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Abstract

This paper analyzes the effect of a discrete treatment Z on a duration T . The

treatment is not randomly assigned. The confoundingness issue is treated using a

discrete instrumental variable explaining the treatment and independent of the error

term of the model. Our framework is nonparametric and allows for random right

censoring. This specification generates a nonlinear inverse problem and the average

treatment effect is derived from its solution. We provide local and global identification

properties that rely on a nonlinear system of equations. We propose an estimation

procedure to solve this system and derive rates of convergence and conditions under

which the estimator is asymptotically normal. When censoring makes identification

fail, we develop partial identification results. Our estimators exhibit good finite sample

properties in simulations. We also apply our methodology to the Illinois Reemployment

Bonus Experiment.
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1 Introduction

The objective of this paper is to analyze treatment models when the outcome of the treatment

is a duration possibly observed with censoring. Let Z be the level of the treatment, the

outcome will be a duration T , depending on Z and on a random element U . If the treatment

is randomly assigned, the model is formalized by the conditional distribution of T given

Z. However, in many cases the assignment mechanism of Z is not independent of U and

then the conditional distribution will mix the effect of the treatment and of the assignment

mechanism. In the econometric literature we are faced with a usual endogeneity problem,

not specific to duration models. The distinguishing feature of this paper is that we introduce

a random right censoring mechanism. The censoring duration is only observed for censored

observations. We tackle the endogeneity issue using an instrumental variable W independent

of U and sufficiently dependent of Z given U . The model is nonparametric and nonseparable.

The problem is simplified by considering only the case where both Z and W are cate-

gorical and non-dynamic. This avoids the question of ill-posedness of the inversion and of

regularity assumptions on the functional parameters. Under some usual conditions of com-

pleteness (see Chernozhukov and Hansen (2005) and Fève et al. (2018)), we obtain point

identification of the quantile regression function of T on Z in a subset of the parameter

space, but outside of this set we can only identify regions of the parameter space. This type

of non-unicity of the solution of an inverse problem due to a restriction of the range of the

estimated operator seems fully new. Treatment effects on the quantiles of the duration, the

survival probabilities and the hazard rates can be derived from the quantile regression func-

tion. Because we make a rank invariance assumption (see Chernozhukov and Hansen (2005)

and Wüthrich (2020)), the identified treatment effects concern the whole population and not

solely the subset of compliers. We propose a strategy to estimate the quantile regression

function of T on Z by solving a nonlinear inverse problem (see Dunker et al. (2014) and

Cazals et al. (2016)). Sufficient conditions under which the proposed estimators are asymp-

totically normal are derived. Inference results based on a bootstrap approach are given. Our

estimation procedure exhibits good finite sample properties in simulations. We apply our

methodology to the Illinois reemployment bonus experiment data.

This work borrows from the nonparametric instrumental regression literature (Darolles

et al. (2011) and Chernozhukov and Hansen (2005)). We extend the conventional frame-

work to allow for censoring by using a particular conditional moment equation that can be

estimated under random right censoring if the support of T is included in the support of C

given Z, W . When the last condition fails, the regression function is only partially iden-
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tified (Manski (1990) and Manski (2003)). The identified set is characterized by a mix of

conditional moment equalities and inequalities as in Andrews and Shi (2013). Note also that

instrumental variables are not the only method developed in econometrics to address non-

parametrically the endogenity issue, see for instance the control function approach (Newey

et al. (1999)) or the g-calculus (Imbens and Rubin (2015)).

This paper contributes to the literature on program evaluation under censoring. Some

papers introduce a ‘matching hypothesis’ (conditional randomization) by assuming that the

assignment of the treatment is conditionally independent of the outcome given a set of ob-

served variables (see Van den Berg et al. (2016, 2010) and Sant’Anna (2016)). In contrast,

Abbring and Van den Berg (2003, 2005) specify a structural model involving separability as-

sumptions and unobserved heterogeneity terms explaining the endogeneity of the treatment.

Contrarily to the present article, their approach requires that the econometrician possesses

two exogenous continuous regressors affecting both the duration and the outcome.

Similarly to ours, other works introduce an instrumental variable to solve the endogeneity

issue. Chernozhukov et al. (2015) consider a semiparametric framework under which, in

contrast with the situation of this paper, the treatment is continuous and the censoring

duration is observed. They propose an estimator and give conditions under which this

estimator consistently estimates the quantile regression function of the whole population.

Research in the field of biostatistics (Tchetgen et al. (2015), Li et al. (2015) and Chan

(2016)) has studied an additive hazard model with instrumental variables. Such an additivity

assumption is not needed in our framework.

Some papers focus on the case where both the treatment and the instrumental variable

are binary. Frandsen (2015), Sant’Anna (2016), Blanco et al. (2019) make a monotonicity

assumption stating that there are no defiers (see Angrist et al. (1996)). Unlike ours, these

articles are interested in local average treatment effects on the population of compliers which

they are able to estimate thanks to this monotonicity assumption (see Wüthrich (2020)).

Instead, by making a rank invariance assumption, we are able to estimate directly the quan-

tile regression function of the whole population. Another difference between our paper and

Frandsen (2015) and Sant’Anna (2016) is that the latter papers estimate the counterfactual

cumulative distribution functions before inverting them to obtain estimates of the quantile

treatment effects. This inversion process requires regularity assumptions that we do not

make. Unlike in our paper, in Frandsen (2015) the censoring duration is observed. Blanco

et al. (2019) consider the same binary setting but allows for selection and endogenous cen-

soring. Using principal stratification, it develops bounds on the quantile treatment effects.
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Finally, in the binary treatment and binary instrumental variable setting, Bijwaard and Rid-

der (2005) study a semiparametric and separable model where there is full compliance in the

control group.

This paper is organized as follows. The model specification is studied in Section 2.

Identification results are derived in Section 3. Section 4 is devoted to the estimation theory.

Section 5 describes our simulations and the empirical application. All the technical details

are deferred to Appendices A, B and C. We draw conclusions in Section 6.

2 The model

Let us consider the following model:

T = ϕ(Z,U) = ϕZ(U), (2.1)

where T ∈ R+, Z is a categorical treatment with support {z1, . . . , zL}, U has a unit exponen-

tial distribution and ϕ belongs to L2
↑(Z,U), the set of mappings from {z1, . . . , zL}×R+ to R+

that are square integrable with respect to the distribution of (Z,U), and strictly increasing

and differentiable in their second argument. The variable W is a categorical instrumental

variable with support {w1, . . . , wK}, which is independent of U . We assume that the dis-

tribution ot U given (Z,W ) is continuous. Note that our model is identical to the usual

nonseparable IV model in econometrics, except that U follows an exponential distribution

instead of a uniform distribution, which is more natural in the context of duration models

(the cumulative hazard of the duration follows such a distribution). Such a normalization

of the distribution of U is necessary to obtain identification. Note that knowledge of ϕ is

equivalent to knowledge of the counterfactual quantile function of T and the two differ solely

because the distribution of U is not uniform on [0, 1]. In particular, for z ∈ {z1, . . . , zL} and

u ∈ R+, ϕz(u) is the 1− e−u-quantile of the potential outcome of the duration for treatment

level z, that is of ϕz(U). The variable U represents both ex-ante unobserved heterogene-

ity, that is differences among individuals which are prior to the duration spell, and ex-post

shocks occuring through the duration spell. The duration is right censored by a random

variable C with support in R+, and we observe Y = min(T,C), Z , W and δ = I(T ≤ C).

We suppose that C is independent of T given (Z,W ).

The main object of interest is the regression function ϕ. Many quantities of interest can

be derived from ϕ. First, the quantile treatment effect (QTE) of a change in treatment from

z0 to z1 for an individual with U = u ∈ R+, ϕ(z1, u) − ϕ(z0, u). Note that this is the QTE
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at the 1− e−u-quantile. Then, there is the average treatment effect of a change in treatment

from z0 to z1, E[ϕ(z1, U) − ϕ(z0, U)]. Consider also survival probabilities P(ϕ(z, U) ≥ t)

and hazard rates ∂P(ϕ(z,U)≤t)
∂t

/P(ϕ(z, U) ≥ t) at t ∈ R+ for Z = z. Let us provide two

different characterizations of ϕ in order to further illustrate its relevance: one in terms of

the conditional survival function of T and one in terms of the conditional hazard rate of T .

First, thanks to the exclusion restriction U ⊥⊥ W and to the fact that U has an exponential

distribution, (ϕz`(u))L`=1 is a solution to the following system of equations in θ = (θ`)
L
`=1 ∈ RL:

L∑
`=1

S(θ`, z`|wk) = e−u for k = 1, . . . , K, u ∈ R+, (2.2)

where S(t, z|w) = P(T ≥ t, Z = z|W = w). Indeed,

L∑
`=1

S(ϕz`(u), z`|wk) =
L∑
`=1

P(T ≥ ϕz`(u), Z = z`|W = wk)

=
L∑
`=1

P(ϕz`(U) ≥ ϕz`(u), Z = z`|W = wk)

=
L∑
`=1

P(U ≥ u, Z = z`|W = wk)

= P(U ≥ u|W = wk) = e−u.

From now on, we assume that S is differentiable in its first argument. Concerning the second

characterization, in the next lemma, we re-express our model in terms of the conditional

hazard function. The latter is more common in the context of duration models.

