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In this paper, we investigate the problem of computing Bayesian esti-

mators using Langevin Monte-Carlo type approximation. The novelty of this
paper is to consider together the statistical and numerical counterparts (in a
general log-concave setting). More precisely, we address the following ques-
tion: given n observations in RY distributed under an unknown probability
Py«, 0% € ]Rd, what is the optimal numerical strategy and its cost for the ap-
proximation of #* with the Bayesian posterior mean?
To answer this question, we establish some quantitative statistical bounds
related to the underlying Poincaré constant of the model and establish new
results about the numerical approximation of Gibbs measures by Cesaro av-
erages of Euler schemes of (over-damped) Langevin diffusions. These last
results are mainly based on some quantitative controls on the solution of the
related Poisson equation of the (over-damped) Langevin diffusion in strongly
and weakly convex settings.

1. Introduction.

1.1. Log-concave statistical models . 1In this paper, we consider a statistical model
(Pp)gera parametrized by a parameter § € R?. We assume that each distribution Py defines a
probability measure on (R?, 5(R?)) and that all the distributions Py are absolutely continu-
ous with respect to the Lebesgue measure \;, we denote by 7y the corresponding density:

VECRT  my(6)i= 10(e).
q

We assume that we observe 7 i.i.d. realizations ({1, .. .,&,), sampled according to Pg. where
0* is an unknown parameter. We are then interested in Bayesian statistical procedures de-
signed to recover 8*. In all the paper, we restrict our study to the specific class of log-concave
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models where the distributions are described by:
) me(€) = e V),

where (£,0) — U(&,0) = —log(mp(§)) is assumed to be a convex function. Note that im-
plicitly, the normalizing constant Zy := SRG e~ U0 ¢ is assumed to be equal to 1, which is
not restrictive up to a modification of U.

Besides the Gaussian toy model that trivially falls into our framework, log-concave statis-
tical models have a longstanding history in a wide range of applied mathematics and it seems
almost impossible to enumerate exhaustively the range of possible applications. For instance,
the log-concave setting appears with exponential families thanks to the Pitman-Koopman-
Darmois Theorem, in extreme value theory, tests (chi-square distributions), Bayesian statis-
tics among others. Log-concave distributions also play a central role in probability and func-
tional analysis ((BBCGOS8, Bob99]), or geometry (see e.g. [KL.S95]). The log-concave prop-
erty is commonly used in economics (for example the density of customer’s utility parameters
is generally assumed to satisfy this property [BB05]), in game theory (see e.g. [CN91a] and
[LT88]), in political science and social choice (see e.g. [CN91b]) or in econometrics (for
example through the Roy model, see e.g. [HH90]).

An important example comes from all distributions that are built with a multivariate con-
vex function U : R x RY — R and where the first d coordinates are considered as the
hidden parameter 6 while the ¢ other ones are the observations. Starting from a convex func-
tion U : R? — RY, translation models (¢,8) — e~V also generate typical examples
of log-concave models in (§,6). Many other distributions satisfy the log-concave property:
Gumbel and Weibull distributions with a shape parameter larger than 1. In particular, this
includes a large class of parametric probability distributions such as Gaussian or Laplace
models, logistic regression models, Subbotin distributions, Gamma or Wishart distributions,
Beta and uniform distributions on real intervals among others. We refer to [SW14] for a de-
tailed survey on properties of log-concave distributions, to [Wal09] for a list of modeling
and application issues and to [KS16] for non-parametric density estimation procedures of
log-concave distributions.

1.2. Bayesian estimation of 8*. We briefly sketch Bayesian strategies for estimating 6*.
Considering a prior distribution Iy on 8, we assume that Il is absolutely continuous with
respect to the Lebesgue measure Ay on R?. Without any possible confusion with the familiy
of densities (7g)gera, the associated density of the prior is denoted by 7y and we further
assume that 7 is also log-concave: m(6) := e~ v where V) encodes the prior knowledge
on 6. We emphasize that this last assumption is not restrictive since the prior distribution is
chosen by the user. We denote by ,, the density of the posterior distribution (that depends
on the observations {™ := (1, . ..,&,)) given by: m,(0) ocmo(0) [ [, 7o (k). The posterior
distribution is a data-driven probability distribution that may be written as:

e~ Wn(£™.0)

2) VoeR?Y  m,(f) = ———m(h) where Wn(gn,e)in(gi,e).
Zn(€") =

The quantity Z,,(£™) corresponds to the normalizing constant and depends as well on £™:
Zn(€7) = f mo(0)e™ V(€0 g,
Rd

It is well known that the posterior distribution enjoys consistency properties (see e.g. [Sch65,
[H81]): under mild assumptions on the prior distribution and on the statistical model, the
posterior distribution concentrates its mass around 6 € R? whose distribution is close to Py..
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With additional metric and identifiability assumptions, some stronger results may be ob-
tained in general parametric or non-parametric models. We refer to the seminal contribution
of [GGvdV00] and the references therein, to the work of [CvdV12] for an extension to less
standard situations of high-dimensional models and to [vdVvZ08] for infinite dimensional
models. The posterior distribution may be used to define Bayesian estimators, in particular,
we shall introduce the popular posterior mean estimator of §* defined by:

~

3) i, — J 0 (6)d0.
Rd

This estimator is usually consistent and a popular issue is to establish rates of convergence
towards 6* through some LP-criterion, i.e. find a sequence €, —> 0 such that:

@) Eg- (160 - 077) <<,

for a given p > 1. Nevertheless, when a such bound is obtained, the story is not over. Actually,
the theoretical posterior mean given by Equation (3) being generally not explicit, the practical
use of the above statistical bounds certainly requires to provide computable algorithms that
may approximate 6,,. In particular, it is legitimate to look for a tractable estimator §n that
approaches an €, -neighborhood of gn with as less operations as possible.

1.3. Langevin Monte Carlo discretization and practical estimator. 'To approximate 5,“ it
is commonly used to write 7, as a Gibbs field:

() Ta(0) o exp(~ W (€™,0)) with Wn<9>=ZU<&’9>“°g(ml<9>>'
=1

Under some mild assumptions on I/IN/n, it is well known that a such probability measure is the
unique invariant distribution of the (over-damped) Langevin diffusion defined by:

6) ax{™ = —vW,(x{™)dt + \/2dB;,

where (B;) is a d-dimensional standard Brownian motion. Thus, the probability 7, can be

approximated using the long-time ergodic convergence of (Xt(n))tzo towards m,. One can
distinguish two types of convergences towards 7,: the convergence of the distribution of
Xt(n) as t — 40 or the a.s. convergence of the occupation measure of (Xt(n))t;().

Here, we build our algorithm with the second type of convergence, which requires only
one path of the diffusion. We are thus led to consider the occupation measure applied to the

identity function denoted by I;. In this case, this is nothing but the Cesaro average:
~ 1 (t
(7) VneN* Vt>0  O,;:= tf XMds.
0

In (7), Cesaro averages are based on the “true” diffusion but to obtain a tractable algorithm,
we need to introduce Cesaro averages of some discretization schemes of (7). For this purpose,
we consider a positive step size v and introduce a constant step-size explicit Euler-Maruyama
scheme related to X (™) (omitting the index n for simplicity):

8) V=0 Xy, =X —7VWn(X0) + V2041 with = kv,

where for all £ > 1, ¢, = By, — By, _, and (Bi)¢>0 is a standard d-dimensional Brownian
motion. It is possible to define a continuous affine interpolation of (8) but from a practical
point of view, it will be more comfortable to consider some initialization and ending times in
the discrete grid (¢)k>o0-



For any time horizon ¢y > 0, the approximation of GLN with a step-size +y is given by:

. 1 NS
9) Onin = Z Xy,
7=0
which corresponds to the Cesaro average of the discretized trajectory (8).

This Cesaro construction first appeared in [Tal90] where some convergence properties of
the empirical measure of the Euler scheme with constant step size were investigated. In a
series of recent papers (among others, see [LP02, LP03, PP12] or [PP18] for a multilevel
extension), the decreasing-step setting has also been studied. Compared with these papers,
the novelty of our work is that, we propose some non-asymptotic quantitative bounds (see
Section 1.4 for details about the corresponding results). Note that for ease of presentation,
we prefered to mainly consider the (less technical) constant step setting.

1.4. Contributions and plan of the paper.. Our main results are stated in Section 2. We
address two main points:

<

* The Bayesian consistency: i.e. the distance between the posterior mean 0,, and 0*.

The Bayesian consistency is studied in Section 3. First, Theorem 3 derives an upper bound
of the L? loss in terms of the Poincaré constant of the model (which is assumed to satisfy a
uniformity condition). Compared with the literature on this problem (see e.g. [MHW ™ 19b]),
this result is written under general assumptions on the family of log-concave models and does
not require specific assumptions related to a dynamical system. Second, Theorem 4 proves
that our upper bound is minimax optimal for a large class of models.

* The numerical question related to the approximation of §n by a computable algorithm.

Our main results about Cesaro-type LMC and optimal tuning of the parameters (in terms
of n and d) are Theorems 7 and 9 whose complete study is devoted to Section 4 and Section
5. Our approach based on the Poisson equation, i.e. on the inversion of the infinitesimal
generator of the diffusion with a quantitative point of view, will allow to obtain Theorem 6
(weakly convex case) and Theorem 8 (strongly convex case). On this numerical topic, our
main contribution is the (almost) quantitative study of the weakly convex case (with the help
of the Kurdyka-Eojasiewicz inequality introduced in (H%’E)) based on quantitative controls
on the solution of the Poisson equation (and on its derivatives). Nevertheless, the Poisson
approach seems also of interest in the strongly convex case, the results being very close to
[DM19] but slightly improve the dependence in the parameters of the model. This is probably
due to the fact that Poisson approach does not require to couple the Euler scheme with the
continuous process (see Remark 10 for details). In the two cases, we obtain some explicit
bounds on the distance between the discretized Cesaro average and the posterior mean. These
bounds lead to an optimal tuning in terms of n and d in the weakly convex setting.

In short, for both weakly and strongly convex situations, for some given n and d, we first
exhibit an ¢, that upper-bounds the (LP-type) error between §n and 6*. Then, for this &,
we aim at tuning the procedure (9) in order to obtain an &,,-approximation' of 571 with a
minimal computational cost. This cost N. (number of iterations of the Euler scheme) will
be explicited as an amount of operations upper bounded by n%d®, where a and b are some
positive numbers that will be explicited below. Our main contribution states that Bayesian

]By g-approximation, we mean an approximation of the target with an LP-error of the order O(¢).
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learning can be optimally performed in polynomial time less than n%d® operations for typi-
cally weakly convex situations with explicit a and b, and in even nd operations in strongly
COnvex cases.

For an improved readability of the work, numerous proofs and technical results are deferred
to the supplementary file [GPP22]. >

1.5. Notations. <]

* The notation a <, b means that a < cb where c is a universal constant, i.e. independent
of any of the relevant parameters of the problems.

* The usual scalar product on R? is denote by {, ) and the induced Euclidean norm by |.|.
The set M 4 refers to the set of real d x d matrices. The Frobenius norm on My 4 is
denoted by ||| : for any A€ Myg, A% = X1, j<q A7 ;- We also denote by .|, the

spectral norm, defined for any matrix A by A, = supjy|_1 [Az| =/ Aata, Where A ge 4
refers to the maximal eigenvalue of the symmetric matrix A’ A.

» For a Lipschitz continuous function f : R? — R?, we denote by [f]; its related Lipschitz
constant. When f is C', its Jacobian matrix denoted by D f maps from R? to M »». When
Df is Lipschitz for the spectral norm ||.|., we denote by [Df]; . the related Lipschitz
constant. As usual the notations V and A will hold for the gradient and the Laplacian.

* In the sequel, we call upon to different distances on the space of probability measures: the
p-Wasserstein distance is denoted by W,, p € [1, o0 (mainly used with p =1 or p =2 in
this paper). We recall that

1/p
WP(P91 ) P@z) = <7r€H(iIP’I;f Po,) Jge d(l'a y)pﬂ‘(gj, y)) )

where I1(IPy, , Py, ) stands for the set of all coupling measures of Py, and Py, . The Kullback-
Leibler divergence is denoted by K L(IPy, ,Py,) and is classically defined by

7o, (£)
g (2481 ) w61 ).

KL(Py,,Py,) = f
Ra

>

2. Main results and discussion . In our work, two sources of randomness are consid-
ered. The first one is derived from the observations £™ = (&1,...,&, ). The notations Py and
Ey refer to the probability and expectation on the unknown distribution of the sampling pro-
cess. The second source of randomness is related to the posterior distribution 7, over R%:
for any Borelian B of R?, ,,(B) is the probability of B when 6 is sampled according to 7,,,
conditionally to the observations. Hence, E, is the expectation when 6 ~ 7,,, conditionally
to £".

2.1. Functional inequality and Assumption (PIy). For any measure p and f € L'(u),
w(f) refers to the mean value of f, and when f € L?(u), Vaar,(f) is the variance of f:

p(0= [ 1O and Var, ()i | 1O - u(h)Pdu(e).

Ra

A crucial property of log-concave measures is that they satisfy a Poincaré inequality. This
will be used extensively in the rest of the paper. We refer to [Led01, BGL14] for a complete
presentation and some applications on concentration inequalities and Markov processes.



DEFINITION 1 (Poincaré inequality). A measure y satisfies a Poincaré inequality with

Cp(p) if
VieL*(n)  Vary(f) <Cp(wu(|V ).

We remind an important result obtained in [Bob99] (see also [BBCGO08]) that establishes
the existence of a Poincaré inequality for every log-concave probability distribution.

THEOREM 2 ([Bob99, KLS95]). Every log-concave measure 1. satisfies a Poincaré in-
equality: a universal constant K exists such that:

Cp(p) <4K*Var,(1y),

where 1 refers to the identity map: 14 : £ — €.

Since (£,60) —> U(&,0) is a convex function, Theorem 2 implies that for all § € R?, Py
satisfies a Poincaré inequality of constant C'p(IPg). We introduce an assumption that stands
for a uniform bound of the collection of Poincaré constants C'p(Py).

ASSUMPTION 1 (Uniform Poincaré Inequality (PIy)). A constant CY exists such that

V9eR?  Cp(Py) <CY.

We emphasize that according to Theorem 2, a uniform bound on the variance of each dis-
tribution Py over § € R? entails (PIy). Note that the uniform upper bound on the Poincaré
constant involved in the family of distributions (7y)gep is needed to obtain some concentra-
tion rates that are independent from the value of 6.

2.2. Bayesian consistency.

2.2.1. Assumptions (Ar) and (Iw,(c)). We introduce some mild assumptions neces-

sary to obtain some consistency rates of 0,,. First, we handle smooth functions (&,0) —>
U(&,0) and assume that:

ASSUMPTION 2 (Assumption (Ay)). U satisfies the Ci hypothesis: i.e. the partial gra-
dient of U with respect to 0 is a L-Lipschitz function of 8 and of &:

VEER? VO;,0,eRY: (VU (€,61) — VoU (E,02)| < L|01 — 65,
and

V(€,&)eRT YOeRY:  |VaU(&,0) — VoU(&,0)| < LI — &|.
<

REMARK 1. Let us mention that Assumption (A ) is standard in the optimization com-
munity (see [Nes04, Bub15]). Essentially, this allows to quantify the error made when using
a first order Taylor expansion. In optimization theory, L-smooth functions are then used to
produce descent lemmas. Here it will be used for lower-bounding the normalizing constants
of the Bayesian posterior distributions (see Equation (19)). This assumption also appears
in the recent contribution [MHW ' 19b] but the L-smooth property is only assumed for the
function 0 — Ey. [U (€, 0)] associated with either a strong or weak convex assumption on U
(Assumptions (S.1) or (W.1) of [MHW " 19b]).
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To make the estimation problem tractable, we need to manipulate statistically identifiable
models. If statistical identifiability is a free result for any L! location model when U (£, 0) =
U (& — 0), this is no longer the case in general models, even log-concave ones. We therefore
introduce an identifiability assumption, which will useful for our theoretical results.

