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How should society manage dynamic systems that may suddenly collapse? As economists,

we are increasingly confronting this question. But when we study climate change, virus

outbreaks turning to pandemics, or the collapse of fisheries and ecosystems, we encounter

several approaches with different assumptions, sometimes yielding opposite policy con-

clusions. In this paper, we argue that the key question is how these approaches deal with

the possibility that a catastrophe may already be under way.

Consider the impact of climate change on the Greenland ice sheet. A catastrophic

melting might well be under way, though no one knows exactly (e.g., Kriegler et al.,

2009). We expect that some temperature increase will lead to a dramatic acceleration

in melting, but this threshold is unknown, reflecting scientific uncertainty or stochastic

shocks. Was this critical threshold exceeded already in the ‘70s, or will it be reached

in the near future? Evidently, we cannot tell the final effect of past actions because

there is a considerable delay between the cause (the accumulation of greenhouse gases

in the atmosphere) and the effect (melting) (e.g., Fitzpatrick and Kelly, 2017). Similar

thresholds and delays are not unheard of in other situations. Is a virus outbreak on its

way to cause a breakdown of the health system? Will habitat fragmentation lead to a

collapse of biodiversity, or is it already too late?

When facing such threats, one may take it as advisable to act on the assumption

that the catastrophe is on its way to be appropriately prepared for its occurrence. On

reflection, however, one may consider it equally advisable to assume the opposite to

focus on actions that avoid triggering the catastrophe in the first place. Both premises

produce valuable insights, as the literature has shown, but we are left with a logical

dilemma: the assumptions are mutually exclusive and the choice between them dictates

to a large degree the nature of policy recommendations. Our formal framework is designed

to address this dilemma, allowing us to develop a new protocol for planning under the

threat of a catastrophe.

We develop a general model of experimentation in which a planner manages both

how much to experiment with an unknown threshold and how to prepare for the poten-

tial impacts from exceeding this threshold. The planner controls a stock variable with

multiple interpretations (e.g., temperature, finite resource, infected population). The

stock triggers a catastrophe when it exceeds an unknown threshold. Once triggered,

the catastrophe itself occurs only after a stochastic delay. The key assumption is that

the planner does not know whether a catastrophe has been triggered or not: only the
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occurrence of a catastrophe is observable. Reaching a previously untried level is thus an

experiment whose results may be learned only later on.

The delay between the triggering of the event and its occurrence leads to an in-

formation structure in which the planner evaluates potential threats pending from the

past. Formally, for any date we define the legacy of the past as the probability that

past experiments, whether planned or simply inherited, have triggered the catastrophe.

As time goes by without any catastrophe occurring, we are more confident that nothing

will follow from the past experimentations and the legacy goes down — unless we keep

on experimenting, thereby causing an increase in future values of the legacy. Likewise,

when evaluating the present-day legacy, it matters how and when we experimented in

the past. For instance, a rapid increase in greenhouse gases in the recent past creates a

legacy higher than if the same increase took place in a distant past.

Two thought experiments are particularly helpful for our analysis. First, if the planner

could learn the outcomes of experiments instantly, there would be no legacy. In that

scenario, what would be the long-run stock level, denoted QE, at which the planner

stops experimenting? Second, suppose instead that the legacy is one, meaning that a

catastrophe is bound to occur: which stock level, denoted QD, should one aim at? The

ordering of QE and QD then divides possible planning situations into two distinct classes.

Consider for example the management of a pandemic at its start, where the classical

trade-off is between economic activity, typically associated with younger people, and

mortality (or morbidity) risk, typically borne by older people. In addition, there is

the risk that too many cases might lead to a collapse of the health system. Hence, in

our model the stock is the number of infected people which, by reaching an unknown

threshold, may trigger a catastrophe. The planner thus manages simultaneously this

catastrophe risk and the classical trade-off. Our protocol recommends, as a first step,

evaluating and ranking the values of QE and QD.

Our first theorem holds when QE < QD, a situation which follows when the planner

puts a high weight on economic activity in comparison with the social costs of deaths.

Then optimal policies allow infection levels to grow over time, as illustrated by path I in

Figure 1. Moreover, a higher legacy (e.g., because there was a recent and fast increase

in the number of cases before time t0) leads to more experimentation and a higher total

number of cases that the planner optimally tolerates: the idea is that since the occurrence

of the catastrophe is likely, it is better to reap the gains from economic activity while they
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still exist. Hence, a higher legacy of the past makes the planner less cautious, as in path

I ′ in the figure. Our first theorem rationalizes such fatalism from a set of well-founded

primitives.

Figure 1

The second theorem applies when QE > QD, which occurs if the planner places a

higher value on life compared to economic activity. A possible optimal policy is illustrated

by path II in Figure 1. Under intuitive conditions, if the planner faces the same legacy

as in the first theorem, she imposes an early, strict lockdown to reduce infections and

mitigate the catastrophe’s potential impact on the health system. During the lockdown,

the legacy diminishes because no new experiments occur, and consequently, the planner

becomes more optimistic over time.

We show that this first phase of reducing infections is optimally followed by a second

phase that tolerates rising infections, eventually reaching or exceeding the level at which

the lockdown began. Hence, the policy is non-monotonic: with the same preferences, a

lockdown or higher infections can each be optimal, depending on how the current infection

level was reached. Finally, and in contrast to the first theorem, a higher legacy now

prompts more caution, leading to a stricter lockdown; however, the optimal asymptotic

stock level remains unaffected by the legacy (see path II ′ in the figure).

The disease control problem nicely illustrates the key stock-flow tradeoffs and con-

tributes to the literature on virus outbreaks by adding a new learning-based rationale

for non-monotonic policies.1 But these insights hold quite generally. Intuitively, when

1Assenza et al. (2020) provides a literature review on the so-called “hammer-and-dance” policies.
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data indicate that the catastrophe is bound to happen and if, in addition, gains to mit-

igation are small, there is little reason to restrain actions that produce benefits prior to

the occurrence. In the opposite case, gains to mitigation are high in the short run, but

the concern regarding catastrophes pending from the past dwindles in the long run if no

event occurs. This change in priority implies a non-monotonic trajectory for the stock.

In addition to pandemics, we illustrate the broad applicability of our results with two

stylized climate-change examples. First, climate-change targets are often expressed as

“budgets” for total CO2 emissions, but the “safe” budget is highly uncertain (van der

Ploeg, 2018; IPCC, 2021). We model this unknown budget as a threshold for cumula-

tive emissions beyond which a catastrophe is triggered. From this setup, several policy

implications follow. If cutting current emissions does little to mitigate catastrophe dam-

ages, then the first theorem applies: policies are monotonic, and a higher total budget

is allowed when the legacy is larger (for example, if emissions reached their current level

quickly rather than gradually). Otherwise, the second theorem applies. In that case, for

a sufficiently high legacy, the policy involves sharp early emissions reductions so that the

budget is initially untouched, with actual usage deferred to later. These insights do not

emerge from the existing literature.

Second, in a stylized setting, we show that classical climate-economy models balancing

consumption against climate damages also fit into our theorems’ dichotomy, in a manner

similar to the disease-control application.

To put the main analysis into perspective, we consider two extensions that modify

some of its key assumptions. First, we introduce a strategic interaction in which two

agents share a common legacy, creating information spillovers. We show a “discourage-

ment effect” in experimentation: once one agent stops, the other finds it optimal to stop

as well. Second, we allow for “positive catastrophes” (innovations) to demonstrate how

delays in observing the outcomes of past innovation efforts can lead to non-monotonic

policies. A temporary pause avoids duplicating efforts, and if no results emerge during

that pause, resuming later becomes optimal. In this mechanism pausing alters the legacy

in ways that eventually encourage restarting. By contrast, when catastrophes are nega-

tive, non-monotonicity largely stems from inheriting an unfavourable history—a realistic

scenario for pandemics and climate change.
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Related literature. Our model ties together two canonical but distinct approaches to

modelling catastrophes.2 In the first approach, the probability of a catastrophe happening

depends only on the current state of the system, typically through an exogenous hazard

rate function. Thus, the catastrophe is bound to happen, while action can be taken to

delay its occurrence and severity. But there is no memory of the past, and no learning over

time. Many recent applied papers (e.g., van der Ploeg and de Zeeuw, 2017), including

quantitative assessments of the optimal climate-change policies (e.g., Besley and Dixit,

2019) use this approach, that we refer to as the hazard-rate approach.

In the second approach—the unknown threshold approach—the catastrophe occurs

as soon as the critical variable exceeds a threshold whose exact value is unknown. The

formal approach appears in Kemp (1976), who studied the problem of eating a cake

of unknown size. In Rob (1991), the threshold is a kink in the demand curve. Tsur

and Zemel (1994) focus on natural catastrophes (see also Tsur and Zemel, 1995 and

1996).3 In Chen (2020), firms face a common threshold, but the cost of surpassing it is

borne privately by the firm that exceeds it. In contrast, in Diekert (2017) surpassing the

threshold imposes a common cost on all agents. Learning occurs instantaneously in this

literature: the planner is absolutely certain that the threshold has not been exceeded in

the past if no catastrophe has occurred so far. Beliefs are thus revised, after each step,

through a simple truncation of the prior for the threshold. This feature matches the facts

in most learning environments quite badly. For example, Roe and Baker (2007) argue

that the delays built into the feedback mechanisms governing climate change will prevent

us from learning the true nature of the problem in the coming decades.4

Researchers in both camps end up working with a hazard rate for the event, one

assumed exogenously and another derived from the threshold distribution. This choice

may seem innocuous, but in fact its informational consequences could not be bigger:

in one approach the catastrophe is pending for sure, while in the other one it is so far

2Catastrophes, broadly interpreted, appear in a wide range of economic applications, including
macroeconomic disasters (e.g., Barro, 2006; Gourio, 2008), technology breakdowns and demand tip-
ping (e.g., Rob, 1991; Bonatti and Hörner, 2017), resource consumption (Kemp, 1976), nuclear accidents
(Cropper, 1976), and pollution control (Clarke and Reed, 1994; Polasky, de Zeeuw and Wagener, 2011;
Sakamoto, 2014; van der Ploeg and de Zeeuw, 2017; Bretschger and Vinogradova, 2019; Cai and Lontzek,
2019). See Rheinberger and Treich (2017) for a bibliometric analysis of the literature on catastrophes.

3We discuss these contributions in Section 2.1.
4Crépin and Naevdal (2019) extend the threshold approach. The stock governs the rate of change

of another state variable which makes the catastrophe to occur when it goes above an unknown tipping
point. This introduces inertia in the path of this second state variable but learning is still instantaneous.
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avoided with certainty. By introducing a delay, we explore a more general model where

the planner remains uncertain if the current standing is safe, even if she stops exper-

imenting. The approaches in the literature follow as special cases if the delay goes to

zero or if past actions are known to have triggered the event. Neither of these canon-

ical approaches is suitable for interpreting the information content of past experiments

(planned or inherited) and thus they miss the mechanism that is key to our results.

Introducing delays implies that negative consequences from triggering a catastrophe

are delayed, an effect which trivially supports more experimentation. But delays create a

legacy of the past, with an ambiguous impact on experiments. Under the first theorem,

a higher legacy encourages to experiment more, because the planner becomes more fa-

talistic; under the second theorem, the opposite result holds, because lower stocks values

reduce the future damages from the catastrophe. This opposition also unifies the liter-

ature in a precise sense: the extreme informational assumptions of the literature define

two stock-level targets whose comparison tells which one of the theorem applies.

To the best of our knowledge, the only paper that introduces delays in the unknown

threshold approach is Guillouët and Martimort (2024), developed simultaneously with

this paper. In their model, exceeding an unknown threshold increases the arrival rate of a

catastrophe, the occurrence of which ends the game. As in our case, only the occurrence

is observed, and beliefs have to be revised accordingly over time; and the optimal path

thus depends not only on the present value of the stock, but also on the chronicle of

past actions. Their paper provides a mathematical characterization of optimal paths,

and then studies their decentralization between different selves of the same planner who

may not necessarily observe past actions. They link this scenario to a Precautionary

Principle. Our model is more general in several respects, and allows for a unification

of previous approaches; notably, catastrophes are no longer inevitable, and we allow for

damage mitigation before a catastrophe occurs.

Gerlagh and Liski (2018) consider an explicit climate-economy model with learning

about potentially catastrophic damages. The objective of that paper is to study the

impact of speed of learning on the optimal policy path when the legacy is strictly between

zero and one (using the current terminology). In this sense, the paper is between the

two canonical approaches to catastrophes in the literature. However, that model does

not have an information structure that connects the legacy to past experiments.

Laiho, Murto and Salmi (2025) shares with our paper the feature that the chronicle
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of past actions determines the speed of information arrival. In their model, stochastic

flow gains are made possible by irreversible capacity expansions, but there is a risk of

overcapacity if the profitability, given by an unknown state, turns out to be bad. In our

model, the payoff relevant stock level is reversible. Also, in our model, the chronicle of

past actions is essential for revising beliefs; in their setting, the precise timing of past

experiments does not matter.5

1 Model

The model defines a general framework that encompasses different applications. Con-

sider, for example, the case of greenhouse gases and climate change. In each period, a

planner chooses an emission flow, taking into account that emissions accumulate in a

stock with harmful effects. Section 1.1 defines and studies this classical stock-flow trade-

off. Section 1.2 introduces the possibility of a catastrophe, triggered when the stock

exceeds a threshold value but occurs only after a delay, as in the Greenland ice sheet

example mentioned at the beginning of the Introduction. Section 1.3 adds uncertainty

on both the threshold and the delay. Given these components, Section 1.4 formulates

the complete planning problem.

1.1 The Stock-Flow Problem (SFP)

Time t is a continuous variable in (−∞,+∞). At each date t ≥ 0, the planner chooses

a flow action qt to control a stock Qt according to a simple law of motion:

Q̇t = qt ∈ [q, q], Q0 given. (1)

We assume q < 0 < q, so that the stock may increase or decrease over time. In the

climate change example, this means that q are net emissions of greenhouse gases (net

of decay or absorption by forests), while Q is the stock of CO2 in the atmosphere. The

5Our approach is different from the bandit models used to study experimentation in various economic
settings. As in Poisson bandit settings, the planner updates beliefs on the arrival rate of a catastrophe
by not observing the event (as in Malueg and Tsutsui, 1997; see also Keller, Rady and Cripps, 2005;
and Bonatti and Hörner, 2011). In a sense, our planner runs an endogenous continuum of such bandits
(thresholds tried), and obtaining the information content of past actions requires aggregation over the
experiments. The belief updating that follows from this aggregation is new to the experimentation
literature; even under a simplifying Poisson assumption for the distribution of the stochastic delay, this
aggregation encapsulates not only the value of the highest stock on record but also the chronicle of past
experiments.
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planner’s objective function at date zero is the following sum of payoffs, discounted at

the rate δ > 0: ∫ +∞

0

u(qt, Qt) exp(−δt)dt. (2)

The instantaneous utility function u thus captures the trade-off between higher emissions

(associated to higher production and consumption) and a higher CO2 stock (impacting

utility or production, or both).

The Stock-Flow Problem (SFP) involves maximizing (2) under (1). It can be solved

by assuming that the planner has chosen to stabilize the stock at a value Q, setting q

permanently to zero. From this stabilized situation, we define the marginal payoff ν(Q)

of additional emissions as the immediate benefit of increasing the flow q, plus the effects

of increasing the stock Q, discounted over the entire horizon:6

ν(Q) = uq(0, Q) +
1

δ
uQ(0, Q).

