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Abstract

Performance evaluation (“rating”) systems not only provide information to
users but also motivate the rated worker. This paper solves for the optimal
(effort-maximizing) rating within the standard career concerns framework. We
prove that this rating is a linear function of past observations. The rating,
however, is not a Markov process, but rather the sum of two Markov processes.
We show how it combines information of different types and vintages. An
increase in effort may adversely affect some (but not all) future ratings.
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1 Introduction

Helping users make informed decisions is one of the goals of ratings. For movies
or books, it is the main one. For others, however, motivating the rated agent is just
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as important. Assessments and evaluations concerning teachers, surgeons, managers
or even firms are meant to reduce moral hazard.

These two goals are not necessarily aligned. Reputational incentives require the
market information to be sensitive to information about the worker’s effort, but
career concerns feed off incomplete information: if effort and ability can be perfectly
disentangled, career concerns disappear. The purpose of this paper is to examine how
the information structure (the “rating”) should be designed to motivate effort. What
is the optimal amount of incomplete information?1 How should different sources of
information be combined? At what rate should past observations be discounted?

Our paper addresses these questions within the standard canonical career concerns
model à la Holmström—a model without commitment, in which incentives are
intrinsically dynamic. The linear-Gaussian structure ensures that, for a broad range
of information structures, equilibria in which effort is a deterministic function of time
exist. Our attention is restricted to such information structures and equilibria. The
goal is to understand how the information structure affects the resulting equilibrium
effort. Our first result is a technical stepping stone: career concerns, as measured by
effort, are maximized by information structures generated by linear ratings. That is,
the market is given a one-dimensional rating that is a linear combination of all past
performance metrics privately observed by the rater. Linearity refers both to time
(aggregation of past and present metrics) and to the kind of information (aggregation
of concomitant metrics). This first result already provides two elementary insights:
first, adding noise depresses effort and should be avoided;2 second, confounding signals
of different kinds is always beneficial, as is confounding signals of different epochs.3

The value of confounding derives from a simple trade-off: for the agent to be
motivated, it must be that the market wage be sensitive to effort. But the wage is
dictated by the market’s belief about ability. Hence, the rating must be informative,
and so also reflect the rater’s actual belief about ability. In addition, the optimal
rating must depend on both effort and ability in a way that the market cannot
invert. In our framework, this is easily seen from our explicit characterization: in the

1In the case of health care, Dranove, Kessler, McClellan, and Satterthwaite (2003) find that, at
least in the short run, report cards decreased patient and social welfare. In the case of education,
Chetty, Friedman, and Rockoff (2014a,b) argue that the benefits of value-added measures of
performance outweigh the counterproductive behavior that they encourage—but gaming is also
widely documented (see Jacob and Lefgren (2005), among many others).

2The ineffectiveness of irrelevant conditioning resonates with standard principal-agent theory;
see, for instance, Green and Stokey (1983).

3 In the literature on subjective performance evaluation, this is known as the spillover effect:
the worker’s current-period performance is evaluated in part based on his past performance (e.g.,
Bol and Smith, (2011)).
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stationary case, at any given time, the rating turns out to be a linear combination of
the rater’s private belief about the agent’s ability at that time, and another Markovian
variable that we call the incentive state, which depends on the agent’s preferences.4

Specifically, this incentive state depends on the agent’s patience and affects the rate
of decay of the rating. If the agent values the far future, this state guarantees that the
rating is more persistent that what Bayes’ rule requires; if the agent is nearsighted,
this incentive state ensures that the rating swiftly reacts to a positive blip in output,
so as to still motivate effort.

Taking a weighted combination of effort and perceived ability (so to speak) does
not necessarily mean taking a weighted combination of the signals that the rater
has access to. To see this, suppose that the rater has access to two simultaneous
signals, both of which are very informative about ability, so that career concerns are
weak. Then she might find it best to count the most informative one negatively in the
combination. Hence, the resulting rating is a (noisy) convex combination of ability
and effort, rather than of the two signals, and puts more weight on effort, relative to
ability, than either of these two signals. In this fashion, the market belief becomes
more responsive to effort, which boosts career concerns.

Similarly, when the rater decides how to weigh signals of different seniorities in
the current rating, she must compare which of these signals is more informative about
current ability, and how the current rating matters for effort exerted at the times these
signals were obtained. If the ability is very persistent, and the agent very impatient,
the older signal is relatively more relevant for ability than for effort than the more
recent one (as the current rating only matters for incentives at recent times). Hence,
the rater might choose to put negative weight on the older signal, and positive weight
on the more recent signal, so as to boost incentives. As a result, the rating system
can count past output against the worker’s rating (“past-year benchmarking”). That
is, performing well at some point can boost the rating in the short term but depress
it in the long term. This feature of performance evaluation is well-documented and
usually referred to as leniency bias, whereby good reviews can be given for poor
performance (e.g., Holzbach (1978)).

What is surprising, perhaps, is that the rating, this linear function of all past
private signals of the rater, can be decomposed so simply as the sum of these two
Markov state variables—what is known in statistics as a two-state Markov mixture
model. (In the nonstationary case, it is a three-state Markov mixture model, with a
third state whose impact vanishes over time.) The evolution of the rater’s private
belief is given by Bayes rule. The evolution of the incentive state depends on the

4We show that this extends to the nonstationary case (with quadratic cost), albeit in a slightly
more intricate form involving a third state variable.
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worker’s impatience: this state variable discounts past observations at a rate equal to
the worker’s discount rate. This is intuitive: when the worker is patient, it is possible
to motivate him by the prospect that effort today will affect all future ratings, with
weights that are nearly equal. An impatient worker, on the other hand, must be
rewarded for effort with a rating that reacts to news promptly, a feature that comes
at the expense of informativeness.

Because maximum effort is achieved by such a two-state Markov mixture rating,
all constant effort processes that can be induced by some rating can be induced by
such rating processes: simply add a noise term to depress effort commensurately.
Hence, focusing on such ratings is without loss, independent of the rater’s objective,
or her ability to commit. Two-state Markov mixture models are not Markov processes
themselves in general. Hence, the time series of optimal ratings fails to satisfy the
Markov property.5

Obviously, our results rely on the linear-Gaussian framework. However, within
this framework, they are robust to the informational environment. In particular,
these results hold irrespective of whether past ratings can be hidden from the market
(confidential vs. public ratings) and of whether the market has access to additional
nonproprietary information (exclusive vs. nonexclusive ratings). In Sections 5.1 and
5.2, we further discuss how publicness and exclusivity affect the structure of the
optimal rating.

As mentioned, our analysis attempts to improve our understanding of rating
systems that mitigate moral hazard. Hence, it is not applicable to settings in which
the rating’s purpose is to improve the match between consumers and products
(movies, books,...). It does not address rankings either, in which the goal is to
compare alternatives (schools, say), rather than to provide an assessment that has
intrinsic meaning. Because we assume a benevolent, committed rater, our analysis is
most relevant to professions such as teachers or surgeons, in which ratings are set by
a public agency. However, to the extent that we identify all effort levels that can be
implemented, and how this can be done, our results are relevant to all environments
in which calibrating effort is paramount.

Our analysis builds on the seminal model of Holmström (1999).6 A worker exerts

5Interestingly, there is significant evidence that, in many cases, observed ratings (based on
proprietary rules) cannot be explained by a simple time-homogeneous Markov model. In fact,
two-dimensional Markov models have been introduced in the literature precisely to explain observed
credit risk dynamics. See, among others, Frydman and Schuermann (2008), or Adomavicius and
Tuzhilin (2005). Our model is better suited for understanding doctors’ report cards, or teachers’
evaluations, examples in which the assumption of a benevolent committed designer is more palatable.

6Differences between our model and that of Holmström (1999) include the continuous-time
setting, mean-reversion in the ability process, and a multidimensional signal structure. See Cisternas

4



effort that is hidden to the market, which pays him a competitive wage. This wage
is equal to the market’s expectation of the worker’s productivity, which combines
instantaneous effort and his ability, a mean-reverting process. This expectation is
based on the market’s information. Rather than directly observing a noisy signal
that reflects ability and effort, the market obtains its information via a rating. The
rater potentially has many sources of information about the worker and freely chooses
how to convert these signals into the rating. In brief, we view a rating system as an
information channel that must be optimally designed. We focus on a simple objective
that in our environment is equivalent to social surplus: to maximize the worker’s
incentive to exert effort.7,8

Normally distributed beliefs and linear payoffs enable the analysis to focus on
deterministic equilibria (Markov perfect equilibria being a special case), in which
actions depend only on calendar time. As we prove (Theorem 3.5), linear ratings (i.e.,
weighted integrals of all past observations using weight functions that the rater freely
chooses) are optimal: no rating delivering deterministic effort yields higher output.
Furthermore, we establish an equivalence among such ratings, Gaussian ratings, and
ratings such that the quality of the market information is deterministic. Hence, such
ratings are without loss as long as one wants to maximize output or guarantee that
the contingencies of the worker’s performance do not adversely affect the quality of
the information available to the market. We focus primarily on the case of stationary
ratings, but we also solve for the nonstationary finite-horizon optimal rating (also a
mixture Markov model) and show how it converges to the stationary rating.

Simple examples illustrating the main ideas are developed in Section 2. In
Sections 3 and 4, we begin with the case of a single signal: output. This allows us to

(2017a) for a specification that is similar to ours in the first two respects.
7We shall see that it is easy to depress effort if the maximum effort exceeds the social optimum.

As we will see, there is a trade-off between the level of effort and the precision of the market’s
information, another legitimate objective for a rating. These two objectives feature prominently
in economic analyses of ratings conducted by both practitioners and theorists. As Gonzalez et al.
(2004) state, the rationale for ratings stems from their ability to gather and analyze information
(information asymmetry) and to affect the agents’ actions (principal-agent). To quote Portes (2008),
“Ratings agencies exist to deal with principal-agent problems and asymmetric information.” To be
sure, resolving information asymmetries and addressing moral hazard are not the only roles of ratings.
Credit ratings, for instance, affect the borrowing firm’s default decision (Manso (2013)). Further,
ratings may provide information to the worker himself, informing rather than simply motivating
his effort choice; see Hansen (2013). Finally, when evaluating performance requires input from the
users, ratings must account for users’ incentives to experiment and report (Kremer, Mansour, and
Perry (2014), Che and Hörner (2018)).

8Throughout, we ignore the issues that rating agencies face in terms of possible conflicts of
interest and their inability to commit, which motivate a broad literature.
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convey many of the insights. In Section 5, we extend the main results to the case
of multiple signals and study several extensions. First, we allow for ratings that are
public—that is, the market observes not only the latest rating, but also past ratings.
Then, we relax the rating’s exclusivity. That is, the market has access to independent
public information. We show how the optimal rating reflects the content of this
free information. Third, we discuss how our results extend to the case of multiple
actions.9 We show that it can be optimal for the optimal rating system to encourage
effort production in dimensions that are unproductive, if this is the only way to also
encourage productive effort. The reader interested in the more formal aspects of the
analysis is referred to the appendix, which contains not only additional technical
ingredients, and some missing rigorous statements, but also an overview of the main
proofs. The details of these proofs can be found in the Online Appendix.

Related Literature. Foremost, our paper builds on Holmström (1999). (See also
Dewatripont, Jewitt, and Tirole (1999).) His model elegantly illustrates how imperfect
monitoring cultivates incentives when information is incomplete. His analysis prompts
the question raised and answered in our model: what type of feedback stimulates
effort? Our interest in multifaceted information is similar to that of Holmstrom and
Milgrom (1991), who consider multidimensional effort and output to examine optimal
compensation. Their model has neither incomplete information nor career concerns.
Our work is also related to the following strands of literature.

Reputation. The eventual disappearance of reputation in standard discounted models
(as in Holmström (1999)) motivates the study of reputation effects when players’
memory is limited. There are many ways to model such limitations. One is to simply
assume that the market can only observe the last K periods (in discrete time), as
in Liu and Skrzypacz (2014). This allows reputation to be rebuilt. When memory
is unlimited, similar effects can still be obtained when players’ types change over
time, following, for example, a Markov process as in Cole, Dow and English (1995)
or Phelan (2006). The added layer of uncertainty increases the difficulty to learn a
player’s type. Even more similar to our work is Ekmekci (2011), who interprets the
map from signals to reports as ratings, as we do. His model features an informed
agent. Ekmekci shows that, absent reputation effects, information censoring cannot
improve attainable payoffs. However, if there is an initial probability that the seller is
a commitment type that plays a particular strategy in every period, then there exists

9With multidimensional product quality, information disclosure on one dimension may encourage
firms to reduce their investments in other dimensions, thus harming welfare (Bar-Isaac, Caruana,
and Cuñat (2012)).
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a finite rating system and an equilibrium of the resulting game such that the expected
present discounted payoff of the seller is approximately his Stackelberg payoff after
every history. As in our paper, Pei (2016) introduces an intermediary in a model
with moral hazard and adverse selection. The motivation is very similar to ours, but
the modeling and the assumptions differ markedly. In particular, the agent knows his
own type, and the intermediary can only choose between disclosing and withholding
the signal, while having no ability to distort its content. Furthermore, in Pei (2016),
the intermediary is not a mediator in the game-theoretic sense but a strategic player
with her own payoff that she maximizes in the Markov perfect equilibrium.

Even closer to our work, Rodina (2017) elegantly shows that transparency maxi-
mizes incentives under general conditions and for a large range of technologies, in
which the output of the agent need not be a linear Gaussian function of effort and
type. Unlike ours, Rodina’s model is based on the one-shot career-concerns model of
Dewatripont, Jewitt, and Tirole (1999). Consequently, his analysis cannot account for
the fact that transparency also leads to reduced uncertainty over ability in the future,
which makes it more difficult to sustain subsequent incentives. Indeed, our analysis
relies on the fact that wages only depend on expected output, and so incentives
depend on expected ability only, which implies that the trade-off that determines the
optimal rating can only arise in a dynamic model.

Finally, in a paper that involves no incomplete information, Fong and Li (2017)
show how it can be sensible to use mechanisms that spread the reward for the worker’s
good performance over time and display leniency bias by showing how the optimal
contract within a particular family exhibits those features.

Design of reputation systems. The literature on information systems has explored the
design of rating and recommendation mechanisms. See, among others, Dellarocas
(2006) for a study of the impact of the frequency of reputation profile updates on
cooperation and efficiency in settings with pure moral hazard and noisy ratings.
Inspired by the health care market, Glazer and McGuire (2006) show how obfuscation
(providing a rating that is an average of different measures) dominates full trans-
parency because of adverse selection. This literature abstracts from career concerns,
which are the main driver here.

Design of information channels. There is a vast literature in information theory
on how to design information channels. Restrictions on the channel’s quality are
derived from physical rather than strategic considerations (e.g., limited bandwidth).
See, among many others, Chu (1972), Ho and Chu (1972) and, more related to
economics, Radner (1961). Design under incentive constraints is recently considered
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by Ely (2017) and Renault, Solan, and Vieille (2015). However, these are models
in which information disclosure is distorted because of the incentives of the users of
information; the underlying information process is exogenous.

2 Examples

This section introduces some of the main ideas of this paper in the context of
simple examples. A worker supplies output to a market. The market is interpreted
as a sequence of short-run employers. The worker lives for T time periods. In what
follows, we are mostly interested in the cases T = 2, 3.