ASSUMPTION 3 (Assumption (Iw, (c)) - Wasserstein identifiability). A strictly increas-
ing map ¢ : Ry —> R, and a 1-Lipschitz function V exist such that ¢(0) = 0 and :

V01,05 € Rd, |7T91(\I/) — 71'92(\1/)‘ = C(’Ql — 92‘)
Furthermore, we shall assume that a pair (by,be) € {R% }? and a..>0 exists such that:

(10) YA =0 C(A) = b1 A% Ian< + bg[lOg(A) + 1]1A21-

REMARK 2.  <|Assumption (Iyy, (c)) is a quantitative identifiability condition. It im-
plies in particular that

WI(PQNP%) = C(‘Hl - 92|)7

where W (P, , Py, ) refers to the Wasserstein distance between Py, and Py, . The constants by
and by are not fundamental in our forthcoming analysis but «.. plays a central role: it asserts
how the distributions 7y, ;s moves from 7y, for small values of § (see Section 2.5). It is
straightforward to verify that (Iw, (c)) is satisfied in the location models with ¥ = I; since
in that case |mg, (Ig) — 7, (Ig)| = |01 — 02|

All along our work, we consider b; and L involved in Assumption (Iy, (c)) and (Ap)
as fixed quantities, that describe the variations of U and therefore the variations of the dis-
tribution (Py)gerq. Since by quantifies how mp moves when 6 moves, a link exists between
b and L since oppositely L quantifies in (A1) an upper bound of variation of U (6, .) itself,
and therefore an upper bound of variation of 7g. Even though an interesting question that is
related to contamination models (see e.g. [CW 14, LMMR18]), we have chosen to leave open
the analysis between b; and L, and simply assume in what follows that b; > 0 and L > 0 are
fixed constants independent from n and d.

REMARK 3. Our identifiability condition with the Wasserstein distance is different from
what is usually studied with mixture models where label permutations need to be considered.
In mixture models, # commonly refers to a collection of weights of components (w;)1<i<k
+locations of components (p;)1<i<x and identifiability is then related to a conditions that is
close to:

K
d(Py,,Py,) = Wi(pa,, pro,)  with pig =) wi(6),,(0),

i=1
where Wi (g, , ptg, ) is the Wasserstein distance between the mixing distributions g, and
Lo, We refer to [HN16a, HN16b] and the references therein for some recent statistical work
on identifiability and consistency rates in finite mixture models. Another popular subject
of investigation is the effet of the size of the weights (w;)1<i<x on the identifiability and
estimation, in particular in contamination models. We refer for example to [GKMM?20] for
a detailed understanding of the effect of the contamination level on the identifiability of
Gaussian mixture models, and therefore on b; involved in (Iw, (c)). However, we emphasize
that the model we are considering are log-concave, which is far from being the case with
mixtures.



REMARK 4. Besides our log-concave framework, we could imagine use (Iw,(c)) in
more general statistical models such as location-scale mixture models even though these
models are from being log-concave and much more challenging in terms of identifiability.
We refer to [GKMM?20, HK 18] and the references therein for some recent contributions in
this direction. As an example, using the dual formulation of the WV distance, it may be shown
that for a location/scale Gaussian model N, ,2, o, = 1 for the dependency on the means
|1 — po|. Regarding the dependency in terms of (o1, 02), the same strategy with f(z) = ||
yields . = 1 for |01 — o2|. In the multivariate setting, the situation is already more difficult,
and we refer to [DL82] for an exact value of the W5 distance that upper bounds the W one
and it seems reasonnable to think that «v. = 1 in this situation for location/scale Gaussian
models.[>

REMARK 5. This natural separation assumption is related to the hypothesis testing in
the statistical model. Statistical test has a longstanding history in Bayesian literature (see e.g.
[LC86, Bir83, GGvdV00, CvdV12] among others). In general, the former papers build some
global statistical tests using metric considerations with covering arguments on the statistical
models. In particular this is done using Hellinger distance or the Kullback-Leibler divergence.
Here, our assumption is related to a separation with the help of the W, distance over Py. The
function ¥ involved in (Iw, (c)) will be then used to build a global test.

In a sense, a link exists between the conjunction of (A ) + (Iw, (c)) and a metric com-
plexity (in terms of covering numbers) as used in the seminal contribution [GGvdVO00][Equation
(2.2)]. In particular, it is straightforward to prove that if N(¢,0 n K,dky) is the covering
number of the statistical model with the KL divergence and if K is a compact subset of R?,
then

log N (e, K,dkr) < dlog(vLe ).

Hence, (Iw,(c)) shall be thought of as a way to both “compactify” the space where 6 is
living and make a local link between d(Pg,Py«) and |60 — 6*|. This is useful to avoid sieve
considerations (see i.e. [GGvdV00, vdVvZ08, SWO01] for example) and this allows to quan-
tify the tail behaviour of the posterior distribution 7, far away from 6* (see e.g. [CvdV12]).

Finally, (Iw, (c)) also has a tight link with Assumption (W.1) of [MHW T 19b] that as-
sumes that if F'(6) := Egy: [log mg(&)], then for h a non-decreasing convex function such that
h(0) =0:

(VE(0),0" = 0) = h(|0 —07)),
For any 6 € R?, we introduce 6; = 6* + t(0 — 6*) and fy(t) = K L(Pg,,Pg-). A straightfor-
ward computation shows that Assumption (1¥.1) implies that:

1
KL(By, o) = fo(1) = fol0) + fo fi(s)ds

=f?VFwQﬁ*—®mwir<VFWQﬁ*%hb>J1Mﬂ9WD®
0 0 S 0 S

ds = 1/(0)]0 — 6%,

2jwmn+mmﬁw—9ﬂ

0 S

where we used in the last line the convexity of h. The previous inequality is not trivial when
R’ (0) > 0. Oppositely, if h’'(0) = 0, it is reasonable to assume that h is S-Holder around 6*
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with 3 > 1 and we obtain again a local inequality of the form K L(IPp,Py.) = |0 — 6*|® near

. . ) . . 1 h(s|0—0
6*. In the meantime, since h is non-decreasing, it is also possible to use So Mds >

Si 2 wds >h (Lj*l). Therefore, (WW.1) implies that a 3 > 1 exists such that:

0—0*
KL(Py,Pg.) 2|0 —0*)° A h <| 5 )

The link between (Iw, (c)) and (W.1) is then made with the help of functional inequalities:
if Py~ is strongly log-concave, then Py. satisfies the 77 inequality (see e.g. [LedO1]) and
W1(Pg,Pye) < 4/ K L(Pg, Py ). More generally, if Py- satisfies a sub-Gaussian concentration
inequality, [BG99] shows that this Talagrand inequality still holds. Hence, both (Iw, (c)) and
(W.1) of [MHW " 19b] implies a lower bound on the KL-divergence in many log-concave
reasonable situations, and the existence of convenient statistical tests.

2.2.2. Bayesian consistency. Upper bound We obtain the next result which is still valid
besides the log-concave settings. We have chosen to keep this setting for the sake of read-
ability, even though (PIy) is sufficient here to guarantee the result.

The next result states an upper bound on the LP loss between the posterior mean 5n and
0*. We define

1/ce
(an i (oo ()

and consider situations where n is large enough (with respect to d) in order to guarantee that
biefe < 1 where by is defined in (Iw, (c)). We then have the following result.

THEOREM 3. [f mp = e~ "% is a CY(R?%,R) log-concave prior with Vi € C, if (Ply),
(ApL) and (Iw, (c)) hold, and if (d,n) are such that bie% < 1, then:
1/ dl1 T
p]) F e K(U) <Og(n)> :

Vp > 1 (EQ*[@L—(J*

n
with K(U) = ( C’gL) * and C¥Y is the Poincaré constant given in (PIy) (Assumption 1).

REMARK 6. In particular, when p = 2, we recover the standard mean square error rate.
We emphasize that our consistency result makes sense only when considering some situations
where the dimension d is smaller than n the number of observations, so that €, is asymptoti-
cally vanishing when n — +o00. Therefore, our model is not concerned by high dimensional
situations where d may be larger than n.

If the separation provided by (Iw, (c)) is sharp, i.e. when a.. = 1, the L? loss is propor-

tional to \/g (up to a log-term), which is the optimal loss in many statistical models. Our

upper bound is deteriorated when o, increases, i.e. when the separation of the distributions
Pp near Pp. is “flat”, i.e. when the Wasserstein distance W, (P, Py.) ~ by]| — 6*||1 ¢ for
€ > 0 near #*. Below in Theorem 4, we extend this optimality result to a larger range of
values for a.

<{1t is worth mentionning the recent work of [MHW * 19b] that provides a similar analysis
and derives a similar contraction rate: Using the notations of [MHW T 19b], we observe that
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the value « of their Corollary 1 corresponds to a. + 1, essentially because of the definition
of F that is the Kullback Leibler divergence between 7y and 7y and remarking that

(VF(0),0 — 0*) =Eg.[(0 — 0%, 05U (£,0)] < |0 — 0*| .

Therefore, in the worst situation where 3 = 0 in [MHW " 19b], the associated rate of con-

vergence is (d/n)ﬁ = (d/n)ﬁ, which is exactly the result we obtain in Theorem 3. In
particular, in the situation of the Bayesian logistic regression, the noise inherited from this
model is bounded so that 5 = 0, which leads to the same result both for Theorem 3 and
Corollary 1 of [MHW *19b].[>

Lower bound <|In order to assess the accuracy of the Bayesian posterior mean estimator, we

study and derive a lower bound of estimation following the minimax paradigm. In this view,

we introduce F the set of models (Pg)gera such that (Iw, (c)), (PIy) and (Ap) hold.
We then define 7, 4(cv) as the following minimax risk given by:

Tnd(ce) :=infsupE [Hﬁn - H*Hg] ,
G FL
where the above infimum is taken over the set of all possible estimators U, constructed from
the observations £". Hence, 7, 4(c.) is the best achievable L? risk of estimation of * in the

worst situation under the assumptions of Theorem 3. We obtain the following result.

THEOREM 4. Over the class ]-"0% a constant k(L) exists such that:

nd(oe) = k(L) <d> T

n

We shall conclude from Theorem 3 and Theorem 4 that the Bayesian posterior mean es-
timator achieves an optimal rate of estimation in terms of n and d up to a log(n)Y/® term.

>

2.2.3. Comments. We provide below several comments on Theorem 3. First, we empha-
size that our results apply in any log-concave situations included the weakly convex case.
Theorem 3 describes the behaviour of the posterior mean §6dm, () and not of the entire
posterior distribution as classically studied in Bayesian statistics. In a sense, such a result
seems less informative than the knowledge of the behaviour of the entire distribution 7,.
However, a good behaviour of the posterior mean requires a sharp control of the tails of the
posterior distributions whereas a “contraction rate” relative to the Hellinger distance (or with
other distances such as the Kullback-Leibler or total variation ones) sometimes blurs the tail
behaviour of the posterior. We refer to [CvdV 12] for an illustration in high dimensional linear
models of the efforts needed to extend posterior concentration to posterior mean consistency.
If we now pay attention to the convergence rate obtained in Theorem 3, we emphasize that
when the separation is sharp, i.e. when . = 1 in (Iw, (c)), we obtain the standard minimax
convergence rate % up to a log(n) term, and this result is in a sense non-asymptotic (a uni-
versal constant could be exhibited with a price of a huge technicalicity). In comparison with
[MHW * 19b], we also obtained a slightly better convergence rate of (d/n)'/* (see Corollary
1 of [MHW " 19b]). But in general situations, their value of 3 is equal to 1 so that the rates
derived from Theorem 3 and Corollary 1 of [MHW ™ 19b] are equivalent.
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2.3. Discretization in the weakly convex settings. <JThe main contribution of our pa-
per is to carry out a precise study of the weakly convex situation (e.g. when the underlying
function is convex but not strongly convex). If we could derive the convergence rate of the
continuous Cesaro average with the help of simple functional inequalities and Poincare con-
stants, it is no longer the case when dealing with discretized Cesaro average. To bypass this
difficulty, we are then led to introduce some functional inequalities that are slightly more
parametric (see (H%) below).

2.3.1. General result. In this section, we focus on the discretization procedure in the
general weakly convex situation. We still assume (A ) and introduce for any convex func-
tion W a set of inequalities that are related to the Kurdyka-Lojasiewicz inequality (see e.g.
[Loj63, Kur98]). This type of inequality is widely used in optimization and geometry to ex-
tend results from the strongly convex case to the more difficult weakly convex settings (see
e.g. [BDLM10, GP22]). For this purpose, for any matrix B, we denote by Sp(B) the spec-
trum of B. We set:

(12) Avew (z) = sup{Sp(V2W (z))} and Ageyy () = inf{Sp(V*W (z))}.

ASSUMPTION 4 (Assumption (H%g)). W is a positive C*-function with min W =, 1
and there exist 0 < q < r < 1 and positive ¢; and c¢o such that,

Vo e RY, AW ()" < Agep () < Avew () < oW ()%

Assumption (H%¢) implies that (see Lemma 2.1 in [GPP22] for details)
limsup [VW[*W? ! (2) < +o0  and |li‘minf VW PW™ 1 (z)> —c0.
x|—+00

|z|—>+00

In the case r = ¢, it implies a global standard Kurdyka-f.ojasiewicz assumption (see e.g.
[GP22] for a recent application for stochastic gradient descent, and the seminal contribu-
tions of [L0j63]). The case r = 1 corresponds to the limiting Laplace case, whereas r» = 0
(and g = 0) is associated to the strongly convex case. In particular, the complexity of the
procedure will of course increase with r. Finally, note that since VW is L-Lipschitz, the
eigenvalues of V2W (z) are uniformly bounded, which implies that ¢ > 0 in (H%3) is given
by (A ). Assumption 2.4 (H%%) relates the behaviour of the spectrum of the Hessian (which
translates some information on the curvature of the landscape) with the size of the potential
itself and r > ¢ > 0 is associated to some lack of strong convexity in some directions of the
landscape function. Interestingly, thanks to (H%4) and the convexity assumption, some tights
relationship exist between W (), |[VW (z)| and the eigenvalues of V2W (z).

REMARK 7. Let us consider (H%G) with W(z) = (1 + |z]?)? with p € (1/2,1]. We
verify that VI (z) = 2pW (x)P~1)/Pz and
(V2W (2))ij = 4p(p — VW () P=2/P 4 2ps, ;W () P~ 1/P,

Moreover, for any vector u with |u| = 1,

2 2\p—1 (x, u)?
W a0y = 21+ e (120 - 2.
It implies that:

Avew (2) = 2p(1 = 2(1 = p)) (L + [P~ =2p(1 = 2(L =))W (2) ™+,

and

1-p

szw(l‘) < (1 + |IL"2)p_1 = QPW(l")_ P
This entails (H%%) with r = g = (1 — p)/p.
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~ Under (H%%), we are able to obtain exponential bounds for the Euler scheme denoted by
X7 and for the diffusion X (see Lemma 2.3 and Proposition 2.4 of [GPP22, Section 2.3]),
which in turn involve the following quantitative controls of the moments.

PROPOSITION 5. Assume (H%L). Assume that W (x*) < 1. Suppose that v < 7y :=
Wlﬂ, then a locally finite positive function p — ¢, on (0,+m), independent of W, such
that for any p > 0,

supE, [WP(X;)] + sup E,[WP(X])] < ¢, (WP(z) + YP),

=0 =0

where T is a positive number that satisfies:

1< T <er(eav L)Tore, ' log(1+ dL)d e,

where c, is a constant depending only on r.

REMARK 8. Note that in the particular case ¢ = 0, we obtain T < cqn(L/cl)ﬁ log(1 +
dL)d" so that when r = g = 0 (that corresponds to the strongly convex setting) we obtain
T o c%dlog(l + dL). It is worth saying that the previous bound is universal, but may be
improved in some situations with specific statistical models.

