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Abstract

This paper considers a class of experimentation games with Lévy bandits encom-
passing those of Bolton and Harris (1999) and Keller, Rady and Cripps (2005).
Its main result is that efficient (perfect Bayesian) equilibria exist whenever play-
ers’ payoffs have a diffusion component. Hence, the trade-offs emphasized in
the literature do not rely on the intrinsic nature of bandit models but on the
commonly adopted solution concept (Markov perfect equilibrium). This is not
an artifact of continuous time: we prove that efficient equilibria arise as limits of
equilibria in the discrete-time game. Furthermore, it suffices to relax the solution
concept to strongly symmetric equilibrium.

Keywords: Two-Armed Bandit, Bayesian Learning, Strategic Experimenta-
tion, Strongly Symmetric Equilibrium.

JEL Classification Numbers: C73, D83.
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1 Introduction

The goal of this paper is to evaluate the role of the Markov assumption in strategic

bandit models. Our main finding is that it is the driving force behind the celebrated

trade-off between the free-riding and encouragement effects (Bolton and Harris, 1999).

More precisely, we show that free-riding does not prevent efficiency from being achiev-

able in equilibrium when learning involves a Brownian component, as in the Bolton-

Harris model. In the pure Poisson case, whether free-riding is mitigated or entirely

eliminated depends on the informativeness of payoff arrivals. ≪ NK

Our framework follows Bolton and Harris (1999), Keller et al. (2005) and Keller

and Rady (2010). Impatient players repeatedly choose between a risky and a safe

arm. They share a common prior about the risky arm, which can be of one of two

types. Learning occurs via the players’ payoffs, which are publicly observable and, in

the case of the risky arm, type-dependent. The payoff process which we assume for

the risky arm is the simplest that encompasses both the Brownian motion in Bolton

and Harris (1999) and the Poisson process in Keller et al. (2005) and Keller and Rady

(2010). Unlike ours, these three papers focus on Markov perfect equilibria of the game

in continuous time.

Understanding the role of the Markov refinement requires discretizing the timeline

of the game because defining standard game-theoretic notions, such as perfect Bayesian

equilibrium, raises conceptual problems in continuous-time games with observable ac-

tions (Simon and Stinchcombe, 1989). We then let the time interval between successive

opportunities to revise actions vanish in order to get a clean characterization and a

meaningful comparison with the literature.

To give some very rough intuition for our results, the best equilibria have a flavor of

“grim trigger.” Efficiency obtains if, and only if, the following holds when the common

belief is right above the candidate threshold: a player that deviates from the risky to

the safe arm would find it best to always use the safe arm thereafter—independent of

the outcome of all other players’ choices at that instant, and assuming that all other

players react to the deviation by using the safe arm exclusively thereafter. Intuitively,

having all other players stop experimenting forever is the worst punishment a defecting

player can face. If deviating to the safe arm leads everyone (including the best-replying

player that deviated) to play the safe arm thereafter, each player’s objective is aligned

with the social planner’s, because his own action will be copied by everyone else; he is ≪ NK

thus in a position to dictate the collective action choice via his own action choice.

A complicating factor, however, is that bandit models are stochastic games: the
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common belief about the risky arm evolves. Will the threat be carried out, in the case

“good news” obtains, as the posterior belief might be so optimistic that all players find

it preferable to adopt the risky arm, even in case of a single deviation? Also, if a player

expects experimentation to stop in the next instant whether or not he deviates to the

safe arm, absent any good news about the risky arm, it had better be that the good

news event be sufficiently likely; otherwise, what good is the threat that other players

stop experimenting?

Hence, the question is whether the threat of the punishment in case of good news is

both credible and the corresponding event sufficiently likely. When there is a diffusion

component, good news is likely (the Brownian path is just as likely to go up as it is to go

down; in contrast, the Poisson component is much less likely to yield good news); and

the threat is credible: the belief does not jump up, but rather ticks up slightly, so that,

within a short time period, it will be almost certain to stay in a tight neighborhood of ≪ NK

the initial belief. As the efficient and single-player thresholds are bounded away from

each other, and, as our proof establishes, the rate of increase of the best equilibrium

payoff, which serves as a reward for not deviating, is large, incentivizing other players

to punish a deviation by switching to the safe arm is possible for short enough time

periods. Our criterion is then satisfied. Indeed, if even while benefitting from the

other players’ experimentation, a player had been on the brink of stopping in the case

of a slight downtick in beliefs, he would stay in stopping territory given that all other

players stopped experimenting forever, even in the face of a slight uptick in beliefs.

The situation is less clear in the pure Poisson case. If good news arrives there,

the belief jumps up and may reach a region in which the deviating player would find

it optimal to use the risky arm—even if all other players reacted to the deviation by

stopping experimenting altogether. This may increase the incentive to deviate and

reduce the other player’s ability to punish. If good news are conclusive, for example,

they lead all players to play risky forever, so there is no scope for any punishment

whatsoever. For inconclusive news, “large” jumps in beliefs allow for some punishment,

but not enough for efficiency. “Small” jumps, however, are compatible with efficiency,

and for the same reason as above: good news generated by other players keeps the

posterior belief in a region where each player finds it optimal to use the safe arm if

everybody else does so.

Irrespective of whether efficiency can be achieved or not, we show that both the

highest and lowest average equilibrium payoff is attainable with strongly symmetric

equilibria (SSEs), that is, equilibria in which all players use the same continuation

strategy for any given history, independent of their identity (e.g., regardless of whether

they had been the sole deviator). Moreover, both the highest and lowest payoff are
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obtained by an alternation between the same two Markov strategies: one that yields the

highest payoff for any belief, and which governs play as long as no player deviates, and

one that yields the lowest payoff, given that play reverts to the other Markov strategy

at some random time. Both these Markov strategies are cutoff strategies that have

all players use the risky arm if and only if the current belief exceeds some threshold.

There is no need to resort to more complicated perfect Bayesian equilibria (PBEs). Of

course, PBE need not involve symmetric payoffs, but we show that in terms of total

payoffs across players, there is no difference between SSE and PBE: the best and worst

total (and so average) equilibrium payoffs coincide.1 We further show that the worst

average equilibrium payoff equals the optimal payoff of a single player experimenting

in isolation.

Two caveats are in order. First, we have pointed out the importance of studying the

discrete-time game to make sense of PBE (as well as to factor out equilibria that are

continuous-time quirks, such as the “infinite-switching equilibria” of Keller et al. (2005),

which have no equivalent in discrete time). However, our results are asymptotic to the

extent that they only hold when the time interval between rounds is small enough.

There is no qualitative difference between an arbitrarily small uptick vs. a discrete

jump when the interval length is bounded away from zero. Our results rely heavily

on what is known about the continuous-time limits, and especially on the analyses

in Bolton and Harris (1999), Keller and Rady (2010), and Cohen and Solan (2013).

To the extent that some of our proofs are involved, it is because they require careful

comparison and convergence arguments. Because we rely on discrete time, we must

settle on a particular discretization. We believe that our choice is natural: players

may revise their action choices at equally spaced time opportunities, while payoffs and

information accrue in continuous time, independent of the duration of the intervals.2

Nonetheless, other discretizations might conceivably yield different predictions.

Second, our results do not cover all bandit games. Indeed, an explicit character-

ization of the single-agent and planner solutions, on which we build, requires some

restrictions on the payoff process. Here, we follow Cohen and Solan (2013) in ruling

out bad-news jumps.3 Moreover, our framework does not subsume the “breakdowns”

model of Keller and Rady (2015).4

1One appealing property of SSEs is that payoffs can be studied via a coupled pair of functional

equations that extends the functional equation characterizing MPE payoffs (see Proposition ??).
2That is, ours is the simplest version of inertia strategies as introduced by Bergin and MacLeod

(1993).
3Unlike Cohen and Solan (2013), we further rule out learning from the size of a lump-sum payoff.

We believe that this restriction is inconsequential; see the concluding comments for further details.
4The technical difficulty there is that the value functions cannot be solved in closed form. They

are defined recursively, with the functional form depending on the number of breakdowns triggering
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Our paper belongs to the growing literature on strategic bandits. We have already

mentioned the standard references in this literature. Studying the undiscounted limit

of the experimentation game, Bolton and Harris (2000) consider the Brownian motion

case, while Keller and Rady (2020) allow for Lévy processes. A number of authors have

extended the exponential bandit framework of Keller et al. (2005). Klein and Rady

(2011) and Das, Klein and Schmid (2020) investigate games in which the quality of the

risky arm is heterogeneous across players. Dong (2018) endows one player with superior

information regarding the state of the world, Marlats and Ménager (2019) examine

strategic monitoring, and Thomas (forthcoming) analyzes congestion on the safe arm.

All these papers work in continuous time and rely on MPE as the solution concept.5

Here, we focus on the canonical bandit game with discounting and homogenous risky

arms, but relax the solution concept by considering a sequence of discrete-time games.6 ≪ NK

We show that the conclusions drawn from strategic-experimentation models may

crucially depend on the equilibrium concept being used. Two papers from the industrial

organization literature that build on Keller et al. (2005) offer perfect case studies for our

results, and show to what extent the robustness (or lack thereof) of MPE-based findings

depend on the fine details of the game. Besanko and Wu (2013) study how learning and

product-market externalities affect incentives to cooperate in R&D. Our results apply

to the case that the overall externality is positive (so there is an incentive to free-ride on

other firms’ R&D efforts); the best SSE then involves experimentation at full intensity

down to the same cutoff as in the symmetric MPE. The comparison between research

competition and research cooperation thus becomes simpler, but the main insights

remain unchanged. In Besanko, Tong and Wu’s (2018) analysis of research subsidies,

our results would again reduce firms’ free-riding (see their footnote 19), and hence

increase the incentives to invest under the different subsidy types that they consider.

If there is no shadow cost of public funds, the funding agency can overcome free-riding

through the design of its subsidy program, so MPE is not restrictive in this case. With

such a shadow cost, by contrast, this is no longer true: even if the agency chooses the

an end to all experimentation. We return to this scenario in the concluding comments.
5To the best of our knowledge, the MPE concept is adopted by all papers in the literature on

strategic bandits unless they consider agency models (the principal having commitment, one solves

for a constrained optimum rather than an equilibrium) or drop the assumption of perfect monitoring

of actions and payoffs. Examples of the latter include Bonatti and Hörner (2011), Heidhues et al.

(2015), and Rosenberg et al. (2007). As there is no common belief that could serve as a state variable,

these authors use Nash equilibrium or one of its refinements (such as perfect Bayesian equilibrium).
6Hoelzemann and Klein (2020) suggest that MPE may be a decent predictor of subjects’ behavior

in a laboratory experiment of the Keller et al. (2005) setting. They reject the hypothesis that subjects

played according to the welfare-maximizing PBE constructed here. Rather, subjects adopted non-

cutoff and turn-taking behaviors, which are quite reminiscent of Keller et al. (2005)’s simple MPEs.

The paper leaves open the question of what deterred subjects from the simple on-path cutoff behavior

of the best equilibrium.
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subsidy that minimizes the risk of underinvestment in R&D, this investment is not

“flat-out” above the resulting cutoff, so the best SSE would again improve matters

here.

Our paper also contributes to the literature on SSE. Equilibria of this kind have been

studied in repeated games since Abreu (1986). They are known to be restrictive. First,

they make no sense if the model itself fails to be symmetric. However, as Abreu (1986)

notes for repeated games, they are (i) easily calculated, being completely characterized

by two simultaneous scalar equations; (ii) more general than static Nash, or even Nash

reversion; and even (iii) without loss in terms of total welfare, at least in some cases, as

in ours. See also Abreu, Pearce and Stacchetti (1986) for the optimality of symmetric

equilibria within a standard oligopoly framework and Abreu, Pearce and Stacchetti

(1993) for a motivation of the solution concept based on a notion of equal bargaining

power. Cronshaw and Luenberger (1994) conduct a more general analysis for repeated

games with perfect monitoring, showing how the set of SSE payoffs can be obtained by

solving for the largest scalar solving a certain equation. Hence, our paper shows that

properties (i)–(iii) extend to bandit games, with “Markov perfect” replacing “Nash”

in statement (ii) and “functional” replacing “scalar” in (i): as mentioned above, a pair

of functional equations replaces the usual Hamilton-Jacobi-Bellman (HJB) (or Isaacs)

equation from optimal control.

The paper is organized as follows. Section ?? introduces the model. Section ??

characterizes the efficient solution when actions can be chosen in continuous time and

shows that MPEs cannot achieve efficiency. Section ?? presents the game in which

actions can only be adjusted at regularly spaced points in time, the discrete-time game

or discrete game for short. Section ?? contains the main results regarding the set of

equilibrium payoffs in the discrete game as the time between consecutive choices tends

to zero. Section ?? is devoted to the construction of SSE in the discrete game. Section

?? studies functional equations that characterize SSE payoffs in both the discrete game

and the continuous-time limit. Section ?? concludes the paper. Appendix ?? presents

auxiliary results on the evolution of beliefs and on various payoff functions. The proofs

of all other results are relegated to Appendix ??.

2 The Model

Time t ∈ [0,∞) is continuous. There are N ≥ 2 players, each facing the same two-

armed bandit problem with one safe and one risky arm.

The safe arm generates a known constant payoff s > 0 per unit of time. The
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distribution of the payoffs generated by the risky arm depends on the state of the

world, θ ∈ {0, 1}, which nature draws at the outset with P [θ = 1] = p. Players do

not observe θ, but they know p. They also understand that the evolution of the risky

payoffs depends on θ. Specifically, the payoff process Xn associated with player n’s

risky arm evolves according to

dXn
t = αθ dt+ σ dZn

t + h dNn
t ,

where Zn is a standard Wiener process, Nn is a Poisson process with intensity λθ,

and the scalar parameters α0, α1, σ, h, λ0, λ1 are known to all players. Conditional on

θ, the processes Z1, . . . , ZN , N1, . . . , NN are independent. As Zn and Nn − λθt are

martingales, the expected payoff increment from using the risky arm over an interval

of time [t, t + dt) is mθ dt with mθ = αθ + λθh.

Players share a common discount rate r > 0. We write kn,t = 0 if player n uses the

safe arm at time t and kn,t = 1 if the player uses the risky arm at time t. Given actions

(kn,t)t≥0 such that kn,t ∈ {0, 1} is measurable with respect to the information available

at time t, player n’s total expected discounted payoff, expressed in per-period units, is

E

[∫ ∞

0

re−rt [(1− kn,t)s+ kn,tmθ] dt

]
,

where the expectation is over both the random variable θ and the stochastic process

(kn,t).
7

We make the following assumptions: (i) m0 < s < m1, so each player prefers the

risky arm to the safe arm in state θ = 1 and prefers the safe arm to the risky arm

in state θ = 0. (ii) σ > 0 and h > 0, so the Brownian payoff component is always

present and jumps of the Poisson component entail positive lump-sum payoffs; (iii)

λ1 ≥ λ0 ≥ 0, so jumps are at least as frequent in state θ = 1 as in state θ = 0.

Players begin with a common prior belief about θ, given by the probability p with

which nature draws state θ = 1. Thereafter, they learn about this state in a Bayesian

fashion by observing one another’s actions and payoffs; in particular, they hold common

posterior beliefs throughout time. A detailed description of the evolution of beliefs is

presented in Appendix ??. When λ1 = λ0 (and hence α1 > α0), the arrival of a lump-

sum payoff contains no information about the state of the world, and our setup is

7Note that we have not yet defined the set of strategies available to each player and hence are

silent at this point on how the players’ strategy profile actually induces a stochastic process of actions

(kn,t)t≥0 for each of them. We will close this gap in two different ways in Sections ?? and ??: by

imposing Markov perfection in the former and a discrete time grid of revision opportunities in the

latter.
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equivalent to that in Bolton and Harris (1999), with the learning being driven entirely

by the Brownian payoff component. When α1 = α0 (and hence λ1 > λ0), the Brownian

payoff component contains no information, and our setup is equivalent to that in Keller

et al. (2005) or Keller and Rady (2010), depending on whether λ0 = 0 or λ0 > 0, with

the learning being driven entirely by the arrival of lump-sum payoffs.8

3 Efficiency and Markov Perfect Equilibria in Con-

tinuous Time

The authors cited in the previous paragraph assume that players use pure Markov

strategies in continuous time with the posterior belief as the state variable, so that

kn,t is a time-invariant deterministic function of the probability pt assigned to state

θ = 1 at time t.9 In this section, we show how some of their insights generalize to

the present setting. First, we present the efficient benchmark. Second, we show that

efficient behavior cannot be sustained as an MPE.

Consider a planner who maximizes the average of the players’ expected payoffs in

continuous time by selecting an entire action profile (k1,t, . . . , kN,t) at each time t. The

corresponding average expected payoff increment is

[(
1− Kt

N

)
s+

Kt

N
mθ

]
dt with Kt =

N∑

n=1

kn,t.

A straightforward extension of the main results of Cohen and Solan (2013) shows that

the evolution of beliefs also depends on Kt only
10 and that the planner’s value function,

denoted by V ∗
N , has the following properties.

First, V ∗
N is the unique once-continuously differentiable solution of the HJB equation

v(p) = s+ max
K∈{0,1,...,N}

K

[
b(p, v)− c(p)

N

]

8Keller et al. (2005) and Keller and Rady (2010) consider compound Poisson processes where the

distribution of lump-sum payoffs (and their mean h) at the time of a Poisson jump is independent of,

and hence uninformative about, the state of the world. By contrast, Cohen and Solan (2013) allow for

Lévy processes where the size of lump-sum payoffs contains information about the state, but a lump

sum of any given size arrives weakly more frequently in state θ = 1.
9In the presence of discrete payoff increments, one actually has to take the left limit pt− as the

state variable, owing to the informational constraint that the action chosen at time t cannot depend

on the arrival of a lump sum at t. In the following, we simply write pt with the understanding that

the left limit is meant whenever this distinction is relevant. Note that p0− = p0 by convention.
10Cf. Appendix ??.
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on the open unit interval subject to the boundary conditions v(0) = m0 and v(1) = m1.

Here,

b(p, v) =
ρ

2r
p2(1− p)2v′′(p)− λ1 − λ0

r
p(1− p) v′(p) +

λ(p)

r
[v(j(p))− v(p)] (1)

can be interpreted as the expected informational benefit of using the risky arm when

continuation payoffs are given by a (sufficiently regular) function v.11 The first term

on the right-hand side of (??) reflects Brownian learning, with

ρ =
(α1 − α0)

2

σ2

representing the signal-to-noise ratio for the continuous payoff component. The second

term captures the downward drift in the belief when no Poisson lump sum arrives. The

third term expresses the discrete change in the overall payoff once such a lump sum

arrives, with the belief jumping up from p to

j(p) =
λ1p

λ(p)
;

this occurs at the expected rate

λ(p) = pλ1 + (1− p)λ0.

The function

c(p) = s−m(p)

captures the opportunity cost of playing the risky arm in terms of expected current

payoff forgone; here,

m(p) = pm1 + (1− p)m0

denotes the risky arm’s expected flow payoff given the belief p. Thus, the planner

weighs the shared opportunity cost of each experiment on the risky arm against the

learning benefit, which accrues fully to each agent because of the perfect informational

spillover.

Second, there exists a cutoff p∗N such that all agents using the safe arm (K = 0) is

optimal for the planner when p ≤ p∗N , and all agents using the risky arm (K = N) is

11Up to division by r, this is the infinitesimal generator of the process of posterior beliefs for K = 1,

applied to the function v; cf. Appendix ?? for details.
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optimal when p > p∗N . This cutoff is given by

p∗N =
µN(s−m0)

(µN + 1)(m1 − s) + µN(s−m0)
,

where µN is the unique positive solution of the equation

ρ

2
µ(µ+ 1) + (λ1 − λ0)µ+ λ0

(
λ0

λ1

)µ

− λ0 −
r

N
= 0.