The worker’s per-period output depends on his ability θ. Ability is constant over
time, but random and unknown to all, including the worker. It is is drawn from a
Gaussian distribution with mean 0 and variance Σ, we write θ ∼ N (0,Σ). In round
t = 1, . . . , T , the worker generates output equal to

Xt = At + θ + εt, (1)

with εt ∼ N (0, 1), independent of θ and independent across rounds. The unit variance
of the noise is for simplicity, and Σ can be interpreted as the uncertainty to noise
ratio. Here, At ≥ 0 is the worker’s effort, a hidden action that entails a per-period
cost c(A) = A2/2. The socially efficient effort level at any round t—that is, the level
that maximizes the expected output net of the cost of effort—is At = 1.

In the standard career concerns model, the market observes output and updates
its belief about ability, µt := E[θ | (Xs)s<t], given its expectation about effort, A∗t .
Attention is restricted to equilibria in which effort (and thus also anticipated effort)
is a deterministic function that depends on time, but not on the details of the history.
In the absence of enforceable contracts, the worker is paid upfront for the expected
value of output, µt + A∗t . From the worker’s point of view, A∗t is fixed, and so he
chooses effort to maximize

T∑
t=1

δt−1E [µt − c(At)] , (2)

where δ is the worker’s discount factor. An equilibrium obtains when At = A∗t for
all t. In the last round, effort is nil, as the wage is paid upfront. In earlier rounds,
the worker is expected and motivated to manipulate the belief about ability. Given a
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sample of t draws from (1), the posterior belief is given by

µt+1 =
1

t+ 1/Σ

t∑
s=1

(Xs − A∗s) , (3)

(see, for example, DeGroot (1970), Ch. 9.5, Thm. 1), and µ1 = E[θ] = 0. Outputs
from different rounds are equally weighted in this posterior belief. Plugging (3)
into (2) given (1) and taking first-order conditions yields as effort10

At =
T∑

k=t+1

δk−t

k − 1 + 1/Σ
. (4)

As is well known, effort increases with uncertainty about ability, Σ. The larger this
uncertainty, the bigger the impact of unanticipated effort on the market’s posterior
belief, and hence, the higher the worker’s later wages. Hence, the worker has stronger
motivation to work. Depending on Σ and δ, effort might exceed or fall short of
first-best. We are primarily interested in the case in which it is inefficiently low (so
that the goal of the rating is to increase effort relative to what would occur here). This
necessarily obtains when time passes and uncertainty recedes, or in the steady-state
that obtains when ability changes over time.

We modify this standard model as follows. The market no longer observes past
output. Rather, it observes a rating at the beginning of each round. This rating is
chosen by a rater. She commits to a rating policy. The rater’s goal is to amplify
career concerns. That is, she chooses the rating to maximize the sum of efforts, or
equivalently the average effort over time. The model is otherwise unchanged—in
particular, the wage is equal to expected output.

The rating Yt is an arbitrary (possibly vector-valued) function of the rater’s
information. The rater might observe output, or more generally, signals about effort
and ability. Let us start with the case it observes two signals Sk, (k = I, II) with

Skt = αkAt + βkθ + εkt ,

where all the noise terms εkt ∼ N (0, 1) are independent. The coefficients αk, βk ∈ R
quantify the relative importance of effort and ability in signal k.

As an example, take (αI, βI) = (1, 0), and (αII, βII) = (0, 1), so that signal I only
depends on effort, while signal II only depends on ability. If the rater chooses to
disclose all its signals, setting Yt = (SI

s, S
II
s )s<t, then only the second component of

10The details for all computations are in the Online Appendix.
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the rating matters for the market belief: µt = E[θ | Yt] = E[θ | (SII
s )s<t]. Because

effort only enters the first component, which is irrelevant for this belief, the worker is
no longer motivated to work, and so At = 0 for all t. Transparency fails to achieve
efficiency. Yet, by setting Yt = SI

t + SII
t , the rater can replicate the baseline outcome

in which effort is given by Equation (4), with appropriately redefined noise term.
But the rater can do even better. Suppose it chooses to release a linear combination

of SI and SII. How should the weights reflect the characteristics of the two signals?
Let T = 2, so that we can focus on the rating at the start of round 2,

Y2 = λSI
1 + (1− λ)SII

1 .

With our specification,

Y2 = λA1 + (1− λ)θ + λεI + (1− λ)εII.

Clearly, choosing λ = 0 or λ = 1 yields no effort. In the first case, the rating is no
longer sensitive to ability, and so the market belief is independent of the rating. In
the second case, the rating is no longer sensitive to effort. The optimal rating must
reflect the action, for the agent to be motivated to work, and the rating must reflect
the ability, for the belief to depend on the rating.

The optimal weight λ ∈ R is set to maximize A1 (A2 = 0, as before). This effort
solves the first-order condition. Simple algebra yields, for a given λ,

A1 =
δλ(1− λ)Σ

(1− λ)2Σ + λ2 + (1− λ)2
, (5)

so that the optimal weight is given by

λ =
1

1 + 1/
√

Σ + 1
.11 (6)

Hence, the weight on the signal about effort increases in the uncertainty regarding
ability. Disclosing the sum (or, equivalently, the arithmetic average) of the signals is
only optimal when this uncertainty is negligible (Σ ' 0). At the other extreme, as
Σ→∞, λ→ 1: in the limit, the rating is only made up of the signal about effort.

The logic is as follows. The larger the weight the rating puts on the signal about

11The resulting effort is given by

A1 =
δΣ

2
√

Σ + 1
.
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effort, the stronger the impact of the worker’s effort on the realized rating. Hence,
holding fixed the market’s inference from a given rating, the stronger the worker’s
incentive to put in effort, which is desirable. But the market anticipates this: a larger
weight on the signal about effort means that the realized rating is less informative
about ability. That is, the weight on the signal about effort and uncertainty about
ability are substitutes. The more uncertainty, the larger this weight can be without
destroying the worker’s incentives—and of course, the larger the equilibrium effort.
As the sensitivity of the market’s posterior belief to information about ability grows
unbounded, the rating can focus almost exclusively on the signal about effort. The
marginal benefit of increasing λ is the increased sensitivity of the rating to effort (at
a constant rate); the marginal cost is the decreased sensitivity of the belief to the
rating (at a concave rate, given that increasing λ increases the share of the noise
in the rating, relative to the ability). Hence, as Σ increases, the optimal weight λ
increases.

As a second example, let βI = βII = αII = 1 > αI. We may think of the second
signal as the output, whereas the first signal puts more weight on ability than effort.
Similar computations yield that the optimal weight is equal to λ = Λ(αI), with

Λ(αI) :=
1

1− αI
− 1√

2

√
1 + (αI)2

(1− αI)2
+ Σ. (7)

Note that

λ < 0 ⇔ Σ >
1 + αI

1− αI
.

Hence, the weight on one of the signals—here, the first one—can be negative. The
logic is the same as before. Indeed, we can rewrite

Y2 = λSI
1 + (1− λ)SII

1 = (1− λ(1− αI))A1 + θ + λεI + (1− λ)εII. (8)

Hence, to put arbitrarily more weight on effort than ability requires putting arbitrarily
large negative weight on the first signal. With a rating that is a weighted difference
between signals, the rater can blunt the impact of ability on the rating, relative to
effort, to any degree it desires. And as before, this is desirable when uncertainty
increases.

From this example, it may appear that the rater’s ability relies on the availability
of multiple contemporaneous signals. What if the rater only observes output? Then it
can still improve on the equilibrium outcome that would prevail under transparency—
the same as in the baseline model without ratings—by combining observations from
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different rounds. For instance, it could release no information at the end of the first
round, and release the sum of the first two outputs at the end of the second.

Let T = 3, and let us assume here that the rater observes (only) the output, and
the rating is confidential, so that later employers do not get to see earlier ratings.12

Hence, the rater must pick both an initial rating Y2, released at the start of the
second round, and a rating Y3 at the start of the third. Let us focus on the choice of

Y3 = λX1 + (1− λ)X2 = λA1 + (1− λ)A2 + θ + λε1 + (1− λ)ε2,

a linear combination of the first and second output.13 This expression is obviously
very similar to (8), and indeed, if the rater wants to maximize overall incentives (the
sum of efforts across periods) simple algebra yields that

λ = Λ(δ),

where Λ(·) is given by Equation (7). Note that λ can be negative, namely, as above,

λ < 0 ⇔ Σ >
1 + δ

1− δ .

The logic is the same as before. When δ is small, effort in the first round is not
sensitive to the rating in the last—or at least not as much as the second effort
choice—as the worker discounts it more. Hence, viewed from the last round, the
first signal is a stronger signal about ability (versus effort), relative to the second
signal (in the sense that effort responds to this rating in the second, but hardly in the
first round). We are back to the previous example: given one signal that responds
to incentives, and another that is mostly about ability, the weight on the latter can
become negative as uncertainty increases enough.

We refer to this as benchmarking, the practice of counting older performance
measures against a worker’s current evaluation. This phenomenon is robust, as we
show in Section 4.1. It persists but gets eroded when the ability process is not
perfectly persistent. Indeed, if ability evolves over time, the question becomes: how
sensitive to the rating are past effort levels (which depends on the worker’s discount
rate), versus how informative are past output levels about current ability (which
depends on how the change in ability affects the drift in the market’s belief process)?
If the worker is relatively more impatient, the older output becomes relatively more
informative about ability, and benchmarking arises.

12The paper also considers public ratings, which remain observable to the market at all times.
13As is readily shown, it is best to set Y2 = X1, as this is the rater’s only signal at that stage.
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For the worker to exert effort, two conditions must be fulfilled. First, the market
belief must be responsive to the rating, so that an increase in the rating brings about
an increase in the worker’s wage. The more accurate the rating, the more responsive
the market belief. Second, given that the worker is impatient, the rating must respond
to effort sufficiently fast for him to feel concern. For the worker to be motivated, the
rating must react quickly and vigorously, to the tune of the worker’s impatience.

This leads to a trade-off in the design of the rating. Accuracy calls for signals
from different rounds to be assigned the same weight in the rating (see Equation (3)),
as a way of mitigating the noise clouding each of them. But if the rating assigns
the same weight to signals of different maturities, an increase in effort in any given
round leads to a small upturn in future ratings only, especially once many rounds
have already gone by. This tension can be clearly seen from the formulation with
an arbitrary number of rounds T . Namely, assume that the rating in each round is
linear in past output, that is, up to an additive constant, Yt is equal to

t−1∑
s=1

us,tXs,

for some weights ust measuring how output in round s affects the rating in round
t > s. Then (normalizing without loss the variance of Yt to 1) the goal of maximizing
total effort can be shown to be equivalent to maximizing

T∑
t=1

Corr[θ, Yt]
t−1∑
s=1

δt−sus,t.
14 (9)

The first term is the correlation between rating and ability, and is maximized by
transparency. The second captures how impatience affects the allocation of these
weights: the more frontloaded they are, the stronger the incentives. This trade-off
leads to two competing candidates for the rate at which the rating incorporates signals
over time. Indeed, the optimal rating will be seen to be a compromise between them
(see Theorem 4.1): it is a two-state process—a (non-Markov) process that can be
written as the sum of two Markov processes—with summands that decay at the rate
dictated by Bayes’ rule and impatience, respectively.

In the context of the last example, this explains why, even when the worker is
myopic (δ ' 0), so that the last rating matters arbitrarily more for effort in the
second round than in the first round, the rating nonetheless assigns nonzero weight
to the first observation, as it helps make the rating more informative about ability.

14This is the analogue of (19) derived in the general model.
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As patience increases, the weight λ goes up, and as δ tends to one, the trade-off is
resolved, with equal weights assigned to both observations.

Our example has restricted attention to linear ratings—a scalar rating that linearly
combines all the signals that the rater has access to. In discrete time, we do not
know whether this is without loss of generality. Numerical simulations suggest it
might be, but we do not know how to show this. In continuous time, a framework
that we adopt for our general analysis, we prove that linear ratings are best when it
comes to maximizing effort.15 A second benefit from continuous time is that formulas
are considerably more parsimonious. The necessary optimality conditions within the
class of linear ratings can be solved in discrete time, but the resulting formula does
in itself nearly exceed the page limit on the article length of this journal.16

3 The Model

Time is continuous and the horizon infinite. There is incomplete information.
The worker’s ability is θt ∈ R. We assume that θ0 has a Gaussian distribution. It is
drawn from N (0, γ2/2). The law of motion of θ is mean-reverting, with increments

dθt = −θt dt+ γ dZ0,t, (10)

where Z0 is an independent standard Brownian motion, and γ > 0.17,18 Mean-
reversion ensures that the variance of θ remains bounded, independent of the market
information, thereby accommodating a large class of information structures. The
noise Z0 ensures that incomplete information persists, and thus, the distribution of
ability remains nontrivial. The specification of the initial variance ensures that the
process is stationary. (A stationarity ability process is used for both the stationary
and the nonstationary version of our model studied in Section 4.2.)

The worker exerts hidden effort. Given effort At, cumulative output Xt ∈ R solves

dXt = (At + θt) dt+ σ dZ1,t, (11)

15Continuous time allows the use of the martingale representation theorem, an essential ingredient
of the proof of Theorem 3.5.

16Although the formula does converge to the continuous-time optimum. See the Mathematica©

file available from the authors.
17Throughout, when we refer to an independent standard Brownian motion, we mean a standard

Brownian motion independent of all the other random variables and random processes of the model.
18 The unit rate of mean-reversion is a mere normalization, as is its zero mean. Going from a

mean-reversion rate of 1 to ρ requires a simple change of variables. The optimal rating remains
well-defined and nondegenerate as ρ→ 0.
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where X0 = 0. Here, σ > 0, and Z1 is an independent standard Brownian motion.
Alongside a sigma-algebra R0, output X is the only source of information. In the
nonstationary version of our model, R0 is the trivial sigma-algebra and so is an
unnecessary addition, but it is useful to have in the stationary version, so that the
rater’s information is stationary. We refer to the corresponding filtration as R, where
Rt is (the usual augmentation of) R0 ∨ σ ({Xs}s≤t). This is the rater’s information,
and it is also available to the worker. Like the rater, he learns about ability by
observing output.19 On path, his belief coincides with the rater’s. Let A denote the
set of worker’s strategies.20

The rater chooses the market’s information—formally, an information structure is
a collection of sigma-algebras Mt ⊆ Rt, which need not form a filtration.21,22 The
rater is a designer, a “machine,” not a player. Her objective is irrelevant for now.

Given the cumulative wage π, the market retains23∫ ∞
0

e−rt(dXt − dπt),

whereas the worker receives ∫ ∞
0

e−rt(dπt − c(At) dt),

with r > 0 being the common discount rate. The cost c(·) is twice differentiable, with
c′(0) = 0, c′′ > 0. Efficiency calls for the (constant) effort At that solves c′(At) = 1.
Interactions between agents are summarized in Figure 1.

Equilibrium has three ingredients. The first is wages: the market is competitive.

19What the worker observes is irrelevant in the following sense. In the equilibria we study, the
worker’s effort strategy is deterministic even when he observes both outputs and signals. Hence, it
remains optimal if he has access to less information. As a result, directly controlling the information
available to the worker (an instrument considered by, for instance, Hansen, 2013) is useless.

20That is, the set of bounded processes A that are progressively measurable with respect to R.
21This is intuitive but heuristic. More formal definitions are provided in Appendix A. Expectations

relative to this measure are denoted E∗[·]. This contrasts with the belief PA of the worker, which
captures the actual law of motion. Expectations relative to PA are denoted E[·].