We are now able to state our first bounds on the complexity of the discretization procedure.
This general and technical result is divided into two cases () and (77) leading respectively to
a complexity of order e~ and ¢~ (the second case requires additional assumptions on ).
Then, each case is divided into two parts (a) and (). In Statement (a), the result gives the
dependency on the whole set of parameters whereas (b) only focuses on the dimension d (in
order to provide a bound which is less precise but more simple to read).

THEOREM 6. Assume (Ap), (H%G) and that v < 5o := $((d(L v ¢2)) ™' A 3). Let f be
a C? function from RY to RY with d' < d, [f]1 <1 and [Df]1+ <1. Lete >0 and ¢ > 0.

c2(1+e) 2 d T2r(1+c)+q—1dL2

. d
° (l'a) If’)/e = o At N T—g—arc N\ 2(11¢)
dL?Y T ac
1

and

1l—-gq 1—g 1—gq
c2(14q) 1Fq ¢ TFa T—2rr-e|xo_$*‘21+q c

N> T%(He)(%(lﬂ)vqgl v d/T2r(1+e)c—2(1+e)771872

e 1 e 1 e
then, a constant c. , 4 exists independent from ¢q, ¢2, L, d, € such that:

2

0 T4

el

o (ib) Ifee (0,1 A (dd T )], v, = e2d ) and N. = e Ad/d it
then E. < ce® where c only depends on ¢,r,q, 1, co and L (but not on d and ¢).

* (ii.a) Assume furthermore that W is C® with D*W L-Lipschitz for ||.|» and that
|A(VW)[3 o := sup [A(VIW)(2)[* < +o0,

zeR4
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where A(VW) = (AOW, ..., A W). Then, if . = cy,1 with

c 1+e 1 C%+e 1
2 1= cl min I T Tor , , — ,
Lep? Y5 (407 LLAY 04O [ A (VW) [0 70 +)

d/r2r(1+e) T%(Pre)
1,2 = max 2(05) T ’

2
1 ¢

and

and N, = 2—'?5*3, then the conclusion of (i.a) holds true.

* (i1.b) Under the assumptions of (ii.a), assume that a constant C independent on d
exists such that H&(VW)H%’OO < Od? with p= 0. If e € (0,1 A (d'd” 20+ )], e =
ed (It T p ) g N, = 5_3d’dmax(1+1+qw’p+1+q~‘)+e, then the conclusion

of (i.b) holds true with a positive constant ¢ which only depends on ¢,r,q,¢1,¢2, L and L
(but not on d and ¢).

REMARK 9. Since |A(VW)[3,, = sup,epe Yy (37_, 82, ;W (x))%, the condition

IA(VW)|3 o < Cd® reasonably holds with p < 3/2 (if each 6 ;W is bounded by a uni-
versal constant) and may hold with lower p when the coordmates of the dynamical system
are not “fully connected” (for instance if W; depends only on z;, we get p = 3/2). When
p<1+7 +277~ (which is always the case when r > 1/2), we obtain the same dependency in

d in (#i.b) as in (i.b) but with ¢~3 instead of ¢4

2.3.2. Application to Bayesian learning. A consequence of Theorem 6 is stated below
when we observe a n i.i.d. sample £ and when ¢, refers to the statistical accuracy defined in

(11) given by &, = (d/n) T (we omit the logarithmic term) and when we implicitely assume
that d is smaller than n, i.e. that the sequence ¢,, — 0 as n — 400 (see Remark 6).

THEOREM 7. Assume (Iw,(c)), (Ar) and (PIy). Suppose that for any £ e R, U (&, )
satisfies (Hqﬁg) with ¢1, ¢o, 7 and q independent of €. Assume furthermore that r = q. For the
following tunings of ., and N., given by:

(2) Ifr>=1, then ~., = d—Q@r+l—agt),—2r—o.* . and N. 2o tHar gldr—20, "
(ii) Ifr=q=0, theny., =n"2? and N., = n2(1+0‘71)d (1 o),
(i4i) Foranyre€ (0,1), we have v., =n (2’"+"‘:1)d I=2rtalt \ T dier ) and
N. :,Ya—l [n% -2 r)dl”” 1ozt v d2r—a:1na:1—2(1—r)] )
we can find a constant C' that depends on q,r,¢1, co but not on d and n such that:

E[16, ., — 0" I°] < Ce,

ntN

>

2.4. Discretization in the strongly convex setting. <J{This paragraph concerns the L-
smooth and strongly convex case, which is defined as follows.



14

ASSUMPTION 5 (Assumption (SC,)). We assume that for any § € R9, U(§,.) is p-
strongly convex: i.e., for any £ € R4:

VzeR? VOeRY:  2VIU(E,0)z=plz

THEOREM 8. Assume (Ap) with L > 1 and (SC,). Let X" denote the Euler scheme
with constant step-size =y initialized at xo. Let f be a C* function from R? to RY with d' < d,
[f]1 <1and [Df]i.<1and consider e >0

(i) If ve = [%daz AL A W and N. > d'p~2y e 2 v \/ap*?’/?a*lfy;l , then:
2

2
Suc€”-

E.,

1N
N DX, (L)
€ k=1

(ii) Assume furthermore that W is C* with D*W L-Lipschitz for |.|, and that | A(VWV) H%m <
+00. If 7 = by 2& with:

L*d 1 L2 A(VW)|3 Lt
bg=d2+73+lz2 72+74 +M+27|{L‘0—$*2,
P P2 p p P

and N; = 6*3@ vyt vdy 1t pTY, then:

2

2
Suc €’

1 &
v DXL - 7(1)
€ k=1

E.,

REMARK 10. Note thatin (7), when ¢ is small enough and z sufficiently close to z*, we
2
have 7. = £ . In this case, for a C? function, the computational cost induced by (¢) is of

the order O <%4Lz5*4> . This result slightly improves the bound derived in [DM19] with the

same dependency in d and ¢ and a better one in terms of p and L, with a completely different
method of proof. We also observe that we recover in this case the limiting case r = ¢ = 0 of
Theorem 6 ) and 47) with a sharp dependency in terms of p and L.

If now the function f is more regular and three times differentiable and if | A (VW) 13,00 Suc
p~2(LLd)? (see Remark 9 for a discussion on \\5(VW)\|%7w), then the computational cost

becomes O, (%6*3>. Up to our knowledge, this result is new for deriving an € approxi-
mation M.S.E. cost.

The next theorem gives a quantitative setup to attain an 2 accuracy for a discrete LMC
procedure with a constant step-size y where €2 = (d/n)% ' is defined by (11) in the situation

where €, — 0 as n — +o0.

THEOREM 9. Assume that (Iw,(c)), (Ar), (PIy) and (SC,) hold and that |0y —
0* |2 Sue d. For the following tunings of parameters:

e (i.a) ify., =n 2 and N., = nz0t2) gz operations.
« (i.0) if 6, o — 01> <dn™? v =n""and N = n v d operations.

then a constant C that depends on o, L, p but not on d and n exists such that:
E { 0)

n,tN

—_ o

2 2
< Cegy,.



ON THE COST OF BAYESIAN POSTERIOR MEAN STRATEGY 15

This result deserves several comments.

« This theorem indicates that the step size should be chosen as yocn ™2 (first case) or yocn ™!

(second case), which becomes smaller when n increases. This is due to the sharper statis-
tical accuracy we can expect with the posterior mean when we have a large amount of
observations.

* A stricking point derived from the previous result is that the tuning (v, N) = (n"2,n) is
“universal”, which means that regardless the value of a., the computation of the posterior
mean with an explicit Euler scheme with step-size n~2 and nd iterates leads to an optimal
statistical result. If we now consider that each iteration of the LMC has a cost d, the global
cost of the procedure is then nd.

¢ We also observe that our results of Theorem 7 and of Theorem 9 match, i.e., the cost of
learning in strongly convex situation is identical to the one obtained under (H%{) when
r=q=0.

* We observe that with Assumption (SC,), besides the obvious curse of dimensionality for
large d concerning the statistical accuracy of §n there is no burst of the computational
cost, which remains polynomial in terms of n and d.

» Finally, it is worth saying that in the previous statement, we did not use the C> assumption
to assess the cost of the Bayesian learning, essentially because the potential improvement is
strongly model dependent owing to the size of | A(VWV) ||%7OO. It could be certainly helpful
in some very specific situations.

>

2.5. Discussion on the discretization results . <]

Polynomial cost. Overall, the leading take-home message when considering the discrete
approximation and the concrete estimator is that in both strongly and weakly convex case,
we obtain a complexity that evolves as a polynomial of n and d, the complexity being much
lower in the strongly convex case. The worst situation is attained when r is close to 1, and
o = 1, and we obtain in that case a computational cost of the order n*d> (by applying
Theorem 7 (i7)). All the more, we observe that in our results, the complexity of Bayesian
learning is seriously damaged with the loss of strong convexity, both in terms of n and d, and
this loss is parametrically described with the help of Assumption (H%Q)

Lack of log-concavity. Behind our polynomial cost result, the log-concave assumption
plays a central role: withouth a such assumption, sampling has to be considered with specific
models and specific algorithms. To bypass the absence of log-concavity, a popular strategy
relies on the existence of a functional inequality satisfied by the target measure. For example,
[MCJ*19] (see also [MFWB19]) assumes the existence of a log-Sobolev inequality (LSI)
and obtain a total variation mixing time of the order K de~2. A such LSI is then shown to
be verified with the help of a perturbation approach (see [HS87]) for strongly log-concave
distributions outside a ball of radius R, but the dependency of K may be exponentially large
with R, so that the overall cost depends on a balance between d and R. As a new exam-
ple of the role of functional inequalities, in [MHW ™ 19a], the authors obtain a polynomial
computational cost with a reflected Metropolis-Hastings random walk, that is well suited
for symmetric mixture model (which is not log-concave) and is far different from a pure
Langevin strategy.

Interestingly, our approach relies on the Poisson equation (that could be studied in non-
convex situations) whereas [MHW " 19a] relies on functional inequalities such as the Poincaré
one.

Existing results on MSE. As indicated above, we obtained the complexity to compute an
e-approximation of the posterior mean with the M.S.E. loss, i.e. the complexity to guarantee
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that the M.S.E. becomes smaller than 2. This is the purpose of Theorem 6 and Theorem 8
respectively in the weakly and strongly convex cases. The related orders of complexity are
given in Table 1, where we also draw some comparisons with some state of the art results
related to the complexity of Bayesian sampling. Up to our knowledge, the only paper that
derives an ad-hoc study of the M.S.E. criterion is [DM19], that obtains a computational cost
of the order de~* and de—3 in the strongly convex case. If our results are rather similar to
those of [DM19] in the strongly convex case (same dependency in terms of d and ¢), we
largely improve the state of the art in the weakly convex situation.

Existing results with other criteria. Other results are related to some different criteria
and for our purpose, these results are stated up to a normalization factor: actually, in the
recent papers [DMM19, DRDK?20] (see also [MCC*21]) that we compare with, the com-
plexity is defined in a slightly different way, omitting the Monte-Carlo factor. More pre-
cisely, oppositely to our paper based on a Cesaro average (involving only one path), these
papers use a classical Monte-Carlo approach to approximate 7(f) (for a given function f)
by Ny (Z1 + ...+ Zn,,..) Where (Zj)1<j<N,. denotes an 4.i.d. sequence of Njsc i.i.d.
random variables. Then, for a given ¢, these papers define the complexity as the number
ne of iterations of the Euler-scheme to compute Z;. In order to draw some fair compar-
isons, we need to consider the “true” complexity, ¢.e. to multiply their complexity n. by
MC(e) = Var(Z;)e~2, i.e. by the number of Monte-Carlo simulations that are necessary to
obtain a Monte-Carlo M.S.E lower than £2. Furthermore, since the involved function is I, it
is reasonable to assume that Var(Z;)ocd, so that we assume that the true complexity of the
compared papers is n.de 2.

Finally, former works state results with different distances: Total Variation, Kullback-
Leibler, W7 or W5. We only consider W; or Wy results in Table 1, which seem to be the
only ones that can apply to the non-bounded (Lipschitz) function I, the KL divergence and
TV distance being too weak to draw some conclusions on the posterior mean approximation.
In particular, we do not report in Table 1 the TV results presented in [DMM19] or KL results
in [Dal17]. First, we emphasize that we obtain in our work the best dependency (in terms of
€) in the weakly-convex situation, thanks to our parametric (H‘ég) assumption. It would be
very tempting to understand the behaviour of KLMC and a-KLMC within this framework.
Second, we recover the good dependency on d and ¢ of the LMC in the strongly convex sit-
uation. At last, LMC is outperformed by KLMC in this same setting as reported in [DRD20]
when ¢ is small enough. >

3. Minimax Bayesian posterior mean consistency. This paragraph is dedicated to the
proof of Theorem 3 (Bayesian consistency rate) and of Theorem 4 (minimax rate).

3.1. Poincare inequality and consequences. We state a famous result for the family (Pg) gcpa
of Bobkov and Ledoux (see e.g. [BL97]), borrowed in [Led01]2.

PROPOSITION 10.  Assume (PIy), then for any differentiable k-Lipschitz real function f:

SO LY
4k2¢cY " o, [cU
> 5) < 2e P V=P

Voe® VYneN* Pg(

%Z f(&) —mo(f)
i=1

We will apply this result for f = ¥ involved in (Iw, (c)) and with f = VUy. In particular, using
Proposition 10, we obtain the following result (see the proof in [GPP22]).

2In [BL97], the authors assume that the function f is bounded. However, when the concentration function

52 )
ack N 22/ Ck
[Led01] for details).

goes to 00 when & — o, the boundedness assumption can be removed (see Proposition 1.7 in
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< (SCp) and (A}) (H%’E) (or weakly convex) and (A )
v N(e) v N(e)
This work - LMC - 2 O(fmed)  O(dL4) 0@ =2y 0,y(d T e
This work - LMC - 3 O(L%de) O(dpifaf?’) O(ler%s) Oid(ler%qtrsf?’)
[DM19] - LMC - ¢2 O(frre?) O(‘%a*“)
[DM19] - LMC - ¢3 O(F25¢) O(%§35*3)
[DMM19] - LMC - C2 O(f-<?) O(dj—}e*‘*)
[DRD20] - KLMC (2 O(-L=e) Oiq(LLe=3)
[DRDK20] - a-KLMC - C2 O;q(d et 0,;4(d3e™7)
[DRDK20] - a-KLMC - ¢3 0,4(d1/2e3) 0,4(d376)
TABLE 1

Complexity N (g) of an e-approximation of the Mean-Squared Error with a constant step-size -y of several
methods. Left: strongly convex case (with dependency on d, p and L), Right: weakly convex case with
dependency on d. LMC: overdamped Langevin Monte Carlo, KLMC: Kinetic Langevin Monte Carlo, a-KLMC:
« penalized KLMC. [>

COROLLARY 11. Let (Iyy, (c)) holds and denote by V the corresponding 1-Lipschitz function.

Then,
i)
V0 e RY Py < — Z V(&) —Eg¥ (&) = 5) < 2e iCp  2y/Cp
n
i=1
i)
1< 7n4L26ZUdA féT
VOeR? Py |- D] VoUl(&,0)| =6 | <2de P4 2L\/Opd
n ?
=1

Corollary 11 will be an essential ingredient for the construction of some efficient statistical tests in
the family of probability distributions (Pg)gega. This key corollary is used in Section 3.2.1.

3.2. Consistency rate of the posterior mean. To study the behavior of (gn)n>0 introduced in
Equation (3), we adopt the presentation of [CvdV12] and in particular the link between the posterior
mean and the posterior distribution. As noticed in [CvdV 12], there is an important need to upper bound
the tail of the posterior distribution (far from 6*). To this end, for a non-negative sequence (g )p>1
fixed later on, we introduce the separation radius:

(14)

where r will vary from 0 to +o0.