Tsur and Zemel (2014) underline the role this function plays in dynamic settings,

especially when ν(Q) is decreasing with the stock. Under this assumption, when the

stock is low, the function is positive, encouraging accumulation. Conversely, when the

stock is high, the function is negative, encouraging stock reduction. Stabilization at Q

thus requires that ν(Q) be zero. This intuition motivates the following assumption:

Assumption 1 The function u is twice continuously differentiable, bounded from above,

and weakly concave in q. Moreover, for every Q we have:

uQQ(0, Q) ≤ 0 and uqQ(0, Q) < 0

The first part of the assumption is common in the study of dynamic problems. The

second part of the assumption ensures that the function ν is strictly decreasing with Q,

for every positive value of δ. Hence the definition:

Definition 1 QN (where N stands for “No catastrophe”) is the stock level at which ν(Q)

is zero. By convention, we set QN = +∞ if ν is positive for all Q, and QN = −∞ if ν

is negative for all Q.

QN is thus the long-run target in the absence of catastrophes. In line with the intuition

sketched above, we obtain:

6Subscripts denote partial derivatives.
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Proposition 1 The Stock-Flow Problem (1)-(2) admits a solution whose path (Qt)t≥0 is

monotonically converging to QN .

The proofs of this result and all other results in this paper can be found in the

Appendix. These proofs in fact only rely on the property that ν is weakly decreasing,

and on the requirement that different thresholds (QN , QD, and QE – to be defined soon)

are uniquely defined. This will allow us to handle other important cases. For example, if

the planner cares linearly about consumption and stock, we have u(q,Q) = u0+u1q+u2Q,

so that ν(Q) is a constant, and QN is uniquely defined as plus or minus infinity, depending

on the sign of the constant. Another canonical example considers an agent with a revenue

flow y, managing his wealth Q to smooth his consumption c over time. With an interest

rate r, the budget constraint writes

Q̇ = rQ+ y − c.

Thanks to the change of variable

q = rQ+ y − c u(q,Q) = U(c) = U(rQ+ y − q),

we obtain

ν(Q) =
(r
δ
− 1

)
U ′(rQ+ y).

Then ν is indeed decreasing in Q whenever the utility U from consumption is concave

and r > δ. As in the linear model, QN is infinite, meaning that the planner would like to

increase the stock without bound in the absence of catastrophes. Other examples include

cases in which the level of the stock impacts utility directly, such as fishery management.

1.2 Catastrophes and delays

Catastrophes are irreversible and costly events, that are triggered when the stock exceeds

a threshold value, but which occur only after a delay. To illustrate this key distinction,

one may imagine a skater on thin ice. Instantaneous utility flow increases with the

speed and/or the distance to the shore at a decreasing rate (Assumption 1), but the ice

gets thinner and thinner. When the first crack in the ice appears (the triggering), the

skater may turn back as long as the ice is still holding. When the ice finally breaks (the

occurrence), the journey finds an abrupt end, and the damage to the skater depends on

the remaining distance to the shore.
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We assume that a catastrophe is triggered when the stock Q exceeds a threshold value

S. Given a path (Qt)t∈(−∞,+∞), the triggering time is a function of S:

T (S) ≡ inf{t : Qt > S}. (3)

Note that T (S) is infinite if the stock never exceeds S and that QT (S) = S otherwise. We

also define the highest stock on record at time t:

Qt ≡ max
t′≤t

Qt′ .

so that T (S) < t if and only if S < Qt.

By assumption, the catastrophe itself occurs only after a delay τ ≥ 0 after the trig-

gering, at date T = T (S)+ τ . Note that, in contrast to the SFP, now the past trajectory

of the stock is relevant at time 0, as the catastrophe may have been triggered in the past

without occurring yet. After time T , the catastrophe occurs, the game ends, and the

planner receives a continuation payoff V (QT ), which depends on the value of the stock

at the catastrophe date T .7 Hence, the planner can mitigate the impact of a catastro-

phe by changing the level of the stock after the catastrophe was triggered but before it

occurs (think to the skater turning back to the shore). Leaving V instead dependent on

the threshold S, or on the maximum level tried in the past QT , would eliminate this

possibility by assumption.

To put more structure on payoffs, let us proceed to a natural comparison. At any

point in time, if the planner stabilizes the stock Q she obtains u(0, Q) forever, while if

instead she experiences the catastrophe, her continuation payoff is V (Q). The following

assumption orders these two payoffs:

Assumption 2 The function V (Q) is twice continuously differentiable and weakly con-

cave in Q. Moreover, for every Q one has

u(0, Q) ≥ δV (Q) uQ(0, Q) ≥ δV ′(Q).

Essentially, we assume that a catastrophe reduces utility compared to stabilization

and that a catastrophe is more costly when the stock is higher. For further reference, we

define the damage function D as follows:

D(Q) ≡ 1

δ
u(0, Q)− V (Q). (4)

7Applications to disease control and climate change will provide micro-foundations for V as the value
function of a post-catastrophe problem.
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Assumption 2 thus states that the damage is weakly positive and weakly increasing with

respect to the stock value at the date of the catastrophe. Overall, given S, τ , and a path

(Qt)t∈(−∞,+∞), one can compute T = T (S) + τ from (3), and the planner’s payoff from

date t = 0 onward equals∫ T

0

u(qt, Qt) exp(−δt)dt+ exp(−δT )V (QT ).

1.3 Uncertainty

We now introduce uncertainty over both the threshold S and the delay τ . The planner has

prior beliefs on S, characterized by a cumulative distribution function F on the interval

[S, S]. We underline that these are beliefs held at the beginning of times (t = −∞).

We assume throughout that F is continuously differentiable on its support, with density

f . We adopt a monotone hazard rate assumption, which makes the triggering of a

catastrophe more likely conditional on reaching a higher stock level:

Assumption 3 The hazard rate ρ(S) ≡ f(S)
1−F (S)

is weakly increasing.

The delay τ is also unknown to the planner. We assume that it follows an expo-

nential distribution with parameter α > 0, with the cumulative distribution function

1− exp(−ατ). In particular, τ and S are independent variables. These assumptions are

clearly made for tractability, and we will underline their consequences below.

A key assumption is that the planner does not observe the triggering of a catastrophe:

she only observes its occurrence. This allows us to capture the idea that a catastrophe

might well be underway, although the planner does not know exactly. These uncertainties

are often invoked in biology, under the name of the extinction debt (Tilman et al., 1994).

Hence, the only hard information the planner may learn is that a catastrophe has

occurred – but at that point the game ends. Thus, the planner’s policy concerns actions

taken before the game ends.

1.4 The planner’s problem

We are now in a position to state the planner’s problem. Recall that the prior beliefs

characterized by F are given at the beginning of times (t = −∞). By contrast, at the

planning date (t = 0), the planner inherits the past trajectory of the stock (Qt)t≤0, and

she also knows that the catastrophe was not triggered in the past, or was triggered but
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did not happen yet: equivalently, T ≥ 0. Therefore, the planner’s problem is to find a

policy (qt, Qt)t>0 that maximizes

E
ñ∫ T

0

u(qt, Qt) exp(−δt)dt+ exp(−δT )V (QT )

∣∣∣∣ T ≥ 0, (Qt)t≤0

ô
(5)

subject to (1). While Qt is continuous by construction, we only require qt to be piecewise-

continuous. We say that a path (Qt)t≥0 is monotonic if Qt is everywhere weakly de-

creasing, or everywhere weakly increasing, with respect to time. Moreover, we define

Q∞ ≤ +∞ as the supremum value for the stock. We say that Q∞ is reached in finite

time if there exists T < +∞ such that QT = Q∞. Otherwise, we say that Q∞ is reached

asymptotically, and in this case one has Qt ≤ Qt < Q∞ for all t.

The planner learns from past experiments by observing that a catastrophe did not

yet occur: in this sense, no news is good news. Prior beliefs are thus revised over time

by conditioning on survival. We now show how these beliefs can be summarized in a

survival probability with simple dynamics. Given a path (Qt)t∈(−∞,+∞), let us define the

survival probability at time t as the decumulative density function of the catastrophe

date T , computed at the beginning of times using the prior beliefs F :

pt ≡ Prob(T ≥ t).

To characterize this probability, one may distinguish two possibilities for survival at time

t. Either S is above Qt, so that no catastrophe could have been triggered before time t,

and survival is certain. Or S is below Qt, and in this case a catastrophe was triggered

at time T (S) < t, but did not occur yet because the delay τ is above t− T (S), an event

that happens with probability exp[−α(t− T (S))]. Overall, we obtain

pt = 1− F (Qt) +

∫
S<Qt

exp[−α(t− T (S))]dF (S). (6)

Hence, the survival probability at time t exceeds 1− F (Qt), as a catastrophe may have

been triggered in the past but did not occur yet. Define the legacy of the past πt as the

probability at time t that the event was triggered in the past, conditional on survival:

Definition 2 For a given path, the legacy of the past at date t is

πt ≡

∫
S<Qt

exp[−α(t− T (S))]dF (S)

pt
∈ [0, F (Qt)].
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Notice that π can also be computed directly from Q and p, as follows:

πt = 1− 1− F (Qt)

pt
.

The existence of a legacy is a direct consequence of the delay between triggering and

occurrence: in the limiting case without delay (α goes to infinity), pt equals 1− F (Qt),

and πt is zero. When delays are introduced, as soon as some experimentation took place

in the past, πt is not zero anymore: it is a sum of terms which vanish over time, each

term being associated to a possible value for the threshold S < Qt. Therefore, a past

experiment contributes less to πt if it took place a long time ago rather than just before

t.

The dynamics of the survival probability can now be simplified. By applying (6) at

t = 0, we get the information content of the data (Qt)t≤0 relevant for planning:

p0 = 1− F (Q0) +

∫
S<Q0

exp[αT (S)]dF (S).

Moreover, by differentiating (6), we obtain a law of motion:

ṗt = α[1− F (Qt)− pt] (7)

in which Qt is the highest stock on record:

Qt = max(max
0≤t′≤t

Qt′ , Q0). (8)

We are now in a position to rewrite the planner’s problem defined in (5). The cumu-

lative distribution function of the occurrence date T is simply 1− pT , and thus the event

T ≥ 0 has probability p0. The payoff in (5) becomes

E
ï∫

t≥0

1T ≥tu(qt, Qt) exp(−δt)dt+ exp(−δT )V (QT )

∣∣∣∣ T ≥ 0, (Qt)t≤0

ò
=

∫
t≥0

pt
p0
u(qt, Qt) exp(−δt)dt+

∫
T ≥0

exp(−δT )V (QT )
1

p0
d(1− pT ).

By leaving out the constant term p0, and by relabelling T into t in the second integral,

we obtain that the optimal policy maximizes∫ ∞

0

[ptu(qt, Qt)− ṗtV (Qt)] exp(−δt)dt, (9)

13



subject to (1), (7), (8), and given Q0, Q0 and p0.

Because time appears only through exponential discounting, the problem is autonomous :

its evolution depends solely on the state rather than on time. Three variables suffice to

describe the state: the stock Q, the maximum historical stock Q, and the survival prob-

ability p. Under the assumption that the waiting time for a catastrophe triggered is

exponentially distributed, the initial conditions
(
Q0, Q0, p0

)
fully summarize the past

trajectory
(
Qt

)
t≤0

. Equivalently, one may replace p0 with initial legacy

π0 = 1 −
1− F

(
Q0

)
p0

,

which represents the probability (conditional on survival) that a catastrophe was trig-

gered in the past. Intuitively, Q0 reflects the extent of past experimentation, while π0

captures its timing. Together, these two variables encapsulate all relevant historical data.

2 Optimal policies

Characterizing the optimal policies is not a simple task, as the problem involves three

state variables—one of which is a record process—and allows for nonparametric functions

in both the payoffs and the belief distribution. Methods from optimal control theory or

the calculus of variations that aim to derive policies from first-order conditions do not

readily apply. Standard continuity and convexity requirements for the constraints fail

to hold for the general problem, because of the presence of a record process in (8).

Consequently, we establish the existence of an optimum and characterize the optimal

policies only after identifying qualitative properties of candidate paths and showing that

these properties follow from intuitive conditions.

To develop the conditions needed, we next introduce important benchmarks results

and their connections to the literature.

2.1 Benchmarks

The case of a past triggering (the hazard-rate approach): Assume that the

planner knows the catastrophe was triggered in the past, but has not yet occurred, so

that the legacy of the past is permanently set to one. Suppose, moreover, that the stock

is stabilized permanently at some value Q, conjectured to be optimal. Thanks to the

assumption of an independent Poisson process for the delay, the benefit from a small
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temporary increase in the flow is easily seen to be equal to:8

ν(Q)− α

α + δ
D′(Q). (10)

From Assumptions 1-2, this expression is decreasing in Q and lies below ν(Q). Therefore,

it may reach zero only at a value QD ≤ QN , and this value is uniquely defined as follows:

Definition 3 QD (where D stands for “Damages”) is the stock level at which (10) is

zero. By convention, we set QD = +∞ if (10) is positive for all Q, and QD = −∞ if

(10) is negative for all Q.

This situation refers to the case where Q0 ≥ S at the planning date 0, so the planner

knows that the catastrophe has already been triggered. The law of motion for the survival

probability (7) reduces to:

pt = p0 exp(−αt). (11)

A comparison with the approach used in Clarke and Reed (1994), Polasky, de Zeeuw and

Wagener (2011), Sakamoto (2014), van der Ploeg and de Zeeuw (2017), or Besley and

Dixit (2019) is instructive. In these works, the catastrophe happens at time t with a

hazard rate h(Qt), where h is a given function, so that the survival probability reads as:

pt = p0 exp(−
∫ t

0

h(Qτ )dτ).

Comparing with (11), we see that these works can be interpreted to assume that

a catastrophe was triggered in the past. They then focus on how to best manage two

distinct elements. First, the delay before the catastrophe occurs can be controlled by

reducing the stock since they assume that h is an increasing function of Q. We do not

allow for this possibility in our model, as our delay follows a process with a constant

hazard rate α. Second, the damage from the catastrophe can be controlled by varying

the stock, as in our model; this effect is stronger if the damage varies more with the

stock, which makes QD lower compared to QN .

We can now provide a general result illustrating the importance of the threshold value

QD:

8To prove this formula, let 0 be the present date. Recall that by assumption the catastrophe was
triggered in the past, at some unknown date T (S) < 0, but did not occur yet. Therefore, the additional
damages D′(Q) from the future catastrophe must be discounted by

E[exp(−δ(T (S) + τ))|T (S) + τ > 0].

Using the assumption that τ is distributed exponentially with parameter α, we then obtain directly that
this value equals α

α+δ . In particular, it does not depend on the distribution of T (S).
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Proposition 2 Suppose Q0 ≥ S. Then for every initial value Q0 ≤ Q0, there exists an

optimal policy, which moreover is such that the path (Qt)t≥0 converges monotonically to

the value QD.

Hence, QD can be interpreted as the long-run target when one knows that the catas-

trophe was triggered in the past.

The case of no past triggering (the unknown threshold approach): Tsur and

Zemel (1994, 1995, 1996), and more recently Lemoine and Traeger (2014), Diekert (2017),

and Chen (2020) all use an unknown threshold approach in which a catastrophe occurs

as soon as the threshold is reached, so that there is no delay between triggering and

occurrence. In our model, this corresponds to the case when α goes to infinity. Then the

law of motion for the survival probability (7) reduces to

pt = 1− F (Qt),

and the legacy of the past is zero at every date. To study this simplified model, assume

that the planner has stabilized the stock at some level Q. By experimenting a bit more,

the planner would increase her payoff by the following quantity:

ν(Q)− ρ(Q)D(Q). (12)

Indeed, the first term is the gain in the absence of catastrophes, while the second

term measures the risk that the catastrophe be triggered and occurs immediately. The

following result illustrates the role of this expression:

Proposition 3 Suppose Q0 = Q0. Suppose also that there exists a value QE0 ∈ [S, S]

such that (12) is zero. In the absence of delay (α = +∞), there exists an optimal path

(Qt)t≥0, and it is:

(i) decreasing and converging to QN , if Q0 > QN ;

(ii) constant and equal to Q0, if Q0 ∈ [QE0, QN ];

(iii) increasing and converging to QE0, if Q0 < QE0.