Both µN and p∗N increase in r/N . Thus, the interval of beliefs for which all agents

using the risky arm is efficient widens with the number of agents and their patience.

Third, the value function satisfies V ∗
N(p) = s for p ≤ p∗N , and

V ∗
N(p) = m(p) +

c(p∗N)

u(p∗N ;µN)
u(p;µN) > s, (2)

for p > p∗N , where

u(p;µ) = (1− p)

(
1− p

p

)µ

is strictly decreasing and strictly convex for µ > 0. The function V ∗
N is strictly increas-

ing and strictly convex on [p∗N , 1].

By setting N = 1, one obtains the single-agent value function V ∗
1 and corresponding

cutoff p∗1 > p∗N .

Now consider N ≥ 2 players acting noncooperatively. Suppose that each of them

uses a Markov strategy with the common belief as the state variable. As in Bolton and

Harris (1999), Keller et al. (2005) and Keller and Rady (2010), the HJB equation for

player n when he faces opponents who use Markov strategies is given by

vn(p) = s +K¬n(p)b(p, vn) + max
kn∈{0,1}

kn [b(p, vn)− c(p)] ,

where K¬n(p) is the number of n’s opponents that use the risky arm. That is, when

playing a best response, each player weighs the opportunity cost of playing risky against

his own informational benefit only. Consequently, V ∗
N does not solve the above HJB

equation when player n’s opponents use the efficient strategy. Efficient behavior there-

fore cannot be sustained in MPE.

To obtain existence of a symmetric MPE, the above authors actually allow the

players to allocate one unit of a perfectly divisible resource across the two arms at

each point in time, so the fraction allocated to the risky arm can be kn,t ∈ [0, 1].

10



The symmetric MPE is unique and has all players play safe on an interval [0, p̃N ]

with p∗N < p̃N < p∗1, play risky on an interval [p†N , 1] with p†N > p̃N , and use an

interior allocation on (p̃N , p
†
N); see Keller and Rady (2010, Proposition 4), for example.

An adaptation of the proof of that proposition yields the same result for the payoff

processes that we consider here.12

Figure 1 illustrates the payoff function ṼN of the symmetric MPE together with the

cooperative value function V ∗
N and the single-agent value function V ∗

1 for the parameters

(r, s, σ, α1, α0, h, λ1, λ0, N) = (1, 1, 1, 0.1, 0, 1.5, 1, 0.2, 5), implying ρ = 0.01, m1 = 1.6,

m0 = 0.3 and (p∗N , p̃N , p
∗
1, p

†
N) ≃ (0.27, 0.40, 0.45, 0.53). The comparatively large gap

between ṼN and V ∗
N reflects the double inefficiency of the MPE: it not only involves a

higher cutoff (hence, an earlier stop to all use of the risky arms) but also entails too

low an intensity of experimentation on an intermediate range of beliefs.

Figure 1: Payoffs V ∗
N (upper solid curve), ṼN (dotted) and V ∗

1 (lower solid
curve) for (r, s, σ, α1, α0, h, λ1, λ0, N) = (1, 1, 1, 0.1, 0, 1.5, 1, 0.2, 5).

12Details are available from the authors on request.
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4 The Discrete Game

Henceforth, we restrict players to changing their actions kn,t ∈ {0, 1} only at the times

t = 0,∆, 2∆, . . . for some fixed ∆ > 0. This yields a discrete-time game evolving in

a continuous-time framework; in particular, the payoff processes are observed continu-

ously.13 Moreover, we allow for non-Markovian strategies.

The expected discounted payoff increment from using the safe arm for the length

of time ∆ is
∫ ∆

0
r e−r t s dt = (1 − δ)s with δ = e−r∆. Conditional on θ, the expected

discounted payoff increment from using the risky arm is
∫ ∆

0
r e−r tmθ dt = (1 − δ)mθ.

Given the probability p assigned to θ = 1, the expected discounted payoff increment

from the risky arm conditional on all available information is (1− δ)m(p).

A history of length t = ∆, 2∆, . . . is a sequence

ht =
((

kn,0, Ỹ
n
[0,∆)

)N
n=1

,
(
kn,∆, Ỹ

n
[∆,2∆)

)N
n=1

, . . . ,
(
kn,t−∆, Ỹ

n
[t−∆,t)

)N
n=1

)
,

where kn,ℓ∆ = 1 if player n uses the risky arm on the time interval [ℓ∆, (ℓ + 1)∆);

kn,ℓ∆ = 0 if player n uses the safe arm on this interval; Ỹ n
[ℓ∆,(ℓ+1)∆) is the observed sample

path Y n
[ℓ∆,(ℓ+1)∆) on the interval [ℓ∆, (ℓ + 1)∆) of the payoff process associated with

player n’s risky arm if kn,ℓ∆ = 1; and Ỹ n
[ℓ∆,(ℓ+1)∆) equals the empty set if kn,ℓ∆ = 0. We

write Ht for the set of all histories of length t, setH0 = {∅}, and letH =
⋃∞

t=0,∆,2∆,...Ht.

In addition, we assume that players have access to a public randomization device in

every period, namely, a draw from the uniform distribution on [0, 1], which is assumed

to be independent of θ and across periods. Following standard practice, we omit its

realizations from the description of histories.

A behavioral strategy σn for player n is a sequence (σn,t)t=0,∆,2∆,..., where σn,t is

a measurable map from Ht to the set of probability distributions on {0, 1}; a pure

strategy takes values in the set of degenerate distributions only.

Along with the prior probability p0 assigned to θ = 1, each profile of strategies

induces a distribution over H . Given his opponents’ strategies σ−n, player n seeks to

13 While arguably natural, our discretization remains nonetheless ad hoc, and other discretizations

might yield other results. Not only is it well known that the limits of the solutions of the discrete-time

models might differ from the continuous-time solutions, but the particular discrete structure might

also matter; see, among others, Müller (2000), Fudenberg and Levine (2009), Hörner and Samuelson

(2013), and Sadzik and Stacchetti (2015). In Hörner and Samuelson (2013), for instance, there are

multiple solutions to the optimality equations, corresponding to different boundary conditions, and

to select among them, it is necessary to investigate in detail the discrete-time game (see their Lemma

3). However, the role of the discretization goes well beyond selecting the “right” boundary condition;

see Sadzik and Stacchetti (2015).
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maximize

(1− δ)E σ−n,σn

[ ∞∑

ℓ=0

δℓ
{
[1− σn,ℓ∆(hℓ∆)]s+ σn,ℓ∆(hℓ∆)mθ

}]
.

By the law of iterated expectations, this equals

(1− δ)E σ−n,σn

[ ∞∑

ℓ=0

δℓ
{
[1− σn,ℓ∆(hℓ∆)]s+ σn,ℓ∆(hℓ∆)m(pℓ∆)]

}]
.

Nash equilibrium, PBE and MPE, with actions after history ht depending only on

the associated posterior belief pt, are defined in the usual way. Imposing the stan-

dard “no signaling what you don’t know” refinement, beliefs are pinned down after all

histories, on and off path.14

An SSE is a PBE in which all players use the same strategy: σn(ht) = σn′(ht) for

all n, n′ and ht ∈ H . This implies symmetry of behavior after any history, not just on

the equilibrium path of play. By definition, any symmetric MPE is an SSE, and any

SSE is a PBE.

5 Main Results

Fix ∆ > 0. For p ∈ [0, 1], let W
∆

PBE(p) and W∆
PBE(p) denote the supremum and

infimum, respectively, of the set of average payoffs (per player) over all PBE, given

prior belief p. Let W
∆

SSE(p) and W∆
SSE(p) be the corresponding supremum and infimum

over all SSE. If such equilibria exist,

W
∆

PBE(p) ≥ W
∆

SSE(p) ≥ W∆
SSE(p) ≥ W∆

PBE(p). (3)

Given that we assume a public randomization device, these upper and lower bounds

define the corresponding equilibrium average payoff sets.

As any player can choose to ignore the information contained in the other players’

experimentation results, the value function W∆
1 of a single agent experimenting in iso-

lation constitutes a lower bound on a player’s payoff in any PBE. Lemma ?? establishes

14While we could equivalently define this Bayesian game as a stochastic game with the common

posterior belief as a state variable, no characterization or folk theorem applies to our setup, as the

Markov chain (over consecutive states) does not satisfy the sufficient ergodicity assumptions; see Dutta

(1995) and Hörner, Sugaya, Takahashi and Vieille (2011).
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that this lower bound converges to V ∗
1 as ∆ → 0. Hence, we obtain a lower bound to

the limits of all terms in (??), namely lim inf∆→0W
∆
PBE ≥ V ∗

1 .

An upper bound is also easily found. As any discrete-time strategy profile is feasible

for the continuous-time planner from the previous section, it holds that W
∆

PBE ≤ V ∗
N .

The main theorem provides an exact characterization of the limits of all four func-

tions. It requires introducing a new family of payoffs. Namely, we define the players’

common payoff in continuous time when they all use the risky arm if, and only if, the

belief exceeds a given threshold p̂. This function admits a closed form that generalizes

the first-best payoff V ∗
N (cf. Section ??). It is given by

VN,p̂(p) = m(p) +
c(p̂)

u(p̂;µN)
u(p;µN)

for p > p̂, and by VN,p̂(p) = s otherwise. For p̂ = p∗N , VN,p̂ coincides with the cooperative

value function V ∗
N . For p̂ > p∗N , it satisfies VN,p̂ < V ∗

N on (p∗N , 1), is continuous, strictly

increasing and strictly convex on [p̂, 1], and continuously differentiable except for a

convex kink at p̂.

Theorem 1 (i) There exists p̂ ∈ [p∗N , p
∗
1] such that

lim
∆→0

W
∆

PBE = lim
∆→0

W
∆

SSE = VN,p̂,

and

lim
∆→0

W∆
PBE = lim

∆→0
W∆

SSE = V ∗
1 ,

uniformly on [0, 1].

(ii) If ρ > 0, then p̂ = p∗N (and hence VN,p̂ = V ∗
N).

(iii) If ρ = 0, then p̂ is the unique belief in [p∗N , p
∗
1] satisfying

Nλ(p̂) [VN,p̂(j(p̂))− s]− (N − 1)λ(p̂) [V ∗
1 (j(p̂))− s] = rc(p̂); (4)

moreover, p̂ = p∗N if, and only if, j(p∗N) ≤ p∗1, and p̂ = p∗1 if, and only if, λ0 = 0.

This result is proved in Section ??, where we construct SSEs that get arbitrarily

close to the highest and lowest possible average PBE payoffs for sufficiently short

discretization intervals. Given the fundamental difference between learning from a

Brownian component (ρ > 0) and learning from jumps only (ρ = 0), we treat these

scenarios separately: the former case is covered by Propositions ??–?? in Section ??,

14



the latter by Propositions ??–?? in Section ??. Pure Poisson learning needs two

more intermediate results than the case with a Brownian component: one to identify

the highest possible average PBE payoff in the frequent-action limit (Proposition ??),

another (Proposition ??) to cover the case of fully conclusive Poisson news (ρ = 0 and

λ0 = 0), which requires a different approach to equilibrium construction than Brownian

and inconclusive Poisson learning, respectively.

When ρ > 0 or λ0 > 0, in fact, we can construct SSEs of the discrete game via

two-state automata with a “normal” and a “punishment” state. In the normal state,

players are supposed to use the risky arm at all beliefs above some threshold p; in the

punishment state, the players are again supposed to use a cutoff strategy, but with a

higher threshold p̄. The idea here is that the normal state has all players experiment

over as large a range of beliefs as possible, whereas the punishment state has all players

refrain from experimentation—and thus from the production of valuable information—

at all beliefs except the most optimistic ones. A unilateral deviation in the normal state

triggers a transition to the punishment state; otherwise, the normal state persists.

The punishment state persists after a unilateral deviation there; otherwise, a public

randomization device determines whether play reverts to the normal state. When

ρ = 0 and λ0 = 0, by contrast, our proof relies on the existence of two symmetric

mixed-strategy equilibria of the discrete game for beliefs close to the single-agent cutoff.

Choosing continuation play as a function of history in the appropriate way, we can then

construct SSEs with suitable properties at higher beliefs.

Turning to part (i) of the theorem, the fact that the best SSE payoff and the

best average PBE payoff coincide—and equal the payoff of a cutoff strategy—in the

frequent-action limit is plausible (though not obvious) because efficiency in continuous

time requires symmetric play of a cutoff strategy; cf. Section ??. As to the worst payoffs,

the requisite punishments can also be implemented in a strongly symmetric fashion.

At a belief below the threshold p̄ in the punishment state of the above automaton, for

instance, either everybody playing safe forever is already an equilibrium of the game,

or a unilateral deviation to the risky arm provides a higher payoff. In the latter case,

the promise to revert to joint risky play at a later time serves to compensate the players

for the flow payoff deficit that playing safe causes in the meantime.

Part (ii) of the theorem states that efficiency can be achieved in the frequent-

action limit whenever the Brownian component of risky payoffs is informative about

the true state (ρ > 0). The reason is that the resulting diffusion component in the

stochastic process of posterior beliefs is the dominant force in belief updating for small

discretization steps ∆. To gain some intuition, consider the above two-state automaton

with belief thresholds p ∈ (p∗N , p
∗
1) and p̄ ∈ (p∗1, 1) in the normal and punishment state,

15



respectively, and think of p̄ as being very close to 1, so that punishment essentially

means autarky. At a belief p to the immediate right of p, a player contemplating a

deviation from the risky to the safe arm in the normal state then faces the following

trade-off. On the one hand, the deviation saves the player the opportunity cost of

experimentation, (1 − δ)c(π), which is O(∆) as ∆ vanishes. On the other hand, the

deviation changes the lottery over continuation values to the player’s disadvantage. In

fact, use of the safe arm triggers a transition to the punishment state, with an expected

continuation value of at most the safe payoff level s plus a term that is linear in ∆. This

is because the probability that the opponents’ experiments lift the posterior belief close

to p∗1 (the only scenario in which all experimentation does not stop for good) within

the length of time ∆ is O(∆).15 Staying with the risky arm, by contrast, would mean

that continuation values above s are always within immediate reach—no matter how

small ∆ becomes and even if one takes p all the way down to p—implying an expected

continuation value of at least s plus a term that is O(∆γ) with γ < 1.16 Roughly

speaking, this is because the payoff function VN,p (to which continuation payoffs in the

normal state converge as ∆ vanishes) has a convex kink at p and, owing to the diffusion

part of the belief dynamics, the probability of reaching its upward-sloping part stays

bounded away from 0 as ∆ vanishes. For sufficiently small ∆, therefore, the loss in

expected continuation value after a deviation from risky to safe play outweighs the

saved opportunity cost, and the deviation is unprofitable. As this argument works as

long as VN,p has a convex kink, one can take p arbitrarily close to p∗N . It thus follows

that p̂, the infimum of possible thresholds p, equals p∗N .
17

We can therefore reinterpret Figure 1 as depicting the best and worst SSE and

average PBE payoffs in the frequent-action limit for the given parameter values, with

the payoffs of the symmetric MPE of the continuous-time game sandwiched in between

them.

Part (iii) of the theorem characterizes p̂ when all updating is driven by the Poisson

component of risky payoffs (ρ = 0). The fundamental difference to Brownian learning

(and the reason that asymptotic efficiency may be out of reach) is that the cost of a

deviation is of the same order in ∆ as its benefit. To see this, consider a two-state

automaton with thresholds p and p̄ as above. In the normal state, the players’ tempta-

tion to deviate to the safe arm is strongest when the belief is so close to p that the lack

of good news over a period of ∆ makes the belief drop below p, and thus into a region

15In the absence of any lump-sum payoff, this is a consequence of Chebysheff’s inequality; the

probability of a lump-sum payoff within ∆ units of time, moreover, is itself of order ∆ for small ∆.
16The proof of Proposition ?? shows that one can take γ = 3

4
.

17This argument is reminiscent of the intuitive explanation for smooth pasting in stopping problems

for diffusion processes as given in Dixit and Pindyck (1994), for example.
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where safe prevails in either state—whether a single player has deviated or not. Absent

a success in the current round, therefore, deviations cannot be punished in the future.

The cost of deviating thus arises only if good news arrives. Starting out from p, this is

expected to happen with probability Nλ(p)∆+ o(∆) if no player deviates; a deviation

reduces this probability to (N − 1)λ(p)∆ + o(∆). Without a deviation, moreover, a

player’s continuation payoff then amounts at most to the cooperative payoff—evaluated

at the posterior belief after the news event—given no use of the risky arm below p;

the resulting payoff improvement relative to the case that no news arrives converges

to VN,p(j(p))− s as ∆ vanishes. In the event of a deviation, the continuation payoff is

at least the single-player payoff, and the corresponding payoff increment converges to

V ∗
1 (j(p))−s. The cost of the deviation in terms of expected continuation value foregone

is at most
{
Nλ(p)[VN,p(j(p))− s]− (N − 1)λ(p)[V ∗

1 (j(p))− s]
}
∆+o(∆), therefore. A

necessary condition for equilibrium is that this again exceed the saved opportunity cost

of playing risky, (1 − δ)c(π) = rc(p)∆ + o(∆). At the infimum of possible thresholds

p, the leading (that is, first-order) terms in the cost and benefit of a deviation are just

equalized, hence the equation (??) for p̂.

Asymptotic efficiency means that p̂ coincides with the efficient continuous-time

cutoff p∗N , which equates the social benefit of an experiment with its opportunity cost.

When ρ = 0, this benefit is Nλ(p∗N)[V
∗
N(j(p

∗
N))−s] as the experiment contributes to the

arrival of news at rate λ(p∗N), with all N players then reaping the gain V ∗
N(j(p

∗
N))− s;

this is also the first term on the left-hand side of (??) when p̂ = p∗N and hence VN,p̂ = V ∗
N .

The opportunity cost is rc(p∗N), the term on the right-hand side of (??). So, p∗N solves

(??) if, and only if, the second term on the left-hand side of (??) vanishes at p̂ = p∗N .

As V ∗
1 = s on [0, p∗1], this is tantamount to the inequality j(p∗N) ≤ p∗1. Intuitively, this

condition means that a deviation from efficient play can be punished by a complete

stop to all experimentation—even after good news. A player’s incentives are then

perfectly aligned with the social planner’s: the individual action effectively dictates

the collective action choice.

When ρ = 0 and λ0 = 0, finally, the arrival of good news freezes the belief at 1, and

the resulting cooperative and single-player payoffs both equal m1 = λ1h. In this case,

(??) reduces to λ(p̂)[m1 − s] = rc(p̂), which equates the benefit of an experiment to

a single agent with its opportunity cost. Hence, the solution is p̂ = p∗1. The intuition

is straightforward: when a player’s continuation payoffs coincide with those of a single

agent whether he deviates or not, it is impossible to sustain experimentation below the

single-agent cutoff.

Figure 2 shows the cooperative value function V ∗
N , the supremum VN,p̂ and in-

fimum V ∗
1 of the limit SSE and average PBE payoffs, and the payoff function ṼN
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of the symmetric continuous-time MPE for a parameter configuration that implies

p∗N < p̂ < p∗1. For ρ = 0 and (r, s, h, λ1, λ0, N) = (1, 1, 1.5, 1, 0.2, 5), we indeed have

(p∗N , p̂, p̃N , p
∗
1, p

†
N) ≃ (0.270, 0.399, 0.450, 0.455, 0.571).