22We use the star notation when referring to the law on (θ,X) induced by PA
∗

(see ft. 21). We
use the no-star notation when referring to the law on (θ,X) induced by PA, i.e., the law of motion
according to the worker’s belief. The market belief is given by the law of (θ,X). Because only the
mean ability is payoff-relevant, we call belief the mean ability. The same holds for the worker’s
belief. We drop the star notation for variance and covariance, for which the distinction is irrelevant.

23Formally, π is a continuous, M-adapted process, with M := (Mt)t. Note that there is no
limited liability, and dπt can be negative.
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Rater

Market

Agent
At, θt dXt

dπt Yt

dZ1,t

Figure 1: Flow of information and payments between participants.

Given its conjecture A∗, the market pays a flow wage dπt equal to E∗[dXt | Mt]
(possibly negative). Second, the worker chooses A to maximize his payoff. Third, the
market has rational expectations: its conjecture about A is correct.

Definition 3.1 Fix M. An equilibrium is a profile (A,A∗, π), A,A∗ ∈ A, such that
the following hold:

1. (Zero-profit) For all t,

πt =

∫ t

0

E∗[A∗s + θs | Ms] ds.

2. (Optimal effort)

A ∈ argmax
Â∈A

E

[∫ ∞
0

e−rt(dπt − c(Ât) dt)

]
.

3. (Correct beliefs) It holds that
A∗ = A.

An equilibrium is called deterministic if A is deterministic, that is, if A is only a
function of time.

We focus on deterministic equilibria, referred to as equilibria hereafter. The worker’s
effort can depend on calendar time, but not on the history of outputs or ratings. Here
as in other contexts, studying a given effort level is useful for practical applications
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and allows for tractability: as we prove, such equilibria admit a simple implementation
using linear ratings (plus noise). Implementing a given effort level is a standard
focus in contracting papers (see Edmans and Gabaix, 2011; Ditmann and Maug,
2007; Dittman, Maug and Spalt, 2010, which all concentrate exclusively on an
effort level, and Grossman and Hart, 1983; Lacker and Weinberg, 1989, which do so
predominantly). Deterministic equilibria are also the focus of the career concerns
literature.24

Given that beliefs only enter payoffs via an additive constant, all continuation
games are strategically equivalent. Hence, Markov perfection (as defined by Maskin
and Tirole, 2001) calls for constant effort (i.e., identical effort after all histories,
independent of their length). Accordingly, the analysis in Section 4 starts with
stationary ratings, for which the (deterministic) equilibrium involves constant effort.
We consider nonstationary equilibria in Section 4.2.

Because wages depend on the market’s perception of ability only, Definition 3.1
can be simplified. First, the worker’s objective can be directly written in terms of this
belief. He maximizes his discounted reputation, net of his cost of effort, as formalized
below in (12). Second, the market information can be streamlined. A priori, this
information can be very rich—under transparency, for instance, Mt contains the
entire history of output up to time t. However, by the revelation principle, one can
work directly with the market belief, fixing a conjectured effort. More precisely, fixing
A∗, a sufficient statistic for Mt is the conditional expectation E∗[θt | Mt].

Lemma 3.2
(i) Given a wage π that satisfies the zero-profit condition, a strategy A is optimal

if, and only if, it maximizes

E

[∫ ∞
0

e−rt(µt − c(At)) dt

]
(12)

over A, where µt := E∗[θt | Mt] assumes a deterministic conjecture A∗.
(ii) If (A,A∗, π) is an equilibrium given M, then it is an equilibrium given the

information contained in E∗[θt | Mt].
25

24This literature typically considers the Markov equilibrium (often implicitly, as in Holmström),
which is deterministic, or assumes a finite horizon, in which case the terminal condition yields a
unique equilibrium, which is also deterministic. One exception is Cisternas (2017), who studies
nondeterministic equilibria when the payoffs of the worker is nonlinear in market beliefs, in which
case deterministic equilibria cease to exist.

25Formally, it is an equilibrium given {σ (E∗[θt | Mt])}t. Note that, unlikeM, {σ (E∗[θt | Mt])}t
refers to the market conjecture.
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3.1 Ratings

Given Lemma 3.2(ii), we may restrict attention to information structures generated
by some scalar process, or rating, Yt.

26 As mentioned above, we can take this rating
to be the market belief, but obviously any nonconstant affine transformation of this
belief is equivalent to such a rating. In the sequel, uniqueness will be understood in
this sense, and we will use whichever equivalent representation is most convenient.

Of particular interest are linear ratings.

Definition 3.3 A rating Y is a linear rating if it can be written, for all t,

Yt =

∫
s≤t

us,t dXs,

up to some additive constant, for some functions us,t, s ≤ t. It is stationary if for all
s ≤ t, us,t = u(t− s).27

That is, a linear rating is one that aggregates observations using some weight function.
It is stationary if the weight attached to some observation in the current rating is a
function of the time that elapsed since that observation occurred, rather than the two
calendar times involved. For stationarity to make sense, one needs an appropriate
specification of the initial sigma-algebra R0. We provide details in Appendix A.

The definition of a linear rating generalizes that of our example of Section 2. As
in the example, the rating is equal to the market belief if, and only if, for all t,

Cov[θt, Yt] = Var[Yt], (13)

(and E∗[Yt] is normalized to 0). Alternatively, one may verify that a linear rating is
equal to the market belief by checking the property that, for all t,

E∗[θt | Yt] = Yt. (14)

Both characterizations are intuitive but require proof. (See Proposition B.1 in
Appendix B.) Following information-theoretic terminology, u(·) is the linear filter
defined by Y . When the filter is a sum of exponentials, that is, u(t) =

∑L
`=1 c`e

−δ`t

for some L ≥ 1 with c`, δ` ∈ R, the coefficients c` (resp., exponents δ`) are the weights
(resp., impulse responses) of the filter.

26Formally, we can take Mt = σ(Yt), for some real-valued process Yt that is progressively
measurable with respect to R.

27Here and below (Theorems 3.5 and 3.6), the maps s 7→ us,t are integrable and square integrable.
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Of course, not all ratings are linear. Linearity rules out coarse ratings, for instance.
However, linear ratings encompass a wide variety of practices. For instance, a moving
window is a linear rating, with

Yt =

∫ t

t−T
dXs,

for some T > 0. (The choice of R0 ensures that this is also well defined for s ≤ 0.)
Similarly, exponential smoothing, used in some environments, is a linear rating, in
which

Yt =

∫
s≤t

e−δ(t−s) dXs,

for some choice of δ > 0. A special case is transparency. Namely, define νt := E∗[θt |
Rt] as the rater’s belief. The formula that generalizes (3) to continuous time is

νt = (κ− 1)

∫
s≤t

e−κ(t−s) (dXs − A∗s ds) , (15)

where κ :=
√

1 + γ2/σ2 measures how fast a Bayesian discounts past innovations
(output realizations) in her belief, as the state continues evolving. This is exponential
smoothing, with δ = κ.

Linear ratings enjoy desirable properties. First, from a technical point of view, they
ensure uniqueness of the equilibrium, regardless of whether the rating is stationary.

Proposition 3.4 Fix a linear rating Y . There exists a unique (deterministic) equi-
librium given Y .28

Second, linear ratings are remarkable from the point of view of equilibrium effort
and information quality.

In terms of effort, no other rating yields higher effort (whether constant or not).
The proof of this result relies on the martingale representation theorem. The result
applies to the nonstationary version of the model (i.e., it assumes that the rater has
no information at time 0).

Theorem 3.5 If A is a deterministic equilibrium strategy given some rating, then
there exists a deterministic equilibrium strategy Â given some linear rating, such that,
for almost all t, Ât ≥ At.

28More precisely, here and in what follows, given {σ(Yt)}t.
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Additionally, as explained in the proof of Theorem 3.5, any optimal rating is essentially
a linear rating. Adding random noise to the rating has the effect of depressing effort,
which allows to flexibly induce effort levels below the maximum effort.

In terms of information quality, linear ratings are the only ones that deliver a
constant quality of information to the market, irrespective of the history. With any
other rating, variations in the rating also punish or reward the market by changing
the quality of the information that it provides. We believe that it is a realistic and
desirable property for a rating that the history affect the rating level but not the
quality of the information: retribution should not affect innocent bystanders. Besides,
many market participants have a strong preference for ratings that are not only
accurate but also stable. Rating changes have real consequences that are costly to
reverse (sending a child to a given school, or picking a surgeon being prime examples).

We relegate a formal statement of this result to the appendix, but conclude
this section with a theorem that is instrumental to its proof, and plays a crucial
role throughout the analysis. Informally, it establishes an equivalence between
the linearity of the rating and the Gaussianity of the market belief. Formally,
suppose the worker exerts constant effort. A rating is Gaussian if, for all s > 0,
(Yt, Xt −Xt−s)−E[(Yt, Xt −Xt−s)] is jointly stationary and Gaussian, in addition to
some regularity properties.29

Theorem 3.6 (Representation) If the worker exerts constant effort and, under
such effort, Y is a Gaussian rating, then there exists u(·) (unique up to measure zero
sets) such that, up to an additive constant,

Yt =

∫
s≤t

u(t− s) dXs. (16)

Conversely, given such a function u(·), (16) uniquely defines a linear rating.

The decomposition (16) can be interpreted as a regression of Yt on the continuum of
signal increments dXs, s ∈ (−∞, t]. It is an infinite-dimensional version of the familiar
result that a Gaussian variable that depends of finitely many Gaussian variables is a
linear combination thereof. The proof in Appendix D.2 yields a closed-form for the
filter given a Gaussian rating (see also Theorem B.4 in Appendix B).

29For all t, s > 0, Yt is Rt-measurable, and the map s 7→ Cov[Yt, Xt−s] is absolutely continuous,
with an integrable and square-integrable generalized derivative.
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4 Main Results

The rater has commitment, in the sense that Y is chosen once and for all, and it is
common knowledge. As explained, linear ratings make sense when the rater strives to
maximize output or the quality of information.30 As the example in Section 2 makes
clear, these two objectives are not aligned. Transparency, which obtains when the
rating relays the rater’s belief, fails to maximize output. They are also not opposed,
as shunning all information transmission leads to zero effort. A systematic analysis
of the trade-off would take us too far afield, but it is straightforward to perform, as
we illustrate in Section 5.1.

Here, we focus on output, or equivalently effort maximization, since unlike market
information, effort matters for welfare.31 In this section, we further focus on stationary
linear ratings, such that equilibrium effort is constant.

In the case of a stationary linear rating, the formula for equilibrium effort is very
simple (see Lemma B.3 in Appendix B). Normalizing the (stationary) variance of the
rating to 1, equilibrium effort solves

c′(At) =

∫ ∞
0

u(s)e−rs Cov[Yt+s, θt+s] ds. (17)

The right-hand side is the benefit from incremental effort: the rating will increase by
a factor u(s) at time t+ s, and this impacts the market belief, and hence the wage, to
the tune of the covariance between the rating and ability. With a stationary rating,
this covariance is constant. Given the unit rate of mean-reversion, it equals

Cov[Yt, θt] =
γ2

2

∫ ∞
0

u(t)e−t dt.

30Another commonly cited objective of ratings is stability over time, as measured by the variance
of the belief (Cantor and Mann (2007)). In a Gaussian setting, the stability and quality of market
information (as measured by the variance of the type conditional on the belief) are perfect substitutes.
This is formally stated in the appendix (see Lemma B.7).

31Under the optimal rating, maximizing effort does not always maximize efficiency (unlike in
Holmström). When κ is large enough, c′(A) > 1 and equilibrium effort is too high. Yet, there are
plausible scenarios in which a profit-maximizing rating agency would find it optimal to induce the
maximum effort level. For instance, if the agency charges the market a commission (a set percentage
of the value of output), maximizing effort is equivalent to maximizing revenue. Solving for the
maximum effort is equivalent to solving for the range of implementable actions. If effort is excessive,
a simple adjustment to the rating (adding “white noise,” for instance) scales it to any desired lower
effort, including the efficient level; see Corollary 4.2.
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Hence, maximizing effort is equivalent to maximizing[∫ ∞
0

u(t)e−rt dt

] [∫ ∞
0

u(t)e−t dt

]
, (18)

subject to Var[Yt] = 1. Equivalently, normalizing by Var[Yt], we maximize∫∞
0
u(t)e−rt dt√
Var[Y ]

Corr[Y, θ], (19)

where Corr[Y, θ] = Cov[Y, θ]/
√

Var[Y ] is the correlation between the rating and
ability. Finding the optimal rating amounts to maximizing this product.

To develop our intuition regarding the optimal rating, let us begin with a simple
example: exponential smoothing. Suppose that the rater contemplates selecting a
rating from the family

Yt =

∫
s≤t

e−δκ(t−s) dXs, (20)

for some δ > 0, which she freely chooses. Using the terminology introduced above, the
rater chooses from the family of filters u(t) = e−δκt. Recall that this family includes
transparency (cf. (15)), for δ = 1. For any other choice, she conceals information
from the market. Applying (18), given δ, the worker’s effort solves

c′(A) =
1

r+δκ√
Var[Y ]

1
1+δκ√
Var[Y ]

. (21)

The second term of (21), being the correlation between ability and the rating, is
highest under transparency (δ = 1). In that case, it is readily verified that (21)
simplifies to

c′(A) =
κ− 1

κ+ r
,

which characterizes the optimal effort in Holmström.
However, because of the first term of (21), transparency is not optimal (unless

r = 1, in which case both terms coincide). This first term reflects the worker’s time
preference. As is the second term, it is single-peaked in δ. Its numerator is decreasing
in r, reflecting the fact that a higher rating (as a lower value of δ implies), if taken
at face value, boosts incentives. However, such a rating also increases the standard
deviation of the rating (the denominator). Once the market accounts for such rating
inflation, the value of δ that maximizes this term is interior.
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The choice of δ that maximizes this first term depends on r: the more patient
the worker, the more a persistent (low δ) rating delivers incentives (a patient worker
values persistence more, and the cost in terms of the increased standard deviation
does not depend on his patience). Unless r = 1, the optimal choice is not transparency.
Taking derivatives (with respect to δ) in (21) yields as the optimal solution

δ =
√
r.

Unsurprisingly, given (21), the rater chooses a rating that is more or less persistent
than Bayesian updating according to r ≶ 1, that is, depending on how the discount
rate compares to the rate of mean-reversion. The best choice reflects the worker’s
preferences, which Bayes’ rule ignores. If the worker is patient, it pays to amplify
persistence, and δ is low.

To boost effort, the rater would like to calibrate the rating’s persistence to
the worker’s time preference, without necessarily sacrificing correlation. A better
correlation calls for transparency and a filter with an exponent κ. Calibrating
persistence argues for another exponent.

There are alternatives to exponential smoothing ratings which are equally simple.
For instance, as mentioned above, moving window systems are often used. But this
is a step in the wrong direction: as we prove in appendix, the best rating among
exponential smoothing ratings yields higher (stationary) effort than any moving
window rating.32 In fact, for many parameters, it simultaneously provides higher
effort and better information (as measured by the variance of the market belief).
Smoothing is good both for incentives and information.

But exponential smoothing is not the best rating. Its structure straitjackets the
rater. The two forces identified in (21) call for a rating with more flexibility.

Theorem 4.1 The optimal stationary rating is unique and given by, for r 6= κ,33,34

u(t) :=
1−√r
κ−√r

√
re−rt + e−κt. (22)

Hence, the optimal rating is the sum of two exponentials. Note that the impulse
response on the second exponential is precisely the one that appears in the rater’s

32This is not an artefact of the focus on a single signal, output. In the proof, we allow the rater
to condition on an additional source of information.