This result was first obtained in Tsur and Zemel (1994). Since our assumptions are

weaker than theirs, we offer a general proof in the Appendix (the statement Q0 = Q0

is made for simplicity). The striking part is that the optimal path is a constant in case

(ii): one does not want to experiment further because the stock is already above QE0,
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and reducing the stock is also useless, as the current situation is safe in the absence of

delays.9

Our model involves delays; therefore, we reintroduce them by assuming α < ∞, while

continuing to work under the hypothetical assumption that it is known the catastrophe

has not been triggered in the past. In such a situation, one may safely stabilize the stock

by playing q = 0 forever. One may also experiment by increasing the stock a bit more

before stabilizing. To compare these policy options, one computes the instantaneous util-

ity gain from experimenting and subtracts the expected discounted damage of triggering

a catastrophe to obtain the net gain from a marginal experiment:10

ν(Q)− α

α + δ
ρ(Q)D(Q). (13)

In the case with a past triggering, one was worried about aggravating a catastrophe that

was already underway. Now, one is worried about triggering a catastrophe with some

probability measured by the hazard rate ρ: hence the difference between (10) and (13).

Under our assumptions, expression (13) is weakly decreasing in Q and lies below ν(Q).

Therefore, it may reach zero only at a value QE ≤ QN , and once more this value is

uniquely defined as follows:

Definition 4 QE (where E stands for “Experimentation”) is the stock level at which

(13) is zero. By convention, we set QE = S if (13) is negative at S, and QE = S if (13)

is positive at S.

This threshold value will play an important role in our analysis of the general problem.

The above reasoning proves that one should not stabilize the stock below QE, and we

state it explicitly here for future reference:

Proposition 4 Suppose that it is optimal to stabilize the stock at some level Q∞. Then

Q∞ ≥ QE.

9This confirms the findings in the literature, as summarized in the following citation (Tsur and Zemel,
1996, page 1291):

”The steady states of the optimal emission process form an interval, the boundaries of
which attract the pollution process from any initial level outside the interval.”

10See footnote 8.
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To summarize: So far, we have defined three unique long-run targets:

• QN : target in the absence of a catastrophe;

• QD: target when it is known that the catastrophe was triggered in the past;

• QE: stock level below which stabilization should not occur.

We also know that the last two values lie below QN . As we will see in the next section,

the ranking between QD and QE is key to our main theorems. The symmetry in equa-

tions (10)–(13), together with our monotonicity assumptions, makes it straightforward

to find conditions for the ranking. For example, we have:

Lemma 1 If the function (1
δ
u(0, Q)− V (Q))(1−F (Q)) increases (resp. decreases) with

Q at Q = QD, then QD < QE (resp. QD > QE).

Two polar cases come to mind. If a catastrophe reduces the stabilization value of the

stock, u(0, Q), by a fixed amount, then the damage D(Q) = 1
δ
u(0, Q)−V (Q) is constant.

In such a case, modifying the value of the stock is of no help if one wants to reduce

damages, and from (3) we obtain QD = QN ≥ QE. Conversely, if the damage increases

sharply with the stock level at the time the catastrophe occurs, then it becomes highly

valuable to reduce the stock; in this case, QD is small, and lies below QE.

2.2 The first theorem: when QE < QD

The first theorem applies when

Q0 < QE < QD < min(QN , S). (14)

In words, at the initial date, experimentation has barely begun, so the initial stock is

low. The situation is one in which the damage does not depend too much on the value of

the stock when the catastrophe occurs: mitigation strategies are not very effective. The

inequalities in (14) lead to our first theorem, with the following sequence of arguments.

First, it is a general property of optimal paths that they are monotonically increasing

when they lie below QD. Intuitively, even in the worst case, in which the legacy is one, the

policy would still optimally increase the stock toward QD. Lemma C.1 in the Appendix

extends this result to lower levels of the legacy.
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Second, given that QE < QD, it is not optimal to experiment further if one reaches

QD. Intuitively, either the legacy is small, and then one should not experiment any

further if one is already above QE, or the legacy is high, and then one should optimally

come close to the long-run target QD (see Lemma F.1 in the Appendix).

We conclude that optimal paths must be increasing and bounded byQD, and therefore

they must converge to some value QT ≤ QD at some date T ≤ +∞. Because the path

is monotonic, the record-process plays no role, and existence of optimal paths is easily

proven using standard results.

Finally, with the above preliminaries, one can proceed to a classical dynamic pro-

gramming exercise: should the planner stop experimentation at date T , or a bit before

T , or after T?11

Theorem 1 (Case QE < QD) Suppose (14) holds. Then there exists an optimal policy.

Under this policy, the path
(
Qt

)
t≥0

is weakly increasing and converges to Q∞ ∈ [QE, QD],

reached at some (possibly infinite) time T . Moreover:

1. If Q∞ is reached only asymptotically (i.e. T = +∞), then necessarily Q∞ = QE.

2. In every case (whether T is finite or infinite), one has

ν(QT ) =
α

α + δ

[(
1− πT

)
ρ(QT )D(QT ) + πT D′(QT )

]
. (15)

Finally, condition (15) implies that a higher QT is associated with a higher πT .

Condition (15) nicely consolidates the conditions supporting the definitions of QD and

QE, with weights determined by the legacy at the time when the experimentation stops.

Notice that when delays are infinite (α vanishes), we are back to the no-catastrophe case,

for which QE = QD = QN , and to the optimal path characterized in Proposition 1.

Similarly, in the absence of delays (α = +∞) the legacy is identically zero, and therefore

we confirm the result in Proposition 3 that the stock converges to the value QE0 from a

low initial level.

It is also remarkable that a higher legacy πT is associated with a higher long-run value

of the stock, that is, more experimentation in total. Indeed, immediate consumption

becomes more of a priority when it is more likely that a catastrophe was triggered in

11The proof of Theorem 1 is in Appendix F, and the dynamic programming interpretation in Appendix
I.1.
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the past because, by the assumption QE < QD, relatively little can be done to limit the

damages from a potential catastrophe. This fatalism pushes the final value above QE,

towards QD.

However, whether a higher initial legacy π0 leads to more experimentation in total

requires global comparative statics, involving variations in the entire policy path from

the initial date to the conclusion of experimentation. We provide such an analysis in

Proposition 5 of Section 3.2 for a simple model of climate policies, confirming that a higher

initial π0 indeed leads to more experimentation in total for an explicit optimal policy

solution. The disease control example further supports this result through simulations.12

Once QT is reached, as time goes by and no catastrophe occurs, the planner becomes

more and more certain that no catastrophe was triggered at all. Then, the legacy of

the past goes to zero. Now, since the stock is already above QE, there is no point

in experimenting further; and since the stock is below QN , reducing the stock is also

harmful. This is why the planner chooses to stabilize the stock forever after time T .

Theorem 1 assumes that Q0 is low enough for condition (14) to hold. In particular,

this condition ensures the monotonicity of Qt and guarantees that condition (15) holds

at QT . These properties are essential for the characterization.13

2.3 The second theorem: when QE > QD

We next reverse the key ranking of QE and QD, thus switching to a case when damages

are sensitive enough to the stock level to imply

QD < QE < min(QN , S). (16)

In this situation, a striking result is that the long-run target for the stock can be

easily computed. Indeed, if the stock remains below S, then the legacy of the past must

vanish in the long run. This implies that stabilizing below QE is suboptimal, since further

experimentation would still be valuable. Conversely, additional experimentation above

QE is suboptimal: when the legacy is zero, this follows directly from the definition of

12Comparative statics with respect to α also require global analysis for the same reasons. Additionally,
the variations of α and π0 are linked: the value of α impacts the computation of π0 from historical data
(Qt)t≤0.

13In contrast, if Q0 > QD > QE , a number of cases can arise. For example, the catastrophe may be
triggered with certainty, but establishing such a result would require a more detailed specification of the
model.
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QE, and when the legacy is high, one should instead aim for a lower target, closer to QD.

Building on these intuitions, we obtain:

Theorem 2 (Case QD < QE) Suppose (16) holds, and let
(
Qt

)
t≥0

be an optimal path.

If

Q∞ < min
(
QN , S

)
,

then:

1.
(
Qt

)
t≥0

converges to Q∞.

2. Q∞ = max
(
Q0, Q

E
)
.

3. If Q0 > QE, then convergence occurs in finite time.

A key implication of the theorem is that the optimal path converges to a steady

state, a result that is generally not guaranteed when more than two state variables are

involved (see, e.g., Benhabib and Nishimura, 1979). The interpretation is especially clear

if one starts at a low level of the stock: in that situation, any optimal path that remains

below the no-catastrophe target QN—and that does not trigger a catastrophe with cer-

tainty—must converge to the unique value of the stock for which further experimentation

has no marginal value. Notably, in contrast with the scenario in the previous theorem,

this long-run target does not depend on the initial legacy.

On the other hand, despite this convergence, the path need not be monotonic in

the short run. Indeed, Lemma C.1 (in the Appendix) shows that an optimal path can

decrease at some date if the legacy of the past lies above a certain threshold at that

date. The applications below demonstrate that such non-monotonic but transitory paths

can arise—even though ultimately, under the conditions considered, the trajectory still

settles to its long-run target. Intuitively, in these illustrations the planner inherits a

“bad history” (i.e., a large Q0); economically, such transitory non-monotonicity is easy

to understand from a damage-mitigation perspective.14

14By contrast, our extension to positive catastrophes shows that, under a different set of assumptions,
permanently ceasing experimentation conflicts with the long-run evolution of the legacy.
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3 Applications

3.1 Disease control and social distancing

We now present a simple model of a pandemic that incorporates the trade-off between

social distancing and economic activity—a common theme in the literature (see, e.g.,

Bloom, Kuhn and Prettner (2022) for a review). Additionally, our model accounts for

the possibility of a breakdown in the health system or even the entire economy. This

catastrophic risk, which is novel in the literature, generates a rich set of predictions, as

we now demonstrate.

Consider a population of agents whose mass is normalized to one. During the early

stages of the pandemic, the population It of infected agents at time t follows a simple

law of motion:

İt = (Rt − (r + d))It, I0 > 0 given.

The recovery rate r and the death rate d are positive parameters. Variable Rt ∈ [0, R]

measures new infections, with maximum value R > r + d attained when people behave

as in the absence of the pandemic. By mandating social distancing, the social planner

can reduce the value of Rt, so that stabilization occurs when R = r + d, and complete

isolation is associated with the value R = 0. The benefit from social distancing is to

eventually reduce the number of deaths, with a value of statistical life w > 0. But this

reduction comes at an economic cost: the value of production at time t is an increasing

and concave function Y (R) of R. Therefore, the instantaneous payoff is

Y (R)− wdI.

This model is a special case of our general framework, with the formulas applying

directly under the transformation Q = log(I) (see Appendix G.1). When we assume

catastrophes are ruled out, balancing the benefits and costs from increasing the stock of

infected agents leads to the long-run target

IN =
δ Y ′(r + d)

w d
. (17)

The policy target IN varies intuitively with the model’s parameters and can be reached

over time by a social distancing policy satisfying R > r + d if and only if I0 < IN .

However, planning in a pandemic may not be such a smooth operation. One may

worry that society or the health system breaks down if the number of infected agents is
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too high, or that the pathogen mutates into something much more dangerous. When a

catastrophe occurs, the planner loses control: the matching rate takes an exogenous value

R∗, and output remains fixed at a low level Y ∗ < Y (r + d). The death rate increases

to d∗ > d, the recovery rate becomes r∗, and the resulting rate of increase q∗ of infected

agents is assumed to satisfy the following inequalities:15

0 < q∗ ≡ R∗ − (r∗ + d∗) < δ.

If the catastrophe occurs at time T , at infections level IT , the discounted value of the

continuation payoff can be readily obtained as Y ∗

δ
− wd∗

δ−q∗
IT . The damage from the event

is then the discounted sum of production losses and the value of the mortality increases:

Y (r + d)− Y ∗

δ
+ wµ∗d

δ
I, µ∗ ≡

d∗

δ−q∗
− d

δ

d
δ

> 0. (18)

where the parameter µ∗ measures the increase in mortality. Having established this

damage, we can now see how it affects the planning target in comparison to the no-

catastrophe target, IN . When the planner is certain the catastrophe will arrive but it

has not yet done so, the trade-offs familiar from the general model lead to

ID = IN
1

1 + α
δ+α

µ∗ < IN ,

which is the infection level targeted under certainty of a future catastrophe that has not

yet occurred. One rationally braces for the catastrophe by reducing infections below the

no-catastrophe target IN , and does so more drastically the larger the change in mortality

measured by µ∗.

The target IE applies when the catastrophe is not deemed inevitable. Its expression

is more involved and is therefore omitted here. However, we obtain a conclusive result:

Lemma 2 In the disease control model, if one has

1

1 + Y (r+d)−Y ∗

wµ∗dID

< ρ(ID), (19)

then IE < ID, and Theorem 1 applies. Otherwise, IE > ID, and Theorem 2 applies.

15The last inequality avoids infinite values for the discounted welfare cost of deaths. Alternatively,
one could assume a vaccine is discovered after some (exogenous but possibly stochastic) date T ; or one
could endogenize the value of R∗ after the catastrophe by allowing the planner to control it; or one could
impose that the number of infected agents cannot exceed the population size by using a full S-I-R model
instead of a simple exponential.
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This result underlines the role played by the ratio Y (r+d)−Y ∗

wµ∗d
, which measures the

relative importance of economic losses vis-à-vis mortality increases. It is remarkable that

this simple parameter determines important characteristics of optimal paths, as we now

explain by ways of simulations.

Figure 2

Optimal paths in the plane (π, I) for a linear production function Y (R) = Y0R. Parameters
are: δ = 0.03, q∗ = 0.01, w = 1, d = 0.1, r = 0.9, d∗ = 0.2, α = 0.2, Y0 = 1000, Y ∗ = 950,
I0 = 32, q̄ = 1. Distribution F for log(I) is uniform: f = 1/6. Benchmark values are
IN = 300, ID = 110, and IE = 50.

Theorem 1 applied: Consider first the case of a planner who prioritizes economic

activity over deaths, in the sense that condition (19) is satisfied. Assume that the pro-

duction function is linear, and initial beliefs are uniform (all parameters are specified in

Figure 2). The solid curve Figure 2 depicts the infection level I satisfying the stopping

condition of Theorem 1, eq. (15), as a function of legacy π. When there is no legacy

(π0 = 0), the infection level is IE = 50, and similarly, when π0 = 1 we get ID = 110. Un-

der the conditions in Theorem 1, optimal policy paths are monotonic and must stabilize

the infection levels at a point (π, I) from this solid curve.

Let us then see how the legacy and the infection level jointly evolve before the stabi-

lization.16 Each dotted curve depicts this relationship, for varied initial legacies, but with

16The problem is linear in q, and, by standard arguments, the optimal control takes the maximum
value q̄ under the conditions in theorem 1 until the stopping condition holds. This gives a differential
equation for the legacy. We solved the differential equation and the two-point boundary value problem
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the same initial infection level set at I0 = 32. One observes that a higher initial legacy

leads to a higher long-run value for the stock.17 The intuition is the same: if the stock of

infected agents has increased very rapidly before time zero, then the probability that the

catastrophe was triggered is high, and the planner chooses to privilege high production

levels before the event occurs, at the price of additional deaths. Another noteworthy

remark is that along each optimal path the legacy πt is increasing with t: this means

that the planner allows the stock of infected to increase quite fast, thereby increasing

the probability that a catastrophe is triggered. This fatalistic behavior is at odds with

what prudence would recommend; but it is the rational consequence of an emphasis on

production, relative to deaths.