Lemma 2.1 Suppose T = ϕ(Z,U), U and W are independent, U ∼ Exp(1), and the density

f(·|z, w) of T given Z = z,W = w exists. Then,

L∑
`=1

∫ ϕz` (u)

0

h(s|z`, w)p(z`|T ≥ s, w) ds = u,

where h(t|z, w) = f(t|z, w)/S(t|z, w) is the hazard function of T given Z = z,W = w (with

S being the corresponding survival function), and p(z|T ≥ t, w) = P(Z = z|T ≥ t,W = w).

The proof is given in Appendix A. To derive the identification results, we use the character-

ization (2.2).
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3 Identification

3.1 Exact versus partial identification

In this section, for the sake of simplicity, we assume that the (possibly infinite) upper bound

of the support of the distribution of C given Z = z,W = w does not depend on z ∈
{z1, . . . , zL} and w ∈ {w1, . . . , wK} and we denote this upper bound by c0. Such a case

arises for instance when C and (T, Z,W ) are independent. This happens, in our empirical

application where all durations greater than 26 are censored and the others are not. Because

of censoring, S is only identified on [0, c0]× {z1, . . . , zL} × {w1, . . . , wK}. We introduce the

following lemma that characterizes ϕ in terms of observables.

Lemma 3.1 For k = 1, . . . , K, let Rk,u(θ) =
∑L

`=1 S(θ` ∧ c0, z`|wk) − e−u. The following

hold:

(i) If (ϕ(z`, u))L`=1 ∈ [0, c0)L, then

(ϕ(z`, u))L`=1 ∈
{
θ ∈ [0, c0)L

∣∣∣Rk,u(θ) = 0 for all k = 1, . . . , K
}

;

(ii) If (ϕ(z`, u))L`=1 /∈ [0, c0)L , then

(ϕ(z`, u))L`=1 ∈
{
θ ∈ RL

+

∣∣∣ L
max
`=1

θ` ≥ c0,
K

min
k=1

Rk,u(θ) ≥ 0
}
.

Proof. Part (i) was proved in the previous section, thus we only prove (ii). We know that∑L
`=1 S(ϕ(z`, u), z`|wk) = e−u. Note that S(·, z|w) is decreasing for any z = z`, . . . , zL and

w = w1, . . . , wK . Hence,

L∑
`=1

S(ϕ(z`, u) ∧ c0, z`|wk) ≥
L∑
`=1

S(ϕ(z`, u), z`|wk) = e−u.

2

We make use of Lemma 3.1 to derive identification results in the two different cases mentioned

in the lemma. Let u0 = arg min
`∈{1,...,L}

ϕ−1
z`

(c0) (if the support of T is included in [0, c0), we set

u0 = ∞). In Section 3.2, we discuss exact identification of ϕ on [0, u0). On the interval

[u0,∞) (the empty set if u0 = ∞), ϕ is only partially identified. We show how to use

Lemma 3.1 (ii) to obtain an outer set to the identified set of (ϕz`(u))L`=1 in Section 3.3. We

also discuss why the set in Lemma 3.1 (ii) is not the identified set of (ϕz`(u))L`=1 in general.

Finally, Section 3.4 obtains a smaller outer set of (ϕz`(u))L`=1 than the one derived from

Lemma 3.1 (ii) in a special case which nests our empirical application.
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3.2 Exact identification

In this subsection, we discuss identification of ϕ on [0, u0). For notational purposes, let us

define FZ,W↓ , the set of mappings from R+ × {z1, . . . , zL} × {w1, . . . , wK} to R+ which are

continuous and decreasing in their first argument. We know that ϕ belongs to the set of

solutions of the equations

A(ϕ, S) = 0, (3.1)

where A is the operator from L2
↑(Z,U) × FZ,W↓ to the set of mappings from [0, u0) to RK

such that, for ϕ̃ ∈ L2
↑(Z,U), S̃ ∈ FZ,W↓ and u ∈ [0, u0),

A(ϕ̃, S̃)(u) =
( L∑
`=1

S̃(ϕ̃z`(u), z`|wk)− e−u
)K
k=1

.

If S̃ ∈ FZ,W↓ is differentiable in its first argument, then, for all ϕ̃ ∈ L2
↑(Z,U), we define

Γ(ϕ̃, S̃), the Fréchet derivative of A in its first argument at the point (ϕ̃, S̃).

3.2.1 Local identification

Under weak assumptions, it is possible to show that the system (2.2) has a unique solution

in a neighborhood of ϕ. This is a local identification result. The Fréchet derivative of A in

its first argument at the point (ϕ, S) is given by(
Γ(ϕ, S)(u)

)
k`

= −f
(
ϕz`(u), z`|wk

)
.

Also, let g(z|u,w) = P(Z = z|U = u,W = w) and let G(u) be the K × L matrix such that

Gk`(u) = g(z`|u,wk). We make the following assumption:

(L) For all u ∈ R+, rank(G(u)) ≥ L.

Note that this assumption is equivalent to the conditional completeness condition:

E(g(Z,U)|W = w,U = u) = 0 for all w, u =⇒ g = 0 for all g : {z1, . . . , zL} × R+ 7→ R.

The latter assumption (which implies that K ≥ L), allows us to show the local identification

of our model.

Theorem 3.1 Under assumption (L) and assuming that (ϕz`(u))L`=1 ∈ [0, c0)L, the model is

locally identified, in the sense that if Γ(ϕ, S)(ϕ̃− ϕ) ≡ 0 for ϕ̃ ∈ L2
↑(Z,U), then ϕ̃ ≡ ϕ.
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Proof. Write

L∑
`=1

(ϕ̃z`(u)− ϕz`(u))f
(
ϕz`(u), z`|wk

)
=

L∑
`=1

ϕ̃z`(u)− ϕz`(u)

ϕ′z`(u)
g(u, z`|wk), (3.2)

provided that ϕ′z`(u) 6= 0, where g(u, z`|wk) = ϕ′z`(u)f
(
ϕz`(u), z`|wk

)
. As g(u, z`|wk) =

e−ug(z`|u,wk), we have that (3.2) equals zero if and only if

L∑
`=1

ϕ̃z`(u)− ϕz`(u)

ϕ′z`(u)
g(z`|u,wk) = 0⇔ G(u)

( ϕ̃z`(u)− ϕz`(u)

ϕ′z`(u)

)L
`=1

= 0,

and hence it follows from assumption (L) that ϕ̃ ≡ ϕ. 2

It is useful to provide some intuition on assumption (L) in the case of our empirical

application. If Z is a binary treatment indicator and W a binary instrument, the matrix

G(u) corresponds to

G(u) =

(
P(Z = 0|U = u,W = 0) 1− P(Z = 0|U = u,W = 0)

P(Z = 0|U = u,W = 1) 1− P(Z = 0|U = u,W = 1)

)
.

Therefore, assumption (L) is satisfied if and only if

P(Z = 0|U = u,W = 0) 6= P(Z = 0|U = u,W = 1)

for all u ∈ R+, that is the instrument changes the treatment probability for any value of U .

This is similar to Example 1 in Dunker et al. (2014).

3.2.2 Global identification

We continue with global identification. The aim is to find conditions under which the system

(2.2) has a unique solution. Our presentation is borrowed from Appendix A of Fève et al.

(2018). Consider the density of (U,Z) conditional on W . This density is perturbed in the

direction of a function ϕ̃ and the amount of perturbation is characterized by the parameter

µ > 0 :

gµ,ϕ̃(u, z|w) =
[
ϕ′z(u) + µϕ̃′z(u)

]
f
(
ϕ(z, u) + µϕ̃(z, u), z|w

)
.

Here, f(t, z|w) = − d
dt
S(t, z|w). We make the following hypothesis:

(G) If
∫ 1

0
Egµ,ϕ̃

(
ρµ(Z,U)|U = u,W = w

)
dµ = 0 for all u,w, then ρµ ≡ 0, for any function

ρµ : {z1, . . . , zL} × R+ 7→ R.
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Assumption (G) amounts to strong conditional completeness of Z given U and W as

introduced in Chernozhukov and Hansen (2005) and studied in Fève et al. (2018). Under

this hypothesis we can now show the global identification of our model.

Theorem 3.2 Under assumption (G), ϕ is globally identified on [0, u0), in the sense that if

A(ϕ̃, S) ≡ A(ϕ, S) for ϕ̃ ∈ L2
↑(Z,U), then ϕ̃ ≡ ϕ.

We refer to Appendix A of Fève et al. (2018) for the proof of this result in the continuous

case. The adaptation to the discrete case is immediate.

3.3 Partial identification

In this section, we consider pointwise identification at u ∈ [u0,∞). In this case, by Lemma

3.1, we know that

(ϕz`(u))L`=1 ∈
{
θ ∈ RL

+

∣∣∣ L
max
`=1

θ` ≥ c0,
K

min
k=1

Rk,u(θ) ≥ 0
}
. (3.3)

This is an outer set to the identified set and Lemma 3.1 (ii) therefore constitutes a partial

identification result. This outer set is not sharp. Section 3.4 explains how to obtain a

smaller outer set in the degenerate special case where L = K = 2 and S(t, 1|0) = 0 for all

t ∈ R+. The fact that (3.3) is not sharp is not due to this specific situation where S(·|z, w)

is zero for a given couple (z, w) ∈ {z1, . . . , zL}×{w1, . . . , wK}. Indeed, in the general setting

where S(·, z|w) is nonzero for all values of z and w, we give in the supplementary material

a counterexample where (3.3) is not the identified set. This counterexample suggests that

one reason why (3.3) is not a sharp set is that it does not take into account the constraints

of monotonicity and differentiability of ϕ. Let us now discuss how to compute this outer set

as a finite union of product of intervals.