Tn =Enp+7,

3.2.1. Statistical tests. Statistical tests have a long standing history in Bayesian literature (see
e.g. [LC86, GGvdV00]) to obtain consistency results as well as rates of convergence of Bayes proce-
dures. We introduce an appropriate family of tests (¢}, ),>1 parametrized by r > 0 (see Equation (14))
and defined for n € N* by:

15 rEM =1 n (rn) -
(1) On () =11 50 we)—mee (0] <522
It is expected that ¢, is equal to 0 with an overwhelming probability under the null hypothesis Py«
whereas ¢y, it is equal to 1 w.o.p. under Py when |6 — 6*| is large enough thanks to (Iwy, (c)). We
prove the following estimations in [GPP22] of the first and second type error of (¢}, )n>1.
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PROPOSITION 12.  The sequence of tests (¢}, )n>1 satisfies

neliaira iy

i) Pge (60 (™) =1)<2e P WP,
_nC<Tn%}2 c(/@
3] 16C TcU
i) SUPg jg—g+|5r, P (¢ (€7) =0) <2e TP W,

The next result is a technical estimation related to the denominator (normalizing constant) involved
in the posterior distribution distribution. A simple application of Corollary 11 yields the next result.

LEMMA 13.  Forany t >0, define the sets Al, = {| % S VU (&,0%)| < t}, then:

.
lcU
YneN* Vt>0 Py ({AL}9) <2de \'""7CPT 20VCpd)
3.2.2. Proof of the posterior mean consistency .

PROOF OF THEOREM 3. Our proof adopts the strategy of [CvdV12].
Step 1: Decomposition of the quadratic risk. We remark that for all n € N*:

-5 0=

<Ey- U 10— 6% dwn(ﬂ)]
Rd

Eg. Hén '

J (0 — 0%)dmn (6)
Rd

Q0
= pEgs U 1 (10 — 0%| = t)dt]
0

En ©0]
= pEg« U P, (10 — 6™ >t)dt+f P~ (10 — 6% >t)dt]
0

En
+00
(16) <eh +pf0 b Bgs [mn (|0 — 0| = 10)] dr,

where we used the Jensen inequality in the second line, an integration by part in the third line, a direct
integration SS” ptP~1dt = P in the last line associated with the Fubini relationship.
Step 2: Use of the tests (¢}, ),,>1. We now use the tests (¢} ),,>1 and the sets (A?)), we can write:

Eg- [ (|0 — 6%| = 3)] = Eg- [¢7, (€M) mn (10 — 6%| = 1))

+ B [(1= G ()0 — %] > )1y |

(a7 + Ege [ (1= G (€M)mall — 07| = )1 s e |
From this expression we can deduce the following inequality:
Egs [mn(10 — 07| = 7)) < Bpe [65,(€)] + Egr [ (1= ¢ (6")mn (10— 0°] = 1)1y |
+ Poe ({47,}°).

e Study of Egy« [(1 — o5 (™)) mn (|0 — 6% = rn)lA%]. We write that:
J e_Wn(gn»@) d (9
— 5 o o A7
0:10—0%|>rn e—Wn(€2,0%) 0 )

e_Wn(gnve) 9
JRd e~ Wn(£7,0%) dmo(6)

(18) (|0 — 0] 27’n)=f dmp(0) =
0:10—0*|=rn,
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At this stage, we control the denominator and the numerator separately. Let us denote by Z; =
mo(B(0*,t)) the prior mass of the Euclidean ball centered at #* and of radius ¢. We have

e—Wn(£n79) 9 e_W’/L(fnvG) 6
log JRd e mo(0) | = log Lg(e*,t) W@ g 4mo(?)

~Wn(€.9) drmg(6)
e 0
>lo : +log Z
’ <JB(0*¢) e Wn(&0%) 7, o

dmo(6)
7

> [ ey 2IUE0) ~U(E0) log Z,

) i=1

where we used the Jensen inequality in the last line with the concave function log and the normalized
measure d7rth_1 over B(0*,t). Using that VyU (€, .) is L-Lipschitz we get

L
VeeRT  U(E01) — U(€.02) < (01— 02, VoU (€, 02)) + 5 01 — 02,
for all (61,02) € R, which implies that:
L
Vie{l,...,n} VOeRY |U(§i,9)—U(gi,e*)—<0—9*,VU(§Z»,9*)>|<§|9—9*|2.

Using a sum over ¢ and the triangle inequality, we then deduce that:

VoeR? N U(&,0%) - U(&,0) >~
=1

n
* * L
i=1

The Cauchy-Schwarz inequality yields:

> VoU(&:,6%)

i=1

O —6", % VoUl(&,0")| <10 — 6]

i=1

An integration over B(6*,t) with the normalized measure 7 Z, ! Jeads to:

7W’ﬂ(£n79) *
log (J e)dﬂo(9)> > fnétzw —t +log(Zy)
R

> VoU(:,6%)

a e~ Wn(€n,0* 2 Z =

> VaUl(&,0%)

i=1

L
>-—n=t2—t

5 + log(Z).

To lower bound the denominator, we use the set A% and we have
—Wn(£",0) L
€ 2
- 2 —_— ) — .
log < fRd W (e ") dW(a)) La, ( nytt ot
o (L

Using (19) with (18) and the Jensen Inequality, we have

Eg (1= 65(€)ma(6 — 0% > ra)1a; )

> VoU(&:,6%)

i=1

+ log(Zt)> lAEL

e=Wn(£7,0)

_ Eg- [(1 = & (E™) $o:10—0+ |51 mdﬁow)]
= Ztefn(%+1)t2

roen e~ Wn(£7,0) nt?(L11) .
<L5|9—9*27‘nE0* l(1—¢n(§ ))W dmg(0)e™ 27 (Zy)
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<(Z) e (3T sup Ep[1—¢l(eM)]
{0:10—0*|=rn}

_oer)?  elrn)

U U
g2ent2(%+1)710g7r0(3(9*,t))e 160F "4/l

)

where in the penultimate line we used a change of measure from Py« to Py.
e Study of Eg« [¢],(£™)]. Using the first type error given by ) of Proposition 12, we have:

_ c(rnng e(rn).
10U
Eg- [0} (€™)] <2e P WP,

e Study of Egy« [(1 —or (™)) mn (|0 — 6% = rn)l{A%}c]. We introduce the dependency in  and n to
upper bound Py« ({ A }¢) with ¢ and apply Lemma 13. We have:

_n <t2U N t)
2 U .
Poe ({(AL}%) <2de  \‘EPOP" 21y/0Fa )
We then obtain that:

Eg« [mn (10 — 07| > r5)]

_ crn)?  clrn) n (t2 R t)
* / T /
(20) < 4€nt2(%+l)—log7ro(B(9 e w6y "0 jcg -+ ode 2 ool |

Step 3: Small ball calibration and prior mass We now adjust the different parameters in order to obtain

~

the best rate for (6,)n>0. We choose t that depends on 7 and n, i.e. t = trn according to:

c(rn) A /e(rn)

trp=—""—""7,
r,n A

with A chosen sufficiently large such that A = \/ 32(L +1)CY v 4/CY, so that:

)_nc(rn)2 N c(rn) < C(Tn)Q N c(rn)

L
nt2, (= +1 < .
o <2 16CE  4\/cy — 320p g, /cy

The previous inequality may be verified by considering the value of ¢(ry,) and its position in compar-

ison to 1 and to 24 /Cg. In the meantime, we get that:

—~logmo(B(6" tr,n)) < —logmo (B(0*, A [elen) A V/elea))))
We introduce &, as:

logn ) 1/20¢

n

En = (LQng

and consider n large enough such that ¢, < 1 and bjeic < 1 (where by is given in Assumption
(Iw, (c))), then:

~logmo(B(6",tr,n)) < —logmo (B(6*, A c(=n)) )
Since mp = e~ Y0 with Vj a C% function, we then deduce that:
1
V6>0, YOeB(6*,6):  |[Vo(h) —Vo(6%)| <d|VV (8] + 552,

which implies:

—logmo(B(0*,trn))
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< —log f eVO(e*)—A’lc(‘E”)va(a*)H—A*ZC(E’I)2/2d)\d(9)
B(0*,A=1c(en))

_ A 2¢(en)? _
= —To(0") + A e(en) [TV (0°)] + S5+ dlog(Acen) )~ log Aa(B(O,1)
A 2¢(agq)?

< —Vo(0*) + A Ye(ags) | VV (0*)] + + dlog(c(en)™h).

2
Using the behaviour of ¢ near 0 (see (Iwy, (c))), a constant Cy« exists such that:

—log mo(B(0*,tr.0)) < log(Cgs) + daclog(ep ).
We then obtain with K = 32 v 442 that a universal ¢ exists such that (20) may be upper bounded as:

n C(Tn)2 c(rn) —1
- +daclog(e
K |:L201quch’gd:| aclog(e,”)

Eg« [mn (|0 — 0*| = rp)] < qde
Finally, Equation (10) yields:

n 2 {rn}2%e _myp, loslrn)+1
B ST oUdq
(1) Egs [mn (|0 — 0% = 1) <qde ™ " P11, < + qde WePt 1, o,

Step 4: Convergence rate We use (16) and (21) and obtain that:

2a log(rn)+1
+oo _ np2{rn}*c ,ﬁbzgin

~ _ K1 20U, K™ /cUq
Eg«[[|0r — 0 |IP] Suc €8 + dJ Pl e P11, < +e VePt 1, o9 |dr
0

2a log(r)+1
1 _np2 rotc +00 _ﬂngi
_ K" 11200 _ K [cU
Suc €£+dlf rP~le L cPddr+J rP~le LVOpd g

En 1
Using the value of €, we introduced in Step 2, we then observe that:

2c
400 _np2_rfC 21U
f p-1, K ngcgddrg <KL Cpd

/20 +oo
T 5 (2000) 71 J oP2ee= o=y = Oe(el).
bln b2 Klogn

En

The second integral may be made exponentially small (in terms of n). We then observe that the leading
contribution of the LP loss is then brought by €. O

3.3. Minimax lower bound (proof of Theorem 4). <|Below, we establish a lower bound of
estimation that matches with the Bayesian consistency rate we derive in Theorem 3 in terms of n and
d.

PROOF OF THEOREM 4. For this purpose, we introduce ¢, defined by:

Pac(x) = sgn(@)z|* Lz <1 + g5,

and the family of multivariate Gaussian distributions Py = N (dpq,.(6), I4) with 6 > 0 defined later
on and

V'LE{l,,d} lu’ac(a)lzgoac(gl)
Considering all positions of x and y, we observe that a constant c¢ exists such that:
V(z,y) eR?  |pa (@) = pa.(y)] = clz —y|*
As a translation model, it is immediate to verify that:

Wl (Pel 9 ]P)HQ)Q = 62|/’L0éc(91) - :uOtc (02)|%

d
= 52 Z |5001c (971) - ‘P%(%)P
i=1
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1 d
2 2 2 % 7 |20
>5Cd<di_1|91—92| )

1 e _
> ds?? ((1|91-922) = 252" )01 — fa 57

where we applied the Jensen inequality in the previous line with the convex function r — r®c with
. > 1. Therefore, we observe that when § = d—(17%)/2  the family PPy satisfies (Iw, (c)). In the
meantime, straightforward computations show that (PIy) and (Ap) also hold for this statistical
model so that this statistical model belongs to the ]-'Oec class used in the statement of the result.

In this statistical model, we then derive a lower bound of estimation with the L? risk applying the
Fano Lemma associated with the Varshamov-Gilbert Lemma. We introduce the Hamming distance
p(w,w’) defined by:

d
V(w,w) € {0, 1}d x {0, 1}d plw,w) = Z 1isei
j=1

The Varshamov-Gilbert yields the existence of M = |e®/32| points in {0, 1}% denoted by (w1, . ..,war)
such that

d
Vigk o plwjwg) >

With this net over {0, 1}d, we introduce the net 61, ..., 0, defined by
0; = Bwi,

for some 3 > 0 chosen later on. We then verify that:

. Vd
Vi#k H@j—@k\b?ﬂ?-

In the meantime, the Kullback divergence for Gaussian distributions leads to:
n n
KL(Py,,Py,) = 50%| 0. (0:) = i (0[5 < % 5>

where we used that the maximal value of the Hamming distance is d and d6% = d®. We then apply
the Fano Lemma and observe that:

m%mﬂ%<wn—ﬂz>5§5>>c>o
O0n 0

n

as Soon as:
249 g2 + log(2)
d/32

We then choose (3 as large as possible, i.e. we choose 3 such that:

1 1
I-ac\ 2ac Sae
B:b(d a)2 =b<d>2 a2,
n n

This entails a minimax lower bound for the L2 rate of the order:

o) 2 VB ~ (d> =

n

> O
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4. Discretization of the Langevin procedure - Weakly convex case. The weakly convex
(i.e. not uniformly strongly convex) case is tackled with a completely different approach with the help
of Assumption (H%’g) Actually, in the weakly convex case, a series of properties disappear. For
instance, one can not easily control the pathwise distance between the process and its discretization.
The problem is then significantly harder and we choose here to make use of the inversion of the Poisson
equation, which leads to a relatively tractable formulation of the error between the discretized Cesaro
average and the invariant distribution (applied to the identity function). In particular, this “Poisson
equation approach” is in the continuity of [LP02, HMP20]) and has a long-standing history in the
study of central limit theorem for Markov chains. We refer to [Mey71, Nev76, Rev84, GM96] for
seminal contributions on additive functionals of Markov chains. We first stay at an informal level in
this paragraph for the sake of readability. We sketch the general idea behind the use of this equation
with an Euler scheme.

Again, we first state some general results with a diffusion process (X¢);>0 solution of:

(22) dX; = —VW (X;)dt ++/2dBy.

4.1. How to use the Poisson equation f — 7(f) = Lg?. This approach is based on the in-
version of the operator £ of the diffusion. For a given function f, we recall that the solution of the
Poisson equation is the function g such that 7(g) = 0 and that satisfies:

f_ﬂ-(f):‘cg7

where 7 denotes the invariant distribution of the diffusion (see below for background on existence and
uniqueness of the solution). We consider g the solution of the Poisson equation.

e For such a solution, a first important ingredient is based on the following remark: if (X¢);>¢ is a
Markov process with generator £ and g belongs to the (extended) domain, then the Ito formula yields:

t
9(X0) = 9(Xo) + fo Lo(X)ds + MY,
so that

t t
(23) JO f(Xs) —7(f)ds = JO Lg(Xs)ds — (9(Xt) — g9(Xo))

is a local martingale (and certainly a true martingale under appropriate conditions). Thus, the control
of the distance between (% S(t) f(&s))e=0 and 7(f) can be tackled from a martingale point of view.

¢ The second main interest of this approach is the possibility to specify that our estimator involves
f =14, which is an important ingredient of the approximation of 7( f). Such a precision is untractable
when we handle distances between probability distributions.

We first state that the Poisson equation is well-posed in our setting and recall a classical formulation
of this solution. The proof is postponed to the supplementary document [GPP22, Section 2.5]. Note
that this result is only stated under the assumptions of our main theorems but may be certainly extended
to a more general setting (see [CCG12, Corollary 3.2] for a more general result).

PROPOSITION 14 (Poisson equation). Assume (H%4) and suppose that W is C3 with bounded
third derivatives. Then, Equation (22) admits a unique invariant distribution and for any C%-function
f with bounded derivatives, the problem Lg = f — w(f) is well-posed on the set of C?-functions such
that 7(g) = 0 and the unique solution is given by:

+0o0
o) = j [7(f) — Pyf(x)]ds.

0

Note that in what follows, we will solve this equation d times for a multivariate function f =
(f Lo, fd ) (and will mainly consider the case f = I; for applications to Bayesian estimation).
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4.2. Poisson equation and discretization. In the discretized case, the aim is then to mimick
the martingale property of Equation (23) but some additional error terms appear with the discretization
approximation. Such ideas have been strongly studied in [LP02, HMP20] but since the solution to the
Poisson equation is not explicit (in general), the previous works have usually made ad hoc assumptions
on the function g and its derivatives. For our purpose, we identify the key properties satisfied by the
solution when f = I; in terms of the dimensional dependence.