Figure 2: Payoffs V ∗
N (upper solid curve), VN,p̂ (dashed), ṼN (dotted) and

V ∗
1 (lower solid curve) for ρ = 0 and (r, s, h, λ1, λ0, N) = (1, 1, 1.5, 1, 0.2, 5).

The figure suggests that, even when the first-best is not achievable in the frequent-

action limit, the best SSE performs strictly better than the symmetric continuous-time

MPE, maintaining experimentation—at maximal intensity—on a larger set of beliefs.

The following result confirms this ordering of belief thresholds. It is formulated for pure

Poisson learning with inconclusive news since p̂ = p̃N = p∗1 when ρ = 0 and λ0 = 0.

Proposition 1 Let ρ = 0 and λ0 > 0. Then p̂ < p̃N .

Figure 2 further shows that relative to the symmetric MPE of the continuous-time

game, the best SSE internalizes a much larger part of the informational externality

that the players exert on each other. If we take the payoff difference V ∗
N(p) − V ∗

1 (p)

as a measure of the size of that externality, we can interpret the ratios [VN,p̂(p) −
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V ∗
1 (p)]/[V

∗
N(p)−V ∗

1 (p)] and [Ṽ (p)−V ∗
1 (p)]/[V

∗
N(p)−V ∗

1 (p)] as the fraction of the exter-

nality that is internalized by the best SSE and the symmetric MPE, respectively.18 At

p̃N , for example, the latter ratio is 0% whereas the former is 52.5% for the parameters

underlying Figure 2— in a scenario with p̂ = p∗N , it would even be 100%.

It was said in Section ?? that the efficient cutoff p∗N decreases with the number of

players. For ρ = 0 and λ0 = 0, the threshold p̂ is independent of N ; for inconclusive

news, however, it behaves like p∗N .

Proposition 2 For ρ = 0 and λ0 > 0, p̂ is decreasing in N .

The last result of this section characterizes the area (in the (λ1, λ0)-plane) where

asymptotic efficiency obtains under pure Poisson learning.

Proposition 3 Let ρ = 0. Then, j(p∗N) > p∗1 whenever λ0 ≤ λ1/N . On any ray in

R

2
+ emanating from the origin (0, 0) with a slope strictly between 1/N and 1, there is

a unique critical point (λ∗
1, λ

∗
0) at which j(p∗N) = p∗1; moreover, j(p∗N) > p∗1 at all points

of the ray that are closer to the origin than (λ∗
1, λ

∗
0), and j(p∗N) < p∗1 at all points that

are farther from the origin than (λ∗
1, λ

∗
0). These critical points form a continuous curve

that is bounded away from the origin and asymptotes to the ray of slope 1/N . The

curve shifts downward as r falls or N rises.

This result is illustrated in Figure 3.

As is intuitive, having more players, or more patience, increases the scope for the

first-best. When r → 0, the curve in Figure 3 converges to the ray of slope 1/N ; given

Poisson rates (λ1, λ0), therefore, asymptotic efficiency can always be achieved with a

sufficiently large number of players. When r → ∞, by contrast, the curve in Figure 3

shifts ever higher: as myopic players do not react to future rewards and punishments,

it is no surprise that asymptotic efficiency cannot be attained then.

6 Construction of Equilibria

We first consider the case of a diffusion component (Section ??) and then turn to the

case of pure jump processes (Section ??).

18We set both ratios to 100% whenever the denominator vanishes, that is, whenever it is efficient

for all players to play safe.
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j(p∗N ) < p∗1

j(p∗N ) > p∗1

Figure 3: Asymptotic efficiency is achieved for parameter combinations
(λ1, λ0) between the diagonal and the curve but not below the curve. The
dashed line is the ray of slope 1/N . Parameter values: r = 1, N = 5.

We need the following notation. Let F∆
K (·|p) denote the cumulative distribution

function of the posterior belief p∆ when p0 = p and K players use the risky arm on the

time interval [0,∆). For any measurable function w on [0, 1] and p ∈ [0, 1], we write

E∆
Kw(p) =

∫ 1

0

w(p′)F∆
K (dp′|p),

whenever this integral exists. Thus, E∆
Kw(p) is the expectation of w(p∆) given the prior

p and K experimenting players.

6.1 Learning with a Brownian Component (ρ > 0)

For a sufficiently small ∆ > 0, we specify an SSE that can be summarized by two func-

tions, κ and κ, which do not depend on ∆. The equilibrium strategy is characterized

by a two-state automaton. In the “good” state, play proceeds according to κ, and the
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equilibrium payoff satisfies

w∆(p) = (1− δ)[(1− κ(p))s+ κ(p)m(p)] + δE∆
Nκ(p)w

∆(p), (5)

while in the “bad” state, play proceeds according to κ, and the payoff satisfies

w∆(p) = max
k

{
(1− δ)[(1− k)s+ km(p)] + δE∆

(N−1)κ(p)+kw
∆(p)

}
. (6)

That is, w∆ is the value from the best response to all other players following κ.

A unilateral deviation from κ in the good state is punished by a transition to the

bad state in the following period; otherwise, we remain in the good state. If there is a

unilateral deviation from κ in the bad state, we remain in the bad state. Otherwise, a

draw of the public randomization device determines whether the state next period is

good or bad; this probability is chosen such that the expected payoff is indeed given

by w∆ (see below).

With continuation payoffs given by w∆ and w∆, the common action κ ∈ {0, 1} is

incentive compatible at a belief p if, and only if,

(1− δ)[(1− κ)s+ κm(p)] + δE∆
Nκw

∆(p) (7)

≥ (1− δ)[κs+ (1− κ)m(p)] + δE∆
(N−1)κ+1−κw

∆(p).

Therefore, the functions κ and κ define an SSE if, and only if, (??) holds for κ = κ(p)

and κ = κ(p) at all p.

The probability η∆(p) of a transition from the bad to the good state in the absence

of a unilateral deviation from κ(p) is pinned down by the requirement that

w∆(p) = (1− δ)[(1− κ(p))s+ κ(p)m(p)] (8)

+ δ
{
η∆(p) E∆

Nκ(p)w
∆(p) + [1− η∆(p)] E∆

Nκ(p)w
∆(p)

}
.

If k = κ(p) is optimal in (??), we simply set η∆(p) = 0. Otherwise, (??) and (??)

imply

δE∆
Nκ(p)w

∆(p) ≥ w∆(p)− (1− δ)[(1− κ(p))s+ κ(p)m(p)] > δE∆
Nκ(p)w

∆(p),

so (??) holds with

η∆(p) =
w∆(p)− (1− δ)[(1− κ(p))s+ κ(p)m(p)]− δE∆

Nκ(p)w
∆(p)

δE∆
Nκ(p)w

∆(p)− δE∆
Nκ(p)w

∆(p)
∈ (0, 1].
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It remains to specify κ and κ. Let

pm =
s−m0

m1 −m0
.

As m(pm) = s, this is the belief at which a myopic agent is indifferent between the

two arms. It is straightforward to verify that p∗1 < pm. Fixing p ∈ (p∗N , p
∗
1) and

p̄ ∈ (pm, 1), we let κ(p) = 1p>p and κ(p) = 1p>p̄.
19 Note that punishment and reward

strategies coincide outside of (p, p̄). Also note that p̄ > pm, i.e., in the punishment

state, less experimentation is enforced than would be myopically optimal. In fact, for

Proposition ??, we are letting p̄ → 1. This way, we can, in a strongly symmetric

way, exact the harshest conceivable punishment, which, for any given player, entails

a vanishing information spill-over from the other players. Indeed, this construction,

in the limit, pushes players’ payoffs down to their single-agent value V ∗
1 . As players

cannot be prevented from best-responding to the vanishing information spill-overs, it

is not possible to push their continuation values below V ∗
1 .

Proposition 4 For ρ > 0, there are beliefs p♭ ∈ (p∗N , p
∗
1) and p♯ ∈ (pm, 1) such that

for all p ∈ (p∗N , p
♭) and p̄ ∈ (p♯, 1), there exists ∆̄ > 0 such that for all ∆ ∈ (0, ∆̄),

the two-state automaton with functions κ and κ defines an SSE of the experimentation

game with period length ∆.

The proof consists of verifying that, for a sufficiently small ∆, the actions κ(p) and

κ(p) satisfy the incentive-compatibility constraint (??) at all p. First, we find ε > 0

small enough that w∆ = s in a neighborhood of p+ε. The payoff functions w∆ and w∆

resulting from the two-state automaton are then bounded away from one another on

[p + ε, p̄] for small ∆. In this range, therefore, the difference in expected continuation

values across states does not vanish as ∆ tends to 0, whereas the difference in current

expected payoffs across actions is of order ∆, rendering deviations unattractive for

small enough ∆. On (p̄, 1] and [0, p], κ and κ both prescribe the myopically optimal

action. Given that continuation payoffs are weakly higher in the good state, it is easy to

show that there are no incentives to deviate on these intervals. For beliefs in (p, p+ ε),

κ again prescribes the myopically optimal action. The proof of incentive compatibility

of κ on this interval crucially relies on the fact that, for small ∆, w∆ is bounded below

by VN,p , which has a convex kink at p. This, together with the fact that, conditional on

no lump sum arriving, the log-likelihood ratio of posterior beliefs is Gaussian, allows us

to demonstrate the existence of some constant C1 > 0 such that, for ∆ small enough,

E∆
Nw∆(p) ≥ s + C1∆

3

4 to the immediate right of p, whereas E∆
N−1w

∆(p) ≤ s + C0∆

19
1A denotes the indicator function of the event A.
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with some constant C0 > 0. For small ∆, therefore, the linearly vanishing current-

payoff advantage of the safe over the risky arm is dominated by the incentives provided

through continuation payoffs.

The next result is the last remaining step in the proof of Theorem ?? for the case

ρ > 0; it essentially follows from letting p → p∗N and p̄ → 1 in Proposition ??.

Proposition 5 For ρ > 0, lim∆→0W
∆

SSE = V ∗
N and lim∆→0W

∆
SSE = V ∗

1 , uniformly on

[0, 1].

6.2 Pure Poisson Learning (ρ = 0)

Let ρ = 0, and take p̂ as in part (iii) of Theorem ??.

Proposition 6 Let ρ = 0. For any ε > 0, there is a ∆ε > 0 such that for all

∆ ∈ (0,∆ε), the set of beliefs at which experimentation can be sustained in a PBE

of the discrete game with period length ∆ is contained in the interval (p̂ − ε, 1]. In

particular, lim sup∆→0W
∆

PBE(p) ≤ VN,p̂(p).

For a heuristic explanation of the logic behind this result, consider a sequence of

pure-strategy PBEs for vanishing ∆ such that the infimum of the set of beliefs at which

at least one player experiments converges to some limit p̃. Selecting a subsequence of

∆s and relabeling players, if necessary, we can assume without loss of generality that

players 1, . . . , L play risky immediately to the right of p̃, while players L + 1, . . . , N

play safe. In the limit, players’ individual continuation payoffs are bounded below by

the single-agent value function V ∗
1 and cannot sum to more than NVN,p̃, so the sum of

the continuation payoffs of players 1, . . . , L is bounded above by NVN,p̃ − (N − L)V ∗
1 .

Averaging these players’ incentive-compatibility constraints thus yields

Lλ(p̃)

[
NVN,p̃(j(p̃))− (N − L)V ∗

1 (j(p̃))

L
− s

]
− rc(p̃) ≥ (L− 1)λ(p̃) [V ∗

1 (j(p̃))− s] .

Simplifying the left-hand side, adding (N − L)λ(p̃) [V ∗
1 (j(p̃))− s] to both sides and

re-arranging, we obtain

Nλ(p̃) [VN,p̃(j(p̃))− s]− rc(p̃) ≥ (N − 1)λ(p̃) [V ∗
1 (j(p̃))− s] ,

which in turn implies p̃ ≥ p̂, as we show in Lemma ?? in the appendix. The proof

of Proposition ?? makes this heuristic argument rigorous and extends it to mixed

equilibria.
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For non-revealing jumps (λ0 > 0), the construction of SSEs that achieve the above

bounds in the limit relies on the same two-state automaton as in Proposition ??, the

only difference being that the threshold p is now restricted to exceed p̂.

Proposition 7 Let ρ = 0 and λ0 > 0. There are beliefs p♭ ∈ (p̂, p∗1) and p♯ ∈ (pm, 1)

such that for all p ∈ (p̂, p♭) and p̄ ∈ (p♯, 1), there exists ∆̄ > 0 such that for all

∆ ∈ (0, ∆̄), the two-state automaton with functions κ and κ defines an SSE of the

experimentation game with period length ∆.

The strategy for the proof of this proposition is the same as that of Proposition

??, except for the belief region to the immediate right of p, where incentives are now

provided through terms of first order in ∆, akin to those in equation (3).

In the case λ0 > 0, we are able to provide incentives in the potentially last round of

experimentation by threatening punishment conditional on there being a success (that

is, a successful experiment). This option is no longer available in the case of λ0 = 0.

Indeed, any success now takes us to a posterior of one, so that everyone plays risky

forever after. This means that, irrespective of whether a success occurs in that round,

continuation strategies are independent of past behavior, conditional on the players’

belief. This raises the possibility of unravelling. If incentives just above the candidate

threshold at which players give up on the risky arm cannot be provided, can this

threshold be lower than in the MPE?

To settle whether unravelling occurs requires us to study the discrete game in

considerable detail. We start by noting that for λ0 = 0, we can strengthen Proposition

?? as follows: there is no PBE with any experimentation at beliefs below the discrete-

time single-agent cutoff p∆1 = inf{p : W∆
1 (p) > s}; see Heidhues et al. (2015).20 The

highest average payoff that can be hoped for, then, involves all players experimenting

above p∆1 .

Unlike in the case of λ0 > 0 (see Proposition ??), an explicit description of a two-

state automaton implementing SSEs whose payoffs converge to the obvious upper and

lower bounds appears elusive. This is partly because equilibrium strategies are, as it

turns out, necessarily mixed for beliefs that are arbitrarily close to (but above) p∆1 .

The proof of the next proposition establishes that the length of the interval of beliefs

for which this is the case vanishes as ∆ → 0. In particular, for higher beliefs (except

for beliefs arbitrarily close to 1, when playing risky is strictly dominant), both pure

actions can be enforced in some equilibrium.

20In particular, this excludes the possibility that the asymmetric MPE of Keller et al. (2005) with

an infinite number of switches between the two arms below p∗1 can be approximated in the discrete

game.
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Proposition 8 Let ρ = 0 and λ0 = 0. For any beliefs p and p̄ such that p∗1 < p <

pm < p̄ < 1, there exists a ∆̄ > 0 such that for all ∆ ∈ (0, ∆̄), there exists

- an SSE in which, starting from a prior above p, all players use the risky arm on

the path of play as long as the belief remains above p and use the safe arm for

beliefs below p∗1; and

- an SSE in which, given a prior between p and p̄, the players’ payoff is no larger

than their best-reply payoff against opponents who use the risky arm if, and only

if, the belief lies in [p∗1, p] ∪ [p̄, 1].

While this is somewhat weaker than Proposition ??, its implications for limit payoffs

as ∆ → 0 are the same. Intuitively, given that the interval [p∗1, p] can be chosen

arbitrarily small (actually, of the order ∆, as the proof establishes), its impact on

equilibrium payoffs starting from priors above p is of order ∆. This suggests that for

the equilibria whose existence is stated in Proposition ??, the payoff converges to the

payoff from all players experimenting above p∗1 and to the best-reply payoff against

none of the opponents experimenting. Indeed, we have the following result, covering

both inconclusive and conclusive jumps.

Proposition 9 For ρ = 0, lim∆→0W
∆

SSE = VN,p̂ and lim∆→0W
∆
SSE = V ∗

1 , uniformly

on [0, 1].

7 Functional Equations for SSE Payoffs

While it is possible to derive explicit solutions to the equilibrium payoff sets of interest,

at least asymptotically, note that, already in the discrete game, a characterization in

terms of optimality equations can be obtained, which defines the correspondence of

SSE payoffs. As discussed in the introduction, these generalize the familiar equation

characterizing the value function of the symmetric MPE. Instead of a single (HJB)

equation, the characterization of SSE payoffs involves two coupled functional equations,

whose solution delivers the highest and lowest equilibrium payoff. Proposition ?? states

this in the discrete game, while Proposition ?? gives the continuous-time limit. As these

propositions do not heavily rely on the specific structure of our game, we believe that

they might be useful for analyzing SSE payoffs for more general processes or other

stochastic games.

Fix ∆ > 0. For p ∈ [0, 1], letW
∆
(p) andW∆(p) denote the supremum and infimum,
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respectively, of the set of payoffs over pure-strategy SSEs, given prior belief p.21 If such

an equilibrium exists, these extrema are achieved, and W
∆
(p) ≥ W∆(p). For ρ > 0 or

λ0 > 0, we have shown in Sections ??–?? that in the limit as ∆ → 0, the best and worst

average payoffs (per player) over all PBEs are achieved by SSE in pure strategies. The

following result characterizes W
∆
and W∆ via a pair of coupled functional equations.

Proposition 10 Suppose that the discrete game with time increment ∆ > 0 admits a

pure-strategy SSE for any prior belief. Then, the pair of functions (w,w) = (W
∆
,W∆)

solves the functional equations

w(p) = max
κ∈K(p;w,w)

{
(1− δ)[(1− κ)s+ κm(p)] + δE∆

Nκw(p)
}
, (9)

w(p) = min
κ∈K(p;w,w)

max
k∈{0,1}

{
(1− δ)[(1− k)s + km(p)] + δE∆

(N−1)κ+kw(p)
}
, (10)

where K(p;w,w) ⊆ {0, 1} denotes the set of all κ such that

(1− δ)[(1− κ)s+ κm(p)] + δE∆
Nκw(p) (11)

≥ max
k∈{0,1}

{
(1− δ)[(1− k)s + km(p)] + δE∆

(N−1)κ+kw(p)
}
.

Moreover, W∆ ≤ w ≤ w ≤ W
∆
for any solution (w,w) of (??)–(??).

This result relies on arguments that are familiar from Cronshaw and Luenberger

(1994). We briefly sketch them here.

The above equations can be understood as follows. The ideal condition for a given

(symmetric) action profile to be incentive compatible is that if each player conforms to

it, the continuation payoff is the highest possible, while a deviation triggers the lowest

possible continuation payoff. These actions are precisely the elements of K(p;w,w), as

defined by equation (??). Given this set of actions, equation (??) provides the recursion

that characterizes the constrained minmax payoff under the assumption that if a player

were to deviate to his myopic best reply to the constrained minmax action profile,

the punishment would be restarted next period, resulting in a minimum continuation

payoff. Similarly, equation (??) yields the highest payoff under this constraint, but

here, playing the best action (within the set) is on the equilibrium path.

Note that in any SSE, given p, the action κ(p) must be an element ofK(p;W
∆
,W∆).

This is because the left-hand side of (??) with w = W
∆

is an upper bound on the

21For the existence of various types of equilibria in discrete-time stochastic games, see Mertens,

Sorin and Zamir (2015), Chapter 7.
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continuation payoff if no player deviates, and the right-hand side with w = W∆ a

lower bound on the continuation payoff after a unilateral deviation. Consider the

equilibrium that achieves W
∆
. Then,

W
∆
(p) ≤ max

κ∈K(p;W
∆
,W∆)

{
(1− δ)[(1− κ)s+ κm(p)] + δE∆

NκW
∆
(p)

}
,

as the action played must be in K(p;W
∆
,W∆), and the continuation payoff is at most

given by W
∆
. Similarly, W∆ must satisfy (??) with “≥” instead of “=.” Suppose now

that the “≤” were strict. Then, we can define a strategy profile given prior p that (i)

in period 0, plays the maximizer of the right-hand side, and (ii) from t = ∆ onward,

abides by the continuation strategy achieving W
∆
(p∆). Because the initial action is in

K(p;W
∆
,W∆), this constitutes an equilibrium, and it achieves a payoff strictly larger

than W
∆
(p), a contradiction. Hence, (??) must hold with equality for W

∆
. The same

reasoning applies to W∆ and (??).