We consider first the case where L = 2. In that case, the set can take the following four

types of shapes depending on the shape of the set {θ ∈ RL
+| min

k=1,...,K

∑L
`=1 S(θ`, z`|wk) = e−u}:

- the whole positive quadrant R2
+ with the exception of [0, c0)× [0, c0)

- [0, θ̄1]× [c0,∞) ∪ [c0,∞)× [0, θ̄2]

- [c0,∞)× [0, θ̄2]

- [0, θ̄1]× [c0,∞)

for some 0 ≤ θ̄1, θ̄2 ≤ c0. See Figure 1 for a graphical description.

Let us explain how to obtain Figure 1. Take θ ∈ R2
+ outside [0, c0)2. Because S(· ∧

c0, z|w) is flat on [c0,∞), θ belongs to the outer set if and only if (θ1 + (c0 − θ1)I(θ1 >
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c0

c0

R+ × [c0,∞) ∪ [c0,∞)× R+

c0

c0

[0, θ̄1]× [c0,∞) ∪ [c0,∞)× [0, θ̄2]

c0

c0

[c0,∞)× [0, θ̄2]

c0

c0

[0, θ̄1]× [c0,∞)

Figure 1. Outer set (in blue) under four different cases and the set {θ ∈
RL

+| min
k=1,...,K

∑L
`=1 S(θ`, z`|wk) = e−u} (in red).

c0), θ2 + (c0 − θ2)I(θ2 > c0)) is in the outer set. Therefore, we need to inspect the value

of θ → minKk=1Rk,u(θ) on [0, c0) × {c0} ∪ {c0} × [0, c0) to compute the outer set. Let us

start with [0, c0)×{c0}. Because S(· ∧ c0, z|w) is decreasing and continuous, the set of pairs

(θ1, c0) in [0, c0) × {c0} for which minKk=1Rk,u(θ) ≥ 0 either form a line segment [0, θ̄1] × c0

where θ̄1 ∈ [0, c0] or the empty set. First, we consider the case where the latter set is not

empty. Because S(· ∧ c0, z|w) is flat on [c0,∞), [0, θ̄1]× [c0,∞) belongs to the outer set. If

instead the set is empty, [0, c0)× [c0,∞) does not belong to the outer set. Then, apply the

same procedure on {c0}× [0, c0). Finally, if minKk=1Rk,u((c0, c0)>) ≥ 0, [c0,∞)× [c0,∞) also

belongs to the outer set.

Next, we proceed by a recursion argument and explain how the identified set can be found

in dimension L if it is known how to find it in dimension L− 1. Note that in L dimensions,

we can start by fixing the first coordinate θ1 to c0 and specify the identified set for the

remaining L − 1 coordinates. If the so-selected set is not empty, it should be extrapolated

by letting θ1 belong to [c0,∞). This procedure should be repeated L times by fixing each

time one coordinate, and at the end the union of all obtained sets should be selected.

3.4 A special case

We conclude our discussion of identification with the special case where L = K = 2 and

P(Z = z2|W = w1) = 0. We have a triangular system of equations of the form{
S(θ1, z1|w1) = e−u

S(θ1, z1|w2) + S(θ2, z2|w2) = e−u.
(3.4)

This particular setting corresponds to our empirical application. In this case, if (ϕz`(u))L`=1 /∈
[0, c0)L and the system (2.2) has a unique solution (which for such a triangular system

happens when S is strictly decreasing and continuous), it is possible to obtain a smaller
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outer set to the identified set than{
θ ∈ RL

+

∣∣∣ L
max
`=1

θ` ≥ c0,
K

min
k=1

Rk,u(θ) ≥ 0
}
.

We need to consider two cases. First, if ϕz1(u) < c0, then θ1 = ϕz1(u) is the (unique)

solution of the first equation of (3.4). This value can then be inserted in the second equation,

which will only contain θ2. If this equation has a solution, it should be ϕz2(u) and we are

done. If it does not have a solution, the identified set contains all pairs (ϕz1(u), θ2) with

θ2 ≥ c0.

In the second case ϕz1(u) ≥ c0. Then, the first equation does not have a solution, and

we need to solve the system of inequalities{
S(c0, z1|w1) ≥ e−u

S(c0, z1|w2) + S(θ2 ∧ c0, z2|w2) ≥ e−u,

which leads to the identified set [c0,∞)× [0, θ̄2], where θ̄2 is the largest value of θ2 for which

S(θ2 ∧ c0, z2|w2) ≥ e−u − S(c0, z1|w2). See Figure 2 for a graphical illustration of the two

aforementioned cases. Note that θ2 can be equal to infinity which implies that the height of

the rectangle in the second part of Figure 2 can be greater than c0.

ϕz1(u) c0

c0

If ϕz1(u) < c0

c0

θ̄2

c0

If ϕz1(u) ≥ c0

Figure 2. Outer set (in blue) under two different cases.

Other special cases can be considered depending on which terms in the system of equa-

tions (2.2) are absent. However, they require a case to case analysis, which we will not

further develop here.
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4 Estimation

4.1 Estimation procedure

We consider estimation with an i.i.d. sample of size n, {Yi, Zi,Wi, δi}ni=1. We assume that

we have an estimator Ŝ of S that satisfies properties to be specified later. Choices of Ŝ are

discussed in Section 4.5. Let Ū <∞ be an upper bound up to which we wish to estimate ϕ.

Let also T̄ < ∞ be an upper bound on max
`=1,...,L

ϕ(z`, Ū). Let K be the set of mappings from

[0, Ū ] to RK and F Ū ,T̄Z = {f : {z1, . . . , zL} × [0, Ū ] 7→ [0, T̄ ]}. We will make assumptions

guaranteeing that Ŝ consistently estimates S on [0, T̄ ] and that the system (2.2) has a unique

solution in F Ū ,T̄Z . This implies that we are implicitly in the case where (ϕz`(u))L`=1 is globally

identified.

We introduce further notations. For u ∈ [0, Ū ], let V (u) be a positive definite K ×
K weighting matrix. For a K × K matrix V̄ and a vector v ∈ RK , we define ‖v‖ =
√
v>v and ‖v‖V̄ =

√
v>V̄ v. Then, for g ∈ K, we introduce ‖g‖2 =

∫ Ū
0
‖g(u)‖2du, ‖g‖2

V =∫ Ū
0
‖g(u)‖2

V (u)du. For f ∈ F Ū ,T̄Z , we use ‖f‖2 = supu∈[0,Ū ] ‖(f(z`, u))L`=1‖2. When we write

that a random process R is OP (an) or oP (an), we mean that ‖R‖ = OP (an) or ‖R‖ = oP (an),

respectively. Let us now define the estimator

ϕ̂ ∈ arg min
θ∈F Ū,T̄Z

∥∥A(θ, Ŝ)
∥∥2

V
. (4.1)

4.2 Consistency

We introduce the following assumptions:

(V) For u ∈ [0, Ū ], the eigenvalues of V (u) are bounded from above and from below uni-

formly in u. The bounds are strictly positive constants.

(C) (i) For all ε > 0, there exists ν > 0 such that

inf
θ∈F Ū,T̄Z :‖θ−ϕ‖≥ν

∥∥A(θ, S)
∥∥
V
≥ ε;

(ii) There exist ν, c > 0 such that for any θ ∈ F Ū ,T̄Z satisfying ‖θ − ϕ‖ ≤ ν,

‖θ − ϕ‖ ≤ c‖A(θ, S)‖;

(iii) There exists (rn)n, a real-valued sequence such that rn → 0 and

sup
t∈[0,Ū ], z=z1,...,zL, w=w1,...,wK

∣∣Ŝ(t, z|w)− S(t, z|w)
∣∣ = OP (rn).

12



Assumptions C(i) and C(ii) are conditions related to the shape of the objective function A

and they ensure that there is a unique solution to the system of equations (2.2) in [0, Ū ] and,

hence, that there is a unique minimum to the program (4.1) if Ŝ estimates S well enough.

One can develop primitive conditions for C(ii) involving the assumption that the two first

derivatives of S with respect to its first argument are uniformly bounded on [0, T̄ ] (see Lemma

C.1 in Appendix C). Assumption (C)(iii) implies that T̄ is chosen lower than the minimum

of the upper bound of the support of C over all z ∈ {z1, . . . , zL} and w ∈ {w1, . . . , wK} such

that P(Z = z|W = w) > 0. We prove the following theorem. The proof is in Appendix A.

Theorem 4.1 Under Assumptions (V) and (C), we have ‖ϕ̂− ϕ‖ = OP (rn).

This theorem shows that the rate of convergence of ϕ̂ is the same as the one of Ŝ in

sup-norm. Hence, solving program (4.1) does not deteriorate the convergence rate.

