle insurance claims. Note that, in Figure 2 (top left) of
the main paper, we restrict our attention to the three empirical quartiles of X. The plots
show global stability over the region k P r50, 90s, which suggests to pick out the desired
pointwise estimates pγpxq over this interval;

• The second step, after identification of the first possible stable region globally shared by
the plots for the different covariates x, is fully automatic. It consists first in computing the
standard deviations of the estimator over a moving window large enough to cover around
60% up to 80% of k values in the selected potential stable region. Then, we determine the
first window over which the standard deviation has a local minimum, and is less than the
average standard deviation across all windows. Finally, we take the average of the estimates
within this stable window as the final estimate. More specifically, for motorcycle insurance
data, we computed the standard deviations of the tail index kernel smoothing estimator pγpxq
over a moving window of 32 successive values of k in the stable part r50, 90s of its plots.

When for instance τ 1n “ .99, the plots of the extrapolated extremile estimator pξ‹τ 1npxq versus k, for
the same 9 empirical quantiles x of X as above, are graphed below in Figure 1 (middle) below.
These plots show a potential global stable region over k P r5, 25s. We computed the standard

deviations of pξ‹τ 1npxq over a moving window of around 13 successive values of k in this selected
range. The resulting plots for the extrapolated quantile estimator pq‹τ 1npxq, displayed below in
Figure 1 (bottom), show a global stability over the range k P r20, 40s. We computed the standard
deviations of this estimator over a moving window of length 13 in this selected range.

D Some Monte Carlo evidence

As can be seen from Figure 1 in the main paper, due to data sparsity in the tail areas of ‘dataAu-
toBi’ and ‘dataOhlsson’, direct estimates qξLL,τ 1npxq ” qα from ordinary extremile regression in (7)
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Figure 1: (Top) plots of pγpxq versus k, (Middle) plots of pξ‹.99pxq versus k, (Bottom) plots of pq‹.99pxq
versus k, for the 10%, 20%, . . . , 90% empirical quantiles x of X.
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may suffer from high variability at tails, especially for heavy-tailed distributions. To estimate
conditional extremiles ξτ 1npxq in the very far tail where very few or no observations are available, it

is most efficient to use the extrapolated estimates pξ‹τ 1npxq in (12). To illustrate this, we consider a
uniformly distributed covariate variable X on the unit interval in conjunction with two conditional
distributions for the response Y given X “ x P r0, 1s, namely

• Fréchet distribution with tail index γpxq:

F py|xq “ e´y
´1{γpxq

, y ą 0.

• Pareto distribution with tail index γpxq:

F py|xq “ 1´ y´1{γpxq, y ą 1.

All the experiments were performed for the sample size n “ 670, as in our concrete application to
insurance payouts. Inspired by the shape of the estimated conditional tail index obtained in this
application, we used in all our simulations the function

γpxq “ 0.5` 0.15
?
x, for all x P r0, 1s.

For selecting the bandwidth hn in each competing estimator, we used the automatic data-driven
methods described above in Section C.

We compared the performance of the normalized estimators qξLL,τ 1npxq{ξτ 1npxq and pξ‹τ 1npxq{ξτ 1npxq
by computing their averaged mean-squared error (MSE in log-scale) and bias over 200 simu-
lations, for the three covariate values x P t0.25, 0.5, 0.75u and the four extreme levels τ 1n P

t0.99, 0.992, 0.995, 0.998u. Figure 2 plots the resulting Monte Carlo estimates at x “ 0.25, ver-
sus the sample fraction k “ 1, . . . , tn{ logpn0.9qu. By construction, the estimates related to the

ordinary local linear estimator qξLL,τ 1npxq (horizontal red lines) do not depend on the choice of the

intermediate sequence k. Only those related to the extrapolated extreme-value estimator pξ‹τ 1npxq
(blue lines) require such a choice. To do so, we identified in each plot the first region of k values
(a window large enough to contain at least 15 successive values of k) on which the MSE estimates
look stable and reasonably small. Then, we took the average of the Monte Carlo estimates within
this stable region as the final pointwise estimate, indicated by a horizontal green line in each plot.

The final pointwise MSE and bias estimates obtained for the three covariate values x P

t0.25, 0.5, 0.75u are displayed in Table 1. Apart from a handful of cases indicated in blue, where

the difference in performance marginally favors the non-extrapolated estimator, pξ‹τ 1npxq seems to

be substantially more accurate than qξLL,τ 1npxq. That the non-extrapolated estimator qξLL,τ 1npxq may

in very specific situations perform better than an extrapolated estimator such as pξ‹τ 1npxq is neither
unprecedented nor unexpected; it was shown recently in Girard et al. (2020), in the context of the
nonparametric estimation of conditional expectiles, that at extreme levels such as the levels 0.99,
0.992, 0.995 and 0.998 we are considering here, non-extrapolated expectile estimators may have
lower biases (but always much higher variance) than their extrapolated counterparts. This hap-

pens because non-extrapolated estimators such as qξLL,τ 1npxq tend to put a very high weight on the
few (locally) largest observations relevant to extreme value estimation, whereas an extrapolated

estimator such as pξ‹τ 1npxq typically uses many more data points to infer the local shape parameter
and anchor intermediate conditional extremile. The latter will thus be always much more stable
(i.e. will have a much lower variance) but might be more biased due to its reliance on possibly
non-extreme data points.
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Figure 2: Averaged MSE in log-scale (top) and bias (bottom) of qξLL,τ 1npxq{ξτ 1npxq in red (LL) and
pξ‹τ 1npxq{ξτ 1npxq in blue (EV) versus k, computed for x “ 0.25 over 200 Monte Carlo simulations. In
green (AEV), MSE and bias of the average of the Monte Carlo estimates (EV) within the selected
stable region.
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log MSE (x “ 0.25)
F p¨|xq τ 1n “ 0.99 τ 1n “ 0.992 τ 1n “ 0.995 τ 1n “ 0.998

qξLL,τ 1
n
pxq pξ‹τ 1

n
pxq qξLL,τ 1

n
pxq pξ‹τ 1

n
pxq qξLL,τ 1

n
pxq pξ‹τ 1

n
pxq qξLL,τ 1

n
pxq pξ‹τ 1

n
pxq

Fréchet -1.044 -1.615 -0.908 -1.534 -0.562 -1.391 0.253 -1.145
k P r2, 75s k P r2, 75s k P r1, 75s k P r1, 75s