We observe that (X¢, )x>1, computed through the recursion

Xy, = VW (X, ) + 27k,

where ((;)k>0 is an i.i.d. sequence of standard d-dimensional Gaussian random variables, is a se-
quence of discrete time observations of the continuous time process (X¢)¢>¢ defined by:

(24) Vte [ty tpe1] — dXe=—VW(Xy,)dt + v2dBy,

with ﬁCk = Btk — Btk71'

Considering a multivariate function g = (g1, ... 7gd/) :R% — R we denote by Dg = [Vgl;... ;ng/]
its Jacobian matrix which maps from R? to the space of d’ x d-matrices. Similarly, Ag refers to the
vector built with (Ag!,. .., Agd/). For s > 0, we define s the largest grid point in (t;)x>( below s:

(25) s :=sup{ty : t < s}.

We then observe that:
t — — —
o%0) = 9(o) + | Lo(Xe, Xo)ds + M.
where s is defined in (25), £ is given by:
(26) Lg(w,z) = —Dg(x)VW (z) + Ag(z),
and M(9) is the R%-valued local martingale defined by:
t —
27 MO = /3 f Dg(X)dBs.
0
Similarly, the definition of £ shall be extended to multivariate functions by

(28) Lg(z) = (Lg*(z),...Lg" (x)) = —Dg(x) VW (z) + Ag(a).

We first state some useful technical results for the proof of Theorem 6 whose proofs ar postponed to
[GPP22, Section 2.3].

LEMMA 15. Assume (HZ{Q) Then, Yx € RY,

S (W) - W) < VW )2 < 1 (W) - @)

Furthermore, Vx € ]Rd,
(29)

1
W (@) — W (2*) = (1 4 r)er|a — 2* 2 and W (z) — WHa(2*) L—I—q)m —z*2

1—g¢q

N

In this second technical result, we obtain some crucial bounds related to the solution of the Poisson
equation under Assumption (HEG).

PROPOSITION 16.  Assume (HLG) with ¢3 >0, ¢; > 0 and r € [0,1]. Let f : R — R? be a

Lispchitz C2-function with [f]1 <1 and [Df]1,« < 1. Then, g: RY > RY s a C2-function and for
every ¢ € (0,1), a constant c, exists (which only depends on ¢ and not on the other parameters), such
that for any x:
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i—a) [Dg(@)|+<cecy ¢ (Wr(lﬂ)(x) n Tr(1+e)) '
i=b) If W(z0) Sue T, sups=o Exo[HDQ(Xt)Hg]écecﬁ(lﬂ)l‘w(lﬂ).
ii—a) IfW(2*) Suc T, lg(x) — gla®)P<eeey *72¢ (W(1+3T)(1+e)(x) +T(1+3r)(1+e))

ii = b) If W (x0) Sue T, then supy=o Eao[|9(Xe) — g(w0)|*]<cee 72 H30 AT,
iii — a) Assume that V*W is L-Lipschitz for the norm |.||s. Then, for any x,y € R® with x + y,

|Dg(y|)y_l;g(x)* <cec1_2(1+e)l~/ (W2r(1+e) (z) + W27’(1+e) (y) + T2r(1+e)) )

iii — b) Set Xy = X¢ — (t —t)VW(Xp). If W (z0) Sue T,
S S S & F —2(1
Eso [|(Dg(Xe) = Dg(X0) (VW (Xp + Ag) = YW (Xp)2] <ee(LLe " (1)) 240 +9),
PROOF OF THEOREM 6. The plan of the proof is the same for ¢) and i) and is decomposed into

three steps. Steps 1 and 2 are common whereas the last one is treated separately.
Step 1: Decomposition of wx (f) — 7(f). We observe that:

1 N

1 X _ 2 _
() =7l i= 5o 3 I ) =7 = o D [ f(Rads = ()
k=1

N b—1Ytk—1

1 [t~

[£(Xs) —m(f)]ds

iy

iN in _ _
— o =+ [ ) = s

tN

Now, we may use the Poisson equation f — 7(f) = Lg and deduce that:

tN tN _ _
mn() =) = o= | Laads + - | 1K) — (X
1 tN tN B - 1 tN -~ B
— oo | o Kas+ [ Mo~ £ Kolas + | IR0~ F(Xoles
N N JO N JO

where £ has been defined in (26). To handle the first term of the right-hand side, we use the Ito formula
to obtain:

9% = g(ao) + |

0

tn

o tN _
Lo(Xe, Xo)ds + ME with M =2 J Dy(X4)dBs.
0
By (26), we remark that
Lg(x) — Lg(x,2) = Dg(x)[VW (z) — VW (z)].
We then obtain that:

A©) Ay —A®)

- (9)

X:o) — M 1 [t~ _

() —m(f) = = SEm) Z9leo)  Miv LN b oW (R, - VIR,

tn tn N Jo

1 tN B _

(30) +E . [f(Xs) — f(Xs)]ds
=43

The rest of the proof consists in studying the mean-squared error related to each term of the above
righ-hand side and to deduce the result the upper-bound for E|rx (f) — 7(f)|%.
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Step 2: Mean squared error related to Ag?\f), ASV) and Ag?\r):

e By Proposition 16 ii) — b), there exists a constant ¢, depending only on ¢ (and which may change
from line to line) such that,

9(Xey) — 9(Xo)|?
ty
(1),

o Let us consider the martingale term AtN

3 T (1+3r)(1+¢)
Ezqo < Celq 3=2¢ —
Iy

tN

A(O)f = Ezo

tN _
Eao [IMO 2] = fo Eao | Do(Xs)2ds,

< Tr(AAT) <

where ||| refers to the Frobenius norm. Then, since for a d’
d'|A||2, Proposition 16 implies:

—o(14e) d'r2r(1+e)

Eap [AD]" <
o tN \Cecl

iN
e Let us now consider Agi) On [tg_1,tr):
31) Xs— Xs=—(s—85) VW (Xs) + Ags.
with Ags = v/2(Bs — By, _, ). Thus, by Taylor formula, there exists £(s) € [ X, X5 + Ags] such that
F(Xs) = [(Xs) = [(Xs) = f(Xs = (s = ) VIW(Xy) + D f(62(5))As

Thus,

Tk _ _ Tk _

f f(Xs) — f(Xs)ds = Df(Xs)Agssds+R(s)
t

k—1 tp—1

AN,
where
[R(s)] < [fT1(s = 8)[ VW (Xs)| + [Df1,+] Ass|*.

On one hand, since (AN})g>1 is a sequence of martingale increments (and [ f]; < 1),

1 X 1 1 X 2 _ R < (™ i
ESan) | =z SEalane< DS gl [" 6 m, 0
1 N k=1 N k=1 [Tt
N f 2 1 ‘ Jv ‘_dy
< 5 E|| Bsds| < El| (y—s)dBs| <—=.
2o 77 N2\ )o *l T 3N

On the other hand, the Jensen inequality (combined with the fact [f]; <1 and [Df] . <1) yields:

Ez [<1JtN R(S)ds)Q] < 2 tN ((5 f§)2]E|VW(X§)|2 +2]E|A§S|4> ds

tn Jo tn Jo
2 1042 [t
< -y supIE|VW X5)|2 —_— (s — s)%ds
37 s>1 tn Jo

2
Sue {qu (W= (ag) +T179) + a2,

where in the last inequality, we used Lemma 15 of [GPP22] and Proposition 5 i7). We deduce from
what precedes that:
3) ‘2 dy?

13 guci CQ’Y (Tl q—l—W(xo)l q)+d2 2.

Ezo T
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Step 3: Mean squared error related to Ag\]) The study of this term is isolated not only because its study

is more involved, but also because this term differentiates the bound of ¢) and 7).
We separate the drift and the diffusion components and recall that Ags = v/2(Bs — Bs). We have:

:=A§i’/1)
@__1 ("™ pox ¢ v
Ay =— = | Dg(Xo)[VW(Xs) — VIW(Xs + Ags)]ds
iy tn Jo
1 [ty

- Dg(X)[VW (X5 + Ags) — VIV (X,)]ds.
tn Jo

2,2
:=A§N )

Since VW is L-Lipschitz, Equation (31) yields [VW (Xs) — VW (X + Ags)| < L|s — s].[VW (X))
Then, Jensen and Cauchy-Schwarz inequalities imply that:

(2,1)2 L? 'V 2 v \112 > V2
x40 1< 1 | (8= 9By (1D (8 ETEy VW ()2,
Using (H%%), Proposition 5 ii), Proposition 16 i — b), we have:

Sup Eog [ D (X3) 2 B 1YW (X)) St ey 2 p2r(Le) oo (P10 4 W () 1),
s=

so that:
EIO[‘A?NJ)F] <ue L2c1—2(1+9)c2(fr(1—q+2r)(1+e) + T?T(l-‘re)W(xO)l—q),yQ.

(2,2)

tn  into two cases, respectively for i) and 7).

We finally separate the study of A

Step 4a: End of Proof of Theorem 6 (i.a): The Cauchy-Schwarz inequality yields
(32)
2
2.2 L
Ex[14fy " 2] < 7=
N JO
Again Proposition 16 i — a) implies that:

N o \[12 2 207 ('~ & V(12
J Exo [[Dg(Xs) K] Exo [| Ass| MSéE 0 Exo [[Dg(Xs)[x]d(s — s)ds.

L2 tN _ _
Exo [|A£i,2) |2] <ue Cea J;) ¢ 2(1+e) TQT(1+e)d(S _ §)ds <ue Cec] 2(1+2)L2T2T(1+e)d’7.

Collecting the bounds obtained for A(O), AS\]), Ag\;l) A(2’2) and A(g), we get:

tN >N tN
(33)

N
1 _ 2 o
E‘i 2 Ve (Xty,_y) _W(f)’ Sue Max | ¢ 32
N

T(1+3r)(1+e) 72(1+e)d/'r27’(1+e) d72>

tR ty T tn
(34)
+ max <C272(T1_q + Wl_q(xo)),L2c;2(1+e)CQT2T(1+9) (P10 4 W () =) 2

, c1_2(1+e)L2T27'(1+e)d,y> )

In order to deduce Theorem 6 i.a), we need to calibrate v and N in order that whole these terms
be dominated by £ up to a constant depending only on 7, ¢ and q. The largest dependency in terms of
« is induced by the last term in (34) and we choose:

2(1+e)

“ 2
(35) ¥ < W& .
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The other terms that involve ~ are upper bounded as follows:

2(14¢) 1— 1—
T 94+ W q
c27 (Tl q+”7($0)1 q)<€2 a1 yea( + W (o) )

1-— dL272r(1+e) 1—gq
so that v must satlsfy:

)

T2r(l+e) 412 3
TS T 30w I AW ()T ).
coc]
Using Lemma 2.1 of [GPP22], we have
1
W (w0)? ! >

¢ }+g * 1_q .
(14 q) 77 ¢} g — a[*154

In the same way, the middle term in (34) induces that:

d d

s C2'r1—q—2re 1—q 1=4 :
eo(1 + q) TFa e[ 7T —2re |3 — ¥ 2 ¥

Let us now consider (33) to calibrate V.. We identify again the largest element (in terms of ¢ ;)
and choose ¢y such that:
9 d'r2r(l+e)

2(1+ ’
2(+)

tny =€

so that the dependency on ¢ is translated by:

4d/dL2T4r(l+e) s d/'r(2r)(1+e)(*rl—q + W(xo)l_q)tg 9 'rl—qc2

Ve Vv E
c411(1+e) dc?(1+e) dL2

Ng?{‘:_

The two other terms of (33) must also be upper bounded by £2. Using the constraint on ~ induced by
(35) and ty = N¢7y, we verify that:

2(1+e
dv? 22 C1( :

N 272+ N,
so that Nz must satisfy:

c2(1+6)
1

N> Doyt
Finally, the last term involved in (33) is automatically upper bounded by £2 since ¢ > 1 induces the
constraint

1
2. -
Z e

1
For Theorem 6 (i.b), we remark that T < c¢(logd)d+a— where ¢ depends on ¢,r,q,¢1, ¢ and L
but not on ¢ and d. Plugging this estimate of T into (33) and (34) leads to

N 1+3r 2r
1 _ 2 - d1+a—r d/d1+q P 1—q+2r
E‘f D f (Xty_y) = 7(f)] < cd® max 7 AT A2, g T
IN = ty tn

where ¢ denotes an arbitrary small positive number. The result easily follows using that the first term

_ 1—7r
is smaller than the second one under the condition € < d'd 20+a=7) ,
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Step 4b: End of Proof of Theorem 6 (ii.a): The proof is given for any choice of ¢ and r but the state-
ment is valid only when r = g. It is possible to exploit the centering of Ass. We decompose into two

(7)

parts and we decompose A; as follows:

©

422 _ 1 J Y (Dg(Xy) - Dg(R))[TW (Xs + Aus) — VW (Xo)]ds

(36)
+ | Dg(X)[VW (X + Ags) — VIV (X,)]ds,

RS
where X; = X5 — (s — s) VW (Xj). For the first term, we use the Jensen inequality and Proposition
16 iii — b). We obtain that:
(37)
1

Eao [[(DI?] Sue ce(Lic;“”e))2d2r4r<1+e>E

J (s—5)%ds = c(LLe; 21T))2g2pdr(1+e) %
0
Let us finally consider @ We introduce the martingale (M;);>( defined as:
t
M = J- VAW (Xy + Auu)dBy
0

Using the It6 formula, we obtain that:

S

VW (X5 + Ags) — VW (X,) = J

S

S
VAW (X + Agy)dBy, + J A(VW)(Xs + Agy)du
S

s
= Mg — M§+J A(VW)(X§+ Agy)du
s

where for a vector field ¢ : R +— R, &(;S = (Ad1,..., A(;Sd)T with A standing for the Laplacian
operator. We use this decomposition into @ and observe that:

tn tN

@ [ Dok (.- M) as+ [ Dyt [ A@W)E+ Bt

tn
21

The Young inequality yields:

t
(39) E[2)?) <2E Utl " Dg(Xy) (M — M) ds
N JO

2

We first deal with and use the martingale decomposition, we obtain that:

N oty

(39 ZEHt]leZ: Dg(th 1)(M My, _, ds’ ]

=1 Ytk—1

7 Z E[| AN, | P, 411,
N k=1

>

:=ANg
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where we used that E[AN}, |F;, ] = 0. Standard computations show that:

E[JAN.* [ Ft,_,]
:Elj J\ {Dg th 1)(M Mtk 1)} Dg(th 1)(M Mtk 1)dudv|]:tk 1]
tp—1 Jig
:J; L Dg(th 1) Dg(th,l)(Mu — Mtk71)(Mv _ Mtk,l)T |ftk—1:|) dudv

u ~ ~
= ZL L Tr <Dg(th71)TDg(th71)E [(MU - Mtkfl)(MU - Mtkfl)T |‘Ftk71:|) dvdu.
k—1 Jtk—1

The last conditional expectation deserves a specific study: for any pair (4,7) € {1,...,d}? and any
tr_1 <v<u<tg, we have:

E([((Mu - Mtk—l)(M’U - Mtk—1)T)i7j |‘Ftk—1]) =E ([(Mél) - Mt(;j),l)(M( 2 Mt(;z 1) “Ftk 1])
- ft Z E[V2WZ’Z(XW—1 + Atk—178)v2Wj7€(th—1 + Atk—lvs) |]:tk—1]d8
k=1 4=1

where the previous equality comes from the independent Brownian increments coordinates per coor-
dinates and from u A v = v. This induces the matricial equality:

E [(Mu - Mtkﬂ)(Mv - Mtkﬂ)T “Ftkfl]

vV
= J E[VQW(thq + Atk—lys)v2W(th—l + Atk—l»S)T |]:tk71]d5

tp—1

Noting that

Tr (Dg(X1,_,)" Dy(Ke, ) = 1Dg(Xr, )

we then deduce that:

u U - _
E[AN|Fiy —2El L L ||Dg<Xt“>v2W<Xt“+Atk1,s>||%dsdvduftk1].
k—1 k—1

lk—1

Plugging Equation (40) into Equation (39), we deduce that:

(40) _ tT

f [ [ E[petu 0w W, + ol | asdod
N f=1Ytk—1 Jtg—1 Jlp—1

We then use the relationship between the spectral and the Frobenius norm and the fact that the
spectral norm is an operator norm, we observe that for any k and s € [tg_1, %]

HDQ(th_l)V2W(th_1 + At}g_l,s)H%‘ < d,HDg(th_1)v2W(th_1 + Atk—hS)Hz
<d'|V*W(Xpy_y + Dty _y,) 71 Dg(Xey )2
@1 <d'L” |Dg(Xy, )3,

where we use that VIV is a L-Lipschitz function. We then use Proposition 16 i —b), a slight adaptation
of Proposition 5 to get the same bounds for E[|| Dg(X;)|2] as for E[| Dg(X¢)|?]. We conclude that:

(42)

2 _QT(1+e)dT2r(1+e) Nty u v _
Suc i 3 2 J J f dsdvdu = ceL2c1 2(1+e)d’T2’"(1+°)l
t N
N k=1"Ytk—1 Jtp—1 Jtp_1
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Let us finally consider . By Jensen inequality,
tN

ey

tn Jo

1 (i~ . =
<E[tN fo IDg( s>|%|A<vw>||gm(S_8)2dS]

2
ds

%) J TRV (K + Ag)du

_ B3 :
@3) R [ w10y 206 - 70
N 0
(44) Suc |B(VW)[3 ey 2205,

where the last inequality follows from Proposition 16.