33Recall that we take ratings as proportional to the mean market belief. As mentioned, uniqueness
is understood as up to such a transformation.

34For r = κ, the optimal rating is proportional to (1− (κ−√κ) t) e−κt, the rescaled limit of (22).
The rating reduces to one exponential term when r = 1, κ2. Transparency results for r = 1.
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own belief νt (see (15)). The first impulse response reflects the worker’s discount
rate, r. Not surprisingly, the rater seeks to make the rating more or less persistent
according to the worker’s time preference.

Hence, the rating can be written as a sum of two Markov processes, one of which
is ν, and the other which we denote I (for “incentive”). That is, for some φ ∈ R
(and adjusting for equilibrium effort),

Yt = φIt + (1− φ)

(
νt +

κ+ 1

κ
A∗
)
,

where

dIt =
√
r

1−√r
κ−√r dXt − rIt dt.

This representation has several consequences:

- The optimal rating—viewed as a time series—is not a Markov process (the sum
of two Markov processes is not Markov in general, and not here in particular).

- The optimal rating is not a function of the rater’s current belief alone (it is not
Markov in this sense either, i.e., a function of ν only).35 Put differently, the
best way of passing on the worker’s performance to future ratings cannot be
encapsulated in the impact of this performance on the rater’s belief. This might
be surprising, given that the rater’s belief is the only payoff-relevant variable.

- The optimal rating is a two-state mixture Markov rating—a combination of
Markov chains moving at different speeds (Frydman (2005)).

- White noise is harmful: irrelevant noise has no use, as it depresses effort.36

These findings echo a large empirical literature documenting various facets or
ratings. We have already mentioned the spillover effect in the literature on subjective
performance evaluation (see ft. 3). For credit ratings, it is well known that they do
not satisfy the Markov property (Altman and Kao (1992), Altman (1998), Nickell,
Perraudin, and Varotto (2000), Bangia et al. (2002), Lando and Skødeberg (2002),
etc.) This has motivated a literature that seeks to produce models of ratings that

35This property is distinct from the first. The rating can be a Markov process without being
a function of the belief. The rating can be a function of the belief without being Markov, as in
general, if X is Markov, and f is a function defined over X, f(X) is not Markov.

36The proof in the appendix allows the rating to be conditioned on white noise and establishes
that this information is not used.
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would replicate the time series. Frydman and Schuermann (2008) find that such a
two-state mixture Markov model outperforms the Markov model in explaining credit
ratings and also explains economic features of rating data. Other representations
are known to capture these data (e.g., as a process with rating momentum; see
Stefanescu, Tunaru, and Turnbull (2009)). This is not inconsistent with our result, to
the extent that the optimal rating can be described using other variables than I and ν.
There is considerable leeway. For instance, the pair (Y, ν) (the rating and the rater’s
beliefs) leads to a more concrete if less elegant prescription. The rater continues
to incorporate some of her private information (via her belief) into the rating. In
terms of (Y, ν), Y is a hidden Markov process, with ν being the hidden state. This
formulation is used, for instance, by Giampieri, Davis, and Crowder (2005).

From a theoretical viewpoint, what is perhaps most surprising is that two Markov
processes suffice to compute the rating. The part of the proof establishing sufficiency,
explained in Appendix C, sheds light on this. Viewing the setup as a principal-agent
model, promised utility does not suffice as a state variable. Utility is meted out via
the market’s belief, and beliefs are correct on average. This imposes a constraint on
an auxiliary variable and hence demands a second state.

As mentioned, the optimal rating does not use extraneous noise. White noise can
only depress effort. Hence, adding the right amount of white noise to a two-state
Markov mixture rating achieves whichever desired level of effort. Hence, such rating
systems are canonical, independent of the rater’s objective in terms of effort.

Corollary 4.2 Any stationary equilibrium effort level can be achieved by a two-state
mixture Markov model plus white noise.

4.1 Benchmarking

The coefficient on the incentive state of the optimal rating can be negative (see
(22)). Hence, as in the example of Section 2, better performance might translate into
lower future ratings. This occurs whenever

√
r lies in [1, κ]. The shape of the optimal

rating also depends on the ranking of the impulse responses, r and κ, giving rise to
four cases, as illustrated in Figure 2 (

√
r ∈ [0, 1], [1,

√
κ], [
√
κ, κ], and [κ,∞)).

For (r, κ) = (3, 4), for instance, the negative weight on t = 1 implies that a positive
surprise at time τ negatively impacts the rating at τ + 1 (see the top-right panel of
Figure 2). However, the rating has a positive impact until then (or, rather, until
approximately τ + .6). The market accounts for the fact that the rating “understates”
performance; the way this is done improves its quality.

To see why better performance can lead to lower ratings, let us focus on r < κ
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Figure 2: Optimal rating as a function of (r, κ).

and consider selecting a rating from the parameterized family

u(t) = de−δt + e−κt,

where d ∈ R, δ > 0 are free. This class is more general than that considered above
(e.g., (20)) and embeds the optimal rating, as well as transparency (d = 0). Recall
from (19) that we can write the marginal cost as a product of two terms, namely:

c′(A) =

∫∞
0
u(t)e−rt dt√
Var[Yt]

Corr[Yt, θt] ∝
d
δ+r

+ 1
κ+r√

(1+d)2+δ(1+dκ/δ)2

1+δ︸ ︷︷ ︸
Term A

Corr[Yt, θt]︸ ︷︷ ︸
Term B

. (23)

The market is best informed when the rater reveals her own belief. Hence, correlation
(Term B) is highest under transparency, setting d = 0. Thus, to determine the sign of
d, we focus on the first term of (23), Term A. As we have seen in (19), the numerator
measures the discounted impact of effort on future ratings, and the denominator
corrects for the overall scale of ratings. Roughly, increasing d increases both the
impact on future ratings, keeping the scale fixed, and the scale of ratings.

Hence, whether this is desirable depends on which one grows faster. If the worker
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is very impatient, magnifying the impact via a higher value of d is futile. If mean-
reversion is strong, ratings are naturally clustered around the long-run mean, and
rating inflation via a high value of d is not a paramount concern. Given that the
mean-reversion rate is normalized to 1, the comparison reduces to r ≷ 1.37

This benchmarking is a robust phenomenon. Not only does it hold for a broad
range of parameters, but it also arises in the extensions we shall consider, when past
ratings are observed or additional information is available to the rater or the market.
As we saw in Section 2, it also arises with a finite horizon and a fixed ability.

Moreover, it resonates with practice. Murphy (2001) documents the widespread
use of past-year benchmarking as an instrument to evaluate managerial performance,
commenting on its seemingly perverse incentive to underperform with an eye on the
long term. (Ratcheting does not explain it, as the compensation systems under study
involve commitment by the firm.)

4.2 Nonstationary Setting

Thus far in Section 4, attention has been restricted to stationary ratings. This
has required an infinite horizon—indeed, initial conditions that replicated a doubly
infinite horizon. To understand the role of stationarity, we consider the polar opposite
case here. The horizon is finite, starting at time 0, with no information to begin with,
and finishing at time T < ∞. The model is otherwise unchanged. Our attention
turns to linear (not necessarily stationary) ratings, as introduced in Definition 3.3.

In such a setting, equilibrium effort is not constant. How effort levels at different
epochs enter the rater’s objective is not innocuous. Maximizing total discounted
effort, or maximizing total cumulative effort (given the finite horizon) are obvious
candidates. We can solve for both.38 Here, we focus on the second objective, as in
our example of Section 2. Hence, the nonstationarity of the optimal rating can then
be ascribed to the worker’s incentives, rather than the rater’s impatience. That is,

37The derivative of Term A evaluated at d = 0 is of the same sign as

κ+ r

δ + r
− κ+ 1

δ + 1
, (24)

the sign of which when δ < κ (as when δ = r, its optimal value) is determined by r ≷ 1.
38Details for the case in which the rater uses some discount factor R > 0 are available upon

request. The main results generalize: even when R = r, the optimal nonstationary rating is a
(three-state) mixture Markov model, with effort converging to some long-run effort level that depends
on the two discount factors (and coincides with the solution to the stationary model with discount
rate r−R, which is two-state Markov). Unless κ takes a specific value, transparency does not obtain.
Benchmarking results for the same parameters as in Section 4.1, replacing r with r −R.
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the rater chooses the rating to maximize∫ T

0

As ds.

We further assume that the worker has quadratic cost of effort, c(A) = A2. In the
Online Appendix, Section OA.7, we derive the optimal rating under generic parameter
values.

Theorem 4.3 The optimal rating is unique and given by, for r 6= κ and 0 ≤ s ≤ t,

us,t = c1(t)e
−r(t−s) + c2(t)e

−κ(t−s) + c3(t)e
κ(t−s), (25)

for some functions ck(·), k = 1, 2, 3 (given in the Online Appendix OA.7).

Thus, the rating is a three-state mixture Markov model. As is clear from (25), the
optimal rating is nonstationary. The impulse responses depend on the time elapsed,
while the weight on each exponential term depends on calendar time only. The rating
converges as t → ∞, as the weight c3(·) vanishes faster than the exponential with
impulse response κ explodes. Indeed, it is readily verified that:

Corollary 4.4 As t → ∞, the optimal rating us,t given by (25), converges to the
optimal stationary rating given by (22) (e.g., for all τ > 0, limt→∞ ut−τ,t = u(τ)).

Hence, the stationary rating arises as the limit of the optimal rating as the horizon
grows large. While calendar time matters, the horizon length T plays no role in
the rating (that is, T does not appear in (25)). This is because the rating at time
t only affects incentives at earlier times, and at such a time s < t, different future
ratings additively affect incentives as the marginal cost is linear in effort. However,
the horizon affects the optimal effort, as with less time remaining, current effort
impact “fewer” ratings. Figure 4.2 illustrates the pattern of effort under the optimal
rating for different horizon lengths. As is clear, effort converges pointwise, with a
limiting path (as T →∞) such that effort converges to the stationary level, after an
initial phase featuring surprising nonmonotonicities. Note that the optimal rating and
its convergence properties to the optimal stationary rating rely on the assumption
that the rater seeks to maximize the average effort of the worker. In general, with
other objectives for the rater, and in particular with the rater’s discounting of future
effort, the optimal nonstationary rating does not necessarily converge to the optimal
stationary rating.
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Figure 3: Effort paths for varying horizon lengths (T = 3, 5, 8; here, r = 3, κ =
√

2).

5 Extensions

Here, we show that our findings extent to the case in which there are multiple
signals available to the rater. We also allow for situations in which (ii) the market has
access to past ratings, (iii) the market has access to additional signals, and (iv) the
worker has multidimensional actions. Throughout, we focus on the stationary case.

First, we introduce additional signals. There are good reasons to do so. Workers
are evaluated according to a variety of performance measures, both objective and
subjective (see Baker, Gibbons, and Murphy (1994)). In the case of a company, in
addition to earnings, there is a large variety of indicators of performance (profitability,
income gearing, liquidity, market capitalization, etc.). In the case of sovereign credit
ratings, Moody’s and Standard & Poor’s list numerous economic, social, and political
factors that underlie their ratings (Moody’s Investor Services (1991), Moody’s Investor
Services (1995), Standard & Poor’s (1994)).

We model such sources of information as processes {Sk,t}, k = 2, . . . , K that solve

dSk,t = (αkAt + βkθt) dt+ σk dZk,t, (26)

with Sk,0 = 0. Here, αk, βk ∈ R, σk > 0, and Zk is an independent standard Brownian
motion. For convenience, we set S1 = X (α1 = β1 = 1), as output is also a signal.
The vector S = (Sk)k is observed by the rater and the worker but not by the market.

29



A (stationary) linear rating, then, is a rating that can be written as, for all t,

Yt =
K∑
k=1

∫
s≤t

uk(t− s) dSk,s,

for some maps {uk(·)}k. As with one signal, linear ratings are equivalent to Gaussian
ratings, and equilibrium given any linear rating is unique.39 The coefficient uk(s)
is the weight that the rating at time t assigns to the innovation (the term dSk,s)
pertaining to the k-th signal of vintage s.

The next result shows that the optimal rating remains two-state mixture Markov.

Theorem 5.1 The optimal linear rating is unique and given by40

uck(t) =
βk
σ2
k

(
dck

√
r

λ
e−rt + e−κt

)
,

for some constants λ, (dck)k.41

Remarkably, the impulse responses of the two exponentials remain the same as with
one signal, reflecting transparency (κ) and the worker’s discount rate (r).

Hence, the rating not only merges past and current values of a given signal but
also combines the signals of a given epoch, in a fixed proportion. To see why this
second type of obfuscation is useful, consider the following extreme example. Suppose,
contrary to our maintained convention, that output depends on effort only. A second
signal gives noisy information about ability. That is,

dXt = At dt+ dZ1,t, and dS2,t = θt dt+ dZ2,t.

39Indeed, most results in the appendix are directly established for this more general framework.
40The constant κ :=

√
1 + γ2

∑
k β

2
k/σ

2
k generalizes the earlier one and captures the rate of decay

of the rater’s belief.
41The constant λ is defined by

λ = (κ− 1)
√
r(1 + r)mαβ + (κ− r)

√
∆, with ∆ = (r + κ)2(mαmβ −m2

αβ) + (1 + r)2m2
αβ

and the constants dck are defined by

dck = (κ2 − r2)mβ
αk
βk
− (κ2 − 1)mαβ ,

where

mα =

K∑
k=1

α2
k

σ2
k

, mαβ =

K∑
k=1

αkβk
σ2
k

, mβ =

K∑
k=1

β2
k

σ2
k

.
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If the rater were to disclose all her information, namely {Xs, S2,s}s≤t, then effort
{As}s≤t would not affect the market belief µt, which only depends on {S2,s}s≤t. As a
result, the worker never puts in any effort. If instead the market only saw the sum

d(Xt + S2,t) = (At + θt) dt+ dZ1,t + dZ2,t, (27)

career concerns would arise and effort be positive. This is precisely the (continuous-
time) version of Holmström’s model. Of course, the optimal rating given by Theo-
rem 5.1 is more sophisticated than the “naive” summation given by (27), but this
summation already illustrates why transparency is not optimal.

5.1 Public Ratings

Assuming that past ratings are hidden to the market might be appropriate in
some environments in which such feedback can be kept confidential, but it makes
little sense if the market is long-lived. Here, we assume that past ratings are observed
by the market. As in the baseline model, and to facilitate the comparison, we focus on
ratings that are proportional to the market belief.42 In this case, a rating Y is public
when the current rating Yt includes as much information on θt as does the history
of current and past ratings {Ys}s≤t—which is equivalent to saying that the market
observes the history of previous ratings insofar as the information on the current
ability is all that matters. To mark the distinction, we refer to the ratings considered
previously in Section 4 as confidential (hence, the superscript c, as opposed to p).
This constrains the rater, who can no longer treat independently different epochs.
The rater is bound by her past ratings.

In terms of information precision, the public ratings considered continue to include
the extremes, full transparency and zero information. However, “publicness” is a
substantial constraint that make public ratings a relatively small subclass of the
confidential ratings introduced above. More specifically, a rating Y is the belief of a
public rating if

E∗[θt | {Ys}s≤t] = Yt.