Fix a pair (w,w) that satisfies (??)–(??). Note that this implies w ≤ w. Given such

a pair and any prior p, we specify two SSEs whose payoffs are w and w, respectively.

It then follows that W∆ ≤ w ≤ w ≤ W
∆
. Let κ and κ denote a selection of the

maximum and minimum of (??)–(??). The equilibrium strategies are described by a

two-state automaton, whose states are referred to as “good” or “bad.” The difference

between the two equilibria lies in the initial state: w is achieved when the initial state

is good, w is achieved when it is bad. In the good state, play proceeds according to κ;

in the bad state, it proceeds according to κ. Transitions are exactly as in the equilibria

described in Sections ??–??. This structure precludes profitable one-shot deviations

in either state, so that the automaton describes equilibrium strategies, and the desired

payoffs are obtained.

Figure 4 presents the result of a numerical computation of W
∆

and W∆ based

on Proposition ??.22 In between the thresholds p∆ and p̄∆, both risky and safe play

can be sustained in an SSE; the former is chosen in the best SSE, the latter in the

worst. Only risky play can be sustained above p̄∆, and only safe play below p∆. These

changes in the set of enforceable actions manifest themselves in jump discontinuities

of W
∆

and W∆ at p∆ and p̄∆, respectively. Note also that W∆ dips below V ∗
1 to

the immediate right of p∗1. The worst punishment can thus be harsher for positive ∆

22We thank Kai Echelmeyer and Martin Rumpf from the Institute for Numerical Simulation at the

University of Bonn for the implementation of the underlying algorithm. Starting from the pair of

functions (w0, w0) = (V ∗
N , V

∗
1 ), it computes (wk+1, wk+1) by evaluating the right-hand sides of (??)–

(??) at (wk, wk). Because of the incentive-compatibility constraint (??), the corresponding value-

iteration operator does not appear to be a contraction mapping. While we do not have a convergence

proof for this algorithm, it converged reliably for sufficiently small ∆.
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than in the frequent-action limit, and convergence of the corresponding payoff function

is non-monotonic. While the example shown is one of pure Brownian learning, these

patterns also emerge when conclusive lump-sums are added to the payoff process.

payoff

p

Figure 4: Payoffs V ∗
N (upper dashed curve), W

∆
(upper solid curve),

W∆ (lower solid curve) and V ∗
1 (lower dashed curve) for ∆ = 0.1 and

(r, s, σ, α1, α0, h, λ1, λ0, N) = (1, 2, 1, 2.5, 1.5, 0, 0, 0, 5).

As ∆ tends to 0, equations (??)–(??) transform into differential-difference equations

involving terms that are familiar from the continuous-time analysis in Section ??. A

formal Taylor approximation shows that for any κ ∈ {0, 1}, K ∈ {0, 1, . . . , N} and a

sufficiently regular function w on the unit interval,

(1− δ)[(1− κ)s+ κm(p)] + δE∆
Kw(p)

= w(p) + r
{
(1− κ)s+ κm(p) +K b(p, w)− w(p)

}
∆+ o(∆).

Applying this approximation to (??)–(??), cancelling the terms of order 0 in ∆,

dividing through by ∆, letting ∆ → 0 and recalling the notation c(p) = s − m(p)
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for the opportunity cost of playing risky, we obtain the coupled differential-difference

equations that appear in the following result.

Proposition 11 Let ρ > 0 or λ0 > 0. As ∆ → 0, the pair of functions (W
∆
,W∆)

converges uniformly (in p) to a pair of functions (w,w) solving

w(p) = s+ max
κ∈K(p)

κ [Nb(p, w)− c(p)] , (12)

w(p) = s+ min
κ∈K(p)

(N − 1)κ b(p, w) + max
k∈{0,1}

k [b(p, w)− c(p)] , (13)

where

K(p) =





{0} for p ≤ p̂,

{0, 1} for p̂ < p < 1,

{1} for p = 1,

(14)

and p̂ is as in parts (ii) and (iii) of Theorem ??.

This result is an immediate consequence of the previous results. It follows from

Sections ??–?? that, except when ρ = λ0 = 0, there exist pure-strategy SSEs and the

pair (W
∆
,W∆) converges uniformly to (VN,p̂, V

∗
1 ). It is straightforward to verify that

(w,w) = (VN,p̂, V
∗
1 ) solves (??)–(??). First, as V

∗
N satisfies23

V ∗
N(p) = s+ max

κ∈{0,1}
κ [Nb(p, V ∗

N )− c(p)] ,

with Nb(p, V ∗
N) − c(p) > 0 to the right of p∗N , (??) is trivially solved by V ∗

N whenever

p̂ = p∗N . Second, for p̂ > p∗N , the function VN,p̂ satisfies

VN,p̂(p) = s+ 1p>p̂ [Nb(p, VN,p̂)− c(p)] ,

with Nb(p;VN,p̂) − c(p) > 0 on (p̂, 1). This implies that VN,p̂ solves (??) when p̂ >

p∗N . Third, V ∗
1 always solves (??). In fact, as b(p;V ∗

1 ) ≥ 0 everywhere, we have

minκ∈{0,1}(N − 1)κ b(p, V ∗
1 ) = 0, and (??) with this minimum set to zero is just the

HJB equation for V ∗
1 .

Note that the continuous-time functional equations (??)–(??) would be equally easy

to solve for any arbitrary p̂ in (??). However, only the solution with p̂ as in Theorem

?? captures the asymptotics of our discretization of the experimentation game.

23This equation follows from the HJB equation in Section ??: because the maximand is linear in

K, the continuous-time planner finds it optimal to set K = 0 or K = N at any given belief.
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8 Concluding Comments

We have shown that the inefficiencies arising in strategic bandit problems are driven by

the solution concept, MPE. Inefficiencies entirely disappear when news has a Brownian

component or good news events are not too informative. The best PBE can be achieved

with an SSE, specifying a simple rule of conduct (unlike in an MPE), namely on-path

play of the cutoff type.

Of course, we do not expect the finding that SSE and PBE payoffs coincide to gen-

eralize to all symmetric stochastic games. For instance, SSE can be restrictive when ac-

tions are imperfectly monitored, as shown by Fudenberg, Levine and Takahashi (2007).

Nonetheless, SSE is a class of equilibria that both allows for “stick-and-carrot” incen-

tives, as in standard discrete-time repeated (or stochastic) games, but is also amenable

to continuous-time optimal control techniques, as illustrated by Proposition ?? (for a

given transversality condition that must be derived from independent considerations,

such as a discretized version of the game).

The information/payoff processes that we consider are a subset of those in Cohen

and Solan (2013). There, the size of a lump-sum payoff is allowed to contain information

about the state of world, so that the arrival of a discrete payoff increment makes the

belief jump to a posterior that depends on the size of the increment. As lump sums

of any size are assumed to arrive more frequently in state θ = 1, however, they are

always good news. For processes with an informative Brownian component, our proof

that risky play is incentive compatible immediately to the right of the threshold p∗N
only exploits the properties of the posterior belief process conditional on no lump sum

arriving. As these properties are the same whether lump sums are informative or not,

asymptotic efficiency in the presence of a Brownian component should obtain more

generally—and even when lump sums of certain sizes are bad news (meaning that they

are less frequent in state θ = 1). When learning is driven by lump-sum payoffs only,

inspection of equation (??) suggests that efficiency requires that a lump sum of any size

arriving at the initial belief p∗N lead to a posterior belief no higher than p∗1. This is a

constraint on the maximal amount of good news that a lump sum can carry; lump-sum

sizes that carry bad news should again be innocuous here.

The “breakdowns” variant of pure Poisson learning in Keller and Rady (2015) is one

of cost minimization. In our payoff-maximization setting, this corresponds to letting

both the safe flow payoff and the average size of lump-sum payoffs be negative with

λ1h < s < λ0h ≤ 0. Now, θ = 1 is the bad state of the world, and the efficient and

single-player solution cutoffs in continuous time satisfy p∗N > p∗1, with the stopping

region lying to the right of the cutoff in either case. The associated value functions
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V ∗
1 and V ∗

N solve the same HJB equations as in Section ??; except for the case λ0 = 0,

they are not available in closed form, however. Starting from p∗N , the belief now always

remains in the single-agent stopping region for small ∆: either there is a breakdown

and the belief jumps up to j(p∗N) > p∗N > p∗1, or there is no breakdown and the belief

slides down to somewhere close to p∗N , and hence still above p∗1. This means that the

harshest possible punishment, consisting of all other players playing safe forever, can

be meted out to any potential deviator, whether there is a breakdown or not. Thus,

we conjecture that asymptotic efficiency also obtains in this framework.

The intricacies of our proofs derive to some extent from specific features of the

benchmark models in the literature on strategic bandit problems: these are games of

informational externalities only, and safe play halts learning. In many applications,

payoff externalities are present as well, as might be background learning. Extraneous

instruments that players might have at their disposal in order to provide incentives

will certainly facilitate cooperation, and thus facilitate efficiency. Similarly, exogenous

learning, such as background learning, presumably helps with efficiency, as a deviating

player can never be too sure “what the future holds”. Nonetheless, such changes to

the model would blur our point that informational externalities by themselves suffice

for first-best to be achievable.

While the environment (perfect monitoring and lack of commitment) called for a

discretization of the game, and a meticulous analysis of the convergence of payoffs and

strategies as the mesh vanishes, one might wonder whether there is no shortcut to

perform the analysis in continuous time directly. For the case of pure Poisson learning,

an attempt to describe continuous-time strategies which achieve the extremal payoffs

can be found in Hörner et al. (2014, Appendix A). It involves an independent “Poisson

clock” that determines the random times at which play reverts to the normal state of

the automaton. However, we do not believe that there is an easy way to determine

optimality of such a strategy profile, as the key boundary condition that determines

how much experimentation takes place (independent of whether efficiency obtains)

seems difficult to identify in continuous time; and indeed, as discussed in footnote ??,

we cannot rule out that other discretizations might yield other boundary conditions.

Finally, our study is limited to solving for the best—and worst—average equilibrium

payoff across players. As we have stressed, the symmetry in the strategy profiles

that achieve these payoffs is a result, not an assumption. Nonetheless, it would be

interesting to characterize the entire equilibrium payoff set, especially in view of a

potential generalization to asymmetric games. For instance, what is the equilibrium

that maximizes player 1’s payoff, say? A careful analysis of this problem would take

us too far astray, but we note that the findings of this paper provide a foundation

31



for it, as a by-product of our findings is the minmax value of the game, and the

equilibrium strategies that support it. Since the game has observable actions, it is

also the punishment that should be used to support any Pareto efficient equilibrium,

leaving us with the task of identifying the equilibrium path of such equilibria.
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Appendix

A Auxiliary Results

A.1 Evolution of Beliefs

For the description of the evolution of beliefs, it is convenient to work with the log odds ratio

ℓt = ln
pt

1− pt
.

Suppose that starting from ℓ0 = ℓ, the players use the fixed action profile (k1, . . . , kN ) ∈
{0, 1}N . By Peskir and Shiryayev (2006, pp. 287–289 and 334–338), the log odds ratio at

time t > 0 is then

ℓt = ℓ+
∑

{n:kn=1}

{
α1 − α0

σ2
(Xn

t − α0t− hNn
t )−

[
(α1 − α0)

2

2σ2
+ λ1 − λ0

]
t+ ln

λ1
λ0
Nn

t

}
,

whereXn andNn are the payoff and Poisson processes, respectively, associated with player n’s

risky arm. The terms involving α1, α0 and σ capture learning from the continuous component,

Xn
t −hNn

t , of the payoff process, with higher realizations making the players more optimistic.

The terms involving λ1 and λ0 capture learning from lump-sum payoffs, with the players

becoming more pessimistic on average as long as no lump-sum arrives, and each arrival

increasing the log odds ratio by the fixed increment ln(λ1/λ0).
24

Under the probability measure Pθ associated with state θ ∈ {0, 1}, Xn
t −α0t−hNn

t is Gaus-

sian with mean (αθ−α0)t and variance σ2t, so that
∑

{n:kn=1}(α1−α0)σ
−2 (Xn

t − α0t− hNn
t )

is Gaussian with mean K(α1−α0)(αθ −α0)σ
−2t and variance Kρt, where K =

∑N
n=1 kn and

ρ = (α1−α0)
2σ−2. Conditional on the event that

∑
{n:kn=1}N

n
t = J , therefore, ℓt is normally

distributed with mean ℓ −K
(
λ1 − λ0 − ρ

2

)
t + J ln(λ1/λ0) and variance Kρt under P1, and

normally distributed with mean ℓ−K
(
λ1 − λ0 +

ρ
2

)
t+ J ln(λ1/λ0) and variance Kρt under

P0. Finally, the probability under measure Pθ that
∑

{n:kn=1}N
n
t = J equals (Kλθt)

J

J ! e−Kλθt

by the sum property of the Poisson distribution.

Taken together, these facts make it possible to explicitly compute the distribution of

pt =
eℓt

1 + eℓt

under the players’ measure Pp = pP1+(1−p)P0. As this explicit representation is not needed

in what follows, we omit it here.

Instead, we turn to the characterization of infinitesimal changes of pt, once more assuming

a fixed action profile with K players using the risky arm. Arguing as in Cohen and Solan

(2013, Section 3.3), one shows that, with respect to the players’ information filtration, the

24Here, λ1/λ0 is understood to be 1 when λ1 = λ0 = 0. When λ1 > λ0 = 0, we have ℓt = ∞ and

pt = 1 from the arrival time of the first lump-sum on.

33



process of posterior beliefs is a Markov process whose infinitesimal generator LK acts as

follows on real-valued functions v of class C2 on the open unit interval:

LKv(p) = K

{
ρ

2
p2(1− p)2v′′(p)− (λ1 − λ0)p(1− p)v′(p) + λ(p) [v(j(p)) − v(p)]

}
.

In particular, instantaneous changes in beliefs exhibit linearity in K in the sense that LK =

KL1.

By the very nature of Bayesian updating, finally, the process of posterior beliefs is a

martingale with respect to the players’ information filtration.

A.2 Payoff Functions

Our first auxiliary result concerns the function u(·;µN ) defined in Section ??.

Lemma A.1 δE∆
Ku(·;µN )(p) = δ1−

K
N u(p;µN ) for all ∆ > 0, K ∈ {1, . . . , N} and p ∈ (0, 1].

Proof: We simplify notation by writing u for u(·;µN ). Consider the process (pt) of posterior

beliefs in continuous time when p0 = p > 0 and K players use the risky arm. By Dynkin’s

formula,

E

[
e−rK∆/Nu(p∆)

]
= u(p) + E

[∫ ∆

0
e−rKt/N

{
LKu(pt)−

rK

N
u(pt)

}
dt

]

= u(p) +K E

[∫ ∆

0
e−rKt/N

{
L1u(pt)−

r

N
u(pt)

}
dt

]

= u(p),

where the last equality follows from the fact that L1u = ru/N on (0, 1].25 Thus, δK/NE∆
Ku(p) =

u(p).

We further note that E∆
Km(p) = m(p) for all K by the martingale property of beliefs and

the linearity of m in p.

These properties are used repeatedly in what follows. Their first application is in the proof

of uniform convergence of the discrete-time single-agent value function to its continuous-time

counterpart.

Let (W, ‖ · ‖) be the Banach space of bounded real-valued functions on [0, 1] equipped

with the supremum norm. Given ∆ > 0, and any w ∈ W, define a function T∆
1 w ∈ W by

T∆
1 w(p) = max

{
(1− δ)m(p) + δE∆

1 w(p), (1− δ)s + δw(p)
}
.

25To verify this identity, note that

u′(p) = − µN + p

p(1− p)
u(p), u′′(p) =

µN (µN + 1)

p2(1− p)2
u(p), u(j(p)) =

λ0
λ(p)

(
λ0
λ1

)µN

u(p),

and use the equation defining µN .
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The operator T∆
1 satisfies Blackwell’s sufficient conditions for being a contraction mapping

with modulus δ on (W, ‖ · ‖): monotonicity (v ≤ w implies T∆
1 v ≤ T∆

1 w) and discounting

(T∆
1 (w + c) = T∆

1 w + δc for any real number c). By the contraction mapping theorem, T∆
1

has a unique fixed point in W; this is the value function W∆
1 of an agent experimenting in

isolation.

The corresponding continuous-time value function is V ∗
1 as introduced in Section ??. As

any discrete-time strategy is feasible in continuous time, we trivially have W∆
1 ≤ V ∗

1 .

Lemma A.2 W∆
1 → V ∗

1 uniformly as ∆ → 0.

Proof: A lower bound forW∆
1 is given by the payoff functionW∆

∗ of a single agent who uses

the cutoff p∗1 in discrete time; this function is the unique fixed point in W of the contraction

mapping T∆
∗ defined by

T∆
∗ w(p) =

{
(1− δ)m(p) + δE∆

1 w(p) if p > p∗1,

(1− δ)s + δw(p) if p ≤ p∗1.

Next, choose p̆ < p∗1, and define p♮ =
p̆+p∗

1

2 and the function v = m+ Cu(·;µ1) + 1[0,p♮](s −
m− Cu(·;µ1)), where the constant C is chosen so that s = m(p̆) + Cu(p̆;µ1).

Fix ε > 0. As v converges uniformly to V ∗
1 as p̆ → p∗1, we can choose p̆ such that

v ≥ V ∗
1 − ε. It suffices now to show that there is a ∆̄ > 0 such that T∆

∗ v ≥ v for ∆ < ∆̄. In

fact, the monotonicity of T∆
∗ then implies W∆

∗ ≥ v and hence V ∗
1 − ε ≤ v ≤W∆

∗ ≤W∆
1 ≤ V ∗

1

for all ∆ < ∆̄.

For p ≤ p∗1, we have T∆
∗ v(p) = (1 − δ)s + δv(p) ≥ v(p) for all ∆, because v ≤ s in this

range. For p > p∗1,

T∆
∗ v(p) = (1− δ)m(p) + δE∆

1 v(p)

= (1− δ)m(p) + δE∆
1

[
m+Cu+ 1[0,p♮](s−m− Cu)

]
(p)

= v(p) + δE∆
1

[
1[0,p♮](s−m− Cu)

]
(p),

where the last equation uses that E∆
1 m(p) = m(p) and δE∆

1 u(p) = u(p). In particular,

T∆
∗ v(1) = v(1).

The function s − m − Cu is negative on the interval (0, p̆) and positive on (p̆, p♯), for

some p♯ > p∗1. The expectation of s −m(p∆) − Cu(p∆) conditional on p0 = p and p∆ ≤ p♮

is continuous in (p,∆) ∈ [p∗1, 1) × (0,∞) and converges to s −m(p♮) − Cu(p♮) > 0 as p → 1

or ∆ → 0 because the conditional distribution of p∆ becomes a Dirac measure at p♮ in either

limit. This implies existence of ∆̄ > 0 such that this conditional expectation is positive for

all (p,∆) ∈ [p∗1, 1) × (0, ∆̄). For these (p,∆), we thus have

E∆
1

[
1[0,p♮](s−m− Cu)

]
(p) ≥ E∆

1

[
1[p♭,p♮](s −m−Cu)

]
(p) ≥ 0,

where p♭ = p̌+p♮

2 . As a consequence, T∆
∗ v ≥ v for all (p,∆) ∈ (p∗1, 1)× (0, ∆̄).
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Next, we turn to the payoff function associated with the good state of the automaton

defined in Section ??. By the same arguments as invoked immediately before Lemma ??, w∆

is the unique fixed point in W of the operator T
∆

defined by

T
∆
w(p) =

{
(1− δ)m(p) + δE∆

Nw(p) if p > p,

(1− δ)s + δw(p) if p ≤ p.