By (37), (42) and (44), we are now able to give a new bound for Agv’2):

2 ~ -
E )Ag\f)’ e CQCI2(1+2)’72 max (C;2(1+e) (LL)2dQT4r(1—i—e)7 |‘A(VW)“%7wT2T(1+e)>

2(1+9)d/fr27‘(1+2) %
tN

Collecting the bounds obtained for Ag?v), ASV), Agv’l), Agv’z) and Ag?v), we get (using that Ly < 1):

+ CeCy

(45)
N
1 _ 2 Y (A+3r)(1+e) gr2r(i+e)
Eli Z ela(Xe,_y) — W(Id)‘ Suc Ce MaxX cf3*22f’ ) 2(14e)a 174 7
N 1 7z o

(46)
+ Cecl_2(1+e)’72 max (L2C2T(lfq+2r)(l+e)7 (cl_(1+e)Ll~;d)2T4r(1+e)7 H&(VW) ‘|%,(X)T2T(1+e)) )

In order to ensure that (46) < ce,r,q52, we fix v = co 1€ with

c2,1=¢; " min (L’lcf%T‘#(”e),c}*e(Li)fld*r*?r(He)? i Guielky Tfr(m)) _

”2,00
Then, the condition on N, comes from (45) with exactly the same form as in (.b) (since the right-hand
side of (45) is the same as in (33)). This concludes the proof of (ii.a).

1
For (ii.b), we use that T < ¢(logd)d1+a— where ¢ does not depend on d so that the previous
bound leads to:

N 1+3r 2r

1 _ 2 ~ d1+q77‘ d/d1+q r
E’— Z YeIla(Xy,, ) —7(Ig)| < cd max 5 2d2+ o 72d2p+1+q |,
N3 t

N IN

- . . . - 1420 ¢
where ¢ denotes an arbitrary small positive number. Setting 7. = ed max(l+ =Pt ) =F g1

2r .
lows to control the two last terms. Then, one sets N, = d’dT+a— Yo 1¢=2 in order to control the second

term and finally checks that the first one is also controlled by c? under this condition and the fact that

_ 1—7r
e <d'd 20+a=) (where c does not depend on d).
O

4.3. Bayesian learning with discrete LMC - weakly convex case - Theorem 7.
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PROOF OF THEOREM 7. We know that for any &, U (¢, .) satifies (A ). It implies that W, is nL-
smooth. Since U (¢, .) satisfies (H% ), a direct computation shows that W, satisfies (H5) withg =0
and ¢ = nL. In the meantime, Assumption (H%4) on each U (¢, .) implies that:

AV2Wy) = (i VAU (&, )
=1

n

> Y AVU(&, )

1=1

> Y aU(&,.) " =n <711 > ClU(fiw)_r)
=1 =1

> {an! W, (€ ),

where we applied the Jensen inequality to the convex function v — u~". Thus (H%g) holds with the
pair (¢; = ¢;n' =", r) and (¢ = nL,0). By Proposition 5, we thus deduce that

iugEx[Wﬁ (Xe)] + iugE:p[Wﬁ (X0)] < cp (WE(z)+Th),
> >

with
T = er(nL)(c1n' ") T=r dlog(1 + dnL) =Cp Ly 0dn®

where ¢ is an arbitrary small number and ¢, f, (, . is a constant depending only on r, L, ¢1 and e. We
are now able to apply Theorem 6(i.a) with T = T,,. We observe that ., must be chosen such that
n2(1-r) d d d2r+a—14,2
e2 A A A
dn2d2r(1+e) "™ pgl—q—2re nn2(1-r)

Yen = 1—q
nd—2r¢(dn) T+a

For n large enough, the minimum is then related to

29
+2re +2re 2r+
—@r+ah) ot =120 | di dlita d=rm

Ven, =N

We then verify that when n > d, we have:

2
dlfq t2re  gqt2re p2r+q
<
~

Vg e[0,1] 2 P e T

so that

We observe that

Ne, =zt | a8 03000 ()20 gory 2010 @)

N N

=A =B
The study is then made explicit by considering some specific cases.
o If r > 1, we observe that B > A for all values of ¢ € [0, 1). In that case we also verify that 7;} =
n2r+a”! g2r+1=a”! The overall cost of computation is then given by

Nsn _ n2a21+4rd1+47’—2o¢;1
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e If r = ¢ =0, since d < n, we verify that:

_ 1 4 -1
,ysnl — Qe dl ac oy, n2 _ n2

and

N, —npz(+act)gz-ach)

n

>

5. Discretization of the Langevin procedure - Strongly convex case. <JWe adapt the
proof of Theorem 6 to the strongly convex case and to this end, start with an adaptation of Proposition
16:

PROPOSITION 17.  Assume (SC)). Let f : R% — RY be a Lispchitz C2-function with [f]; <1
and [Df]1« < 1. Then, g is a C2-function and for every ¢ € (0,1), a constant c, exists (which only
depends on ¢ and not on d), such that for any x:

i) |1Dg(a)]x < 5.
ii) Let e (0,p/(2L?)]. Then,

_ 4 d
sup Eao [lg(Xe) — g(a0)?] < <|960 P+ ) .
t=0 P P

iii) Assume that V2W is L-Lipschitz for the norm |.|«. Then, x — Dg(x) is Lipschitz and its related
Lipschitz constant [Dgl1  satisfies:

[Dg]l,* = sup

T#Y ly — x|

Dg(y)—Dg(:c)||*<<2i 1)
<\t )

PROOF OF THEOREM 8. (i) We follow the proof of Theorem 6(i). Keeping the notations of the
proof of Theorem 6, we first deduce from (i7) that

2 4 d d
A < (ln-aP+ ) < 5

E, <—s
’ PPty Pty

since |zg — 2*|? < d/p.
Second, by the deterministic bound 4) of Proposition 17: | Dg(z)||x < p~! and the arguments given
in the proof of Theorem 6, we have:

A

tN

2 d
"<

E < .
"0 P2ty

For Ag’v), we remark that the only modification comes from the control of sup E|VIW(X,)|2. Since

VW is L-Lipschitz and VW (z*) =0,
E|VW (X,)? < L*E[| X —2*|?].
By Lemma 5.1 of [EP21], we deduce that
. 2d\ _8L%d
BTGP < 22 (oo — o'+ 2 ) < B2

since |zg — z*|? < d/p.

2 dn2 d
Ag?\r)’ <4 L2 (|m0 — P+ p) +10d%42.

Eaq 3tn
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2,1)

For A( , the fact that | Dg(z)|+ < p~! yields:

2 tN
2,1),2 L 2
gN)|]<T (s —35)°E
PEUN

L2
< 5 x L2 |zo —
pPtN

Finally, for Ag}zv’z), we deduce from (32) that

Eqgo[lA 2o [[VW (Xs)*]ds

tN

L2
Exo“ASS‘ lds <

p?tn
Thus, collecting the previous bounds and L2d/p < L*d/p?:

2,2
Exo [ 41y 7] < T

)2 - d 8d

N
1 _
E|— X — < ——
\tNkE_}lvm nea) =] < e

p3t2
L4
+ 2—272\560 —z*2
p
The larger term above regarding the size of + is L2

now verify the size of the other terms. Obviously we have:

P 4 4

2
d dL4d25 <e

since p < L. We observe that:
LA o LY p?
37 S 312
p p> L*d

2
2L df (s —s)ds <

d2
b+ 2 1 10d29% +

p~2d~ and we are led to choose y <

v 2
2 x <|x0—x |2+> x 72
p

2L2d7
p?

2I2d
v
p2

8L*d ,
gl
p3

LQda . We

L2
ey =¢? (7)
P

At last, the terms involving the initial condition may be upper bounded in the same way:

L4 2 L4
2—7 lzg — 2*|2 < €2 x p (’y|330 — %% x 22> <é?
p

2L2d

*(2712
— L

d

Using again that p < L, we then deduce that we have to choose  such that:

2
P2 P d
7<L2d5 /\L2/\

2
Now, fix N > 574%“1’ < 262

8d  d
Py PPN

8d
X <e¢
pd'tn

under the condition N > d%'lp

result follows.

~~1. Finally, since v < % and N >

. Then,

16d
X —_—
pd'tn

L2|zg — a*|?

< 16527

1 it is obvious that < 3t <e2/2. The

(#t) As in (2), we follow the proof of Theorem 6(ii). With the notations of this proof, we check that the

only difference between (i) and (i) comes from the control of A,/

a further expansion, Ez, [\AtN )|2] is controlled by E [ |®|

defined in (36). On the one hand, by Proposition 17(iii), the Jensen inequality and (a + b)2

1 8L2\ 1
E <:>2 <P =+ 22| =
o [[(DI7] <2p2+ p4>tN

1
<L*l—+

tN 4
fo E[|Ass|4]ds

N Jo

8L? 9 1ty 9 492 o 1
o )(4d d)t—f (s—s)2ds < L2 L+

(2.2) . Actually, in this part, owing to

]+ E |@|2] where @ and @ are

< 2a% +2b2:

si2
3 202 pt )
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For E[\@F], we recall that this term is divided into two parts denoted by and (see (38). On

the one hand, by (40), (41) and Proposition 17(i),

2d' .2 N u v d'I,2~2
(2a) < e J f f dsdvdu < S5
t e Ity Jtp_1 3ptn

N k=1

Finally, for , we derive from (43) and Proposition 17(i) that,

HA VW) HQOO tn 2 HA( )H%oo'yz
\7J (s —s)“ds < ST 3z

2 d 8L\ A(VW)3,
]EonAEN "< <L2<2p +p4> +Too )

Finally, we get

where we used that 3p2 iy <IL? ( + 8L? ) since ¢y = 1. Collecting the whole bounds and replac-
ing the one of 7) by the one we just obtalned we deduce that:

a 8d
< P2 " pity

1 @ .o 2 )
El = 3 9w/ (Key) = ()| + oy
IN i3

L4d d L2\ IAVW)|3 L .
where by Sy d? +7+L2 S+ +22’()O+<L2+2>|x0—x|2,
P Pt p p p
where we used that % < 2(L*d)/p3 since p < L and that L > 1. For a given ¢, we thus fix 7= =

<&l

_1 /
b, *¢ so that boy? < 2. Then, we fix N, = 5_3@ VY Ly dv_l —1 that implies that
It remains to observe that 8d/(pt ) < 8, the result then follows.

d/
PPN

The purpose of this paragraph is finally to prove the complexity bound stated in the strongly convex
situation.

PROOF OF THEOREM 9. WEe first consider (i.a). We shall apply the above results in our Bayesian
framework. Given the set of n observations (1, ...,&,), we have:

= D Uléi,)
i=1

Assuming that U (&, .) satisfies (A ), the triangle inequality shows that W, (&",.) satisfies (A1)
regarless the value of £™. In the meantime, assuming that U (&, .) satisfies (SC)) yields W, (£",.) is
np-strongly convex i.e. satisfies (SCy,). The result in then straightforward observing that the condi-

tion on y is driven by 7, < 0;4(n~2) and pluging it in the value of N, .

7d =
n2L2[0—0"]2

Concerning (i.b), we shall verify that the constraint on -y is brought by A%l) that should verify
ndy? < 2. Then the constraint on N is then deduced in the same way. O
>
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This article is a companion paper of [GPP22] that contains a series of
(usually technical) proofs of the main document.

1. Concentration results for posterior consistency rate . In this paragraph, we pro-
vide the technical proofs related to the posterior mean concentration, stated in Section 3 of
[GPP22] that essentially relies on (PIy).

Note that, among other settings, Assumption (PIy) holds true for any location model
since, in this case, the Poincaré constant of each distribution 7y is independent of 6, as indi-
cated by the next proposition:

PROPOSITION 1. [fU(&,0) =U(§ —0), for all § and 0, then Cp(mg) = Cp(m) where

Cp(7) stands for the Poincaré constant related to T oce V.

We also point out that this assumption may be verified in a more general setting using the
upper bound of [KL.S95] (see the statement in Theorem 2). Finally, the Poincaré inequality
is satisfied as soon as the log-concave distribution has a second order moment. We observe
here that Cg may include a dimensional effect even though it is clear that it is not the case
for strongly log-concave probability distributions with the help of the Bakry-Emery result
(see [BES3]). If we believe in the Kannan-Lovdsz-Simonovits conjecture [KLLS95], then the
constant C’g may be considered in our model as independent from the dimension d, which
entails a correct minimax dependency of the Bayesian strategy with respect to d.

PROOF OF PROPOSITION 1. We consider § € R? and f € W'?(ry) where W12 stands
for the usual Sobolev space (also denoted H'). For any € > 0, a density argument proves that
af.eCy (R%,R), e.g., a compactly supported and infinitely differentiable function, exists
such that 7y ((f — f)?) < &2 and 7(|V f — V £-|?) < &2 (see Theorem 9.2 of [Brel1]).

We shall remark that if f=¢: z — f.(z + 0), then 7p(f.) = n(f-?). The function f-°
is infinitely differentiable and compactly supported, we shall apply the Poincaré inequality
with the measure 7:

(1 Vars(f7°) < Cp(m)n(|V 7).
Now, a straigthforward change of variable yields:

Vars,(f) =Var=(f=") and = w(|VZ1) = mo(IV L P).
We then deduce from the previous equalities and from (1) that

2 Varg, (f-) < Cp(m)mo(|V f-|?).
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Now, we end the proof with a density argument: the Cauchy-Schwarz inequality shows that

im0 (f) = mo(fo)l S V/mol(f — fo)2) <&, |mo(f%) — mo(f2) < 2[mo(f?) + mo(f2)]e.
Finally, we can prove that |V ary, (f-) — Varg, (f)| < 5e[mo(f?) +m9(f2)], and in the mean-
time |7 (|V f2|?) — mo(|V £]?)] < e/2ma(|V f|2 + [V f2|2). We use these last upper bounds
in (2), we obtain since € may be chosen arbitrarily small, that:
Varg, (f) < Cp(m)mo(IV f1),
which ends the proof of the proposition. O

PROOF OF PROPOSITION 10 OF [GPP22]. The proof is straightforward as soon as we
remark that Assumption (PIy) implies that each 7y satisfies a Poincaré inequality with con-
stant CY. Since f satisfies |V f| < k and for any 6, Uy is a convex coercive function, then
Up(z) has a linear growth for large values of . Hence, f € L?(my) and we then simply apply
the concentration inequality stated in Corollary 3.2 of [BL97]. This ends the proof of the
proposition. O

PROOF OF COROLLARY 11 OF [GPP22]. The proof of i) is a straightforward applica-
tion of Proposition 10 of [GPP22] with f = W, which is a 1-Lipschitz function. The proof of
i1) is similar. Since Zy = 1 for any 6, a direct integration yields:

Eo[VoU (£,0)] = veU(ﬁ,me—U(fﬁ)dg:vef e Ve =V Zy =0
R4 R4

n

We then use a union bound deduced by the triangle inequality: if Z; = VU (§;,0), then:
>4

- 7, = - = T = .
nia =1 (" iz Vd
We now apply Proposition 10 of [GPP22] to each term in the union bound and we get that:

52 5
—n—2—m A
Py < = 5) <2 R a/eck

n

1 .
P

=1

Vi

The bound being independent of j, the result follows by summing over j in (3) O

Finally, we derive the proof of the upper bounds related to the first and second type error
of the family of tests (¢), ).