Theorem 2 applied: Let us now enter the domain of Theorem 2, by assuming that

the planner mainly aims at reducing the number of deaths, so that inequality (19) is

reversed. For this illustration, assume that planning starts so late that that the infected

population I0 is close to the long-run target in the absence of catastrophes IN . By

Theorem 2, optimal paths must converge to this initial level in the long-run.18

Figure 3

The population of infected agents over time, for a linear production function. Parameters
are: δ = 0.023, q∗ = 0.02, w = 1, d = 0.1, r = 0.98, d∗ = 0.25, α = 0.2, Y0 = 1000, I0 = 230.

numerically to reach the stopping condition from given (π0, I0).
17Note that π0 = 1 − (1 − F (Q0))/p0 cannot exceed F (Q0). This is why π0 only takes values below

0.5 in the graph.
18We compute the solution path in Appendix G.1.
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Figure 3 depicts the optimal time path of the stock of infected agents for different

values of the legacy at the initial date. A complete lockdown turns out to be optimal in

a first phase, as soon as the legacy is strictly positive. After a while, if the catastrophe

does not occur the planner becomes more and more convinced that the catastrophe was

not triggered in the past, and chooses to gradually relax the lockdown. In the long-run,

it is optimal to increase the stock up to the initial value, because the probability that

the threshold lies below it has become negligible.

Figure 4

The optimal control, for a linear production function. Parameters are: δ = 0.023, q∗ =
0.02, w = 1, d = 0.1, r = 0.98, d∗ = 0.25, α = 0.2, Y0 = 1000, I0 = 230.

Figure 4 depicts the optimal time path of the control variable Rt, corresponding to

the paths in Figure 3. The Figure confirms that with a higher initial value for the legacy

the lockdown lasts longer, and the recovery is slower, though in the long-run all paths

converge to the same level. We conclude that contrary to what happened in the previous

case, a higher legacy makes the planner initially more cautious. Finally, the optimality

of early containment followed by a relaxation and increasing infections resembles the

so-called hammer-and-dance policies for Covid-19. This learning-based rationale for the

hammer-and-dance policy differs from those surveyed in Assenza et al. (2020).
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3.2 Climate change

3.2.1 Optimal carbon budget

Studies of climate change often mentions a safe carbon budget whose value is uncertain

(van der Ploeg, 2018) and should not be exceeded, lest a catastrophe be triggered. For-

mally, this problem relates to a seminal work by Kemp (1976) who studies a cake-eating

problem in which the size of the cake is initially unknown. We extend this model by

incorporating a delay between the triggering and the occurrence of a catastrophe, during

which it is not known if the safe budget has been exceeded. We additionally make strong

assumptions on functional forms, so as to be able to perform some comparative statics

with respect to the initial legacy of the past π0.

At each date t, a decision-maker chooses a net consumption qt ∈ [q, q] and receives an

instantaneous payoff u0+u1qt, where u0 is the non-use value of the climate as a resource

and u1 is the value of a unit of consumption. The catastrophe is triggered when the

cumulative consumption Qt exceeds an unknown threshold. After the catastrophe occurs,

the planner obtains a continuation payoff −v0Q, where Q is the cumulative consumption

at the occurrence time. In terms of our general framework, the primitives of this problem

are

u(q,Q) = u0 + u1q, V (Q) = −v0Q, ν(Q) = u1, D(Q) =
u0

δ
+ v0Q,

with u1 > 0, u0, v0 ≥ 0. In contrast to the disease control model, an infinite carbon

budget is optimal in the absence of catastrophes: QN = +∞. On the other hand, if the

catastrophe was triggered with certainty in the past, the relevant target budget is QD.

It is straightforward to see that QD equals +∞ or −∞, depending on whether

u1 −
α

α + δ
v0

is positive or negative.19 Intuitively, both the marginal gains and expected losses from

consumption are constant, so the planner either reaps as much consumption as possible

or mitigates damages as much as possible before the catastrophe occurs. Finally, when

it is known that the catastrophe has not been triggered at all, then the optimal carbon

budget is QE, implicitly defined by

u1 =
α

α + δ
ρ(QE)

(u0

δ
+ v0Q

E
)
,

19For simplicity, we ignore the natural constraint Q ≥ 0.
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provided such a value belongs to the support of S (see Definition 4). We now distinguish

two cases.

Theorem 1 applied: Assume u1 > α
α+δ

v0. This implies QE < QD = +∞, so that

Theorem 1 applies. The optimal policies are weakly increasing, as stated in the theorem,

and strongly depend on the legacy π0 at which the planning begins.

Proposition 5 (Carbon budget I) Let u1 > α
α+δ

v0 and Q0 = Q0 < QE. Then there

exists a critical legacy π∗ such that:

(i) If the initial legacy π0 is below π∗, the optimal policy is to consume maximally,

qt = q, until reaching a finite date T , and stop thereafter, qt = 0. The optimal carbon

budget is such that QE < QT < QD.

(ii) If the initial legacy π0 is above π∗, the optimal carbon budget is unbounded: the

period of maximal consumption T extends to infinity, triggering the catastrophe with

certainty.

(iii) The stopping date (T ∈ [0,+∞]) and the optimal budget QT are nondecreasing

functions of the initial legacy π0.

With a low consumption in the past, one is confident that the budget has not been

exceeded yet, and this makes it worth being cautious and to avoid experimentation.

Conversely, after a high past consumption, one expects the consumption opportunities

to disappear anyway, and therefore it becomes optimal to allow for even more consump-

tion while this is possible. The key result is the third one, proving that higher legacies

lead to more experimentation.

Theorem 2 applied: Assume now u1 < α
α+δ

v0, so that the benchmark carbon

budgets are ranked as QD < QE. For a stark illustration, suppose further that we start

planning after intensive experimentation in the past: the stock has already exceeded the

benchmark budgets when the planning starts at t = 0. Formally, we assume:

QE < Q0 = Q0 < min(QN , S) u1 <
α

α + δ
v0. (20)

Proposition 6 (Carbon budget II) Assume (20) holds. If the legacy π0 is small

enough (u1 > π0
α

α+δ
v0), then there exists an optimal path, which consists in stabilizing the

stock forever: qt = 0 for all t. Otherwise, there exists a unique optimal path, characterized
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by two dates t1 and t2 such that 0 < t1 < t2 < +∞, and which are increasing with π0,

such that:

• qt = q < 0 for t < t1;

• qt = q > 0 for t1 < t < t2;

• qt = 0 and Qt = Q0 for t > t2.

Thus, in both situations the optimal carbon budget is Q0.

This result thus proves formally that optimal policies can be non-monotonic. It is

interesting also to compare to Proposition 5: now, a higher legacy of the past makes the

planner more cautious in the short-run, since the threat of pending catastrophes leads

him to reduce the stock more. In the long-run, the legacy vanishes, and convergence to

the initial value Q0 follows.

3.2.2 Stock-flow trade-offs in climate change

Considering the carbon budget as a resource with uncertain size provides new insights,

yet this perspective does not neatly align with climate-economy models that analyse the

trade-offs between consumption and gradually accruing damages, as well as potential

tipping points.20 To study these elements under delays, we consider a toy model for

climate change, inspired by Golosov et al. (2014). Consider a pollution stock Qt that

follows a simple law of motion:

Q̇t = Et − γQt, (21)

where Et is the pollution flow, and γ > 0 is the constant decay rate of the stock. The

output, denoted by Yt, is

Yt = exp(−θQ)K1−βEβ
t (22)

where K stands for capital, which we will set to 1 in this illustration, Et measures the

fossil-fuel energy use, and β ∈ (0, 1) is the factor share. With θ > 0, the first term

corresponds to the production losses due to the accumulation of the pollution stock.

Production is entirely consumed at each date, so that Ct = Yt. Instantaneous utility of

consumption is U(C) = logC.

20It is noteworthy that Nordhaus’ seminal contributions initially focused on setting a carbon budget;
only later developments incorporated damages from climate-economy interactions (Nordhaus, 1975).
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We are back to our general setting if we set q = E − γQ. Then,

u(q,Q) = β log(q + γQ)− θQ, ν(Q) =
β

Q

γ + δ

γδ
− θ

δ
.

and solving ν(QN) = 0 yields

QN =
β

θ

γ + δ

γ
.

The target QN increases in the abatement cost β, in the decay rate γ, and declines in

the percentage of output lost per unit increase in the stock θ.

It is a common concern that such smooth stock-flow tradeoffs may not well describe

the climate change problem (e.g., Pindyck, 2013). There are numerous components of the

Earth system that are susceptible to experiencing tipping events leading to irreversible

processes (Lenton et al., 2008), with considerable variation in how long the catastrophes

may be pending before they actually occur (van der Ploeg and de Zeeuw, 2017). The

Greenland ice-sheet is such a component for which the melting, after a critical temper-

ature, is the irreversible process. As in Cai and Lontzek (2019), when occurring the

catastrophe irreversibly changes the production possibility frontier. We may capture this

impact by increasing θ by a factor k > 1, and we assume that this shock is important

enough:

k > 1 +
γ

δ
.

This simple setting highlights the basic conceptual differences in the main two ap-

proaches in the literature. In the hazard rate approach, the catastrophe is pending. For

example, van der Ploeg and de Zeeuw (2017) is explicit about the idea that the ultimate

arrival of the catastrophe is evident, and the focus is on how to prepare for such an event.

In our toy model, the corresponding target is QD. By contrast, in the unknown threshold

approach, there is no legacy from the past because there is no delay between triggering

and occurrence. Without delay, we have α
α+δ

= 1, and then the information structure is

no different from that, for instance, in Lemoine and Traeger (2014). Then the relevant

target is QE.

Proposition 7 In the toy model of climate change, it holds that QE < QD if and only if

α + δ

α + δ + α ρ(QE) g
(
QE

) <
γ + δ + α

γ + δ + k α
.

where function g is defined as

g(Q) ≡ Q(
δk

γ + δ
− 1) +

β

θ
(log

Q

QN
+ log k + 1).
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By comparing the above equations, one obtains that QE is below QD if and only

if the hazard rate ρ is high enough, as already observed in Lemma 2 for the pandemic

case. In light of this one-parameter variation, we observe that both theorems are relevant

for the optimal policies. However, this is only the first step in planning. The planner

must also assess the legacy of past experiments and their information content, which

suggests an agenda for applied quantitative research on optimal climate policies within

detailed climate-economy models. These models can quantify the information content

of past (unplanned) experiments to provide a structural interpretation of beliefs. Our

model and applications illustrate the idea but remain stylized. Cutting-edge quantitative

approaches, including Cai and Lontzek (2019) and Traeger (2023), offer frameworks for

exploring the question.

4 Extensions

In this Section, we extend the model in two directions. The first extension studies a

climate change game with two players, and shows how commitment by one player can

influence the other to reach efficient outcomes. The second extension proposes to see

research innovations as positive catastrophes, and discusses the optimality of research

cycles.

4.1 Strategic interactions

Consider a game in which two countries n = i, j face the risk of a catastrophic climate

change triggered when their aggregate net emissions exceeds an unknown threshold, and

occurring after a stochastic delay. Players share common prior beliefs on the threshold

S (with a cumulative distribution function F (S) = 1 − exp(−ρS)) and on the delay

τ (Poisson distribution with parameter α > 0). Both players observe the full history

of actions. For simplicity, we endow players with similar preferences as in the carbon

budget application of Section 3.2, and we only allow for two actions, either positive

business-as-usual net emissions, or zero net emissions:

u(q,Q) = u1q, u1 > 0, with q = 0 or q = q > 0.

Moreover, the switch from q > 0 to zero is irreversible and must be decided at date

0, as it involves significant investments. In this simplified model of climate change,
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each player only has to decide when to stop. The occurrence of a catastrophe ends the

game, yielding each player a continuation payoff of −v0 < 0. Therefore, damages are

independent of the stock, making players fatalistic if it is likely that a catastrophe was

triggered in the past.

Consider the case when aggregate emissions q are fixed forever. Then it is easily

shown that the rate of change of the legacy of the past is given by

π̇ = (1− π)(ρq − απ).

We assume ρq < α < 2ρq. Business-as-usual emissions by both countries are thus high

enough to make the past triggering of a catastrophe more and more likely. By contrast,

if only one player emits, then the legacy of the past converges to a value π∞ ≡ ρq/α

strictly between 0 and 1. We also assume that the damage v0 is high enough.21

Now, suppose that player j has decided to emit forever: Tj = +∞. We show in

Appendix H.1 that player i’s best response depends on the initial legacy: if it is high

enough, precisely if

π0 > π∗
i ≡ 1− u1

v0

α + δ

αρ

ρq + δ

δ
,

then the player becomes fatalistic, and its best response is also to pollute forever, i.e.

Ti = +∞.

Conversely, suppose that player j has decided to stop immediately: Tj = 0. Once

more, the best response of player i is characterized by a threshold, and the Appendix

shows that player i chooses Ti = 0 if

π0 < π∗∗
i ≡ 1− u1

v0

(α + δ

αρ

)
.

Note that this second threshold is higher than the first one, which itself is below one

under our assumptions. We obtain:

Proposition 8 Suppose the initial legacy takes an intermediate value: π∗ < π0 < π∗∗.

Then both (Ti = 0, Tj = 0) and (Ti = +∞, Tj = +∞) are Nash Equilibria of the game.

Thus, if player i commits to Ti, it follows that Tj = 0. By committing to stop,

a player shapes the legacy path faced by the non-committing party, thereby making

immediate stopping the best-response strategy. While the precise mechanism differs, the

21Precisely, we impose the condition u1

v0
< ρα−ρq

α+δ .
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outcome resembles the “encouragement effect” discussed in the strategic experimentation

literature (Bolton and Harris, 1999), as player i’s action influences player j’s beliefs

about the rewards from continuation. This contrasts with commitments in common-pool

resource problems, where commitment can yield a strategic advantage by enabling one

party to over-exploit the resource at others’ expense.22

4.2 Positive catastrophes: innovations

For broader implications of our information structure, we next consider positive catas-

trophes, such as breakthroughs in basic science and technology. The gestation periods in

basic research are often measured in decades (e.g., Adams, 1990); thus, the delay between

cause and innovation seems crucial when assessing past research investments. Should ba-

sic research—whether privately or government sponsored—be conducted steadily over

time or in intensive bursts?

In innovation contests, as in Halac, Kartik and Liu (2017), learning involves updating

beliefs based on the absence of success after attempts to solve the problem. Setting aside

strategic interactions in this illustration, the planner increasingly assigns more weight to

the possibility that the problem is unsolvable as accumulated effort grows. The problem

is solvable only if an unknown state is good; the prior for this is p̂0. Success occurs when

the state is good and the cumulative innovation effort Qt exceeds an unknown threshold

S, which is assumed to follow an exponential distribution with parameter ρ. The hazard

rate for success is then
ρ

1 + 1−p̂0
p̂0

exp(ρQt)
= ρp̂t

where p̂t represents the belief that the state is good, conditional on no success by time t.

Suppose that the planner launches an R&D program in which innovation intensity

remains fixed at q > 0 for as long as the program continues. A fixed cost associated

with launching the program may prevent adjustments to innovation intensity during its

duration. Consequently, the policy decision reduces to selecting the time interval [0, T ],

determining the program’s length. We may write the planner’s payoff as in Halac, Kartik

and Liu (2017): ∫ T

0

(
p̂tρv − c

)
ptq exp(−δt)dt,

22This mechanism drives the results in, for example, Harstad (2012), where parties have incentives to
secure commitments prior to negotiations to strategically exploit others.
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in which v is the prize from the success, c is the unit cost of effort, q is the innovation

intensity, and pt is the survival probability, i.e the probability that no success is achieved

by time t. Since the belief that the problem is solvable declines with cumulative effort,

it is optimal to abandon the project after a finite time. This happens when the belief

reaches the threshold

p̂∗ =
c

ρv
.