4.3 Asymptotic normality

We make the following assumption:

(N) (i) There exists a variance operator Ω such that n1/2A(ϕ, Ŝ) converges weakly to a

mean zero Gaussian process with variance operator Ω;

(ii) Ŝ is differentiable in its first argument for u ∈ [0, Ū ], the mapping Γ(ϕ, S)>V Γ(ϕ, S)

is invertible on [0, Ū ], Γ(ϕ, Ŝ)
P−→ Σ = Γ(ϕ, S) and Γ(ϕ̂, Ŝ)

P−→ Σ;

(iii) A(ϕ̂, Ŝ)− A(ϕ, Ŝ)− Γ(ϕ, Ŝ)(ϕ̂− ϕ) = OP (‖ϕ̂− ϕ‖2);

(iv) sup
t∈[0,Ū ], z=z1,...,zL, w=w1,...,wK

|Ŝ(t, z|w)− S(t, z|w)| = oP (n−1/4).

This assumption leads to the following theorem, of which the proof can be found in

Appendix A.

Theorem 4.2 Under Assumptions (V), (C) and (N),
√
n(ϕ̂− ϕ) converges to a mean zero

Gaussian process with variance operator [Σ>V Σ]−1Σ>V ΩV Σ[Σ>V Σ]−1.

4.4 Inference with bootstrap and optimality

We propose a bootstrap procedure for inference on the functional f((ϕz`(u))L`=1) of (ϕz`(u))L`=1

for u ∈ R+ and f : RL
+ 7→ R differentiable. Examples of such functionals are mentioned in

Section 2.
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(1) Draw with replacement B resamples of size n from the original data {Yi, Zi,Wi, δi}ni=1;

(2) For each resample b, compute ϕ̂b, the value of the estimator ϕ̂ in the resample;

(3) Construct a 95% confidence interval for f((ϕz`(u))L`=1) using for the lower bound the

2.5% percentile of {f((ϕ̂b(z`, u))L`=1)}Bb=1 and for the upper bound the 97.5% percentile

of {f((ϕ̂b(z`, u))L`=1)}Bb=1.

Lemma B.10 in Appendix B proves that such a procedure works when S is estimated with

kernel smoothing as described in Section 4.5. The outlined procedure shows how to build

pointwise confidence intervals. However, as demonstrated in Lemma B.10, a similar boot-

strap approach also allows to obtain uniform confidence bands on [0, Ū ].

The optimal value of V is Σ−1 which can be estimated using Σ̂ = Γ(ϕ̂, Ŝ) where Σ̂ is

obtained from a first-step estimator which sets V (u) equal to the identity matrix for any

u ∈ [0, Ū ].

4.5 Choices of Ŝ

In this subsection, we discuss choices for Ŝ which are robust to random right censoring.

Remark that S(t, z|w) = S(t|z, w)pz,w where S(t|z, w) = P(T ≥ t|Z = z,W = w) and

pz,w = P(Z = z|W = w). We define the following stochastic processes:

Nz,w(t) =
n∑
i=1

I(Yi ≤ t, Zi = z,Wi = w, δi = 1); Yz,w(t) =
n∑
i=1

I(Yi ≥ t, Zi = z,Wi = w);

Yz,w =
n∑
i=1

I(Zi = z,Wi = w); Yw =
n∑
i=1

I(Wi = w).

We estimate S(·|z, w) using the Kaplan-Meier estimator

ŜKM(t|z, w) =
∏
s≤t

(
1− dNz,w(s)

Yz,w(s)

)
. (4.2)

To provide an estimator Ŝ satisfying assumption (N), one needs to smooth ŜKM . Various

techniques are available in the literature, including local polynomials and kernel smoothing.

For instance, concerning the latter, if we use a kernel K with a bandwidth ε, we obtain

̂̃
S(t|z, w) =

∫
ŜKM(t− sε|z, w)K(s)ds. (4.3)

Our final estimator of S is

Ŝ(t, z|w) =
̂̃
S(t|z, w)p̂zw, (4.4)
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where p̂zw = Yz,w/Yw. In Appendix B, we state assumptions under which this choice of Ŝ

satisfies the conditions of Sections 4.2 and 4.3, and for which the bootstrap procedure of

Section 4.4 works.

4.6 Practical implementation

Let us now discuss how to use the outlined estimation procedure in practice. Fist, one needs

to choose T̄ . The latter has to be chosen such that Assumption (C)(iii) holds. In appendix

B, the condition on T̄ guaranteeing uniform convergence of Ŝ when it is smoothed by kernel

is that there exists ξ > 0 for which S(T̄ , z|w)/P(Z = z|W = w) > ξ for all z ∈ {z1, . . . , zL}
and w ∈ {w1, . . . , wK} such that P(Z = z|W = w) > 0 (condition (K)(v)). As in Section

3.1, let us consider the case where the upper bound c0 of the support of the distribution of

C given Z = z,W = w does not depend on z ∈ {z1, . . . , zL} and w ∈ {w1, . . . , wK} and is

finite. Then, if [0, c0) is strictly included in the support of T (or Y ) given Z = z,W = w for

all z ∈ {z1, . . . , zL} and w ∈ {w1, . . . , wK}, the choice T̄ = c0 ensures that condition (K)(v)

holds. If the upper bound of the support of C is ∞, then a simple valid choice for T̄ is

the minimum of the α-quantile of Y given Z = z and W = w over all z ∈ {z1, . . . , zL} and

w ∈ {w1, . . . , wK} such that P(Z = z|W = w) > 0, where α ∈ (0, 1). One may use α = 0.95

by convention.

In practice, the minimization program (4.1) is not feasible. Instead we choose u1, . . . , uM ,

M values at which we want to estimate ϕ (for instance, M i.i.d. replications of U ∼ Exp(1)

or a grid). For m = 1, . . . ,M , we estimate ϕ(z, um) by ϕ̂(z, um) where

(ϕ̂(z`, um))L`=1 ∈ arg min
θ∈[0,T̄ ]L

∥∥A(θ, Ŝ)(um)
∥∥2

V (um)
. (4.5)

We obtain an estimate of ϕ at the points u1, . . . , uM , which enables us to plot ϕ̂(z, ·).
When ϕ is not identified on all its support, the estimator (ϕ̂(z`, um))L`=1 will not be consis-

tent for some values of u. Under the conditions of Theorem 4.1, by the continuous mapping

theorem,
∥∥A(ϕ̂, Ŝ)(um)

∥∥2

V (um)
= oP (1). Therefore, large values of

∥∥A(ϕ̂, Ŝ)(um)
∥∥2

V (um)
indi-

cate that (ϕ̂(z`, um))L`=1 is not identified. As a rule of thumb, we suggest to start using partial

identification results from Sections 3.3 and 3.4, when
∥∥A(ϕ̂, Ŝ)(um)

∥∥2

V (um)
starts increasing

significantly with u. This approach will be illustrated in Section 5.
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5 Numerical illustrations

We present two applications of our approach. One corresponds to a simulated example while

the second one is an experiment concerning a bonus for finding a job proposed to job seekers

in Illinois.

5.1 Simulations

We consider the following model. Let W follow a Bernoulli distribution with parameter 0.7.

To model the dependence between Z and (W,U) we set

Z = I(−0.7 + ε+W + 0.5U ≥ 0)I(W = 1), (5.1)

where ε ∼ N (0, 1) and U ∼ Exp(1). This definition yields the following conditional treat-

ment probabilities: P(Z = 1|W = 0) = 0 and P(Z = 1|W = 1) = 0.76 (average over

1,000,000 Monte Carlo replications). Note that under this design, W = 0 implies that

Z = 0, which is chosen to mimic the setting of our empirical application. Next, let T have

an exponential distribution with hazard rate 1/10 if Z = 0, and 1/5 if Z = 1, such that

for u ∈ R+, ϕ(0, u) = 10u and ϕ(1, u) = 5u. For u ∈ R+, the 1 − e−u-quantile treatment

effect is equal to −5u. Let C = max(15Exp(1), 10). Note that this implies that C has a

constant hazard rate of 1/15 for durations lower than 10. With such a censoring mechanism,

around 22% of the observations are censored (average of 1,000,000 replications). Finally,

with Y = min(T,C) and δ = I(T ≤ C) we generate an i.i.d. sample {Yi, Zi,Wi, δi}ni=1 of

10,000 observations having the same distribution as (Y, Z,W, δ). The sample size is chosen

to be close to that of the empirical example. Note that under this data generating process,

S is identified on R+ and therefore we aim at point estimation of ϕ and of the quantile

treatment effects as in Section 4.

T̄ is equal to 10, the upper bound of the support of C. We compute the estimators on

a grid for u between 0.01 and 1.2 with step size 0.01. An Epanechnikov kernel is used to

smooth the Kaplan-Meier estimator of the survival function. The bandwidth is chosen using

the usual rule of thumb for normal densities. All results are averages over 1, 000 replications.

Figure 3 reports the value of
∥∥A(ϕ̂, Ŝ)(u)

∥∥2

2
on these points.