Lemma A.3 Let p > p∗N . Then w∆ ≥ VN,p for ∆ sufficiently small.

Proof: Because of the monotonicity of the operator T
∆
, it suffices to show that T

∆
VN,p ≥

VN,p for sufficiently small ∆. Recall that for p > p, VN,p(p) = m(p) + Cu(p;µN ) where the

constant C > 0 is chosen to ensure continuity at p.

For p ≤ p, we use exactly the same argument as in the penultimate paragraph of the

proof of Lemma ??; for p > p, the argument is the same as in the last paragraph of that

proof.

The next two results concern the payoff function associated with the bad state of the

automaton defined in Section ??. Fix a cutoff p̄ ∈ (pm, 1) and let K(p) = N − 1 when p > p̄,

and K(p) = 0 otherwise. Given ∆ > 0, and any bounded function w on [0, 1], define a

bounded function T∆w by

T∆w(p) = max
{
(1− δ)m(p) + δE∆

K(p)+1w(p), (1− δ)s + δE∆
K(p)w(p)

}
.

The operator T∆ again satisfies Blackwell’s sufficient conditions for being a contraction map-

ping with modulus δ on W. Its unique fixed point in this space is the payoff function w∆

(introduced in Section ??) from playing a best response against N − 1 opponents who all

play risky when p > p̄, and safe otherwise.

Lemma A.4 Let p ∈ (p∗N , p
∗
1). Then there exists p⋄ ∈ [pm, 1) such that for all p̄ ∈ (p⋄, 1),

the inequality w∆ ≤ VN,(p+p∗
1
)/2 holds for ∆ sufficiently small.

Proof: Let p̃ = (p + p∗1)/2. For p > p̃, we have VN,p̃(p) = m(p) + Cu(p;µN ) where the

constant C > 0 is chosen to ensure continuity at p̃. To simplify notation, we write ṽ instead

of VN,p̃ and u instead of u(·;µN ).

For x > 0, we define

p∗x =
µx(s −m0)

(µx + 1)(m1 − s) + µx(s−m0)
,

where µx is the unique positive root of

f(µ;x) =
ρ

2
µ(µ+ 1) + (λ1 − λ0)µ + λ0

(
λ0
λ1

)µ

− λ0 −
r

x
;

existence and uniqueness of this root follow from continuity and monotonicity of f(·;x) to-

36



gether with the fact that f(0;x) < 0 while f(µ;x) → ∞ as µ → ∞.26 This extends our

previous definitions of µN and p∗N to non-integer numbers. It is immediate to verify now that
dµx

dx < 0 and hence dp∗x
dx < 0. Thus, there exists x̆ ∈ (1, N) such that p∗x̆ ∈ (p̃, p∗1).

Having chosen such an x̆, we fix a belief p̆ ∈ (p̃, p∗x̆) and, on the open unit interval, consider

the function v̆ that solves

L1v − r

x̆
(v −m) = 0

subject to the conditions v̆(p̆) = s and v̆′(p̆) = 0. This function has the form

v̆(p) = m(p) + ŭ(p),

with

ŭ(p) = A(1 − p)

(
1− p

p

)µ̆

+Bp

(
p

1− p

)µ̂

= Au(p; µ̆) +Bu(1− p; µ̂).

Here, µ̆ = µx̆ and µ̂ is the unique positive root of

g(µ;x) =
ρ

2
µ(µ+ 1)− (λ1 − λ0)µ + λ1

(
λ1
λ0

)µ

− λ1 −
r

x
;

existence and uniqueness of this root follow along the same lines as above.

The constants of integration A and B are pinned down by the conditions v̆(p̆) = s and

v̆′(p̆) = 0. One calculates that B > 0 if, and only if, p̆ < p∗x̆, which holds by construction,

and that A > 0 if, and only if,

p̆ <
(1 + µ̂)(s−m0)

µ̂(m1 − s) + (1 + µ̂)(s−m0)
.

The right-hand side of this inequality is decreasing in µ̂ and tends to pm as µ̂→ ∞. Therefore,

we can conclude that the inequality holds, and A > 0 as well. Moreover, A+B > 0 implies

that v̆ is strictly increasing and strictly convex on (p̆, 1); as B > 0, finally, v̆(p) → ∞ for

p→ 1.

So there exists a belief p♮ ∈ (p̆, 1) such that v̆(p♮) = ṽ(p♮) and v̆ > ṽ on (p♮, 1). We now

show that v̆ < ṽ in (p̆, p♮). Indeed, if this is not the case, then v̆ − ṽ assumes a non-negative

local maximum at some p♯ ∈ (p̆, p♮). This implies:

(i) v̆(p♯) ≥ ṽ(p♯), i.e.,

Au(p♯; µ̆) +Bu(1− p♯; µ̂) ≥ Cu(p♯;µN ); (A.1)

(ii) v̆′(p♯) = ṽ′(p♯), i.e.,

−(µ̆+ p♯)Au(p♯; µ̆) + (µ̂ + 1− p♯)Bu(1− p♯; µ̂) = −(µN + p♯)Cu(p♯;µN ); (A.2)

26Cf. Lemma 6 in Cohen & Solan (2013).
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and (iii) v̆′′(p♯) ≤ ṽ′′(p♯), i.e.,

µ̆(µ̆+ 1)Au(p♯; µ̆) + µ̂(1 + µ̂)Bu(1− p♯; µ̂) ≤ µN (µN + 1)Cu(p♯;µN ). (A.3)

Solving for Bu(1 − p♯; µ̂) in (??) and inserting the result into (??) and (??), we obtain,

respectively,
Cu(p♯;µN )

Au(p♯; µ̆)
≤ µ̆+ µ̂+ 1

µN + µ̂+ 1
,

and
Cu(p♯;µN )

Au(p♯; µ̆)
≥ µ̆(µ̆ + 1)(µ̂ + 1− p♯) + µ̂(µ̂+ 1)(µ̆ + p♯)

µN (µN + 1)(µ̂ + 1− p♯) + µ̂(µ̂ + 1)(µN + p♯)
.

This implies that

µ̆+ µ̂+ 1

µN + µ̂+ 1
≥ µ̆(µ̆ + 1)(µ̂ + 1− p♯) + µ̂(µ̂+ 1)(µ̆ + p♯)

µN (µN + 1)(µ̂ + 1− p♯) + µ̂(µ̂+ 1)(µN + p♯)
,

which one shows to be equivalent to µ̆ ≤ µN . But x̆ < N and dµx

dx < 0 imply µ̆ > µN . This

is the desired contradiction.

Now let p⋄ = max{pm, p♮}, fix p̄ ∈ (p⋄, 1) and define

v(p) =





ṽ(p) if p > p♮,

v̆(p) if p̆ ≤ p ≤ p♮,

s if p < p̆.

By construction, s ≤ v ≤ min{ṽ, v̆}. This immediately implies that (1 − δ)s + δv ≤ v. We

now show that T∆v ≤ v, and hence w∆ ≤ v, for ∆ sufficiently small.

First, let p ∈ (p̄, 1]. We have

(1− δ)m(p) + δE∆
N v(p) ≤ (1− δ)m(p) + δE∆

N

[
m+ Cu+ 1(0,p̆)(s−m− Cu)

]
(p)

= m(p) + Cu(p) + δE∆
N

[
1(0,p̆)(s−m− Cu)

]
(p)

≤ m(p) + Cu(p)

= v(p),

for ∆ small enough that E∆
N

[
1(0,p̆)(s−m− Cu)

]
(p̄) ≤ 0; that this inequality holds for small

∆ follows from the fact that s < m+ Cu on (p̃, p̆). By the same token,

(1− δ)s + δE∆
N−1v(p) ≤ (1− δ)s + δE∆

N−1(m+ Cu)(p) + δE∆
N−1

[
1(0,p̆)(s −m−Cu)

]
(p)

= (1− δ)s + δm(p) + δ
1

N Cu(p) + δE∆
N−1

[
1(0,p̆)(s−m− Cu)

]
(p)

≤ m(p) + Cu(p)

= v(p),

for ∆ small enough that E∆
N−1

[
1(0,p̆)(s −m− Cu)

]
(p̄) ≤ 0, as Cu(p) > 0 and s < m(p) for
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p > pm.

Second, let p ∈ (p♮, p̄]. Now, we have

(1− δ)m(p) + δE∆
1 v(p) ≤ m(p) + δ1−

1

NCu(p) + δE∆
1

[
1(0,p̆)(s−m− Cu)

]
(p)

≤ m(p) + Cu(p)

= v(p),

for ∆ small enough that E∆
1

[
1(0,p̆)(s−m− Cu)

]
(p♮) ≤ 0.

Third, let p ∈ [p̆, p♮]. In this case,

(1− δ)m(p) + δE∆
1 v(p) ≤ (1− δ)m(p) + δE∆

1 v̆(p)

= m(p) + δE∆
1 ŭ(p)

= m(p) + ŭ(p) + E

[∫ ∆

0
e−rt

{
L1ŭ(pt)− rŭ(pt)

}
dt

∣∣∣∣ p0 = p

]

≤ m(p) + ŭ(p) + E

[∫ ∆

0
e−rt

{
L1ŭ(pt)−

r

x̆
ŭ(pt)

}
dt

∣∣∣∣ p0 = p

]

= m(p) + ŭ(p)

= v(p),

where the second equality follows from Dynkin’s formula, the second inequality holds because

ŭ(pt) > 0 and x̆ > 1, and the third equality is a consequence of the identity L1ŭ− rŭ/x̆ = 0.

Finally, let p ∈ [0, p̆). By monotonicity of m and v (and the previous step), we see that

(1− δ)m(p) + δE∆
1 v(p) ≤ (1− δ)m(p̆) + δE∆

1 v(p̆) ≤ v(p̆) = s = v(p).

Lemma A.5 There exist p̌ ∈ (pm, 1) and p‡ ∈ (p∗N , p
∗
1) such that w∆(p) = s for all p̄ ∈ (p̌, 1),

p ≤ p‡ and ∆ > 0. For any ε > 0, moreover, there exists p̌ε ∈ (p̌, 1) such that w∆ ≤ V ∗
1 + ε

for all ∆ > 0.

Proof: Consider any p̄ ∈ (pm, 1) and an initial belief p < p̄. We obtain an upper bound on

w∆(p) by considering a modified problem in which (i) the player can choose a best response

in continuous time and (ii) the game is stopped with continuation payoff m1 as soon as the

belief p̄ is reached. This problem can be solved in the standard way, yielding an optimal

cutoff p‡. By construction, w∆ = s on [0, p‡]. As we take p̄ close to 1, p‡ approaches p∗1 from

the left and thus gets to lie strictly in between p∗N and p∗1. This proves the first statement.

The second follows from the fact that the value function of the modified problem converges

uniformly to V ∗
1 as p̄→ 1.

In the case of pure Poisson learning (ρ = 0), we need a sharper characterization of the

payoff function w∆ as ∆ becomes small. To this end, we define V1,p̄ as the continuous-time

counterpart to w∆. The methods employed in Keller and Rady (2010) can be used to establish

that V1,p̄ has the following properties for ρ = 0. First, there is a cutoff p† < pm such that

V1,p̄ = s on [0, p†], and V1,p̄ > s everywhere else. Second, V1,p̄ is continuously differentiable
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everywhere except at p̄. Third, V1,p̄ solves the Bellman equation

v(p) = max
{
m(p) + [K(p) + 1]b(p, v), s+K(p)b(p, v)

}
,

where

b(p, v) =
λ(p)

r
[v(j(p)) − v(p)]− λ1 − λ0

r
p(1− p) v′(p),

and v′(p) is taken to mean the left-hand derivative of v. Fourth, b(p, V1,p̄) ≥ 0 for all p. Fifth,

because of smooth pasting at p†, the term m(p) + b(p, V1,p̄) − s is continuous in p except at

p̄; it has a single zero at p†, being positive to the right of it and negative to the left. Finally,

we note that V1,p̄ = V ∗
1 and p† = p∗1 for p̄ = 1.

Lemma A.6 Let ρ = 0. Then V1,p̄ → V ∗
1 uniformly as p̄→ 1. The convergence is monotone

in the sense that p̄′ > p̄ implies V1,p̄′ < V1,p̄ on {p : s < V1,p̄(p) < λ1h}.

As the closed-form solutions for the functions in question make it straightforward to

establish this result, we omit the proof.

A key ingredient in the analysis of the pure Poisson case is uniform convergence of w∆

to V1,p̄ as ∆ → 0, which we establish by means of the following result.27

Lemma A.7 Let {T∆}∆>0 be a family of contraction mappings on the Banach space (W; ‖·‖)
with moduli {β∆}∆>0 and associated fixed points {w∆}∆>0. Suppose that there is a constant

ν > 0 such that 1 − β∆ = ν∆ + o(∆) as ∆ → 0. Then, a sufficient condition for w∆ to

converge in (W; ‖ · ‖) to the limit v as ∆ → 0 is that ‖T∆v − v‖ = o(∆).

Proof: As

‖w∆ − v‖ = ‖T∆w∆ − v‖ ≤ ‖T∆w∆ − T∆v‖+ ‖T∆v − v‖ ≤ β∆‖w∆ − v‖+ ‖T∆v − v‖,

the stated conditions on β∆ and ‖T∆v − v‖ imply

‖w∆ − v‖ ≤ ‖T∆v − v‖
1− β∆

=
∆f(∆)

ν∆+∆g(∆)
=

f(∆)

ν + g(∆)
,

with lim∆→0 f(∆) = lim∆→0 g(∆) = 0.

In our application of this lemma, W is again the Banach space of bounded real-valued

functions on the unit interval, equipped with the supremum norm. The operator in question

is T∆ as defined above; the corresponding moduli are β∆ = δ = e−r∆, so that ν = r.

Lemma A.8 Let ρ = 0. Then w∆ → V1,p̄ uniformly as ∆ → 0.

27To the best of our knowledge, the earliest appearance of this result in the economics literature is

in Biais et al. (2007). A related approach is taken in Sadzik and Stacchetti (2015).
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Proof: To simplify notation, we write v instead of V1,p̄. For K ∈ {0, 1, . . . , N}, a straight-

forward Taylor expansion of E∆
Kv with respect to ∆ yields

lim
∆→0

1

∆

∥∥δ E∆
Kv − v − r[Kb(·, v) − v]∆

∥∥ = 0. (A.4)

For p > p̄, we have K(p) = N − 1, and (??) implies

(1− δ)m(p) + δE∆
N v(p) = v(p) + r [m(p) +Nb(p, v)− v(p)]∆ + o(∆),

(1− δ)s + δE∆
N−1v(p) = v(p) + r [s+ (N − 1)b(p, v) − v(p)]∆ + o(∆).

As m(p) > s on [p̄, 1] and b(p, v) ≥ 0, there exists ξ > 0 such that

m(p) +Nb(p, v)− [s+ (N − 1)b(p, v)] > ξ,

on (p̄, 1]. Thus, T∆v(p) = (1 − δ)m(p) + δE∆
N v(p) for ∆ sufficiently small, and the fact that

v(p) = m(p) +Nb(p, v) now implies T∆v(p) = v(p) + o(∆) on (p̄, 1].

On [0, p̄], we have K(p) = 0, and (??) implies

∥∥(1− δ)m+ δE∆
1 v − v − r[m+ b(·, v) − v)∆

∥∥ = ∆ψR(∆), (A.5)
∥∥(1− δ)s + δE∆

0 v − v − r[s− v]∆
∥∥ = ∆ψS(∆), (A.6)

for some functions ψR, ψS : (0,∞) → [0,∞) that satisfy ψR(∆) → 0 and ψS(∆) → 0 as

∆ → 0.

First, let p ∈ (p†, p̄]. We note that T∆v(p) ≥ (1 − δ)m(p) + δE∆
1 v(p) ≥ v(p) −∆ψR(∆)

in this range, where the first inequality follows from the definition of T∆, and the second

inequality is implied by (??) and v(p) = m(p) + b(p, v) for p ∈ (p†, p̄]. If the maximum in

the definition of T∆v(p) is achieved by the risky action, the first in the previous chain of

inequalities holds as an equality, and (??) immediately implies that T∆v(p) = v(p) + o(∆).

If the maximum in the definition of T∆v(p) is achieved by the safe action, however, we have

T∆v(p) = (1 − δ)s + δE∆
0 v(p) ≤ v(p) + r[s − v(p)]∆ + ∆ψS(∆) ≤ v(p) + ∆ψS(∆), where

the second inequality follows from v > s on (p†, p̄]. Thus v(p) − ∆ψR(∆) ≤ T∆v(p) ≤
v(p) + ∆ψS(∆), and we can conclude that T∆v(p) = v(p) + o(∆) in this case as well.

Now, let p ≤ p†. We note that T∆v(p) ≥ (1 − δ)s + δE∆
0 v(p) ≥ v(p) − ∆ψS(∆) in this

range, where the first inequality follows from the definition of T∆, and the second inequality

is implied by (??) and v(p) = s for p ≤ p†. If the maximum in the definition of T∆v(p) is

achieved by the safe action, the first in the previous chain of inequalities holds as an equality,

and (??) immediately implies that T∆v(p) = v(p)+o(∆). If the maximum in the definition of

T∆v(p) is achieved by the risky action, however, we have T∆v(p) = (1− δ)m(p)+ δE∆
1 v(p) ≤

v(p) + r[m(p) + b(p, v) − v(p)]∆ + ∆ψR(∆) ≤ v(p) + ∆ψR(∆), where the second inequality

follows from v = s ≥ m(p) + b(p, v) on [0, p†]. Thus v(p) − ∆ψS(∆) ≤ T∆v(p) ≤ v(p) +

∆ψR(∆), and we can again conclude that T∆v(p) = v(p) + o(∆) in this case as well.
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Our last two auxiliary results pertain to the case of pure Poisson learning.

Lemma A.9 Let ρ = 0. There is a belief p̂ ∈ [p∗N , p
∗
1] such that

λ(p)
[
NVN,p(j(p))− (N − 1)V ∗

1 (j(p))− s
]
− rc(p)

is negative if 0 < p < p̂, zero if p = p̂, and positive if p̂ < p < 1. Moreover, p̂ = p∗N if, and

only if, j(p∗N ) ≤ p∗1, and p̂ = p∗1 if, and only if, λ0 = 0.

Proof: We start by noting that given the functions V ∗
1 and V ∗

N , the cutoffs p∗1 and p∗N are

uniquely determined by

λ(p∗1)[V
∗
1 (j(p

∗
1))− s] = rc(p∗1), (A.7)

and

λ(p∗N )[NV ∗
N (j(p∗N ))−Ns] = rc(p∗N ), (A.8)

respectively.

Consider the differentiable function f on (0, 1) given by

f(p) = λ(p)[NVN,p(j(p))− (N − 1)V ∗
1 (j(p))− s]− rc(p).

For λ0 = 0, we have j(p) = 1 and VN,p(j(p)) = V ∗
1 (j(p)) = m1 for all p, so f(p) =

λ(p)[V ∗
1 (j(p))− s]− rc(p), which is zero at p = p∗1 by (??), positive for p > p∗1, and negative

for p < p∗1.

Assume λ0 > 0. For 0 < p < p ≤ 1, we have VN,p(p) = m(p) + c(p)u(p;µN )/u(p;µN ).