By contrast, our information structure with delays leads to significantly different

predictions in this model. Assume that the state is good with probability one, p̂0 = 1,

but there is a delay between exceeding the unknown threshold S and learning about it.

The interpretation of parameters remains unchanged, except that we now introduce a

delay captured by α. Our key result on payoffs (Lemma F.3) establishes that the planner

evaluates the following integral:∫ T

0

(
(1− πt)

α

α + δ
ρv − c

)
qpt exp(−δt)dt.

Assuming 0 < α+δ
αρ

c
v
< 1, we can define a critical legacy

π∗ = 1− α + δ

αρ

c

v

at which the integrand vanishes. The interpretation of the legacy is the same as before: it

captures the probability that the innovation has already been triggered by past actions.

We see that if the initial legacy π0 is below π∗, then it is optimal to launch the program.

To know when to stop it, we have to study the evolution of πt through time. It is

straightforward to show that when T goes to infinity πt goes to a limit π∞ = min(1, ρ
α
q).

Appendix H.2 shows the following result:

Proposition 9 Assume π0 < π∗ < π∞. Conditional on no success, the research program

optimally stops at a finite T ∗ at which πt has increased to π∗. After stopping, πt decreases

and, in finite time, returns to π0, the level at which the program started.

The conditions in the Proposition imply that π is strictly increasing during the R&D

program – intuitively, the planner is more and more optimistic that the success has been

triggered. It becomes optimal to stop to avoid duplication of own effort, a concept that

to our knowledge has not been discussed in the literature.23 However, after ceasing the

23The duplication of effort typically refers to efforts among innovators, not within one innovation
program.
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program, no news is bad news and π declines monotonically towards zero and therefore it

must reach value π0 in finite time. This suggests that resuming the program is optimal.

We leave the details of the optimal innovation cycle for future research.

5 Concluding remarks

Inferences about catastrophes are difficult before they actually happen. This paper devel-

oped a novel approach for optimal experimentation with catastrophes that have delayed

observable impacts and severity depending on past actions. The model highlights the

importance of timing of past actions. The planner has different information about the

consequences of past actions depending on whether the same stock level was reached

gradually or rapidly; therefore, the forward-looking plan also differs accordingly. For

crises such as Covid-19, the model predicts that similar planners can take very different

optimal courses of actions depending on the legacy of the past. Late planning starting

after an explosion of infections can justify the optimality of a lockdown, but the same

infection level can justify further steps forward if the current level was approached slowly.

The lesson for climate change would be: The “lockdown of emissions” may be optimal

until unknowns can be ruled out.

We see that the setting offers several openings for future work. Following our ex-

tensions, it is natural to study a game between multiple players who share a common

legacy of the past. What are the implications for climate contracts when parties can

influence the legacy before negotiations? What types of contracts best induce participa-

tion in climate treaties? For innovation contests, it would be interesting to revisit the

canonical model when duplication of effort can occur both within a player’s own actions

and between innovators.
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Guillouët, L., and M. Martimort. 2024. “Precaution, Information and Time- Incon-

sistency: On The Value of the Precautionary Principle.” Toulouse School of Economics

WP 1411.

Halac, Marina, Navin Kartik, and Qingmin Liu. 2017. “Contests for Experimen-

tation.” Journal of Political Economy, 125(5): 1523–1569.

37



Harstad, B̊ard. 2012. “Climate Contracts: A Game of Emissions, Investments, Nego-

tiations, and Renegotiations.” The Review of Economic Studies, 79(4): 1527–1557.

Hartl, Richard F. 1987. “A Simple Proof of the Monotonicity of the State Trajectories

in Autonomous Control Problems.” Journal of Economic Theory, 41: 211–215.

IPCC. 2021. The Physical Science Basis. Contribution of Working Group I to the

Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-

Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y.
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A Preliminaries

For the sake of brevity, we often omit arguments when there is no ambiguity, and we

write e for exp(−δt), LHS for left-hand side, and RHS for right-hand side. We also use

the convention that the hazard rate ρ is zero outside the support of S.

Let (Qt)−∞<t<+∞ be an admissible path. The maximum stock on record at date t is

Qt ≡ maxt′≤t Qt′ , and Q∞ ≡ supt′ Qt′ is the supremum of stock values.

The survival probability pt is by assumption strictly positive at date 0, and above

1 − F (Q0). From (7), one easily shows that pt remains strictly positive. It is weakly

decreasing and thus converges. Therefore ṗt goes to zero, and pt goes to 1− F (Q∞).

The differential equation (7) admits a unique solution: for t ≥ T , one has

pt = pT exp(−α(t− T )) + α exp(−αt)

∫ t

T

(1− F (Qτ )) exp(ατ)dτ. (A.1)

In particular, when Q is a constant on [T, t], we denote the survival probability by P ,

and one has:

Pt = 1− F (QT ) + (pT − 1 + F (QT )) exp(−α(t− T )). (A.2)

Recall also the definitions of the legacy of the past, and of the damage function:

πt = 1− 1− F (QT )

pt
D(Q) =

u(0, Q)

δ
− V (Q).

Finally, for a given path we define the payoff associated with playing q = 0 forever

from date T onward:

Z0(T ) =

∫ +∞

T

(Ptu(0, QT )− ṖtV (QT )) exp(−δ(t− T ))dt,

where P is defined in (A.2). We obtain

Z0(T ) = (1− F (QT ))
u(0, QT )

δ
+ (pT − 1 + F (QT ))

u(0, QT ) + αV (QT )

α + δ
,

which, thanks to the definitions of π and D, reduces to:

Z0(T ) = pT

Å
u(0, QT )

δ
− α

α + δ
πTD(QT )

ã
. (A.3)

B A useful inequality

The following result will be used repeatedly to study optimal paths. It follows from

replacing, on an interval [t1, t2], the candidate optimal path by a constant path.
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Lemma B.1 Let (Qt)t≥0 be an optimal path. Then∫ t2

t1

(Qt −Qt1)

Å
ṗt(D

′(Qt1)−
α + δ

α
ν(Qt1)) + δ(1− F (Qt))ν(Qt1)

ã
exp(−δt)dt

≥ αδ

α + δ
ρ(Qt1)D(Qt1)

∫ t2

t1

(1− F (Qt))(Qt −Qt1) exp(−δt)dt, (B.1)

for all (t1, t2) such that one of the following two cases holds:

• Case (i): 0 ≤ t1 < t2 = +∞.

• Case (ii): 0 ≤ t1 < t2 < +∞, Qt1 = Qt2, Qt1 = Qt2.

Proof of Lemma B.1: First, let us compute the payoff W from the optimal path on

the interval [t1, t2]. We have

W =

∫ t2

t1

(pu− ṗV )edt,

and by integrating by parts the second term we get

W = −[pV e]t2t1 +

∫ t2

t1

p(u− δV + qV ′)edt.

Since by definition V (Q) = u(0,Q)
δ

−D(Q), we get:

W = −[pV e]t2t1 +

∫ t2

t1

p(u(q,Q)− u(0, Q) + q
uQ(0, Q)

δ
+ δD − qD′)edt.

The concavity of u in q implies:

W ≤ −[pV e]t2t1 +

∫ t2

t1

p

Å
q(uq(0, Q) +

uQ(0, Q)

δ
) + δD − qD′

ã
edt.

In the integral we recognize ν, and this expression can be rewritten as

W ≤ W+ ≡ −[pV e]t2t1︸ ︷︷ ︸
=A

+

∫ t2

t1

p (q(ν(Q)−D′) + δD) edt.

Now, consider an alternative path (q′t, Q
′
t) that consists in setting q′t = qt before t1

and after t2, and q′t = 0 on [t1, t2], so that the stock remains set at Qt1 on this interval.

Proceeding as above, the payoff for this new path on the interval [t1, t2] equals

W0 = −[PtV (Qt)e]
t2
t1︸ ︷︷ ︸

=A0

+

∫ t2

t1

PtδD(Qt1)edt,
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where the survival probability P is now given by (A.2) with T = t1. In case (i) of the

Lemma, the optimality of the initial path implies the inequality W+ ≥ W0. In case (ii),

the condition (Qt1 = Qt2 , Qt1 = Qt2) ensures that the survival probability is the same

under both paths on the interval [t1, t2], and that the payoff from both paths is the same

after t2. Therefore, once more the inequality W+ ≥ W0 must hold. We now compare the

different terms in this inequality.

Observe first that A in W equals A0 in W0. Indeed, in case (i) the bracketed terms

are equal at t = t1, and also at t2 = +∞ because the exponential is zero. In case (ii),

this follows because Qt is the same constant for both path, so that P = p on [t1, t2]. The

inequality W+ ≥ W0 thus reduces to∫ t2

t1

p[q(ν(Q)−D′) + δ(D −D(Qt1))]edt︸ ︷︷ ︸
=B

≥ δD(Qt1)

∫ t2

t1

(P − p)edt︸ ︷︷ ︸
=B0

.

In case (ii), B0 is zero, and is trivially above the RHS in (B.1), which is also zero. Let

us show the same result in case (i). To evaluate B0, we apply (A.1) at T = t1 to both p

and P :

Pt − pt = α exp(−αt)

∫ t

t1

(F (Qτ )− F (Qt1)) exp(ατ)dτ.

Another integration by parts yields:∫ +∞

t1

(Pt − pt) exp(−δt)dt =
α

α + δ

∫ +∞

t1

(F (Qt)− F (Qt1)) exp(−δt)dt.

Now, we have:

F (Qt)− F (Qt1) =

∫ Qt

Qt1

f(S)dS =

∫ Qt

Qt1

(1− F (S))ρ(S)dS ≥ (1− F (Qt))ρ(Qt1)(Qt −Qt1)

because ρ is increasing and 1−F is decreasing.24 This implies that B0 is above the RHS

in (B.1), as announced.

Finally, to evaluate B we define the function N(Q) ≡
∫ Q

Qt1
ν(x)dx. We have:∫ t2

t1

pq(ν −D′)edt = [p(N −D)e]t2t1 −
∫ t2

t1

(N −D)(ṗ− δp)edt,

24Recall that by convention ρ is zero outside the support of S. Thus this inequality also holds when
Qt1 is below S or above S.
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so that

B = [p(N −D)e]t2t1 +

∫ t2

t1

(ṗ(D −N) + δpN − δpD(Qt1)) edt

Now, Assumption 2 implies that D −N is convex, so that

D(Q)−N(Q) ≥ D(Qt1) + (Q−Q1)(D
′(Qt1)− ν(Qt1)).

And Assumption 1 implies that N is concave, so that

N(Q) ≤ (Q−Qt1)ν(Qt1).

Since ṗ ≤ 0 ≤ p, we obtain:

B ≤ [p(N−D)e]t2t1+

∫ t2

t1

(Qt−Qt1)[ṗ(D
′(Qt1)−ν(Qt1))+δpν(Qt1)]edt+D(Qt1)

∫ t2

t1

(ṗ−δp)edt.

The first term and the last term on the RHS cancel each other under both case (i) and

case (ii). Finally, we use (7) to replace p by 1−F (Q)− 1
α
ṗ. This implies that B is below

the LHS in (B.1), and concludes the proof. ■

C Consequences for monotonicity

The following result is derived from Lemma B.1, and shows that every optimal path is

weakly increasing when Qt is below QD:

Lemma C.1 Suppose that the stock decreases at the right of t1. Then Qt1 ≥ QD, and

πt1 >
δ
α

ν(Qt1 )

D′(Qt1 )−ν(Qt1 )
.

Proof of Lemma C.1: Because the stock decreases at the right of t1, it is possible to

apply Lemma B.1 in case (i) or (ii), on an interval [t1, t2 ≤ +∞[ on which Qt < Qt1 , so

that Qt = Qt1 . Then there must exist t such that the function in the integral in (B.1) is

negative, so that:

ṗt(D
′
1 −

α + δ

α
ν1) + δ(1− F (Qt1))ν1 < 0.

Since πt = 1− 1−F (Qt)
pt

, we obtain ṗ = α(1− F (Qt)− pt) = −αpπ, and thus:

(D′
1 −

α + δ

α
ν1)αptπt > δpt(1− πt)ν1,

or equivalently πt >
δ
α

ν(Qt1 )

D′(Qt1 )−ν(Qt1 )
. Moreover, because Qt is a constant, πt is decreasing,

and therefore πt1 ≥ πt. This establishes the announced inequality. Finally, notice that

the right-hand side of this inequality is below 1 if and only if Qt1 ≥ QD. ■
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D Consequences for convergence

The next result establishes the convergence of optimal paths for which there is a positive

probability of not triggering the catastrophe:

Proposition D.1 Suppose an optimal path is such that Q∞ < S. Then the stock Qt

converges to a value Q∞ ∈ [QE, QN ] when t goes to infinity. Moreover, if Q∞ < QN ,

then Q∞ = Q∞, and the path is weakly increasing for t high enough.

To prove this result, we begin by the following Lemma:

Lemma D.1 If an optimal path is such that Q∞ < S, then it converges to some value

Q∞ as time goes to infinity. Moreover, one of the three following cases must hold:

(i) Q∞ = QN ;

(ii) Q∞ > QN , and the stock value Qt is weakly decreasing for t high enough;

(iii) Q∞ < QN , and the stock value Qt is weakly increasing for t high enough.

Proof of Lemma D.1: For t, t1 such that t ≥ t1, define the function

B(t1, t) = ṗt(D
′(Qt1)−

α + δ

α
ν(Qt1)) + δ(1− F (Qt))ν(Qt1).

Step 1: we first show that for every ε > 0, there exists a date Γ(ε) < +∞ such that, for

all t and t1 such that t ≥ t1 > Γ(ε), one has

|ṗt(D′(Qt1)−
α + δ

α
ν(Qt1))| < δ(1− F (Qt))ε. (D.1)

Indeed, the right-hand side is at least δ(1−F (Q∞))ε, which is strictly positive. Moreover,

recall thatD′(Q)−α+δ
α
ν(Q) is weakly increasing from Assumption 2, and let us distinguish

two cases:

• Either Qt1 < QD, and therefore the path is increasing from date 0 to date t1, from

Lemma C.1. Then we have

D′(Q0)−
α + δ

α
ν(Q0) ≤ D′(Qt1)−

α + δ

α
ν(Qt1) ≤ 0.

• Either Qt1 ≥ QD, and because Qt1 ≤ Q∞, we have

0 ≤ D′(Qt1)−
α + δ

α
ν(Qt1) ≤ D′(Q∞)− α + δ

α
ν(Q∞).
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This shows that in any case the factor of ṗt in (D.1) is bounded. Since ṗt goes to

zero, the result follows.

Step 2: suppose that there exists t1 such that Qt1 < QN and t1 > Γ(ν(Qt1)). We show

that Qt must be weakly increasing at the right of Qt1 .

Indeed, under our assumption in this step, from Step 1 (D.1) must hold at ε =

ν(Qt1) > 0, for all t ≥ t1. This implies that B(t1, t) is strictly positive for every t ≥ t1,

as the second term in B is strictly positive as Qt1 < QN , and this term is strictly above

the absolute value of the first term.

Now, notice that the expression inside the integral in (B.1) equals (Qt −Qt1)B(t1, t).

Therefore, if Qt lies below Qt1 for all t ≥ t1, and is sometimes strictly below Qt1 , we

reach a contradiction with inequality in (B.1) in case (i). And if there exists t2 ≥ t1 such

that Qt1 = Qt2 ≥ Qt for all t ∈ [t1, t2], with sometimes a strict inequality, we once more

reach a contradiction with (B.1) in case (ii). Therefore, Qt must be weakly increasing at

the right of Qt1 , as announced.