∥∥A(ϕ̂, Ŝ)(u)
∥∥2

2
starts in-

creasing slightly after u reaches 0.9. According to the rule of thumb of Section 4.6, we use

the estimation results of Section 4 for u below 0.9.
∥∥A(ϕ̂, Ŝ)(u)

∥∥2

2
is large for u close to zero

because kernel estimators perform poorly near boundaries. Figure 4 displays the estimated

regression function ϕ̂0(·). On the same graph, we also report the naive estimate of ϕ0(·)
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obtained by inversion of the Nelson-Aalen estimator of the cumulative hazard of T given

Z = 0. The true regression function is omitted because it is undistinguishable from our

estimate on the plot (except for very low values of u). We also present the 95% confidence

intervals of ϕ̂0(u) computed using 200 bootstrap draws with the approach described in Sec-

tion 4.4. Figure 5 contains the coverage of these confidence intervals. Figures 6 and 7 report

the same information for ϕ̂1(·). The estimated quantile treatment effects and corresponding

confidence intervals are presented in Figures 8 and 9. The quantile level 1 − e−u ranges

from 0 to 0.6.

It is clear that the naive estimator (in dashed blue) is biased. On the contrary, our esti-

mator recovers precisely the shape of the true regression function. The confidence intervals

have almost nominal coverage except for very low values of u where S is poorly estimated be-

cause of boundary properties of kernel estimators. In the supplementary material, we present

the results of the simulations when a local polynomial of degree one is used to smooth the

Kaplan-Meier estimator of the survival function. The coverages of the confidence intervals

with local polynomial smoothing are much closer to 0.95 for very low values of u. This is

because local polynomials do not suffer from the bias of kernel estimators near boundaries.

Figure 3: Value of
∥∥A(ϕ̂, Ŝ)(u)

∥∥2

2
.
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Figure 4: Average of the estimated regres-

sion function for z = 0.

Figure 5: Coverage of confidence intervals

for the regression function for z = 0.

Figure 6: Average of the estimated regres-

sion function for z = 1.

Figure 7: Coverage of confidence intervals

for the regression function for z = 1.
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Figure 8: Average of the estimated QTE for

different quantile levels.

Figure 9: Coverage of confidence intervals

for the QTE for different quantile levels.

5.2 Empirical application

Our empirical application revisits the so-called Illinois Reemployment Bonus Experiment.

We refer to https://www.upjohn.org/data-tools/employment-research-data-center/

illinois-unemployment-incentive-experiments for more details. Taking place between

mid-1984 and mid-1985, this randomized control trial aimed at evaluating the effects of

bonuses to employers or job seekers on unemployment duration. Specifically, eligible unem-

ployment insurance beneficiaries were randomly allocated to one of the following groups:

(i) The Job Search Incentive Experiment group (JSIE). Job seekers of this group

were eligible to a cash bonus of 500$ if they were to find a job of at least 30h/week

within 11 weeks from the beginning of their unemployment spell and held that job

for 4 months. In order to receive the bonus, job seekers had to read the experiment

description and sign an agreement form at the beginning of their unemployment spell;

(ii) The Hiring Incentive Experiment group (HIE). Companies hiring job seekers

within 11 weeks from the beginning of their unemployment spell for a job of more than

30h/week lasting at least 4 months were eligible to a cash bonus of 500$. In order for

their employer to receive the bonus, job seekers had to read the experiment description

and sign an agreement form at the beginning of their unemployment spell;

(iii) The control group.

The following specifics are worth noting. First, to be part of one of the three afore-

mentioned groups, claimants needed to be between 20 and 55 years old, and have a valid

19



unemployment insurance (UI) claim. Second, the unemployment duration was recorded as

the number of weeks during which participants received unemployment benefits, which im-

plies that the data are discrete. In this particular case, the true unemployment duration is

continuous but is only observed by interval. This setting creates another source of partial

identification studied for instance in Manski and Tamer (2002). Because an extension to

such a setting is outside of the scope of this paper, we choose to neglect this issue and treat

the data as continuous. Third, given that UI is granted for 26 weeks, we can only observe

individuals up to the end of their UI claim, that is the data are right censored at 26 weeks.

Around 21% of the observations are censored.

To clarify the relevance of our model to the experiment, let us assume that we want to

evaluate the causal effect of the cash bonus of the JSIE (or HIE) experiment. Although

the allocation to the groups is randomly chosen, the decision to agree to participate in the

experiment is endogenous. Let us consider a framework with two treatments as described

by the following variable Z:

Z =


2 if the individual is in the HIE group and agrees to participate

1 if the individual is in the JSIE group and agrees to participate

0 if the individual is assigned to the control group or refuses to participate.

In order to deal with the selection bias, our strategy consists of using the group assignment

as an instrument. Let us define

W =


2 if the individual is assigned to the HIE group

1 if the individual is assigned to the JSIE group

0 if the individual is assigned to the control group.

We report in Table 1 the sample sizes for each combination of values of the couple (W,Z).

The refusal rates are respectively 16% and 35% in the JSIE and HIE experiment, which

suggests large selection biases. In total, there are 12, 101 observations.

Sample size W = 0 W = 1 W = 2

Z = 0 3952 1377 659

Z = 1 0 2586 0

Z = 2 0 0 3527

Table 1: Sample sizes in the experiment.

This dataset has been extensively studied in the literature. Comparing ‘naively’ treat-

ment groups to the control group, Woodbury and Spiegelman (1987) concluded that the
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JSIE bonus reduces (statistically significantly) the unemployment duration but found no

significant evidence of an effect of the HIE bonus. Using a proportional hazards model with

W as explanatory variable, Meyer (1996) reached the conclusion that the JSIE bonus in-

creases the hazard rate. In Bijwaard and Ridder (2005), the hazard rate follows a mixed

proportional hazards model which is semiparametric. The authors develop a two-stage in-

strumental variable estimator, and find a stronger positive effect of the JSIE experiment

than Meyer (1996).

5.2.1 Estimation under exact identification

We estimate quantile treatment effects of the two different bonuses using the method de-

scribed in this paper. An Epanechnikov kernel is used to smooth the survival function. The

bandwidth is equal to 2, although the results are not sensitive to the choice of the bandwidth

as long as it is sufficiently larger than 1. T̄ is equal to 26, that is the censoring duration.

We compute the estimators of ϕ on a grid for u between 0.01 and 1 with step size 0.01.

Figure 10 reports the value of
∥∥A(ϕ̂, Ŝ)(u)

∥∥2

2
on the grid, when the analysis is restricted to

the population for which Z = 0 or Z = 1 on the left and Z = 0 or Z = 2 on the right.

It can be seen that
∥∥A(ϕ̂, Ŝ)(u)

∥∥2

2
starts increasing slightly after the value of u reaches 0.7.

Applying the analysis of Section 4.6, we choose to use the estimation results of Section 4

for u below 0.7. The corresponding quantiles 1 − e−u are between 0 and around 0.5. Note

that
∥∥A(ϕ̂, Ŝ)(u)

∥∥2

2
is large when u is close to zero, this is because kernel estimators perform

poorly near boundaries.

Figure 10: Plot of u 7→
∥∥A(ϕ̂, Ŝ)(u)

∥∥2

2
when the analysis is restricted to the population for

which Z = 0 or Z = 1 on the left and Z = 0 or Z = 2 on the right.
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Figure 11 reports estimated quantile treatment effects on this range. We estimate 95%

confidence intervals using 1000 bootstrap draws. Consistent with previous studies, we con-

clude that the JSIE bonus has a stronger effect than the HIE bonus and both reduce the

unemployment duration. For most values of u in the selected range, the quantile treatment

effect of the JSIE bonus is significant while the one of the HIE bonus is not. Estimation

results using a local polynomial of degree one are similar and, hence, are not reported.

Figure 11: Estimated quantile treatment effects and confidence intervals for Z = 0 and

Z = 1 (left) and for Z = 0 and Z = 2 (right) using kernel smoothing.

5.2.2 Partial identification

Let us now apply the partial identification results from Section 3. This empirical application

fits in the case of the triangular system of equations of Section 3.4 if we restrict the data

to individuals for which W = 0 or W = 1. Then, we can estimate the outer set of the

identified set for values of u for which the following system does not have an exact solution

(θ1, θ2) ∈ [0, c0)× [0, c0), where c0 = 26:{
Ŝ(θ1, 0|0) = e−u

Ŝ(θ2, 1|1) + Ŝ(θ1, 0|1) = e−u.
(5.2)

Let us define u(c0) = − log(Ŝ(c0, 0|0)), which is equal to around 0.73. For u ≥ u(c0) it is

clear that the system (5.2) has no solution in [0, c0) × [0, c0). We are, hence, in the second

case described in Section 3.4, and we can estimate an outer set to the identified set for

(ϕ0(u(c0)), (ϕ1(u(c0)))> by [c0,∞)×[0, θ̂2], where θ̂2 is defined by Ŝ(θ̂2, 1|1) = e−u−Ŝ(c0, 0|1).

For u = u(c0), we obtain θ̂2 = 23.31 and the estimated identified set is [26,∞) × [0, 23.31].
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This implies that the estimated outer set of the quantile treatment effect of the JSIE bonus

at u(c0) is (−∞,−2.69], which suggests that the true quantile treatment effect is lower than

−2.69.

6 Conclusion and future research

In this paper, we studied the issue of identification and estimation of an endogenous cate-

gorical regressor on a duration, in the presence of a categorical instrumental variable. We

developed partial, local and global identification results in the presence of random right cen-

soring in a fully nonparametric framework. The causal effect is expressed as the solution of

a nonlinear system of equations. We derived the asymptotic properties of the solution to

an estimated version of this system. Our simulations exhibit excellent performance of our

approach in finite samples. We showed how to revisit an empirical application using our

methodology.