Moreover, we have V ∗
1 (p) = s when p ≤ p∗1, and V

∗
1 (p) = m(p) + Cu(p;µ1) with a constant

C > 0 otherwise. Using the fact that

u(j(p);µ) =
λ0
λ(p)

(
λ0
λ1

)µ

u(p;µ),

we see that the term λ(p)NVN,p(j(p)) is actually linear in p. When j(p) ≤ p∗1, the term

−λ(p)(N − 1)V ∗
1 (j(p)) is also linear in p; when j(p) > p∗1, the nonlinear part of this term

simplifies to −(N−1)Cλµ1+1
0 u(p;µ1)/λ

µ1

1 . This shows that f is concave, and strictly concave

on the interval of all p for which j(p) > p∗1. As limp→1 f(p) > 0, this in turn implies that f

has at most one root in the open unit interval; if so, f assumes negative values to the left of

the root, and positive values to the right.

As VN,p∗
1
(j(p∗1)) > V ∗

1 (j(p
∗
1)), moreover, we have f(p∗1) > λ(p∗1)[V

∗
1 (j(p

∗
1))−s]−rc(p∗1) = 0

by (??). Any root of f must thus lie in [0, p∗1). If j(p∗N ) ≤ p∗1, then V ∗
1 (j(p

∗
N )) = s and

f(p∗N ) = λ(p∗N )[NV ∗
N (j(p∗N ))−Ns]− rc(p∗N ) = 0 by (??). If j(p∗N ) > p∗1, then V

∗
1 (j(p

∗
N )) > s

and f(p∗N) < 0, so f has a root in (p∗N , p
∗
1).

The following result is used in the proof of Proposition ??.

Lemma A.10 Let ρ = 0. Then µ1(µ1 + 1) > NµN (µN + 1).
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Proof: We change variables to β = λ0/λ1 and x = r/λ1, so that µN and µ1 are implicitly

defined as the positive solutions of the equations

x

N
+ β − (1− β)µN = βµN+1,

x+ β − (1 − β)µ1 = βµ1+1.

Fixing β ∈ [0, 1) and considering µN and µ1 as functions of x ∈ (0,∞), we obtain

µ′N =
N−1

1− β + βµN+1 ln β
=

N−1

1− β +
[
x
N + β − (1− β)µN

]
ln β

,

µ′1 =
1

1− β + βµ1+1 ln β
=

1

1− β + [x+ β − (1− β)µ1] ln β
.

(All denominators are positive because 1− β + βµ+1 ln β ≥ 1− β + β ln β > 0 for all µ ≥ 0.)

Let d = µ1(µ1 + 1) − NµN (µN + 1). As limx→0 µN = limx→0 µ1 = 0, we see that

limx→0 d = 0 as well. It is thus enough to show that d′ > 0 at any x > 0. This is the case if,

and only if, (2µ1 + 1)µ′1 > N(2µN + 1)µ′N , that is,

(2µ1+1)
{
1− β +

[
x
N + β − (1− β)µN

]
ln β

}
> (2µN+1) {1− β + [x+ β − (1− β)µ1] ln β} .

This inequality reduces to

(µ1 − µN )
{
2(1− β) +

[
2x
N + 1 + β

]
ln β

}
> (2µN + 1)

[
x− x

N

]
ln β.

It is straightforward to show that µ1 > µN + 1
1−β

[
x− x

N

]
. So d′ > 0 if

2(1− β) +
[
2x
N + 1 + β

]
lnβ > (2µN + 1)(1 − β) ln β,

which simplifies to 1−β+
[
x
N + β − (1− β)µN

]
ln β > 0 – an inequality that we have already

established.

B Proofs

B.1 Main Results (Theorem 1 and Propositions ??–??)

Proof of Theorem ??: For ρ > 0, this result is an immediate consequence of inequalities

(??), the fact that lim inf∆→0W
∆
PBE ≥ V ∗

1 and W
∆
PBE ≤ V ∗

N , and Proposition ??. For ρ = 0,

the result follows from inequalities (??), the fact lim inf∆→0W
∆
PBE ≥ V ∗

1 , and Propositions

?? and ??.

Proof of Proposition ??: Arguing as in Keller and Rady (2010), one establishes that

in the unique symmetric MPE of the continuous-time game, all experimentation stops at

the belief p̃N implicitly defined by rc(p̃N ) = λ(p̃N )[ṼN (j(p̃N ))− s], where ṼN is the players’
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common equilibrium payoff function. The equilibrium construction along the lines of Keller

and Rady (2010) further implies that VN,p̃N (j(p̃N )) > ṼN (j(p̃N )) > V ∗
1 (j(p̃N )), so that

NVN,p̃N (j(p̃N ))− (N − 1)V ∗
1 (j(p̃N )) > ṼN (j(p̃N )), and hence p̂ < p̃N by Lemma ??.

Proof of Proposition ??: We only need to consider the case that p̂ > p∗N .

Recall the defining equation for p̂ from Lemma ??,

λ(p̂)NVN,p̂(j(p̂))− λ(p̂)s− rc(p̂) = (N − 1)λ(p̂)V ∗
1 (j(p̂)).

We make use of the closed-form expression for VN,p̂ to rewrite its left-hand side as

Nλ(p̂)λ(j(p̂))h+Nc(p̂)[λ0 − µN (λ1 − λ0)]− λ(p̂)s.

Similarly, by noting that p̂ > p∗N implies j(p̂) > j(p∗N ) > p∗1, we can make use of the closed-

form expression for V ∗
1 to rewrite the right-hand side as

(N − 1)λ(p̂)λ(j(p̂))h+ (N − 1)c(p∗1)
u(p̂;µ1)

u(p∗1;µ1)
[r + λ0 − µ1(λ1 − λ0)].

Combining, we have

λ(p̂)λ(j(p̂))h+Nc(p̂)[λ0 − µN (λ1 − λ0)]− λ(p̂)s

(N − 1)[r + λ0 − µ1(λ1 − λ0)]c(p
∗
1)

=
u(p̂;µ1)

u(p∗1;µ1)
.

It is convenient to change variables to

β =
λ0
λ1

and y =
λ1
λ0

λ1h− s

s− λ0h

p̂

1− p̂
.

The implicit definitions of µ1 and µN imply

N =
β1+µ1 − β + µ1(1− β)

β1+µN − β + µN (1− β)
,

allowing us to rewrite the defining equation for p̂ as the equation F (y, µN ) = 0 with

F (y, µ) = 1− y + [β(1 + µ)y − µ]
1− β

β

β1+µ1 − β + µ1(1− β)

(µ1 − µ)(1− β) + β1+µ1 − β1+µ

− µµ1

1

(1 + µ1)1+µ1

y−µ1 .

As y is a strictly increasing function of p̂, we know from Lemma ?? that F (·, µN ) admits a

unique root, and that it is strictly increasing in a neighborhood of this root.

A straightforward computation shows that

∂F (y, µN )

∂µ
=

1− β

β

β1+µ1 − β + µ1(1− β)

((µ1 − µN )(1 − β) + β1+µ1 − β1+µN )2
ζ(y, µN ),
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with

ζ(y, µ) = β(1−β)(1+µ1)y− (1− β)µ1 +(1−βy)(β1+µ − β1+µ1)+β1+µ (β(1+µ)y−µ) ln β.

As p∗N < p̂ < p∗1, we have
µN

1 + µN
< βy <

µ1
1 + µ1

,

which implies

ζ(y, µ1) = (β(1 + µ1)y − µ1) (1− β + β1+µ1 ln β) < 0,

and
∂ζ(y, µ)

∂µ
= β1+µ[β(1 + µ)y − µ](ln β)2 > 0,

for all µ ∈ [µN , µ1]. This establishes ζ(y, µN ) < 0.

By the implicit function theorem, therefore, y is increasing in µN . Recalling from Keller

and Rady (2010) that µN is decreasing in N , we have thus shown that y (and hence p̂) are

decreasing in N .

Proof of Proposition ??: There is nothing to show for λ0 = 0. Using the same change

of variables as in the proof of Lemma ??, we fix β ∈ (0, 1), therefore, and define

q = β · 1 + µ−1
N

1 + µ−1
1

,

so that j(p∗N ) ≤ p∗1 if, and only if, q ≥ 1. As limx→∞ µN = limx→∞ µ1 = ∞, we have

limx→∞ q = β < 1. As limx→0 µN = limx→0 µ1 = 0, moreover,

lim
x→0

q = β lim
x→0

µ1
µN

= β lim
x→0

µ′1
µ′N

= βN

by l’Hôpital’s rule. Finally, q′ is easily seen to have the same sign as

−µ1(µ1 + 1)(1 − β + βµ1+1 lnβ) +NµN (µN + 1)(1− β + βµN+1 lnβ).

As βµ1+1 ln β > βµN+1 ln β, Lemma ?? implies that q decreases strictly in x. This in turn

implies that q < 1 at all x ∈ (0,∞) when βN ≤ 1, which proves the first part of the

proposition. Otherwise, there exists a unique x∗ ∈ (0,∞) at which q = 1. The second part

of the proposition thus holds with (λ∗1, λ
∗
0) = (r/x∗, βr/x∗).

It is straightforward to see that x varies continuously with β and that limβ→1/N x
∗ = 0.

So it remains to show that x∗ remains bounded as β → 1. Rewriting the defining equation

for x∗ as

1 +
1

(1− β)µ1(x∗(β), β)
=

1

(1− β)µN (x∗(β), β)
,

we see that (1 − β)µN (x∗(β), β) must stay bounded as β → 1. By the defining equation for

µN , x∗(β) must then also stay bounded.
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B.2 Learning with a Brownian Component (Propositions ??–

??)

The proof of Proposition ?? rests on a sequence of lemmas that prove incentive compatibility

of the proposed strategies on various subintervals of [0, 1]. When no assumption on the

signal-to-noise ratio ρ is stated, the respective result holds irrespectively of whether ρ > 0 or

ρ = 0.

In view of Lemmas ?? and ??, we take p and p̄ such that

p∗N < p < p‡ < p∗1 < pm < max{p⋄, p̌} < p̄ < 1. (B.9)

The first two lemmas deal with the safe action (κ = 0) on the interval [0, p̄].

Lemma B.1 For all p ≤ p‡,

(1− δ)s + δw∆(p) ≥ (1− δ)m(p) + δE∆
1 w

∆(p).

Proof: As w∆(p) ≥ s = w∆(p) for p ≤ p‡, we have (1 − δ)s + δw∆(p) ≥ s whereas

s ≥ (1− δ)m(p) + δE∆
1 w

∆(p) by the functional equation for w∆.

Lemma B.2 There exists ∆(p‡,p̄] > 0 such that

(1− δ)s + δw∆(p) ≥ (1− δ)m(p) + δE∆
1 w

∆(p),

for all p ∈ (p‡, p̄] and ∆ < ∆(p‡,p̄].

Proof: By Lemmas ?? and ??, there exist ν > 0 and ∆0 > 0 such that w∆(p)−w∆(p) ≥ ν

for all p ∈ [p‡, p̄] and ∆ < ∆0. Further, there is a ∆1 ∈ (0,∆0] such that |E∆
1 w

∆(p)−w∆(p)| ≤
ν
2 for all p ∈ [p‡, p̄] and ∆ < ∆1. For these p and ∆, we thus have

(1− δ)s + δw∆(p)−
[
(1− δ)m(p) + δE∆

1 w
∆(p)

]
≥ (1− δ)[s −m(p)] + δ

ν

2
.

Finally, there is a ∆(p‡,p̄] ∈ (0,∆1] such that the right-hand side of this inequality is positive

for all p ∈ (p‡, p̄] and ∆ < ∆̄.

We establish incentive compatibility of the risky action (κ = 1) to the immediate right of

p by means of the following result.

Lemma B.3 Let X be a Gaussian random variable with mean m and variance V .

1. For all η > 0,

P[X −m > η] <
V

η2
.

2. There exists V ∈ (0, 1) such that for all V < V ,

P

[
V

3

4 ≤ X −m ≤ V
1

4

]
≥ 1

2
− V

1

4 .
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Proof: The first statement is a trivial consequence of Chebysheff’s inequality. The proof of

the second relies on the following inequality (13.48) of Johnson et al. (1994) for the standard

normal cumulative distribution function:

1

2

[
1 + (1− e−x2/2)

1

2

]
≤ Φ(x) ≤ 1

2

[
1 + (1− e−x2

)
1

2

]
.

Letting ΦV denote the cdf of the Gaussian distribution with variance V (and mean 0), and

using the above upper and lower bounds, we have

1
2 +ΦV (V

3

4 )−ΦV (V
1

4 )
4
√
V

≤ 1−
√

1− e
− 1

2
√

V +
√

1− e−
√
V

2 4
√
V

.

Writing x =
√
V and using the fact that 1−√

1− y ≤ √
y for 0 ≤ y ≤ 1, moreover, we have

1−
√

1− e−
1

2x +
√
1− e−x

2
√
x

≤ 1

2

√
e−

1

2x

x
+

1

2

√
1− e−x

x
→ 1

2
,

as x→ 0. Thus,
1
2 +ΦV (V

3

4 )−ΦV (V
1

4 )
4
√
V

≤ 1,

for sufficiently small V , which is the second statement of the lemma.

We apply this lemma to the log odds ratio ℓ associated with the current belief p. For

later use, we note that dp/dℓ = p (1− p).

Lemma B.4 Let ρ > 0. There exist ε ∈ (0, p‡ − p) and ∆(p,p+ε] > 0 such that

(1− δ)m(p) + δE∆
Nw

∆(p) ≥ (1− δ)s + δE∆
N−1w

∆(p),

for all p ∈ (p, p + ε] and ∆ < ∆(p,p+ε].

Proof: Consider a belief p0 = p and the corresponding log odds ratio ℓ. Let K players

use the risky arm on the time interval [0,∆) and consider the resulting belief p
(K)
∆ and the

associated log odds ratio ℓ
(K)
∆ .

Let Pθ denote the probability measure associated with state θ ∈ {0, 1}. Expected contin-

uation payoffs are computed by means of the measure Pp = pP1 + (1− p)P0.

Let J∆
0 denote the event that no lump-sum arrives by time ∆. The probability of J∆

0

under the measure Pθ is e−λθ∆. Note that

e−λθ∆Pθ[A | J∆
0 ] ≤ Pθ[A] ≤ e−λθ∆Pθ[A | J∆

0 ] + 1− e−λθ∆,

for any event A.

As we have seen in Appendix ??, conditional on J∆
0 , the random variable ℓ

(K)
∆ is normally

distributed with mean ℓ − K
(
λ1 − λ0 − ρ

2

)
∆ and variance Kρ∆ under P1, and normally
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distributed with mean ℓ−K
(
λ1 − λ0 +

ρ
2

)
∆ and variance Kρ∆ under P0.

Now choose ε > 0 such that p + ε < p‡. Write ℓ, ℓε, ℓ
‡ and ℓ̄ for the log odds ratios

associated with p, p+ ε, p‡ and p̄, respectively. Choose ∆0 > 0 such that

ν0 = min
(∆,ℓ)∈[0,∆0]×[ℓ,ℓε]

[
ℓ‡ − ℓ+ (N − 1)

(
λ1 − λ0 −

ρ

2

)
∆
]2
> 0.

For all p ∈ (p, p + ε] and ∆ ∈ (0,∆0), the first part of Lemma ?? now implies

Pp

[
p
(N−1)
∆ > p‡

]
= Pp

[
ℓ
(N−1)
∆ > ℓ‡

]

≤ p
{
e−λ1∆P1

[
ℓ
(N−1)
∆ > ℓ‡

∣∣∣J∆
0

]
+ 1− e−λ1∆

}

+ (1− p)
{
e−λ0∆P0

[
ℓ
(N−1)
∆ > ℓ‡

∣∣∣ J∆
0

]
+ 1− e−λ0∆

}

≤ p

{
e−λ1∆(N − 1)ρ∆

ν0
+ 1− e−λ1∆

}

+ (1− p)

{
e−λ0∆(N − 1)ρ∆

ν0
+ 1− e−λ0∆

}

≤ (N − 1)ρ∆

ν0
+ 1− e−λ1∆

≤
{
(N − 1)ρ

ν0
+ λ1

}
∆.

As w∆ ≤ s+ (m1 − s)1(p‡,1], moreover,

E∆
N−1w

∆(p) ≤ s+ (m1 − s)Pp

[
p
(N−1)
∆ > p‡

]
.

So there exists C0 > 0 such that E∆
N−1w

∆(p) ≤ s+C0∆ for all p ∈ (p, p+ ε] and ∆ ∈ (0,∆0).

Next, define ν1 = minp≤p≤p̄ p (1− p) and note that for p ≤ p ≤ p̄ (and thus for ℓ ≤ ℓ ≤ ℓ̄),

VN,p(p) ≥ s+max
{
0, V ′

N,p(p+)(p − p)
}
≥ s+max

{
0, V ′

N,p(p+)ν1(ℓ− ℓ)
}
.

By the second part of Lemma ??, there exists ∆1 > 0 such that Nρ∆1 < 1 and

P1

[
(Nρ∆)

3

4 ≤ ℓ
(N)
∆ − ℓ+N

(
λ1 − λ0 −

ρ

2

)
∆ ≤ (Nρ∆)

1

4

∣∣∣J∆
0

]
≥ 1

2
− (Nρ∆)

1

4 ,

for arbitrary ℓ and all ∆ ∈ (0,∆1). In particular,

Pp

[
(Nρ∆)

3

4 ≤ ℓ
(N)
∆ − ℓ+N

(
λ1 − λ0 −

ρ

2

)
∆ ≤ (Nρ∆)

1

4

]

≥ pP1

[
(Nρ∆)

3

4 ≤ ℓ
(N)
∆ − ℓ+N

(
λ1 − λ0 −

ρ

2

)
∆ ≤ (Nρ∆)

1

4

]

≥ pe−λ1∆P1

[
(Nρ∆)

3

4 ≤ ℓ
(N)
∆ − ℓ+N

(
λ1 − λ0 −

ρ

2

)
∆ ≤ (Nρ∆)

1

4

∣∣∣ J∆
0

]

≥ pe−λ1∆

(
1

2
− (Nρ∆)

1

4

)
,
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for these ∆. Taking ∆1 smaller if necessary, we can also ensure that

ℓ < ℓ−N
(
λ1 − λ0 −

ρ

2

)
∆+ (Nρ∆)

3

4 < ℓ−N
(
λ1 − λ0 −

ρ

2

)
∆+ (Nρ∆)

1

4 < ℓ̄,

for all ℓ ∈ (ℓ, ℓε] and all ∆ ∈ (0,∆1).

By Lemma ??, there exists ∆2 ∈ (0,∆1) such that w∆ ≥ VN,p for ∆ ∈ (0,∆2). For such

∆ and p ∈ (p, p+ ε], we now have

E∆
Nw

∆(p) ≥ s+ pe−λ1∆

(
1

2
− (Nρ∆)

1

4

)
V ′
N,p(p+) ν1

[
ℓ−N

(
λ1 − λ0 −

ρ

2

)
∆+ (Nρ∆)

3

4 − ℓ
]

≥ s+ p(1− λ1∆)

(
1

2
− (Nρ∆)

1

4

)
V ′
N,p(p+) ν1

[
−N

(
λ1 − λ0 −

ρ

2

)
∆+ (Nρ∆)

3

4

]
.

This implies the existence of ∆3 ∈ (0,∆2) and C1 > 0 such that

E∆
Nw

∆(p) ≥ s+ C1∆
3

4 ,

for all p ∈ (p, p + ε] and ∆ ∈ (0,∆3).

