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The structure of the appendix is as follows. Section 1 fully characterizes the CARA-normal and

CARA-binary models with informed and uninformed traders and provides the proof of proposition

1 in the paper. Section 2 provides further details about the calibration of excess weight on tail

risks to forecast dispersion and forecast accuracy. Section 3 discusses a model of belief dispersion

in which a noisy sample of individual forecasts is publicly observed, to discuss conditions under

which measured dispersion of analyst forecasts remains a valid proxy for the dispersion of private

information. Section 4 discusses additional results for section 4 and 5 in the paper: the proof of

proposition 5 in the paper, the numerical solution methods for an example with CRRA preferences

and binary dividends, and additional limit cases which highlight the amplification of skewness

premia through noisy information aggregation. Section 5 discusses additional results for multi-asset

extensions with independent or common fundamentals, including an application of our risk-neutral,

normal model to security design or departures from the Modigliani-Miller theorem.

1 CARA-normal and CARA-binary models with uninformed traders

Here we analyze the model with CARA preferences and normal or binary dividends, with informed

and uninformed traders, the latter slightly generalizing the set-up relative to the main text.

We assume that π (θ) = θ, and that there is a fraction κ > 0 of traders are informed, the

remaining 1 − κ are uninformed. In the CARA-normal model, we assume that θ ∼ N
(
0, σ2

θ

)
, in

the CARA-binary that θ ∈ {0, 1}, with ex-ante probability Pr (θ = 1) = λ ∈ (0, 1).

The informed investors’ private signals are normally distributed and centered at θ, xi ∼

N (θ, 1/β). All other elements are as in the general model (as described in the text).
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1.1 CARA-normal Model

Assume that P is informationally equivalent to z ∼ N
(
θ, τ−1

)
. In the CARA-normal model, the

informed traders’ demand satisfies dI (x, P (z)) = 1
χV ar(θ|x,z) (E (θ|x, z)− P (z)), where E (θ|x, z) =

βx+τz
β+τ+1/σ2

θ
and V ar (θ|x, z) =

(
β + τ + 1/σ2

θ

)−1
. The uninformed traders’ demand satisfies dU (P (z)) =

1
χV ar(θ|z) (E (θ|z)− P (z)), where E (θ|z) = γz and V ar (θ|z) =

(
τ + 1/σ2

θ

)−1
. Hence, market-

clearing requires

s = κ

ˆ
dI (x, P ) dF (x− θ)+(1− κ) dU (P ) =

κβθ + τz

χ
−
κ
(
β + τ + 1/σ2

θ

)
+ (1− κ)

(
τ + 1/σ2

θ

)
χ

σ2
θP (z)

Hence, the conjecture is satisfied with z = θ − χ
κβ (s− s) and τ = (βκ/χ)2 · σ−2

s . The equilibrium

price is

P (z) =
κβ + τ

κβ + τ + 1/σ2
θ

z − χ

κβ + τ + 1/σ2
θ

s

or P (z) = γ̂z − χ (1− γ̂)σ2
θs, where γ̂ = κβ+τ

κβ+τ+1/σ2
θ
. Hence including uninformed traders in the

CARA-normal model mutes the updating wedge by rescaling β by the fraction of informed traders

κ; the equilibrium price then responds to z as if it had precision κβ + τ instead of τ . All other

arguments then carry through replacing β in the model without informed traders by βκ in the

model combining informed and uninformed traders.

1.2 CARA-binary Model

In the CARA normal model, the first-order condition for asset demand yields

d (µ, P ) =
1

χ

(
log

(
µ

1− µ

)
− log

(
P

1− P

))
where µ ∈ (0, 1) denotes the investor’s posterior belief that θ = 1.

As before, we conjecture that the equilibrium is characterized by a sufficient statistic z (P )

which is distributed according to z ∼ N
(
θ, τ−1

)
. The uninformed investors’ posterior µU (z) then

satisfies

log

(
µU (z)

1− µU (z)

)
= log

(
λ

1− λ

)
+ τ

(
z − 1

2

)
,

resulting in a demand by the uninformed agents which is given by

dU (P ) =
1

χ

(
log

(
λ

1− λ

)
+ τ

(
z − 1

2

)
− log

(
P

1− P

))
.

The informed investors’ posterior µI (x, z) satisfies

log

(
µI (x, z)

1− µI (x, z)

)
= log

(
λ

1− λ

)
+ β

(
x− 1

2

)
+ τ

(
z − 1

2

)
,
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resulting in a demand by the informed agents which is given by

dI (x, P ) =
1

χ

(
log

(
λ

1− λ

)
+ τ

(
z − 1

2

)
+ β

(
x− 1

2

)
− log

(
P

1− P

))
.

Aggregating across agents, we obtain the market-clearing condition

s =
1

χ

(
log

(
λ

1− λ

)
− log

(
P

1− P

)
+ τ

(
z − 1

2

))
+
βκ

χ

(
π − 1

2

)
,

for π ∈ {0, 1}. Solving for P , we obtain the market-clearing price

P (z) =
λe(βκ+τ)(z− 1

2)−χs̄

λe(βκ+τ)(z− 1
2)−χs̄ + 1− λ

,

where z = π − χ
κβ · (s− s̄) and τ = (βκ/χ)2 · σ−2

s , confirming our initial conjecture. The log-

odds ratio implied by the price attributes a weight τ + βκ to the market signal z and includes

a risk adjustment −χs̄ to compensate investors for their expected exposure. As in the CARA-

normal model, this equilibrium price corresponds to the risk-adjusted expectation of dividends of

a hypothetical investor who treats the market signal z as if it had precision βκ+ τ and takes on a

position equal to the average supply s. These equations generalize the equilibrium characterization

to the case with informed and uninformed traders.

1.3 Proof of proposition 1 in the main text

Let λ̂ = λe−χs/
(
λe−χs + 1− λ

)
denote a risk-adjusted prior that π = 1. The following proposition

generalizes proposition 1 from the paper to arbitrary values of s and κ ∈ [0, 1]:

Proposition 1 : There exist positive numbers ∆ ∈ (0, 1) and R ∈ (0, 1) such that the expected

price takes the form

E (P (z)) = λ+

(
1

2
− λ

)
∆−

(
λ− λ̂

)
R.

Hence we can decompose the difference between expected price and expected dividend into a

risk premium R and an adjustment ∆ that captures the role of excess weight on tail risks.

Proof of Proposition 1

Define λ̂ = λ/ (λ+ (1− λ) eχs̄), x = (βκ+ τ)
(

1
2 + χ

βκ (s− s̄)
)

, x̂ = 1
2 (βκ+ τ), σ2

x = (βκ+ τ)2 /τ ,

and ψ = τ/ (βκ+ τ). We show that E (P (z)) = λ+ (1− 2λ) ∆−
(
λ− λ̂

)
R, where

∆ =

ˆ ∞
−∞

 λ̂
(

1− λ̂
)

(e−x − 1)

1 + λ̂
(

1− λ̂
)

(ex + e−x − 2)

 dΦ

(
x− x̂
σx

)
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R =

ˆ ∞
−∞

1

1 + λ̂
(

1− λ̂
)

(ex + e−x − 2)
dΦ

(
x− x̂
σx

)
.

To prove this result, write P (z) as

P (π, x) =
λ̂

λ̂+
(

1− λ̂
)
ex−2x̂π

where x ∼ N
(
x̂, σ2

x

)
and π = 1 w.p. λ. Taking expectations, we obtain

E (P (z)) = λ

ˆ ∞
−∞

λ̂

λ̂+
(

1− λ̂
)
ex−2x̂

dΦ

(
x− x̂
σx

)
+ (1− λ)

ˆ ∞
−∞

λ̂

λ̂+
(

1− λ̂
)
ex
dΦ

(
x− x̂
σx

)

= λ̂

ˆ ∞
−∞

 λ

λ̂+
(

1− λ̂
)
e−x

+
1− λ

λ̂+
(

1− λ̂
)
ex

 dΦ

(
x− x̂
σx

)

= λ̂

ˆ ∞
−∞

 λ̂

λ̂+
(

1− λ̂
)
e−x

+
1− λ̂

λ̂+
(

1− λ̂
)
ex

 dΦ

(
x− x̂
σx

)

+

ˆ ∞
−∞

 λ̂
(
λ− λ̂

)
λ̂+

(
1− λ̂

)
e−x
−

λ̂
(
λ− λ̂

)
λ̂+

(
1− λ̂

)
ex

 dΦ

(
x− x̂
σx

)
.

Here, the first equality exploits the symmetry of Φ (·) around 0 before changing variables x′ = 2x̂−x:

ˆ ∞
−∞

λ̂

λ̂+
(

1− λ̂
)
ex−2x̂

dΦ

(
x− x̂
σx

)
=

ˆ ∞
−∞

λ̂

λ̂+
(

1− λ̂
)
ex−2x̂

dΦ

(
x̂− x
σx

)
=

ˆ ∞
−∞

λ̂

λ̂+
(

1− λ̂
)
e−x′

dΦ

(
x′ − x̂
σx

)

Since φ
(
x−x̂
σx

)
/φ
(
−x−x̂
σx

)
= e2xx̂/σ2

x = eψx, the first line in the expression for E (P (z)) can be

written as

λ̂

ˆ ∞
−∞

 λ̂

λ̂+
(

1− λ̂
)
e−x

+
1− λ̂

λ̂+
(

1− λ̂
)
ex

 dΦ

(
x− x̂
σx

)

= λ̂

ˆ ∞
−∞

λ̂+
(

1− λ̂
)
e−ψx

λ̂+
(

1− λ̂
)
e−x

dΦ

(
x− x̂
σx

)
= λ̂+ λ̂

(
1− λ̂

)ˆ ∞
−∞

e−ψx − e−x

λ̂+
(

1− λ̂
)
e−x

dΦ

(
x− x̂
σx

)
.

Splitting the integral at 0, we have

ˆ ∞
−∞

e−ψx − e−x

λ̂+
(

1− λ̂
)
e−x

dΦ

(
x− x̂
σx

)
=

ˆ ∞
0

 e−ψx − e−x

λ̂+
(

1− λ̂
)
e−x

+

(
eψx − ex

)
e−ψx

λ̂+
(

1− λ̂
)
ex

 dΦ

(
x− x̂
σx

)

=

ˆ ∞
0


(
e(1−ψ)x − 1

)
e−x

λ̂+
(

1− λ̂
)
e−x

− e(1−ψ)x − 1

λ̂+
(

1− λ̂
)
ex

 dΦ

(
x− x̂
σx

)

4



Since

e−x

λ̂+
(

1− λ̂
)
e−x
− 1

λ̂+
(

1− λ̂
)
ex

=
(1− e−x)

(
1− 2λ̂

)
1 + λ̂

(
1− λ̂

)
(ex + e−x − 2)

,

the first integral then takes the form λ̂+
(

1
2 − λ̂

)
∆, where

∆ = 2

ˆ ∞
0

λ̂
(

1− λ̂
) (
e(1−ψ)x − 1

)
(1− e−x)

1 + λ̂
(

1− λ̂
)

(ex + e−x − 2)
dΦ

(
x− x̂
σx

)
= 2

ˆ ∞
−∞

λ̂
(

1− λ̂
)

(e−x − 1)

1 + λ̂
(

1− λ̂
)

(ex + e−x − 2)
dΦ

(
x− x̂
σx

)
.

Since
(
e(1−ψ)x − 1

)
(1− e−x) > 0 for x > 0, it follows that ∆ > 0. In addition, since 1 >

λ̂
(

1− λ̂
)
> λ̂

(
1− λ̂

)
(1− ex) for all x < 0, it follows that

∆ ≤ 2

ˆ 0

−∞

λ̂
(

1− λ̂
)

(e−x − 1)

1 + λ̂
(

1− λ̂
)

(ex + e−x − 2)
dΦ

(
x− x̂
σx

)
≤ 2

ˆ 0

−∞
dΦ

(
x− x̂
σx

)
= 2Φ

(
−x̂
σx

)
≤ 1.