Several extensions of our model may be interesting. One could consider the case where

Z and/or W are continuous variables, or even dynamic processes. For instance, Z could

represent a treatment that can be obtained throughout the unemployment spell of an indi-

vidual, e.g. a job training. Specifically, if the variables Z and W are continuous (but not

time dependent), equation (3.1) is replaced by a nonlinear integral equation∫
S(ϕ(z, u), z|w)dz = e−u, (6.1)

where ϕ is the functional parameter of interest and the function S may be nonparamet-

rically estimable. This equation generates an ill-posed problem and its resolution requires

regularization (see e.g. Kaltenbacher et al. (2008) or for econometric applications, Cazals

et al. (2016)). The most convenient solution is to implement a sequential resolution algo-

rithm stopped in a suitable way. The case with censoring and partial identification raises an

original question in this framework. The extension of our approach to dynamic treatments

(and possibly dynamic instruments) would be based on a generalisation of Lemma 2.1. For

example, Z may be replaced by Zt = I(t ≥ ε), where ε is the random starting time of the

treatment. Dynamic treatments also generate new censoring mechanisms and will be con-

sidered in future research. These problems are discussed in the unpublished working paper

by Florens and Simon (2010).

Another valuable generalization would allow for additional covariates X. If the latter

are discrete, they may be included in the variable Z or the econometrician could use the
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approach of the present paper conditional on X. If they are continuous, the problem is more

complicated. If T = ϕ(Z,X,U), analogously to (6.1), we would have the system∫
S(ϕ(z, x, u), z, x|w)dz = e−u

or the equivalent with a sum if Z is discrete. One would need to regularize the estimator as

discussed in the previous paragraph.

As shown by the empirical application, an interesting extension would concern discrete

outcomes. If a discrete outcome arises because T is continuous but is only observed as an

interval, then we have a second source of partial identification. Such a censoring mechanism

has been studied in the partial identification literature, see for instance Manski and Tamer

(2002). If instead, the true outcome is discrete, then we need to allow ϕZ(·) to be a step

function. In this case (2.2) cannot be obtained because ϕZ(·) would not be strictly increasing.

Another possible source of partial identification is nonrandom censoring. Such a case

was studied in Blanco et al. (2019) using principal stratification. A similar approach may

be tried in the context of this paper.

Finally, inference in the partially identified case due to censoring is an appealing topic.

We conjecture that a bootstrap approach may be used. For each bootstrap simulation,

the function mink Rk,u(θ) may be evaluated and then the corresponding outer set can be

computed. Then, for any point outside of [0, c0)L, one may compute the bootstrap probability

to belong to this outer set and confidence regions of the outer set may be derived. Another

possibility would be to use results on models based on conditional moment inequalities such

as in Andrews and Shi (2013).
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A Appendix A: Proofs of the results of Sections 2, 3

and 4

Proof of Lemma 2.1. Since U ∼ Exp(1) and U and W are independent, we have for

w = w1, . . . , wK and u ∈ R+ that

L∑
`=1

fU,Z(u, z`|w) = e−u and
L∑
`=1

SU,Z(u, z`|w) = e−u,

where SU,Z(u, z|w) = P(U ≥ u, Z = z|W = w) and fU,Z(u, z|w) = −∂SU,Z
∂u

(u, z|w). Hence,

L∑
`=1

ϕ′z`(u)f(ϕz`(u), z`|w) = e−u and
L∑
`=1

S(ϕz`(u), z`|w) = e−u,

where S(t, z|w) = P(T ≥ t, Z = z|W = w) and f(t, z|w) = −∂S
∂t

(t, z|w). This implies that

1 =
L∑
`=1

ϕ′z`(u)
f(ϕz`(u), z`|w)∑L

`′=1 S(ϕz`′ (u), z`′|w)

=
L∑
`=1

ϕ′z`(u)
f(ϕz`(u), z`|w)

S(ϕz`(u), z`|w)

S(ϕz`(u), z`|w)∑L
`′=1 S(ϕz`′ (u), z`′|w)

:=
L∑
`=1

ϕ′z`(u)R1(u, z`|w)R2(u, z`|w),

say. Note that, for z = z1, . . . , zL and w = w1, . . . , wK , we have

R1(u, z|w) =
f(ϕ(z, u), z|w)P(Z = z|W = w)

S(ϕ(z, u), z|w)P(Z = z|W = w)
=
f(ϕ(z, u)|z, w)

S(ϕ(z, u)|z, w)
= h(ϕ(z, u)|z, w)

and R2(u, z|w) = p(z|U ≥ u,w), since

p(z|U ≥ u,w) =
P(Z = z|W = w)SU(u|z, w)∑L
`=1 P(Z = z`|W = w)SU(u|z`, w)

=
S(ϕ(z, u), z|w)∑L
`=1 S(ϕz`(u), z`|w)

.

Hence, integrating over u (and replacing u by v) yields

u =

∫ u

0

L∑
`=1

ϕ′z`(v)h(ϕ(z`, v)|z`, w)p(z`|U ≥ v, w)dv

=
L∑
`=1

∫ ϕz` (u)

0

h(s|z`, w)p(z`|T ≥ s, w) ds.
2
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Proof of Theorem 4.1. We have

‖A(ϕ̂, S)‖ ≤ ‖A(ϕ̂, Ŝ)− A(ϕ̂, S)‖+ ‖A(ϕ̂, Ŝ)‖

= OP (rn) + ‖A(ϕ̂, Ŝ)‖. (A.1)

Now, notice that, by definition,

‖A(ϕ̂, Ŝ)‖ ≤ 1

σmin(V )
‖A(ϕ̂, Ŝ)‖V

=
1

σmin(V )
inf

θ∈F Ū,T̄Z

‖A(θ, Ŝ)‖V

≤ 1

σmin(V )

 inf
θ∈F Ū,T̄Z

‖A(θ, S)‖V + sup
θ∈F Ū,T̄Z

‖A(θ, Ŝ)− A(θ, S)‖V


≤ 1

σmin(V )

 inf
θ∈F Ū,T̄Z

‖A(θ, S)‖V + σmax(V ) sup
θ∈F Ū,T̄Z

‖A(θ, Ŝ)− A(θ, S)‖


= 0 +OP (rn) (By assumptions (V) and (C)),

where σmin(V ) (resp. σmax(V )) is the lower bound (resp. upper bound) defined in assumption

(V).

This and (A.1) imply that ‖A(ϕ̂, S)‖ = OP (rn), which yields that ‖ϕ̂−ϕ‖ = oP (1) using

Assumption (C)(i). Hence, by (C)(ii), ‖ϕ̂ − ϕ‖ ≤ c‖A(ϕ̂, S)‖ with probability approaching

1, which shows the result. 2

Proof of Theorem 4.2. The first-order conditions of the optimisation program (4.1) are

Γ(ϕ̂, Ŝ)>V A(ϕ̂, Ŝ) = 0,

which leads to

Γ(ϕ̂, Ŝ)>V A(ϕ, Ŝ) + Γ(ϕ̂, Ŝ)>V Γ(ϕ, Ŝ)(ϕ̂− ϕ) + Γ(ϕ̂, Ŝ)>V R = 0,

where R = A(ϕ̂, Ŝ)− A(ϕ, Ŝ)− Γ(ϕ, Ŝ)(ϕ̂− ϕ). Then,

√
n(ϕ̂− ϕ) =− [Γ(ϕ̂, Ŝ)>V Γ(ϕ, Ŝ)]−1Γ(ϕ̂, Ŝ)>V

√
nA(ϕ, Ŝ)

− [Γ(ϕ̂, Ŝ)>V Γ(ϕ, Ŝ)]−1Γ(ϕ̂, Ŝ)>V
√
nR.

Now, by Assumption (N) and Theorem 4.1,
√
nR = OP (

√
nr2

n) = oP (1), and hence

[Γ(ϕ̂, Ŝ)>V Γ(ϕ, Ŝ)]−1Γ(ϕ̂, Ŝ)>V
√
nR = oP (1).

We conclude using the continuous mapping theorem and Assumption (N). 2
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B Appendix B: Kernel smoothing of the Kaplan-Meier

estimator

In this section, we discuss sufficient conditions for Assumptions (C) and (N). Let Ŝ be defined

as in (4.4). We introduce the following hypothesis and the subsequent lemma.

(K) (i) T has a continuous distribution conditional on the event {Z = z,W = w} for all

z and w. Its conditional density has a derivative which is bounded on [0, T̄ ];

(ii) K is a bounded and differentiable probability density function, it has mean zero

and a bounded support;

(iii) nε4 → 0;

(iv) The Fréchet differential Γ(ϕ, S) is invertible;

(v) There exists ξ > 0 for which S(T̄ , z|w)/P(Z = z|W = w) > ξ for all z ∈
{z1, . . . , zL} and w ∈ {w1, . . . , wK} such that P(Z = z|W = w) > 0.