Step 3: suppose that every t1 above a threshold belong either to the domain {t1 : Qt1 <

QNandt1 > Γ(ν(Qt1))}, or to the domain {t1 : t1 ≤ Γ(|ν(Qt1)|)}. If the second domain is

bounded, then after a threshold date the path must fully belong to the first domain, so

that the path is weakly increasing after this threshold date, from Step 2. Since the path

is bounded by the finite value Q∞, it must converge to a limit below QN . In particular,

if it converges to a value strictly below QN , then it must be weakly increasing for t high

enough, as announced in case (iii) of the Lemma.

Alternatively, if the second domain is unbounded, as t1 grows without bounds in this

domain the inequality t1 ≤ Γ(|ν(Qt1)|) implies that ν(Qt1) must get closer and closer

to zero, so that Qt1 must get arbitrarily close to QN ; and whenever t1 belongs to the

first domain, then Qt must be weakly increasing at the right of t1 from Step 2, thus get-

ting closer to QN . This shows that the path converges to QN , as in case (i) of the Lemma.

Step 4: Otherwise, for every T there exists t1 ≥ T such that Qt1 > QN and t1 >

Γ(−ν(Qt1)).

A first possibility is that, after some threshold date, the path is weakly decreasing

whenever it is above QN . From our assumption in this step, the path must therefore
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remain above QN . Being weakly decreasing and bounded from below, the path must

converge. In particular, if it converges to a value strictly above QN , then it must be

weakly decreasing for t high enough, as announced in case (ii) of the Lemma.

Otherwise, for every T there exists t1 ≥ T such that Qt1 > QN , t1 > Γ(−ν(Qt1)), and

the path is increasing at the right of Qt1 . From Step 1, B(t1, t) is strictly negative for all

t ≥ t1. If the path remains weakly above Qt1 for t ≥ t1, we obtain a contradiction with

(B.1) in case (i); so that the path must at some point go strictly below Qt1 . Therefore,

there exists t2 > t1 such that Qt1 = Qt2 ≤ Qt for t ∈ [t1, t2]. If moreover Qt1 = Qt2 , we

obtain a contradiction with (B.1) in case (ii). We have thus shown that for each such t1,

after t1 the path strictly exceeds the maximum stock on record Qt1 , before going strictly

below Qt1 . Therefore the path fluctuates an infinite number of times, and the amplitude

of each fluctuation is increasing as time goes by.

Let us number these fluctuations using an integer index n. What we have shown is

that there exists two increasing and unbounded sequences (τn)n≥0 and (τ ′n)n≥0 such that

τn < τ ′n < τn+1, and τn is the date at which the nth fluctuation reaches a minimum, and

τ ′n is the date at which this fluctuation reaches a maximum. Moreover, Qτn must be

decreasing with n; but if it goes down below QN , then it must be that τn ≤ Γ(ν(Qτn)),

because otherwise the stock is increasing from Step 2. This implies that the limit of Qτn

must be at least QN , and since Qτn decreases the stock must remain above QN forever.

Symmetrically, Qτ ′n must be increasing with n, and because Qτ ′n = Qτ ′n
this sequence

must converge to Q∞.

In the long-run, Qt becomes arbitrarily close to Q∞, and the planner learns almost

nothing new from each fluctuation. Therefore πt must go to zero, and the planner’s

problem becomes identical to the Stock Flow Problem without catastrophes, for which

all solutions are weakly decreasing paths that converge to QN . We thus have reached a

contradiction. ■

We can now prove the Proposition:

Proof of Proposition D.1: We know from the previous Lemma that the stock con-

verges to a value Q∞. The proof consists of six steps.

Step 1: Because QT goes to Q∞, the difference Q∞ − QT =
∫
t≥T

qtdt goes to zero.
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Moreover, an integration by parts yields∫
t≥T

qt exp(−δ(t− T ))dt =

∫
t≥T

qtdt− δ

∫
t≥T

Å∫
τ≥t

qτdτ

ã
exp(−δ(t− T ))dt

so that the left-hand side goes to zero when T goes to infinity.

Step 2: we now show that the planner’s payoff

W (T ) ≡
∫
t≥T

(ptu(qt, Qt)− ṗtV (Qt)) exp(−δ(t− T ))dt

converges to the value

z ≡ (1− F (Q∞))
u(0, Q∞)

δ

as T goes to infinity. A first remark is that since the path is optimal, then W (T ) is at

least the payoff Z0(T ) from stabilizing the stock forever at its level QT . Thanks to (A.3),

we have

Z0(T ) = pT

Å
u(0, QT )

δ
− α

α + δ
πTD(QT )

ã
.

Since pT converges to 1− F (Q∞), and πT goes to zero, we have shown:

W (T ) ≥ Z0(T ) and lim
T→+∞

Z0(T ) = z. (D.2)

A second remark is that one can decompose ptu(qt, Qt)− ṗtV (Qt) into

(pt − 1 + F (Q∞))u(qt, Qt)

+(1− F (Q∞))(u(qt, Qt)− u(qt, Q∞))

+(1− F (Q∞))(u(qt, Q∞)− u(0, Q∞))

+(1− F (Q∞))u(0, Q∞)

−ṗtV (Qt).

Because u is concave in q, the third line is less than (1−F (Q∞))qtuq(0, Q∞); and the

last result in Step 1 implies that the integral on t ≥ T of this last expression, weighted

by exp(−δ(t− T )), goes to zero as T goes to infinity.

Now, for T high enough one can restrict attention to Q taking values in a bounded

neighborhood A of Q∞. Because u and uQ are bounded on [q, q]×A, and V is bounded

on A, the first, second, and last terms go to zero as t goes to infinity, and so do their

integrals when weighted by exp(−δ(t− T )).
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Overall, by integrating on t ≥ T we obtain that W (T ) is below the weighted integral

of the fourth term, which is z, plus some terms that go to zero as T goes to infinity.

Together with (D.2), this establishes that W (T ) converges to z, as announced.

Step 3: in this step, given (T , q̂ ∈ [q, q], a > 0) we define an alternative path: play q̂ on

[T, T + a], and 0 afterwards. We obtain new trajectories for the variables (q̂, Q̂, Q̂, p̂):

• For t ∈ [T, T + a]:

q̂t = q̂ Q̂t = QT + q̂(t− T ) Q̂t = max(QT , Q̂t)

and from (A.1):

p̂t = pT exp(−α(t− T )) + α exp(−αt)

∫ t

T

(1− F (Q̂τ )) exp(ατ)dτ.

• For t ≥ T + a:

q̂t = 0 Q̂t = Q̂T+a Q̂t = Q̂T+a

and from (A.2):

p̂t = 1− F (Q̂T+a) + (p̂T+a − 1 + F (Q̂T+a)) exp(−α(t− T )). (D.3)

Overall, this alternative path yields the following payoff:

W1(T, q̂, a) ≡
∫ T+a

T

(p̂tu(q̂, Q̂t)− ˙̂ptV (Q̂t)) exp(−δ(t− T ))dt

+

∫
t≥T+a

(p̂tu(0, Q̂T+a)− ˙̂ptV (Q̂T+a)) exp(−δ(t− T ))dt.

Consider now the following condition:

∃ q̂, ā > 0, k > 0, ∀a ∈]0, ā[, lim
T→+∞

∂W1

∂a
(T, q̂, a) > k. (D.4)

Suppose it holds. Then we have

W1(T, q̂, ā) = W1(T, q̂, 0) +

∫ ā

0

∂W1

∂a
(T, q̂, a)da.

Moreover, we have W1(T, q̂, 0) = Z0(T ), and we know from Step 2 that Z0(T ) and

W(T) have the same limit z when T goes to infinity. Therefore:

lim
T→+∞

[W1(T, q̂, ā)−W (T )] =

∫ ā

0

lim
T→+∞

∂W1

∂a
(T, q̂, a)da > āk > 0,
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which means that for T high enough the alternative path (T, q̂, ā) dominates the initial

path. This is impossible, as the initial path was assumed to be a solution. In each of the

last three steps, we thus only have to show that (D.4) holds to reach a contradiction.

Step 4: in this step, we proceed by contradiction, by assuming Q∞ > QN . Choose q̂ such

that q ≤ q̂ < 0. For some T and a > 0, consider the alternative path (T , q̂, a). Because

q̂ < 0, this alternative path is such that the highest stock on record Q̂t is a constant,

equal to QT . Let us compute the derivative of W1(T, q̂, a) with respect to a. Using Step

3, we compute the following expressions, for t ≥ T + a:

∂p̂t
∂a

=
∂p̂T+a

∂a
exp(−α(t− T )) = α(1− F (QT )− p̂T+a) exp(−α(t− T )) (D.5)

and, since ˙̂p = α(1− F (QT )− p̂t):

∂ ˙̂pt
∂a

= −α
∂p̂t
∂a

. (D.6)

Therefore, ∂W1

∂a
(T, q̂, a) equals

p̂T+au(q̂, Q̂T+a) exp(−δa)− p̂T+au(0, Q̂T+a) exp(−δa)

+

∫
t≥T+a

α(1− F (QT )− p̂T+a)(u(0, Q̂T+a) + αV (Q̂T+a)) exp(−(α + δ)(t− T ))dt

+

∫
t≥T+a

Ä
p̂tuQ(0, Q̂T+a)q̂ − ˙̂ptV

′(Q̂T+a)q̂
ä
exp(−δ(t− T ))dt. (D.7)

From Step 1, as T goes to infinity, Q̂T+a goes to Q∞ + aq̂, Q̂T+a and QT both go to

Q∞, p̂T+a and p̂t both go to 1−F (Q∞), and ˙̂pt goes to zero; recall also that V ′ is bounded

on a neighborhood of Q∞ from Assumption 2. Therefore, ∂W1

∂a
(T, q̂, a) converges to

(1− F (Q∞)) exp(−δa)q̂
[u(q̂, Q∞ + aq̂)− u(0, Q∞ + aq̂))

q̂
+

uQ(0, Q∞ + aq̂)

δ

]
. (D.8)

Finally, recall that we chose q̂ to be strictly negative, and notice that the bracketed

term is also strictly negative for q̂ close enough to zero, as its limit when q̂ goes to zero

is ν(Q∞) < 0. This shows (D.4), and we obtain a contradiction thanks to the reasoning

at the end of Step 3. This shows that Q∞ cannot exceed QN .

Step 5: in this step, we proceed by contradiction, by assuming Q∞ < Q∞ and Q∞ < QN .

Choose a small enough so that Q∞+ aq̂ < Q∞. Choose (T, q̂, a) such that 0 < q̂ ≤ q and
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0 < a ≤ a. Consider the alternative path (T , q̂, a). It is is such that that the highest

stock on record Q̂t is a constant, equal to QT . We then proceed exactly as in Step 4,

to get a contradiction: the final expression for the limit is unchanged, and it is strictly

positive because now q̂ and ν(Q∞) are both strictly positive. Hence, Q∞ < QN implies

Q∞ = Q∞, as announced in the Lemma.

Step 6: once more proceeding by contradiction, we now assume Q∞ < QE, so that

Q∞ = Q∞ from Step 5. Choose (T, q̂, a) such that 0 < q̂ ≤ q and a > 0. Consider the

alternative path (T , q̂, a). A new feature is that the highest stock on record may now

depend on a, since q̂ > 0. Referring to (D.3), we note that we only have to care about the

value of Q̂T+a, which now equals max(QT + aq̂, QT ). We therefore define the indicator

function 1QT+aq̂≥QT
, and the only changes to our computations are in (D.5) and (D.6),

which we rewrite into: for t ≥ T + a,

∂p̂t
∂a

= α(1−F (Q̂T+a)−p̂T+a) exp(−α(t−T ))+1QT+aq̂≥QT
f(QT+aq̂)q̂(exp(−α(t−T ))−1)

and, since ˙̂p = α(1− F (Q̂T+a)− p̂t):

∂ ˙̂pt
∂a

= −α2(1−F (Q̂T+a)−p̂T+a) exp(−α(t−T ))−α1QT+aq̂≥QT
f(QT+aq̂)q̂ exp(−α(t−T )).

The derivative ∂W1

∂a
(T, q̂, a) now becomes

p̂T+au(q̂, Q̂T+a) exp(−δa)− p̂T+au(0, Q̂T+a) exp(−δa)

+

∫
t≥T+a

(
α(1− F (Q̂T+a)− p̂T+a)(u(0, Q̂T+a) + αV (Q̂T+a))

)
exp(−(α + δ)(t− T ))dt

+

∫
t≥T+a

Ä
p̂tuQ(0, Q̂T+a)q̂ − ˙̂ptV

′(Q̂T+a)q̂
ä
exp(−δ(t− T ))dt

+1QT+aq̂≥QT
f(QT + aq̂)q̂u(0, Q̂T+a)

∫
t≥T+a

(exp(−α(t− T ))− 1) exp(−δ(t− T ))dt

+α1QT+aq̂≥QT
f(QT + aq̂)q̂V (Q̂T+a)

∫
t≥T+a

exp(−α(t− T )) exp(−δ(t− T ))dt.

We now compute the limit of this derivative when T goes to infinity. Since Q∞ = Q∞

and q̂ > 0, Q̂T+a and Q̂T+a both go to Q∞ + aq̂, and the first three lines converge as

before to (D.8). Also, for T high enough 1QT+aq̂≥QT
is 1. Finally, using the definition of

D, the sum of the last two integrals goes to

f(Q∞ + aq̂)q̂ exp(−δa)

Å
u(0, Q∞ + aq̂)(

1

α + δ
− 1

δ
) + V (Q∞ + aq̂)

α

α + δ

ã
.
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By choosing q̂ strictly positive but small enough, and using the definitions of D and

ρ, we can make this expression arbitrarily close to

−(1− F (Q∞))q̂ exp(−δa)
α

α + δ
ρ(Q∞)D(Q∞).

We add the limit of (D.8) when q̂ goes to zero, to get

(1− F (Q∞)) exp(−δa)q̂[ν(Q∞)− α

α + δ
ρ(Q∞)D(Q∞)],

which is strictly positive because q̂ > 0 and Q∞ < QE. Using the same reasoning as at

the end of Step 3, we obtain a contradiction. Therefore, Q∞ has to be at least QE, as

announced in the Lemma. ■

E Consequences for benchmarks

In the main text we have defined two benchmarks: the Stock-Flow Problem without

catastrophes, and the case when the catastrophe was triggered with certainty in the

past. Both problems are autonomous, with only one state variable. From Hartl (1987),

we deduce that if there exists a solution, then there exists a monotonic solution. We

show here both existence, and monotonicity of all solutions. Under assumptions that are

different from ours, Tsur and Zemel (2014) give a number of results about the long-run

stability of these solutions; our function ν is in fact what they call a L-function.

Proof of Proposition 1: Existence of a solution to the SFP follows from Theorem

15, p.237, in Seierstad and Sydsaeter (1987). Consider such a solution. To study it, we

can make use of the above Lemmas, taking into account that by definition catastrophes

cannot happen: hence, we set p = 1, ṗ = 0, and F = f = ρ = 0. In particular, we have

QE = QN (see Definition 4.) Then (B.1) becomes

ν(Qt1)

∫ t2

t1

(Qt −Qt1) exp(−δt)dt ≥ 0

for all (t1, t2) as in case (i) or case (ii) in Lemma B.1. Now, suppose there exists T < T ′

such that QN > QT > QT ′ . A first possibility is that Q is weakly decreasing forever

after T . Then we have both ν(QT ) > 0, and QT ≥ Qt for all t ≥ T , this inequality

being sometimes strict. But this contradicts the above inequality at (t1 = T, t2 = +∞).
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Therefore, the stock must sometimes be increasing after time T , and this implies the

existence of t1 < t2 such that QN > Qt1 = Qt2 ≥ Qt for all t ∈ (t1, t2), the last inequality

being sometimes strict. But we obtain a similar contradiction at (t1, t2), as ν(Qt1) > 0

and Qt ≤ Qt1 , the last inequality being sometimes strict.