Pareto -1.851 -3.628 -1.710 -3.649 -1.474 -3.859 -1.058 -3.817
k P r33, 80s k P r35, 80s k P r30, 80s k P r15, 90s

Bias (x “ 0.25)
F p¨|xq τ 1n “ 0.99 τ 1n “ 0.992 τ 1n “ 0.995 τ 1n “ 0.998

qξLL,τ 1
n
pxq pξ‹τ 1

n
pxq qξLL,τ 1

n
pxq pξ‹τ 1

n
pxq qξLL,τ 1

n
pxq pξ‹τ 1

n
pxq qξLL,τ 1

n
pxq pξ‹τ 1

n
pxq

Fréchet -0.593 -0.448 -0.635 -0.467 -0.754 -0.502 -1.135 -0.569
k P r2, 75s k P r2, 75s k P r1, 75s k P r1, 75s

Pareto -0.396 -0.173 -0.425 -0.173 -0.478 -0.158 -0.588 -0.159
k P r33, 80s k P r35, 80s k P r30, 80s k P r15, 90s

log MSE (x “ 0.5)
F p¨|xq τ 1n “ 0.99 τ 1n “ 0.992 τ 1n “ 0.995 τ 1n “ 0.998

qξLL,τ 1
n
pxq pξ‹τ 1

n
pxq qξLL,τ 1

n
pxq pξ‹τ 1

n
pxq qξLL,τ 1

n
pxq pξ‹τ 1

n
pxq qξLL,τ 1

n
pxq pξ‹τ 1

n
pxq

Fréchet -7.001 -6.719 -5.304 -5.532 -3.276 -3.603 -1.200 -3.507
k P r20, 40s k P r15, 45s k P r50, 75s k P r15, 114s

Pareto -2.777 -2.820 -2.498 -2.701 -2.018 -2.041 -1.341 -1.680
k P r56, 75s k P r50, 75s k P r1, 75s k P r1, 114s

Bias (x “ 0.5)
F p¨|xq τ 1n “ 0.99 τ 1n “ 0.992 τ 1n “ 0.995 τ 1n “ 0.998

qξLL,τ 1
n
pxq pξ‹τ 1

n
pxq qξLL,τ 1

n
pxq pξ‹τ 1

n
pxq qξLL,τ 1

n
pxq pξ‹τ 1

n
pxq qξLL,τ 1

n
pxq pξ‹τ 1

n
pxq

Fréchet -0.030 -0.003 -0.070 0.038 -0.194 -0.193 -0.548 -0.090
k P r20, 40s k P r15, 45s k P r50, 75s k P r15, 114s

Pareto -0.249 0.257 -0.286 0.282 -0.364 0.491 -0.511 0.620
k P r56, 75s k P r50, 75s k P r1, 75s k P r1, 114s

log MSE (x “ 0.75)
F p¨|xq τ 1n “ 0.99 τ 1n “ 0.992 τ 1n “ 0.995 τ 1n “ 0.998

qξLL,τ 1
n
pxq pξ‹τ 1

n
pxq qξLL,τ 1

n
pxq pξ‹τ 1

n
pxq qξLL,τ 1

n
pxq pξ‹τ 1

n
pxq qξLL,τ 1

n
pxq pξ‹τ 1

n
pxq

Fréchet 1.156 0.789 1.184 0.906 1.147 0.196 0.621 -0.012
k P r30, 60s k P r30, 60s k P r30, 90s k P r30, 114s

Pareto -4.965 -5.070 -3.969 -4.330 -2.716 -3.189 -1.418 -2.009
k P r22, 43s k P r15, 45s k P r1, 60s k P r45, 60s

Bias (x “ 0.75)
F p¨|xq τ 1n “ 0.99 τ 1n “ 0.992 τ 1n “ 0.995 τ 1n “ 0.998

qξLL,τ 1
n
pxq pξ‹τ 1

n
pxq qξLL,τ 1

n
pxq pξ‹τ 1

n
pxq qξLL,τ 1

n
pxq pξ‹τ 1

n
pxq qξLL,τ 1

n
pxq pξ‹τ 1

n
pxq

Fréchet 1.782 1.531 1.807 1.625 1.775 1.310 1.364 1.367
k P r30, 60s k P r30, 60s k P r30, 90s k P r30, 114s

Pareto -0.083 -0.005 -0.137 -0.061 -0.257 -0.079 -0.491 0.404
k P r22, 43s k P r15, 45s k P r1, 60s k P r45, 60s

Table 1: Final MSE (in log-scale) and bias estimates of qξLL,τ 1npxq{ξτ 1npxq and pξ‹τ 1npxq{ξτ 1npxq, for

x P t0.25, 0.5, 0.75u and τ 1n P t0.99, 0.992, 0.995, 0.998u. Those of pξ‹τ 1npxq{ξτ 1npxq are obtained as the
average of the Monte Carlo estimates within the selected stable region of k-values. The cases where
pξ‹τ 1npxq does not outperform qξLL,τ 1npxq are indicated in blue.
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