To compute the second integral, note that

g (x) ≡ λ̂

λ̂+
(

1− λ̂
)
e−x
− λ̂

λ̂+
(

1− λ̂
)
ex

=
λ̂
(

1− λ̂
)

(ex − e−x)

1 + λ̂
(

1− λ̂
)

(ex + e−x − 2)
.

Therefore we obtain E (P (z)) = λ+
(

1
2 − λ

)
∆−

(
λ− λ̂

)
R, where

R = 1−∆−
ˆ ∞
−∞

g (x) dΦ

(
x− x̂
σx

)
=

ˆ ∞
−∞

1

1 + λ̂
(

1− λ̂
)

(ex + e−x − 2)
dΦ

(
x− x̂
σx

)
< 1.

1.4 Convergence as βκ→ 0

We also compare the binary model with dispersed information (βκ > 0) to its counterpart where

βκ = 0, where all investors are uninformed and take identical positions to absorb supply shocks.

Taking the limit as βκ→ 0 corresponds to the equilibrium price in the benchmark model where all

investors are uninformed:

lim
βκ→0

P (z) =
λe−χs

λe−χs + 1− λ
.

We contrast this limit with the alternative in which both βκ→ 0 and χσs → 0, holding τ =
√

βκ
χσs

constant, in which case

lim
βκ→0,χσs=

βκ√
τ

P (z) =
λeτ(z−

1
2)−χs̄

λeτ(z−
1
2)−χs̄ + 1− λ

.
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Proposition 2 : (i) Limit as βκ → 0, holding χσs constant: limβκ→0 ∆ = λ̂
(

1− λ̂
)

(χσs)
2 +

o
(

(χσs)
4
)

and

lim
βκ→0

E (P (z)) = λ̂+

(
1

2
− λ̂

)
λ̂
(

1− λ̂
)

(χσs)
2 + o

(
(χσs)

4
)

.

(ii) Limit as βκ → 0 and χσs → 0, holding τ =
√

βκ
χσs

constant: There exist functions ∆ (τ)

and R (τ), such that lim
βκ→0,χσs=

βκ√
τ

∆
βκ = ∆ (τ) and lim

βκ→0,χσs=
βκ√
τ

R = R (τ). Moreover, for

small τ , R (τ) = 1− λ̂
(

1− λ̂
)
τ + o

(
τ2
)

and ∆ (τ) = λ̂
(

1− λ̂
)

+ o (τ).

Proposition 2 shows that when supply shocks are small, skewness has much larger effects on

average prices with dispersed information (part ii) than at the common information benchmark

(part i). In the common information benchmark, the skewness premium is proportional to χ2σ2
s .

In the dispersed information economy the skewness premium is proportional to χσs. Dispersed

information therefore amplifies the effects of skewness on expected prices and returns. Below we

argue this result applies very generally and is the consequence of two different sources of skewness

premia, with the former driven by investor preferences (downside risk aversion) and the latter

driven by information, or co-movement between supply shocks and investor expectations. The risk

adjustment reflects the information aggregated through the share price, hence an increase in s is

passed through to prices by less than the full adjustment to the risk-adjusted prior λ̂, except when

prices become fully uninformative.

Proof of Proposition 2

Part (i): Taking the limit as βκ → 0 while holding σs constant yields limβκ→0 ψ = limβκ→0 τ =

limβκ→0 x̂ = 0 and limβκ→0 σx = χσs. Therefore

lim
βκ→0

∆ = 2λ̂
(

1− λ̂
)ˆ ∞
−∞

e−x − 1

1 + λ̂
(

1− λ̂
)

(ex + e−x − 2)
dΦ

(
x

χσs

)

and

lim
βκ→0

R =

ˆ ∞
−∞

1

1 + λ̂
(

1− λ̂
)

(ex + e−x − 2)
dΦ

(
x

χσs

)

Using a second order expansion for e−x−1
1+λ̂(1−λ̂)(ex+e−x−2)

and 1
1+λ̂(1−λ̂)(ex+e−x−2)

around x = 0 yields

lim
βκ→0

∆ = λ̂
(

1− λ̂
)

(χσs)
2 + o

(
(χσs)

4
)
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and

lim
βκ→0

R = 1− λ̂
(

1− λ̂
)

(χσs)
2 + o

(
(χσs)

4
)

where o (·) denotes terms of higher orders. Substituting these two into the expression for E (P (z))

yields

lim
βκ→0

E (P (z)) = λ̂+

(
1

2
− λ̂

)
λ̂
(

1− λ̂
)

(χσs)
2 + o

(
(χσs)

4
)
.

Part (ii): After substituting for x̂ and σx, we write

∆ = 2

ˆ ∞
−∞

λ̂
(

1− λ̂
)

(e−x − 1)

1 + λ̂
(

1− λ̂
)

(ex + e−x − 2)
dΦ

(
x− x̂
σx

)

= 2λ̂
(

1− λ̂
)
e−

τ
8

ˆ ∞
−∞

e
ψ
2
x (e−x − 1)

1 + λ̂
(

1− λ̂
)

(ex + e−x − 2)
dΦ

(
x

σx

)

= 2 λ̂
(

1− λ̂
)
e−

τ
8

ˆ ∞
−∞

e
ψ−1
2
x
(
e−

1
2
x − e

1
2
x
)

1 + λ̂
(

1− λ̂
)

(ex + e−x − 2)
dΦ

(
x

σx

)

= 2λ̂
(

1− λ̂
)
e−

τ
8

ˆ ∞
−∞

(
e
ψ−1
2
x − 1

)(
e−

1
2
x − e

1
2
x
)

1 + λ̂
(

1− λ̂
)

(ex + e−x − 2)
dΦ

(
x

σx

)

= (1− ψ) λ̂
(

1− λ̂
)
e−

τ
8

ˆ ∞
−∞

2
1−ψ

(
e
ψ−1
2
x − 1

)(
e−

1
2
x − e

1
2
x
)

1 + λ̂
(

1− λ̂
)

(ex + e−x − 2)
dΦ

(
x

σx

)

Here the second line uses the fact that φ
(
x−x̂
σx

)
= φ

(
x
σx

)
e
ψ
2
x− τ

8 , while the fourth line uses the fact

that
´∞
−∞

e−
1
2x−e

1
2x

1+λ̂(1−λ̂)(ex+e−x−2)
dΦ
(

x√
τ

)
= 0 since e−

1
2x−e

1
2x

1+λ̂(1−λ̂)(ex+e−x−2)
is symmetric around x = 0.

Taking the limit as βκ → 0 while holding τ = βκ
χσs

constant yields lim
βκ→0,χσs=

βκ√
τ

σ2
x = τ ,

lim
βκ→0,χσs=

βκ√
τ

ψ = 1, and lim
βκ→0,χσs=

βκ√
τ

1−ψ
βκ = 1

τ . By L’Hôpital’s Rule, limψ→1
2

1−ψ

(
e
ψ−1
2
x − 1

)
=

−x. It then follows that

lim
βκ→0,χσs=

βκ√
τ

∆

βκ
=

1

τ
λ̂
(

1− λ̂
)
e−

τ
8

ˆ ∞
−∞

x
(
e

1
2
x − e−

1
2
x
)

1 + λ̂
(

1− λ̂
)

(ex + e−x − 2)
dΦ

(
x√
τ

)

=
1

τ
λ̂
(

1− λ̂
)
e−

τ
8

ˆ ∞
−∞

√
τv
(
e

1
2

√
τv − e−

1
2

√
τv
)

1 + λ̂
(

1− λ̂
) (
e
√
τv + e−

√
τv − 2

)dΦ (v)
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Which in turn implies that ∆ ∼ βκ. A second-order Taylor expansion around x = 0 yields
x
(
e
1
2x−e−

1
2x
)

1+λ̂(1−λ̂)(ex+e−x−2)
= x2 + o

(
x4
)
, and therefore

lim
βκ→0,χσs=

βκ√
τ

∆

βκ
= λ̂

(
1− λ̂

)
+ o (τ)

for τ sufficiently small.

Following the same steps for R yields

R =

ˆ ∞
−∞

1

1 + λ̂
(

1− λ̂
)

(ex + e−x − 2)
dΦ

(
x− x̂
σx

)
= e−

τ
8

ˆ ∞
−∞

e
ψ
2
x

1 + λ̂
(

1− λ̂
)

(ex + e−x − 2)
dΦ

(
x

σx

)

and

lim
βκ→0,χσs=

βκ√
τ

R = e−
τ
8

ˆ ∞
−∞

e
1
2
x

1 + λ̂
(

1− λ̂
)

(ex + e−x − 2)
dΦ

(
x√
τ

)

A second-order Taylor expansion around x = 0 yields e
1
2x

1+λ̂(1−λ̂)(ex+e−x−2)
= 1+1

2x+
(

1
8 − λ̂

(
1− λ̂

))
x2+

o
(
x3
)
, and therefore lim

βκ→0,χσs=
βκ√
τ

R = 1− λ̂
(

1− λ̂
)
τ + o

(
τ2
)
.

2 Calibration of excess weight on tail risks based on analyst earn-

ing forecasts

As a first step towards quantifying the potential impact of noisy information aggregation on asset

returns, we need to construct empirical measures for forecast dispersion and excess weight on tail

risks. We infer excess weight on tail risks from measures of forecast dispersion D̃ and forecast

accuracy γ̂ for a cross-section of listed firms, using representation

σ̂θ
σθ

=

√
1 + D̃2

γ̂ (1− γ̂)

γ̂ (1− γ̂)− D̃2
(1)

that we derived in the main text.

The I.B.E.S. data base of analyst forecasts of earnings per share reports a consensus or average

earnings forecast f̄it, realized earnings per share θit and the cross-sectional standard deviation

of individual earnings forecasts Dit, for each firm-year in the sample,
{
Dit, f̄it, θit

}
. Using these

measures, we obtain a forecast error for the consensus forecast in each year, eit = θit− f̄it, and if the

sample of individual forecasters is sufficiently large, we can estimate the individual forecast error

variance as V ar
(
e2
it

)
+ E

(
D2
it

)
. We can also estimate the variance of realized earnings per share,

V ar (θit) along with the time-series average forecast dispersion, E
(
D2
it

)
. Together these estimates
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allows to construct firm-level estimates of forecast accuracy γ̂ = 1−
(
V ar

(
e2
it

)
+ E

(
D2
it

))
/V ar (θit)

and normalized forecast dispersion D̃ =
√

E
(
D2
it

)
/V ar (θit).

Our main sample focuses on 6820 firms used in the empirical study by Guntay and Hackbarth

(2013, henceforth GH), which uses forecasts over relatively short horizons (within quarter) from

1987-1998. As a robustness check we replicate our estimates on a second sample of earnings forecast

data from Straub and Ulbricht (2023, henceforth SU), who use the entire I.B.E.S. sample (1976-

2016) and forecasts over a longer 8 month horizon. We further restrict our sample to a subset of

2101 firms for which we have at least 10 years of forecast data.

One concern with our approach is that the forecast accuracy and dispersion measures we con-

struct are noisy estimates of the true underlying dispersion and accuracy at the level of each firm.

If the number of analysts is small, or the time series of forecasts is short, then our approach may

over-estimate the true extent of cross-sectional variation in forecast dispersion and information

frictions due to estimation noise. For example, for 13.5% of the sample of firms in GH, the es-

timated forecast accuracy is negative, meaning that the forecasters’ posteriors are systematically

more noisy than the unconditional volatility of earnings, a feature inconsistent with any model of

Bayes-consistent belief updating. A similar fraction of firms has D̃ > 0.5, which is in violation of

the common prior assumption, and more generally, 23.5% of firms in the sample violate the pa-

rameter restriction γ̂ (1− γ̂) > D̃2 which is implied by the common prior assumption in the model.

This occurs mostly for firms that have high estimated levels of forecast dispersion, and low levels of

forecast accuracy. For these 23.5% of firms, σ̂θσθ is not well defined.1 These violations of the relevant

parameter conditions could either be interpreted as evidence of measurement error or point us to

a rejection of the common prior assumption underlying our model.