Therefore, the stock Q is weakly increasing when it is strictly below QN . Symmet-

rically, Q is weakly decreasing when it is strictly above QN . This implies that Q never

crosses QN , and that Q is monotonic, as announced.

This also implies that the path converges to some value Q∞. Proposition D.1 then

implies that this value is QN , since QE = QN . ■

Proof of Proposition 2: The proof follows exactly the proof of Proposition 1, since in

the two problems the constraint sets are identical; and the objectives (2) and (G.1) are

formally identical; and u and u+αV share the same properties. In particular, recall how

ν is built from u and δ, and proceed similarly with the new objective function φ ≡ u+αV

and α + δ: we have

φq(0, Q) +
φQ(0, Q)

α + δ
= uq(0, Q) +

uQ(0, Q) + αV ′(Q)

α + δ
,

and using the definition of V in (4) this expression reduces to ν(Q) − α
α+δ

D′(Q), which

is decreasing in Q from our assumptions. This is the only property we need to apply the

proof of Proposition 1. ■

F Optimal policies: main theorems

We begin by a few intermediate results that we will use repeatedly in the proofs of our

main theorems.

Lemma F.1 Suppose QE < QD and Q0 ≤ QD. Then optimal paths cannot exceed QD.

Proof of Lemma F.1: Suppose first QD ≥ S. Proposition 2 implies that as soon as

the stock exceeds S, it must converge to QD in a monotonic way. This shows the result.

Suppose now QD < S. Suppose an optimal path sometimes exceeds QD. Because

Q0 ≤ QD, there exists t1 ≥ 0 such that Qt crosses QD from below for the first time at
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time t1. Moreover, from Lemma C.1 we know that after t1 the path must remain above

QD. Therefore, for t ≥ t1 we have

Qt ≥ Qt > Qt1 = Qt1 = QD ≥ QE.

We can then apply the inequality (B.1) in case (i): on the LHS, the first term in the

parenthesis is zero by definition of QD. On the RHS, we have Qt − Qt1 = Qt − Qt1 ≥
Qt −Qt1 , so that (B.1) implies∫ t2

t1

(Qt −Qt1)(1− F (Qt)) exp(−δt)dt

Å
ν(Qt1)−

αδ

α + δ
ρ(Qt1)D(Qt1)

ã
≥ 0.

The first term is strictly positive because the difference (Qt − Qt1) is positive, and

sometimes strictly so, and because 1 − F (Qt) is strictly positive (at least for t close to

t1). But the second term is negative, because QD > QE (see Definition (4)). ■

Lemma F.2 Suppose an optimal path is such that QE < Q∞ < min(QN , S). Then Q∞

is reached in finite time.

Proof of Lemma F.2: let us proceed by contradiction. Suppose that Q∞ is reached

only asymptotically, necessarily from below. From Proposition D.1, the path converges,

to a value Q∞ which is at most Q∞, and thus strictly below QN . Using once more

Proposition D.1, we obtain Q∞ = Q∞, and also that there exists T such that Qt is

weakly increasing for t ≥ T . Because convergence is asymptotic, we get Qt = Qt for

t ≥ T . Moreover, because Q∞ > QE, we can choose T such that QT > QE. We therefore

have, for every t ≥ T , Qt = Qt ≥ QT > QE.

Referring to Lemma B.1, for t ≥ t1 ≥ T consider the function

B(t1, t) = ṗt(D
′(Qt1)−

α + δ

α
ν(Qt1)) + δ(1− F (Qt))(ν(Qt1)−

α

α + δ
ρ(Qt1)D(Qt1)).

Because Qt1 > QE, the second term is strictly negative; in fact, because S > Q∞ >

Qt1 ≥ QT this second term is strictly less than

k− ≡ δ(1− F (Q∞))(ν(QT )−
α

α + δ
ρ(QT )D(QT )) < 0.

Because ṗ goes to zero, the first term becomes negligible compared to k− when t is high

enough, so that we can choose t1 high enough so that B(t1, t) < 0 for all t ≥ t1. Finally,
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because the stock is weakly increasing, we have Qt = Qt, and therefore the function

which is summed in (B.1) equals (Qt −Qt1)B(t1, t). This function is everywhere weakly

negative, and sometimes strictly negative since Q must grow up to Q∞. So its integral in

case (i) cannot be weakly positive, and we have a contradiction with (B.1). This shows

that Q∞ must be reached in finite time. ■

Lemma F.3 Consider an admissible path that is constant after a finite date T ≥ 0.

Then:

(i) The planner’s payoff at time 0 equals

p0

Å
u(0, Q0)

δ
− α

α + δ
π0D(Q0)

ã
+

∫ T

0

pt[Bt + qtCt] exp(−δt)dt

where

Bt ≡ u(qt, Qt)− u(0, Qt)− qtuq(0, Qt),

Ct ≡ ν(Qt)−
α

α + δ

î
(1− πt)ρ(Qt)D(Qt)1Qt=Qt and qt≥0 + πtD

′(Qt)
ó
. (F.1)

(ii) If moreover this path is optimal, then

α

α + δ
πTD

′(QT ) ≤ ν(QT ) ≤
α

α + δ
[(1− πT )ρ(QT )D(QT ) + πTD

′(QT )] . (F.2)

Moreover, in this expression the first inequality is an equality if QT < QT , and the

second inequality is an equality if Qt = Qt at the left of T .

Proof of Lemma F.3: (i) The planner’s payoff is

W ≡
∫ T

0

[ptu(qt, Qt)− ṗtV (Qt)]edt+

∫ +∞

T

[Ptu(0, QT )− ṖtV (QT )]edt

where the survival probabilities p and P are given in (A.1) and (A.2). The second integral

is in fact exp(−δT )Z0(T ), where Z0 was defined in (A.3). From the identity

exp(−δT )Z0(T ) = Z0(0) +

∫ T

0

d

dt
[exp(−δt)Z0(t)]dt,

we get

W = Z0(0) +

∫ T

0

[ptu(qt, Qt)− ṗtV (Qt) + Z ′
0(t)− δZ0(t)]edt.

From (A.3), the first term is the one given in the Lemma. There only remains to

compute the term below the sum sign. To do so, we use the following identities:

ṗt = −αptπt
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π̇t = (1− πt)(ρ(Qt)qt1Qt=Qt and qt≥0 − απt)

Z0(t) = pt

[u(0, Qt)

δ
− α

α + δ
πtD(Qt)

]
.

Then pu− ṗV + Z ′
0 − δZ0 equals p, times

u+ απ(
u0

δ
−D)− απ(

u0

δ
− α

α + δ
πD)

+
uQ(0, Qt)qt

δ
− α

α + δ
(1− πt)(ρ(Qt)qt1Qt=Qt and qt≥0 − απ)D

− α

α + δ
πtD

′(Qt)qt − u(0, Qt) +
αδ

α + δ
πtD(Qt).

which simplifies to the expression Bt + qtCt given in the Lemma.

(ii) Consider a deviation that consists in playing a small quantity q on a small interval

just after T . Then step (i) applies. By continuity of π and Q in t, for the deviation to

be unprofitable it must be that b(q) + qc(q) is at most zero for q close to zero, where

b(q) = u(q,QT )− u(0, QT )− quq(0, QT )

c(q) = ν(QT )−
α

α + δ

î
(1− πT )ρ(QT )D(QT )1QT=QT and q≥0 + πTD

′(QT )
ó
.

But b(q) is second-order when q is small. Therefore, only the sign of c(q) matters,

but this sign may depend on whether q is positive or negative. We can only impose that

the sign of c(q) is weakly positive for q < 0, and weakly negative for q > 0: hence, we

only obtain the inequalities in (F.2).

Consider now the case when QT < QT . Now, whatever q c(q) is the same constant:

c(q) = ν(QT )−
α

α + δ
πTD

′(QT )

and we can apply the same reasoning: c must be zero, as announced in the Lemma.

Finally, consider the case when Qt = Qt on an interval [T ′, T ], with T ′ < T . Then

qt ≥ 0 on this interval. Suppose Ct < 0. Then Ct < 0 for t close to T , by continuity.

Because Bt ≤ 0 in any case, one would be better off deviating to qt small but strictly

negative, a contradiction. Therefore CT = 0, as announced in the Lemma. ■

Proof of Theorem 1: from Lemma F.1, optimal paths cannot exceed QD; from Lemma

C.1, optimal paths are weakly increasing, so that Qt = Qt and qt ≥ 0. Existence of a

solution then follows from Theorem 15, p.237, in Seierstad and Sydsaeter (1987). We
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also obtain that the optimal path converges toward the maximum value Q∞ ∈ [QE, QD],

from Proposition D.1, and that the stock level is constant after Q∞ is reached.

If Q∞ is reached asymptotically, then a contrapositive to Lemma F.2 implies that the

stock converges to Q∞ = QE. Since the legacy πT vanishes when T goes to infinity, we

obtain that (15) indeed holds at T = +∞, πT = 0, and QT = QE, as announced.

If Q∞ is reached at time T < +∞, then (ii) in Lemma F.3 implies (15). ■

Proof of Theorem 2: Because Q∞ < S, Proposition D.1 applies: the path converges

to a value Q∞ ∈ [QE, QN ]. Since Q∞ ≤ Q∞, and Q∞ < QN by assumption, from the

same Proposition one must have Q∞ = Q∞, and the path is weakly increasing for t high

enough. This shows Q∞ ≥ max(Q0, Q
E).

Now, let us proceed by contradiction, and suppose Q∞ > max(Q0, Q
E). Then Lemma

F.2 implies that Q∞ is reached in finite time, say T , and T > 0 since Q∞ > Q0. Then

Qt = Qt at the left of T . For simplicity, focus on the case when after T Q remains

constant. Then we can apply Lemma F.3 to obtain that the second inequality in (F.2)

holds as an equality. But this equality implies that Q∞ lies between QE and QD, in

contradiction with our assumption QD < QE < Q∞.

Therefore we have Q∞ = max(Q0, Q
E). Finally, if Q0 > QE, then Lemma F.2 implies

that the limit Q∞ = Q0 is reached in finite time. ■

G Applications

G.1 Social distancing illustration

Linking to the general framework: If we define

Q ≡ log I, q ≡ R− (r + d),

we are back to our general framework, with

u(q,Q) = Y (q + r + d)− wd exp(Q), Q̇ = q ∈ [q ≡ −r − d, q ≡ R− r − d],

and an initial value Q0 = log I0. Variable q is thus the rate of increase of the population

of infected agents. Function ν is defined as in Assumption 1:

ν(Q) = uq(0, Q) +
uQ(0, Q)

δ
= Y ′(r + d)− wd

δ
exp(Q),
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and it is indeed decreasing with Q. In the absence of catastrophes, the long-run target

for the stock of infected agents is defined by the equality ν(QN) = 0, or equivalently:

IN = exp(QN) =
δY ′(r + d)

wd
.

This is the expression for IN in the main text.

Assume that a catastrophe is triggered when the logarithm of the number of infected

agents exceeds a threshold S whose value is unknown. With this interpretation, the

distribution F of S on the support [0, S] and the associated hazard rate ρ are as defined

in the general model. After the catastrophe has occurred at time T , we therefore have

It = IT exp[q∗(t− T )], and the continuation payoff can be computed explicitly:

V (QT ) =

∫ +∞

T
[Y ∗ − wd∗It] exp[−δ(t− T )]dt =

Y ∗

δ
− wd∗

δ − q∗
exp(QT ).

Consequently, the damage function becomes

D(Q) =
u(0, Q)

δ
− V (Q) =

Y (r + d)− Y ∗

δ
+ wµ∗d

δ
exp(Q),

where the parameter µ∗ is as in the main text

µ∗ ≡
d∗

δ−q∗
− d

δ

d
δ

> 0.

Condition ν(Q)− α
α+δ

D′(Q) = 0 from (10) gives, after some manipulations, the long-run

target ID:

ID = exp(QD) = IN
1

1 + α
δ+α

µ∗ < IN .

We can similarly use the condition ν(Q)− α
α+δ

ρ(Q)D(Q) = 0 from (13) for characterizing

the target IE = exp(QE). This and the comparison to ID leads to Lemma 2 in the main

text.

Theorem 2 applied: Under constraint It ≤ I0, we can solve for p explicitly and, by

using the same arguments as in the proof of Proposition 6, we write the general payoff

as ∫ ∞

0

btqt exp(−δt)dt+B,

where B is a constant and

bt ≡ (1− π0)
(
Y0 −

wdIt
δ

)
+ π0

(
Y0 − (

αwd∗

δ − q∗
+ wd)

It
α + δ

)
exp(−αt).
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The flow payoff is thus proportional to the distancing measure qt with b0 < 0: the

first term of b0 is zero by the definition of IN , and for the second term note that(
Y0 − (αwd∗

δ−q∗
+ wd) IN

α+δ

)
=

(
wdIN

δ
− (αwd∗

δ−q∗
+ wd) IN

α+δ

)
<

(
1
δ
− 1

(δ−q∗)

)
α

α+δ
wd∗IN < 0.

A complete lockdown, q = −(r+d) implying R = 0, is thus optimal at t = 0 and, in fact,

for all t with bt < 0. But the lockdown must end: bt turns positive at some finite t′ > 0

when the lockdown policy is followed at all times t prior to t′. The optimal policy after

t′ is to relax social distancing so that I grows back to I0. When infections grow we must

have btqt ≥ 0 which holds with bt = 0 unless with choice set for q binds. The numerical

recovery paths in the Figures satisfy bt = 0. ■

G.2 Optimal carbon budget

Proof of Proposition 5: Let us first consider the case when after some time t0 the

optimal policy exceeds the upper value S, so that the catastrophe is triggered with

certainty. Then we know that the optimal policy maximizes

∫ +∞

0

[u(qt, Qt) + αV (Qt)] exp(−(α + δ)t)dt (G.1)

which in this simple case is∫ +∞

0

(u0 + u1qt − αv0Qt) exp(−(α + δ)t)dt.

Thanks to a simple integration by parts, this objective can be transformed into∫ +∞

0

(u0 + (u1 −
α

α + δ
v0)qt) exp(−(α + δ)t)dt.

Because we have assume u1 >
α

α+δ
v0, the solution consists in setting qt = q forever.

We can now examine the optimal policy when the stock lies below S. We can focus

on “bang-bang” policies that set qt either to zero or to q. Recall that from Lemma F.3

we can consider that the control is set to zero after some date T ≤ +∞. This Lemma

also gives a useful expression for the payoff. Since by linearity of function u the Bt terms

are identically zero, this payoff reduces to∫ T

0

qtptCt exp(−δt)dt,

where we can use the definition of π to replace in (F.1):

ptCt = ptu1 −
α

α + δ
[(1− F (Qt))ρ(Qt)D(Qt) + (pt − 1 + F (Qt))D

′(Qt)]
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= pt(u1 −
α

α + δ
v0)−

α

α + δ
(1− F (Qt))(ρ(Qt)D(Qt)−D′(Qt)).

Now, suppose that qt is zero between two dates t0 and t1, and is q just after t1. This

implies that the integral after time t1 is positive; otherwise, one would play qt = 0 forever.

But then the idle time between t0 and t1 is wasted: it would be better to instead play at

t ≥ t0 what is scheduled for t ≥ t1. Indeed, not only one would follow the same path for

the stock at a earlier date, but in addition one would also benefit from a a higher survival

probability; and in the expression above this higher probability is beneficial because it is

multiplied by a positive coefficient.

This shows that in any case the control variable must be equal to q until some date

T ≤ +∞, and be zero afterwards. We thus have to maximize on T the objective

q

∫ T

0

ptCt exp(−δt)dt.