42An alternative is to start from any linear rating (not necessarily proportional to market beliefs)
and subsequently extract the market belief associated with the observation of past and current
ratings. The main difficulty of this approach is the Bayesian updating problem, which to our
knowledge is only tractable for more specific forms of rating processes, using a linear filtering
methodology. The benefit of the representing the rating directly as a market belief is that no
Bayesian updating is necessary, and the conditions that make a rating public can be simply and
compactly expressed. However, unlike the baseline case of confidential ratings, it not obvious to us
that this restriction to “direct” linear ratings are without loss of generality.
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This is a constraint on random variables. As before, it is more useful to express it
analytically. Recall that, normalizing the rating such that E∗[Yt] = 0, requiring that
a confidential rating is equal to the belief it induces is equivalent to imposing that:

Cov[Yt, θt] = Var[Yt]. (28)

This is not enough to ensure that such a rating remains a belief once past ratings are
observed. The successive confidential ratings do not exhibit the right autocorrelation.
An outside observer who, unbeknown to the rater, would observe the time series
of ratings would note that its autocorrelation is “off” and draw inferences from it.
Imposing the correct autocorrelation is precisely what is needed. A rating that
satisfies (28) is a public rating, if, and only if, it holds that, for all t and all τ ≥ 0,

Corr[Yt, Yt+τ ] = Corr[θt, θt+τ ] (= e−τ ). (29)

Equipped with this characterization, we show the following:

Theorem 5.2 The optimal public rating is unique and given by

upk(t) =
βk
σ2
k

(
dpk

√
r

λ
e−
√
rt + e−κt

)
,

for some constants λ, dpk.43

Hence, publicness distorts the impulse response of the incentive term (
√
r replacing

r). This is easy to understand: the rater must satisfy the constraint (29) on the
rating’s autocorrelation, which must match the unit mean-reversion rate of ability.
This distorts the impulse response of the incentive term away from the rater’s favorite
value (namely, r), toward 1. The geometric mean of these two values is what turns out
to be optimal. This impulse response does not suffice to satisfy the autocorrelation
constraint, however, and the weight on this term is also distorted. This distortion is
extreme when the rater’s information is one-dimensional. If there is only one signal,
then dpk = 0, and transparency obtains. The “continuum” of constraints determines
the “one-dimensional continuum” of variables and hence the rating.44

43The constants dpk are defined as

dpk =
κ−√r
κ− r dck + λ

√
r − 1

κ− r ,

and the constants κ, λ, and dck are defined as in Theorem 5.1.
44More precisely, transparency obtains if, and only if, αk/βk is independent of k for all k such

that (αk, βk) 6= (0, 0).
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As for confidential ratings, adding noise to the public rating defined in Theorem
5.2 allows the rater to precisely achieve any lower effort. (As we show in the Online
Appendix, the proof of Corollary 4.2 can be adapted to public ratings.)

It is straightforward to compute and compare performance (effort) and informa-
tiveness (variance of the market belief) in the public and confidential cases. We
refer the reader to the working paper for specific comparative statics.45 In terms of
comparisons, the marginal cost of effort satisfy

c′(Ap) =

(
1−

(√
r − 1√
r + 1

)2
)
c′(Ac),

while the variances of the market belief satisfy

Varµp =

(
1 +

(√
r − 1√
r + 1

)2
)

Varµc.

Hence, effort is lower, but the market is better informed given public ratings.
This raises a natural question: is requiring ratings to be public equivalent to setting
standards of accuracy? In Figure 4, we plot the solution (maximum marginal cost of
effort) to the two problems—confidential and public ratings—subject to an additional
constraint, a peg on the variance of the market belief. The solution is a rating similar
to the unconstrained one; only the weights on the two exponentials vary.

Fixing precision, the rating can induce a maximum effort level (curves are truncated
at this maximum). Quality and effort are substitutes over some range: transparency
does not maximize effort, whether the rating is public or not. Yet, the effort-
maximizing rating does not leave the market in the dark. As the figure makes clear,
effort is lower in the public case for any given level of variance. A confidential rating
both incentivizes more effort and provides better information than a public one.

5.2 Exclusivity

Not all information can be concealed. If the market represents long-run consumers
that repeatedly interact with the worker, cumulative output is likely publicly observ-
able. In credit ratings, solicited ratings are based on a combination of information
that is widely available to market participants and information that is exclusively
accessible to the rater. We refer to this distinction as exclusive vs. nonexclusive

45Which is not to say that these comparative statics are foregone conclusions. For instance,
adding a signal can lead to a less-informed market.
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Figure 4: Marginal cost of effort as a function of maximum belief variance, public vs.
confidential ratings (here, (β1, β2, α1, α2, γ, r, σ1, σ2) = (3, 2, 1/3, 5, 1, 1/5, 1, 2)).

information. The rater does not ignore the fact that the market has direct access to
this source of information. What she reveals about the exclusive signals that she can
conceal also reflects the characteristics of those signals that she cannot.

Formally, all participants observe {Sk,s}s≤t,k=1,...,K0 in addition to the information
provided by the rater (we consider the cases of both public and confidential structures,
according to whether past information is publicly available).46 Signals Sk,t, k > K0,
are only observed by the rater and the worker. If K0 = 0, ratings are exclusive, as in
Section 4. If K0 = K, we have transparency, and there is nothing for the rater to do.
Hence, we focus on 0 < K0 < K. As before, we focus on ratings that are proportional
to beliefs. We omit the analytic constraints that summarize the restrictions imposed
by the rating to be a belief, whether the rating is public or confidential (they are
presented in the appendix). Theorem 5.1 also extends to this setup.

Theorem 5.3 The optimal nonexclusive linear confidential rating is unique47 and
given by, for k ≤ K0, uk = 0 and k > K0,

uk(t) =
βk
σ2
k

(
dck

√
r

λ
e−rt + e−κt

)
,

46By our ordering convention, output is observed whenever any signal is observed.
47Under nonexclusivity (in particular, under transparency), the parameters of the publicly

available signals can be such that perverse incentives arise and exerting the lowest possible effort
maximizes reputation (see the appendix for sufficient conditions that rule this out). If effort under
the rating given here is nil, then effort is nil under any rating.

34



for some constants (dck)k.48, 49

Theorem 5.4 The optimal nonexclusive linear public rating is unique and given by,
for signals k ≤ K0,

unk(t) =
βk
σ2
k

(
dne−δt + e−κt

)
,

and for signals k > K0,

uek(t) =
βk
σ2
k

(
deke
−δt + e−κt

)
,

for some constants dn, (dek)k and δ > 0.50

The differences in parameter values should not distract from the overarching
commonalities. Most important, as in the exclusive case, the optimal process is
expressed in terms of a two-state Markov process, with one state being the rater’s
belief. As before, it can be restated as a system in which the rater revises the rating
by gradually incorporating her belief. As under exclusivity, with public ratings, the
optimal rating reduces to transparency if the exclusive signals are redundant (i.e., if
αk/βk is independent of k, k > K0), as is the case if there is only one such signal.

The rater does not need to observe the realized values of the nonexclusive signals to
incentivize the worker.51 However, nonexclusivity affects the quality of the information
available to the market. As an example, consider Figure 5, which describes variances
under confidential ratings in a variety of cases. The market is better informed (i.e.,
the variance of the market belief is highest) when information is nonexclusive than
when it is not (the higher solid vs. the dotted line). However, this is only the case

48The constants dck are defined as in Theorem 5.1 with the exception that the value of ∆ must
be redefined, see Appendix B for details.

49With nonexclusive ratings, it is a matter of convention whether the belief conveyed by the
rating already incorporates the information freely available to the market. In the interim case,
the belief based solely on the information communicated by the rater must be combined with the
nonexclusive signals into a posterior belief (in which case, uk = 0 for k ≤ K0). We attempt to
preserve as much as possible the analogy with the solution in the exclusive case. This calls for the
interim approach for confidential ratings and the alternative, posterior approach for public ratings.

50The parameters dn, dek are elementary functions of δ. The parameter δ is the only parameter in
the paper that is not solved for in closed-form in the appendix. In fact, we prove that it cannot
be solved for. It is a root of an irreducible polynomial of degree 6. Using Galois theory, we show
that it cannot be expressed in terms of radicals. However, we show that the polynomial admits two
positive roots, and we indicate how to select the correct one. See Appendix B and Section OA.10 of
the Online Appendix for details.

51This is not obvious from the statement of Theorem 5.4 because we chose to state the optimal
nonexclusive public rating as a posterior belief.
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Figure 5: Belief variances (here, K = 2 and (αk, βk, σk, γ) = (1, 1, 1, 4), k = 1, 2).

because the market can rely on the nonexclusive signal (the output) in addition to
the rating. If a market participant were to rely on the rating alone to draw inferences
about ability (lower solid line), he would be worse off under nonexclusivity. This does
not imply that the information conveyed by the rating is degraded because of another
signal that the rater cannot conceal. As is clear from Figure 5, variance could be even
lower if the nonexclusive signal did not exist and we were considering the confidential
rating for the case of one signal only (dashed line). For nearly all discount rates,
the presence of nonexclusive information depresses the rater’s willingness to disclose
information regarding her unshared signal—free information and the information
conveyed by the rating are then strategic substitutes.52

5.3 Multiple Actions

Ratings are often criticized for biasing, rather than bolstering, incentives. When
the worker engages in multiple tasks, a poorly designed system might distract attention
from those actions that boost output and toward those that boost ratings.

Such moral hazard takes many forms. Report cards in sectors such as health care
and education are widely criticized for encouraging providers to “game” the system,
leading doctors to inefficient selection behavior and teachers to concentrate their
effort on developing those skills measured by standardized tests.53 In credit rating,

52This is consistent with a large empirical literature in finance showing that (i) ratings do not
summarize all the information that is publicly available and that (ii) the value-added of these ratings
decreases in the quality of information otherwise available.

53See Porter (2015) for a variety of other examples.
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both shirking and risk-shifting by the issuer are costly moral hazard activities that
rating systems might encourage (see Langohr and Langohr (2009), Ch. 3).

Our model can accommodate such concerns. We illustrate how in the context of
confidential exclusive ratings. We allow for multiple signals, as the main issue is to
understand which signals the rating should stress, given the multiplicity of tasks.

Suppose that the worker simultaneously engages in L tasks A`, with a total cost
of effort that is additively separable across these tasks, given by

∑L
`=1 c(A`).

54 For
concreteness, assume that c(A`) = cA2

` , c > 0, although the method applies more
generally. Signals are given by, for all k = 1, . . . , K,

dSk,t = (
∑

`αk,`A`,t + βkθt) dt+ σk dZk,t,

with
∑

` α1,` 6= 0. The rater’s goal is to maximize output X = S1, as before. A linear
rating is characterized by the filter applied to each of the K signals.

First, we show how our results extend to this environment with the correct change
of variables. Define a fictitious model with one-dimensional effort A, cost c(A) = cA2,

and signals S̃k such that, for all k = 1, . . . , K,

dS̃k,t = (αkAt + βkθt) dt+ σk dZk,t,

where

αk :=

∑
`α1,`αk,`∑
`α1,`

.

Proposition 5.5 The linear filter of the optimal rating is the same in both the
original model and the fictitious model.

The optimal filters {uk}k for the fictitious model are given by Theorem 5.1. Hence,
using Proposition 5.5, effort in the original model is given by, for ` = 1, . . . , L,

c′(A`) =
Cov[Yt, θt]

Var[Yt]

∫ ∞
0

e−rt

(∑
k

αk,`uk,t

)
dt.

Second, we illustrate why the optimal rating need not discourage effort in unpro-
ductive tasks. To make the point most starkly, let us assume that output is only a
function of effort A1; however, the second signal S2 reflects both effort A2 and the
worker’s ability; namely,

dXt = A1,t dt+ σ1 dZ1,t, and dS2,t = (A2,t + θt) dt+ σ2 dZ2,t.

54For a discussion of the restriction implied by separability, see Holmstrom and Milgrom (1991).
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Absent any rating, if either only the first signal or both signals are observed, the
unique equilibrium involves A1 = 0. This is because action A1 does not affect learning
about ability. For this effort to be positive, it must matter for his reputation and,
thus, for the rating. However, since a higher rating only increases the perceived
ability if it increases with high values of the second signal, the rating cannot prevent
unproductive effort along the second dimension. Indeed, the optimal filters are

u1(t) =

√
r

σ1
e−rt, and u2(t) =

e−κt

σ2
2

.

The signal that is irrelevant for learning is not discarded. Rather, it is exclusively
assigned to the incentive term; conversely, the signal that matters for learning matters
only for the learning term. This leads to positive effort on both dimensions, namely,

c′(A1) =
κ− 1

4
√
rσ1

, c′(A2) =
κ− 1

2(r + κ)σ2
2

.

Unproductive effort is the price to pay for productive effort. The point that this
example makes is that, whenever productive effort increases with reputation, other
tasks become indirectly useful, to the extent that they invigorate career concerns. If
the unproductive task is a better channel to manipulate perceived ability than the
productive task, the rating should account for both, without disclosing the breakdown.
Allowing workers to play World of Warcraft might encourage them to work harder.55

6 Concluding Comments

Our stylized model lays bare why one should not expect ratings to be Markovian
and why, for instance, the same performance can have an impact on the rating that
is either positive or negative according to its vintage. Richer versions might deliver
more nuanced rating systems but will not overturn these insights.

However, it is desirable to extend the analysis. First, in terms of technology, we
assume that effort and ability are substitutes. While this follows Holmström (1999)
and most of the literature on career concerns, it is limiting, as Dewatripont, Jewitt,
and Tirole (1999) make clear (see also Rodina (2017)). Building on Cisternas (2017b),
for instance, one might hope to relax this assumption. Given risk neutrality, effort is
a yardstick for efficiency. Allowing for CARA preferences would be useful to evaluate
the welfare implications of the ratings informativeness. It should be straightforward

55See Brown and Thomas (2008) on the benefits of online gaming for organizations.
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to extend our analysis to the case of a multidimensional type. This might shed
light on the well-documented halo effect in performance evaluation, whereby positive
ratings in some dimension impact ratings along other dimensions.

Second, in terms of market structure, we assume a competitive market without
commitment and a single worker. When the firm that designs the rating system is
the same that pays the worker, one might wish to align its ability to commit along
these two dimensions. Harris and Holmstrom (1982) offer an obvious framework.
Relative performance evaluation requires introducing more agents but is also a natural
extension, given the prevalence of the practice in performance appraisal.
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Jeulin, T., and M. Yor (1979): “Inégalités de Hardy, semimartingales, et faux-amis,”
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A The Model: Complements

This appendix adds some missing formal details. We directly provide these details in the context
of the multisignal version studied in Section 5, which includes the single-signal version of Section 3
as a special case.

The formal treatment must address two subtleties.
First, stationarity requires an appropriate specification of the initial sigma-algebra R0, in a

way that “replicates an infinite past.” To do so, in the stationary case, we introduce two-sided
processes. A two-sided process is defined on the entire real line, as opposed to the nonnegative
real line. In particular, we call two-sided standard Brownian motion any process Z(= {Zt}t∈R)
such that both {Zt}t≥0 and {Z−t}t≥0 are independent standard Brownian motions, and we define
two-sided outputs and signals based on these two-sided Brownian motions.
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Specifically, for all t ∈ R, we define

θt = e−tθ̄ +

∫ t

0

e−(t−s)γ dZ0,s, (30)

where θ̄ ∼ N (0, γ2/2), and Z0 is a two-sided standard BM. Similarly, let X = S1 and, given the
two-sided standard BM Zk, let Sk be the two-sided process defined by (see ft.21),

Sk,t = βk

∫ t

0

θs ds+ σkZk,t. (31)

We let {Rt}t∈R be the natural augmented filtration generated by {Sk}k over the entire real line,
which induces the filtration R on the nonnegative real line. Thus, in the stationary case, R0 includes
nontrivial information about θ, equivalent to what the rater would have learned after observing the
output and other signals generated by the worker for an infinite amount of time.