The alternative SU sample, which we consider as a robustness check, gives some support to

the hypothesis that measurement error is a concern. We restrict ourselves to firms that have

been followed by earnings analysts for at least 10 years, which gives us a sufficiently long time

series to estimate forecast accuracy with a higher level of precision. These firms are also likely to

be followed by a larger number of analysts., which ceteris paribus increases the precision of the

dispersion estimate. The fraction of firms that violate the common prior restriction drops from 23.5

to 13%, the fraction of firms with negative forecast accuracy from 13.5 to 9.6%, and the fraction

1The initial GH sample contained 6820 firms. 970 of these firms have D̃ > 0.5, 905 of these firms have γ̂ < 0, and

for a total of 1577 of these firms, we find γ̂ (1− γ̂) < D̃2. In addition, 92 firms in our sample have a reported forecast

dispersion of D̃ = 0, suggesting that they were followed by only one forecaster, and forecast dispersion is thus not

identified.
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Figure 1: This figure displays scatter plots of Forecast Accuracy (horizontal axis) 
against Forecast Accuracy (vertical axis) for the GH and SU data sets. The blue ▪-
marks correspond to firms that satisfy the parameter restriction ଶ. 
Red ◊-marks correspond to firms that do not satisfy this parameter restriction. 
Domains are restricted to [-1,1] and [0,1] respectively. 
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Figure 1: Forecast Dispersion vs. Accuracy (Scatter Plots)

of firms with D̃ > 0.5 from 14.2% to 2.2%.

Figure 1 shows scatter plots of forecast accuracy (horizontal axis) and forecast dispersion (ver-

tical axis) in the two data sets, with negative forecast accuracy (γ̂ < 0) corresponding to a case

where the forecast error variance exceeds the volatility of earnings. The blue �-marks correspond

to firms that satisfy γ̂ (1− γ̂) > D̃2, the red �-marks correspond to firms that do not satisfy this

restriction. In both samples, the majority of firms lie in an area with high forecast accuracy and

low forecast dispersion, which corresponds to low levels of information friction in the market. But

there is a non-negligible subset of firms with less accurate earnings forecasts and higher levels of

forecast dispersion, even among those firms for which γ̂ (1− γ̂) > D̃2.

We wish to construct measures of EWTR σ̂θ
σθ

for as large as possible a sample of firms, which can

be done exactly only for the firms for whom γ̂ (1− γ̂) > D̃2. There are then two ways to incorporate

this parameter restriction. The first is to simply exclude all the firms for whom γ̂ (1− γ̂) ≤ D̃2

and obtain estimates of σ̂θ
σθ

for the remainder. A second, more conservative approach consists in

excluding only the firms for whom D̃ ≥ 0.5 which are not consistent with our model for any value

of γ̂. For the remaining firms we can then estimate a lower bound on σ̂θ
σθ

using only the data on

forecast dispersion by setting γ̂ = 0.5. This will yield a lower bound on the implied EWTR and
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Table 1a Guntay-Hackbarth N Mean St. Dev. 10% 30% Median 70% 90%

Sample I 6820 0.289 0.275 0.062 0.134 0.214 0.324 0.598

Forecast Sample II 6728 0.293 0.275 0.067 0.137 0.217 0.327 0.603

Dispersion Sample III 5758 0.206 0.120 0.061 0.123 0.186 0.264 0.388

(D̃) Sample IV 5153 0.192 0.111 0.058 0.116 0.173 0.246 0.359

Sample I 6820 0.466 1.068 -0.154 0.460 0.723 0.880 0.969

Forecast Sample II 6728 0.462 1.074 -0.161 0.454 0.720 0.879 0.968

Accuracy Sample III 5758 0.651 0.485 0.172 0.599 0.784 0.902 0.972

(γ̂) Sample IV 5153 0.747 0.226 0.402 0.667 0.814 0.915 0.975

Table 1b Straub-Ulbricht N Mean St. Dev. 10% 30% Median 70% 90%

Forecast Sample I 2101 0.167 0.126 0.053 0.094 0.137 0.194 0.315

Dispersion Sample III 2054 0.156 0.096 0.053 0.093 0.134 0.189 0.290

(D̃) Sample IV 1839 0.143 0.084 0.051 0.088 0.126 0.175 0.258

Forecast Sample I 2101 0.559 0.463 0.014 0.482 0.695 0.843 0.954

Accuracy Sample III 2054 0.586 0.402 0.053 0.497 0.703 0.845 0.955

(γ̂) Sample IV 1839 0.689 0.240 0.322 0.577 0.745 0.865 0.959

Table 1: Forecast dispersion and forecast accuracy (summary statistics)

return premia for a larger sample than the first approach. Below we explore both alternatives,

which yield fairly similar results.

Tables 2a and b report summary statistics (mean, standard deviation, median, 10th, 30th, 70th

and 90th percentiles) for forecast dispersion and forecast accuracy in the two data sets with different

sample restrictions. The GH sample came in two versions, one with raw accuracy and dispersion

measures, and one based on windsorized data. We report here the moments for the windsorized

data, as the procedure appears to mitigate (slightly) the concerns about measurement error in

forecast accuracy. Tables for the raw data moments are very similar and available in the online

repository.2 Sample I includes all 6820 firms. In Sample II (6728 firms), we exclude firms for which

the reported forecast dispersion D̃ is 0: these firms appear to be followed by a single analyst, which

makes it impossible to properly define and measure forecast dispersion in the data. As shown in

2The biggest difference between raw and windsorized data moments is in the accuracy measures for the lower end

of the distribution in the full sample, where concerns about measurement are the largest. All other moments are

virtually identical in the two samples.
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the table, the correction induced by removing firms with 0 forecast dispersion is very minor. In

Sample III (5758 firms), we remove firms with D̃ = 0 and with D̃ > 0. This is the sample we will

use to construct the lower bound measure on EWTR setting γ̂ = 0. Forecast dispersion is lower and

forecast accuracy higher than in the full sample. Finally, in Sample IV (5153 firms), we remove all

firms with D̃ = 0 and with γ̂ (1− γ̂) < D̃2 to use both measures of forecast dispersion and forecast

accuracy to estimate EWTR. This sample further reduces forecast dispersion and increases forecast

accuracy, consistent with the additional moment condition. Table 1b reports the same statistics

for the SU data, but here we only consider samples I (2101 firms), III (2054 firms) and IV (1839

firms), since the original sample did not include any firm for which D̃ = 0. The shifts in moments

induced by the sample selection criteria are less pronounced in the SU sample, which is consistent

with our interpretation that the measures in SU are less noisy. Overall, forecast dispersion and

forecast accuracy are lower in SU than in GH, which may be due to the different samples of firms,

but also the longer forecast horizons that are considered.

The distributions of forecast dispersion and forecast accuracy are highly skewed in all the

different version of the two samples: for most firms, forecast dispersion is low and forecast accuracy

is fairly high. However, forecast dispersion can be significant in the top quintile of the distribution:

in all the different samples, forecast dispersion at the 90th percentile is more than twice as high as

at the median. The picture is reversed for forecast accuracy, which displays a fat lower tail of firms

for which survey forecasts have low and even negative accuracy. Figures 2 and 3 confirm these

observations visually by showing the CDFs of forecast dispersion and forecast accuracy in the two

samples (forsample II, i.e. without D̃ = 0 firms in the case of GH, and for sample I in the case of

SU).

Table 2a and 2b report summary statistics for firm-level measures of excess weight on tail

risks constructed using the data on forecast accuracy and forecast dispersion and equation (1).

First, using Sample III which excludes all firms for which D̃ ≥ 0.5, we construct a “lower bound”

measure of EWTR σ̂θ
σθ

by setting γ̂ = 0.5. Second, using Sample IV which excludes all firms for

which γ̂ (1− γ̂) ≤ D̃2, we impute σ̂θ
σθ

using the reported distributions of γ̂ and D̃. For the latter

sample, we also report statistics on the lower bound to provide some insight into the respective

strengths of sample selection going from Sample III to Sample IV, and the role of forecast accuracy

in generating higher levels of EWTR.

Our two measures of EWTR are even more skewed than the measures of forecast dispersion:

EWTR is small for the vast majority of firms, i.e. less than 5% for roughly 70% of the GH sample

and less than 2% for roughly 70% of the SU sample. On the other hand, it can become very
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Figure 2: This figure displays cdf of forecast dispersion (horizontal axis), in the GH 
(sample II, without ) and SU (sample I). 

Figure 2: Forecast Dispersion (Cumulative Distribution)

Straub-UlbrichtGuntay-Hackbarth

Figure 3: This figure displays 1-cdf of forecast accuracy (horizontal axis), in the GH 
(sample II, without ) and SU (sample I). 
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Table 2a Guntay-Hackbarth N Mean St. Dev. 10% 30% Median 70% 90%

Lower bound ( σ̂θ
σθ

∣∣∣
γ̂=0.5

) Sample III 5758 1.087 0.331 1.002 1.008 1.02 1.047 1.175

Sample IV 5153 1.055 0.153 1.002 1.007 1.017 1.039 1.126

EWTR ( σ̂θ
σθ

) Sample IV 5153 1.102 0.493 1.002 1.009 1.023 1.055 1.195

Table 2b Straub-Ulbricht N Mean St. Dev. 10% 30% Median 70% 90%

Lower bound ( σ̂θ
σθ

∣∣∣
γ̂=0.5

) Sample III 2054 1.033 0.105 1.001 1.004 1.010 1.021 1.061

Sample IV 1839 1.021 0.054 1.001 1.004 1.008 1.017 1.044

EWTR ( σ̂θ
σθ

) Sample IV 1839 1.027 0.097 1.001 1.004 1.009 1.018 1.051

Table 2: Summary statistics for excess weight on tail risks

substantial in the top quintile, with EWTR at the 90th percentile of the distribution roughly 8 to

10 times as large as at the median in GH, and around 5 times as large in SU. These results support

the qualitative conclusion that EWTR is concentrated in the top quintile of firms with the highest

forecast disagreement. Moreover, these ratios do not vary much across the different measures and

samples that we considered (Sample III and Sample IV, EWTR and the lower bound implied by

setting γ̂ = 0.5), and the distribution of EWTR estimates from the more restrictive sample IV

appears to be very similar to the distribution of the lower bound estimate from sample III.

Figures 4 and 5 illustrate these observations by plotting the cdf for σ̂θ
σθ

and the lower bound

measure. These figures confirms that the distribution of excess weight on tail risks is highly right-

skewed in both samples: frictions are small for most firms, but the mean level of frictions is much

higher than the median and driven by an upper tail of firms for which measured information frictions

can be fairly substantial.

Table 2 reports sample correlations between forecast dispersion, forecast accuracy, excess weight

on tail risks and the lower bound for EWTR in the different samples.Forecast dispersion and accu-

racy are negatively correlated in the cross-section. Excess weight on tail risks is weakly negatively

correlated with forecast accuracy, but more strongly positively correlated with forecast dispersion.

Moreover, this correlation is higher in the less noisy SU sample, and it increases if we use the lower

bound for excess weight on tail risks computed by setting γ̂ = 1/2 rather than dispersion directly.

These correlations illustrate that most variation in excess weight on tail risks can be attributed to

forecast dispersion, especially in the less noisy SU sample.3

3Corr
(
σ̂θ
σθ
, D̃
)

and Corr
(
σ̂θ
σθ
, lower bound

)
increase to 0.47 and 0.70, respectively, in the restricted GH sample

if one removes a single outlier.
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Figure 4: This figure displays cdf of the lower bound on EWTR (horizontal axis), in 
the GH (sample II, without ) and SU (sample I). 
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Figure 5: This figure displays cdf of EWTR (horizontal axis), in the GH (sample II, 
without ) and SU (sample I). 