For p ∈ (p, p + ε] and ∆ ∈ (0,min{∆0,∆3}), finally,

(1− δ)m(p) + δE∆
Nw

∆(p)−
[
(1− δ)s + δE∆

N−1w
∆(p)

]

≥ (1− δ)[m(p)− s] + δ
{
C1∆

3

4 − C0∆
}

= C1∆
3

4 −
{
r[s−m(p)] +C0

}
∆+ o(∆).

As the term in ∆
3

4 dominates as ∆ becomes small, there exists ∆(p,p+ε] ∈ (0,min{∆0,∆3})
such that this expression is positive for all p ∈ (p, p+ ε] and ∆ < ∆(p,p+ε].

Lemma B.5 For all ε ∈ (0, p‡ − p), there exists ∆(p+ε,p̄] > 0 such that

(1− δ)m(p) + δE∆
Nw

∆(p) ≥ (1− δ)s + δE∆
N−1w

∆(p),

for all p ∈ (p + ε, p̄] and ∆ < ∆(p+ε,p̄].

Proof: First, by Lemma ??, there exists ∆0 > 0 such that w∆ ≥ VN,p on the unit

interval. Second, by Lemma ??, there exist ν > 0, η > 0 and ∆1 ∈ (0,∆0) such that

VN,p(p) − w∆(p) ≥ ν for all p ∈ [p + ε
2 , p̄ + η] and ∆ < ∆1. For these p and ∆, and by

convexity of VN,p, we then have

E∆
Nw

∆(p)− E∆
N−1w

∆(p) ≥ E∆
NVN,p(p)− E∆

N−1w
∆(p)

≥ E∆
N−1VN,p(p)− E∆

N−1w
∆(p)

≥ χ∆(p)ν + [1− χ∆(p)](s −m1),

where χ∆(p) denotes the probability that the belief pt+∆ lies in [p+ ε
2 , p̄+η] given that pt = p

and N − 1 players use the risky arm for a length of time ∆. Next, there exists ∆2 ∈ (0,∆1)
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such that

χ∆(p) ≥
ν
2 +m1 − s

ν +m1 − s
,

for all p ∈ (p + ε, p̄] and ∆ < ∆2. For these p and ∆, we thus have

(1− δ)m(p) + δE∆
Nw

∆(p)−
[
(1− δ)s + δE∆

N−1w
∆(p)

]
≥ (1− δ)[m(p)− s] + δ

ν

2
.

Finally, there is a ∆(p+ε,p̄] ∈ (0,∆2) such that the right-hand side of this inequality is positive

for all p ∈ (p + ε, p̄] and ∆ < ∆(p+ε,p̄].

Lemma B.6 There exists ∆(p̄,1] > 0 such that

(1− δ)m(p) + δE∆
Nw

∆(p) ≥ (1− δ)s + δE∆
N−1w

∆(p),

for all p > p̄ and ∆ < ∆(p̄,1].

Proof: By Lemmas ?? and ??, there exists ∆(p̄,1] > 0 such that w∆ ≥ w∆ for all ∆ < ∆(p̄,1].

For such ∆ and all p > p̄, we thus have

(1− δ)m(p) + δE∆
Nw

∆(p) = w∆(p) ≥ w∆(p) ≥ (1− δ)s + δE∆
N−1w

∆(p),

with the last inequality following from the functional equation for w∆.

Proof of Proposition ??: Given p and p̄ as in (??), choose ε > 0 and ∆(p,p+ε] as in

Lemma ??, and ∆(p‡,p̄], ∆(p+ε,p̄] and ∆(p̄,1] as in Lemmas ??, ?? and ??. The two-state

automaton is an SSE for all

∆ < min
{
∆(p‡,p̄],∆(p,p+ε],∆(p+ε,p̄],∆(p̄,1]

}
.

So the statement of the proposition holds with p♭ = p‡ and p♯ = max{p̌, p⋄}.

Proof of Proposition ??: Let ε > 0 be given. First, the explicit representation for

VN,p in Section ?? and Lemma ?? allow us to choose p ∈ (p∗N , p
♭) and p̄ ∈ (p♯, 1) such that

VN,p > V ∗
N−ε and w∆ < V ∗

1 +ε for all ∆ > 0. Second, Lemmas ?? and ?? and Proposition ??

imply the existence of a ∆† > 0 such that for all ∆ ∈ (0,∆†): W∆
1 > V ∗

1 − ε, w∆ ≥ VN,p, and

w∆ and w∆ are SSE payoff functions of the game with period length ∆. Third, W
∆
PBE ≤ V ∗

N

for all ∆ > 0 because any discrete-time strategy profile is feasible for a planner who maximizes

the players’ average payoff in continuous time.

For ∆ ∈ (0,∆†), we thus have

V ∗
N − ε < VN,p ≤ w∆ ≤W

∆
SSE ≤W

∆
PBE ≤ V ∗

N ,

and

V ∗
1 − ε < W∆

1 ≤W∆
PBE ≤W∆

SSE ≤ w∆ < V ∗
1 + ε,
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so that ‖W∆
PBE − V ∗

N‖, ‖W∆
SSE − V ∗

N‖, ‖W∆
PBE − V ∗

1 ‖ and ‖W∆
SSE − V ∗

1 ‖ are all smaller than

ε, which was to be shown.

B.3 Pure Poisson Learning (Propositions ??–??)

Proof of Proposition ??: For any given ∆ > 0, let p̃∆ be the infimum of the set of

beliefs at which there is some PBE that gives a payoff wn(p) > s to at least one player. Let

p̃ = lim inf∆→0 p̃
∆.

For any fixed ε > 0 and ∆ > 0, consider the problem of maximizing the players’ average

payoff subject to no use of the risky arm at beliefs p ≤ p̃− ε. Denote the corresponding value

function by W̃∆,ε. By the definition of p̃, there exists a ∆̃ε > 0 such that for ∆ ∈ (0, ∆̃ε),

the function W̃∆,ε provides an upper bound on the players’ average payoff in any PBE, and

so W
∆
PBE ≤ W̃∆,ε. The value function of the continuous-time version of this maximization

problem is VN,pε with pε = max{p̃ − ε, p∗N}. As the discrete-time solution is also feasible in

continuous time, we have W̃∆,ε ≤ VN,pε , and hence W
∆
PBE ≤ VN,pε for ∆ < ∆̃ε.

Consider a sequence of such ∆’s converging to 0 such that the corresponding beliefs p̃∆

converge to p̃. For each ∆ in this sequence, select a belief p∆ > p̃∆ with the following two

properties: (i) starting from p∆, a single failed experiment takes us below p̃∆; (ii) given the

initial belief p∆, there exists a PBE for reaction lag ∆ in which at least one player plays risky

with positive probability in the first round. Select such an equilibrium for each ∆ in the

sequence and let L∆ be the number of players in this equilibrium who, at the initial belief

p∆, play risky with positive probability. Let L be an accumulation point of the sequence of

L∆’s. After selecting a subsequence of ∆’s, we can assume without loss of generality that

player n = 1, . . . , L plays risky with probability π∆n > 0 at p∆, while player n = L+1, . . . , N

plays safe; we can further assume that (π∆n )Ln=1 converges to a limit (πn)
L
n=1 in [0, 1]L.

For player n = 1, . . . , L to play optimally at p∆, it must be the case that

(1− δ)
[
π∆n λ(p

∆)h+ (1− π∆n )s
]
+ δ



Pr∆(∅)w∆

n,∅ +
L∑

K=1

∑

|I|=K

Pr∆(I)
∞∑

J=0

Λ∆
J,K(p∆)w∆

n,I,J





≥ (1− δ)s + δ



Pr∆−n(∅)w∆

n,∅ +
L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)

∞∑

J=0

Λ∆
J,K(p∆)w∆

n,I,J



 ,

where we write Pr∆(I) for the probability that the set of players experimenting is I ⊆
{1, . . . , L}, Pr∆−n(I) for the probability that among the L − 1 players in {1, · · · , L} \ {n}
the set of players experimenting is I, and w∆

n,I,J for the conditional expectation of player

n’s continuation payoff given that exactly the players in I were experimenting and had J

successes (w∆
n,∅ is player n’s continuation payoff if no one was experimenting). As Pr∆(∅) =

(1 − π∆n )Pr∆−n(∅) ≤ Pr∆−n(∅), the inequality continues to hold when we replace w∆
n,∅ by its
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lower bound s. After subtracting (1− δ)s from both sides, we then have

(1− δ)π∆n
[
λ(p∆)h− s

]
+ δ



Pr∆(∅)s +

L∑

K=1

∑

|I|=K

Pr∆(I)
∞∑

J=0

Λ∆
J,K(p∆)w∆

n,I,J





≥ δ



Pr∆−n(∅)s +

L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)

∞∑

J=0

Λ∆
J,K(p∆)w∆

n,I,J



 .

Summing up these inequalities over n = 1, . . . , L and writing π̄∆ = 1
L

∑L
n=1 π

∆
n yields

(1− δ)Lπ̄∆
[
λ(p∆)h− s

]
+ δ



Pr∆(∅)Ls +

L∑

K=1

∑

|I|=K

Pr∆(I)

∞∑

J=0

Λ∆
J,K(p∆)

L∑

n=1

w∆
n,I,J





≥ δ





L∑

n=1

Pr∆−n(∅)s +
L∑

n=1

L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)

∞∑

J=0

Λ∆
J,K(p∆)w∆

n,I,J



 .

By construction, w∆
n,I,0 = s whenever I 6= ∅. For |I| = K > 0 and J > 0, moreover, we have

w∆
n,I,J ≥W∆

1 (B∆
J,K(p∆)) for all players n = 1, . . . , N , and hence

L∑

n=1

w∆
n,I,J ≤ NW

∆
PBE(B

∆
J,K(p∆))− (N − L)W∆

1 (B∆
J,K(p∆))

≤ NVN,pε(B
∆
J,K(p∆))− (N − L)W∆

1 (B∆
J,K(p∆)).

So, for the preceding inequality to hold, it is necessary that

(1− δ)Lπ̄∆
[
λ(p∆)h− s

]
+ δ



Pr∆(∅)Ls +

L∑

K=1

∑

|I|=K

Pr∆(I)Λ∆
0,K(p∆)Ls

+
L∑

K=1

∑

|I|=K

Pr∆(I)
∞∑

J=1

Λ∆
J,K(p∆)

[
NVN,pε(B

∆
J,K(p∆))− (N − L)W∆

1 (B∆
J,K(p∆))

]




≥ δ





L∑

n=1

Pr∆−n(∅)s +
L∑

n=1

L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)Λ

∆
0,K(p∆)s

+

L∑

n=1

L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)

∞∑

J=1

Λ∆
J,K(p∆)W∆

1 (B∆
J,K(p∆))



 .

As

Pr∆(∅) +
L∑

K=1

∑

|I|=K

Pr∆(I) = 1 and

L∑

K=1

∑

|I|=K

Pr∆(I)K = Lπ̄∆,
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we have the first-order expansions

Pr∆(∅) +
L∑

K=1

∑

|I|=K

Pr∆(I)Λ∆
0,K(p∆)

= Pr∆(∅) +
L∑

K=1

∑

|I|=K

Pr∆(I)
(
1−Kλ(p∆)∆

)
+ o(∆)

= 1− Lπ̄∆λ(p∆)∆ + o(∆),

and

L∑

K=1

∑

|I|=K

Pr∆(I)Λ∆
1,K(p∆) =

L∑

K=1

∑

|I|=K

Pr∆(I)Kλ(p∆)∆ + o(∆) = Lπ̄∆λ(p∆)∆ + o(∆),

so, by uniform convergence W∆
1 → V ∗

1 (Lemma ??), the left-hand side of the last inequality

expands as

Ls+ L

{
rπ̄ [λ(p̃)h− s]− rs+ π̄λ(p̃) [NVN,pε(j(p̃))− (N−L)V ∗

1 (j(p̃))− Ls]

}
∆+ o(∆),

with π̄ = lim∆→0 π̄
∆. In the same way, the identities

Pr∆−n(∅) +
L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I) = 1 and

L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)K = Lπ̄∆ − π∆n

imply

L∑

n=1

Pr∆−n(∅) +
L∑

n=1

L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)Λ

∆
0,K(p∆) = L− L(L− 1)π̄∆λ(p∆)∆ + o(∆),

and
L∑

n=1

L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)Λ

∆
1,K(p∆) = L(L− 1)π̄∆λ(p∆)∆ + o(∆),

and so the right-hand side of the inequality expands as

Ls+ L
{
− rs+ (L− 1)π̄λ(p̃) [V ∗

1 (j(p̃))− s]
}
∆+ o(∆).

Comparing terms of order ∆, dividing by L and letting ε→ 0, we obtain

π̄
{
λ(p̃)

[
NVN,p̆(j(p̃))− (N−1)V ∗

1 (j(p̃))− s
]
− rc(p̃)

}
≥ 0.

By Lemma ??, this means p̃ ≥ p̂ whenever π̄ > 0.
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For the case that π̄ = 0, we write the optimality condition for player n ∈ {1, . . . , L} as

(1− δ)λ(p∆)h+ δ





L−1∑

K=0

∑

|I|=K,n 6∈I
Pr∆−n(I)

∞∑

J=0

Λ∆
J,K+1(p

∆)w∆
n,I∪̇{n},J





≥ (1− δ)s + δ



Pr∆−n(∅)w∆

n,∅ +
L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)

∞∑

J=0

Λ∆
J,K(p∆)w∆

n,I,J



 .

As above, w∆
n,∅ ≥ s, and w∆

n,I,0 = s whenever I 6= ∅. For |I| = K > 0 and J > 0, more-

over, we have w∆
n,I,J ≥ W∆

1 (B∆
J,K(p∆)), w∆

n,I∪̇{n},J ≥ W∆
1 (B∆

J,K+1(p
∆)) and w∆

n,I∪̇{n},J ≤
NVN,pε(B

∆
J,K+1(p

∆))− (N − 1)W∆
1 (B∆

J,K+1(p
∆)). So, for the optimality condition to hold, it

is necessary that

(1− δ)λ(p∆)h+ δ





L−1∑

K=0

∑

|I|=K,n 6∈I
Pr∆−n(I)Λ

∆
0,K+1(p

∆)s

+

L−1∑

K=0

∑

|I|=K,n 6∈I
Pr∆−n(I)

∞∑

J=1

Λ∆
J,K+1(p

∆)
[
NVN,pε(B

∆
J,K+1(p

∆))− (N−1)W∆
1 (B∆

J,K+1(p
∆))

]




≥ (1− δ)s + δ



Pr∆−n(∅)s +

L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)Λ

∆
0,K(p∆)s

+
L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)

∞∑

J=1

Λ∆
J,K(p∆)W∆

1 (B∆
J,K(p∆))



 .

Now,
L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)K = Lπ̄∆ − π∆n → 0,

as ∆ vanishes. Therefore, the left-hand side of the above inequality expands as

s+

{
r [λ(p̃)h− s] + λ(p̃) [NVN,pε(j(p̃))− (N−1)V ∗

1 (j(p̃))− s]

}
∆+ o(∆),

and the right-hand side as s + o(∆). Comparing terms of order ∆, letting ε → 0 and using

Lemma ?? once more, we again obtain p̃ ≥ p̂.

The statement about the range of experimentation now follows immediately from the fact

that for ∆ < ∆̃ε, we haveW
∆
PBE ≤ VN,pε , and henceW

∆
PBE = VN,pε = s on [0, p̃−ε] ⊇ [0, p̂−ε].

The statement about the supremum of equilibrium payoffs follows from the inequality

W
∆
PBE ≤ VN,pε for ∆ < ∆̃ε, convergence VN,pε → VN,p̃ as ε → 0, and the inequality VN,p̃ ≤

VN,p̂.

We now turn to the proof of Proposition ??. The only difference to the case with a

Brownian component is the proof of incentive compatibility to the immediate right of p.
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In view of Lemmas ??, ?? and ??, we consider p and p̄ such that

p̂ < p < p‡ < p∗1 < pm < max{p⋄, p̌} < p̄ < 1. (B.10)

Lemma B.7 Let ρ = 0 and λ0 > 0. There exists p♯ ∈ (max{p⋄, p̌}, 1) such that for all

p̄ ∈ (p♯, 1), there exist ε ∈ (0, p‡ − p) and ∆(p,p+ε] > 0 such that

(1− δ)m(p) + δE∆
Nw

∆(p) ≥ (1− δ)s + δE∆
N−1w

∆(p),

for all p ∈ (p, p + ε] and ∆ < ∆(p,p+ε].

Proof: By Lemma ??, there exists ∆0 > 0 such that w∆ ≥ VN,p for ∆ ∈ (0,∆0).

By Lemma ??,

λ(p)[NVN,p(j(p)) − (N − 1)V ∗
1 (j(p)) − s]− rc(p) > 0

on [p, 1]. As VN,p(j(p)) ≤ VN,p(j(p)) for p ≥ p, this implies

λ(p)[NVN,p(j(p)) − (N − 1)V ∗
1 (j(p)) − s]− rc(p) > 0

on [p, 1]. By Lemma ??, there exists a belief p♯ > max{p⋄, p̌} such that for all p̄ > p♯,

λ(p)[NVN,p(j(p)) − (N − 1)V1,p̄(j(p)) − s]− rc(p) > 0

on [p, 1]. Fix a p̄ ∈ (p♯, 1), define

ν = min
p∈[p,1]

{
λ(p)[NVN,p(j(p)) − (N − 1)V1,p̄(j(p)) − s]− rc(p)

}
> 0,

and choose ε > 0 such that p+ ε < p‡ and

(Nλ(p + ε) + r)
[
VN,p(p+ ε)− s

]
< ν/3.

In the remainder of the proof, we write pKJ for the posterior belief starting from p when

K players use the risky arm and J lump-sums arrive within the length of time ∆.

For p ∈ (p, p + ε] and ∆ ∈ (0,∆0),

(1− δ)m(p) + δE∆
Nw

∆(p)

≥ (1− δ)m(p) + δE∆
N VN,p(p)

= r∆m(p) + (1− r∆)
{
Nλ(p)∆VN,p(p

N
1 ) + (1−Nλ(p)∆)VN,p(p

N
0 )

}
+O(∆2)

= VN,p(p
N
0 ) +

{
rm(p) +Nλ(p)VN,p(p

N
1 )− (Nλ(p) + r)VN,p(p

N
0 )

}
∆+O(∆2),
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while

(1− δ)s + δE∆
N−1w

∆(p)

= r∆ s+ (1− r∆)
{
(N − 1)λ(p)∆w∆(pN−1

1 ) + [1− (N − 1)λ(p)∆]w∆(pN−1
0 )

}
+O(∆2)

= w∆(pN−1
0 ) +

{
rs+ (N − 1)λ(p)w∆(pN−1

1 )− [(N − 1)λ(p) + r]w∆(pN−1
0 )

}
∆+O(∆2).

As VN,p(p
N
0 ) ≥ s = w∆(pN−1

0 ), the difference (1−δ)m(p)+δE∆
Nw

∆(p)−
[
(1− δ)s + δE∆

N−1w
∆(p)

]

is no smaller than ∆ times

λ(p)
[
NVN,p(p

N
1 )− (N − 1)w∆(pN−1

1 )− s
]
− rc(p)− (Nλ(p) + r)

[
VN,p(p

N
0 )− s

]
,

plus terms of order ∆2 and higher.

Let ξ = ν
6(N−1)λ1

. By Lemma ?? as well as Lipschitz continuity of VN,p and V1,p̄,

there exists ∆1 ∈ (0,∆0) such that ‖w∆ − V1,p̄‖, maxp≤p≤p‡ |VN,p(p
N
1 ) − VN,p(j(p))| and

maxp≤p≤p‡ |V1,p̄(pN−1
1 ) − V1,p̄(j(p))| are all smaller than ξ when ∆ < ∆1. For such ∆ and

p ∈ (p, p‡], we thus have VN,p(p
N
1 ) > VN,p(j(p)) − ξ and w∆(pN−1

1 ) < V1,p̄(j(p)) + 2ξ, so that

the expression displayed above is larger than ν − 2(N − 1)λ(p)ξ − ν/3 > ν/3. This implies

existence of a ∆(p,p+ε] ∈ (0,∆1) as in the statement of the lemma.