In contrast, in the nonstationary case, θ and Sk are regular (one-sided) processes, defined as
(30) and (31) for t ≥ 0 only, and R is simply the filtration generated by the output and other signals
starting from t = 0. In particular, R0 does not include any information about θ.

In both cases, we denote by P 0 the associated probability measure over the worker’s ability,
output and signal processes. Note that the worker’s effort does not appear in (31). The probability
measure P 0 gives the law of motion assuming zero effort from the worker. The signal processes
are defined independently from the worker’s effort. Instead of defining the signals themselves, the
worker’s effort defines the law of motion of the signals.

This brings us to the second subtlety, standard in continuous-time principal-agent models. To
avoid circularity problems where actions depend on the process that they define, (11) and (26) are
to be interpreted in the weak formulation of stochastic differential equations (SDE), where Z is a
BM (independent standard Brownian motion) that generally depends on A. Here, signal processes
are fixed once and for all ex ante. They are defined for a reference effort level, zero effort, as in
(31). The worker’s actions do not define the signal process itself. Instead, they define the law of

the process: given A ∈ A, define ZAk by ZAk,t = Zk,t − αk

σ2
k

∫ t
0
As ds. By the Girsanov Theorem, there

exists a probability measure PA such that the joint law of (θ, ZA1 , . . . , Z
A
K) under PA is the same as

the joint law of (θ, Z1, . . . , ZK) under P 0. Given A ∈ A, the signal Sk satisfies

dSk,t = (αkAt + βkθt) dt+ σk dZAk,t,

with ZAk,t a BM under PA. These are the signals that the rater observes.

Finally, when we write
∫
s≤t f(s) ds for some function f , we adopt the following convention: in

the nonstationary setting,
∫
s≤t f(s) ds =

∫ t
0
f(s) ds, while in the stationary setting,

∫
s≤t f(s) ds =∫ t

−∞ f(s) ds. The same convention holds for stochastic integrals.

B Formal Statements: Complements

In this appendix, we provide formal statements for claims that are either missing or informally
stated in the main body. We divide them by section. However, whenever useful, we state them
in the most general version that is used in the paper (e.g., with multiple signals, as in Section 5).
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Unless mentioned otherwise, the stationary setting is assumed.
Recall that, in the most general form of the model, the rater supplies arbitrary information

to the market, and so defines the information structure of the market, which is a collection of
sigma-algebras {Mt}t≥0, where Mt is the market’s information at time t. Information may be
confidential or public as in Section 5.1, and it may be exclusive or nonexclusive as in Section 5.2.
The very definition of each of these cases may constrain the information structure of the market. In
the baseline case, in which the rater provides confidential and exclusive information, there is no
particular constraint on {Mt}t≥0. When the rater provides public information, previous information
disclosed by the rater is available to the market. Hence, the information structure of the market
is constrained to be a filtration: for every s ≤ t, Ms ⊆ Mt. Finally, when the rater provides
nonexclusive information with public signals S1, . . . , SK0 , the market information is constrained to
include the information conveyed by the public signals: σ({Sk,s : s ≤ t, k ≤ K0}) ⊆ Mt, for all t.
This defines public and nonexclusive information structures.

From Section 3, we know that equilibrium behavior is determined by the market’s belief about
the worker’s ability (µt)t, which the market computes based on its information (Mt)t. As explained,
one need not specify the complete information structure—the market belief itself suffices.

For each information structure corresponding to the four cases (confidential/public, exclu-
sive/nonexclusive), we consider the equivalent environment in which the rater provides a single
scalar rating which is linear or affine in the market belief. Ratings are public when they are equal to
the market belief derived from a public information structure, or a nonconstant affine transformation
thereof. Ratings are nonexclusive when they are the market belief derived from a nonexclusive
information structure, or a nonconstant affine transformation thereof. Naturally, ratings that are
public and/or nonexclusive must satisfy some conditions that ratings under the baseline, confidential
exclusive information, need not satisfy. In our statements below, we describe the conditions required
for a rating to be a market belief with or without public/nonexclusive constraints.

To clarify when ratings are public and when they are not, we occasionally qualify ratings as
confidential (as opposed to public), for added emphasis. Unless mentioned otherwise, it is assumed
that the rater provides exclusive information.

B.1 Statements of Section 3

We start with the informal claim made in (13) and (14) regarding whether a linear rating is
equal to the induced market belief.

Proposition B.1 (Confidential Belief) A stationary linear rating Y is a belief for a confidential
information structure if, and only if, for all t,

E∗[Yt] = 0 and Cov[Yt, θt] = Var[Yt].

Equivalently, Y is a belief for a confidential information structure if, and only if, for all t,

E∗[θt | Yt] = Yt.

Hence, the proposition implies that any rating with mean zero is proportional to the mean belief
that it induces.

In ft.19, we mentioned that the exact information that the worker receives is irrelevant. The
next lemma makes this precise. The lemma applies to both stationary and nonstationary settings.
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Lemma B.2 Fix an arbitrary filtration H. If instead the worker observes information captured by
H (as opposed to R) there continues to exist a unique equilibrium, and the equilibrium effort level
does not depend on the chosen filtration H.

In Section 4.1, the formula for the optimal effort given a linear rating is used in Equation 23.
This follows from the next, more general lemma.

Lemma B.3 Let Y be a linear stationary rating with normalized variance, Var[Yt] = 1.56 The
unique equilibrium effort level A is constant and determined by

c′(A) =
γ2

2

[
K∑
k=1

αk

∫ ∞
0

uk(t)e−rt dt

][
K∑
k=1

βk

∫ ∞
0

uk(t)e−t dt

]
. (32)

Hence, effort is proportional to the product of two covariances. The first pertains to the worker:
the impact of effort and his discount rate. The other pertains to the type: the impact of ability
and the mean-reversion rate. This formula assumes a normalized variance. Alternatively, without
normalization, we may write (32) in a compact way as

c′(A∗) =

[
K∑
k=1

αk

∫ ∞
0

uk(t)e−rt dt

]
Cov[Yt, θt]

Var[Yt]
. (33)

Finally, we state below the general version of the Representation Theorem 3.6 for the multisignal
framework of Section 5.57

Theorem B.4 (Representation) Let Y be a two-sided process such that Yt is measurable with
respect to Rt. Suppose that, when the worker exerts constant effort over time, the following conditions
are satisfied:

1. for every s > 0, (Yt,St − St−s)−E[(Yt,St − St−s)] is jointly stationary and Gaussian ;

2. for all k, s 7→ Cov[Yt, Sk,t−s] is absolutely continuous, with integrable and square-integrable
generalized derivative.

Then, there exist unique (up to measure zero sets) integrable and square-integrable functions uk,
k = 1, . . . ,K, such that, up to an additive constant,

Yt =

K∑
k=1

∫
s≤t

uk(t− s) dSk,s. (34)

There is an explicit formula for uk in terms of the covariance of the rating, which shows how uk
captures not only the covariance between the rating and a weighted average of the signals of a given
vintage, but also how this covariance decays over time for signal k. For all t ≥ 0,

uk(t) =
βkγ

2

σ2
kκ

(
sinhκt+ κ coshκt

1 + κ

∫ ∞
0

e−κs df̄(s)−
∫ t

0

sinhκ(t− s) df̄(s)

)
− f ′k(t)

σ2
k

,

56The somewhat unwieldy statement of this constraint in terms of {uk}k is given in (40) below.
57The restriction to stationary processes is key to obtaining a linear representation, given the

continuum of equations that calls for stronger assumptions. See Jeulin and Yor (1979) for a
counterexample otherwise.
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with κ :=
√

1 + γ2
∑
k β

2
k/σ

2
k (> 1), and

fk(s) := Cov[Yt, Sk,t−s], and f̄(s) :=

K∑
k=1

βk
σ2
k

fk(s).

This final proposition states that the belief has deterministic (co)variances if, and only if, it
is normally distributed. For simplicity, we state the result for the case of output as only signal.
Stationary is not required, and so to simplify, the proposition assumes the nonstationary setting.

Proposition B.5 Let Y be a (one-sided) rating process progressively measurable w.r.t. R. Suppose
that the worker employs a deterministic effort strategy, and that under such effort, (Yt, Xt−Xt−s)−
E[(Yt, Xt −Xt−s)] is jointly Gaussian in t for t ≥ s, and Y is such that the following conditions are
satisfied:

1. Cov [Yt, Xτ | Rs] is differentiable in τ with a derivative that is uniformly Lipschitz continuous
in s;

2. Cov [Yt, Xτ | Rs] and Cov [Yt, θs | Ms] are deterministic, for all t > τ > s;58

3. E[Y 2
t ] <∞ and E[|Yt|] <∞.

Then, there exists a function us,t, s ≤ t, with s 7→ us,t integrable and square integrable, such that,
for all t,

Yt =

∫ t

0

us,t dXs, (up to an additive constant function of time).

B.2 Statements of Section 4

In the text and ft.32, we claim that exponential smoothing improves on a moving window, even
when the rater has access to an extraneous signal and combines it linearly with the information
from output. Formally, in the case of exponential smoothing, the rater releases signal

Yt =

∫
s≤t

e−δ(t−s) [cdXs + (1− c) dSs] ,

with δ > 0, c ∈ R. With a moving window, the rater releases a signal

Yt =

∫ t

t−T
[cdXs + (1− c) dSs] ,

with δ > 0, c ∈ R. The optimal exponential smoothing (resp., moving window) rating is defined by
the choice of (c, δ) (resp., (c, T )) such that (stationary) equilibrium effort is maximized. It holds
that:

Proposition B.6 The optimal confidential exponential smoothing rating yields higher stationary
equilibrium effort than any moving window rating.

58That is, nonrandom functions of (s, t, τ) (resp., (s, t)).
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As mentioned in ft.30, the precision conveyed by a rating, and its stability over time are perfect
substitutes. Formally:

Lemma B.7 Fix a rating Y . It holds that

Var[θt | µt] + Var[µt] =
γ2

2
(= Var[θt]).

B.3 Statements of Section 5

B.3.1 More Signals

Here, we give the explicit functional form of the optimal rating with multiple signals. Define

mα =

K∑
k=1

α2
k

σ2
k

, mαβ =

K∑
k=1

αkβk
σ2
k

, mβ =

K∑
k=1

β2
k

σ2
k

. (35)

We recall that κ :=
√

1 + γ2
∑
k β

2
k/σ

2
k. Also, define

λ = (κ− 1)
√
r(1 + r)mαβ + (κ− r)

√
∆, ∆ = (r + κ)2(mαmβ −m2

αβ) + (1 + r)2m2
αβ .

Theorem B.8 The optimal confidential rating is unique and given by

uck(t) =
βk
σ2
k

(
dck

√
r

λ
e−rt + e−κt

)
, (36)

with coefficients

dck := (κ2 − r2)mβ
αk
βk
− (κ2 − 1)mαβ .

Recall that we take ratings as proportional to the market mean belief. For convenience, the
formula in (36) implicitly assumes that λ 6= 0. The proof gives the general formula.

B.3.2 Public Ratings

We start with the counterpart of Proposition B.1 for public beliefs.

Proposition B.9 (Public Belief) A stationary linear rating Y is a belief for a public information
structure if, and only if, it is a belief for a confidential confidential information structure and in
addition, for all t and all τ ≥ 0,

Corr[Yt, Yt+τ ] = Corr[θt, θt+τ ] (= e−τ ). (37)

Equivalently, Y is a belief for a public information structure if, and only if, for all t,

E∗[θt | {Ys}s≤t] = Yt.
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Equation (37) captures the constraint that the (belief) rating at any time must convey all relevant
information on the worker’s ability that is included in the rating disclosed at previous times.

Here, we give the explicit functional form of the optimal rating with multiple signals.

Theorem B.10 The optimal public rating is unique and given by

upk(t) =
βk
σ2
k

(
dpk

√
r

λ
e−
√
rt + e−κt

)
,

with coefficients

dpk :=
κ−√r
κ− r dck + λ

√
r − 1

κ− r .

Recall that λ and dck were introduced and defined in Section B.3.1.

B.3.3 NonExclusive Ratings

The following proposition generalizes Propositions B.1 and B.9.

Proposition B.11 (NonExclusive Belief) Let Y be a stationary linear rating. Then, Y is:
1. A belief for a confidential information structure with nonexclusive signals S1, . . . , SK0

if, and
only if, for all t,

E∗[θt | {Sk,s}s≤t,k=1,...,K0 , Yt] = Yt.

2. A belief for a public information structure with nonexclusive signals S1, . . . , SK0
if, and only

if, for all t,
E∗[θt | {Sk,s}s≤t,k=1,...,K0 , {Ys}s≤t] = Yt.

Equivalently, a rating Y is a belief for a confidential/public information structure with nonexclusive
signals S1, . . . , SK0 if, and only if, it is a belief for a confidential/public information structure and,
for all k = 1, . . . ,K0, all t, and all τ ≥ 0,

Cov[Sk,t, Yt+τ ] = Cov[Sk,t, θt+τ ]. (38)

Equation (38) captures the constraint that the (belief) rating at any time must convey all relevant
information on the worker’s ability that is included in the signals S1, . . . , SK0

up to that time.
Giving the explicit solution for the optimal rating under nonexclusivity requires additional

notation. First, we introduce the rate at which a belief based solely on public signals decays, namely,

κ̂ :=

√√√√1 + γ2
K0∑
k=1

β2
k

σ2
k

.

Second, we define

mn
α :=

K0∑
k=1

α2
k

σ2
k

, mn
αβ :=

K0∑
k=1

αkβk
σ2
k

, mn
β :=

K0∑
k=1

β2
k

σ2
k

,

and

me
α :=

K∑
k=K0+1

α2
k

σ2
k

, me
αβ :=

K∑
k=K0+1

αkβk
σ2
k

me
β :=

K∑
k=K0+1

β2
k

σ2
k

.
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More generally, we add superscripts n, e (for nonexclusive and exclusive) whenever convenient, with
the meaning being clear from the context. We find that Theorem B.8 holds verbatim, provided we
redefine ∆. Let

λ = (κ− 1)
(√

r(1 + r)mαβ + (κ2 − r2)
√

∆
)
,

where

∆ :=
(κ+ 1)(κ̂+ 1)

2(κ− κ̂)

[
me
αm

e
β

κ2 − κ̂2 +
(1 + 2r + κ̂)(mn

αβ)2

(r + κ̂)2(κ̂+ 1)
−

(1 + 2r + κ)m2
αβ

(r + κ)2(κ+ 1)

]
.

With these slightly generalized formulas, we restate Theorem B.8.

Theorem B.12 The optimal confidential rating is unique and given by, for k ≤ K0, uk = 0, and
for signals k > K0,

uk(t) =
βk
σ2
k

(
dk

√
r

λ
e−rt + e−κt

)
,

with coefficients

dk := (κ2 − r2)mβ
αk
βk
− (κ2 − 1)mαβ .

The next theorem gives the optimal rating under public, nonexclusive information.

Theorem B.13 The optimal nonexclusive public rating is unique and given by, for signals k ≤ K0,

unk (t) =
βk
σ2
k

(
dne−δt + e−κt

)
,

and for signals k > K0,

uek(t) =
βk
σ2
k

((
ce
βk
σ2
k

+ de
αk
βk

)
e−δt + e−κt

)
,

for some constants dn, ce, de and δ > 0 given in Section OA.10 of the Online Appendix.