Moreover, from (A.1) we have

pt = p0 exp(−αt) + α exp(−αt)

∫ t

0

(1− F (Q0 + τq)) exp(ατ)dτ,

so that the cross-derivative in (p0, T ) of the objective above is strictly positive. By

supermodularity, this implies that a higher p0 leads to a higher choice of the stopping

time T , and therefore to a higher value for the final stock. Since we have

π0 = 1− 1− F (Q0)

p0
,

a higher p0 is equivalent to a higher initial legacy π0. This shows the existence of a

threshold π∗, and the results in the Proposition follow. ■

Proof of Proposition 6: From Theorem 2, we can focus on paths that converge to

Q∞ = Q0 = Q0. Therefore, the planner never experiments after time 0. Then p can be

explicitly computed using (A.2):

pt = 1− F (Q0) + (p0 − 1 + F (Q0)) exp(−αt),

and the objective function

W =

∫ +∞

0

[pt(u0 + u1qt) + ṗtv0Qt] exp(−δt)dt

becomes

W = p0

∫ ∞

0

qtat exp(−δt)dt+ C,
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where C is a constant, and

at ≡ (1− π0)u1 + π0 exp(−αt)(u1 −
α

α + δ
v0).

Now, if u1 ≥ π0
α

α+δ
v0, then at is positive for all t, and the planner would like to set

q as high as possible, taking into account the constraint that the stock must converge to

Q0. Hence, the solution indeed consists in stabilizing the stock from the start.

Otherwise, if u1 < π0
α

α+δ
v0, then at is initially negative, before becoming positive at

some strictly positive time t1, which is easily found to be increasing in π0. The solution

therefore consists in setting q = q < 0 until t1, and then setting q = q until the stock is

back to Q0, at time t2 such that qt1 + qt2 = 0, so that t2 is also increasing in π0. The

optimal policy is thus as stated in the claim. ■

G.3 Stock-flow trade-offs in climate change

After the catastrophe has occurred, the planning goes on, and the continuation value

V (Q) becomes:25

V (Q) =
−kθ

δ + γ
Q+

β

δ
[log(γQN)− log k − 1]. (G.2)

Then the damage D(Q) = u(0,Q)
δ

− V (Q) equals:

D(Q) = θQ(
k

γ + δ
− 1

δ
) +

β

δ

Å
log

Q

QN
+ log k + 1

ã
.

Consider first the target QD. We obtain from Definition 3 that

QD = QN γ + δ + α

γ + δ + kα
,

which indeed is less than QN .

Consider then the target QE can be expressed. Thanks to Definition 4, it can be found

as a solution to equation

QN = QE

ï
1 +

α

α + δ
ρ(QE)

Å
QE(

δk

γ + δ
− 1) +

β

θ
(log

QE

QN
+ log k + 1)

ãò
,

25The planning problem is to maximize V (Q0) = max
∫∞
0

lnCt exp(−δt)dt, subject to Ct = Yt =

exp(−kθQt)(qt + γQt)
β , and Q̇ = q, Q0 given. This is a simple exercise in optimal control, whose

solution leads to V (Q).
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giving

QE = QN α + δ

α + δ + αρ(QE)g(QE)
,

where function g is defined as

g(Q) ≡ Q(
δk

γ + δ
− 1) +

β

θ
(log

Q

QN
+ log k + 1)

Proposition 7 follows directly from these definitions.

H Extensions

H.1 Strategic interactions

Proof of Proposition 8: Computations are simple, but tedious and cumbersome. We

only give here the main intermediate results.

Step 1: In this preliminary step, suppose that the aggregate emissions equal a constant

q0 until time T ≥ 0, and equal a constant q1 after T . Our aim here is to compute

Z(T ) =

∫ +∞

T

pt exp(−δt)dt.

To do so, we first compute pt at date t > T , using (A.1) and 1− F (Q) = exp(−ρQ):

pt = pT exp(−α(t− T )) +
α

α− ρq1
exp(−ρQT )

(
exp(−ρq1(t− T ))− exp(−α(t− T ))

)
.

Then we sum over t ≥ T to obtain

Z(T ) =
exp(−δT )

α + δ

(
pT + exp(−ρQT )

α

ρq1 + δ

)
.

As in the proof of Lemma F.3, we now write

Z(T ) = Z(0) +

∫ T

0

Z ′(t)dt

and we use the identity exp(−ρQt) = pt(1− πt) to end up with

Z(T ) =
1

α + δ
p0

(
1 + (1− π0)

α

ρq + δ

)
−
∫ T

0

pt

(
1 +

α

α + δ

q0 − q1
δ + ρq

ρ(1− πt)
)
edt. (H.1)

Step 2: Suppose player j chooses Tj = +∞. If player i chooses to stop at T , then

aggregate emissions are 2q until T , and then q. From (9), player’s i payoff is

W (T ) =

∫ T

0

(ptu1q + ṗv0)e+

∫ +∞

T

ṗtv0edt.
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An integration by parts yields∫ +∞

0

ṗtedt = −p0 + δ

∫ +∞

0

ptedt,

so that

W (T ) = −p0v0 + (u1q + δv0)

∫ T

0

ptedt+ δv0

∫ +∞

T

ptedt.

We use (H.1) to compute the second integral, and we obtain

W (T ) =
α

α + δ
v0p0

( δ

ρq̄ + δ
(1− π0)− 1

)
+ q

∫ T

0

pt

(
u1 −

αδ

α + δ

ρv0
δ + ρq̄

(1− πt)
)
edt.

Because π0 > π∗, the derivative with respect to T at T = 0 is positive. Therefore, i

must choose T > 0, but this makes the derivative with respect to T even more positive.

This shows that the best response of player i is to emit forever: Ti = +∞.

Step 3: The case when Tj = 0 now obtains by setting q̄ to zero at the right places in

the formulas in Step 2. We obtain that player i’s payoff is a constant, plus

q

∫ T

0

pt

(
u1 −

α

α + δ
ρv0(1− πt)

)
edt.

Because π0 < π∗∗, the derivative with respect to T at T = 0 is negative. Under our

assumptions, if i emits, then πt goes to π∞ < π∗∗; if i does not emit, then πt goes to zero.

Thus, the condition π0 < π∗∗ ensures that in any case πt remains below π∗∗. Therefore,

the above payoff is decreasing in T , and the best response is not to emit at all. This

concludes the proof. ■

H.2 Positive catastrophes

Proof of Proposition 9: In terms of the general model, we have

u(q,Q) = −cq, V (Q) = v, ν(Q) = −c, D(Q) = −v.

From Lemma F.3, we have

Bt = 0, Ct = −c− α

α + δ

[
(1− π)ρ(−v)

]
and thus the planner’s payoff is

α

α + δ
π0v +

∫ T

0

(
(1− πt)(

α

α + δ
)ρv − c

)
qpt exp(−δt)dt. (H.2)
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The main text reports the second term in this expression, as only this part can be

affected by the policy. To determine if T is finite, we consider the evolution of πt during

the program. To do so, we use the now-familiar law of motion

π̇t = (1− πt)(ρq − απ),

implying that πt is increasing and goes to π∞ = min(1, ρ
α
q) if the program never stops.

Consider then the statement in Proposition 9. Assumptions π0 < π∗ < π∞ imply that

π is strictly increasing for a constant q > 0. Inspecting (H.2) shows that the payoff is

strictly increasing in T for all π ∈ [π0, π
∗), and strictly decreasing for π outside this set.

Thus, stopping is optimal when πt reaches π
∗. Because πt declines monotonically to zero,

it must reach value π0 in finite time.

I Additional results

I.1 Dynamic programming and optimal stopping

We develop the stopping condition by variational methods, after several intermediate

steps needed for the validity of the approach (see the proof of Theorem 1). Taking these

steps as given, for intuition, we now invoke a dynamic programming argument to describe

the tradeoff at T .

Consider the part of the overall welfare that accrues after stopping in [T,∞), as

defined by the objective (9). Noting that in [T,∞) the stock is stabilized q = 0, and

then the survival probability pt follows a formula (A.1) that allows us to express the said

welfare as a product of discount factor exp(−δT ) and26

pT
u0
T

δ
− α

α + δ
(pT + FT − 1)DT ,

where we use shorthands u0
T = u(0, QT ), FT = F (QT ), and DT = D(QT ). Throughout

this paper, the planner stands at t = 0 but think, momentarily, that the planner has

survived to T . Multiply the welfare expression above by 1/pT to condition on survival

and use π = 1−(1−F )/p to see that the planner’s welfare, standing at the stopping time

T , takes the following intuitive form: zT ≡ u0
T/δ − α

α+δ
πTDT . Alternatively, the survivor

could continue experimenting for a short interval of time [T, T + ∆] with qT > 0, and

26This expression comes from (A.3).
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after this time stop with qT+∆ = 0. By the above logic, the welfare at T +∆ is

zT+∆ =
1

pT
[pT+∆

u0
T+∆

δ
− α

α + δ
(pT+∆ + FT+∆ − 1)DT+∆].

The flow gain from this one-shot experiment follows from the objective (9) that,

together with the discounted zT+∆, leads to the full welfare at T

1

pT
[pTuT − ṗTVT ]∆ + exp(−δ∆)zT+∆.

This one-shot experimentation welfare can be better grasped by rewriting with π =

1− (1− F )/p, D = u0/δ − V , and the first-order approximation of exp(−δ∆)zT+∆ with

respect to ∆,

[uT + απT (
u0
T

δ
−DT )]∆ + zT − δzT∆+ z′T∆,

where z′T = ∂zT+∆

∂∆
|∆=0. Now, at optimal T , the planner cannot strictly prefer one of the

two options. Using this indifference and choosing the optimal experimentation intensity

qT gives the condition:

0 = max
qT

{
uT + απT (

u0
T

δ
−DT )− δzT + z′T

}
.

After careful evaluation of terms, this condition becomes

0 = max
qT

{
u(qT , QT )− u(0, QT )− qTuq(0, QT ) + qTC(T )

}
where

CT ≡ ν(QT )−
α

α + δ
[(1− πT )ρ(QT )D(QT ) + πTD

′(QT )] . (I.1)

I.2 The model without delay

Proof of Proposition 3: since α is infinite, the problem under study is to maximize∫ +∞

0

[ptu(qt, Qt)− ṗtV (Qt)] exp(−δt)dt,

under the constraints Q̇t = qt ∈ [q, q], pt = 1 − F (Qt), Qt = max0≤t′≤t Qt′ , Q0 being

given. Consider a candidate path, and let us proceed by necessary conditions.

Step 1: we first show that one may focus on monotonic paths. Suppose there exist two

arbitrary dates 0 and T > 0, such that Q0 = QT ≥ Qt for t ∈ [0, T ]. In such a case, the

maximum stock on record is a constant (Q0 = QT ), and therefore the problem at time
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zero and the problem at time T are identical. This proves that at time zero the planner

could as well adopt the strategy she has planned to apply at time T . This procedure can

be applied to all periods of time when Q is first decreasing, then increasing. Therefore, we

can focus on paths that are first weakly increasing on some interval [0, T ], and then weakly

decreasing on [T,+∞[. If T = 0 or T = +∞, we are done, so suppose 0 < T < +∞.

Then QT is the maximum stock value. Therefore, after time T catastrophes cannot occur

anymore, and one maximizes
∫
t≥T

u(qt, Qt) exp(−δt)dt under the constraints Q̇t = qt and

Qt ≤ QT . If QT ≤ QN , the best thing to do is to make the last constraint binding

everywhere,27 and therefore we are done, as the candidate path is weakly increasing on

[0, T ] and constant over [T,+∞[, and is thus monotonic.

The only remaining case is when QT > QN . Then the optimal policy after time T

is to behave as in the SFP, and to adopt a path that is decreasing (see Proposition 1)

for t above T . For t < T , because the stock level is weakly increasing we have Qt = Qt.

Therefore pt = 1− F (Qt), and the complete payoff from the candidate path is:∫ T

0

[u(qt, Qt)(1− F (Qt)) + f(Qt)qtV (Qt)] exp(−δt)dt+ exp(−δT )W (QT )(1− F (QT )),

where W (Q) denotes the value of the SFP program when the initial stock value is Q.

The left-derivative with respect to T of this expression is exp(−δT ), times

ZT ≡ (1− F (QT ))(u(qT , QT )− δW (QT ) + qTW
′(QT )︸ ︷︷ ︸

=A

) + f(QT )qT (V (QT )−W (QT )︸ ︷︷ ︸
=B

).

Now, by definition of W we have, for 0 < T ′ < T ,

exp(−δT ′)W (QT ′) ≥
∫ T

T ′
u(qt, Qt) exp(−δt)dt+ exp(−δT )W (QT ),

and since the difference is zero at T ′ = T , its derivative wrt T ′ at the left of T is weakly

negative, and we exactly obtain A ≤ 0. Similarly, Assumption 2 states that V (Q) is at

most u(0,Q)
δ

, which is the payoff from stabilizing the stock forever, and is thus belowW (Q).

This shows B ≤ 0. Finally, because Q is increasing at the left of T , we get qT ≥ 0, and

therefore ZT is weakly negative for every T > 0. This shows that one may as well apply

the SFP solution from date zero onwards, so that once more we obtain a monotonic path.

Step 2: From Step 1, we easily obtain that a solution exists. Indeed, either the candidate

path is weakly decreasing: then catastrophes cannot occur, pt is a constant (1− F (Q0))

27This is easily shown: this problem is autonomous, and consequently it admits a monotonic solution.
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forever, and we are back to the SFP case with the additional constraint qt ≤ 0, for which

existence of a solution is easily proven. Or the candidate path is weakly increasing, so

that Qt = Qt everywhere, and pt = 1− F (Qt). The objective function becomes∫ +∞

0

[u(qt, Qt)(1− F (Qt)) + f(Qt)qtV (Qt)] exp(−δt)dt

to be maximized under the constraint Q̇t = qt ≥ 0, Q0 given. This problem is au-

tonomous, and once more our assumptions ensure the existence of a solution.28 Overall,

a solution follows from the comparison of these two candidates.

In case (i) of the Proposition, suppose that the path Qt is weakly increasing, so that

Qt = Qt and pt = 1 − F (Qt). We can then study the inequality (B.1) at (t1 = 0,

t2 = +∞). The expression under the integral is Qt −Q0, which is positive, times

ṗt(D
′(Q0)− ν(Q0)) + δ(1− F (Q))(ν(Q0)− ρ(Q0)D(Q0)),

and both terms are negative, a contradiction. Therefore, in case (i) the path must be

weakly decreasing, and by construction such a path involves no experimentation. The

best path is thus the SFP path, and it converges to QN , as announced.

In cases (ii) and (iii), a weakly decreasing path would involve no experiment, and

therefore would maximize
∫
uedt, with the additional constraint qt ≤ 0. But because

Q0 < QN , the solution to the SFP is weakly increasing, and therefore this additional

constraint would be binding everywhere. Therefore, a weakly decreasing path would in

fact be a constant path, so that we can focus on the case of a weakly increasing path.

The problem now consists of maximizing∫ +∞

T

[u(qt, Qt)(1− F (Qt)) + f(Qt)qtV (Qt)] exp(−δt)dt

under the constraints Q̇t = qt ≥ 0, with an initial value Q0 < QN . As explained above, a

solution exists. The problem is autonomous, and we can proceed as in Proposition 1 to

show that the optimal stock level converges to a valueQ such that wq(0, Q)+wQ(0, Q)/δ =

0, where w is the function in the integral above. Here, this condition translates into

uq(1− F ) + fV +
uQ(1− F )− uf

δ
= 0

or equivalently ν(Q) = ρ(Q)D(Q), which is the definition of QE0. This is possible if

QE0 ≥ Q0 (case (ii.c)). Otherwise, the constraint q ≥ 0 binds, and the stock remains

28See Theorem 15, p. 237, in Seierstad and Sydsaeter (1987).
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forever set at Q0. ■
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