PROOF OF PROPOSITION 12 OF [GPP22]. The first upper bound i) follows directly
from Lemma 3.2 applied with 6*. For the second estimation, we consider # such that
|0 — 0| = r,,, and we get:

{[ 2= gy oy <

2
_ {‘Z—ln‘l’(f) — Eg[W(X)] + Eg[¥(X)] — Eg- [¥( X)]‘ g c(m,n)}

2
c{‘ZZ LU(&) Eg[qx(x)]‘%(m_m)_c(gw}
c {‘Zz 1§ _EG[X]‘ S c(r;n)}
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In the previous lines, we used the triangle inequality |a + b| = |a| — |b] in the third line, the
identifiability property (Iw, (c)) and the fact that ¢ is an increasing map. Applying again ),
Corollary 3.2, we obtain an upper bound of the probability of deviations uniform regarding
the condition |§ — 6*| > 7. Taking the supremum over 6, we then obtain 7). O

2. Discretization tools - Weakly convex case . In the first part of this section, we prove
some bounds on the moments of the Euler scheme. More precisely, in this weakly convex
setting, we first establish some bounds on the exponential moments and then derive some
bounds on the moments by Jensen-type arguments. Note that this part is unfortunately highly
technical (and much more involved than in the strongly convex case).

REMARK 1. In the weakly convex setting, it is usual to first consider exponential mo-
ments. In some sense, introducing exponential Lyapunov functions is a way to compensate
the lack of mean-reverting in this case.

For the proofs, we introduce the following notations. For any positive ¢ and any g > 0, let
C(ff% be defined by:

CCI,(’YO = {x € Rd? |VW($)|2 - Cd;‘loc('}’()ax, K) < 1} with,
(4) X10C(V07$7[() = sup S‘VZW(U)
fu—a] <o VW (@) +VE

We observe that (H%) combined with Lemma 2 entails the compactness of CCI,(% for any
positive ¢ and ~yg. For every positive a, we set:

5) B(a,c,v,K):= sup eaw(z)(l +cdL).

K
zeCl

In what follows, the size of 5(a,c,70, K ) will be of first importance. This is why before
going further, we study these quantities under assumption (H%4).

2.1. Preliminary bounds under (H%,). <

LEMMA 2.  Assume (H%). Then,

1 c_l " (W (z) = W (") < [VW(2)]* < : C_Q p (W9(z) — W=9(2*)).
Furthermore,
(6) 1
W (@)~ W (@) > (L r)erfa—a |2 and W) - W1Ha(en) < U D g g2

1—gq

PROOF. Since VW (z*) = 0 and since W is convex, the differential equation z(t) =
—VW (x(t)) with z(0) = z satisfies: lim;_, o x(t) = z*. Thus, setting Y1 (¢) = |[VW (x(t))|?,
we have

+o0 +o0
]VVV(:I:)]2 =— T (s)ds = f <D2W(m(s))VW(x(s)), VW (x(s)))ds.
0 0
Thus, using Assumption (H%),
+00 +oo

@l W (2(s)[VW (2(s)) Pds < [VW (2)* < o . W (s)) VW (x(s))[*ds.
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Setting Yo (t) = ﬁWl_P(m’(t)) with p € [0, 1), we remark that T (t) = —W = (z(t))|VW (z(t))|?
so that (with p = r and p = ¢), we get
!
1—r

Finally, in order to prove (6), one checks that

(W' (@) = W' (@) < VW (@) < 72 (W) = W' 9(a))

ADZWl+r($) = (1 + T)WT((L‘)ADQW(:L‘) < (1 + T‘)Cl

and that
Apawea () < (14+ Q)W) Apaw () +a(1+ @)W () VW (2)? < a1+ ) (1 * T q> ,
which in turn easily implies (6). O

LEMMA 3. Assume (H%y). Assume that Lo < 1/4. For any ¢ >0 and K >0, CK ' is
a compact set. Furthermore, setting

1y —— S o Tqu
Cpar(C,K) = <4CC2C1 )1+q—r +d Trar -

€1

VALVK v <2(1 — r>> - v (411fW(93*))) ,

we have
B(a, ¢, 70, K)<(1 + cdL)eConr(@F)dTTT
where 3(a,c,v0, K) is defined by (5).

REMARK 2. Keeping all the constants is unfortunately necessary for the objectives of
this paper (but sometimes hard to read). But, if for a moment, we forget the constants L,

1
K, ¢, ¢; and ¢y, the result reads 3(a,c,v0, K) < C1de®*?"™™ " where C; and Cy are some
positive constants which do not depend on d.

PROOF. By Lemma 2 and (H%Y),
(7 VW (2)|* = cdNioc (0, 2) = 1= (W (z) — W (2%))
—cczdsup‘u7x|<%‘vw(x)|+\/? W=(u).
Since W is L-Lipschitz, for any u € B(xz,v|VW (z)| + VK),
®) W(u) =W (x) = L(3| VW (2)| + VK)

so that when the right-hand member is positive,

W= (u) < W(z)™? (1 _ L(0| VW (2)| + VK) ) _q‘

W (z)

q+1

VW (2)[WHz) < ,/+=W ™= (z). Hence, if

By Lemma 2, e

® W) > (4LVE) v <<4Lvo>1iq (2 ))

-Tr
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then, L(W"W%%Hﬁ) < 1/2 and thus, (1 — L(%W%Eff;‘ﬂ/m )~9 > 24. Thus, under (9),

sup W™ (u) <29W (x)™ %
|u—a|<o| VW (2)[+VE

We deduce that under (9), Equation (7) yields:

VW (2)]* — cdNoe (Y0, 7, K) = 1 “ (W (2) = W (2%)) — cd2%eoW ()
—7r
c1 I—r W= (z*) 2%¢cdcey
> w 1— —
1—r () { Wli=r(z) Wit (z)
We now fix some conditions on W (x) in order that 1 — mp{/l:r(g)) — clv‘%fiff?,,( ik % and

LW (z) = 2. We thus assume that

10 W) (2(1: 7“))” VAT (@) v (27 ey d) ),
1

Finally, if (9) and (10) are satisfied, then
VW (2)|* = cdioec(70, 2, K) > 1.

But the definition of Cp,,, we remark that (9) and (10) are satisfied if W (z) > Cpar(c, K)d e
so that

CK, c {zeRLW (2) < Cparlc, K)d ).

[S0]

The bound on 3(, ¢, 70, K) easily follows.

>

2.2. Exponential bounds for the continuous-time process.

LEMMA 4. Assume that Cgo defined by (4) is a compact set.Then, for any a € (0,1),
E,[e?V (X)) < etW @8 4 g(a, (1 —a)71,0,0),

where a = a(1—a)~ and B(a, (1 —a)~1,0,0) is defined by (5). In particular, under (H%Y,),

supE, [eaW(Xt)] < e W@ 4 (14 (1— a)—ldL)eCpar(Lo)dm_

t=0

PROOF. We apply the Ito formula to f, defined by f,(z) = e®W (@) (g has to be chosen):

fa(Xt) = fa(x) + L Lfa(Xs)ds + 2L<vfa(Xs);st>-

)

M,
Then, one can check that
Lfa(x)
fa(z)

= —a|[VW (2)]> + a} |[VW (2)> + s AW ()

<a(l—a) (=|VW(@)]* +d(1 —a) Avew (z)) .
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Setting @ = a(1 —a)~! and ¢ = (1 — )7, we deduce from (H%3) and (Ap) that:
(11

Lfa(w) < —afa(@)lgeqex, joy +afa(@) (<[VW (@) +d(1 - a)Avaw (2)) Lgeex, )
(12) —fa(@) +afa(@) (1+d(1 =) Avew (@) Laeer, )
(x
)i

S0
—afq(x) +aB(a,(1—a)"t,0,0).
It follows that (M} )¢ is a true martingale and the Gronwall lemma leads to:

S

Eo[fa(X0)] < fa(z)e™™ + B(a, (1 - a)7,0, o)f ae (N ds

0
< falz)e ¥ + B(a, (1 —a)~1,0,0).
]

2.3. Exponential bounds for the continuous-time Euler scheme (Proposition 5 of [GPP22]).

REMARK 3. The proof of this result is rather technical and the important thing is to pay
a specific attention to the dependency with respect to d and L. As indicated in our statement,
we are led to choose + lower than (Ld) ™!

PROPOSITION 5. Assume (H%,). Assume that v < o := 4dT1+1’ then: For any a < 1/16,
a constant Cy (depending only on a) exists such that

supE, [eaW(Xf)] <e@® L1+ 5dL)e“CP“(5’32a_l)dm.
>0

PROOF. We assume that a < 16 and that y(4dL + 1) < 1. The Taylor formula yields:
W (Xiy,,) S W (X)) =1 VW (X, )+ (VW (X4,), Agyr)

1
; ( | AV2W<X£,?>>d9) PRIV (X + A,
0

where Apyi = v2(By,., — By,) and X\ = X, + 0(—y VW (Xy,) + Ajyi). Setting
fa(z) = €W (®) and using (A1), we deduce that:

(13) E[fa(th+1)“Ftk] < fa()?tk)e(_u’y-i_Lu’Yz)IVW(th)‘Z\Ij“/(th)a

where

1
U, :z+— Eexp <a\/2'y<VW(m),Z> + 2ary <J szw(x(ﬁ,’y,Z))d9> |Z2> ,
0
with Z ~ N(0,1;) and z(0,7, 2) := x + 0(—yVW () + 4/27z). We decompose ¥, into two
parts:

Wy ()

- 1 -
=E exXp <a\/ 2’7<VW(£L’), Z> + 2a'y <J szw(l‘(e,’y, Z))d&) |ZQ) 1{\Z\2<(27)*1K}

= (z)

r 1
+E exp (a«/ 2’7<VW(ZC), Z> + 2(1’)/ <J;) )\VZW(J:‘(H,’)/, Z))d¢9> ‘ZP) 1{|Z\2>(27)*1K}

- _
~~

=0 (2)
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where K > 0 will be chosen later on.

e Upper bound of U{" (z). If | Z|2 < (27) 1K, then |(6, v, Z) — x| < 4|VW ()| + VK, so
that:

¥ (@) <E |exp (V20a(VW (@), 2) + 207 Aioe(7.2)| 2 |

Y

d
ad; W (x) Z1+2av A oe (7,2) Z2
H21~N01 [eV? (@)Z1+2a7h0c (7,2) 21

where we used Ajoc (7, ) := SUD e 3 (27| VW () +-VEE) Av21y (u). We choose to alleviate this
notation in the sequel of the proof by writing only Aloc (instead of Xloc('y, x)).
Below, we will use that:

2 1 of
(14) Vo eR Vag <1/2 EZINN(OJ)[ealZIJ'_aQZl] = ————¢2(-2a3)

\/1—2042

with a1 = /27ad;W (z) and as = 2ay\jec. Since Ajoc < L, our choice of v and a leads to
ag < 1/2 and we deduce from Equation (14) that:

da
1 2 yalivwe)? d - ya? VW (z)?
vy = — 44 0e | = —~log(1 — 4y \jee) + —— 1)
K (:B) <1 - 4a’7>\loc> ‘ P ( 2 Og( “ IOC) 1-— 4a’7/\10C

We observe that log(1 — u) > —5/4u when u € [0,1/2] and apply this inequality with u =
4ayAoe < 1/2. Using again that A < L in the second term, we obtain:

'yaQ\VW(w)P) |

5 —
1 v (2) < “avyd
(15) 5 () exp<2a7 Aoc + T

e Upper bound of \11(72) (z). Using the Cauchy-Schwarz inequality and the exponential
Markov inequality,

0(2) <E|exp (2ay/29(TW (2), 2) + 4a'yL]Z2)]; [P(12]2 = Kyh)]

2a2y| VW (z)|? . Zi .\
1—8ayL )

N =

d
< exp <—4 log(1 —8ayL) +
By (14), we deduce that

4

2 2 2 K log 2
\11(72) (r) <exp (chwL + 2N V()] ) e s T

1—8ayL
K 2dL dlog?2 202~ | VW (x)]?
<exp <8v {120a7K —72;5 ]+ alﬂ_zw(?‘ )

Checking that 20ay2dL + vydlog2/2 < 10 and choosing K larger then 20 yields:

K 2a%9|VW (z)|?
(16) V7 (z) <exp < 167 + 1 —8arL .

We then plug (15) and (16) into (13) and obtain that:
E[fa(Xue )1 Foe] < E[fa( Xy, )Je eIV

W) | oy (~ K 2TV 1))

5 _
x |exp | =avydAoe +
2 1—4ayL 16~ 1—8ayL



¢ 5 . K
<E[fa(th)] (1 e 8ML)|VW(X%)| (eXp <;a7d)\loc(’73Xth)) + exp <_16’V>)

Lo ()] o0 (55 ) + ex0 (= 5 IVWCEP = 5l e, 5]

< 1/2. Using our assumption (H%%) and the notations introduced in (4),

since Ly + 1= &wL
we know that:

~[VW (@) + 5o (7,7, K)) < =1 whenz € {CL }°.

We introduce p = p(v, K) = e~ T + ¢~ 7 and we shall observe that a K large enough exists
such that for our choice of v, p < 1. Therefore, we have:

Elfa(Koe o] < falKe) (€75 1, cqep, oy +¢ 0 +e T CTWEOIDy 0o )

5a~ydL

gpfu()ztk)‘*‘fu(letk) [6 2o—e 2]1{th66070}

< pfalXa) + €7 folXy) [eF 00D —1] 15
We observe that 2% (1 + 5dL) < 1 and using e” < 1 + 22 when z € [0, 1], we obtain that:

E[fa(th+1)|ftk] < pfa(th) + Waﬁ(a757’707K)>

where 3(a, ¢, 0, K) is defined by (5).
Thus, setting vy, = E[ fo(X, )], we obtain that:

570}

VE=0  vpyr < pug +yaB(a, 5,70, K).

An induction leads to

k-1
bl j ’yaﬁ(a,5,70,K)
k=1 vk <YBa ). P+ pFvg = + vo.
;0 1=p(y, K)

x)~! for z > 1 and

We finally have to lower-bound 1 — p(~y, K): using that exp(— (2
by taking K > 32a‘1.

x)
exp(—z) <1—x forx >0, wehave 1 — p(v, K) <~(5 — é) >y
We finally deduce that

<
a
4

supE, [e”W(th)] < e @ L0 B(a,5,70, K)< e @) 4 Oy (1 + 5dL)eCrar (5,320 )dTramr
k=0

where C', does not only depend on a and the last inequality follows from Lemma 3. To extend
to any time ¢ > 0, it is enough to write for any ¢ € [ty tx11] :

E[fa(Xe)] = E[E[fa(Xe)| F2. 1],

and then to adapt the beginning of the proof. The details are left to the reader. O

>

We conclude this section by a useful technical result for our purpose, which is stated as i)
of Proposition 5 in [GPP22].
In what follows, we assume that a < %6 and that y satisfies y(4dL + 1) < 1.

PROPOSITION 6. Under the Assumptions of Proposition 5 of [GPP22], assume that v <
Let p > 0. Then,

sup E,[WP(Xy)] + supE,[WP(Xy)] < ¢p (WP(z) + TP),

t=0 t=0

7= 4dL+1
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where p — ¢, is a locally finite positive function on [0, +00) and where,
.
Y = (ca v L)Tror¢, ~ log(1 +dL)d e,
with ¢, depending only on r. In particular, for any p <9,
(17) sup B, [WP(X;)] + supE[WP(X,)] < C(WP(z) + YP),
=0 =0
where C' is a universal constant.