C Overview of the Proofs of Optimal Ratings

This section gives an overview of the proofs that yield the optimal ratings in the four different
settings, which correspond to Theorems 4.1 and 5.1 for the baseline case of confidential, exclusive
ratings, and to Theorems 5.2, 5.3, and 5.4 for their extensions to the public and/or nonexclusive
domains.

Our problem has some unconventional features, so that applying dynamic programming or
Pontryagin’s maximum principle directly (as is usually done in principal-agent models) is difficult.
Hence, our method of proof is somewhat nonstandard. Hopefully, it may be useful in related
contexts.

The proof of each of the four cases considered (confidential/public and exclusive/nonexclusive)
consists of two parts. In the first part, we derive necessary conditions using calculus of variations.
These conditions determine a unique candidate for the optimal rating (up to a factor and an additive
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constant), if it exists and is sufficiently regular. In the second part, we verify that the guess from
the first part is optimal. This step introduces a parameterized family of auxiliary principal-agent
models and takes limits in a certain way.

Part I: Necessary Conditions

Recall that the ratings communicated to the market may be confidential or public, and the
information generated by the signals exclusive or nonexclusive. Thus, there are four settings of
interest. In all settings, we normalize the mean rating to zero, and the variance to one.

The Representation Theorem (Theorem 3.6, which we prove and establish for the case of multiple
signals in Theorem B.4) characterizes all rating in terms of a linear filter {uk}k, which we use as
a control variable. Let Y be a rating with normalized variance, Var[Yt] = 1 (a constraint that
can be expressed in terms of u := {uk}k, see (40) below). The important first step is to determine
equilibrium effort, given a filter. As Lemma B.3 establishes, the unique equilibrium effort level A is
constant and determined by

c′(A) =
γ2

2

[
K∑
k=1

αk

∫ ∞
0

uk(t)e−rt dt

][
K∑
k=1

βk

∫ ∞
0

uk(t)e−t dt

]
,

where uk is defined by Theorem 3.6, given Y . This expresses the equilibrium marginal cost of the
worker as a function of the filter. Maximizing the equilibrium action is equivalent to maximizing the
marginal cost. Thus, we seek to identify a control u that maximizes a product of two integrals over
u:

γ2

2

[
K∑
k=1

αk

∫ ∞
0

uk(t)e−rt dt

][
K∑
k=1

βk

∫ ∞
0

uk(t)e−t dt

]
. (39)

In this first part of the proof, we focus on controls that exhibit a sufficient degree of regularity, and
we assume that a solution exists within that family.

The maximization is subject to the constraints that the rating must satisfy. In the simplest case
of confidential exclusive ratings, the only constraint is the variance normalization, which is written
as follows:

K∑
k=1

σ2
k

∫ ∞
0

uk(s)2 ds+
γ2

2

∫ ∞
0

∫ ∞
0

U(s)U(t)e−|s−t| dsdt = 1, (40)

where U :=
∑
k βkuk. The higher dimensionality of the problem is plain in (40). Maximizing (39)

subject to (40) is a variational problem with an isoperimetric constraint. We form the Lagrangian
and consider a relaxed, unconstrained problem that “internalizes” the variance normalization as
part of the objective function. However, the problem is not standard: both objective (39) and
constraint (40) include multiple integrals, yet the control has a one-dimensional input. Adapting
standard arguments, we prove a version of the Euler-Lagrange necessary condition that covers
our class of programs (see Part VI of the Online Appendix). This condition takes the form of an
integral equation in u, which can be solved in closed form via successive differentiation and algebraic
manipulation. The solution of the relaxed problem can be shown to be a solution of the original
problem, which yields a candidate for the optimal rating (unique subject to regularity conditions).

In the more general public and/or nonexclusive settings (see Section 5.2), the objective (39)
remains the same, but there are additional constraints on the rating. These capture the restriction
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that market beliefs are linked to public or nonexclusive ratings. Propositions B.1 and B.9 state
these constraints in the exclusive case, and Proposition B.11 does so for the nonexclusive cases.
Then, we can apply the Representation Theorem for the case of multiple signals (Theorem B.4) to
express these constraints in terms of the filter u directly.

There are two additional difficulties in these settings. First, there is no longer a finite number of
constraints, but a continuum of them. Second, these constraints involve further integral equations
with delay.59 For example, in the public exclusive setting, the constraint (40) is replaced by

K∑
k=1

σ2
k

∫ ∞
0

uk(t)uk(t+ τ) dt+
γ2

2

∫ ∞
0

∫ ∞
0

U(s)U(t)e−|s+τ−t| dsdt = 1, ∀τ ≥ 0. (41)

To address this, we reduce the continuum of constraints to a finite set of constraints, applying
“educated” linear combinations. We solve the relaxed optimization problem with a finite number of
constraints in a manner similar to that for the simplest setting just described. For instance, in the
public exclusive setting, we replace (41) by

1 =

K∑
k=1

σ2
k

∫ ∞
0

uk(t)uk(t) dt+
γ2

2

∫ ∞
0

∫ ∞
0

U(s)U(t)e−|s−t| dsdt,

∫ ∞
0

h(τ) dτ =

K∑
k=1

σ2
k

∫ ∞
0

∫ ∞
0

h(τ)uk(t)uk(t+ τ) dtdτ

+
γ2

2

∫ ∞
0

∫ ∞
0

∫ ∞
0

h(τ)U(s)U(t)e−|s+τ−t| dsdtdτ,

where h(τ) := e−rτ . Naturally, h can be interpreted as a continuum of Lagrange multipliers, but as
opposed to the discrete Lagrange multipliers, deriving h via the Euler-Lagrange equations is not
feasible. Instead, inspired by numerical simulations, we guess the functional form of h. Because
two solutions satisfy the Euler-Lagrange conditions, corresponding to a minimum and maximum
equilibrium action, we must select the maximizer using some form of second-order condition, which
is, loosely, in our setting the analogue of the classical Legendre necessary condition.

Part II: Verification

The calculus of variations determines an essentially unique candidate for the filter u and thus a
unique candidate rating. However, few sufficient conditions are known in the calculus of variations.
Most are based on the Hilbert Invariant Integral. However, in the case of (even one-dimensional)
integral equations with delayed argument, the method does not apply (Sabbagh (1969)).60 Instead,
we interpret the rater’s optimization differently, as a principal-agent model. In this auxiliary model,

59There is a small literature on the calculus of variations with delayed arguments for single
integrals. See Kamenskii (2007) and references therein. There is also a literature on multiple
integrals without delayed arguments; see Morrey (1966) for a classical treatise. In both cases, the
domain of the control is of the same dimension as the domain of integration.

60The Lagrangian can be interpreted as a bilinear quadratic form with a continuum of variables.
Proving that the candidate control u is optimal is then equivalent to proving that the quadratic form
has no saddle point. This involves a diagonalization of the quadratic form in an infinite-dimensional
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the agent/worker produces signals and outputs exactly as in the original model and obtains the same
payoffs. However, there is no longer a market, nor a rater. Instead, the worker receives transfers from
a principal, who observes all outputs and signals, as does the worker. The principal’s information at
time t is thus Rt, as defined in the original model. To simplify the exposition, let us focus on the
confidential exclusive case. There are already two difficulties to overcome here: the action must be
constant (a constraint that is difficult to formalize in the principal-agent context) and the transfer
must be equal to the “market” belief.

The principal chooses a transfer process µ, which is interpreted as the instantaneous payment
flow from the principal to the agent. As in the original model, the worker chooses an action process
A (the agent’s strategy) that maximizes, at all t,

E

[∫
s≥t

e−r(s−t)(µs − c(As)) ds

∣∣∣∣ Rt] . (42)

In the principal-agent formulation, the transfer process µ is not constrained to be a belief nor to
have a Gaussian form.

The principal has a discount rate ρ ∈ (0, r) and seeks to maximize the ex ante payoff

E

[∫ ∞
0

ρe−ρt(c′(At) + φµt(νt − µt)) dt

]
, (43)

where φ is some scalar multiplier and νt = E[θt | Rt], the mean ability of the worker under
transparency. The maximization is performed over all strategies A and transfer processes µ such
that the action A is incentive compatible, i.e., such that it maximizes (42).

To interpret the principal’s objective, it is useful to consider the reward appearing in (43). The
term c′(At) is the worker’s marginal cost, which the rater maximizes in the original model. If the
payoff were reduced to this term, the principal might not choose a transfer µ associated with a
market belief. However, for the principal-agent and the original model to be comparable, µ must
be “close” to a market belief. The second term, φµt(νt − µt), imposes a penalty on the principal to
incite the principal to choose a µ close to a market belief. Indeed, if µt is a market belief, then by
Proposition B.1, Cov[µt, νt] = Var[µt] and E[µt] = 0, which implies E [µt(νt − µt)] = 0: the second
term is equal to zero on average.

If µ is a market belief process associated with a confidential rating, then the principal’s payoff is
equal to

E

[∫ ∞
0

ρe−ρtc′(At)

]
= c′(A),

where c′(A) refers to the stationary marginal cost. Thus, the maximum payoff of the principal is
never less than the marginal cost in the original model for every ρ.

We find that there is no multiplier φ such that the principal maximizes his payoff by choosing
a µ that is exactly a market belief. However, using the calculus of variations from Part I, we can
“guess” a multiplier φ such that the payoff-maximizing µ approaches a market belief as ρ→ 0.

Note that in the original model, the rater must induce a constant equilibrium effort by the
worker. In the principal-agent formulation, instead, the principal maximizes over all equilibrium
action processes. Perhaps surprisingly, it is easier to solve this “fully dynamic” problem. Indeed, we

space, which in our case is not tractable.
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are able to solve the principal-agent problem in closed form for every ρ ∈ (0, r). Then, sending the
principal’s discount rate to zero leads to a solution such that (i) effort constant in the limit, (ii)
the optimal transfer tends to a market belief, and (iii) the principal’s payoff becomes equal to the
rater’s objective in the original model (the worker’s marginal cost). Formally, by sending ρ to 0, the
maximum payoff of the principal converges to the conjectured maximum marginal cost from Part I.
Because the principal’s payoff cannot be lower than the rater’s objective, this proves that the rating
obtained in Part I is optimal.

In the public and nonexclusive cases, the methodology is similar, with a payoff specification
that includes penalty terms reflecting the relevant constraints. In those cases, the principal’s payoff
includes additional state variables to induce the principal to choose a transfer µ associated with
public or nonexclusive market beliefs.

Note that, if we were able to properly internalize the constraint that the principal must choose
transfer processes among what would correspond to market beliefs, the principal-agent formulation
could, in principle, be used to obtain the necessary conditions of Part I. The difficulty is precisely
that we cannot internalize these constraints, both with finite and infinite horizons, with a positive
discount rate. This is why we consider a family of principal-agent problems and take limits as ρ→ 0.
The calculus of variations then makes it possible to obtain the candidate optimal rating and the
correct multipliers to be used in the principal-agent formulation.

D Proofs

This section includes the proofs for the other two main results (leaving aside the derivation of
the optimal rating, sketched in Appendix C). These are Theorem 3.5, establishing that linear ratings
cannot be improved upon, as far as deterministic effort is concerned, and Theorem 3.6, showing
that Gaussian ratings and linear ratings are equivalent.

All other proofs (including those for the derivation of optimal ratings, sketched in Appendix C)
are in the Online Appendix.

D.1 Proof of Theorem 3.5

The result applies to the nonstationary setting, in which case we recall that {Rt}t≥0 is simply
the filtration generated by the output process X, which is a (one-sided) process starting at time 0.

The proof comprises two steps. The first step lays down first-order conditions on the worker’s
equilibrium action in terms of a sensitivity parameter associated to the rating. Expressing first-order
conditions via a sensitivity parameter (a Malliavin derivative) has become common in the literature
on dynamic contracting following notably the seminal work of Sannikov (2008). Here, however, we
must also account for the dependence of output on the worker’s ability. The second step uses a
martingale representation of the rating and builds on the first-order condition derived in the first
step to design a linear rating that induces an effort as least as high as under the original rating.

Step 1. Consider an arbitrary deterministic strategy A†, i.e., a strategy that prescribes an action
as a function of time but not as a function of the history of realizations. Let A∗ be the worker’s
(deterministic) strategy conjectured by both the rater and the market, which may differ from A†.
Let P∗ and E∗ be the probability measure (resp., expectation operator) induced by A∗, and let P†
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and E† be the probability measure (resp., expectation operator) induced by A†. Let

ν∗t = E∗[θt | Rt],

B∗t =
1

σ2

∫ t

0

(dXs − (A∗s + ν∗s ) ds) .

Similarly, let

ν†t = E†[θt | Rt],

B†t =
1

σ2

∫ t

0

(
dXs − (A†s + ν†s) ds

)
.

By standard arguments, there exists some (deterministic) function m : R+ → R+, given by the
Riccati equation for linear filters, such that, for all t,

ν∗t =

∫ t

0

e−
∫ t
s
(1+m(s′)) ds′m(s) (dXs −A∗s ds) .

Alternatively, we may also write ν∗t as

ν∗t =

∫ t

0

e−(t−s)m(s) dB∗s .

Let ψt,s = e−(t−s)m(s). An analogous set of equations holds for ν†, with the same function m.
Furthermore, by classical results in linear filtering theory, B∗ is a standard Brownian motion on R
under P∗, and similarly, B† is a standard Brownian motion on R for P†. Finally, note that

Xt = B∗t +

∫ t

0

A∗s ds+

∫ t

0

ν∗s ds = Bt +

∫ t

0

A∗s ds+

∫ t

0

∫ i

0

e−(i−j)m(j) dB∗j di,

and thus B∗ and X generate the same information, captured by R.
Next, we let

V∞ =

∫ ∞
0

e−rt (µt − c(A∗t )) dt,

where µt = E∗[θt | Mt], and
Vt = E∗[V∞ | Rt].

Observe that V is a (bounded) P∗-martingale on R, and since X and B∗ generate the same
information, we can apply the martingale representation theorem. We get that there exists a
square-integrable predictable process ξ on R such that

Vt = V0 +

∫ t

0

σe−rsξs dB∗s , with V0 = −
∫ ∞
0

e−rtc(A∗t ) dt,

where the term σe−rs is a normalization.
We define Wt as the payoff accumulated from time t onwards, assuming the worker follows
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strategy A∗:

Wt = E∗
[∫ ∞

t

e−r(s−t) (µs − c(A∗s)) ds

∣∣∣∣ Rt] .
It is important to note that this continuation payoff does not depend on the actions taken before
time t.

Suppose A∗ is an equilibrium action strategy, thus an optimal plan of action for the worker. At
time t, the worker’s continuation payoff obtained from A∗ is Wt. If instead the worker deviates from
the optimal action strategy A∗ on the time interval [t, t+ δ], and follows the worker strategy A† on
that interval only, his continuation payoff at time t is

W ′t := E†
[∫ t+δ

t

e−r(s−t)
(
µs − c(A†s)

)
ds

∣∣∣∣∣ Rt
]

+ e−rδE† [Wt+δ | Rt] ,

where the last term owes to the law of iterated expectations together with the observation that
continuation payoffs at a given time are independent of the action path followed before that time.

Note that

e−rδWt+δ = Wt +

∫ t+δ

t

d
(
e−r(s−t)Ws

)
,

and, since

Vt =

∫ t

0

e−rs (µs − c(A∗s)) ds+ e−rtWt,

we have

d
(
e−r(s−t)Ws

)
= ert

(
dVs − e−rsµs ds+ e−rsc(A∗s) ds

)
= e−r(s−t) (σξs dB∗s − µs ds+ c(A∗s) ds) .