Lemma B.1 Under Assumptions (V), (C)(i), (C)(ii), (K) and if the mapping Γ(ϕ, S)>V Γ(ϕ, S)

is invertible on [0, Ū ], then Ŝ satisfies Assumptions (C)(iii) with rn = n−1/2 and (N) and the

bootstrap approximation of Section 4.4 works in the sense that
√
n(ϕ̂b− ϕ̂) converges weakly

to the same mean zero Gaussian process as
√
n(ϕ̂− ϕ).

The lemmas below constitute the proof of Lemma B.1. We introduce the following

notations. For h ∈ FZ,W , we define

||h||∞ = sup
t∈[0,T̄ ],z=z1,...,zL,w=w1,...,wK

|h(t, z, w)|.

Also, for t ∈ [0, T̄ ], z = z1, . . . , zL, w = w1, . . . , wK , let S̃(t|z, w) =
∫
S(t− sε|z, w)K(s)ds.

Lemma B.2 The processes
√
n{Ŝ(t, z|w) − pzwS̃(t|z, w)} and

√
n(Ŝb(t, z|w) − Ŝ(t, z|w)),

t ∈ [0, T̄ ], z = z1, . . . , zL, w = w1, . . . , wK, converge weakly to the same mean zero Gaussian

process.

Proof. By the Donsker theorem, the process

1√
n




Nz,w(t)

Yz,w(t)

Yz,w

Yw

−


P(Y ≤ t, Z = z,W = w, δ = 1)

P(Y ≥ t, Z = z,W = w)

P(Z = z,W = w)

P(W = w)


 ,
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t ∈ [0, T̄ ], z = z1, . . . , zL, w = w1, . . . , wK , converges weakly to a mean zero Gaussian pro-

cess. Note that the mapping from this process to Ŝ is Hadamard differentiable as it is

a composition of Hadamard differentiable mappings. Indeed, the quotient is Hadamard

differentiable and condition K(v) guarantees that the mapping yielding the Kaplan-Meier

estimator in (4.4) by Lemma 20.14 in Van der Vaart (2000). As a linear operator, the

mapping embodying kernel smoothing as in (4.3) is Hadamard differentiable. Finally, the

product is Hadamard differentiable. We obtain that the process
√
n{Ŝ(t, z|w)−pzwS̃(t|z, w)},

t ∈ [0, T̄ ], z = z1, . . . , zL, w = w1, . . . , wK , converges to a mean zero Gaussian process using

the functional Delta-method. Similarly, using the bootstrap functional Delta-method as in

Theorem 3.9.11 in Van der Vaart and Wellner (1996), we find that
√
n(Ŝb(t, z|w)−Ŝ(t, z|w)),

t ∈ [0, T̄ ], z = z1, . . . , zL, w = w1, . . . , wK , converges weakly to the same mean zero Gaussian

process. 2

Lemma B.3 Under Assumption (K), it holds that

sup
t∈[0,T̄ ],z=z1,...,zL,w=w1,...,wK

|pzwS̃(t|z, w)− S(t, z|w)| = o
( 1√

n

)
.

Proof. From a Taylor expansion, as the second derivative of S(·|z, w) is bounded on [0, T̄ ],

we have

S(t− sε|z, w) = S(t|z, w) + sε
∂S

∂t
(t|z, w) +O(ε2),

uniformly in t ∈ [0, T̄ ], z = z1, . . . , zL, w = w1, . . . , wK and s in the support of K. Therefore,

we obtain

sup
t∈[0,T̄ ],z=z1,...,zL,w=w1,...,wK

∣∣∣ ∫ (S(t− sε|z, w)− S(t|z, w)− sε∂S
∂t

(t|z, w)
)
K(s)ds

∣∣∣
= sup

t∈[0,T̄ ],z=z1,...,zL,w=w1,...,wK

∣∣∣ ∫ (S(t− sε|z, w)− S(t|z, w))K(s)ds
∣∣∣

= O(ε2),

where the last sequence of equalities is a consequence of the fact that K has mean zero, is

bounded and has bounded support. This leads to

sup
t∈[0,T̄ ],z=z1,...,zL,w=w1,...,wK

|S̃(t|z, w)− S(t|z, w)| = O(ε2),
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because ∂2S
∂t2

(t|z, w) is bounded on [0, T̄ ], by Assumption (K). This yields that

sup
t∈[0,T̄ ],z=z1,...,zL,w=w1,...,wK

|pzwS̃(t|z, w)− S(t, z|w)|

≤ sup
t∈[0,T̄ ],z=z1,...,zL,w=w1,...,wK

|S̃(t|z, w)− S(t|z, w)|

= O(ε2) = o
( 1√

n

)
(by Assumption (K)).

2

Lemma B.4 Under Assumption (K), it holds that ‖Ŝ − S‖∞ = OP ( 1√
n
) and ‖Ŝb − Ŝ‖∞ =

OP ( 1√
n
).

Proof. By Lemma B.2 and the continuous mapping theorem, we have

sup
t∈[0,T̄ ],z=z1,...,zL,w=w1,...,wK

|Ŝ(t, z|w)− pzwS̃(t|z, w)| = OP

( 1√
n

)
.

As |Ŝ(t, z|w) − S(t, z|w)| ≤ |Ŝ(t, z|w) − pzwS̃(t|z, w)| + |pzwS̃(t|z, w) − S(t, z|w)|, the first

result is a consequence of Lemma B.3. The fact that ‖Ŝb− Ŝ‖∞ = OP ( 1√
n
) is a direct corol-

lary of Lemma B.2. 2

Lemma B.5 Under Assumption (K), the process
√
n(Ŝ(t, z|w) − S(t, z|w)), t ∈ [0, T̄ ], z =

z1, . . . , zL, w = w1, . . . , wK, converges weakly to a mean zero Gaussian process.

Proof. Using Slutsky’s theorem, Lemmas B.2 and B.3 and the fact that, for t ∈ [0, T̄ ], z =

z1, . . . , zL, w = w1, . . . , wK ,

Ŝ(t, z|w)− S(t, z|w) = Ŝ(t, z|w)− pzwS̃(t|z, w) + pzwS̃(t|z, w)− S(t, z|w),

we obtain that
√
n(Ŝ − S) converges weakly to a mean zero Gaussian process. 2

Lemma B.6 Under Assumption (K), the process
√
nA(ϕ, Ŝ)(u), u ∈ [0, Ū ], converges weakly

to a mean zero Gaussian process.

Proof. By Lemma B.5,
√
n(Ŝ−S) converges weakly to a mean zero Gaussian process. The

mapping h 7→ A(ϕ, h), h ∈ FZ,W , is Hadamard differentiable (because it is linear), there-

fore, by the functional Delta-method, we have that
√
n(A(ϕ, Ŝ) − A(ϕ, S)) =

√
nA(ϕ, Ŝ)

converges weakly to a mean zero Gaussian process. 2
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Lemma B.7 Under Assumption (K), Γ(ϕ, Ŝ)(u), u ∈ [0, Ū ] exists and converges in prob-

ability to Γ(ϕ, S)(u), u ∈ [0, Ū ]. Also, if ϕ̂
P−→ ϕ, then Γ(ϕ̂, Ŝb)(u), u ∈ [0, Ū ] exists and

converges in probability to Γ(ϕ, S)(u), u ∈ [0, Ū ].

Proof. We have

Ŝ(t, z|w) = p̂zw
̂̃
S(t|z, w)

= p̂zw

∫
ŜKM(t− sε|z, w)K(s)ds

= −p̂zw
Nδ∑
i=1

Ŝ(i)

[
K̄
(t− Y(i+1)

ε

)
− K̄

(t− Y(i)

ε

)]
,

where Y(i) is the ith order statistic of the sample of non-censored observations {Yi| δi = 1}ni=1,

Ŝ(i) = ŜKM(Y(i)|z, w), K̄(y) =
∫ y

0
K(s)ds and Nδ =

∑n
i=1 I(δi = 1). This implies that the

mapping t 7→ Ŝ(t, z|w) is differentiable in t. Therefore, the mapping θ 7→ A(θ, Ŝ), θ ∈ FZ ,

is Gâteaux differentiable in θ. By Lemma B.4, Ŝ converges in probability to S. The map

h 7→ A(ϕ, h), h ∈ FZ,W , and the differentiation map, are continuous mappings, therefore,

by the continuous mapping theorem, we obtain the result. The proof for the bootstrap is

similar. 2

Lemma B.8 Under Assumption (K) and if ϕ̂
P−→ ϕ, then Γ(ϕ̂, Ŝ)(u), u ∈ [0, Ū ] exists and

converges in probability to Γ(ϕ, S). Also, if ϕ̂b
P−→ ϕ, then Γ(ϕ̂b, Ŝb)(u), u ∈ [0, Ū ] exists and

converges in probability to Γ(ϕ, S).

Proof. Similarly as in the proof of Lemma B.7, θ ∈ FZ 7→ A(θ, Ŝ) is Gâteaux differentiable

in θ. By Lemma B.4, Ŝ converges in probability to S. The map A and the differentiation

map are continuous mappings, therefore, by the continuous mapping theorem, we obtain the

result. The proof for the bootstrap is similar. 2

Lemma B.9 Under Assumption (K), A(ϕ̂, Ŝ)−A(ϕ, Ŝ)−Γ(ϕ, Ŝ)(ϕ̂−ϕ) = OP (‖ϕ̂−ϕ‖2).