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4

CD
F

EWTR

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4

CD
F

EWTR

Figure 5: Excess weight on tail risks (Cumulative Distribution)

15



Sample Corr
(
D̃, γ̂

)
Corr

(
D̃, lower bd

)
Corr (γ̂, lower bd) Corr

(
σ̂θ
σθ
, D̃
)

Corr
(
σ̂θ
σθ
, γ̂
)

Corr
(
σ̂θ
σθ
, lower bd

)
GH - Sample II -0.59

GH - Sample III -0.32 0.43 -0.15

GH - Sample IV -0.41 0.57 -0.23 0.32 -0.08 0.44

SU - Sample I -0.65

SU - Sample III -0.56 0.62 -0.33

SU - Sample IV -0.52 0.66 -0.24 0.55 -0.20 0.86

Table 3: Sample Correlations

The distribution of forecast dispersion, forecast accuracy and excess weight on tail risks in

the Straub-Ulbricht sample is qualitatively very similar to the GH sample, with a highly skewed

distribution where most variation is concentrated in the top quintile of firms, but average values

of forecast dispersion, accuracy and excess weight on tail risks are lower. We can attribute these

differences to the different sample length, time period and forecast horizon, but also the fact that

firms with a longer track record of being followed by analysts are more likely to garner wider investor

interests, have more liquid markets and less overall belief dispersion - in other words, the more

restrictive sample is likely to focus on firms that are less subject to noisy information aggregation

frictions. However, the fact that two substantially different data sets deliver qualitatively very

similar distributions of forecast dispersion and excess weight on tail risks, gives us some confidence

in the qualitative robustness of our numerical examples. We have chosen to use GH as our primary

sample because it matches most closely with empirical studies on equity and bond returns, which

strikes us a better benchmark for assessing the quantitative implications of our model.

To summarize, our data suggest that excess weight on tail risks is likely to be small for most

firms, but significantly larger in the top quintile of the distribution. As a ballpark estimate, the

data suggest that an average excess weight on tail risks of about 10%, but most of this average

is driven by the top quintile where excess weight on tail risks increases to close to 20%, while for

a large majority of firms excess weight on tail risks remains very small. Most of the variation in

excess weight on tail risks comes from forecast dispersion.

3 Analyst forecasts as a proxy for private information dispersion

On concern with our use of analyst forecast dispersion to measure excess weight on tail risks is

that analyst forecasts are in the public domain, but we are using them, in the present case, to
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proxy for dispersed private information among investors. While this concern is not unique to our

paper - it arises whenever publicly available measures of investor disagreement are used to proxy for

dispersion of beliefs - it is of special concern to us since the model of noisy information aggregation

explicitly posits a common prior assumption, under which publicly available information can on its

own not be a source of belief dispersion.

Here, we discuss a simple setting of how public analyst forecasts may be used to construct

a proxy for private information dispersion. Formally, we suppose that there is a continuum of

investors whose earnings expectations are given by E (θ|x, z; y), where x ∼ N
(
θ, β−1

)
denotes their

idiosyncratic private signal, z ∼ N
(
θ, τ−1

)
the information content of the price, and y ∼ N

(
θ, τ−1

y

)
any other additional public information. This public information may include the finite sample of

investor (or analyst) forecasts. We consider a static model where implicitly the information that is

aggregated through the published forecasts or the price is already implicitly taken into consideration

by the forecasters’ announcements - we can think of this as a fixed point of a “tatonnement” process

between price formation and belief updating that may otherwise require a more complete dynamic

model.

Suppose that the public information y includes a finite sample of N forecasts reported and

published as a random sample of investor expectations {E (θ|xn, z; y)}Nn=1. With the linear-normal

model, these forecasts take the form

E (θ|xn, z; y) =
βxn + τz + τyy

β + τ + τy + σ−2
θ

We can then construct the mean or consensus forecast

f =
1

N

N∑
n=1

E (θ|xn, z; y) =
β 1
N

∑N
n=1 xn + τz + τyy

β + τ + τy + σ−2
θ

and a sample estimate of forecast dispersion D̂

D̂2 =
1

N − 1

N∑
n=1

(xn − f)2 =
1

N − 1
γ2
x

N∑
n=1

(
xn −

1

N

N∑
n=1

xn

)2

where γx = β

β+τ+τy+σ−2
θ

. Upon taking expectations, it is straight-forward to check that

E
(
D̂2
)

= γ2
xβ
−1

which corresponds to the true investor forecast dispersion. Hence D̂ provides an unbiased, noisy

estimate of the true underlying forecast dispersion.
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We also define forecast accuracy as A = 1 − V ar(θ|xn,z;y)
V ar(θ) =

σ−2
θ

β+τ+τy+σ−2
θ

, i.e. as the ratio of

conditional forecast error variance to the unconditional variance of fundamentals. We can then

define excess weight on tail risks as follows:

σ̂2
θ = E (V ar (θ|x = z, z; y)) + V ar (E (θ|x = z, z; y)) ,

applying the Law of total variance for the risk-neutral measure. It is straight-forward to check that

σ̂2
θ = σ2

θA+ σ2
θ (1−A)2 +

τy + β + τ(
β + τ + τy + σ−2

θ

)2 +
(β + τ)

(
β+τ
τ − 1

)
(
β + τ + τy + σ−2

θ

)2
σ̂2
θ = σ2

θ

{
A+ (1−A)2 +A (1−A) + D̃

β + τ

τ

}
= σ2

θ

{
1 + D̃

β + τ

τ

}
where D̃2 = E

(
D̂2
)
/σ2

θ , as in the main text. Finally, we check that

β + τ

τ
=

(1−A)
(
A− τy (1−A)σ2

θ

)
(1−A)

(
A− τy (1−A)σ2

θ

)
− D̃

,

which yields
σ̂2
θ

σ2
θ

= 1 + D̃2 (1−A)
(
A− τy (1−A)σ2

θ

)
(1−A)

(
A− τy (1−A)σ2

θ

)
− D̃2

.

If the precision of the additional public information τy is known, then this expression generalizes

the one given in the paper (with A = γ̂). If τy is unknown, then the expression in the main text is

a lower bound on the true estimate of EWTR. Finally in the special case where y corresponds to

the mean or consensus forecast, we have τy = βN (assuming the latter is observed without noise).

4 Additional results for Section 4 and 5

4.1 Proof of proposition 5 in the main text

Let ϕ (z) = E (f (z − θ′) |z) =
´
f (z − θ)h (θ|z) dθ. Since marginalization preserves log-concavity

(proposition 3.3 in Saumard and Wellner, 2014), ϕ (z) is log-concave, whenever f (z − θ)h (θ|z) is

log-concave in (z, θ).4 If ψ (z|θ) = ψ (z − θ), where ψ is log-concave, we have ϕ (z) =
´
f(z−θ)ψ(z−θ)h(θ)dθ´

ψ(z−θ)h(θ)dθ
=´

f(u)ψ(u)h(z−u)du´
ψ(u)h(z−u)du

and

ϕ′ (z)

ϕ (z)
= Ê

(
h′ (θ)

h (θ)
|z
)
− E

(
h′ (θ)

h (θ)
|z
)
.

4Since h (θ|z) is generically not log-concave even if h and ψ are, this requirement imposes a lower bound on the

log-concavity of f , or equivalently the informativeness of the private signal.
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Now,
d

dz
Ê
(
h′ (θ)

h (θ)
|z
)

= Ê
(
d

dθ

h′ (θ)

h (θ)
|z
)

+ V̂ ar

(
h′ (θ)

h (θ)
|z
)

Applying Brascamp and Lieb (1976), Theorem 4.1 (see proposition 10.1(a) in Saumard and Wellner,

2014) yields

V̂ ar

(
h′ (θ)

h (θ)
|z
)
≤ Ê

(
d

dθ

h′ (θ)

h (θ)

{
− d

dθ

h′ (θ)

h (θ)
− d

dz

(
f ′ (z − θ)
f (z − θ)

+
ψ′ (z − θ)
ψ (z − θ)

)}−1 d

dθ

h′ (θ)

h (θ)
|z

)

and therefore

− d

dz
Ê
(
h′ (θ)

h (θ)
|z
)

≥ Ê

(
d

dθ

h′ (θ)

h (θ)

{
− d

dθ

h′ (θ)

h (θ)
− d

dz

(
f ′ (z − θ)
f (z − θ)

+
ψ′ (z − θ)
ψ (z − θ)

)}−1{ d

dz

(
f ′ (z − θ)
f (z − θ)

+
ψ′ (z − θ)
ψ (z − θ)

)}
|z

)

= Ê

{(− d

dθ

h′ (θ)

h (θ)

)−1

+

(
− d

dz

(
f ′ (z − θ)
f (z − θ)

+
ψ′ (z − θ)
ψ (z − θ)

))−1
}−1

|z

 ≥ {τ−1
h +

(
τ f + τψ

)−1
}−1

= γ̂τh,

where γ̂ =
τf+τψ

τf+τψ+τh
. In addition,

E
(
h′ (θ)

h (θ)
|z
)

= E
(
ψ′ (z − θ)
ψ (z − θ)

|z
)

= (1− γ)E
(
ψ′ ((1− γ) z − u)

ψ ((1− γ) z − u)
|z
)

+ γE
(
h′ (γz + u)

h (γz + u)
|z
)

where θ = γz + u, and therefore

d

dz
E
(
h′ (θ)

h (θ)
|z
)

= (1− γ)2 E
(
d

dz

ψ′ (z − θ)
ψ (z − θ)

|z
)

+γ2E
(
d

dθ

h′ (θ)

h (θ)
|z
)

+V ar

(
(1− γ)

ψ′ (z − θ)
ψ (z − θ)

+ γ
h′ (θ)

h (θ)
|z
)
.

Setting d
dz
ψ′(z−θ)
ψ(z−θ) ≥ −τ̄ψ and d

dθ
h′(θ)
h(θ) ≥ −τ̄hand minimizing the RHS w.r.t. γ yields d

dzE
(
h′(θ)
h(θ) |z

)
≥

−γ̄τ̄h, where γ̄ =
τ̄ψ

τ̄ψ+τ̄h
. Combining the two yields

− d

dz

ϕ′ (z)

ϕ (z)
≥ γ̂τh − γ̄τ̄h.

Next, we show that log-concavity of ϕ (z) implies log-convexity of m̂ (θ) =
´ f(z−θ)

ϕ(z) ψ (z|θ) dz.

If ψ (z|θ) = ψ (z − θ), where ψ is log-concave, we have m̂ (θ) =
´ f(u)
ϕ(θ+u)ψ (u) du and m̂′(θ)

m̂(θ) =

−Ê
(
ϕ′(z)
ϕ(z) |θ

)
, where Ê (·|θ) represents expectations w.r.t. the probability measure

f((ρ−1)θ+v)
ϕ(ρθ+v)

ψ((ρ−1)θ+v)´ f((ρ−1)θ+v)
ϕ(ρθ+v)

ψ((ρ−1)θ+v)dv
.

It follows that
d

dθ

m̂′ (θ)

m̂ (θ)
= Ĉov

(
ϕ′ (z)

ϕ (z)
,
f ′ (z − θ)
f (z − θ)

+
ψ′ (z − θ)
ψ (z − θ)

|θ
)

and since f ′(z−θ)
f(z−θ) + ψ′(z−θ)

ψ(z−θ) is strictly decreasing in θ, d
dθ
m̂′(θ)
m̂(θ) > 0, whenever d

dz
ϕ′(z)
ϕ(z) < 0.
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Moreover, since m̂′(θ)
m̂(θ) = −Ê

(
ϕ′(z)
ϕ(z) |θ

)
= −Ê

(
f ′(z−θ)
f(z−θ) + ψ′(z−θ)

ψ(z−θ) |θ
)

, changing variables to v ≡

z − ρθ yields m̂′(θ)
m̂(θ) = Ê (K (θ, v) |θ) and

d

dθ

m̂′ (θ)

m̂ (θ)
= Ê

(
d

dθ
K (θ, v) |θ

)
+ V̂ ar (K (θ, v) |θ)

where K (θ, v) = (ρ− 1)

(
f ′ ((ρ− 1) θ + v)

f ((ρ− 1) θ + v)
+
ψ′ ((ρ− 1) θ + v)

ψ ((ρ− 1) θ + v)

)
− ρϕ

′ (ρθ + v)

ϕ (ρθ + v)
.