Thus,

e−rδE† [Wt+δ | Rt] = Wt + E†
[∫ t+δ

t

e−r(s−t) (σξs dB∗s − µs ds+ c(A∗s) ds)

∣∣∣∣∣ Rt
]
.

We also have the equality

dXs = σ dB∗s + (A∗s + ν∗s ) ds = σ dB†s + (A†s + ν†s) ds,

and hence,
σξs dB∗s = σξs dB†s + ξs(A

†
s −A∗s) ds+ ξs(ν

†
s − ν∗s ) ds.

As B†t is a standard Brownian motion on R under P†,

e−rδE† [Wt+δ | Rt]

= Wt + E†
[∫ t+δ

t

e−r(s−t)
(
ξs(A

†
s −A∗s) + ξs(ν

†
s − ν∗s )− µs ds+ c(A∗s)

)
ds

∣∣∣∣∣ Rt
]
.
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Altogether,

W ′t = Wt + E†
[∫ t+δ

t

e−r(s−t)
(
c(A∗s)− c(A†s) + ξs(A

†
s −A∗s) + ξs(ν

†
s − ν∗s )

)
ds

∣∣∣∣∣ Rt
]
.

Since A∗ is optimal, we must have W ′t ≤Wt, and thus

E†
[∫ t+δ

t

e−r(s−t)
(
c(A∗s)− c(A†s) + ξs(A

†
s −A∗s) + ξs(ν

†
s − ν∗s )

)
ds

∣∣∣∣∣ Rt
]
≤ 0,

for every A†, with an equality if A† = A∗.
We have:

ν†s − ν∗s =

∫ s

t

e−
∫ s
j
(1+m(s′)) ds′m(j)

(
A†j −A∗j

)
dj.

Sending δ to 0, it holds that, for almost every t,

c(A∗t )− ξt(1 +m(t))A∗t = sup
a
c(a)− ξt(1 +m(t))a,

and hence, c′(A∗t ) = ξt(1 +m(t)), for almost all t. In particular, ξt is deterministic, for almost all t.

Step 2. By the martingale representation theorem, for every t, there exists a predictable process
φt, adapted to R, such that

µt =

∫ t

0

φt,s dB∗s .

Let φt,s = E∗[φt,s]. Consider the confidential linear rating given by

Y ?t =

∫ t

0

|φt,s|dB∗s .

Let A? be a deterministic equilibrium action strategy associated with confidential rating Y ?.
Let P? and E? be the induced probability measure and expectation operator, respectively.

The belief process induced by the confidential rating Y ? is

µ?t = E? [θt | Y ?t ] = E? [θt] +
Cov[θt, Y

?
t ]

Var[Y ?t ]
(Y ?t −E? [Y ?t ])

= Kt +
Cov[θt, Y

?
t ]

Var[Y ?t ]
Y ?t ,

for some constant Kt. Note that, as in the main text, we do not specify with respect to which
probability law the variance and covariance are to be taken, since, as opposed to expectations,
these operators yield the same value no matter the probability law (as long as it is induced by a
deterministic action process). Also note that Kt does not matter for the worker’s incentives. Hence,
it is irrelevant in the sequel.
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We have

Cov[Y ?t , θt] = E∗[Y ?t θt] = E∗[Y ?t ν
∗
t ] = E∗

[∫ t

0

|φt,s|ψt,s ds

]
≥ E∗

[∫ t

0

φt,sψt,s ds

]
= E∗[µtν

∗
t ],

because ψt,s = e−(t−s)m(s) ≥ 0. We also have

Var[Y ?t ] = E∗[(Y ?t )2] =

∫ t

0

|φt,s|2ds =

∫ t

0

E∗[φt,s]
2 ds ≤

∫ t

0

E∗[φ2t,s] ds = E∗[µ2
t ]. (44)

As µ is a belief process and A∗ is the associated equilibrium action process, µt = E∗[θt | µt], and
thus:

E∗[µt(µt − θt)] = E∗[E∗[µt(µt − θt) | µt]] = E∗[µtE[µt − θt | µt]] = 0.

Hence,
E∗[µt(µt − ν∗t )] = E∗[E∗[µt(µt − ν∗t ) | Rt]] = E∗[µt(µt − θt)] = 0,

and E∗[µtν∗t ] = E∗[µ2
t ]. Combining these observations,

Cov[Y ?t , θt]

Var[Y ?t ]
≥ E∗[µtν∗t ]

E∗[µ2
t ]

= 1.

Let ξ? be the analogue, for belief µ?, of ξ as defined in Step 1 for belief µ. Recall that, for almost
all t, c′(A∗t ) = ξt(1 +m(t)), and similarly, c′(A?t ) = ξ?t (1 +m(t)), so c′(A?t )/c

′(A∗t ) = ξ?t /ξt.
The process ξ can be written explicitly as,

ξt =
1

σ

∫ ∞
t

e−r(s−t)φs,t ds

and similarly

ξ?t =
1

σ

∫ ∞
t

e−r(s−t)
Cov[θt, Y

?
t ]

Var[Y ?t ]
|φs,t|ds.

For almost every t, ξt must be deterministic, so

1

σ

∫ ∞
t

e−r(s−t)φs,t ds =
1

σ

∫ ∞
t

e−r(s−t)φs,t ds,

and as |φs,t|≥ max{0, φs,t} and Cov[θt, Y
?
t ]/Var[Y ?t ] ≥ 1, we get ξ?t ≥ ξt implying A?t ≥ A∗t , for

almost all t.
This proof has two implications. First, to reach the maximum possible effort almost everywhere,

a linear rating (such as the market belief of any rating, by its martingale representation) must have
nonrandom weights almost everywhere. If the weights of a rating are random, then the inequality
in Equation (44) becomes strict, and using the transformed rating Y ? yields strictly high effort
levels for some positive measure of times. Second, adding external noise to any rating always has
the effect of depressing the worker’s equilibrium effort. Although such a rating is outside of the
model assumed in this proof, it is straightforward to carry the above computations when using
rating Y ? = µt + B̃t instead, where B̃ is an independent Brownian motion. The effort that result is
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depressed because the noisy rating has an increased variance while the covariance of the rating with
the worker’s ability remains the same.

D.2 Proof of Theorem 3.6

The proof proceeds in two parts. We start with a candidate guess for the function u, whose
derivation is explained in Section OA.4 of the Online Appendix, which also includes the proof for the
multisignal version of the theorem (Theorem B.4).61 In the first part, we prove that the candidate
obtained is integrable and square integrable. In the second part, we show that the candidate is
correct. We start with the following definitions: Let

f(s) := Cov[Yt, Xt−s], and f̄(s) :=
1

σ2
f(s).

C∞1 :=
κ2 − 1

2κ

∫ ∞
0

f̄ ′(j)e−κj dj, (45)

and

C∞2 :=
(κ− 1)2

2κ

∫ ∞
0

f̄ ′(j)e−κj dj. (46)

A guess for the candidate u is:

u(τ) := C∞1 eκτ + C∞2 e−κτ − f̄ ′(τ)− κ2 − 1

κ

∫ τ

0

sinh(κ(τ − s))f̄ ′(s) ds, (47)

or equivalently,

u(τ) :=
κ2 − 1

κ

(
sinhκτ + κ coshκτ

1 + κ

∫ ∞
0

e−κs df̄(s)−
∫ τ

0

sinhκ(t− s) df̄(s)

)
− f̄ ′(τ). (48)

Proof of Integrability. We show that every uk defined by Equation (48) is integrable and square
integrable. To do so, we have to show that

(sinhκt+ κ coshκt)

∫ ∞
0

e−κsh(s) ds− (1 + κ)

∫ t

0

sinhκ(t− s)h(s) ds (49)

is integrable and square integrable whenever h and h2 are. We note that (49) is linear in h, so that
it suffices to show that its positive and negative parts are integrable. Hence, without loss, we assume

61Determining the coefficients of such continuous-time regressions is often achieved via a linear
filtering argument. Here, the lack of Markovian structure with the infinite fictitious history, together
with the stationarity condition, makes the problem nontrivial because it prevents the use of the
Kalman-Bucy filter and involves finding a continuum of terms of the form Var[Yt | Rt−s] that solve
a continuum of equations. To obtain the closed-form solution for the coefficients uk, we write the
equations that link f to uk; then, via algebraic manipulation and successive differentiation, we
obtain a differential equation that uk must satisfy, the solution of which is found explicitly.
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that h ≥ 0. After rearranging the terms, (49) is equal to

1

2
(κ+ 1)

(
eκt
∫ ∞
t

e−κsh(s) ds+ e−κt
∫ t

0

eκsh(s) ds

)
+

1

2
(κ− 1)e−κt

∫ ∞
0

e−κsh(s) ds. (50)

Thus, (49) is nonnegative, and showing the integrability of (49) reduces to showing that the integral
of (49) converges on [0,+∞). It is readily verified by differentiation that (49) is the derivative of

coshκt+ κ sinhκt

κ

∫ ∞
0

e−κsh(s) ds− 1 + κ

κ

∫ t

0

coshκ(t− s)h(s) ds+
1 + κ

κ

∫ t

0

h(s) ds.

We must show that this expression converges as t → ∞. Since by assumption, the last term is
convergent, it suffices to show that

(coshκt+ κ sinhκt)

∫ ∞
0

e−κsh(s) ds− (1 + κ)

∫ t

0

coshκ(t− s)h(s) ds

converges. Further, since

coshκt+ κ sinhκt =
κ+ 1

2
eκt − κ− 1

2
e−κt, and coshκ(t− s) =

e−κ(t−s)

2
+
eκ(t−s)

2
,

it suffices to show that

(κ+ 1)eκt
∫ ∞
0

e−κsh(s) ds− (1 + κ)

∫ t

0

eκ(t−s)h(s) ds = (κ+ 1)

∫ ∞
t

e−κ(s−t)h(s) ds

converges, which is immediate from the integrability of h. Thus, (49) is integrable. Next, to show
that (50) is square integrable, we show that

eκt
∫ ∞
t

e−κsh(s) ds (51)

is square integrable. As square-integrable functions are closed under additivity, and h is inte-
grable, (51) is the only term of (50) for which square integrability is nontrivial. By the Cauchy-
Schwarz inequality,(∫ ∞

t

e−κsh(s) ds

)2

≤
(∫ ∞

t

e−κsh2(s) ds

)(∫ ∞
t

e−κs ds

)
= κ−1e−κt

∫ ∞
t

e−κsh2(s) ds.

Thus,∫ τ

0

(
eκt
∫ ∞
t

e−κsh(s) ds

)2

dt ≤ κ−1
∫ τ

0

eκt
∫ ∞
t

e−κsh2(s) dsdt

=
1

κ2

∫ ∞
τ

e−κ(s−τ)h2(s) ds− 1

κ2

∫ ∞
0

e−κsh2(s) ds+
1

κ2

∫ τ

0

h2(t) dt,

where equality follows by integration by parts. Convergence follows from square integrability of h.

60



Proof that the Educated Guess is Correct. Here, we show that the candidate for u defines
valid coefficients for the rating. Let u be defined by (48), or, equivalently, by (47). Let

Ỹt := E∗[Yt] +

∫
s≤t

u(t− s)(dXs −A∗s ds).

If we have Cov[Yt − Ỹt, Xt−τ ] = 0 for all τ , then Yt and Xt−τ are independent for all τ . As Yt − Ỹt
is measurable with respect to the information generated by the outputs Xt−τ , τ ≥ 0, it implies that

Var[Yt − Ỹt] = 0 and thus Yt = Ỹt. In the remainder, we show that Cov[Yt − Ỹt, Xt−τ ] = 0 for all

τ ≥ 0. Let g(τ) = Cov[Ỹt, Xt−τ ]. We have:

g(τ) =

∫ ∞
0

u(s) Cov[dXt−s, Xt−τ ] = σ2

∫ ∞
τ

u(s) ds+
γ2

2

∫ ∞
0

∫ ∞
τ

u(s)e−|s−j| dj ds,

and so

g′(τ) = −σ2u(τ)− γ2

2

∫ ∞
0

u(s)e−|τ−s| ds.

Replacing u by its definition in (47),

g′(τ) = f ′(τ)− C1
γ2

κ2 − 1
eκτ − C2

γ2

κ2 − 1
e−κτ +

γ2

κ

∫ τ

0

sinh(κ(τ − s))f̄ ′(s) ds

− γ2

2

∫ ∞
0

u(s)e−|τ−s| ds.

(52)

From (47), we have

u(τ) = C∞1 eκτ + C∞2 e−κτ − f̄ ′(τ)− κ2 − 1

κ

∫ τ

0

sinh(κ(τ − s))f̄ ′(s) ds.

It holds that ∫ ∞
0

u(s)e−|τ−s| ds = lim
B→∞

∫ B

0

u(s)e−|τ−s| ds.

Thus,∫ B

0

u(s)e−|τ−s| ds = C∞1

∫ B

0

eκse−|τ−s| ds+ C∞2

∫ B

0

e−κse−|τ−s| ds−
∫ B

0

f̄ ′(s)e−|τ−s| ds

− κ2 − 1

κ

∫ B

0

∫ s

0

sinh(κ(s− j))f̄ ′(j)e−|τ−s| dj ds.

61



Then, for any B > τ , we write∫ B

0

∫ s

0

sinh(κ(s− j))f̄ ′(j)e−|τ−s| dj ds = − κ

κ2 − 1

∫ B

0

f̄ ′(j)e−|τ−j| dj

+
e−B+τ

κ2 − 1

∫ B

0

f̄ ′(j) [κ cosh(κ(B − j)) + sinh(κ(B − j))] dj − 2

κ2 − 1

∫ τ

0

sinh(κ(τ − j))f̄ ′(j) dj.

Using the expressions for C∞1 and C∞2 given by (45) and (46), we get that

C∞1

[
eB(κ−1)+τ

κ− 1
− e−τ

κ+ 1

]
+ C∞2

[
−e
−B(κ+1)+τ

κ+ 1
+

e−τ

κ− 1

]
+
κ2 − 1

κ

κ

κ2 − 1

∫ B

0

f̄ ′(j)e−|τ−j| dj

− κ2 − 1

κ

e−B+τ

κ2 − 1

∫ B

0

f̄ ′(j) [κ cosh(κ(B − j)) + sinh(κ(B − j))] dj

converges to 0 as B →∞. Therefore,∫ ∞
0

u(s)e−|τ−s| ds =
2

κ

∫ τ

0

sinh(κ(τ − j))f̄ ′(j) dj

+ C∞1

[
eκτ

κ+ 1
− eκτ

κ− 1

]
+ C∞2

[
e−κτ

κ+ 1
− e−κτ

κ− 1

]
.

(53)

Plugging the expression of (53) in (52) yields

g′(τ) = f ′(τ)− C∞1
γ2

κ2 − 1
eκτ − C∞2

γ2

κ2 − 1
e−κτ +

γ2

κ

∫ τ

0

sinh(κ(τ − s))f̄ ′(s) ds

− γ2

κ

∫ τ

0

sinh(κ(τ − j))f̄ ′(j) dj − γ2

2
C∞1

[
eκτ

κ+ 1
− eκτ

κ− 1

]
− γ2

2
C∞2

[
e−κτ

κ+ 1
− e−κτ

κ− 1

]
= f ′(τ).

So g′ = f ′. As f(0) = g(0) = 0, it follows that f = g. Uniqueness of the coefficients (up to measure
zero sets) is immediate by linearity, as different coefficients on a set of positive measure yield a
different joint distribution over ratings and outputs.
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