Also, A(ϕ̂b, Ŝb)− A(ϕ̂, Ŝb)− Γ(ϕ̂, Ŝb)(ϕ̂b − ϕ̂) = OP (‖ϕ̂b − ϕ̂‖2).

Proof. Similarly as in the proof of Lemma B.7, θ 7→ A(θ, ϕ), θ ∈ FZ , is twice Gâteaux

differentiable in θ. By Lemma B.4, Ŝ converges in probability to S. The map A and the

differentiation map are continuous mappings, therefore, by the continuous mapping theo-

rem, we obtain that the second differential of A with respect to its first argument in (ϕ, Ŝ)
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converges in probability to the second differential of A with respect to its first argument in

(ϕ, S) which is bounded by Assumption (K)(i). This implies the result by a Taylor expan-

sion. The proof for the bootstrap is similar. 2

Lemma B.10 Under the assumptions of Lemma B.1, the bootstrap approximation of Section

4.4 works in the sense that
√
n(ϕ̂b − ϕ̂) converges weakly to the same mean zero Gaussian

process as
√
n(ϕ̂− ϕ).

Proof. By lemmas B.2 and B.5,
√
n(Ŝ − S) and

√
n(Ŝb − Ŝ) converge to the same mean

zero Gaussian process. Therefore, by the functional Delta-method, as A is a linear mapping,
√
nA(ϕ, Ŝ) and

√
n(A(ϕ, Ŝb) − A(ϕ, Ŝ)) converge weakly to the same mean zero Gaussian

process with variance operator Ω. Using Theorem 4.1, we obtain that ‖ϕ̂b−ϕ‖ = OP (n−1/2)

((C)(ii) holds with rn = n−1/2 in the resample b because of Lemma B.4) and ‖ϕ̂ − ϕ‖ =

OP (n−1/2). This implies that ‖ϕ̂b − ϕ̂‖ = OP (n−1/2). The first-order conditions of the

optimisation program (4.1) in resample b are

Γ(ϕ̂b, Ŝb)
>V A(ϕ̂b, Ŝb) = 0,

which leads to

Γ(ϕ̂b, Ŝb)
>V A(ϕ̂, Ŝb) + Γ(ϕ̂b, Ŝb)

>V Γ(ϕ̂, Ŝb)(ϕ̂b − ϕ̂) + Γ(ϕ̂b, Ŝb)
>V R = 0,

where R = A(ϕ̂b, Ŝb)− A(ϕ̂, Ŝb)− Γ(ϕ̂, Ŝb)(ϕ̂b − ϕ̂). Then,

√
n(ϕ̂b − ϕ̂) =− [Γ(ϕ̂b, Ŝb)

>V Γ(ϕ̂, Ŝb)]
−1Γ(ϕ̂b, Ŝb)

>V
√
nA(ϕ̂, Ŝb)

− [Γ(ϕ̂b, Ŝb)
>V Γ(ϕ̂, Ŝb)]

−1Γ(ϕ̂b, Ŝb)
>V
√
nR

=− [Γ(ϕ̂b, Ŝb)
>V Γ(ϕ̂, Ŝb)]

−1Γ(ϕ̂b, Ŝb)
>V
√
n(A(ϕ̂, Ŝb)− A(ϕ̂, Ŝ))

− [Γ(ϕ̂b, Ŝb)
>V Γ(ϕ̂, Ŝb)]

−1Γ(ϕ̂b, Ŝb)
>V
√
nA(ϕ̂, Ŝ)

− [Γ(ϕ̂b, Ŝb)
>V Γ(ϕ̂, Ŝb)]

−1Γ(ϕ̂b, Ŝb)
>V
√
nR.

Now, by Lemma B.9 and the fact that ‖ϕ̂b−ϕ̂‖ = OP (n−1/2), we have
√
nR = OP (n1/2n−1) =

oP (1), and hence

[Γ(ϕ̂b, Ŝb)
>V Γ(ϕ̂, Ŝb)]

−1Γ(ϕ̂b, Ŝb)
>V
√
nR = oP (1),

by Lemmas B.7 and B.8 and Assumption (V). Moreover, as

Γ(ϕ̂, Ŝ)>V A(ϕ̂, Ŝ) = 0,
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we have

Γ(ϕ̂b, Ŝb)
>V
√
nA(ϕ̂, Ŝ) = (Γ(ϕ̂b, Ŝb)− Γ(ϕ̂, Ŝ))>V

√
nA(ϕ̂, Ŝ).

Now, by Lemma B.9 and the fact that ‖ϕ̂ − ϕ‖ = OP (n−1/2), we have that
√
nA(ϕ̂, Ŝ) =

√
nΓ(ϕ, Ŝ)(ϕ̂− ϕ) + OP (1) = OP (1) where the last equality is because Γ(ϕ, Ŝ) = OP (1) by

Lemma B.7. By Lemmas B.7 and B.8 and Assumption (V), we obtain that

[Γ(ϕ̂b, Ŝb)
>V Γ(ϕ̂, Ŝb)]

−1Γ(ϕ̂b, Ŝb)
>V
√
nA(ϕ̂, Ŝ) = oP (1).

Therefore, we have

√
n(ϕ̂b − ϕ̂) = −[Γ(ϕ̂b, Ŝb)

>V Γ(ϕ̂, Ŝb)]
−1Γ(ϕ̂b, Ŝb)

>V
√
n(A(ϕ̂, Ŝb)− A(ϕ̂, Ŝ)) + oP (1).

Let us denote by ∂Ŝ
∂t

(resp. ∂Ŝb
∂t

), the derivative of Ŝ (resp. Ŝb) in its first argument. Next,

by Lemma B.9, we have

√
n(A(ϕ̂, Ŝb)− A(ϕ̂, Ŝ))−

√
n(A(ϕ, Ŝb)− A(ϕ, Ŝ))

=
√
nΓ(ϕ, Ŝb)(ϕ̂− ϕ)−

√
nΓ(ϕ, Ŝ)(ϕ̂− ϕ) + oP (1)

=
√
n(

L∑
`=1

∂Ŝb
∂t

(ϕ(z`, ·), z`|wk)(ϕ̂(z`, ·)− ϕ(z`, ·)))Kk=1

−
√
n(

L∑
`=1

∂Ŝ

∂t
(ϕ(z`, ·), z`|wk)(ϕ̂(z`, ·)− ϕ(z`, ·)))Kk=1 + oP (1)

=
√
n(

L∑
`=1

(
∂Ŝb
∂t

(ϕ(z`, ·), z`|wk)−
∂Ŝ

∂t
(ϕ(z`, ·), z`|wk))(ϕ̂(z`, ·)− ϕ(z`, ·)))Kk=1 + oP (1).

Now, by Lemma B.2, Ŝb converges to Ŝ in probability. As the differentiation is a continuous

mapping, we obtain that, for z = z1, . . . , zL, w = w1, . . . , wK ,∥∥∥∂Ŝb
∂t

(ϕ(z, ·), z|w)− ∂Ŝ

∂t
(ϕ(z, ·), z|w)

∥∥∥ = oP (1).

This implies that

√
n(A(ϕ̂, Ŝb)− A(ϕ̂, Ŝ))−

√
n(A(ϕ, Ŝb)− A(ϕ, Ŝ)) = oP (1).

Therefore,
√
n(A(ϕ̂, Ŝb)−A(ϕ̂, Ŝ)) converge weakly to the mean zero Gaussian process with

variance operator Ω. We conclude that
√
n(ϕ̂b−ϕ̂) converges weakly to a mean zero Gaussian

process with variance operator [Σ>V Σ]−1Σ>V ΩV Σ[Σ>V Σ]−1 using Slutsky’s theorem and

Lemmas B.7 and B.8. By Theorem 4.2 (which we can apply because of the previous lemmas

of this section),
√
n(ϕ̂−ϕ) converges to the same Gaussian process, which yields the result. 2
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C Appendix C: Primitive conditions for Assumption

(C) (ii)

Lemma C.1 Assume that S(·, z|w) is twice differentiable and has bounded first and second

derivatives on [0, T̄ ], then Assumption (C) (ii) holds.

Proof. Because S(·, z|w) is twice differentiable on [0, T̄ ], A(·, S) is twice differentiable in its

first argument. Also, its second derivative is bounded in F Ū ,T̄Z because S(·, z|w) has bounded

second derivative on [0, T̄ ]. By a Taylor expansion, we obtain that there exists a constant

H1 > 0 such that, for F Ū ,T̄Z , we have

‖A(θ, S)− A(ϕ, S)− Γ(ϕ, S)(θ − ϕ)‖ ≤ H1‖θ − ϕ‖2.

As A(ϕ, S) = 0, we obtain

‖Γ(ϕ, S)(θ − ϕ)‖ ≤ ‖A(θ, S)‖+H1‖θ − ϕ‖2.

Because S(·, z|w) has bounded derivative on [0, T̄ ], Γ(ϕ, S) is bounded on [0, Ū ] and, there-

fore, there exists as constant H2 > 0 such that

H2‖θ − ϕ‖ −H1‖θ − ϕ‖2 ≤ ‖A(θ, S)‖.

By choosing ν > 0 small enough, we have that, if ‖θ − ϕ‖ ≤ ν,

H2

2
‖θ − ϕ‖ ≤ ‖A(θ, S)‖.

2
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