It follows that d
dθ
m̂′(θ)
m̂(θ) > 0 for all θ whenever d

dθK (θ, v) > 0 for all (θ, v), or

(ρ− 1)2 (−τf (z − θ)− τψ (z − θ)) + ρ2τϕ (z) > 0

for all (θ, z), where τf (z − θ) = − d
dz

(
f ′(z−θ)
f(z−θ)

)
, τϕ (z) = − d

dz
ϕ′(z)
ϕ(z) and τψ = − d

dz

(
ψ′(z−θ)
ψ(z−θ)

)
. Since ρ

is a free parameter, we can set ρ (θ, v) to maximize the LHS of above inequality. From 0 ≤ τϕ (z) ≤

γ̂τh =
(
1− γ̂

) (
τ f + τψ

)
, it follows that this expression is maximized when ρ =

τf+τψ
τf+τψ−τϕ , which

yields
d

dθ

m̂′ (θ)

m̂ (θ)
≥ Ê

(
τf + τψ

τf + τψ − τϕ
τϕ|θ

)
≥

γ̂

γ̂ −
(
1− γ̂

) τϕ
τh

τϕ
τh
τh,

which is strictly positive and bounded away from 0 whenever τϕ (z) > 0. Substituting τϕ (z) ≥

γ̂τh − γ̄τ̄h then yields

d

dθ

m̂′ (θ)

m̂ (θ)
≥

γ̂
(
γ̂ − τ̄h

τh
γ̄
)

γ̂ −
(
1− γ̂

) (
γ̂ − τ̄h

τh
γ̄
)τh > 0.

Finally, we consider the limit as f , ψ, and h converge to normal distributions, in which case

τf → β, τψ → τ , and τh → σ−2
θ , and the upper and lower bounds on these functions also converge

to β, τ , and σ−2
θ , respectively. In this case, γ̂ → γ̂,γ̄ → γ, and τϕ = − d

dz

(
ϕ′(z)
ϕ(z)

)
→ (γ̂ − γ) 1

σ2
θ
.

This in turn implies that

K (θ, v)→ − (ρ− 1) (β + τ) ((ρ− 1) θ + v) + ρτϕ (ρθ + v) = θρτϕ,

which implies that V̂ ar (K (θ, v) |θ) → 0 and d
dθK (θ, v) → ρτϕ = ρ (γ̂ − γ) 1

σ2
θ

as f , ψ, and h

converge to normal distributions. But then,

d

dθ

m̂′ (θ)

m̂ (θ)
→ ρτϕ =

β + τ

β + τ − τϕ
τϕ =

1

σ2
θ

γ̂ (γ̂ − γ)

γ̂ − (1− γ̂) (γ̂ − γ)
=

1

σ2
θ

− 1

σ̂2
θ

.

4.2 Numerical solution methods

Here we present the results from the iteration procedure described in section 4. Fix a support

of the fundamental θ and prior H (·). We start by conjecturing a distribution of prices con-

ditional on a given value of θ: Ψ(0)(P ′|θ) ≡ Pr(P ≤ P ′|θ), along with a conditional density
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ψ(0)(P |θ). From ψ(0)(P |θ), we calculate the posterior distribution for each investor using Bayes

rule: Pr(θ|xi, P ) = ψ(0)(P |θ) · Pr(θ|xi)/
∑

θ′ ψ
(0)(P |θ′) · Pr(θ′|xi), where Pr(θ|xi) corresponds to

the posterior conditional on observing xi only. Using the posterior distribution, we find the demand

functions d (xi, P ) that maximize E[u(w)|xi, P ] for each agent i, and then determine aggregate de-

mand D(θ, P ) numerically by integrating over x. Using the market-clearing condition, we then

characterize the resulting informational content of prices Ψ(1)(P ′|θ) ≡ 1 − G(D(θ, P ′)). This new

conditional price distribution Ψ(1) is used then as the starting guess in place of Ψ(0), and the exer-

cise is iterated until convergence. Finally, we calculate the price function P (θ, s) by inverting the

function D(θ, P ) = s to obtain P = P (θ, s = D).5

With CRRA preferences and binary asset payoffs, this task is simplified by the fact that the

posterior odds ratio and asset demand can be written in closed form. Suppose that all primitives

are as in section 3.1, except that preferences are of the CRRA form: U(w) = w1−χ/ (1− χ), where

w = w0 +d(π−P ) is an investor’s the terminal wealth when purchasing d units of the asset, and w0

is an initial endowment, identical across agents. An investor’s posterior belief µ (x, P ) = Pr(π =

1|x, P ) satisfies

log
µ (x, P )

1− µ (x, P )
= log

λ

1− λ
+ log

(
ψ(P |π = 1)

ψ(P |π = 0)

)
+ β(x− 0.5),

and optimal asset demand is

d (x, P ) = w0

(
µ(x,P )

1−µ(x,P )

) 1
χ −

(
P

1−P

) 1
χ

(1− P )
(

P
1−P

) 1
χ

+ P
(

µ(x,P )
1−µ(x,P )

) 1
χ

.

Aggregating across agents, we obtain the aggregate demand D(π, P ) and the price likelihood ratio

ψ(P |π = 1)/ψ(P |π = 0) = g (D(1, P )) /g (D(0, P )). We use these likelihoods as inputs for µ (x, P ),

and iterate until convergence. Parameters are set to w0 = 5, E (s) = 0.5, σs = 1, β = 1, and γ = 3.

6

Figure 6 plots the relation between the random supply and three objects of interest, for the

dividend realization π = 1:7 the price P (1, s), the posterior expectation of dividends conditional

5We make our matlab code available for the CRRA, binary payoff case in the online appendix. Under generic

preferences and payoff structures, aggregate demand monotonicity w.r.t. prices is not guaranteed (see for example,

Barlevy and Veronesi (2003). Without strict monotonicity, then it is no longer true that Pr(P ≤ P ′|θ) = Pr(u ≥

D(θ, P )) for any price level, and the solution method proposed here would not work. All the examples presented in

this section are under parameters which satisfy monotonicity of demand in prices.
6For futher details on how to implement the algorithm, see matlab code attached.
7The corresponding figures for π = 0 are qualitatively similar, but horizontally shifted to the left. The average

price and average dividend expectations included in the figure of course consider both states of nature.
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on the price P , log λ
1−λ + log

(
ψ(P |π=1)
ψ(P |π=0)

)
, and the posterior expectation µi (z, P ) of an investor

observing xi = z, where z is set so that the investor purchases d(z, P ) = E (s) exactly the expected

asset supply. Thus, the difference between P (1, s) and µi (z, P ) equals the risk premium required

for holding the average net supply E (s) of the asset. Panel a) of Figure 6 considers a security with

downside risk, λ = 0.9 (i.e., a bond), while panel b) plots the same relations ships for a security

with upside risk, λ = 0.1 (i.e., a stock, or option).

In both figures, the price, the dividend expectation conditional on the sufficient statistic z

(defined as the signal of the trader which holds the average supply), and the expectations of the

marginal trader (which weighs z both as public and private information), are increasing functions of

the sufficient statistic, as it indicates a higher probability that π = 1. However, the expectations of

the marginal investor are more sensitive to z, which delivers a lower expectations for the marginal

investor relative to those that condition only on the price signal, for relatively low values of z,while

the converse is true for high realization. This qualitative feature is true regardless of the shape of

cash flows, as can be seen by comparing panels a) and b) of Figure 6.

On average, due to the concavity of the cash flow under downside risks in panel a), the average

expectation of the marginal investor (over realizations of z) falls below the probability of π = 1 (0.9

in the downside risk case studies). The difference between these objects is the skewness premium

(negative in this case). The average price then compounds the skewness premium with the risk

premium for holding a positive expected supply of the asset, with both of these premia pushing the

average asset price below the unconditional probability that π = 1 which is equal to 0.9.

For the upside risk case in panel b), the convex nature of payoffs implies that now the average

expectation of the marginal investor lies above the average asset payoff, representing a positive

skewness premium. From these expectations, a positive risk premium is also discounted, resulting

in a price that lies below the average expectation of the marginal investor. For the parameters

chosen, the skewness premium just dominates the downward price influence of risk aversion, and

the resulting average price is slightly above the average dividend.

In summary, the qualitative implications described in the text under CARA-binary preferences

survive when we use CRRA preferences instead, as one would expect given the generalizations of

the model described in section 4.

4.3 Limit cases of the general model

Here we discuss additional limit cases of the general model that give rise to excess weight on tail

risks, returns to skewness and disagreement as mentioned in the discussion in section 4 and 5 of
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Figure 6: CRRA-binary simulation

the paper. The additional structure provided by these limits allows us to directly characterize the

risk-neutral probability or expected equilibrium prices and skewness premia.

It will be convenient to directly consider a market with informed and uninformed traders.

Formally, we consider sequences of markets indexed by n = 1, 2, ... and characterized by information

structures {κn, Fn, Gn} defined by a fraction of informed traders κn, a distribution of private signals

Fn, and a distribution of supply shocks Gn, which converge to a limit {κ∞, F∞, G∞}. When

F∞ and G∞ are degenerate, it will be convenient to fix baseline distributions F and G centered

around 0 and simply vary the precision of private signals βn and the variance of supply shocks

V arn (s) along the sequence. We assume throughout that the corresponding equilibrium sequence

{dIn(x, P ); dUn (P ) ;Pn (z) ; Ψn (z|θ)} has a well-defined limit, and that
{
dIn (x, P )

}
and

{
dUn (P )

}
are

both decreasing in P , for all n.

Finally, we assume that U ′ (·) is an analytic function, which can be represented by its infinite

order Taylor expansion. This allows us to represent the informed trader’s first-order condition as

follows:

∞∑
n=0

1

n!
U (n+1) (0) dI (x, P (z))n

n+1∑
k=0

(
n+1
k

)
µk (x, z) (E (π (θ) |x, z)− P (z))n+1−k = 0 (2)

where µk (x, z) ≡ E
(

(π (θ)− E (π (θ) |x, z))k |x, z
)

. Equation (2) implies that we can represent
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dI (x, P (z)) as a function of E (π (θ) |x, z)− P (z) and the conditional moments µk (x, z):

dI (x, P (z)) = D (E (π (θ) |x, z)− P (z) ; {µk (x, z)}) . (3)

Likewise, the uninformed traders’ first-order condition can be represented as

∞∑
n=0

1

n!
U (n+1) (0) dU (P (z))n

n+1∑
k=0

(
n+1
k

)
µk (z) (E (π (θ) |z)− P (z))n+1−k = 0

where µk (z) ≡ E
(

(π (θ)− E (π (θ) |z))k |z
)

, or equivalently dU (P (z)) = D (E (π (θ) |z)− P (z) ; {µk (z)}).

It follows that E (π (θ) |z) − P (z) is of order dU (P (z)), and focusing on the first three orders in

the Taylor expansion, we obtain

0 = E (π (θ) |z)− P (z)− χdU (P (z))
(

(E (π (θ) |z)− P (z))2 + µ2 (z)
)

+
α

2
dU (P (z))2

(
(E (π (θ) |z)− P (z))3 + µ3 (z) + 3µ2 (z) (E (π (θ) |z)− P (z))

)
+ o

(
dU (P (z))3

)
where χ = −U (2) (0) /U (1) (0) and α = U (3) (0) /U (1) (0), or

P (z) = E (π (θ) |z)− χdU (P (z))µ2 (z) +
α

2
dU (P (z))2 µ3 (z) + o

(
dU (P (z))3

)
Taking prior expectations then yields equation (19) in the paper.

The market-clearing condition can be written as

(1− κ) dU (P (z)) + κ

ˆ
dI (x, P (z)) dF (x− θ) = s.

Finally, define the no-information price V NI (s), which obtains when βκ = 0, i.e. there are no

informed traders (or their private signals are infinitely noisy). This no-information price satisfies

∞∑
n=0

1

n!
U (n+1) (0) sn

n+1∑
k=0

(
n+1
k

)
µk
(
E (π (θ))− V NI (s)

)n+1−k
= 0 (4)

where µk ≡ E
(

(π (θ)− E (π (θ)))k
)

, or equivalently, s = D
(
E (π (θ))− V NI

π (s) ; {µk}
)
.