REMARK 4. Note that this property will play a fundamental in the proof of Proposition
16 of [GPP22]. The second part is only a way to recall to the reader that the dependence in p
can be omitted in the proofs since we use this property for some values of p which are always
bounded by 9 (More precisely, the “worst” value of p in the proof is p = 8r(1 +¢) v (1 +
3r)(1 + ¢) where ¢ is an arbitrary small positive number).

PROOF OF PROPOSITION 6. Let us first consider the bound on the diffusion process. Ow-
ing to Jensen inequality and to the elementary inequality (a + b)P < aP + bP for p < 1 and
positive a and b, we can only consider the case p > 1. Let a € (0, 1) and write

E,[WP(X;)] = a PE,[log? (e*V X))] < a PE,[logP (eP oW (X))

Since x — logP  is concave on [¢P~!, +00) and that by construction, eP~1TeW(Xe) > ep—1
we deduce from Jensen inequality that

EWP (X)) <0 ((p— 1) + logE, [ (X))

1 P
<aP ((p — 1) + log (eaW(I) + (1 + (1 — a)—ldL)eCpar(Lo)duqﬂ >> 7

where in the last line, we used Lemma 4. For a > 0, p > 1 and b = 0, one easily checks that
log(e® + pe®) < a + b+ log(2p). Thus,

B [WP(X)]
<a? (p 1+ aW (@) + log(2(1 + (1 — a)~dL)) + Cpar(1, O)dﬁ)p
< (30" 1y ((p 1P+ aPWP(2) + logP(2(1 + (1 — a)~LdL)) + cpar(1,0)Pd1+%r) .
Taking a = 1/2 (for instance), we get
B, [W7(X0)] < ¢ (WP(2) + (log(1 + dL)Cpar (1,057 ).
To deduce the result, one finally checks that (log(1 + dL)Cpar(1,0) <ue Y.

A similar strategy based on Proposition 5 leads to

Eo[WP(X))] < cpa (Wp(ac) + (log(1 + 5dL)Clpax (5, 32a*1))pd$) .

for any a € (0,1/16). Taking a = 1/16 and checking that log(1 + 5dL)Cpar(5,32a71) <ye ¥
leads to the result.
O
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2.4. Analysis of the first and second variation processes. We introduce the first variation
process Y = (Y®);; i<y defined for all (4,7) € {1,...,d}* by V5" = 0, {XZ}' where
{XZ} denotes the i'" component of XZ. The process Y* is thus a matrix-valued process
solution of the ordinary differential equation:
ayyr

ds

(18) Y¥=1; and = VW (XP)Y®.

LEMMA 7. (i) Yze R4,

1Y% < e 2N dorw (XD)ds,

(ii) Assume that NV*W is L-Lipschitz for the norm ||.||s. Then, for any .,y € R%,

~ t 1 ¢ s ©
VY - Y72 < Lo — ZJ e b Avrw (X due =2 Avaw (XDdu g
PROOE. (i) By (18),

t
Y ’2=2— f VAW (X,) Y2 zds.
0

Thus,

vl <ol -2 [ Aguy (I
By a Gronwall-type argument, we deduce that
mzz’2 < |Z|2672S;AV2W(X§)ds
and the result follows.

(ii) For any z,y € R,

t
VYY) VW Yeds

0
t

— | —VPWEN (¥ - YE) + (VW(XT) - VAW (X)) Y ds.
0

Setting V; = Y,Y — Y;%, we have for any z € R such that |z| = 1,
d
S Vial® = =2Viz, VAW (XY)Viz) + 2V, (VAW (XT) = VW (XP))Y["2)

< — g (XD Va2 + 2|Viz| x L|XF — XP|e Sodvew(XD)ds,
where L denotes the Lipschitz constant of V2 for the norm |.|,. The inequality 2|ab| <
Alal? + A71[b|? (for A > 0) then yields:

d 7 t :
Vil < “Agu (X1 Viel? + L2|22|X7 — XY e (XD,

Avew (XY)
Thus, by a Gronwall-type argument, we deduce that
¢ Y2

X3 —Xsy| ! Aga (X2)du =25 Agayy (X2)du gy
0 Avew (XS)

The result follows by using that | X? — X¥| < sup,cgpa |V« |y — x| < |y — x| by (4).

Vel < L2|2f

O]
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2.5. Solution of Poisson equation. Bounds on the solution of the Poisson equation and its
derivatives . We remind that ¢ is solution of the Poisson equation f — 7(f) = Lg where f
is an at least C>-function from R? to R? and that, z* is the unique minimizer of W.

PROOF OF PROPOSITION 14 OF [GPP22]. Uniqueness: Consider two C? solutions g1
and go. Then, £(g; — g2) = 0 and:

J(gl —92)L(g1 — g2)dm = —JIV(gl — go)|dn.

Since the operator L is elliptic, we know that the density of 7 is a.s. positive so that g; — g9
is constant. The constraint m(g1) = 7(g2) = 0 implies that g; = go.

Existence: Let g;(z) = Sé v(f) — Psf(x)ds. Following the arguments of Proposition 16 of
[GPP22] and its proof below (mainly the fact that the first and second variation processes go
to 0 in L', sufficiently fast and locally uniformly in ), g is well-defined, of class C? and,
(gt), Dg; and D?g; converge locally uniformly to g, Dg and D?g respectively. In particular,
Lg =limy_, 1, Lg:. Now, using that £ is a linear operator (null on constant functions) and
the Dynkin formula, we get:

Lgi(x) = f LW(f)=Psf)(@)ds = Pof(x) = Pif(z) = f (@) = P(f)(x) == f(a) = 7(f)-

0

Then, Lg(z) = limy_, o Lgi(x) = f(x) — 7(f) for every z € R? (see Proposition A.8 of
[PP14] for a similar but more detailed proof).
O

<

PROOF OF PROPOSITION 16 OF [GPP22]. The fact that g is C? is proved along the
proof. Proof of 7). If the conditions of the Lebesgue differentiability are met (checked later
on), then:

+00

Dy(x) :L E.[Df(X,)Yi]dt.

Thus, since |.|. is a norm and since sup,ega | D f(x)]|« = [f]1,

+00
(19) IDg(@)]l <[] fo E,[|Yi[.]dt.

By Lemma 7, for all z € RY,
B, [[Vie 2] < |22y o2 Ao ()05

Thus, for any ¢ > 1, for every positive d1, we have
t
(20) E.|Viz[] <|z?e 2" + |2)?P (f Aga (X )du < t51> .
0
Then, using (H%}) and the Markov inequality, we get for every positive ¢, for every z # 0,

1 . t
E.[|Viz[’] <e™™ + P, (J W (X,)du < cf1t51>
0

[EE
] t —2(1+¢)
0

6 " —2(1+e)
< 2 + (c1—1t51)2(1+9)Em [(J W_T(Xu)du) ] .
0
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2(1+e)

Since z — 2~ is convex on (0, +0), it follows from the Jensen inequality that:

1 1 _ _
|Z|2Ex[‘}/tz‘2] < 6—215‘s + (°1 1t51)2(1+e)t 2(1+c¢) SupEx[”ﬁr(l—&—e) (Xu)]
u=0

2n

Setting 01 = ¢/(2(1 + ¢)), using the Jensen inequality and the elementary inequality (a +
b)é <a? + bz for non negative a and b, we obtain:

E.[|Yiz|] < |zl + |27t sup B [0 (X))

uz=0
By Proposition 6, Inequality (17), we get

E.[|Y: T 1 e
E.[[Y:]+] = sup [‘|Z|tzu Suee 2 4T (W””(“e)(x) +T7”(1+e)).
270

The above property has several consequences. First, it implies that g is well-defined. Actually,

|Pef (x) = m(f)] < J\Ptf(l‘) — Pf(y)lm(dy) < [f]h f sup Eu[[[Yi]+]ly — z|m(dy)

ue[z,y]
<C ( [yl + @+ 077 [0 ) + w709 - x|w<dy>)

< Cpmax(e 27 (1 44)7179).

In the above inequalities, we used the convexity of W and the fact that 7 integrates functions
with polynomial growth (simple consequence of Lemma 4). Thus t — |P.f(x) — 7(f)| is
integrable on [0, +0) and g is thus well defined.

Then, the Lebesgue differentiability theorem applies. This implies that Dg(x) is well-defined
on R? and that (by (19)),

(22) IDg(@) < 7' el fl (W (@) + 17059

where c, denotes a positive constant depending only ¢ (c, may change from line to line but
always depends only the parameter ¢).

For the second inequality of this assertion, we again use Inequality (17) of Proposition 6.
More precisely:

B, [1Dg(X0) 2] < eecr [} (B [0 (Xy)] + 72049

(23) < Ceclf2f2e[f]% (W2r(1+e) (-’EO) + 2T2fr(1+e)> )

The result follows.
Proof of i — a). By the first order Taylor formula and (22),

l9(2) = g(z*)* < sup [ Dg(a” +u(zx —a*)|I|z — 2"

ue(0,1]
< Cec1—2—2e[f]% <W2r(l+e) (.%'* + u(x _ 1'*)) + T2r(l+e)> |$ _ m*‘Q.
Since W is a convex function, W (z* + u(x — z*)) < W (x). Thus, using (6), we get

() — gl < ey 2 (WHERO(@) 4 TR ) W (2)
1

< cecl—3—2e <W(1+3r)(1+2) (z) + T(1+37‘)(1+e)> ’
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where in the second line, we used the Young inequality with p = (1 4+ 3r)/(2r) and g =
(1+3r)/(1+7).
Proof of i — b). We apply the result of ii — a) and obtain that:

Eao [l9(X) — g(a)|2] < cecr 2 £]2 (Emo (W80 040) (%,)] + T(1+3r)(1+e)) _
By Proposition 6 (Inequality (17)), this yields
Eo, [19(X0) — g(@*)[?] < cocr 32 f]2 (W(1+3T)(1+e) (z0) + 2T(1+37~)(1+e)) '
The result follows under the assumption W (zg) <ue Y.
Again, by ii — a)
l9(@0) — () < ceey T2 [FIF (W04 () + YO+ )

and the fact that W (20) <. Y implies that |g(zg) — g(x*)|?> < cecy > 26 [ 13 AF3)(UFe),
The result follows.

Proof of iii). First, since Df(X?)YY — Df(XZ)Y® = DF(XY)(YY — Y7) + (Df(XY) —
Df(X{)Y,

+00
24 |[Dg(y) — Dg(z)]+ < L [FRE[YY = Y]+ [Df1LE[ XY — XF|[YE ] ]dt.

First, since sup,cga >0 [V« < 1, | X/ — X¥| < |y — x| and with the same argument as in

(22),

+00
@9 | BN - XTI < ly - ol el (WO @) + 1705,
0
Second, set T,/ (s) = min Ay (XZ), Ay (Xi)). By Lemma 7,
t
BV - Y] < 2y - af’E |5 100 [ ach, (xpyas|

0
By (H%%), Cauchy-Schwarz and Jensen inequalities, this yields:

T T —2ff s)ds % tWT Xg ? %
BV — V7] < £y — 2B [ 25 Toaioh E[( [ Hd)]

L? . 1 .
< Ly — o | 20 T8 sup BIW (X))
C1 t=0
L? ' L
(26) <ue ?|y _ .Z‘|2E [6—250 Tw,y(s)ds] ¢ (Wr(y) + TT) ’
1

where in the last line, we used Proposition 6 (Inequality (17)).
For the first right-hand term, we use a similar strategy as for (20) and get for every ¢t > 1,
for any positive ¢; and Ja,
E [e_zg; n,y(s)du] <2t 4 40(di-1) SupE[Tl«’y(t)_(SQ].

t=0

By (H%4), it follows that

E [6—253 Tm,y(s)du] <e 2 C1—62t52(61—1) SupE[W"S’" (X7 + W (X¥)].
t=0
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By (26), we deduce that

E[|lYY —YZ|3 _ L2
—t < — (W + "
P (W) +17)

X [t6_2t51 + oy 2OV sup B[ (X)) + W (Xty)]] :
=0

For a positive ¢, we fix o = 3(1+¢) and 61 = ¢/(3(1+¢)) sothat 62 (51 —1) +1 = —2(1 +e).

By Proposition 6 (Inequality (17)), we deduce that:

B[y - 7R B2
————— Zuc W (y)+Y"
- S W)+ 1)

% [t€2t3<1+e) 4 1—3(1+2)t 2(1+e) (W3r(1+e)(l,)+W3r(1+e)(y)+fr3r(1+e))]'

By (24), Jensen Inequality and the elementary inequality (a + b)P < ¢,(a? + bP), we finally
obtain

CE[)YY - Y[ Jat L
<ce (

ly — | Ve
[1+C1 5(1+e) (W%(lJre)( )+W (1+e)( )_,'_T%T(hre))]

Wi (y) +T2) x

<CeC1 (1+°) (W2r(1+e)( )+W2r(l+e)(y)+T2T(l+e)>,

where in the last line, we used Young inequality with p = 4/3 and ¢ = 4. Thus, by (24), (25)
and the previous equation, we deduce the announced result.
Proof of iii) — b). Set X; = X; — (t —t) VW (X,). We have

(Dg(Xe)=Dg(Xe) (VW (X; + Ay) — VW (Xp)| < [ Dg(Xe) — Dg(Xe) |+ L] Age

~

Sue Ce) 2(1+e) <W2T(1+e)( ) + W2r(1+e)( X)) + T2r(l+e) ) L\AﬁIQ(t —1)

where in the second line, we used (ii7) — a). By Cauchy-Schwarz inequality and the elemen-
tary inequality |a + b+ c|? < 3(|a|? + |b]? + |c|?, we deduce that

~ _ _ 2
E., [|(Dg(X) = Dg(Xe) (VW (Xp + M) = VW (X0) | Sue cff” E[|Au/*]*Ez, [E7]

=

with
_ W4r(1+e)( ) + W4r(1+e)( ) + T4r(1+e)

By Cauc@y—Schwarz mequahty and Proposition 6 (Inequality (17)) and a slight adaptation
for WP(Xy)),

E, [HtQ] NucI/I/v4r(1-&-e)(x0)_i_frélr(l—&-e)_

Note that we again used elementary inequalities (including Young inequality) which involved
constants which can be bounded by universal constants (and are thus “hidden” in the notation
“<ue’)- The result follows by using that

E[|Au]*]2 = 4(t — £)°E[(x2(d))*]> = 4(t — £)>(d(d + 2)(d + 4)(d + 6))> Sue (¢ —1)2d>.
O

>
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3. Discretization tools - Strongly convex case. <]

PROOF OF PROPOSITION 17 OF [GPP22]. (i) By Lemma 7, the strong convexity yields
Vo e RY V5[, < e Pt
Thus, by Equation (19),

+00
Dyl <[ [ e < “;]

. The first assertion follows since [ f]; < 1.
(i2) By (9),

Ex, [l9(X) — g(z0)?] < ;EMU& —ol?].

By Lemma 5.1(i) of [EP21], if VW (z*) =0,
E[| X7 —2* 2] < |zg — a* > 2" + %
The2 result follows by using the elementary inequality | X[ — zo|? < 2(|X7° — 2*|? + |zo —
me))By Equation (24) and the Cauchy-Schwarz inequality,
@7 +a0

|Dg(y) — Dy ()]« < f [FLE[YY — Y] + [DfE[XY — XE[2PE[|Y*]2]: dt.

On the one hand, by Lemma 7(i7) and the fact V2 is L-Lipschitz for the norm ||,

= b1 pt_
VY = V7|7 < LPfa - y|2€_th —e Pds < eTL2|x —y|? vt=o.
0P p
On the other hand, by Lemma 7(¢) and the Jensen inequality,

1
E[| X} - X7]*] =E U f Y, Dy — 2)do
0

2

O(y— _

]< sup B[V 21y o2 < o —y et
0el0,1]

The Cauchy-Schwarz inequality, [ f]; <1 and [Df]; . <1 yield:

+00 i . i
IDg(s) ~ Dy(a). <y | ([f L e—m[Df]l,*e—?pt) dt<la—y <i+21p>

>
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