Proof of Proposition ??: Given p as in (??), take p♯ as in Lemma ?? and fix p̄ > p♯.

Choose ε > 0 and ∆(p,p+ε] as in Lemma ??, and ∆(p‡,p̄], ∆(p+ε,p̄] and ∆(p̄,1] as in Lemmas ??,

?? and ??. The two-state automaton is an SSE for all

∆ < min
{
∆(p‡,p̄],∆(p,p+ε],∆(p+ε,p̄],∆(p̄,1]

}
.

So the statement of the proposition holds with p♭ = p‡ and the chosen p♯.

For the proof of Proposition ??, we modify notation slightly, writing Λ for the probability

that, conditional on θ = 1, a player has at least one success on his own risky arm in any given

round, and g for the corresponding expected payoff per unit of time.28

Consider an SSE played at a given prior p, with associated payoff W . If K ≥ 1 players

unsuccessfully choose the risky arm, the belief jumps down to a posterior denoted pK . Note

that an SSE allows the continuation play to depend on the identity of these players. Taking

the expectation over all possible combinations of K players who experiment, however, we

can associate with each posterior pK , K ≥ 1, an expected continuation payoff WK . If

K = 0, so that no player experiments, the belief does not evolve, but there is no reason

that the continuation strategies (and so the payoff) should remain the same. We denote

the corresponding payoff by W0. In addition, we write π ∈ [0, 1] for the probability with

which each player experiments at p, and qK for the probability that at least one player has a

success, given p, when K of them experiment. The players’ common payoff must then satisfy

28I.e., Λ = 1− e−λ1∆ and g = m1.
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the following optimality equation:

W = max

{
(1− δ)p0g + δ

N−1∑

K=0

(
N − 1

K

)
πK(1− π)N−1−K [qK+1g + (1− qK+1)WK+1)] ,

(1− δ)s + δ

N−1∑

K=1

(
N − 1

K

)
πK(1− π)N−1−K(qKg + (1− qK)WK) + δ(1 − π)N−1W0)

}
.

The first term corresponds to the payoff from playing risky, the second from playing safe.

As it turns out, it is more convenient to work with odds ratios

ω =
p

1− p
and ωK =

pK
1− pK

,

which we refer to as “belief” as well. Note that

pK =
p (1− ω)K

p (1− ω)K + 1− p

implies that ωK = (1− Λ)Kω. Note also that

1− qK = p (1− Λ)K + 1− p = (1− p)(1 + ωK), qK = p− (1− p)ωK = (1− p)(ω − ωK).

We define

m =
s

g − s
, υ =

W − s

(1− p)(g − s)
, υK =

WK − s

(1− pK)(g − s)
.

Note that υ ≥ 0 in any equilibrium, as s is a lower bound on the value. Simple computations

now give

υ = max

{
ω − (1− δ)m + δ

N−1∑

K=0

(
N − 1

K

)
πK(1− π)N−1−K(υK+1 − ωK+1) ,

δω + δ
N−1∑

K=0

(
N − 1

K

)
πK(1− π)N−1−K(υK − ωK)

}
.

It is also useful to introduce w = υ − ω and wK = υK − ωK . We then obtain

w = max

{
−(1− δ)m+ δ

N−1∑

K=0

(
N − 1

K

)
πK(1− π)N−1−KwK+1 ,

−(1− δ)ω + δ
N−1∑

K=0

(
N − 1

K

)
πK(1− π)N−1−KwK

}
. (B.11)

We define

ω∗ =
m

1 + δ
1−δΛ

.

This is the odds ratio corresponding to the single-agent cutoff p∆1 , i.e., ω
∗ = p∆1 /(1 − p∆1 ).
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Note that p∆1 > p∗1 for ∆ > 0.

As stated in Section ??, no PBE involves experimentation below p∆1 or, in terms of odds

ratios, ω∗. For all beliefs ω < ω∗, therefore, any equilibrium has w = −ω, or υ = 0, for each

player.

Proof of Proposition ??: Following terminology from repeated games, we say that we

can enforce action π ∈ {0, 1} at belief ω if we can construct an SSE for the prior belief ω in

which players prefer to choose π in the first round rather than deviate unilaterally.

Our first step is to derive sufficient conditions for enforcement of π ∈ {0, 1}. The condi-

tions to enforce these actions are intertwined, and must be derived simultaneously.

Enforcing π = 0 at ω. To enforce π = 0 at ω, it suffices that one round of using the safe

arm followed by the best equilibrium payoff at ω exceeds the payoff from one round of using

the risky arm followed by the resulting continuation payoff at belief ω1 (as only the deviating

player will have experimented). See below for the precise condition.

Enforcing π = 1 at ω. If a player deviates to π = 0, we jump to wN−1 rather than wN in

case all experiments fail. Assume that at ωN−1 we can enforce π = 0. As explained above,

this implies that at ωN−1, a player’s continuation payoff can be pushed down to what he

would get by unilaterally deviating to experimentation, which is at most −(1 − δ)m + δwN

where wN is the highest possible continuation payoff at belief ωN . To enforce π = 1 at ω, it

then suffices that

w = −(1− δ)m+ δwN ≥ −(1− δ)ω + δ(−(1 − δ)m+ δwN ),

with the same continuation payoff wN on the left-hand side of the inequality. The inequality

simplifies to

δwN ≥ (1− δ)m− ω;

by the formula for w, this is equivalent to w ≥ −ω, i.e., υ ≥ 0. Given that

υ = ω − (1− δ)m+ δ(υN − ωN) = (1− δ(1 − Λ)N )ω − (1− δ)m+ δυN ,

to show that υ ≥ 0, it thus suffices that

ω ≥ m

1 + δ
1−δ (1− (1− Λ)N )

= ω̃,

and that υN ≥ 0, which is necessarily the case if υN is an equilibrium payoff. Note that

(1 − Λ)N ω̃ ≤ ω∗, so that ωN ≥ ω∗ implies ω ≥ ω̃. In summary, to enforce π = 1 at ω, it

suffices that ωN ≥ ω∗ and π = 0 be enforceable at ωN−1.

Enforcing π = 0 at ω (continued). Suppose we can enforce it at ω1, ω2, . . . , ωN−1, and

that ωN ≥ ω∗. Note that π = 1 is then enforceable at ω from our previous argument, given

our hypothesis that π = 0 is enforceable at ωN−1. It then suffices that

−(1− δ)ω + δ(−(1 − δ)m+ δwN ) ≥ −(1− δN )m+ δNwN ,
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where again it suffices that this holds for the highest value of wN . To understand this

expression, consider a player who deviates by experimenting. Then the following period the

belief is down one step, and if π = 0 is enforceable at ω1, it means that his continuation

payoff there can be chosen to be no larger than what he can secure at that point by deviating

and experimenting again, etc. The right-hand side is then obtained as the payoff from N

consecutive unilateral deviations to experimentation (in fact, we have picked an upper bound,

as the continuation payoff after this string of deviations need not be the maximum wN ). The

left-hand side is the payoff from playing safe one period before setting π = 1 and getting the

maximum payoff wN , a continuation strategy that is sequentially rational given that π = 1

is enforceable at ω by our hypothesis that π = 0 is enforceable at ωN−1.

Plugging in the definition of υN , this inequality simplifies to

(δ2 − δN )υN ≥ (δ2 − δN )(ωN −m) + (1− δ)(ω −m),

which is always satisfied for beliefs ω ≤ m, i.e., below the myopic cutoff ωm (which coincides

with the normalized payoff m).

To summarize, if π = 0 can be enforced at the N − 1 consecutive beliefs ω1, . . . , ωN−1,

with ωN ≥ ω∗ and ω ≤ ωm, then both π = 0 and π = 1 can be enforced at ω. By induction,

this implies that if we can find an interval of beliefs [ωN , ω) with ωN ≥ ω∗ for which π = 0

can be enforced, then π = 0, 1 can be enforced at all beliefs ω′ ∈ (ω, ωm).

Our second step is to establish that such an interval of beliefs exists. This second step

involves itself three steps. First, we derive some “simple” equilibrium, which is a symmetric

Markov equilibrium. Second, we show that we can enforce π = 1 on sufficiently (finitely)

many consecutive values of beliefs building on this equilibrium; third, we show that this can

be used to enforce π = 0 as well.

It will be useful to distinguish beliefs according to whether they belong to the interval

[ω∗, (1+λ1∆)ω∗), [(1+λ1∆)ω∗, (1+2λ1∆)ω∗), . . . For τ ∈ IN , let Iτ+1 = [(1+ τλ1∆)ω∗, (1+

(τ+1)λ1∆)ω∗). For fixed ∆, every ω ≥ ω∗ can be uniquely mapped into a pair (x, τ) ∈ [0, 1)×
IN such that ω = (1+λ1(x+τ)∆)ω∗, and we alternatively denote beliefs by such a pair. Note

also that, for small enough ∆ > 0, one unsuccessful experiment takes a belief that belongs to

the interval Iτ+1 to (within O(∆2) of) the interval Iτ . (Recall that Λ = λ1∆+O(∆2).)

Let us start with deriving a symmetric Markov equilibrium. Hence, because it is Marko-

vian, υ0 = υ in our notation, that is, the continuation payoff when nobody experiments is

equal to the payoff itself.

Rewriting the equations, using the risky arm gives the payoff29

υ = ω − (1− δ)m − δ(1 − Λ)(1 − πΛ)N−1ω + δ

N−1∑

K=0

(
N − 1

K

)
πK(1− π)N−1−KυK+1,

29To pull out the terms involving the belief ω from the sum appearing in the definition of υ, use

the fact that
∑N−1

K=0

(
N−1

K

)
πK(1 − π)N−1−K(1− Λ)K = (1− πΛ)N/(1− πΛ).
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while using the safe arm yields

υ = δ(1 − (1− πΛ)N−1)ω + δ(1 − π)N−1υ + δ

N−1∑

K=1

(
N − 1

K

)
πK(1− π)N−1−KυK .

In the Markov equilibrium we derive, players are indifferent between both actions, and so

their payoffs are the same. Given any belief ω or corresponding pair (τ, x), we conjecture an

equilibrium in which π = a(τ, x)∆2 +O(∆3), υ = b(τ, x)∆2 +O(∆3), for some functions a, b

of the pair (τ, x) only. Using the fact that Λ = λ1∆+O(∆2), 1− δ = r∆+O(∆2), we replace

this in the two payoff expressions, and take Taylor expansions to get, respectively,

0 =

(
rb(τ, x) +

λ1m

λ1 + r
(N − 1)a(τ, x)

)
∆3 +O(∆4),

and

0 = [b(τ, x)− rmλ1(τ + x)]∆2 +O(∆3).

We then solve for a(τ, x), b(τ, x), to get

π− =
r(λ1 + r)(x+ τ)

N − 1
∆2 +O(∆3),

with corresponding value

υ− = λ1mr(x+ τ)∆2 +O(∆3).

This being an induction on K, it must be verified that the expansion indeed holds at the

lowest interval, I1, and this verification is immediate.30

We now turn to the second step and argue that we can find N − 1 consecutive beliefs

at which π = 1 can be enforced. We then verify that incentives can be provided to do so,

assuming that υ− are the continuation values used by the players whether a player deviates

or not from π = 1. Assume that N − 1 players choose π = 1. Consider the remaining one.

His incentive constraint to choose π = 1 is

−(1− δ)m+ δυN − δ(1 − Λ)Nω ≥ −(1− δ)ω − δ(1 − Λ)N−1ω + δυN−1, (B.12)

where υN , υN−1 are given by υ− at ωN , ωN−1. The interpretation of both sides is as before,

the payoff from abiding with the candidate equilibrium action vs. the payoff from deviating.

Fixing ω and the corresponding pair (τ, x), and assuming that τ ≥ N − 1,31 we insert our

30Note that this solution is actually continuous at the interval endpoints. It is not the only solution

to these equations; as mentioned in the text, there are intervals of beliefs for which multiple symmetric

Markov equilibria exist in discrete time. It is easy to construct such equilibria in which π = 1 and the

initial belief is in (a subinterval of) I1.
31Considering τ < N − 1 would lead to υN = 0, so that the explicit formula for υ− would not apply

at ωN . Computations are then easier, and the result would hold as well.
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formula for υ−, as well as Λ = λ1∆+O(∆), 1− δ = r∆+O(∆). This gives

τ ≥ (N − 1)

(
2 +

λ1
λ1 + r

)
− x.

Hence, given any integer N ′ ∈ IN , N ′ > 3(N − 1), there exists ∆̄ > 0 such that for every ∆ ∈
(0, ∆̄), π = 1 is an equilibrium action at all beliefs ω = ω∗(1+ τ∆), for τ = 3(N − 1), . . . , N ′

(we pick the factor 3 because λ1/(λ1 + r) < 1).

Fix N − 1 consecutive beliefs such that they all belong to intervals Iτ with τ ≥ 3(N − 1)

(say, τ ≤ 4N), and fix ∆ for which the previous result holds, i.e., π = 1 can be enforced at

all these beliefs. We now turn to the third step, showing how π = 0 can be enforced as well

for these beliefs.

Suppose that players choose π = 0. As a continuation payoff, we can use the payoff from

playing π = 1 in the following round, as we have seen that this action can be enforced at

such a belief. This gives

δω + δ(−(1 − δ)m− δ(1 − Λ)N l + δυ−(ωN )).

(Note that the discounted continuation payoff is the left-hand side of (??).) By deviating

from π = 0, a player gets at most

ω + (−(1− δ)m− δ(1 − Λ)ω + δυ−(ω1)) .

Again inserting our formula for υ−, this reduces to

mr(N − 1)λ1
λ1 + r

∆ ≥ 0.

Hence we can also enforce π = 0 at all these beliefs. We can thus apply our induction

argument: there exists ∆̄ > 0 such that, for all ∆ ∈ (0, ∆̄), both π = 0, 1 can be enforced at

all beliefs ω ∈ (ω∗(1 + 4N∆), ωm).

Note that we have not established that, for such a belief ω, π = 1 is enforced with a

continuation in which π = 1 is being played in the next round (at belief ωN > ω∗(1+4N∆)).

However, if π = 1 can be enforced at belief ω, it can be enforced when the continuation payoff

at ωN is highest possible; in turn, this means that, as π = 1 can be enforced at ωN , this

continuation payoff is at least as large as the payoff from playing π = 1 at ωN as well. By

induction, this implies that the highest equilibrium payoff at ω is at least as large as the one

obtained by playing π = 1 at all intermediate beliefs in (ω∗(1 + 4N∆), ω) (followed by, say,

the worst equilibrium payoff once beliefs below this range are reached).

Similarly, we have not argued that, at belief ω, π = 0 is enforced by a continuation

equilibrium in which, if a player deviates and experiments unilaterally, his continuation payoff

at ω1 is what he gets if he keeps on experimenting alone. However, because π = 0 can be

enforced at ω1, the lowest equilibrium payoff that can be used after a unilateral deviation
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at ω must be at least as low as what the player can get at ω1 from deviating unilaterally

to risky again. By induction, this implies that the lowest equilibrium payoff at belief ω is

at least as low as the one obtained if a player experiments alone for all beliefs in the range

(ω∗(1 + 4N∆), ω) (followed by, say, the highest equilibrium payoff once beliefs below this

interval are reached).

Note that, as ∆ → 0, these bounds converge (uniformly in ∆) to the cooperative solu-

tion (restricted to no experimentation at and below ω = ω∗) and the single-agent payoff,

respectively, which was to be shown. (This is immediate given that these values correspond

to precisely the cooperative payoff (with N or 1 player) for a cutoff that is within a distance

of order ∆ of the cutoff ω∗, with a continuation payoff at that cutoff which is itself within ∆

times a constant of the safe payoff.)

This also immediately implies (as for the case λ0 > 0) that for fixed ω > ωm, both

π = 0, 1 can be enforced at all beliefs in [ωm, ω] for all ∆ < ∆̄, for some ∆̄ > 0: the gain

from a deviation is of order ∆, yet the difference in continuation payoffs (selecting as a

continuation payoff a value close to the maximum if no player unilaterally defects, and close

to the minimum if one does) is bounded away from 0, even as ∆ → 0.32 Hence, all conclusions

extend: fix ω ∈ (ω∗,∞); for every ε > 0, there exists ∆̄ > 0 such that for all ∆ < ∆̄, the

best SSE payoff starting at belief ω is at least as much as the payoff from all players choosing

π = 1 at all beliefs in (ω∗ + ε, ω) (using s as a lower bound on the continuation once the

belief ω∗ + ε is reached); and the worst SSE payoff starting at belief ω is no more than the

payoff from a player whose opponents choose π = 1 if, and only if, ω ∈ (ω∗, ω∗ + ε), and 0

otherwise.

The first part of the proposition follows immediately, picking arbitrary p ∈ (p∗1, p
m) and

p̄ ∈ (pm, 1). The second part follows from the fact that (i) p∗1 < p∆1 , as noted, and (ii) for

any p ∈ [p∆1 , p], player i’s payoff in any equilibrium is weakly lower than his best-reply payoff

against κ(p) = 1 for all p ∈ [p∗1, p], as easily follows from (??), the optimality equation for

w.33

Proof of Proposition ??: For λ0 > 0, the proof is the same as that of Proposition ??,

except for the fact that it deals with VN,p̂ rather than V ∗
N and relies on Propositions ??–??

rather than Proposition ??.

For λ0 = 0, the proof of Proposition ?? establishes that there exists a natural number M

such that, given p as stated, we can take ∆̄ to be (p − p∗1)/M . Equivalently, p∗1 +M∆̄ = p.

Hence, Proposition ?? can be restated as saying that, for some ∆̄ > 0, and all ∆ ∈ (0, ∆̄),

32This follows by contradiction. Suppose that for some ∆ ∈ (0, ∆̄), there is ω̂ ∈ [ωm, ω] for which

either π = 0 or 1 cannot be enforced. Consider the infimum over such beliefs. Continuation payoffs

can then be picked as desired, which is a contradiction as it shows that at this presumed infimum

belief π = 0, 1 can in fact be enforced.
33Consider the possibly random sequence of beliefs visited in an equilibrium. At each belief, a flow

loss of either −(1−δ)m or −(1−δ)ω is incurred. Note that the first loss is independent of the number

of other players’ experimenting, while the second is necessarily lower when at each round all other

players experiment.
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there exists p∆ ∈ (p∗1, p
∗
1 +M∆) such that the two conclusions of the proposition hold with

p = p∆. Fixing the prior, let w∆, w∆ denote the payoffs in the first and second SSE from

the proposition, respectively.34 Given that p → p∗1 and w∆(p) → s,w∆(p) → s for all

p ∈ (p∗1, p∆) as ∆ → 0, it follows that we can pick ∆† ∈ (0, ∆̄) such that for all ∆ ∈ (0,∆†),

W
∆
PBE ≤ VN,p̂ + ε, w∆ ≥ VN,p − ε, ‖W∆

1 − V ∗
1 ‖ < ε and ‖w∆ − V1,p̄‖ < ε

2 . The obvious

inequalities follow as in the proof of Proposition ?? with the subtraction of an additional ε

from the left-hand side of the first one; and the conclusion follows as before, using 2ε as an

upper bound.

34Hence, to be precise, these payoffs are only defined on those beliefs that can be reached given the

prior and the equilibrium strategies.
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