We first generalize the discussion of limits when private information vanishes, and supply shocks

are small, from section 5 in the paper (with informed and uninformed traders). We then consider two

additional limits, in which supply shocks become large. In the first, noisy information aggregation

can lead to arbitrarily large, unbounded variation in prices, even though supply has bounded

support. In the second, we consider a limit case where supply shocks become large, but private

information becomes very price, so that prices remain informative in the limit. Once again the

equilibrium price is strictly more variable than the underlying fundamental, and it results in a

risk-neutral measure with excess weight on tail risks.
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4.3.1 Supply shocks vs. dispersed information

Here we generalize the observation, discussed in section 5 in the paper (as well as in proposition 2

above in the online appendix) that dispersed information amplifies skewness premia that are gener-

ated by supply shocks. As in the paper, we distinguish between information-based and preference-

based returns to skewness, and show that when supply shocks are small, the information-based

returns to skewness are an order of magnitude larger than the preference-based ones.

The no information limit: Consider a sequence of economies {κn}, such that limn→0 κn = 0,

i.e. the fraction of informed traders converges to 0, while the distribution of private signals F

and the distribution of supply shocks G is kept constant. In this case, it follows from the market-

clearing condition that dU (P (z)) → s, which in turn implies that the price must co-move with

s but be independent of θ. Therefore µk (z) converges to µk, and it follows immediately that

P (z) → V NI (s). It follows that V NI (s) − E (π (θ)) = o (s), and therefore (from the Taylor

expansion for uninformed traders):

V NI (s)− E (π (θ)) = −χµ2s+
α

2
µ3s

2 + o
(
s3
)

and

E
(
V NI (s)

)
= E (π (θ)) + αV ar (s)µ3 + o

(
V ar (s)3/2

)
.

It is straight-forward to check that the same limit is reached for a sequence of economies {βn},

such that limn→0 βn = 0, i.e. the precision of private signals converges to 0, while holding fixed

the fraction of informed traders. In this case, µk (x, z) converges to µk (z) and dI (x, P ) converges

to dU (P ), which by market-clearing must then both converge to s. But then the price becomes

uninformative, and µk (x, z) and µk (z) converge to µk, which in turn implies that P (z)→ V NI (s).

This characterization generalizes the observation in section 5 of the preference-based skewness

premium: At the no-information limit, the expected price premium scales with the skewness of

returns µ3, the variance of supply shocks V ar (s), and the degree of downside risk aversion α.

The noisy information limit: Consider next the limit in which κn → 0 and {Gn} is such that

sn = κns̃, where s̃ is centered at 0 and distributed according to G̃. In this case, the market-clearing

condition implies
1− κn
κn

dUn (P (z)) = s̃−
ˆ
dIn (x, P (z)) dF (x− θ)

We first show that prices must remain informative in the limit: suppose to the contrary that

µk (z) converges to µk and E (π (θ) |z) to E (π (θ)) in which case the uninformed trader’s demand

takes the form dU (P ) = D (E (π (θ))− P ; {µk}), hence the left-hand-side of the market-clearing
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condition is independent of θ. On the other hand, we have shown in the proof of Theorem 1 that

dI (x, P ) must be strictly increasing in x, even at a limit at which z is uninformative. But then

the right-hand side of the market-clearing condition must be strictly decreasing in θ, which yields

a contradiction.

It follows that there exists a limit distribution Ψ∞ (z|θ) for the sufficient statistic. The market-

clearing condition implies that dU (P (z))− s→ 0 w.p. 1, and therefore at the limit

lim
n→∞

P (z) = E (π (θ) |z)− χsµ2 (z) +
α

2
s2µ3 (z) + o

(
s3
)

and

lim
n→∞

E (P (z)) = E (π (θ))− χκnCov (s̃, µ2 (z)) + o
(
κ2
n

)
.

This characterization generalizes the observation in section 5 of the information-based skewness

premium that depends on the covariance between supply shocks, or uninformed traders’ exposures

s̃, and posterior uncertainty µ2 (z) and which scales with the standard deviation of supply shocks,

or κn.

The preference- and information-based skewness premia both result from negative co-movement

of the price with exposure of uninformed agents. Skewness or asymmetry in returns makes this

co-movement asymmetric: with upside risk, the co-movement is stronger on the upside, resulting in

a convex relation between exposure and prices and a positive price premium, while with downside

risk this co-movement is stronger on the downside, resulting in a concave relation and a negative

price premium.

However preference- and information-based skewness premia differ in the reasons for asym-

metric co-movement. The preference-based skewness premium results from downside risk aversion

(U ′′′(0) > 0), which induces investors to seek extra compensation for downside risks. This increases

the risk premium for negatively skewed securities and decreases it for positively skewed securities.

The information-based skewness premium instead results from endogenous co-movement be-

tween equilibrium supply and uncertainty: since informed investors do not perfectly arbitrage

supply shocks, P and z are decreasing in s in equilibrium. But the price P conveys information z,

which in turn induces investors to update their expectations and posterior variances. When π (·)

is dominated by downside risk (convex), an increase in P increases dividend expectations, but also

the investors’ conditional uncertainty µ2 (z). µ2 (z) and s thus co-move negatively, resulting in a

positive price premium. When instead π (·) is dominated by downside risk (concave), µ2 (z) and s

co-move positively, resulting in a negative price premium.

26



The same argument extends to the limit of a sequence, in which βn → 0 and V arn (s) → 0 in

such a manner that z remains informative, while holding κn constant. In this limit, the posterior

H(·|x, z) converges to H(·|z), and moments µk (x, z) to µk (z), as β → 0. From the market-clearing

condition,

dU (P ) = s− κ
(ˆ

dI (x, P ) dF (x− θ)− dU (P )

)
,

and therefore the price remains informative, only if V arn (s) is proportional to the variance of´
dI (x, P ) dF (x− θ) − dU (P ). The term dI (x, P ) − dU (P ) in turn scales with E (π (θ) |x, z) −

E (π (θ) |z) when β is close to 0, and E (π (θ) |x, z) − E (π (θ) |z) scales with β. It follows that´
dI (x, P ) dF (x− θ)− dU (P ) = o (β), and the price remains informative in the limit, if and only

if V arn (s) /β2
n converges to a positive finite constant. From the uninformed trader’s first-order

condition, we then obtain that the expected price premium must satisfy

lim
n→∞

E (P (z)) = E (π (θ))− χCov
(
dU (P (z)) , µ2 (z)

)
+ o (V arn (s)) ,

where dU (P (z)) = o
(√

V arn (s)
)

, i.e. to a first order the expected price premium is governed by

the co-movement between the uninformed traders’ exposure dU (P (z)) and posterior uncertainty

µ2 (z), and the former scales with the standard deviation of supply shocks, when the latter is

stationary at the noisy information limit.

4.3.2 The large noise limit

A similar amplification result also holds for positive levels of private signal precision when supply

shocks make prices completely uninformative. Formally consider a sequence {Gn} of dispersed

information economies such that limn→∞
∥∥Gn (s)− Ḡ

∥∥ = 0 for all s ∈ (dL, dH), and some Ḡ ∈ (0, 1),

i.e. supply realizations are shifted more and more to the boundaries of the support of s. We compare

the dispersed information price when private signals are informative about θ with its no information

counterpart V NI (s).

At the no-information limit, we obtain V NI (dL) > V NI (s) > V NI (dH) and V ar
(
V NI (s)

)
≤

1/4
(
V NI (dL)− V NI (dH)

)2
. Supply shocks are bounded by (dL, dH) and their variance is bounded

by V ar (s) ≤ (dH − dL)2 Ḡ
(
1− Ḡ

)
. This in turn translates into a uniform bound on prices, price

volatility, excess weight on tail risks and the skewness premium.

With dispersed information, we first show that the asset price indeed becomes perfectly uninfor-

mative as n grows large. In the limit, arbitrarily large fluctuations in marginal investor expectations

are then needed to absorb supply shocks. Demand and price functions are well-defined in the limit,

but z becomes infinitely volatile, resulting in an arbitrarily large excess weight on tail risks i.e. the
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risk-neutral measure converges to an improper prior. With convex π (·), this in turn implies that

the average price and hence the skewness premium must grow arbitrarily large. This limit result

is particularly striking in how pure noise in the realization of z introduces large swings in prices

because these shocks to z generate large swings in the marginal investors dividend expectations -

recall that the market price always treats the sufficient statistic as if it has at least a precision of

β > 0, even when in fact it is completely uninformative.

More specifically, we first show that the asset price becomes perfectly uninformative as n grows

large: Suppose to the contrary that Hn(θ|P ) converges to some non-degenerate limit distribution

H(θ|P ). Using H(θ|P ), we can derive a limit demand function dI∞(x, P ) and a limit price function

P∞ (z). Substituting these into Ψn (z|θ) = 1−Gn (Dn(θ, Pn (z))), it follows that Ψn (z|θ)→ 1− Ḡ

for any finite θ and z. From this, it follows that Ψn (z) =
´

Ψn (z|θ) dH (θ)→ 1− Ḡ, and

Ĥn (θ) =

ˆ
H(θ|x = z, z)dΨ (z) = −

ˆ
Ψ (z)

∂Hn(θ|x = z, z)

∂z
dz →

(
1− Ḡ

)
.

In addition, note that

Prn

(
θ ≤ θ′ ;P ≤ P ′

)
=

ˆ θ
′

−∞
(1−Gn (Dn(θ, P ))) dH (θ)→

(
1− Ḡ

)
H
(
θ
′
)

On the other hand, since Prn

(
θ ≤ θ′ ;P ≤ P ′

)
= Prn

(
θ ≤ θ′ |P ≤ P ′

)
Prn

(
P ≤ P ′

)
. Since

Prn

(
P ≤ P ′

)
→ 1 − Ḡ for any interior P

′
, we conclude that Prn

(
θ ≤ θ′ |P ≤ P ′

)
→ H

(
θ
′
)

,

and hence H(θ|P )→ H (θ).

Next we show that with dispersed information and large noise, price fluctuations and expected

prices become arbitrarily large if π (·) is convex and hence unbounded on the upside. Given the con-

vergence of beliefs, the uninformed traders demand converges to dU (P ) = D (E (π (θ))− P ; {µk})

and the informed traders to d̄I (x, P ) = D (E (π (θ) |x)− P ; {µk (x)}) where {µk (x)} and E (π (θ) |x)

only condition on the private signal realization x. These limits are uniquely determined by the prior

and the distribution of private signals. Furthermore they imply that there exists a unique sufficient

statistic z (P ) defined by setting d̄I (z, P ) = 0, and correspondingly a unique limit price function

P (z) = E (π (θ) |x = z). What’s more, if π (·) is unbounded, then limn→∞V ar (P (z)) =∞. If π (·)

is strictly convex (more generally, π′ (θ) + π′ (−θ) is strictly positive and bounded away from 0 for

θ > 0 sufficiently large, then limn→∞E (P (z)) =∞.

Hence, to summarize, skewness premia are again amplified by dispersed information: at the

no information benchmark, the expected price premium scales with the variance of supply, which

remains bounded. With dispersed information instead, excess weight on tail risks scales with the

variance of the marginal trader’s private signal realization, which can be unbounded, even if supply
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shocks are bounded. This explains why the amplification effect from dispersed information can

become arbitrarily large.

4.3.3 The precise information limit

Along similar lines, we consider the limit in which β →∞ (private signals become arbitrarily pre-

cise), while supply realizations become more and more noisy, i.e. {Gn} is such that limn→∞
∥∥Gn (s)− Ḡ

∥∥ =

0 for all s ∈ (dL, dH), and some Ḡ ∈ (0, 1).

In this scenario, {µk (x, z)} → {0}, i.e. informed traders face no uncertainty, and in the limit,

they follow a threshold strategy and set dI (x, P ) = dL if x < x̂ and dI (x, P ) = dH if x > x̂, where

x̂ satisfies π (x̂) = P . Setting z = x̂ yields P (z) = π (z), i.e. in the limit the informed traders act

as if their private signal conveyed θ perfectly. The uninformed traders in turn update based on the

information conveyed by the price.

The demand by informed traders is given byDI (θ, P (z)) = dL+(dH − dL)
(
1− F

(√
β (z − θ)

))
,

which yields the market-clearing condition

κ
(
dL + (dH − dL)

(
1− F

(√
β (z − θ)

)))
= s− (1− κ) dU (P (z))

When κ = 1 (no uninformed traders), it follows that z → θ + 1√
β
F−1

(
dH−s
dH−dL

)
, and z decomposes

into a shift in the mean and a mean-preserving spread over the fundamental θ. Since P (z) = π (z)

the distribution of z also defines the risk-neutral probability measure, which thus has strictly fatter

tails than the prior H. The same is true by continuity when κ is sufficiently close to 1.

5 Additional results for multi-asset extensions

Here we expand on the characterization of pricing kernels with multiple securities. Recall that

P (z) = E (π (θ)m (θ, z) |z) = E
(
π (θ)mU (θ, z) |z

)
where

m (θ, z) =
U ′
(
(π (θ)− P (z))′ d0

)
E
(
U ′
(
(π (θ)− P (z))′ d0

)
|x = z, z

) h (θ|x = z, z)

h (θ|z)

mU (θ, z) =
U ′
(
(π (θ)− P (z))′ dU (P (z))

)
E
(
U ′
(
(π (θ)− P (z))′ dU (P (z))

)
|z
) .
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5.1 Generalization of information- and preference-based skewness premia

A second-order Taylor approximation for the uninformed traders yields

Pn (z) = E (πn (θ) |z)−χ · e′nΣ (z) dU (P (z)) +
α

2
·dU (P (z))

′
Ψn (z) dU (P (z)) + o

(∥∥∥dU (P (z))3
∥∥∥) ,

where χ = −U ′′(0)
U ′(0) , α = U ′′′(0)

U ′(0) , e′n = (0, ..., 1, 0, ...0) represents the n-th dimension unit vector, Σ (z)

the N×N variance-covariance matrix of expected returns with nm-th entry Cov (πn (θ) , πm (θ) |z),

and Ψn (z) the n-th third-moment matrix with k, l-th entries

ψn(k,l) (z) = E ((πn (θ)− E (πn (θ) |z)) (πk (θ)− E (πk (θ) |z)) (πl (θ)− E (πl (θ) |z)) |z) .

The difference between price and expected dividend thus decomposes into a risk adjustment

−χ · e′nΣ (z) dU (P (z)) that scales with the uninformed traders’ exposure dU (P (z)) and a third-

moment adjustment term α
2 ·d

U (P (z))
′
Ψn (z) dU (P (z)) that depends on the squares of exposures.

The risk adjustment can be rewritten as e′nΣ (z) dU (P (z)) = Cov
(
πn (θ) , π (θ) · dU (P (z)) |z

)
,

where π (θ) · dU (P (z)) represents the uninformed traders’ total portfolio return. Abstracting from

the second-order (third-moment) terms, the model-implied risk premium thus recovers a standard

“CAPM” representation from the perspective of uninformed investors.8

If α = 0 (quadratic preferences, no downside risk aversion), or equivalently, ignoring the third-

moment terms, the expected price premium satisfies

E (Pn (z))− E (πn (θ)) ≈ −χ · e′nE
(
Σ (z) · dU (P (z))

)
= −χ · E

(
Cov

(
πn (θ) , π (θ) · dU (P (z)) |z

))
= −χ · e′nE (Σ (z))D − χ · E

(
e′nΣ (z) ·

(
dU (P (z))−D

))
where D = E

(
dU (P (z))

)
. The expected price premium thus decomposes into an average risk

premium that scales with risk aversion χ, expected posterior uncertainty E (Σ (z)), expected ex-

posure D, and an adjustment due to the co-movement between the exposure and uncertainty.

When assets are conditionally independent (Cov (πn (θ) , πm (θ) |z) = 0), this co-movement term re-

duces to E
(
e′nΣ (z) ·

(
dU (P (z))−D

))
= Cov

(
V ar (πn (θ) |z) , dUn (P (z))

)
. If exposure dUn (P (z))

is everywhere decreasing in z, then the co-movement term is positive (negative) if uncertainty

V ar (πn (θ) |z) is decreasing (increasing) in z. Therefore, controlling for the average exposure,

co-movement generates a positive expected price premium if uncertainty and exposure are both

8See Andrei et al. (2022) for implications of noisy information aggregation for empirical properties of the CAPM

with linear/normal asset returns.
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counter-cyclical, and a negative premium if uncertainty is pro-cyclical. This is exactly what return

asymmetry generates: for downside risks, a deterioration of z increases the likelihood of adverse

tail risks, hence uncertainty is countercyclical. For an upside risk the same deterioration of reduces

uncertainty as the positive tail event is less likely to materialize.

This observation leads to an alternative interpretation of the negative relation between skewness

and returns as resulting from the combination of (i) counter-cyclical exposure of uninformed traders,

and (ii) pro-cyclical (counter-cyclical) uncertainty of upside (downside) risks. The counter-cyclical

exposure of uninformed traders emerges naturally from the informed traders’ demand and the

market-clearing condition: since

κI

ˆ
dI (x, P (z)) dF (x− θ) + κUd

U (P (z)) = s

an increase in the fundamental vector θ that raises demand
´
dI (x, Pπ (z)) dF (x−θ) by the informed

traders for all securities must be offset by a reduction in the demand by uninformed traders, resulting

in lower exposures for uninformed traders when the fundamental is high, or asset supply is low.9

Consider next the case where α > 0. With downside risk aversion, the second-order term

α
2 · d

U (P (z))
′
Ψn (z) dU (P (z)) multiplies the investors’ attitudes towards downside risk with the

squared exposures and asymmetries in returns that are summarized by dU (P (z))
′
Ψn (z) dU (P (z)).

When assets are conditional independent, the latter term reduces to Skew (πn (θ) |z) · dUn (Pn (z))2,

where Skew (πn (θ) |z) = ψn(n,n) (z) denotes the conditional skewness of asset payoffs. Taking ex-

pectations, this term thus generalizes the observation discussed in section 2 that attitudes towards

downside risk introduce a preference-based skewness premium in asset prices: because of downside

risk aversion, traders require additional compensation for accepting the market-clearing exposure

level s on negatively skewed securities, while willing to reduce the risk premium for positively

skewed securities.

Finally, we note that this representation also yields a generalization of the amplification of price

9Similar results obtain in the risk-neutral model with a noise trader demand of the form s =

Φ (u+ ω (P − E (π (θ) |P ))), which captures the notion that the residual supply available to informed traders in-

creases in the expected price premium P − E (π (θ) |P ). In this formulation, the higher is ω > 0 the more actively

the uninformed traders arbitrage the perceived price premium, with P → E (π (θ) |P ) as ω → ∞, akin to free entry

by uninformed risk-neutral arbitrageurs. A micro-foundation for this functional form assumption about asset sup-

ply can be obtained by assuming that (i) the asset supply is normalized to 1, and (ii) there is a unit measure of

risk-neutral uninformed arbitrageurs, who each have a stochastic cost of ci = c + ui of holding the one unit of the

asset, where c ∼ N
(
c̄, σ2

c

)
and ui ∼ N

(
0, γ−1

)
. In this case, uninformed arbitrageurs buy the security if and only

if ci + P ≤ E (π (θ) |P ), resulting in a residual supply schedule of Φ
(√
γ (c+ P − E (π (θ) |P ))

)
, which confirms the

above representation with ω =
√
γ and u =

√
γc ∼ N

(√
γc̄, γσ2

c

)
.
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premia with dispersed information. Suppose that E (s) = 0 and consider first the limit without in-

formed traders, as κI goes to 0. In this case, dU (P (z)) must converge to s/κU , P must become com-

pletely uninformative, and price fluctuations are exclusively due to supply shocks. Therefore, Σ (z)

converges to the prior variance-covariance matrix Σ which is independent of dU (P (z)) = s/κU , and

hence the information-based premium vanishes: In the limit, E
(
e′nΣ (z) ·

(
dU (P (z))−D

))
= e′nΣ ·

E
((
dU (P (z))−D

))
= 0. However E

(
dU (P (z))

′
Ψn (z) dU (P (z))

)
converges to 1

κ2U
E (s′Ψns),

where Ψn is the unconditional third-moment matrix. This last expression is positive (negative)

whenever Ψn is positive (negative)-definite; with independent assets, this limit is
∑N

n=1 Skew (πn (θ))E
(
s2
n

)
.

This limit thus highlights that the preference-based skewness premium scales with the variance of

supply shocks.

Alternatively consider the limit, in which κI → 0 and the distribution of supply shocks is

also scaled by κI , i.e. s = κI s̃, where s̃ is distributed according to some fixed distribution G̃,

with E (s̃) = 0. In this limit, z remains informative about
´
dI (x, P (z)) dF (x − θ) − s̃, i.e. Σ (z)

converges to a finite limit, and dU (P (z)) must then scale with κI to satisfy market-clearing. The

expected price premium satisfies

E (Pn (z))− E (πn (θ)) = −χE
(
Cov

(
πn (θ) , π (θ) · dU (P (z)) |z

))
+ o

(
E
(∥∥s2

∥∥))
= −χ · e′nE

(
Σ (z) · dU (P (z))

)
+ o

(
E
(∥∥s2

∥∥)) .
This last expression, and hence the information-based skewness premium, scales with κI , or the

standard deviation of supply shocks, and conditional second moments of returns (the conditional

variance-covariance matrix, or the conditional covariance of πn (θ) with the uninformed traders’

portfolio return π (θ) · dU (P (z))), rather than third moments.

5.2 Independent Securities

Consider now the case in which trading in N markets is independent. Suppose that fundamentals

θ, supply s and signal noise εi are all component-wise independent, ∂πn
∂θn′

= 0 for n 6= n′, and traders

have CARA preferences. We prove the following proposition:

Proposition 3 : Suppose that each component market considered in isolation admits a price-

monotonic equilibrium {Pn(θn, sn); dIn(xn, Pn); dUn (Pn);Hn(·|Pn)} with pricing kernels mn (θn, zn)

for informed and mU
n (θn, zn) for uninformed traders. Then there exists a price-monotonic equilib-

rium with simultaneous trading in N markets characterized by {Pn(θn, sn); dIn(xn, Pn); dUn (Pn);Hn(·|Pn)}Nn=1

and pricing kernels m (θ, z) =
∏N
n=1mn (θn, zn) and mU (θ, z) =

∏N
n=1m

U
n (θn, zn).
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This proposition gives sufficient conditions under which trading behavior is independent across

markets and the pricing kernel is decomposable asset-by-asset. The key assumptions are CARA

preferences and component-wise independence. Under CARA preferences, trading gains or losses

do not have spill-overs across markets, which in turn implies that demand for any security n is not

affected by risk-taking in other markets. With component-wise independence, prices also do not

have informational spill-overs, i.e. information aggregation about asset n is independent of markets

n′ 6= n.

Proof: We first guess and verify that the posterior density h (θ|P ) satisfies h (θ|P ) =
∏N
n=1 hn (θn|Pn),

i.e. the posterior density is component-wise independent. It then also follows that h (θ|x, P ) =∏N
n=1 hn (θn|xn, Pn) since private signals are component-wise independent.

If the conjecture is correct, with CARA preferences and component-wise independence the

uninformed traders’ FOC can be rewritten as

0 = E

(
N∏
n=1

exp
(
−χπn (θn) dUn (P )

)
(πn (θn)− Pn) |P

)

= E
(
exp

(
−χπn (θn) dUn (P )

)
(πn (θn)− Pn) |Pn

)
E

∏
k 6=n

exp
(
−χπk (θk) d

U
k (P )

)
|P


= E

(
exp

(
−χπn (θn) dUn (P )

)
(πn (θn)− Pn) |Pn

)
which in turn implies that

Pn =
E
(
exp

(
−χπn (θn) dUn (P )

)
πn (θn) |Pn

)
E (exp (−χπn (θn) dUn (P )) |Pn)

.

Likewise, the informed trader’s FOC can be rewritten as

Pn =
E
(
exp

(
−χπn (θn) dIn (x, P )

)
πn (θn) |xn, Pn

)
E (exp (−χπn (θn) dIn (x, P )) |xn, Pn)

It follows that under our guess, the informed and uninformed traders’ demands only depend on the

price in market n and their private signal xn, and is independent of prices and private signals for

other securities. Hence we can write dUn (P ) ≡ dUn (Pn) and dIn (x, P ) ≡ dIn (xn, Pn). It then follows

that market-clearing in market n is given by

κI

ˆ
dIn (xn, Pn) dF (xn − θn) + κUd

U
n (Pn) = sn,

which in turn implies that Pn is a function of θn and sn only, i.e. prices are component-wise

independent. But if prices are component-wise independent, then it must be the case that h (θ|P ) =
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∏N
n=1 hn (θn|Pn), i.e. traders’ posteriors are also component wise independent which confirms our

initial guess.

It then follows that we can directly apply the results in section 4 of the paper to show that

there exist a component-wise independent sufficient statistic vector z as well as component-wise

pricing kernels

mU
n (θn, zn) =

exp
(
−χπn (θn) dUn (Pn (zn))

)
E (exp (−χπn (θn) dUn (Pn (zn))) |zn)

mn (θn, zn) =
exp (−χπn (θn) dn,0)

E (exp (−χπn (θn) dn,0) |xn = zn, zn)

h (θn|xn = zn, zn)

h (θn|zn)

and Pn (zn) = E (πn (θn)mn (θn, zn) |zn) = E
(
πn (θn)mU

n (θn, zn) |zn
)
. Moreover, lettingmU (θ, z) =∏N

n=1m
U
n (θn, zn) and m (θ, z) =

∏N
n=1mn (θn, zn), we obtain

Pn (z) = E (πn (θn)mn (θn, zn) |zn) = E (πn (θn)mn (θn, zn) |zn)E

∏
k 6=n

mk (θk, zk) |z


= E

(
πn (θn)

N∏
k=1

mk (θk, zk) |z

)
= E (πn (θn)m (θ, z) |z)

and by the same argument Pn (z) = E
(
πn (θn)mU (θ, z) |z

)
.

5.3 Security Design: Splitting Cash-flows to influence market value

Our main theoretical results suggest that dispersed information may plausibly account for observed

price premia or discounts in equity and bond markets. Here we use our model to argue that such

premia provide a novel and potentially important element shaping security design incentives and

firms’ funding choices.

With perfectly competitive financial markets, the market value of a given cash flow should not

depend on how it is allocated to different investors (Modigliani and Miller, 1958). Our model with

noisy information aggregation instead suggests that a seller incurs an expected loss from issuing

bonds, while generating a gain from selling options or levered equity claims. Furthermore, when

investor pools for different claims have different informational characteristics, the seller can impact

expected revenues by tailoring the split to different investor types. We illustrate these points in a

two-asset version of the risk-neutral normal model.

Consider a risk-neutral securities originator, or seller, who owns claims on a stochastic dividend

π (·). This cash flow is divided into two parts, π1 and π2, both monotone in θ, such that π1+π2 = π,

and then sold to investors in two separate markets at prices P1 and P2, to be determined in

equilibrium. We assume without loss of generality that π2 has more upside risk than π1. For
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each claim, there is a unit measure of informed investors who obtain a noisy private signal xi ∼

N
(
θ, β−1

i

)
, and a noisy supply Φ (ui), where u1

u2

 = N

 0

0

 ,

 σ2
u,1 ρσu,1σu,2

ρσu,1σu,2 σ2
u,2


That is, each market is affected by a supply shock ui with market-specific variance σ2

u,i. The

environment is then characterized by the market-characteristics βi and σ2
u,i, and by the correlation

of demand shocks across markets, ρ. Investors are are risk-neutral and face position limits as in

section 3, and are active only in their respective market. We consider both the possibility that

investors observe and condition on prices in the other market (informational linkages), and the

possibility that they do not (informational segregation).

The seller is risk-neutral, and hence wishes to maximize the expected revenue net of the dividend,

P1 + P2 − π(·). With both informational linkages and informational segregation, the seller’s net

expected revenue can be represented as the sum of the expected price wedges for the two securities,

W (π1, σ̂θ,1) +W (π2, σ̂θ,2), where σ̂θ,i denotes the level of informational frictions in market i. Since

our results below take these information frictions parameters as given, they apply identically to

the models with informational segregation and informational linkages. The two cases only differ in

how σ̂θ,i is determined.10

Proposition 4 (Modigliani-Miller):

W (π1, σ̂θ,1) +W (π2, σ̂θ,2) RW (π1, σ̂θ,2) +W (π2, σ̂θ,1) if and only if σ̂θ,1 R σ̂θ,2.

The proof follows directly from additivity and increasing differences: If the two markets have

identical characteristics, i.e. σ̂θ,1 = σ̂θ,2 = σ̂θ, the expected wedge is additive across cash flows:

W (π1, σ̂θ) + W (π2, σ̂θ) = W (π1 + π2, σ̂θ) for any π1 and π2, and only the combined cash flow

10With informational segregation the analysis of the two markets can be completely separated and the equilbrium

price and information frictions parameters σ̂θ,i are determined as in section 2.3. With informational linkages the

equilibrium analysis has to be adjusted to incorporate the information contained in price 1 for market 2, and vice

versa. Informed investors in market i buy a security if and only if their private signal exceeds a threshold x̂i (·),

where x̂i (·) is conditioned on both prices. By market-clearing, x̂i (·) = zi ≡ θ − 1/
√
βi · ui. Equilibrium prices

P1 (z1, z2) = E (π1(θ)|x = z1; z1, z2) and P2 (z1, z2) = E (π2(θ)|x = z2; z1, z2) are invertible functions of (z1, z2) and

the expected skewness premium is W (πi, σ̂θ,i) =
´ (

Φ
(
θ
σθ

)
− Φ

(
θ
σ̂θ,i

))
dπi (θ), where

σ̂2
θ,i = σ2

θ +
(
1 + σ2

ui

)
· βi

(βi + V )2
, with V = 1/σ2

θ +
1

1− ρ2

(
β1
σ2
u,1

+
β2
σ2
u,2

− 2ρ

√
β1β2

σu,1σu,2

)
.
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matters for the total wedge – i.e., the Modigliani-Miller theorem applies. If instead the two markets

have different informational characteristics the seller maximizes expected revenue by matching the

security with more upside risk to the market that has more severe information frictions (a higher

value of σ̂θ). This maximizes the gains from the positive wedge resulting on the upside, while

minimizing the losses from the negative wedge on the downside. The next proposition advances

this logic further by considering how the seller can exploit the heterogeneity in investor pools if she

gets to design the split of π into π1 and π2.

Proposition 5 (Designing cash flows): The seller maximizes her expected revenues by splitting

cash flows according to π∗1 (θ) = min {π (θ) , π (0)} and π∗2 (θ) = max {π (θ)− π (0) , 0}, and then

assigning π∗1 to the investor pool with the lower σ̂θ,i.

Proof: For any alternative split (π1, π2), the monotonicity requirements imply that 0 ≤ π1 (θ1)−

π1 (θ2) ≤ π (θ1)−π (θ2) and 0 ≥ π1 (−θ1)−π1 (−θ2) ≥ π (−θ1)−π (−θ2) for θ1 > θ2 ≥ 0. It follows

that

π1 (θ1)−π1 (θ2) +π1 (−θ1)−π1 (−θ2) ≥ π (−θ1)−π (−θ2) = π∗1 (θ1)−π∗1 (θ2) +π∗1 (−θ1)−π∗1 (−θ2)

i.e. that π1 has less downside risk and more upside risk than π∗1. Likewise π2 has more downside risk

and less upside risk than π∗2. But then, the expected revenue of selling π1 to the investor pool with

σ̂θ,1 and π2 to the investor pool with σ̂θ,2 is W (π1, σ̂θ,1)+W (π2, σ̂θ,2) = W (π, σ̂θ,2)+W (π1, σ̂θ,1)−

W (π1, σ̂θ,2), while the expected revenue from selling π∗1 to the investor pool with σ̂θ,1 and π∗2 to the

investor pool with σ̂θ,2 is W (π∗1, σ̂θ,1)+W (π∗2, σ̂θ,2) = W (π, σ̂θ,2)+W (π∗1, σ̂θ,1)−W (π∗1, σ̂θ,2). The

difference in revenues is therefore W (π∗1, σ̂θ,1)−W (π∗1, σ̂θ,2)− (W (π1, σ̂θ,1)−W (π1, σ̂θ,2)), which

is positive, since π∗1 contains more downside risk than π1, and σ̂θ,2 > σ̂θ,1.

The seller maximizes the total proceeds by assigning all the cash flow below the line defined

by π(.) = π(0) to the investor group with the lowest information friction parameter, σ̂θ,1, and the

complement to the investor group with the highest friction; σ̂θ,2. When π (·) > 0, this split has a

straightforward interpretation in terms of debt and equity, with a default point on debt that is set

at the prior median π(0). For any other arbitrary division of cash flows {π1(·), π2(·)}, π1 has less

downside risk than π∗1, and π2 has less upside risk than π∗2. This raises the expected price premium

on π1 and lowers the expected price premium on π2, but due to increasing differences, the lower

expected price premium on π2 dominates, resulting in strictly lower expected revenue for the seller.

Propositions 4 and 5 are direct applications of additivity and the increasing difference property
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of W (Proposition 3(ii) in the paper).11 They highlight how systematic departures from the

Modigliani-Miller Theorem arise as a result of information frictions in asset markets, and how such

asset market frictions may affect financial structure and security design. Much of the existing

security design literature instead focuses on the role of “information-insensitive” debt contracts to

mitigate asymmetric information between insiders who sell claims to raise funds and uninformed

outsiders (Myers and Majluf, 1984; DeMarzo and Duffie, 1999; DeMarzo 2005), or limit liquidity

traders’ losses when trading with agents who hold superior information about the claims’ quality

(Gorton and Pennacchi, 1990; Boot and Thakor, 1993). Boot and Thakor (1993) and Fulghieri

and Lukin (2001) emphasize the role of information-sensitive junior securities or equity claims to

incentivize information acquisition. In all these models, securities are priced at their expected

fundamental value, as prices are either set by a risk-neutral competitive market-maker or by a set

of homogeneous outside investors, taking into consideration the signaling effects of the insiders’

security design decisions. This rules out mispricing of securities as a force shaping security design

incentives.

Closest to our work, Axelson (2007) studies the role of mis-pricing for security design when

securities are sold through an auction and investors have private information about a firm’s cash

flow.12 The auction mechanism generically results in under-pricing of securities due to a winner’s

curse, and the optimal security design seeks to limit the losses associated with the winner’s curse

resulting in either debt or call option contracts - depending on whether the issuer has more to gain

from limiting the winner’s curse through information insensitivity (debt) or from aligning the cash

raised through information sensitive securities (equity or options) with the firm’s fundamentals.

As the market becomes more and more competitive, the underpricing disappears and the optimal

security design approximates an equity claim. Like Axelson (2007), we also emphasize the role of

market frictions in optimal security design, but we abstract from the objective of raising cash for

investment, and instead allow for liquidity shocks along with informed trading, and investor pools

with different informational characteristics. This opens up the possibility that securities can be

over- as well as under-priced, resulting in the separation of upside vs. downside risk as the key

force driving optimal security design. The debt-equity split then emerges as the optimal way of

11We could also consider a simpler security design problem, in which the seller designs a security π2 (·) for a single

investor pool, keeping the residual π1 = π − π2 to himself. Using the same logic as above, the seller’s optimal design

consists in a call option contract π∗2 (θ) = max {π (θ)− π (0) , 0} that maximizes the price premium on the upside

risk, while keeping the downside risk (or debt claim) that would be under-priced to himself.
12See Yang (2020) for related results when a single buyer strategically acquires information about the seller’s cash

flows.
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catering specific securities to the different investor pools.13
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